aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-pl022.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/spi/spi-pl022.c')
-rw-r--r--drivers/spi/spi-pl022.c2342
1 files changed, 2342 insertions, 0 deletions
diff --git a/drivers/spi/spi-pl022.c b/drivers/spi/spi-pl022.c
new file mode 100644
index 000000000000..25417054a456
--- /dev/null
+++ b/drivers/spi/spi-pl022.c
@@ -0,0 +1,2342 @@
1/*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
32#include <linux/workqueue.h>
33#include <linux/delay.h>
34#include <linux/clk.h>
35#include <linux/err.h>
36#include <linux/amba/bus.h>
37#include <linux/amba/pl022.h>
38#include <linux/io.h>
39#include <linux/slab.h>
40#include <linux/dmaengine.h>
41#include <linux/dma-mapping.h>
42#include <linux/scatterlist.h>
43
44/*
45 * This macro is used to define some register default values.
46 * reg is masked with mask, the OR:ed with an (again masked)
47 * val shifted sb steps to the left.
48 */
49#define SSP_WRITE_BITS(reg, val, mask, sb) \
50 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
51
52/*
53 * This macro is also used to define some default values.
54 * It will just shift val by sb steps to the left and mask
55 * the result with mask.
56 */
57#define GEN_MASK_BITS(val, mask, sb) \
58 (((val)<<(sb)) & (mask))
59
60#define DRIVE_TX 0
61#define DO_NOT_DRIVE_TX 1
62
63#define DO_NOT_QUEUE_DMA 0
64#define QUEUE_DMA 1
65
66#define RX_TRANSFER 1
67#define TX_TRANSFER 2
68
69/*
70 * Macros to access SSP Registers with their offsets
71 */
72#define SSP_CR0(r) (r + 0x000)
73#define SSP_CR1(r) (r + 0x004)
74#define SSP_DR(r) (r + 0x008)
75#define SSP_SR(r) (r + 0x00C)
76#define SSP_CPSR(r) (r + 0x010)
77#define SSP_IMSC(r) (r + 0x014)
78#define SSP_RIS(r) (r + 0x018)
79#define SSP_MIS(r) (r + 0x01C)
80#define SSP_ICR(r) (r + 0x020)
81#define SSP_DMACR(r) (r + 0x024)
82#define SSP_ITCR(r) (r + 0x080)
83#define SSP_ITIP(r) (r + 0x084)
84#define SSP_ITOP(r) (r + 0x088)
85#define SSP_TDR(r) (r + 0x08C)
86
87#define SSP_PID0(r) (r + 0xFE0)
88#define SSP_PID1(r) (r + 0xFE4)
89#define SSP_PID2(r) (r + 0xFE8)
90#define SSP_PID3(r) (r + 0xFEC)
91
92#define SSP_CID0(r) (r + 0xFF0)
93#define SSP_CID1(r) (r + 0xFF4)
94#define SSP_CID2(r) (r + 0xFF8)
95#define SSP_CID3(r) (r + 0xFFC)
96
97/*
98 * SSP Control Register 0 - SSP_CR0
99 */
100#define SSP_CR0_MASK_DSS (0x0FUL << 0)
101#define SSP_CR0_MASK_FRF (0x3UL << 4)
102#define SSP_CR0_MASK_SPO (0x1UL << 6)
103#define SSP_CR0_MASK_SPH (0x1UL << 7)
104#define SSP_CR0_MASK_SCR (0xFFUL << 8)
105
106/*
107 * The ST version of this block moves som bits
108 * in SSP_CR0 and extends it to 32 bits
109 */
110#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
111#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
112#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
113#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
114
115
116/*
117 * SSP Control Register 0 - SSP_CR1
118 */
119#define SSP_CR1_MASK_LBM (0x1UL << 0)
120#define SSP_CR1_MASK_SSE (0x1UL << 1)
121#define SSP_CR1_MASK_MS (0x1UL << 2)
122#define SSP_CR1_MASK_SOD (0x1UL << 3)
123
124/*
125 * The ST version of this block adds some bits
126 * in SSP_CR1
127 */
128#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
129#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
130#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
131#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
132#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
133/* This one is only in the PL023 variant */
134#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
135
136/*
137 * SSP Status Register - SSP_SR
138 */
139#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
140#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
141#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
142#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
143#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
144
145/*
146 * SSP Clock Prescale Register - SSP_CPSR
147 */
148#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
149
150/*
151 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
152 */
153#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
154#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
155#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
156#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
157
158/*
159 * SSP Raw Interrupt Status Register - SSP_RIS
160 */
161/* Receive Overrun Raw Interrupt status */
162#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
163/* Receive Timeout Raw Interrupt status */
164#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
165/* Receive FIFO Raw Interrupt status */
166#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
167/* Transmit FIFO Raw Interrupt status */
168#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
169
170/*
171 * SSP Masked Interrupt Status Register - SSP_MIS
172 */
173/* Receive Overrun Masked Interrupt status */
174#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
175/* Receive Timeout Masked Interrupt status */
176#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
177/* Receive FIFO Masked Interrupt status */
178#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
179/* Transmit FIFO Masked Interrupt status */
180#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
181
182/*
183 * SSP Interrupt Clear Register - SSP_ICR
184 */
185/* Receive Overrun Raw Clear Interrupt bit */
186#define SSP_ICR_MASK_RORIC (0x1UL << 0)
187/* Receive Timeout Clear Interrupt bit */
188#define SSP_ICR_MASK_RTIC (0x1UL << 1)
189
190/*
191 * SSP DMA Control Register - SSP_DMACR
192 */
193/* Receive DMA Enable bit */
194#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
195/* Transmit DMA Enable bit */
196#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
197
198/*
199 * SSP Integration Test control Register - SSP_ITCR
200 */
201#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
202#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
203
204/*
205 * SSP Integration Test Input Register - SSP_ITIP
206 */
207#define ITIP_MASK_SSPRXD (0x1UL << 0)
208#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
209#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
210#define ITIP_MASK_RXDMAC (0x1UL << 3)
211#define ITIP_MASK_TXDMAC (0x1UL << 4)
212#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
213
214/*
215 * SSP Integration Test output Register - SSP_ITOP
216 */
217#define ITOP_MASK_SSPTXD (0x1UL << 0)
218#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
219#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
220#define ITOP_MASK_SSPOEn (0x1UL << 3)
221#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
222#define ITOP_MASK_RORINTR (0x1UL << 5)
223#define ITOP_MASK_RTINTR (0x1UL << 6)
224#define ITOP_MASK_RXINTR (0x1UL << 7)
225#define ITOP_MASK_TXINTR (0x1UL << 8)
226#define ITOP_MASK_INTR (0x1UL << 9)
227#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
228#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
229#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
230#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
231
232/*
233 * SSP Test Data Register - SSP_TDR
234 */
235#define TDR_MASK_TESTDATA (0xFFFFFFFF)
236
237/*
238 * Message State
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
242 */
243#define STATE_START ((void *) 0)
244#define STATE_RUNNING ((void *) 1)
245#define STATE_DONE ((void *) 2)
246#define STATE_ERROR ((void *) -1)
247
248/*
249 * SSP State - Whether Enabled or Disabled
250 */
251#define SSP_DISABLED (0)
252#define SSP_ENABLED (1)
253
254/*
255 * SSP DMA State - Whether DMA Enabled or Disabled
256 */
257#define SSP_DMA_DISABLED (0)
258#define SSP_DMA_ENABLED (1)
259
260/*
261 * SSP Clock Defaults
262 */
263#define SSP_DEFAULT_CLKRATE 0x2
264#define SSP_DEFAULT_PRESCALE 0x40
265
266/*
267 * SSP Clock Parameter ranges
268 */
269#define CPSDVR_MIN 0x02
270#define CPSDVR_MAX 0xFE
271#define SCR_MIN 0x00
272#define SCR_MAX 0xFF
273
274/*
275 * SSP Interrupt related Macros
276 */
277#define DEFAULT_SSP_REG_IMSC 0x0UL
278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
280
281#define CLEAR_ALL_INTERRUPTS 0x3
282
283#define SPI_POLLING_TIMEOUT 1000
284
285
286/*
287 * The type of reading going on on this chip
288 */
289enum ssp_reading {
290 READING_NULL,
291 READING_U8,
292 READING_U16,
293 READING_U32
294};
295
296/**
297 * The type of writing going on on this chip
298 */
299enum ssp_writing {
300 WRITING_NULL,
301 WRITING_U8,
302 WRITING_U16,
303 WRITING_U32
304};
305
306/**
307 * struct vendor_data - vendor-specific config parameters
308 * for PL022 derivates
309 * @fifodepth: depth of FIFOs (both)
310 * @max_bpw: maximum number of bits per word
311 * @unidir: supports unidirection transfers
312 * @extended_cr: 32 bit wide control register 0 with extra
313 * features and extra features in CR1 as found in the ST variants
314 * @pl023: supports a subset of the ST extensions called "PL023"
315 */
316struct vendor_data {
317 int fifodepth;
318 int max_bpw;
319 bool unidir;
320 bool extended_cr;
321 bool pl023;
322 bool loopback;
323};
324
325/**
326 * struct pl022 - This is the private SSP driver data structure
327 * @adev: AMBA device model hookup
328 * @vendor: vendor data for the IP block
329 * @phybase: the physical memory where the SSP device resides
330 * @virtbase: the virtual memory where the SSP is mapped
331 * @clk: outgoing clock "SPICLK" for the SPI bus
332 * @master: SPI framework hookup
333 * @master_info: controller-specific data from machine setup
334 * @workqueue: a workqueue on which any spi_message request is queued
