aboutsummaryrefslogtreecommitdiffstats
path: root/fs/btrfs/delayed-inode.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/delayed-inode.c')
-rw-r--r--fs/btrfs/delayed-inode.c1694
1 files changed, 1694 insertions, 0 deletions
diff --git a/fs/btrfs/delayed-inode.c b/fs/btrfs/delayed-inode.c
new file mode 100644
index 000000000000..95485318f001
--- /dev/null
+++ b/fs/btrfs/delayed-inode.c
@@ -0,0 +1,1694 @@
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24
25#define BTRFS_DELAYED_WRITEBACK 400
26#define BTRFS_DELAYED_BACKGROUND 100
27
28static struct kmem_cache *delayed_node_cache;
29
30int __init btrfs_delayed_inode_init(void)
31{
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40}
41
42void btrfs_delayed_inode_exit(void)
43{
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46}
47
48static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51{
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65}
66
67static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70{
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77}
78
79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81{
82 return root->fs_info->delayed_root;
83}
84
85static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
86 struct inode *inode)
87{
88 struct btrfs_delayed_node *node;
89 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 struct btrfs_root *root = btrfs_inode->root;
91 int ret;
92
93again:
94 node = ACCESS_ONCE(btrfs_inode->delayed_node);
95 if (node) {
96 atomic_inc(&node->refs); /* can be accessed */
97 return node;
98 }
99
100 spin_lock(&root->inode_lock);
101 node = radix_tree_lookup(&root->delayed_nodes_tree, inode->i_ino);
102 if (node) {
103 if (btrfs_inode->delayed_node) {
104 spin_unlock(&root->inode_lock);
105 goto again;
106 }
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
112 }
113 spin_unlock(&root->inode_lock);
114
115 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
116 if (!node)
117 return ERR_PTR(-ENOMEM);
118 btrfs_init_delayed_node(node, root, inode->i_ino);
119
120 atomic_inc(&node->refs); /* cached in the btrfs inode */
121 atomic_inc(&node->refs); /* can be accessed */
122
123 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
124 if (ret) {
125 kmem_cache_free(delayed_node_cache, node);
126 return ERR_PTR(ret);
127 }
128
129 spin_lock(&root->inode_lock);
130 ret = radix_tree_insert(&root->delayed_nodes_tree, inode->i_ino, node);
131 if (ret == -EEXIST) {
132 kmem_cache_free(delayed_node_cache, node);
133 spin_unlock(&root->inode_lock);
134 radix_tree_preload_end();
135 goto again;
136 }
137 btrfs_inode->delayed_node = node;
138 spin_unlock(&root->inode_lock);
139 radix_tree_preload_end();
140
141 return node;
142}
143
144/*
145 * Call it when holding delayed_node->mutex
146 *
147 * If mod = 1, add this node into the prepared list.
148 */
149static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
150 struct btrfs_delayed_node *node,
151 int mod)
152{
153 spin_lock(&root->lock);
154 if (node->in_list) {
155 if (!list_empty(&node->p_list))
156 list_move_tail(&node->p_list, &root->prepare_list);
157 else if (mod)
158 list_add_tail(&node->p_list, &root->prepare_list);
159 } else {
160 list_add_tail(&node->n_list, &root->node_list);
161 list_add_tail(&node->p_list, &root->prepare_list);
162 atomic_inc(&node->refs); /* inserted into list */
163 root->nodes++;
164 node->in_list = 1;
165 }
166 spin_unlock(&root->lock);
167}
168
169/* Call it when holding delayed_node->mutex */
170static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
171 struct btrfs_delayed_node *node)
172{
173 spin_lock(&root->lock);
174 if (node->in_list) {
175 root->nodes--;
176 atomic_dec(&node->refs); /* not in the list */
177 list_del_init(&node->n_list);
178 if (!list_empty(&node->p_list))
179 list_del_init(&node->p_list);
180 node->in_list = 0;
181 }
182 spin_unlock(&root->lock);
183}
184
185struct btrfs_delayed_node *btrfs_first_delayed_node(
186 struct btrfs_delayed_root *delayed_root)
187{
188 struct list_head *p;
189 struct btrfs_delayed_node *node = NULL;
190
191 spin_lock(&delayed_root->lock);
192 if (list_empty(&delayed_root->node_list))
193 goto out;
194
195 p = delayed_root->node_list.next;
196 node = list_entry(p, struct btrfs_delayed_node, n_list);
197 atomic_inc(&node->refs);
198out:
199 spin_unlock(&delayed_root->lock);
200
201 return node;
202}
203
204struct btrfs_delayed_node *btrfs_next_delayed_node(
205 struct btrfs_delayed_node *node)
206{
207 struct btrfs_delayed_root *delayed_root;
208 struct list_head *p;
209 struct btrfs_delayed_node *next = NULL;
210
211 delayed_root = node->root->fs_info->delayed_root;
212 spin_lock(&delayed_root->lock);
213 if (!node->in_list) { /* not in the list */
214 if (list_empty(&delayed_root->node_list))
215 goto out;
216 p = delayed_root->node_list.next;
217 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
218 goto out;
219 else
220 p = node->n_list.next;
221
222 next = list_entry(p, struct btrfs_delayed_node, n_list);
223 atomic_inc(&next->refs);
224out:
225 spin_unlock(&delayed_root->lock);
226
227 return next;
228}
229
230static void __btrfs_release_delayed_node(
231 struct btrfs_delayed_node *delayed_node,
232 int mod)
233{
234 struct btrfs_delayed_root *delayed_root;
235
236 if (!delayed_node)
237 return;
238
239 delayed_root = delayed_node->root->fs_info->delayed_root;
240
241 mutex_lock(&delayed_node->mutex);
242 if (delayed_node->count)
243 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
244 else
245 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
246 mutex_unlock(&delayed_node->mutex);
247
248 if (atomic_dec_and_test(&delayed_node->refs)) {
249 struct btrfs_root *root = delayed_node->root;
250 spin_lock(&root->inode_lock);
251 if (atomic_read(&delayed_node->refs) == 0) {
252 radix_tree_delete(&root->delayed_nodes_tree,
253 delayed_node->inode_id);
