aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/isci/host.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/isci/host.c')
-rw-r--r--drivers/scsi/isci/host.c2751
1 files changed, 2751 insertions, 0 deletions
diff --git a/drivers/scsi/isci/host.c b/drivers/scsi/isci/host.c
new file mode 100644
index 000000000000..26072f1e9852
--- /dev/null
+++ b/drivers/scsi/isci/host.c
@@ -0,0 +1,2751 @@
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55#include <linux/circ_buf.h>
56#include <linux/device.h>
57#include <scsi/sas.h>
58#include "host.h"
59#include "isci.h"
60#include "port.h"
61#include "host.h"
62#include "probe_roms.h"
63#include "remote_device.h"
64#include "request.h"
65#include "scu_completion_codes.h"
66#include "scu_event_codes.h"
67#include "registers.h"
68#include "scu_remote_node_context.h"
69#include "scu_task_context.h"
70
71#define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
72
73#define smu_max_ports(dcc_value) \
74 (\
75 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
77 )
78
79#define smu_max_task_contexts(dcc_value) \
80 (\
81 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
83 )
84
85#define smu_max_rncs(dcc_value) \
86 (\
87 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
89 )
90
91#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
92
93/**
94 *
95 *
96 * The number of milliseconds to wait while a given phy is consuming power
97 * before allowing another set of phys to consume power. Ultimately, this will
98 * be specified by OEM parameter.
99 */
100#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
101
102/**
103 * NORMALIZE_PUT_POINTER() -
104 *
105 * This macro will normalize the completion queue put pointer so its value can
106 * be used as an array inde
107 */
108#define NORMALIZE_PUT_POINTER(x) \
109 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110
111
112/**
113 * NORMALIZE_EVENT_POINTER() -
114 *
115 * This macro will normalize the completion queue event entry so its value can
116 * be used as an index.
117 */
118#define NORMALIZE_EVENT_POINTER(x) \
119 (\
120 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
122 )
123
124/**
125 * NORMALIZE_GET_POINTER() -
126 *
127 * This macro will normalize the completion queue get pointer so its value can
128 * be used as an index into an array
129 */
130#define NORMALIZE_GET_POINTER(x) \
131 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
132
133/**
134 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135 *
136 * This macro will normalize the completion queue cycle pointer so it matches
137 * the completion queue cycle bit
138 */
139#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
141
142/**
143 * COMPLETION_QUEUE_CYCLE_BIT() -
144 *
145 * This macro will return the cycle bit of the completion queue entry
146 */
147#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148
149/* Init the state machine and call the state entry function (if any) */
150void sci_init_sm(struct sci_base_state_machine *sm,
151 const struct sci_base_state *state_table, u32 initial_state)
152{
153 sci_state_transition_t handler;
154
155 sm->initial_state_id = initial_state;
156 sm->previous_state_id = initial_state;
157 sm->current_state_id = initial_state;
158 sm->state_table = state_table;
159
160 handler = sm->state_table[initial_state].enter_state;
161 if (handler)
162 handler(sm);
163}
164
165/* Call the state exit fn, update the current state, call the state entry fn */
166void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
167{
168 sci_state_transition_t handler;
169
170 handler = sm->state_table[sm->current_state_id].exit_state;
171 if (handler)
172 handler(sm);
173
174 sm->previous_state_id = sm->current_state_id;
175 sm->current_state_id = next_state;
176
177 handler = sm->state_table[sm->current_state_id].enter_state;
178 if (handler)
179 handler(sm);
180}
181
182static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
183{
184 u32 get_value = ihost->completion_queue_get;
185 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
186
187 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189 return true;
190
191 return false;
192}
193
194static bool sci_controller_isr(struct isci_host *ihost)
195{
196 if (sci_controller_completion_queue_has_entries(ihost)) {
197 return true;
198 } else {
199 /*
200 * we have a spurious interrupt it could be that we have already
201 * emptied the completion queue from a previous interrupt */
202 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203
204 /*
205 * There is a race in the hardware that could cause us not to be notified
206 * of an interrupt completion if we do not take this step. We will mask
207 * then unmask the interrupts so if there is another interrupt pending
208 * the clearing of the interrupt source we get the next interrupt message. */
209 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210 writel(0, &ihost->smu_registers->interrupt_mask);
211 }
212
213 return false;
214}
215
216irqreturn_t isci_msix_isr(int vec, void *data)
217{
218 struct isci_host *ihost = data;
219
220 if (sci_controller_isr(ihost))
221 tasklet_schedule(&ihost->completion_tasklet);
222
223 return IRQ_HANDLED;
224}
225
226static bool sci_controller_error_isr(struct isci_host *ihost)
227{
228 u32 interrupt_status;
229
230 interrupt_status =
231 readl(&ihost->smu_registers->interrupt_status);
232 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
233
234 if (interrupt_status != 0) {
235 /*
236 * There is an error interrupt pending so let it through and handle
237 * in the callback */
238 return true;
239 }
240
241 /*
242 * There is a race in the hardware that could cause us not to be notified
243 * of an interrupt completion if we do not take this step. We will mask
244 * then unmask the error interrupts so if there was another interrupt
245 * pending we will be notified.