335 * @pump_messages: work struct for scheduling work to the workqueue
336 * @queue_lock: spinlock to syncronise access to message queue
337 * @queue: message queue
338 * @busy: workqueue is busy
339 * @running: workqueue is running
340 * @pump_transfers: Tasklet used in Interrupt Transfer mode
341 * @cur_msg: Pointer to current spi_message being processed
342 * @cur_transfer: Pointer to current spi_transfer
343 * @cur_chip: pointer to current clients chip(assigned from controller_state)
344 * @tx: current position in TX buffer to be read
345 * @tx_end: end position in TX buffer to be read
346 * @rx: current position in RX buffer to be written
347 * @rx_end: end position in RX buffer to be written
348 * @read: the type of read currently going on
349 * @write: the type of write currently going on
350 * @exp_fifo_level: expected FIFO level
351 * @dma_rx_channel: optional channel for RX DMA
352 * @dma_tx_channel: optional channel for TX DMA
353 * @sgt_rx: scattertable for the RX transfer
354 * @sgt_tx: scattertable for the TX transfer
355 * @dummypage: a dummy page used for driving data on the bus with DMA
356 */
357struct pl022 {
358 struct amba_device *adev;
359 struct vendor_data *vendor;
360 resource_size_t phybase;
361 void __iomem *virtbase;
362 struct clk *clk;
363 struct spi_master *master;
364 struct pl022_ssp_controller *master_info;
365 /* Driver message queue */
366 struct workqueue_struct *workqueue;
367 struct work_struct pump_messages;
368 spinlock_t queue_lock;
369 struct list_head queue;
370 bool busy;
371 bool running;
372 /* Message transfer pump */
373 struct tasklet_struct pump_transfers;
374 struct spi_message *cur_msg;
375 struct spi_transfer *cur_transfer;
376 struct chip_data *cur_chip;
377 void *tx;
378 void *tx_end;
379 void *rx;
380 void *rx_end;
381 enum ssp_reading read;
382 enum ssp_writing write;
383 u32 exp_fifo_level;
384 /* DMA settings */
385#ifdef CONFIG_DMA_ENGINE
386 struct dma_chan *dma_rx_channel;
387 struct dma_chan *dma_tx_channel;
388 struct sg_table sgt_rx;
389 struct sg_table sgt_tx;
390 char *dummypage;
391#endif
392};
393
394/**
395 * struct chip_data - To maintain runtime state of SSP for each client chip
396 * @cr0: Value of control register CR0 of SSP - on later ST variants this
397 * register is 32 bits wide rather than just 16
398 * @cr1: Value of control register CR1 of SSP
399 * @dmacr: Value of DMA control Register of SSP
400 * @cpsr: Value of Clock prescale register
401 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
402 * @enable_dma: Whether to enable DMA or not
403 * @read: function ptr to be used to read when doing xfer for this chip
404 * @write: function ptr to be used to write when doing xfer for this chip
405 * @cs_control: chip select callback provided by chip
406 * @xfer_type: polling/interrupt/DMA
407 *
408 * Runtime state of the SSP controller, maintained per chip,
409 * This would be set according to the current message that would be served
410 */
411struct chip_data {
412 u32 cr0;
413 u16 cr1;
414 u16 dmacr;
415 u16 cpsr;
416 u8 n_bytes;
417 bool enable_dma;
418 enum ssp_reading read;
419 enum ssp_writing write;
420 void (*cs_control) (u32 command);
421 int xfer_type;
422};
423
424/**
425 * null_cs_control - Dummy chip select function
426 * @command: select/delect the chip
427 *
428 * If no chip select function is provided by client this is used as dummy
429 * chip select
430 */
431static void null_cs_control(u32 command)
432{
433 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
434}
435
436/**
437 * giveback - current spi_message is over, schedule next message and call
438 * callback of this message. Assumes that caller already
439 * set message->status; dma and pio irqs are blocked
440 * @pl022: SSP driver private data structure
441 */
442static void giveback(struct pl022 *pl022)
443{
444 struct spi_transfer *last_transfer;
445 unsigned long flags;
446 struct spi_message *msg;
447 void (*curr_cs_control) (u32 command);
448
449 /*
450 * This local reference to the chip select function
451 * is needed because we set curr_chip to NULL
452 * as a step toward termininating the message.
453 */
454 curr_cs_control = pl022->cur_chip->cs_control;
455 spin_lock_irqsave(&pl022->queue_lock, flags);
456 msg = pl022->cur_msg;
457 pl022->cur_msg = NULL;
458 pl022->cur_transfer = NULL;
459 pl022->cur_chip = NULL;
460 queue_work(pl022->workqueue, &pl022->pump_messages);
461 spin_unlock_irqrestore(&pl022->queue_lock, flags);
462
463 last_transfer = list_entry(msg->transfers.prev,
464 struct spi_transfer,
465 transfer_list);
466
467 /* Delay if requested before any change in chip select */
468 if (last_transfer->delay_usecs)
469 /*
470 * FIXME: This runs in interrupt context.
471 * Is this really smart?
472 */
473 udelay(last_transfer->delay_usecs);
474
475 /*
476 * Drop chip select UNLESS cs_change is true or we are returning
477 * a message with an error, or next message is for another chip
478 */
479 if (!last_transfer->cs_change)
480 curr_cs_control(SSP_CHIP_DESELECT);
481 else {
482 struct spi_message *next_msg;
483
484 /* Holding of cs was hinted, but we need to make sure
485 * the next message is for the same chip. Don't waste
486 * time with the following tests unless this was hinted.
487 *
488 * We cannot postpone this until pump_messages, because
489 * after calling msg->complete (below) the driver that
490 * sent the current message could be unloaded, which
491 * could invalidate the cs_control() callback...
492 */
493
494 /* get a pointer to the next message, if any */
495 spin_lock_irqsave(&pl022->queue_lock, flags);
496 if (list_empty(&pl022->queue))
497 next_msg = NULL;
498 else
499 next_msg = list_entry(pl022->queue.next,
500 struct spi_message, queue);
501 spin_unlock_irqrestore(&pl022->queue_lock, flags);
502
503 /* see if the next and current messages point
504 * to the same chip
505 */
506 if (next_msg && next_msg->spi != msg->spi)
507 next_msg = NULL;
508 if (!next_msg || msg->state == STATE_ERROR)
509 curr_cs_control(SSP_CHIP_DESELECT);
510 }
511 msg->state = NULL;
512 if (msg->complete)
513 msg->complete(msg->context);
514 /* This message is completed, so let's turn off the clocks & power */
515 clk_disable(pl022->clk);
516 amba_pclk_disable(pl022->adev);
517 amba_vcore_disable(pl022->adev);
518}
519
520/**
521 * flush - flush the FIFO to reach a clean state
522 * @pl022: SSP driver private data structure
523 */
524static int flush(struct pl022 *pl022)
525{
526 unsigned long limit = loops_per_jiffy << 1;
527
528 dev_dbg(&pl022->adev->dev, "flush\n");
529 do {
530 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
531 readw(SSP_DR(pl022->virtbase));
532 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
533
534 pl022->exp_fifo_level = 0;
535
536 return limit;
537}
538
539/**
540 * restore_state - Load configuration of current chip
541 * @pl022: SSP driver private data structure
542 */
543static void restore_state(struct pl022 *pl022)
544{
545 struct chip_data *chip = pl022->cur_chip;
546
547 if (pl022->vendor->extended_cr)
548 writel(chip->cr0, SSP_CR0(pl022->virtbase));
549 else
550 writew(chip->cr0, SSP_CR0(pl022->virtbase));
551 writew(chip->cr1, SSP_CR1(pl022->virtbase));
552 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
553 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
554 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
555 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
556}
557
558/*
559 * Default SSP Register Values
560 */
561#define DEFAULT_SSP_REG_CR0 ( \
562 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
563 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
564 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
565 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
566 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
567)
568
569/* ST versions have slightly different bit layout */
570#define DEFAULT_SSP_REG_CR0_ST ( \
571 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
572 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
573 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
574 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
575 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
576 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
577 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
578)
579
580/* The PL023 version is slightly different again */
581#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
582 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
583 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
584 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
585 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
586)
587
588#define DEFAULT_SSP_REG_CR1 ( \
589 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
590 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
591 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
592 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
593)
594
595/* ST versions extend this register to use all 16 bits */
596#define DEFAULT_SSP_REG_CR1_ST ( \
597 DEFAULT_SSP_REG_CR1 | \
598 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
599 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
600 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
601 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
602 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
603)
604
605/*
606 * The PL023 variant has further differences: no loopback mode, no microwire
607 * support, and a new clock feedback delay setting.