254 kmem_cache_free(delayed_node_cache, delayed_node);
255 }
256 spin_unlock(&root->inode_lock);
257 }
258}
259
260static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
261{
262 __btrfs_release_delayed_node(node, 0);
263}
264
265struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
266 struct btrfs_delayed_root *delayed_root)
267{
268 struct list_head *p;
269 struct btrfs_delayed_node *node = NULL;
270
271 spin_lock(&delayed_root->lock);
272 if (list_empty(&delayed_root->prepare_list))
273 goto out;
274
275 p = delayed_root->prepare_list.next;
276 list_del_init(p);
277 node = list_entry(p, struct btrfs_delayed_node, p_list);
278 atomic_inc(&node->refs);
279out:
280 spin_unlock(&delayed_root->lock);
281
282 return node;
283}
284
285static inline void btrfs_release_prepared_delayed_node(
286 struct btrfs_delayed_node *node)
287{
288 __btrfs_release_delayed_node(node, 1);
289}
290
291struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
292{
293 struct btrfs_delayed_item *item;
294 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
295 if (item) {
296 item->data_len = data_len;
297 item->ins_or_del = 0;
298 item->bytes_reserved = 0;
299 item->block_rsv = NULL;
300 item->delayed_node = NULL;
301 atomic_set(&item->refs, 1);
302 }
303 return item;
304}
305
306/*
307 * __btrfs_lookup_delayed_item - look up the delayed item by key
308 * @delayed_node: pointer to the delayed node
309 * @key: the key to look up
310 * @prev: used to store the prev item if the right item isn't found
311 * @next: used to store the next item if the right item isn't found
312 *
313 * Note: if we don't find the right item, we will return the prev item and
314 * the next item.
315 */
316static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
317 struct rb_root *root,
318 struct btrfs_key *key,
319 struct btrfs_delayed_item **prev,
320 struct btrfs_delayed_item **next)
321{
322 struct rb_node *node, *prev_node = NULL;
323 struct btrfs_delayed_item *delayed_item = NULL;
324 int ret = 0;
325
326 node = root->rb_node;
327
328 while (node) {
329 delayed_item = rb_entry(node, struct btrfs_delayed_item,
330 rb_node);
331 prev_node = node;
332 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
333 if (ret < 0)
334 node = node->rb_right;
335 else if (ret > 0)
336 node = node->rb_left;
337 else
338 return delayed_item;
339 }
340
341 if (prev) {
342 if (!prev_node)
343 *prev = NULL;
344 else if (ret < 0)
345 *prev = delayed_item;
346 else if ((node = rb_prev(prev_node)) != NULL) {
347 *prev = rb_entry(node, struct btrfs_delayed_item,
348 rb_node);
349 } else
350 *prev = NULL;
351 }
352
353 if (next) {
354 if (!prev_node)
355 *next = NULL;
356 else if (ret > 0)
357 *next = delayed_item;
358 else if ((node = rb_next(prev_node)) != NULL) {
359 *next = rb_entry(node, struct btrfs_delayed_item,
360 rb_node);
361 } else
362 *next = NULL;
363 }
364 return NULL;
365}
366
367struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
368 struct btrfs_delayed_node *delayed_node,
369 struct btrfs_key *key)
370{
371 struct btrfs_delayed_item *item;
372
373 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
374 NULL, NULL);
375 return item;
376}
377
378struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
379 struct btrfs_delayed_node *delayed_node,
380 struct btrfs_key *key)
381{
382 struct btrfs_delayed_item *item;
383
384 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
385 NULL, NULL);
386 return item;
387}
388
389struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
390 struct btrfs_delayed_node *delayed_node,
391 struct btrfs_key *key)
392{
393 struct btrfs_delayed_item *item, *next;
394
395 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
396 NULL, &next);
397 if (!item)
398 item = next;
399
400 return item;
401}
402
403struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
404 struct btrfs_delayed_node *delayed_node,
405 struct btrfs_key *key)
406{
407 struct btrfs_delayed_item *item, *next;
408
409 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
410 NULL, &next);
411 if (!item)
412 item = next;
413
414 return item;
415}
416
417static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
418 struct btrfs_delayed_item *ins,
419 int action)
420{
421 struct rb_node **p, *node;
422 struct rb_node *parent_node = NULL;
423 struct rb_root *root;
424 struct btrfs_delayed_item *item;
425 int cmp;
426
427 if (action == BTRFS_DELAYED_INSERTION_ITEM)
428 root = &delayed_node->ins_root;
429 else if (action == BTRFS_DELAYED_DELETION_ITEM)
430 root = &delayed_node->del_root;
431 else
432 BUG();
433 p = &root->rb_node;
434 node = &ins->rb_node;
435
436 while (*p) {
437 parent_node = *p;
438 item = rb_entry(parent_node, struct btrfs_delayed_item,
439 rb_node);
440
441 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
442 if (cmp < 0)
443 p = &(*p)->rb_right;
444 else if (cmp > 0)
445 p = &(*p)->rb_left;
446 else
447 return -EEXIST;
448 }
449
450 rb_link_node(node, parent_node, p);
451 rb_insert_color(node, root);
452 ins->delayed_node = delayed_node;
453 ins->ins_or_del = action;
454
455 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
456 action == BTRFS_DELAYED_INSERTION_ITEM &&
457 ins->key.offset >= delayed_node->index_cnt)
458 delayed_node->index_cnt = ins->key.offset + 1;
459
460 delayed_node->count++;
461 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
462 return 0;
463}
464
465static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
466 struct btrfs_delayed_item *item)
467{
468 return __btrfs_add_delayed_item(node, item,
469 BTRFS_DELAYED_INSERTION_ITEM);
470}
471
472static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
473 struct btrfs_delayed_item *item)
474{
475 return __btrfs_add_delayed_item(node, item,
476 BTRFS_DELAYED_DELETION_ITEM);
477}
478
479static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