246 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247 writel(0xff, &ihost->smu_registers->interrupt_mask);
248 writel(0, &ihost->smu_registers->interrupt_mask);
249
250 return false;
251}
252
253static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
254{
255 u32 index = SCU_GET_COMPLETION_INDEX(ent);
256 struct isci_request *ireq = ihost->reqs[index];
257
258 /* Make sure that we really want to process this IO request */
259 if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262 /* Yep this is a valid io request pass it along to the
263 * io request handler
264 */
265 sci_io_request_tc_completion(ireq, ent);
266}
267
268static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
269{
270 u32 index;
271 struct isci_request *ireq;
272 struct isci_remote_device *idev;
273
274 index = SCU_GET_COMPLETION_INDEX(ent);
275
276 switch (scu_get_command_request_type(ent)) {
277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279 ireq = ihost->reqs[index];
280 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281 __func__, ent, ireq);
282 /* @todo For a post TC operation we need to fail the IO
283 * request
284 */
285 break;
286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289 idev = ihost->device_table[index];
290 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291 __func__, ent, idev);
292 /* @todo For a port RNC operation we need to fail the
293 * device
294 */
295 break;
296 default:
297 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298 __func__, ent);
299 break;
300 }
301}
302
303static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
304{
305 u32 index;
306 u32 frame_index;
307
308 struct scu_unsolicited_frame_header *frame_header;
309 struct isci_phy *iphy;
310 struct isci_remote_device *idev;
311
312 enum sci_status result = SCI_FAILURE;
313
314 frame_index = SCU_GET_FRAME_INDEX(ent);
315
316 frame_header = ihost->uf_control.buffers.array[frame_index].header;
317 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
318
319 if (SCU_GET_FRAME_ERROR(ent)) {
320 /*
321 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322 * / this cause a problem? We expect the phy initialization will
323 * / fail if there is an error in the frame. */
324 sci_controller_release_frame(ihost, frame_index);
325 return;
326 }
327
328 if (frame_header->is_address_frame) {
329 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330 iphy = &ihost->phys[index];
331 result = sci_phy_frame_handler(iphy, frame_index);
332 } else {
333
334 index = SCU_GET_COMPLETION_INDEX(ent);
335
336 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
337 /*
338 * This is a signature fis or a frame from a direct attached SATA
339 * device that has not yet been created. In either case forwared
340 * the frame to the PE and let it take care of the frame data. */
341 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342 iphy = &ihost->phys[index];
343 result = sci_phy_frame_handler(iphy, frame_index);
344 } else {
345 if (index < ihost->remote_node_entries)
346 idev = ihost->device_table[index];
347 else
348 idev = NULL;
349
350 if (idev != NULL)
351 result = sci_remote_device_frame_handler(idev, frame_index);
352 else
353 sci_controller_release_frame(ihost, frame_index);
354 }
355 }
356
357 if (result != SCI_SUCCESS) {
358 /*
359 * / @todo Is there any reason to report some additional error message
360 * / when we get this failure notifiction? */
361 }
362}
363
364static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
365{
366 struct isci_remote_device *idev;
367 struct isci_request *ireq;
368 struct isci_phy *iphy;
369 u32 index;
370
371 index = SCU_GET_COMPLETION_INDEX(ent);
372
373 switch (scu_get_event_type(ent)) {
374 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375 /* / @todo The driver did something wrong and we need to fix the condtion. */
376 dev_err(&ihost->pdev->dev,