608 */
609#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
610 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
611 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
612 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
613 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
614 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
615 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
616 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
617 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
618)
619
620#define DEFAULT_SSP_REG_CPSR ( \
621 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
622)
623
624#define DEFAULT_SSP_REG_DMACR (\
625 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
626 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
627)
628
629/**
630 * load_ssp_default_config - Load default configuration for SSP
631 * @pl022: SSP driver private data structure
632 */
633static void load_ssp_default_config(struct pl022 *pl022)
634{
635 if (pl022->vendor->pl023) {
636 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
637 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
638 } else if (pl022->vendor->extended_cr) {
639 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
640 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
641 } else {
642 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
643 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
644 }
645 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
646 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
647 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
648 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
649}
650
651/**
652 * This will write to TX and read from RX according to the parameters
653 * set in pl022.
654 */
655static void readwriter(struct pl022 *pl022)
656{
657
658 /*
659 * The FIFO depth is different between primecell variants.
660 * I believe filling in too much in the FIFO might cause
661 * errons in 8bit wide transfers on ARM variants (just 8 words
662 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
663 *
664 * To prevent this issue, the TX FIFO is only filled to the
665 * unused RX FIFO fill length, regardless of what the TX
666 * FIFO status flag indicates.
667 */
668 dev_dbg(&pl022->adev->dev,
669 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
670 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
671
672 /* Read as much as you can */
673 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
674 && (pl022->rx < pl022->rx_end)) {
675 switch (pl022->read) {
676 case READING_NULL:
677 readw(SSP_DR(pl022->virtbase));
678 break;
679 case READING_U8:
680 *(u8 *) (pl022->rx) =
681 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
682 break;
683 case READING_U16:
684 *(u16 *) (pl022->rx) =
685 (u16) readw(SSP_DR(pl022->virtbase));
686 break;
687 case READING_U32:
688 *(u32 *) (pl022->rx) =
689 readl(SSP_DR(pl022->virtbase));
690 break;
691 }
692 pl022->rx += (pl022->cur_chip->n_bytes);
693 pl022->exp_fifo_level--;
694 }
695 /*
696 * Write as much as possible up to the RX FIFO size
697 */
698 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
699 && (pl022->tx < pl022->tx_end)) {
700 switch (pl022->write) {
701 case WRITING_NULL:
702 writew(0x0, SSP_DR(pl022->virtbase));
703 break;
704 case WRITING_U8:
705 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
706 break;
707 case WRITING_U16:
708 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
709 break;
710 case WRITING_U32:
711 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
712 break;
713 }
714 pl022->tx += (pl022->cur_chip->n_bytes);
715 pl022->exp_fifo_level++;
716 /*
717 * This inner reader takes care of things appearing in the RX
718 * FIFO as we're transmitting. This will happen a lot since the
719 * clock starts running when you put things into the TX FIFO,
720 * and then things are continuously clocked into the RX FIFO.
721 */
722 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
723 && (pl022->rx < pl022->rx_end)) {
724 switch (pl022->read) {
725 case READING_NULL:
726 readw(SSP_DR(pl022->virtbase));
727 break;
728 case READING_U8:
729 *(u8 *) (pl022->rx) =
730 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
731 break;
732 case READING_U16:
733 *(u16 *) (pl022->rx) =
734 (u16) readw(SSP_DR(pl022->virtbase));
735 break;
736 case READING_U32:
737 *(u32 *) (pl022->rx) =
738 readl(SSP_DR(pl022->virtbase));
739 break;
740 }
741 pl022->rx += (pl022->cur_chip->n_bytes);
742 pl022->exp_fifo_level--;
743 }
744 }
745 /*
746 * When we exit here the TX FIFO should be full and the RX FIFO
747 * should be empty
748 */
749}
750
751
752/**
753 * next_transfer - Move to the Next transfer in the current spi message
754 * @pl022: SSP driver private data structure
755 *
756 * This function moves though the linked list of spi transfers in the
757 * current spi message and returns with the state of current spi
758 * message i.e whether its last transfer is done(STATE_DONE) or
759 * Next transfer is ready(STATE_RUNNING)
760 */
761static void *next_transfer(struct pl022 *pl022)
762{
763 struct spi_message *msg = pl022->cur_msg;
764 struct spi_transfer *trans = pl022->cur_transfer;
765
766 /* Move to next transfer */
767 if (trans->transfer_list.next != &msg->transfers) {
768 pl022->cur_transfer =
769 list_entry(trans->transfer_list.next,
770 struct spi_transfer, transfer_list);
771 return STATE_RUNNING;
772 }
773 return STATE_DONE;
774}
775
776/*
777 * This DMA functionality is only compiled in if we have
778 * access to the generic DMA devices/DMA engine.
779 */
780#ifdef CONFIG_DMA_ENGINE
781static void unmap_free_dma_scatter(struct pl022 *pl022)
782{
783 /* Unmap and free the SG tables */
784 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
785 pl022->sgt_tx.nents, DMA_TO_DEVICE);
786 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
787 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
788 sg_free_table(&pl022->sgt_rx);
789 sg_free_table(&pl022->sgt_tx);
790}
791
792static void dma_callback(void *data)
793{
794 struct pl022 *pl022 = data;
795 struct spi_message *msg = pl022->cur_msg;
796
797 BUG_ON(!pl022->sgt_rx.sgl);
798
799#ifdef VERBOSE_DEBUG
800 /*
801 * Optionally dump out buffers to inspect contents, this is
802 * good if you want to convince yourself that the loopback
803 * read/write contents are the same, when adopting to a new
804 * DMA engine.
805 */
806 {
807 struct scatterlist *sg;
808 unsigned int i;
809
810 dma_sync_sg_for_cpu(&pl022->adev->dev,
811 pl022->sgt_rx.sgl,
812 pl022->sgt_rx.nents,
813 DMA_FROM_DEVICE);
814
815 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
816 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
817 print_hex_dump(KERN_ERR, "SPI RX: ",
818 DUMP_PREFIX_OFFSET,
819 16,
820 1,
821 sg_virt(sg),
822 sg_dma_len(sg),
823 1);
824 }
825 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
826 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
827 print_hex_dump(KERN_ERR, "SPI TX: ",
828 DUMP_PREFIX_OFFSET,
829 16,
830 1,
831 sg_virt(sg),
832 sg_dma_len(sg),
833 1);
834 }
835 }
836#endif
837
838 unmap_free_dma_scatter(pl022);
839
840 /* Update total bytes transferred */
841 msg->actual_length += pl022->cur_transfer->len;
842 if (pl022->cur_transfer->cs_change)
843 pl022->cur_chip->
844 cs_control(SSP_CHIP_DESELECT);
845
846 /* Move to next transfer */
847 msg->state = next_transfer(pl022);
848 tasklet_schedule(&pl022->pump_transfers);
849}
850
851static void setup_dma_scatter(struct pl022 *pl022,
852 void *buffer,
853 unsigned int length,
854 struct sg_table *sgtab)
855{
856 struct scatterlist *sg;
857 int bytesleft = length;
858 void *bufp = buffer;
859 int mapbytes;
860 int i;
861
862 if (buffer) {
863 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
864 /*
865 * If there are less bytes left than what fits
866 * in the current page (plus page alignment offset)
867 * we just feed in this, else we stuff in as much
868 * as we can.