480{
481 struct rb_root *root;
482 struct btrfs_delayed_root *delayed_root;
483
484 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
485
486 BUG_ON(!delayed_root);
487 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
488 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
489
490 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
491 root = &delayed_item->delayed_node->ins_root;
492 else
493 root = &delayed_item->delayed_node->del_root;
494
495 rb_erase(&delayed_item->rb_node, root);
496 delayed_item->delayed_node->count--;
497 atomic_dec(&delayed_root->items);
498 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
499 waitqueue_active(&delayed_root->wait))
500 wake_up(&delayed_root->wait);
501}
502
503static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
504{
505 if (item) {
506 __btrfs_remove_delayed_item(item);
507 if (atomic_dec_and_test(&item->refs))
508 kfree(item);
509 }
510}
511
512struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
513 struct btrfs_delayed_node *delayed_node)
514{
515 struct rb_node *p;
516 struct btrfs_delayed_item *item = NULL;
517
518 p = rb_first(&delayed_node->ins_root);
519 if (p)
520 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
521
522 return item;
523}
524
525struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
526 struct btrfs_delayed_node *delayed_node)
527{
528 struct rb_node *p;
529 struct btrfs_delayed_item *item = NULL;
530
531 p = rb_first(&delayed_node->del_root);
532 if (p)
533 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
534
535 return item;
536}
537
538struct btrfs_delayed_item *__btrfs_next_delayed_item(
539 struct btrfs_delayed_item *item)
540{
541 struct rb_node *p;
542 struct btrfs_delayed_item *next = NULL;
543
544 p = rb_next(&item->rb_node);
545 if (p)
546 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
547
548 return next;
549}
550
551static inline struct btrfs_delayed_node *btrfs_get_delayed_node(
552 struct inode *inode)
553{
554 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
555 struct btrfs_delayed_node *delayed_node;
556
557 delayed_node = btrfs_inode->delayed_node;
558 if (delayed_node)
559 atomic_inc(&delayed_node->refs);
560
561 return delayed_node;
562}
563
564static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
565 u64 root_id)
566{
567 struct btrfs_key root_key;
568
569 if (root->objectid == root_id)
570 return root;
571
572 root_key.objectid = root_id;
573 root_key.type = BTRFS_ROOT_ITEM_KEY;
574 root_key.offset = (u64)-1;
575 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
576}
577
578static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
579 struct btrfs_root *root,
580 struct btrfs_delayed_item *item)
581{
582 struct btrfs_block_rsv *src_rsv;
583 struct btrfs_block_rsv *dst_rsv;
584 u64 num_bytes;
585 int ret;
586
587 if (!trans->bytes_reserved)
588 return 0;
589
590 src_rsv = trans->block_rsv;
591 dst_rsv = &root->fs_info->global_block_rsv;
592
593 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
594 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
595 if (!ret) {
596 item->bytes_reserved = num_bytes;
597 item->block_rsv = dst_rsv;
598 }
599
600 return ret;
601}
602
603static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
604 struct btrfs_delayed_item *item)
605{
606 if (!item->bytes_reserved)
607 return;
608
609 btrfs_block_rsv_release(root, item->block_rsv,
610 item->bytes_reserved);
611}
612
613static int btrfs_delayed_inode_reserve_metadata(
614 struct btrfs_trans_handle *trans,
615 struct btrfs_root *root,
616 struct btrfs_delayed_node *node)
617{
618 struct btrfs_block_rsv *src_rsv;
619 struct btrfs_block_rsv *dst_rsv;
620 u64 num_bytes;
621 int ret;
622
623 if (!trans->bytes_reserved)
624 return 0;
625
626 src_rsv = trans->block_rsv;
627 dst_rsv = &root->fs_info->global_block_rsv;
628
629 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
630 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
631 if (!ret)
632 node->bytes_reserved = num_bytes;
633
634 return ret;
635}
636
637static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
638 struct btrfs_delayed_node *node)
639{
640 struct btrfs_block_rsv *rsv;
641
642 if (!node->bytes_reserved)
643 return;
644
645 rsv = &root->fs_info->global_block_rsv;
646 btrfs_block_rsv_release(root, rsv,
647 node->bytes_reserved);
648 node->bytes_reserved = 0;
649}
650
651/*
652 * This helper will insert some continuous items into the same leaf according
653 * to the free space of the leaf.
654 */
655static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
656 struct btrfs_root *root,
657 struct btrfs_path *path,
658 struct btrfs_delayed_item *item)
659{
660 struct btrfs_delayed_item *curr, *next;
661 int free_space;
662 int total_data_size = 0, total_size = 0;
663 struct extent_buffer *leaf;
664 char *data_ptr;
665 struct btrfs_key *keys;
666 u32 *data_size;
667 struct list_head head;
668 int slot;
669 int nitems;
670 int i;
671 int ret = 0;
672
673 BUG_ON(!path->nodes[0]);
674
675 leaf = path->nodes[0];
676 free_space = btrfs_leaf_free_space(root, leaf);
677 INIT_LIST_HEAD(&head);
678
679 next = item;
680
681 /*
682 * count the number of the continuous items that we can insert in batch
683 */
684 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
685 free_space) {
686 total_data_size += next->data_len;
687 total_size += next->data_len + sizeof(struct btrfs_item);
688 list_add_tail(&next->tree_list, &head);
689 nitems++;
690
691 curr = next;
692 next = __btrfs_next_delayed_item(curr);
693 if (!next)
694 break;
695
696 if (!btrfs_is_continuous_delayed_item(curr, next))
697 break;
698 }
699
700 if (!nitems) {
701 ret = 0;
702 goto out;
703 }
704
705 /*
706 * we need allocate some memory space, but it might cause the task
707 * to sleep, so we set all locked nodes in the path to blocking locks
708 * first.
709 */
710 btrfs_set_path_blocking(path);
711
712 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
713 if (!keys) {
714 ret = -ENOMEM;
715 goto out;
716 }
717
718 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
719 if (!data_size) {
720 ret = -ENOMEM;
721 goto error;
722 }
723
724 /* get keys of all the delayed items */
725 i = 0;
726 list_for_each_entry(next, &head, tree_list) {
727 keys[i] = next->key;
728 data_size[i] = next->data_len;
729 i++;
730 }
731
732 /* reset all the locked nodes in the patch to spinning locks. */
733 btrfs_clear_path_blocking(path, NULL);
734
735 /* insert the keys of the items */
736 ret = setup_items_for_insert(trans, root, path, keys, data_size,
737 total_data_size, total_size, nitems);
738 if (ret)
739 goto error;
740
741 /* insert the dir index items */
742 slot = path->slots[0];
743 list_for_each_entry_safe(curr, next, &head, tree_list) {
744 data_ptr = btrfs_item_ptr(leaf, slot, char);
745 write_extent_buffer(leaf, &curr->data,
746 (unsigned long)data_ptr,
747 curr->data_len);
748 slot++;
749
750 btrfs_delayed_item_release_metadata(root, curr);
751
752 list_del(&curr->tree_list);
753 btrfs_release_delayed_item(curr);
754 }
755
756error:
757 kfree(data_size);
758 kfree(keys);
759out:
760 return ret;
761}
762
763/*
764 * This helper can just do simple insertion that needn't extend item for new
765 * data, such as directory name index insertion, inode insertion.
766 */
767static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
768 struct btrfs_root *root,
769 struct btrfs_path *path,
770 struct btrfs_delayed_item *delayed_item)
771{
772 struct extent_buffer *leaf;
773 struct btrfs_item *item;
774 char *ptr;
775 int ret;
776
777 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
778 delayed_item->data_len);
779 if (ret < 0 && ret != -EEXIST)
780 return ret;
781
782 leaf = path->nodes[0];
783
784 item = btrfs_item_nr(leaf, path->slots[0]);
785 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
786
787 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
788 delayed_item->data_len);
789 btrfs_mark_buffer_dirty(leaf);
790
791 btrfs_delayed_item_release_metadata(root, delayed_item);
792 return 0;
793}
794
795/*
796 * we insert an item first, then if there are some continuous items, we try
797 * to insert those items into the same leaf.
798 */
799static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
800 struct btrfs_path *path,
801 struct btrfs_root *root,
802 struct btrfs_delayed_node *node)
803{
804 struct btrfs_delayed_item *curr, *prev;
805 int ret = 0;
806
807do_again:
808 mutex_lock(&node->mutex);
809 curr = __btrfs_first_delayed_insertion_item(node);
810 if (!curr)
811 goto insert_end;
812
813 ret = btrfs_insert_delayed_item(trans, root, path, curr);
814 if (ret < 0) {
815 btrfs_release_path(root, path);
816 goto insert_end;
817 }
818
819 prev = curr;
820 curr = __btrfs_next_delayed_item(prev);
821 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
822 /* insert the continuous items into the same leaf */
823 path->slots[0]++;
824 btrfs_batch_insert_items(trans, root, path, curr);
825 }
826 btrfs_release_delayed_item(prev);
827 btrfs_mark_buffer_dirty(path->nodes[0]);
828
829 btrfs_release_path(root, path);
830 mutex_unlock(&node->mutex);
831 goto do_again;
832
833insert_end:
834 mutex_unlock(&node->mutex);
835 return ret;
836}
837
838static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
839 struct btrfs_root *root,
840 struct btrfs_path *path,
841 struct btrfs_delayed_item *item)
842{
843 struct btrfs_delayed_item *curr, *next;
844 struct extent_buffer *leaf;
845 struct btrfs_key key;
846 struct list_head head;
847 int nitems, i, last_item;
848 int ret = 0;
849
850 BUG_ON(!path->nodes[0]);
851
852 leaf = path->nodes[0];
853
854 i = path->slots[0];
855 last_item = btrfs_header_nritems(leaf) - 1;
856 if (i > last_item)
857 return -ENOENT; /* FIXME: Is errno suitable? */
858
859 next = item;
860 INIT_LIST_HEAD(&head);
861 btrfs_item_key_to_cpu(leaf, &key, i);
862 nitems = 0;
863 /*
864 * count the number of the dir index items that we can delete in batch
865 */
866 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
867 list_add_tail(&next->tree_list, &head);
868 nitems++;
869
870 curr = next;
871 next = __btrfs_next_delayed_item(curr);
872 if (!next)
873 break;
874
875 if (!btrfs_is_continuous_delayed_item(curr, next))
876 break;
877
878 i++;
879 if (i > last_item)
880 break;
881 btrfs_item_key_to_cpu(leaf, &key, i);
882 }
883
884 if (!nitems)
885 return 0;
886
887 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
888 if (ret)
889 goto out;
890
891 list_for_each_entry_safe(curr, next, &head, tree_list) {
892 btrfs_delayed_item_release_metadata(root, curr);
893 list_del(&curr->tree_list);
894 btrfs_release_delayed_item(curr);
895 }
896
897out:
898 return ret;
899}
900
901static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
902 struct btrfs_path *path,
903 struct btrfs_root *root,
904 struct btrfs_delayed_node *node)
905{
906 struct btrfs_delayed_item *curr, *prev;
907 int ret = 0;
908
909do_again:
910 mutex_lock(&node->mutex);
911 curr = __btrfs_first_delayed_deletion_item(node);
912 if (!curr)
913 goto delete_fail;
914
915 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
916 if (ret < 0)
917 goto delete_fail;
918 else if (ret > 0) {
919 /*
920 * can't find the item which the node points to, so this node
921 * is invalid, just drop it.