869 */
870 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
871 mapbytes = bytesleft;
872 else
873 mapbytes = PAGE_SIZE - offset_in_page(bufp);
874 sg_set_page(sg, virt_to_page(bufp),
875 mapbytes, offset_in_page(bufp));
876 bufp += mapbytes;
877 bytesleft -= mapbytes;
878 dev_dbg(&pl022->adev->dev,
879 "set RX/TX target page @ %p, %d bytes, %d left\n",
880 bufp, mapbytes, bytesleft);
881 }
882 } else {
883 /* Map the dummy buffer on every page */
884 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
885 if (bytesleft < PAGE_SIZE)
886 mapbytes = bytesleft;
887 else
888 mapbytes = PAGE_SIZE;
889 sg_set_page(sg, virt_to_page(pl022->dummypage),
890 mapbytes, 0);
891 bytesleft -= mapbytes;
892 dev_dbg(&pl022->adev->dev,
893 "set RX/TX to dummy page %d bytes, %d left\n",
894 mapbytes, bytesleft);
895
896 }
897 }
898 BUG_ON(bytesleft);
899}
900
901/**
902 * configure_dma - configures the channels for the next transfer
903 * @pl022: SSP driver's private data structure
904 */
905static int configure_dma(struct pl022 *pl022)
906{
907 struct dma_slave_config rx_conf = {
908 .src_addr = SSP_DR(pl022->phybase),
909 .direction = DMA_FROM_DEVICE,
910 .src_maxburst = pl022->vendor->fifodepth >> 1,
911 };
912 struct dma_slave_config tx_conf = {
913 .dst_addr = SSP_DR(pl022->phybase),
914 .direction = DMA_TO_DEVICE,
915 .dst_maxburst = pl022->vendor->fifodepth >> 1,
916 };
917 unsigned int pages;
918 int ret;
919 int rx_sglen, tx_sglen;
920 struct dma_chan *rxchan = pl022->dma_rx_channel;
921 struct dma_chan *txchan = pl022->dma_tx_channel;
922 struct dma_async_tx_descriptor *rxdesc;
923 struct dma_async_tx_descriptor *txdesc;
924
925 /* Check that the channels are available */
926 if (!rxchan || !txchan)
927 return -ENODEV;
928
929 switch (pl022->read) {
930 case READING_NULL:
931 /* Use the same as for writing */
932 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
933 break;
934 case READING_U8:
935 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
936 break;
937 case READING_U16:
938 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
939 break;
940 case READING_U32:
941 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
942 break;
943 }
944
945 switch (pl022->write) {
946 case WRITING_NULL:
947 /* Use the same as for reading */
948 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
949 break;
950 case WRITING_U8:
951 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
952 break;
953 case WRITING_U16:
954 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
955 break;
956 case WRITING_U32:
957 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
958 break;
959 }
960
961 /* SPI pecularity: we need to read and write the same width */
962 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
963 rx_conf.src_addr_width = tx_conf.dst_addr_width;
964 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
965 tx_conf.dst_addr_width = rx_conf.src_addr_width;
966 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
967
968 dmaengine_slave_config(rxchan, &rx_conf);
969 dmaengine_slave_config(txchan, &tx_conf);
970
971 /* Create sglists for the transfers */
972 pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
973 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
974
975 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
976 if (ret)
977 goto err_alloc_rx_sg;
978
979 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
980 if (ret)
981 goto err_alloc_tx_sg;
982
983 /* Fill in the scatterlists for the RX+TX buffers */
984 setup_dma_scatter(pl022, pl022->rx,
985 pl022->cur_transfer->len, &pl022->sgt_rx);
986 setup_dma_scatter(pl022, pl022->tx,
987 pl022->cur_transfer->len, &pl022->sgt_tx);
988
989 /* Map DMA buffers */
990 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
991 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
992 if (!rx_sglen)
993 goto err_rx_sgmap;
994
995 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
996 pl022->sgt_tx.nents, DMA_TO_DEVICE);
997 if (!tx_sglen)
998 goto err_tx_sgmap;
999
1000 /* Send both scatterlists */
1001 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1002 pl022->sgt_rx.sgl,
1003 rx_sglen,
1004 DMA_FROM_DEVICE,
1005 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1006 if (!rxdesc)
1007 goto err_rxdesc;
1008
1009 txdesc = txchan->device->device_prep_slave_sg(txchan,
1010 pl022->sgt_tx.sgl,
1011 tx_sglen,
1012 DMA_TO_DEVICE,
1013 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1014 if (!txdesc)
1015 goto err_txdesc;
1016
1017 /* Put the callback on the RX transfer only, that should finish last */
1018 rxdesc->callback = dma_callback;
1019 rxdesc->callback_param = pl022;
1020
1021 /* Submit and fire RX and TX with TX last so we're ready to read! */
1022 dmaengine_submit(rxdesc);
1023 dmaengine_submit(txdesc);
1024 dma_async_issue_pending(rxchan);
1025 dma_async_issue_pending(txchan);
1026
1027 return 0;
1028
1029err_txdesc:
1030 dmaengine_terminate_all(txchan);
1031err_rxdesc:
1032 dmaengine_terminate_all(rxchan);
1033 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1034 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1035err_tx_sgmap:
1036 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1037 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1038err_rx_sgmap:
1039 sg_free_table(&pl022->sgt_tx);
1040err_alloc_tx_sg:
1041 sg_free_table(&pl022->sgt_rx);
1042err_alloc_rx_sg:
1043 return -ENOMEM;
1044}
1045
1046static int __init pl022_dma_probe(struct pl022 *pl022)
1047{
1048 dma_cap_mask_t mask;
1049
1050 /* Try to acquire a generic DMA engine slave channel */
1051 dma_cap_zero(mask);
1052 dma_cap_set(DMA_SLAVE, mask);
1053 /*
1054 * We need both RX and TX channels to do DMA, else do none
1055 * of them.
1056 */
1057 pl022->dma_rx_channel = dma_request_channel(mask,
1058 pl022->master_info->dma_filter,
1059 pl022->master_info->dma_rx_param);
1060 if (!pl022->dma_rx_channel) {
1061 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1062 goto err_no_rxchan;
1063 }
1064
1065 pl022->dma_tx_channel = dma_request_channel(mask,
1066 pl022->master_info->dma_filter,
1067 pl022->master_info->dma_tx_param);
1068 if (!pl022->dma_tx_channel) {
1069 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1070 goto err_no_txchan;
1071 }
1072
1073 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1074 if (!pl022->dummypage) {
1075 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1076 goto err_no_dummypage;
1077 }
1078
1079 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1080 dma_chan_name(pl022->dma_rx_channel),
1081 dma_chan_name(pl022->dma_tx_channel));
1082
1083 return 0;
1084
1085err_no_dummypage:
1086 dma_release_channel(pl022->dma_tx_channel);
1087err_no_txchan:
1088 dma_release_channel(pl022->dma_rx_channel);
1089 pl022->dma_rx_channel = NULL;
1090err_no_rxchan:
1091 dev_err(&pl022->adev->dev,
1092 "Failed to work in dma mode, work without dma!\n");
1093 return -ENODEV;
1094}
1095
1096static void terminate_dma(struct pl022 *pl022)
1097{
1098 struct dma_chan *rxchan = pl022->dma_rx_channel;
1099 struct dma_chan *txchan = pl022->dma_tx_channel;
1100
1101 dmaengine_terminate_all(rxchan);
1102 dmaengine_terminate_all(txchan);
1103 unmap_free_dma_scatter(pl022);
1104}
1105
1106static void pl022_dma_remove(struct pl022 *pl022)
1107{
1108 if (pl022->busy)
1109 terminate_dma(pl022);
1110 if (pl022->dma_tx_channel)
1111 dma_release_channel(pl022->dma_tx_channel);
1112 if (pl022->dma_rx_channel)
1113 dma_release_channel(pl022->dma_rx_channel);
1114 kfree(pl022->dummypage);
1115}
1116
1117#else
1118static inline int configure_dma(struct pl022 *pl022)
1119{
1120 return -ENODEV;
1121}
1122
1123static inline int pl022_dma_probe(struct pl022 *pl022)
1124{
1125 return 0;
1126}
1127
1128static inline void pl022_dma_remove(struct pl022 *pl022)
1129{
1130}
1131#endif
1132
1133/**
1134 * pl022_interrupt_handler - Interrupt handler for SSP controller
1135 *
1136 * This function handles interrupts generated for an interrupt based transfer.
1137 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1138 * current message's state as STATE_ERROR and schedule the tasklet
1139 * pump_transfers which will do the postprocessing of the current message by
1140 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1141 * more data, and writes data in TX FIFO till it is not full. If we complete
1142 * the transfer we move to the next transfer and schedule the tasklet.
1143 */
1144static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1145{
1146 struct pl022 *pl022 = dev_id;
1147 struct spi_message *msg = pl022->cur_msg;
1148 u16 irq_status = 0;
1149 u16 flag = 0;
1150
1151 if (unlikely(!msg)) {
1152 dev_err(&pl022->adev->dev,
1153 "bad message state in interrupt handler");
1154 /* Never fail */
1155 return IRQ_HANDLED;
1156 }
1157
1158 /* Read the Interrupt Status Register */
1159 irq_status = readw(SSP_MIS(pl022->virtbase));
1160
1161 if (unlikely(!irq_status))
1162 return IRQ_NONE;
1163
1164 /*
1165 * This handles the FIFO interrupts, the timeout
1166 * interrupts are flatly ignored, they cannot be
1167 * trusted.
1168 */
1169 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1170 /*
1171 * Overrun interrupt - bail out since our Data has been
1172 * corrupted
1173 */
1174 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1175 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1176 dev_err(&pl022->adev->dev,
1177 "RXFIFO is full\n");
1178 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1179 dev_err(&pl022->adev->dev,
1180 "TXFIFO is full\n");
1181
1182 /*
1183 * Disable and clear interrupts, disable SSP,
1184 * mark message with bad status so it can be
1185 * retried.
1186 */
1187 writew(DISABLE_ALL_INTERRUPTS,
1188 SSP_IMSC(pl022->virtbase));
1189 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1190 writew((readw(SSP_CR1(pl022->virtbase)) &
1191 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1192 msg->state = STATE_ERROR;
1193
1194 /* Schedule message queue handler */
1195 tasklet_schedule(&pl022->pump_transfers);
1196 return IRQ_HANDLED;
1197 }
1198
1199 readwriter(pl022);
1200
1201 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1202 flag = 1;
1203 /* Disable Transmit interrupt */
1204 writew(readw(SSP_IMSC(pl022->virtbase)) &
1205 (~SSP_IMSC_MASK_TXIM),
1206 SSP_IMSC(pl022->virtbase));
1207 }
1208
1209 /*
1210 * Since all transactions must write as much as shall be read,
1211 * we can conclude the entire transaction once RX is complete.
1212 * At this point, all TX will always be finished.
1213 */
1214 if (pl022->rx >= pl022->rx_end) {
1215 writew(DISABLE_ALL_INTERRUPTS,
1216 SSP_IMSC(pl022->virtbase));
1217 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1218 if (unlikely(pl022->rx > pl022->rx_end)) {
1219 dev_warn(&pl022->adev->dev, "read %u surplus "
1220 "bytes (did you request an odd "
1221 "number of bytes on a 16bit bus?)\n",
1222 (u32) (pl022->rx - pl022->rx_end));
1223 }
1224 /* Update total bytes transferred */
1225 msg->actual_length += pl022->cur_transfer->len;
1226 if (pl022->cur_transfer->cs_change)
1227 pl022->cur_chip->
1228 cs_control(SSP_CHIP_DESELECT);
1229 /* Move to next transfer */
1230 msg->state = next_transfer(pl022);
1231 tasklet_schedule(&pl022->pump_transfers);
1232 return IRQ_HANDLED;
1233 }
1234
1235 return IRQ_HANDLED;
1236}
1237
1238/**
1239 * This sets up the pointers to memory for the next message to
1240 * send out on the SPI bus.
1241 */
1242static int set_up_next_transfer(struct pl022 *pl022,
1243 struct spi_transfer *transfer)
1244{
1245 int residue;
1246
1247 /* Sanity check the message for this bus width */
1248 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1249 if (unlikely(residue != 0)) {
1250 dev_err(&pl022->adev->dev,
1251 "message of %u bytes to transmit but the current "
1252 "chip bus has a data width of %u bytes!\n",
1253 pl022->cur_transfer->len,
1254 pl022->cur_chip->n_bytes);
1255 dev_err(&pl022->adev->dev, "skipping this message\n");
1256 return -EIO;
1257 }
1258 pl022->tx = (void *)transfer->tx_buf;
1259 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1260 pl022->rx = (void *)transfer->rx_buf;
1261 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1262 pl022->write =
1263 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1264 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1265 return 0;
1266}
1267
1268/**
1269 * pump_transfers - Tasklet function which schedules next transfer
1270 * when running in interrupt or DMA transfer mode.
1271 * @data: SSP driver private data structure
1272 *
1273 */
1274static void pump_transfers(unsigned long data)
1275{
1276 struct pl022 *pl022 = (struct pl022 *) data;
1277 struct spi_message *message = NULL;
1278 struct spi_transfer *transfer = NULL;
1279 struct spi_transfer *previous = NULL;
1280
1281 /* Get current state information */
1282 message = pl022->cur_msg;
1283 transfer = pl022->cur_transfer;
1284
1285 /* Handle for abort */
1286 if (message->state == STATE_ERROR) {
1287 message->status = -EIO;
1288 giveback(pl022);
1289 return;
1290 }
1291
1292 /* Handle end of message */
1293 if (message->state == STATE_DONE) {
1294 message->status = 0;
1295 giveback(pl022);
1296 return;
1297 }
1298
1299 /* Delay if requested at end of transfer before CS change */
1300 if (message->state == STATE_RUNNING) {
1301 previous = list_entry(transfer->transfer_list.prev,
1302 struct spi_transfer,
1303 transfer_list);
1304 if (previous->delay_usecs)
1305 /*
1306 * FIXME: This runs in interrupt context.
1307 * Is this really smart?
1308 */
1309 udelay(previous->delay_usecs);
1310
1311 /* Drop chip select only if cs_change is requested */
1312 if (previous->cs_change)
1313 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1314 } else {
1315 /* STATE_START */
1316 message->state = STATE_RUNNING;
1317 }
1318
1319 if (set_up_next_transfer(pl022, transfer)) {
1320 message->state = STATE_ERROR;
1321 message->status = -EIO;
1322 giveback(pl022);
1323 return;
1324 }
1325 /* Flush the FIFOs and let's go! */
1326 flush(pl022);
1327
1328 if (pl022->cur_chip->enable_dma) {
1329 if (configure_dma(pl022)) {
1330 dev_dbg(&pl022->adev->dev,
1331 "configuration of DMA failed, fall back to interrupt mode\n");
1332 goto err_config_dma;
1333 }
1334 return;
1335 }
1336
1337err_config_dma:
1338 writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1339}
1340
1341static void do_interrupt_dma_transfer(struct pl022 *pl022)
1342{
1343 u32 irqflags = ENABLE_ALL_INTERRUPTS;
1344
1345 /* Enable target chip */
1346 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1347 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1348 /* Error path */
1349 pl022->cur_msg->state = STATE_ERROR;
1350 pl022->cur_msg->status = -EIO;
1351 giveback(pl022);
1352 return;
1353 }
1354 /* If we're using DMA, set up DMA here */
1355 if (pl022->cur_chip->enable_dma) {
1356 /* Configure DMA transfer */
1357 if (configure_dma(pl022)) {
1358 dev_dbg(&pl022->adev->dev,
1359 "configuration of DMA failed, fall back to interrupt mode\n");
1360 goto err_config_dma;
1361 }
1362 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1363 irqflags = DISABLE_ALL_INTERRUPTS;
1364 }
1365err_config_dma:
1366 /* Enable SSP, turn on interrupts */
1367 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1368 SSP_CR1(pl022->virtbase));
1369 writew(irqflags, SSP_IMSC(pl022->virtbase));
1370}
1371
1372static void do_polling_transfer(struct pl022 *pl022)
1373{
1374 struct spi_message *message = NULL;
1375 struct spi_transfer *transfer = NULL;
1376 struct spi_transfer *previous = NULL;
1377 struct chip_data *chip;
1378 unsigned long time, timeout;
1379
1380 chip = pl022->cur_chip;
1381 message = pl022->cur_msg;
1382
1383 while (message->state != STATE_DONE) {
1384 /* Handle for abort */
1385 if (message->state == STATE_ERROR)
1386 break;
1387 transfer = pl022->cur_transfer;
1388
1389 /* Delay if requested at end of transfer */
1390 if (message->state == STATE_RUNNING) {
1391 previous =
1392 list_entry(transfer->transfer_list.prev,
1393 struct spi_transfer, transfer_list);
1394 if (previous->delay_usecs)
1395 udelay(previous->delay_usecs);
1396 if (previous->cs_change)
1397 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1398 } else {
1399 /* STATE_START */
1400 message->state = STATE_RUNNING;
1401 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1402 }
1403
1404 /* Configuration Changing Per Transfer */
1405 if (set_up_next_transfer(pl022, transfer)) {
1406 /* Error path */
1407 message->state = STATE_ERROR;
1408 break;
1409 }
1410 /* Flush FIFOs and enable SSP */
1411 flush(pl022);
1412 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1413 SSP_CR1(pl022->virtbase));
1414
1415 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1416
1417 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1418 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1419 time = jiffies;
1420 readwriter(pl022);
1421 if (time_after(time, timeout)) {
1422 dev_warn(&pl022->adev->dev,
1423 "%s: timeout!\n", __func__);
1424 message->state = STATE_ERROR;
1425 goto out;
1426 }
1427 cpu_relax();
1428 }
1429
1430 /* Update total byte transferred */
1431 message->actual_length += pl022->cur_transfer->len;
1432 if (pl022->cur_transfer->cs_change)
1433 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1434 /* Move to next transfer */
1435 message->state = next_transfer(pl022);
1436 }
1437out:
1438 /* Handle end of message */
1439 if (message->state == STATE_DONE)
1440 message->status = 0;
1441 else
1442 message->status = -EIO;
1443
1444 giveback(pl022);
1445 return;
1446}
1447
1448/**
1449 * pump_messages - Workqueue function which processes spi message queue
1450 * @data: pointer to private data of SSP driver
1451 *
1452 * This function checks if there is any spi message in the queue that
1453 * needs processing and delegate control to appropriate function
1454 * do_polling_transfer()/do_interrupt_dma_transfer()
1455 * based on the kind of the transfer
1456 *
1457 */
1458static void pump_messages(struct work_struct *work)
1459{
1460 struct pl022 *pl022 =
1461 container_of(work, struct pl022, pump_messages);
1462 unsigned long flags;
1463
1464 /* Lock queue and check for queue work */
1465 spin_lock_irqsave(&pl022->queue_lock, flags);
1466 if (list_empty(&pl022->queue) || !pl022->running) {
1467 pl022->busy = false;
1468 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1469 return;
1470 }
1471 /* Make sure we are not already running a message */
1472 if (pl022->cur_msg) {
1473 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1474 return;
1475 }
1476 /* Extract head of queue */
1477 pl022->cur_msg =
1478 list_entry(pl022->queue.next, struct spi_message, queue);
1479
1480 list_del_init(&pl022->cur_msg->queue);
1481 pl022->busy = true;
1482 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1483
1484 /* Initial message state */
1485 pl022->cur_msg->state = STATE_START;
1486 pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1487 struct spi_transfer,
1488 transfer_list);
1489
1490 /* Setup the SPI using the per chip configuration */
1491 pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1492 /*
1493 * We enable the core voltage and clocks here, then the clocks
1494 * and core will be disabled when giveback() is called in each method
1495 * (poll/interrupt/DMA)
1496 */
1497 amba_vcore_enable(pl022->adev);
1498 amba_pclk_enable(pl022->adev);
1499 clk_enable(pl022->clk);
1500 restore_state(pl022);
1501 flush(pl022);
1502
1503 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1504 do_polling_transfer(pl022);
1505 else
1506 do_interrupt_dma_transfer(pl022);
1507}
1508
1509
1510static int __init init_queue(struct pl022 *pl022)
1511{
1512 INIT_LIST_HEAD(&pl022->queue);
1513 spin_lock_init(&pl022->queue_lock);
1514
1515 pl022->running = false;
1516 pl022->busy = false;
1517
1518 tasklet_init(&pl022->pump_transfers,
1519 pump_transfers, (unsigned long)pl022);
1520
1521 INIT_WORK(&pl022->pump_messages, pump_messages);
1522 pl022->workqueue = create_singlethread_workqueue(
1523 dev_name(pl022->master->dev.parent));
1524 if (pl022->workqueue == NULL)
1525 return -EBUSY;
1526
1527 return 0;
1528}
1529
1530
1531static int start_queue(struct pl022 *pl022)
1532{
1533 unsigned long flags;
1534
1535 spin_lock_irqsave(&pl022->queue_lock, flags);
1536
1537 if (pl022->running || pl022->busy) {
1538 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1539 return -EBUSY;
1540 }
1541
1542 pl022->running = true;
1543 pl022->cur_msg = NULL;
1544 pl022->cur_transfer = NULL;
1545 pl022->cur_chip = NULL;
1546 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1547
1548 queue_work(pl022->workqueue, &pl022->pump_messages);
1549
1550 return 0;
1551}
1552
1553
1554static int stop_queue(struct pl022 *pl022)
1555{
1556 unsigned long flags;
1557 unsigned limit = 500;
1558 int status = 0;
1559
1560 spin_lock_irqsave(&pl022->queue_lock, flags);
1561
1562 /* This is a bit lame, but is optimized for the common execution path.