922 */
923 prev = curr;
924 curr = __btrfs_next_delayed_item(prev);
925 btrfs_release_delayed_item(prev);
926 ret = 0;
927 btrfs_release_path(root, path);
928 if (curr)
929 goto do_again;
930 else
931 goto delete_fail;
932 }
933
934 btrfs_batch_delete_items(trans, root, path, curr);
935 btrfs_release_path(root, path);
936 mutex_unlock(&node->mutex);
937 goto do_again;
938
939delete_fail:
940 btrfs_release_path(root, path);
941 mutex_unlock(&node->mutex);
942 return ret;
943}
944
945static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
946{
947 struct btrfs_delayed_root *delayed_root;
948
949 if (delayed_node && delayed_node->inode_dirty) {
950 BUG_ON(!delayed_node->root);
951 delayed_node->inode_dirty = 0;
952 delayed_node->count--;
953
954 delayed_root = delayed_node->root->fs_info->delayed_root;
955 atomic_dec(&delayed_root->items);
956 if (atomic_read(&delayed_root->items) <
957 BTRFS_DELAYED_BACKGROUND &&
958 waitqueue_active(&delayed_root->wait))
959 wake_up(&delayed_root->wait);
960 }
961}
962
963static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
964 struct btrfs_root *root,
965 struct btrfs_path *path,
966 struct btrfs_delayed_node *node)
967{
968 struct btrfs_key key;
969 struct btrfs_inode_item *inode_item;
970 struct extent_buffer *leaf;
971 int ret;
972
973 mutex_lock(&node->mutex);
974 if (!node->inode_dirty) {
975 mutex_unlock(&node->mutex);
976 return 0;
977 }
978
979 key.objectid = node->inode_id;
980 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
981 key.offset = 0;
982 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
983 if (ret > 0) {
984 btrfs_release_path(root, path);
985 mutex_unlock(&node->mutex);
986 return -ENOENT;
987 } else if (ret < 0) {
988 mutex_unlock(&node->mutex);
989 return ret;
990 }
991
992 btrfs_unlock_up_safe(path, 1);
993 leaf = path->nodes[0];
994 inode_item = btrfs_item_ptr(leaf, path->slots[0],
995 struct btrfs_inode_item);
996 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
997 sizeof(struct btrfs_inode_item));
998 btrfs_mark_buffer_dirty(leaf);
999 btrfs_release_path(root, path);
1000
1001 btrfs_delayed_inode_release_metadata(root, node);
1002 btrfs_release_delayed_inode(node);
1003 mutex_unlock(&node->mutex);
1004
1005 return 0;
1006}
1007
1008/* Called when committing the transaction. */
1009int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1010 struct btrfs_root *root)
1011{
1012 struct btrfs_delayed_root *delayed_root;
1013 struct btrfs_delayed_node *curr_node, *prev_node;
1014 struct btrfs_path *path;
1015 int ret = 0;
1016
1017 path = btrfs_alloc_path();
1018 if (!path)
1019 return -ENOMEM;
1020 path->leave_spinning = 1;
1021
1022 delayed_root = btrfs_get_delayed_root(root);
1023
1024 curr_node = btrfs_first_delayed_node(delayed_root);
1025 while (curr_node) {
1026 root = curr_node->root;
1027 ret = btrfs_insert_delayed_items(trans, path, root,
1028 curr_node);
1029 if (!ret)
1030 ret = btrfs_delete_delayed_items(trans, path, root,
1031 curr_node);
1032 if (!ret)
1033 ret = btrfs_update_delayed_inode(trans, root, path,
1034 curr_node);
1035 if (ret) {
1036 btrfs_release_delayed_node(curr_node);
1037 break;
1038 }
1039
1040 prev_node = curr_node;
1041 curr_node = btrfs_next_delayed_node(curr_node);
1042 btrfs_release_delayed_node(prev_node);
1043 }
1044
1045 btrfs_free_path(path);
1046 return ret;
1047}
1048
1049static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1050 struct btrfs_delayed_node *node)
1051{
1052 struct btrfs_path *path;
1053 int ret;
1054
1055 path = btrfs_alloc_path();
1056 if (!path)
1057 return -ENOMEM;
1058 path->leave_spinning = 1;
1059
1060 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1061 if (!ret)
1062 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1063 if (!ret)
1064 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1065 btrfs_free_path(path);
1066
1067 return ret;
1068}
1069
1070int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1071 struct inode *inode)
1072{
1073 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1074 int ret;
1075
1076 if (!delayed_node)
1077 return 0;
1078
1079 mutex_lock(&delayed_node->mutex);
1080 if (!delayed_node->count) {
1081 mutex_unlock(&delayed_node->mutex);
1082 btrfs_release_delayed_node(delayed_node);
1083 return 0;
1084 }
1085 mutex_unlock(&delayed_node->mutex);
1086
1087 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1088 btrfs_release_delayed_node(delayed_node);
1089 return ret;
1090}
1091
1092void btrfs_remove_delayed_node(struct inode *inode)
1093{
1094 struct btrfs_delayed_node *delayed_node;
1095
1096 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1097 if (!delayed_node)
1098 return;
1099
1100 BTRFS_I(inode)->delayed_node = NULL;
1101 btrfs_release_delayed_node(delayed_node);
1102}
1103
1104struct btrfs_async_delayed_node {
1105 struct btrfs_root *root;
1106 struct btrfs_delayed_node *delayed_node;
1107 struct btrfs_work work;
1108};
1109
1110static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1111{
1112 struct btrfs_async_delayed_node *async_node;
1113 struct btrfs_trans_handle *trans;
1114 struct btrfs_path *path;
1115 struct btrfs_delayed_node *delayed_node = NULL;
1116 struct btrfs_root *root;
1117 unsigned long nr = 0;
1118 int need_requeue = 0;
1119 int ret;
1120
1121 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1122
1123 path = btrfs_alloc_path();
1124 if (!path)
1125 goto out;
1126 path->leave_spinning = 1;
1127
1128 delayed_node = async_node->delayed_node;
1129 root = delayed_node->root;
1130
1131 trans = btrfs_join_transaction(root, 0);
1132 if (IS_ERR(trans))
1133 goto free_path;
1134
1135 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1136 if (!ret)
1137 ret = btrfs_delete_delayed_items(trans, path, root,
1138 delayed_node);
1139
1140 if (!ret)
1141 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1142
1143 /*
1144 * Maybe new delayed items have been inserted, so we need requeue
1145 * the work. Besides that, we must dequeue the empty delayed nodes
1146 * to avoid the race between delayed items balance and the worker.
1147 * The race like this:
1148 * Task1 Worker thread
1149 * count == 0, needn't requeue
1150 * also needn't insert the
1151 * delayed node into prepare
1152 * list again.
1153 * add lots of delayed items
1154 * queue the delayed node
1155 * already in the list,
1156 * and not in the prepare
1157 * list, it means the delayed
1158 * node is being dealt with
1159 * by the worker.
1160 * do delayed items balance
1161 * the delayed node is being
1162 * dealt with by the worker
1163 * now, just wait.
1164 * the worker goto idle.
1165 * Task1 will sleep until the transaction is commited.
1166 */
1167 mutex_lock(&delayed_node->mutex);
1168 if (delayed_node->count)
1169 need_requeue = 1;
1170 else
1171 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1172 delayed_node);
1173 mutex_unlock(&delayed_node->mutex);
1174
1175 nr = trans->blocks_used;
1176
1177 btrfs_end_transaction_dmeta(trans, root);
1178 __btrfs_btree_balance_dirty(root, nr);
1179free_path:
1180 btrfs_free_path(path);
1181out:
1182 if (need_requeue)
1183 btrfs_requeue_work(&async_node->work);
1184 else {
1185 btrfs_release_prepared_delayed_node(delayed_node);
1186 kfree(async_node);
1187 }
1188}
1189
1190static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1191 struct btrfs_root *root, int all)
1192{
1193 struct btrfs_async_delayed_node *async_node;
1194 struct btrfs_delayed_node *curr;
1195 int count = 0;
1196
1197again:
1198 curr = btrfs_first_prepared_delayed_node(delayed_root);
1199 if (!curr)
1200 return 0;
1201
1202 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1203 if (!async_node) {
1204 btrfs_release_prepared_delayed_node(curr);
1205 return -ENOMEM;
1206 }
1207
1208 async_node->root = root;
1209 async_node->delayed_node = curr;
1210
1211 async_node->work.func = btrfs_async_run_delayed_node_done;
1212 async_node->work.flags = 0;
1213
1214 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1215 count++;
1216
1217 if (all || count < 4)
1218 goto again;
1219
1220 return 0;
1221}
1222
1223void btrfs_balance_delayed_items(struct btrfs_root *root)
1224{
1225 struct btrfs_delayed_root *delayed_root;
1226
1227 delayed_root = btrfs_get_delayed_root(root);
1228
1229 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1230 return;
1231
1232 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1233 int ret;
1234 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1235 if (ret)
1236 return;
1237
1238 wait_event_interruptible_timeout(
1239 delayed_root->wait,
1240 (atomic_read(&delayed_root->items) <
1241 BTRFS_DELAYED_BACKGROUND),
1242 HZ);
1243 return;
1244 }
1245
1246 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1247}
1248
1249int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1250 struct btrfs_root *root, const char *name,
1251 int name_len, struct inode *dir,
1252 struct btrfs_disk_key *disk_key, u8 type,
1253 u64 index)
1254{
1255 struct btrfs_delayed_node *delayed_node;
1256 struct btrfs_delayed_item *delayed_item;
1257 struct btrfs_dir_item *dir_item;
1258 int ret;
1259
1260 delayed_node = btrfs_get_or_create_delayed_node(dir);
1261 if (IS_ERR(delayed_node))
1262 return PTR_ERR(delayed_node);
1263
1264 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1265 if (!delayed_item) {
1266 ret = -ENOMEM;
1267 goto release_node;
1268 }
1269
1270 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1271 /*
1272 * we have reserved enough space when we start a new transaction,
1273 * so reserving metadata failure is impossible
1274 */
1275 BUG_ON(ret);
1276
1277 delayed_item->key.objectid = dir->i_ino;
1278 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1279 delayed_item->key.offset = index;
1280
1281 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1282 dir_item->location = *disk_key;
1283 dir_item->transid = cpu_to_le64(trans->transid);
1284 dir_item->data_len = 0;
1285 dir_item->name_len = cpu_to_le16(name_len);
1286 dir_item->type = type;
1287 memcpy((char *)(dir_item + 1), name, name_len);
1288
1289 mutex_lock(&delayed_node->mutex);
1290 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1291 if (unlikely(ret)) {
1292 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1293 "the insertion tree of the delayed node"
1294 "(root id: %llu, inode id: %llu, errno: %d)\n",
1295 name,
1296 (unsigned long long)delayed_node->root->objectid,
1297 (unsigned long long)delayed_node->inode_id,
1298 ret);
1299 BUG();
1300 }
1301 mutex_unlock(&delayed_node->mutex);
1302
1303release_node:
1304 btrfs_release_delayed_node(delayed_node);
1305 return ret;
1306}
1307
1308static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1309 struct btrfs_delayed_node *node,
1310 struct btrfs_key *key)
1311{
1312 struct btrfs_delayed_item *item;
1313
1314 mutex_lock(&node->mutex);
1315 item = __btrfs_lookup_delayed_insertion_item(node, key);
1316 if (!item) {
1317 mutex_unlock(&node->mutex);
1318 return 1;
1319 }
1320
1321 btrfs_delayed_item_release_metadata(root, item);
1322 btrfs_release_delayed_item(item);