1563 * A wait_queue on the pl022->busy could be used, but then the common
1564 * execution path (pump_messages) would be required to call wake_up or
1565 * friends on every SPI message. Do this instead */
1566 while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
1567 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1568 msleep(10);
1569 spin_lock_irqsave(&pl022->queue_lock, flags);
1570 }
1571
1572 if (!list_empty(&pl022->queue) || pl022->busy)
1573 status = -EBUSY;
1574 else
1575 pl022->running = false;
1576
1577 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1578
1579 return status;
1580}
1581
1582static int destroy_queue(struct pl022 *pl022)
1583{
1584 int status;
1585
1586 status = stop_queue(pl022);
1587 /* we are unloading the module or failing to load (only two calls
1588 * to this routine), and neither call can handle a return value.
1589 * However, destroy_workqueue calls flush_workqueue, and that will
1590 * block until all work is done. If the reason that stop_queue
1591 * timed out is that the work will never finish, then it does no
1592 * good to call destroy_workqueue, so return anyway. */
1593 if (status != 0)
1594 return status;
1595
1596 destroy_workqueue(pl022->workqueue);
1597
1598 return 0;
1599}
1600
1601static int verify_controller_parameters(struct pl022 *pl022,
1602 struct pl022_config_chip const *chip_info)
1603{
1604 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1605 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1606 dev_err(&pl022->adev->dev,
1607 "interface is configured incorrectly\n");
1608 return -EINVAL;
1609 }
1610 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1611 (!pl022->vendor->unidir)) {
1612 dev_err(&pl022->adev->dev,
1613 "unidirectional mode not supported in this "
1614 "hardware version\n");
1615 return -EINVAL;
1616 }
1617 if ((chip_info->hierarchy != SSP_MASTER)
1618 && (chip_info->hierarchy != SSP_SLAVE)) {
1619 dev_err(&pl022->adev->dev,
1620 "hierarchy is configured incorrectly\n");
1621 return -EINVAL;
1622 }
1623 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1624 && (chip_info->com_mode != DMA_TRANSFER)
1625 && (chip_info->com_mode != POLLING_TRANSFER)) {
1626 dev_err(&pl022->adev->dev,
1627 "Communication mode is configured incorrectly\n");
1628 return -EINVAL;
1629 }
1630 if ((chip_info->rx_lev_trig < SSP_RX_1_OR_MORE_ELEM)
1631 || (chip_info->rx_lev_trig > SSP_RX_32_OR_MORE_ELEM)) {
1632 dev_err(&pl022->adev->dev,
1633 "RX FIFO Trigger Level is configured incorrectly\n");
1634 return -EINVAL;
1635 }
1636 if ((chip_info->tx_lev_trig < SSP_TX_1_OR_MORE_EMPTY_LOC)
1637 || (chip_info->tx_lev_trig > SSP_TX_32_OR_MORE_EMPTY_LOC)) {
1638 dev_err(&pl022->adev->dev,
1639 "TX FIFO Trigger Level is configured incorrectly\n");
1640 return -EINVAL;
1641 }
1642 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1643 if ((chip_info->ctrl_len < SSP_BITS_4)
1644 || (chip_info->ctrl_len > SSP_BITS_32)) {
1645 dev_err(&pl022->adev->dev,
1646 "CTRL LEN is configured incorrectly\n");
1647 return -EINVAL;
1648 }
1649 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1650 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1651 dev_err(&pl022->adev->dev,
1652 "Wait State is configured incorrectly\n");
1653 return -EINVAL;
1654 }
1655 /* Half duplex is only available in the ST Micro version */
1656 if (pl022->vendor->extended_cr) {
1657 if ((chip_info->duplex !=
1658 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1659 && (chip_info->duplex !=
1660 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1661 dev_err(&pl022->adev->dev,
1662 "Microwire duplex mode is configured incorrectly\n");
1663 return -EINVAL;
1664 }
1665 } else {
1666 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1667 dev_err(&pl022->adev->dev,
1668 "Microwire half duplex mode requested,"
1669 " but this is only available in the"
1670 " ST version of PL022\n");
1671 return -EINVAL;
1672 }
1673 }
1674 return 0;
1675}
1676
1677/**
1678 * pl022_transfer - transfer function registered to SPI master framework
1679 * @spi: spi device which is requesting transfer
1680 * @msg: spi message which is to handled is queued to driver queue
1681 *
1682 * This function is registered to the SPI framework for this SPI master
1683 * controller. It will queue the spi_message in the queue of driver if
1684 * the queue is not stopped and return.
1685 */
1686static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1687{
1688 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1689 unsigned long flags;
1690
1691 spin_lock_irqsave(&pl022->queue_lock, flags);
1692
1693 if (!pl022->running) {
1694 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1695 return -ESHUTDOWN;
1696 }
1697 msg->actual_length = 0;
1698 msg->status = -EINPROGRESS;
1699 msg->state = STATE_START;
1700
1701 list_add_tail(&msg->queue, &pl022->queue);
1702 if (pl022->running && !pl022->busy)
1703 queue_work(pl022->workqueue, &pl022->pump_messages);
1704
1705 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1706 return 0;
1707}
1708
1709static int calculate_effective_freq(struct pl022 *pl022,
1710 int freq,
1711 struct ssp_clock_params *clk_freq)
1712{
1713 /* Lets calculate the frequency parameters */
1714 u16 cpsdvsr = 2;
1715 u16 scr = 0;
1716 bool freq_found = false;
1717 u32 rate;
1718 u32 max_tclk;
1719 u32 min_tclk;
1720
1721 rate = clk_get_rate(pl022->clk);
1722 /* cpsdvscr = 2 & scr 0 */
1723 max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1724 /* cpsdvsr = 254 & scr = 255 */
1725 min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1726
1727 if ((freq <= max_tclk) && (freq >= min_tclk)) {
1728 while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1729 while (scr <= SCR_MAX && !freq_found) {
1730 if ((rate /
1731 (cpsdvsr * (1 + scr))) > freq)
1732 scr += 1;
1733 else {
1734 /*
1735 * This bool is made true when
1736 * effective frequency >=
1737 * target frequency is found
1738 */
1739 freq_found = true;
1740 if ((rate /
1741 (cpsdvsr * (1 + scr))) != freq) {
1742 if (scr == SCR_MIN) {
1743 cpsdvsr -= 2;
1744 scr = SCR_MAX;
1745 } else
1746 scr -= 1;
1747 }
1748 }
1749 }
1750 if (!freq_found) {
1751 cpsdvsr += 2;
1752 scr = SCR_MIN;
1753 }
1754 }
1755 if (cpsdvsr != 0) {
1756 dev_dbg(&pl022->adev->dev,
1757 "SSP Effective Frequency is %u\n",
1758 (rate / (cpsdvsr * (1 + scr))));
1759 clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1760 clk_freq->scr = (u8) (scr & 0xFF);
1761 dev_dbg(&pl022->adev->dev,
1762 "SSP cpsdvsr = %d, scr = %d\n",
1763 clk_freq->cpsdvsr, clk_freq->scr);
1764 }
1765 } else {
1766 dev_err(&pl022->adev->dev,
1767 "controller data is incorrect: out of range frequency");
1768 return -EINVAL;
1769 }
1770 return 0;
1771}
1772
1773
1774/*
1775 * A piece of default chip info unless the platform
1776 * supplies it.