1323 mutex_unlock(&node->mutex);
1324 return 0;
1325}
1326
1327int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *root, struct inode *dir,
1329 u64 index)
1330{
1331 struct btrfs_delayed_node *node;
1332 struct btrfs_delayed_item *item;
1333 struct btrfs_key item_key;
1334 int ret;
1335
1336 node = btrfs_get_or_create_delayed_node(dir);
1337 if (IS_ERR(node))
1338 return PTR_ERR(node);
1339
1340 item_key.objectid = dir->i_ino;
1341 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1342 item_key.offset = index;
1343
1344 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1345 if (!ret)
1346 goto end;
1347
1348 item = btrfs_alloc_delayed_item(0);
1349 if (!item) {
1350 ret = -ENOMEM;
1351 goto end;
1352 }
1353
1354 item->key = item_key;
1355
1356 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1357 /*
1358 * we have reserved enough space when we start a new transaction,
1359 * so reserving metadata failure is impossible.
1360 */
1361 BUG_ON(ret);
1362
1363 mutex_lock(&node->mutex);
1364 ret = __btrfs_add_delayed_deletion_item(node, item);
1365 if (unlikely(ret)) {
1366 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1367 "into the deletion tree of the delayed node"
1368 "(root id: %llu, inode id: %llu, errno: %d)\n",
1369 (unsigned long long)index,
1370 (unsigned long long)node->root->objectid,
1371 (unsigned long long)node->inode_id,
1372 ret);
1373 BUG();
1374 }
1375 mutex_unlock(&node->mutex);
1376end:
1377 btrfs_release_delayed_node(node);
1378 return ret;
1379}
1380
1381int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1382{
1383 struct btrfs_delayed_node *delayed_node = BTRFS_I(inode)->delayed_node;
1384 int ret = 0;
1385
1386 if (!delayed_node)
1387 return -ENOENT;
1388
1389 /*
1390 * Since we have held i_mutex of this directory, it is impossible that
1391 * a new directory index is added into the delayed node and index_cnt
1392 * is updated now. So we needn't lock the delayed node.
1393 */
1394 if (!delayed_node->index_cnt)
1395 return -EINVAL;
1396
1397 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1398 return ret;
1399}
1400
1401void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1402 struct list_head *del_list)
1403{
1404 struct btrfs_delayed_node *delayed_node;
1405 struct btrfs_delayed_item *item;
1406
1407 delayed_node = btrfs_get_delayed_node(inode);
1408 if (!delayed_node)
1409 return;
1410
1411 mutex_lock(&delayed_node->mutex);
1412 item = __btrfs_first_delayed_insertion_item(delayed_node);
1413 while (item) {
1414 atomic_inc(&item->refs);
1415 list_add_tail(&item->readdir_list, ins_list);
1416 item = __btrfs_next_delayed_item(item);
1417 }
1418
1419 item = __btrfs_first_delayed_deletion_item(delayed_node);
1420 while (item) {
1421 atomic_inc(&item->refs);
1422 list_add_tail(&item->readdir_list, del_list);
1423 item = __btrfs_next_delayed_item(item);
1424 }
1425 mutex_unlock(&delayed_node->mutex);
1426 /*
1427 * This delayed node is still cached in the btrfs inode, so refs
1428 * must be > 1 now, and we needn't check it is going to be freed
1429 * or not.
1430 *
1431 * Besides that, this function is used to read dir, we do not
1432 * insert/delete delayed items in this period. So we also needn't
1433 * requeue or dequeue this delayed node.
1434 */
1435 atomic_dec(&delayed_node->refs);
1436}
1437
1438void btrfs_put_delayed_items(struct list_head *ins_list,
1439 struct list_head *del_list)
1440{
1441 struct btrfs_delayed_item *curr, *next;
1442
1443 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1444 list_del(&curr->readdir_list);
1445 if (atomic_dec_and_test(&curr->refs))
1446 kfree(curr);
1447 }
1448
1449 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1450 list_del(&curr->readdir_list);
1451 if (atomic_dec_and_test(&curr->refs))
1452 kfree(curr);
1453 }
1454}
1455
1456int btrfs_should_delete_dir_index(struct list_head *del_list,
1457 u64 index)
1458{
1459 struct btrfs_delayed_item *curr, *next;
1460 int ret;
1461
1462 if (list_empty(del_list))
1463 return 0;
1464
1465 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1466 if (curr->key.offset > index)
1467 break;
1468
1469 list_del(&curr->readdir_list);
1470 ret = (curr->key.offset == index);
1471
1472 if (atomic_dec_and_test(&curr->refs))
1473 kfree(curr);
1474
1475 if (ret)
1476 return 1;
1477 else
1478 continue;
1479 }
1480 return 0;
1481}
1482
1483/*
1484 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1485 *
1486 */
1487int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1488 filldir_t filldir,
1489 struct list_head *ins_list)
1490{
1491 struct btrfs_dir_item *di;
1492 struct btrfs_delayed_item *curr, *next;
1493 struct btrfs_key location;
1494 char *name;
1495 int name_len;
1496 int over = 0;
1497 unsigned char d_type;
1498
1499 if (list_empty(ins_list))
1500 return 0;
1501
1502 /*
1503 * Changing the data of the delayed item is impossible. So
1504 * we needn't lock them. And we have held i_mutex of the
1505 * directory, nobody can delete any directory indexes now.
1506 */
1507 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1508 list_del(&curr->readdir_list);
1509
1510 if (curr->key.offset < filp->f_pos) {
1511 if (atomic_dec_and_test(&curr->refs))
1512 kfree(curr);
1513 continue;
1514 }
1515
1516 filp->f_pos = curr->key.offset;
1517
1518 di = (struct btrfs_dir_item *)curr->data;
1519 name = (char *)(di + 1);
1520 name_len = le16_to_cpu(di->name_len);
1521
1522 d_type = btrfs_filetype_table[di->type];
1523 btrfs_disk_key_to_cpu(&location, &di->location);
1524
1525 over = filldir(dirent, name, name_len, curr->key.offset,
1526 location.objectid, d_type);
1527
1528 if (atomic_dec_and_test(&curr->refs))
1529 kfree(curr);
1530
1531 if (over)
1532 return 1;
1533 }
1534 return 0;
1535}
1536
1537BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1538 generation, 64);
1539BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1540 sequence, 64);
1541BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1542 transid, 64);
1543BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1544BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1545 nbytes, 64);
1546BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1547 block_group, 64);
1548BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1549BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1550BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1551BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1552BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1553BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1554
1555BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1556BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1557
1558static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1559 struct btrfs_inode_item *inode_item,
1560 struct inode *inode)
1561{
1562 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1563 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1564 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1565 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1566 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1567 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1568 btrfs_set_stack_inode_generation(inode_item,
1569 BTRFS_I(inode)->generation);
1570 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1571 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1572 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1573 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1574 btrfs_set_stack_inode_block_group(inode_item,
1575 BTRFS_I(inode)->block_group);
1576
1577 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1578 inode->i_atime.tv_sec);
1579 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1580 inode->i_atime.tv_nsec);
1581
1582 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1583 inode->i_mtime.tv_sec);
1584 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1585 inode->i_mtime.tv_nsec);
1586
1587 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1588 inode->i_ctime.tv_sec);
1589 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1590 inode->i_ctime.tv_nsec);
1591}
1592
1593int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1594 struct btrfs_root *root, struct inode *inode)
1595{
1596 struct btrfs_delayed_node *delayed_node;
1597 int ret;
1598
1599 delayed_node = btrfs_get_or_create_delayed_node(inode);
1600 if (IS_ERR(delayed_node))
1601 return PTR_ERR(delayed_node);
1602
1603 mutex_lock(&delayed_node->mutex);
1604 if (delayed_node->inode_dirty) {
1605 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1606 goto release_node;
1607 }
1608
1609 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1610 /*
1611 * we must reserve enough space when we start a new transaction,
1612 * so reserving metadata failure is impossible
1613 */
1614 BUG_ON(ret);
1615
1616 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1617 delayed_node->inode_dirty = 1;
1618 delayed_node->count++;
1619 atomic_inc(&root->fs_info->delayed_root->items);
1620release_node:
1621 mutex_unlock(&delayed_node->mutex);
1622 btrfs_release_delayed_node(delayed_node);
1623 return ret;
1624}
1625
1626static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1627{
1628 struct btrfs_root *root = delayed_node->root;
1629 struct btrfs_delayed_item *curr_item, *prev_item;
1630
1631 mutex_lock(&delayed_node->mutex);
1632 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1633 while (curr_item) {
1634 btrfs_delayed_item_release_metadata(root, curr_item);
1635 prev_item = curr_item;
1636 curr_item = __btrfs_next_delayed_item(prev_item);
1637 btrfs_release_delayed_item(prev_item);
1638 }
1639
1640 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1641 while (curr_item) {
1642 btrfs_delayed_item_release_metadata(root, curr_item);
1643 prev_item = curr_item;
1644 curr_item = __btrfs_next_delayed_item(prev_item);
1645 btrfs_release_delayed_item(prev_item);
1646 }
1647
1648 if (delayed_node->inode_dirty) {
1649 btrfs_delayed_inode_release_metadata(root, delayed_node);
1650 btrfs_release_delayed_inode(delayed_node);
1651 }
1652 mutex_unlock(&delayed_node->mutex);
1653}
1654
1655void btrfs_kill_delayed_inode_items(struct inode *inode)
1656{
1657 struct btrfs_delayed_node *delayed_node;
1658
1659 delayed_node = btrfs_get_delayed_node(inode);
1660 if (!delayed_node)
1661 return;
1662
1663 __btrfs_kill_delayed_node(delayed_node);
1664 btrfs_release_delayed_node(delayed_node);
1665}
1666
1667void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1668{
1669 u64 inode_id = 0;
1670 struct btrfs_delayed_node *delayed_nodes[8];
1671 int i, n;
1672
1673 while (1) {
1674 spin_lock(&root->inode_lock);
1675 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1676 (void **)delayed_nodes, inode_id,
1677 ARRAY_SIZE(delayed_nodes));
1678 if (!n) {
1679 spin_unlock(&root->inode_lock);
1680 break;
1681 }
1682
1683 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1684
1685 for (i = 0; i < n; i++)
1686 atomic_inc(&delayed_nodes[i]->refs);
1687 spin_unlock(&root->inode_lock);
1688
1689 for (i = 0; i < n; i++) {
1690 __btrfs_kill_delayed_node(delayed_nodes[i]);
1691 btrfs_release_delayed_node(delayed_nodes[i]);
1692 }
1693 }
1694}