1777 */
1778static const struct pl022_config_chip pl022_default_chip_info = {
1779 .com_mode = POLLING_TRANSFER,
1780 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1781 .hierarchy = SSP_SLAVE,
1782 .slave_tx_disable = DO_NOT_DRIVE_TX,
1783 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1784 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1785 .ctrl_len = SSP_BITS_8,
1786 .wait_state = SSP_MWIRE_WAIT_ZERO,
1787 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1788 .cs_control = null_cs_control,
1789};
1790
1791
1792/**
1793 * pl022_setup - setup function registered to SPI master framework
1794 * @spi: spi device which is requesting setup
1795 *
1796 * This function is registered to the SPI framework for this SPI master
1797 * controller. If it is the first time when setup is called by this device,
1798 * this function will initialize the runtime state for this chip and save
1799 * the same in the device structure. Else it will update the runtime info
1800 * with the updated chip info. Nothing is really being written to the
1801 * controller hardware here, that is not done until the actual transfer
1802 * commence.
1803 */
1804static int pl022_setup(struct spi_device *spi)
1805{
1806 struct pl022_config_chip const *chip_info;
1807 struct chip_data *chip;
1808 struct ssp_clock_params clk_freq = {0, };
1809 int status = 0;
1810 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1811 unsigned int bits = spi->bits_per_word;
1812 u32 tmp;
1813
1814 if (!spi->max_speed_hz)
1815 return -EINVAL;
1816
1817 /* Get controller_state if one is supplied */
1818 chip = spi_get_ctldata(spi);
1819
1820 if (chip == NULL) {
1821 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1822 if (!chip) {
1823 dev_err(&spi->dev,
1824 "cannot allocate controller state\n");
1825 return -ENOMEM;
1826 }
1827 dev_dbg(&spi->dev,
1828 "allocated memory for controller's runtime state\n");
1829 }
1830
1831 /* Get controller data if one is supplied */
1832 chip_info = spi->controller_data;
1833
1834 if (chip_info == NULL) {
1835 chip_info = &pl022_default_chip_info;
1836 /* spi_board_info.controller_data not is supplied */
1837 dev_dbg(&spi->dev,
1838 "using default controller_data settings\n");
1839 } else
1840 dev_dbg(&spi->dev,
1841 "using user supplied controller_data settings\n");
1842
1843 /*
1844 * We can override with custom divisors, else we use the board
1845 * frequency setting
1846 */
1847 if ((0 == chip_info->clk_freq.cpsdvsr)
1848 && (0 == chip_info->clk_freq.scr)) {
1849 status = calculate_effective_freq(pl022,
1850 spi->max_speed_hz,
1851 &clk_freq);
1852 if (status < 0)
1853 goto err_config_params;
1854 } else {
1855 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1856 if ((clk_freq.cpsdvsr % 2) != 0)
1857 clk_freq.cpsdvsr =
1858 clk_freq.cpsdvsr - 1;
1859 }
1860 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1861 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1862 dev_err(&spi->dev,
1863 "cpsdvsr is configured incorrectly\n");
1864 goto err_config_params;
1865 }
1866
1867
1868 status = verify_controller_parameters(pl022, chip_info);
1869 if (status) {
1870 dev_err(&spi->dev, "controller data is incorrect");
1871 goto err_config_params;
1872 }
1873
1874 /* Now set controller state based on controller data */
1875 chip->xfer_type = chip_info->com_mode;
1876 if (!chip_info->cs_control) {
1877 chip->cs_control = null_cs_control;
1878 dev_warn(&spi->dev,
1879 "chip select function is NULL for this chip\n");
1880 } else
1881 chip->cs_control = chip_info->cs_control;
1882
1883 if (bits <= 3) {
1884 /* PL022 doesn't support less than 4-bits */
1885 status = -ENOTSUPP;
1886 goto err_config_params;
1887 } else if (bits <= 8) {
1888 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1889 chip->n_bytes = 1;
1890 chip->read = READING_U8;
1891 chip->write = WRITING_U8;
1892 } else if (bits <= 16) {
1893 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1894 chip->n_bytes = 2;
1895 chip->read = READING_U16;
1896 chip->write = WRITING_U16;
1897 } else {
1898 if (pl022->vendor->max_bpw >= 32) {
1899 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1900 chip->n_bytes = 4;
1901 chip->read = READING_U32;
1902 chip->write = WRITING_U32;
1903 } else {
1904 dev_err(&spi->dev,
1905 "illegal data size for this controller!\n");
1906 dev_err(&spi->dev,
1907 "a standard pl022 can only handle "
1908 "1 <= n <= 16 bit words\n");
1909 status = -ENOTSUPP;
1910 goto err_config_params;
1911 }
1912 }
1913
1914 /* Now Initialize all register settings required for this chip */
1915 chip->cr0 = 0;
1916 chip->cr1 = 0;
1917 chip->dmacr = 0;
1918 chip->cpsr = 0;
1919 if ((chip_info->com_mode == DMA_TRANSFER)
1920 && ((pl022->master_info)->enable_dma)) {
1921 chip->enable_dma = true;
1922 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1923 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1924 SSP_DMACR_MASK_RXDMAE, 0);
1925 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1926 SSP_DMACR_MASK_TXDMAE, 1);
1927 } else {
1928 chip->enable_dma = false;
1929 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1930 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1931 SSP_DMACR_MASK_RXDMAE, 0);
1932 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1933 SSP_DMACR_MASK_TXDMAE, 1);
1934 }
1935
1936 chip->cpsr = clk_freq.cpsdvsr;
1937
1938 /* Special setup for the ST micro extended control registers */
1939 if (pl022->vendor->extended_cr) {
1940 u32 etx;
1941
1942 if (pl022->vendor->pl023) {
1943 /* These bits are only in the PL023 */
1944 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1945 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1946 } else {
1947 /* These bits are in the PL022 but not PL023 */
1948 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1949 SSP_CR0_MASK_HALFDUP_ST, 5);
1950 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1951 SSP_CR0_MASK_CSS_ST, 16);
1952 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1953 SSP_CR0_MASK_FRF_ST, 21);
1954 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1955 SSP_CR1_MASK_MWAIT_ST, 6);
1956 }
1957 SSP_WRITE_BITS(chip->cr0, bits - 1,
1958 SSP_CR0_MASK_DSS_ST, 0);
1959
1960 if (spi->mode & SPI_LSB_FIRST) {
1961 tmp = SSP_RX_LSB;
1962 etx = SSP_TX_LSB;
1963 } else {
1964 tmp = SSP_RX_MSB;
1965 etx = SSP_TX_MSB;
1966 }
1967 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1968 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1969 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1970 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1971 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1972 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1973 } else {
1974 SSP_WRITE_BITS(chip->cr0, bits - 1,
1975 SSP_CR0_MASK_DSS, 0);
1976 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1977 SSP_CR0_MASK_FRF, 4);
1978 }
1979
1980 /* Stuff that is common for all versions */
1981 if (spi->mode & SPI_CPOL)
1982 tmp = SSP_CLK_POL_IDLE_HIGH;
1983 else
1984 tmp = SSP_CLK_POL_IDLE_LOW;
1985 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1986
1987 if (spi->mode & SPI_CPHA)
1988 tmp = SSP_CLK_SECOND_EDGE;
1989 else
1990 tmp = SSP_CLK_FIRST_EDGE;
1991 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1992
1993 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1994 /* Loopback is available on all versions except PL023 */
1995 if (pl022->vendor->loopback) {
1996 if (spi->mode & SPI_LOOP)
1997 tmp = LOOPBACK_ENABLED;
1998 else
1999 tmp = LOOPBACK_DISABLED;
2000 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2001 }
2002 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2003 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2004 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
2005
2006 /* Save controller_state */
2007 spi_set_ctldata(spi, chip);
2008 return status;
2009 err_config_params:
2010 spi_set_ctldata(spi, NULL);
2011 kfree(chip);
2012 return status;
2013}
2014
2015/**
2016 * pl022_cleanup - cleanup function registered to SPI master framework
2017 * @spi: spi device which is requesting cleanup
2018 *
2019 * This function is registered to the SPI framework for this SPI master
2020 * controller. It will free the runtime state of chip.
2021 */
2022static void pl022_cleanup(struct spi_device *spi)
2023{
2024 struct chip_data *chip = spi_get_ctldata(spi);
2025
2026 spi_set_ctldata(spi, NULL);
2027 kfree(chip);
2028}
2029
2030
2031static int __devinit
2032pl022_probe(struct amba_device *adev, const struct amba_id *id)
2033{
2034 struct device *dev = &adev->dev;
2035 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2036 struct spi_master *master;
2037 struct pl022 *pl022 = NULL; /*Data for this driver */
2038 int status = 0;
2039
2040 dev_info(&adev->dev,
2041 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2042 if (platform_info == NULL) {
2043 dev_err(&adev->dev, "probe - no platform data supplied\n");
2044 status = -ENODEV;
2045 goto err_no_pdata;
2046 }
2047
2048 /* Allocate master with space for data */
2049 master = spi_alloc_master(dev, sizeof(struct pl022));
2050 if (master == NULL) {
2051 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2052 status = -ENOMEM;
2053 goto err_no_master;
2054 }
2055
2056 pl022 = spi_master_get_devdata(master);
2057 pl022->master = master;
2058 pl022->master_info = platform_info;
2059 pl022->adev = adev;
2060 pl022->vendor = id->data;
2061
2062 /*
2063 * Bus Number Which has been Assigned to this SSP controller
2064 * on this board
2065 */
2066 master->bus_num = platform_info->bus_id;
2067 master->num_chipselect = platform_info->num_chipselect;
2068 master->cleanup = pl022_cleanup;
2069 master->setup = pl022_setup;
2070 master->transfer = pl022_transfer;
2071
2072 /*
2073 * Supports mode 0-3, loopback, and active low CS. Transfers are
2074 * always MS bit first on the original pl022.
2075 */
2076 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2077 if (pl022->vendor->extended_cr)
2078 master->mode_bits |= SPI_LSB_FIRST;
2079
2080 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2081
2082 status = amba_request_regions(adev, NULL);
2083 if (status)
2084 goto err_no_ioregion;
2085
2086 pl022->phybase = adev->res.start;
2087 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2088 if (pl022->virtbase == NULL) {
2089 status = -ENOMEM;
2090 goto err_no_ioremap;
2091 }
2092 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2093 adev->res.start, pl022->virtbase);
2094
2095 pl022->clk = clk_get(&adev->dev, NULL);
2096 if (IS_ERR(pl022->clk)) {
2097 status = PTR_ERR(pl022->clk);
2098 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2099 goto err_no_clk;
2100 }
2101
2102 /* Disable SSP */
2103 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2104 SSP_CR1(pl022->virtbase));
2105 load_ssp_default_config(pl022);
2106
2107 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2108 pl022);
2109 if (status < 0) {
2110 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2111 goto err_no_irq;
2112 }
2113
2114 /* Get DMA channels */
2115 if (platform_info->enable_dma) {
2116 status = pl022_dma_probe(pl022);
2117 if (status != 0)
2118 platform_info->enable_dma = 0;
2119 }
2120
2121 /* Initialize and start queue */
2122 status = init_queue(pl022);
2123 if (status != 0) {
2124 dev_err(&adev->dev, "probe - problem initializing queue\n");
2125 goto err_init_queue;
2126 }
2127 status = start_queue(pl022);
2128 if (status != 0) {
2129 dev_err(&adev->dev, "probe - problem starting queue\n");
2130 goto err_start_queue;
2131 }
2132 /* Register with the SPI framework */
2133 amba_set_drvdata(adev, pl022);
2134 status = spi_register_master(master);
2135 if (status != 0) {
2136 dev_err(&adev->dev,
2137 "probe - problem registering spi master\n");
2138 goto err_spi_register;
2139 }
2140 dev_dbg(dev, "probe succeeded\n");
2141 /*
2142 * Disable the silicon block pclk and any voltage domain and just
2143 * power it up and clock it when it's needed
2144 */
2145 amba_pclk_disable(adev);
2146 amba_vcore_disable(adev);
2147 return 0;
2148
2149 err_spi_register:
2150 err_start_queue:
2151 err_init_queue:
2152 destroy_queue(pl022);
2153 pl022_dma_remove(pl022);
2154 free_irq(adev->irq[0], pl022);
2155 err_no_irq:
2156 clk_put(pl022->clk);
2157 err_no_clk:
2158 iounmap(pl022->virtbase);
2159 err_no_ioremap:
2160 amba_release_regions(adev);
2161 err_no_ioregion:
2162 spi_master_put(master);
2163 err_no_master:
2164 err_no_pdata:
2165 return status;
2166}
2167
2168static int __devexit
2169pl022_remove(struct amba_device *adev)
2170{
2171 struct pl022 *pl022 = amba_get_drvdata(adev);
2172 int status = 0;
2173 if (!pl022)
2174 return 0;
2175
2176 /* Remove the queue */
2177 status = destroy_queue(pl022);
2178 if (status != 0) {
2179 dev_err(&adev->dev,
2180 "queue remove failed (%d)\n", status);
2181 return status;
2182 }
2183 load_ssp_default_config(pl022);
2184 pl022_dma_remove(pl022);
2185 free_irq(adev->irq[0], pl022);
2186 clk_disable(pl022->clk);
2187 clk_put(pl022->clk);
2188 iounmap(pl022->virtbase);
2189 amba_release_regions(adev);
2190 tasklet_disable(&pl022->pump_transfers);
2191 spi_unregister_master(pl022->master);
2192 spi_master_put(pl022->master);
2193 amba_set_drvdata(adev, NULL);
2194 dev_dbg(&adev->dev, "remove succeeded\n");
2195 return 0;
2196}
2197
2198#ifdef CONFIG_PM
2199static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2200{
2201 struct pl022 *pl022 = amba_get_drvdata(adev);
2202 int status = 0;
2203
2204 status = stop_queue(pl022);
2205 if (status) {
2206 dev_warn(&adev->dev, "suspend cannot stop queue\n");
2207 return status;
2208 }
2209
2210 amba_vcore_enable(adev);
2211 amba_pclk_enable(adev);
2212 load_ssp_default_config(pl022);
2213 amba_pclk_disable(adev);
2214 amba_vcore_disable(adev);
2215 dev_dbg(&adev->dev, "suspended\n");
2216 return 0;
2217}
2218
2219static int pl022_resume(struct amba_device *adev)
2220{
2221 struct pl022 *pl022 = amba_get_drvdata(adev);
2222 int status = 0;
2223
2224 /* Start the queue running */
2225 status = start_queue(pl022);
2226 if (status)
2227 dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2228 else
2229 dev_dbg(&adev->dev, "resumed\n");
2230
2231 return status;
2232}
2233#else
2234#define pl022_suspend NULL
2235#define pl022_resume NULL
2236#endif /* CONFIG_PM */
2237
2238static struct vendor_data vendor_arm = {
2239 .fifodepth = 8,
2240 .max_bpw = 16,
2241 .unidir = false,
2242 .extended_cr = false,
2243 .pl023 = false,
2244 .loopback = true,
2245};
2246
2247
2248static struct vendor_data vendor_st = {
2249 .fifodepth = 32,
2250 .max_bpw = 32,
2251 .unidir = false,
2252 .extended_cr = true,
2253 .pl023 = false,
2254 .loopback = true,
2255};
2256
2257static struct vendor_data vendor_st_pl023 = {
2258 .fifodepth = 32,
2259 .max_bpw = 32,
2260 .unidir = false,
2261 .extended_cr = true,
2262 .pl023 = true,
2263 .loopback = false,
2264};
2265
2266static struct vendor_data vendor_db5500_pl023 = {
2267 .fifodepth = 32,
2268 .max_bpw = 32,
2269 .unidir = false,
2270 .extended_cr = true,
2271 .pl023 = true,
2272 .loopback = true,
2273};
2274
2275static struct amba_id pl022_ids[] = {
2276 {
2277 /*
2278 * ARM PL022 variant, this has a 16bit wide
2279 * and 8 locations deep TX/RX FIFO
2280 */
2281 .id = 0x00041022,
2282 .mask = 0x000fffff,
2283 .data = &vendor_arm,
2284 },
2285 {
2286 /*
2287 * ST Micro derivative, this has 32bit wide
2288 * and 32 locations deep TX/RX FIFO
2289 */
2290 .id = 0x01080022,
2291 .mask = 0xffffffff,
2292 .data = &vendor_st,
2293 },
2294 {
2295 /*
2296 * ST-Ericsson derivative "PL023" (this is not
2297 * an official ARM number), this is a PL022 SSP block
2298 * stripped to SPI mode only, it has 32bit wide
2299 * and 32 locations deep TX/RX FIFO but no extended
2300 * CR0/CR1 register
2301 */
2302 .id = 0x00080023,
2303 .mask = 0xffffffff,
2304 .data = &vendor_st_pl023,
2305 },
2306 {
2307 .id = 0x10080023,
2308 .mask = 0xffffffff,
2309 .data = &vendor_db5500_pl023,
2310 },
2311 { 0, 0 },
2312};
2313
2314static struct amba_driver pl022_driver = {
2315 .drv = {
2316 .name = "ssp-pl022",
2317 },
2318 .id_table = pl022_ids,
2319 .probe = pl022_probe,
2320 .remove = __devexit_p(pl022_remove),
2321 .suspend = pl022_suspend,
2322 .resume = pl022_resume,
2323};
2324
2325
2326static int __init pl022_init(void)
2327{
2328 return amba_driver_register(&pl022_driver);
2329}
2330
2331subsys_initcall(pl022_init);
2332
2333static void __exit pl022_exit(void)
2334{
2335 amba_driver_unregister(&pl022_driver);
2336}
2337
2338module_exit(pl022_exit);
2339
2340MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2341MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2342MODULE_LICENSE("GPL");