377 "%s: SCIC Controller 0x%p received SMU command error "
378 "0x%x\n",
379 __func__,
380 ihost,
381 ent);
382 break;
383
384 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385 case SCU_EVENT_TYPE_SMU_ERROR:
386 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
387 /*
388 * / @todo This is a hardware failure and its likely that we want to
389 * / reset the controller. */
390 dev_err(&ihost->pdev->dev,
391 "%s: SCIC Controller 0x%p received fatal controller "
392 "event 0x%x\n",
393 __func__,
394 ihost,
395 ent);
396 break;
397
398 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399 ireq = ihost->reqs[index];
400 sci_io_request_event_handler(ireq, ent);
401 break;
402
403 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404 switch (scu_get_event_specifier(ent)) {
405 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407 ireq = ihost->reqs[index];
408 if (ireq != NULL)
409 sci_io_request_event_handler(ireq, ent);
410 else
411 dev_warn(&ihost->pdev->dev,
412 "%s: SCIC Controller 0x%p received "
413 "event 0x%x for io request object "
414 "that doesnt exist.\n",
415 __func__,
416 ihost,
417 ent);
418
419 break;
420
421 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422 idev = ihost->device_table[index];
423 if (idev != NULL)
424 sci_remote_device_event_handler(idev, ent);
425 else
426 dev_warn(&ihost->pdev->dev,
427 "%s: SCIC Controller 0x%p received "
428 "event 0x%x for remote device object "
429 "that doesnt exist.\n",
430 __func__,
431 ihost,
432 ent);
433
434 break;
435 }
436 break;
437
438 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
439 /*
440 * direct the broadcast change event to the phy first and then let
441 * the phy redirect the broadcast change to the port object */
442 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
443 /*
444 * direct error counter event to the phy object since that is where
445 * we get the event notification. This is a type 4 event. */
446 case SCU_EVENT_TYPE_OSSP_EVENT:
447 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448 iphy = &ihost->phys[index];
449 sci_phy_event_handler(iphy, ent);
450 break;
451
452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454 case SCU_EVENT_TYPE_RNC_OPS_MISC:
455 if (index < ihost->remote_node_entries) {
456 idev = ihost->device_table[index];
457
458 if (idev != NULL)
459 sci_remote_device_event_handler(idev, ent);
460 } else
461 dev_err(&ihost->pdev->dev,
462 "%s: SCIC Controller 0x%p received event 0x%x "
463 "for remote device object 0x%0x that doesnt "
464 "exist.\n",
465 __func__,
466 ihost,
467 ent,
468 index);
469
470 break;
471
472 default:
473 dev_warn(&ihost->pdev->dev,
474 "%s: SCIC Controller received unknown event code %x\n",
475 __func__,
476 ent);
477 break;
478 }
479}
480
481static void sci_controller_process_completions(struct isci_host *ihost)
482{
483 u32 completion_count = 0;
484 u32 ent;
485 u32 get_index;
486 u32 get_cycle;
487 u32 event_get;
488 u32 event_cycle;
489
490 dev_dbg(&ihost->pdev->dev,
491 "%s: completion queue begining get:0x%08x\n",
492 __func__,
493 ihost->completion_queue_get);
494
495 /* Get the component parts of the completion queue */
496 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
498
499 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
501
502 while (
503 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
505 ) {
506 completion_count++;
507
508 ent = ihost->completion_queue[get_index];
509
510 /* increment the get pointer and check for rollover to toggle the cycle bit */
511 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
514
515 dev_dbg(&ihost->pdev->dev,
516 "%s: completion queue entry:0x%08x\n",
517 __func__,
518 ent);
519
520 switch (SCU_GET_COMPLETION_TYPE(ent)) {
521 case SCU_COMPLETION_TYPE_TASK:
522 sci_controller_task_completion(ihost, ent);
523 break;
524
525 case SCU_COMPLETION_TYPE_SDMA:
526 sci_controller_sdma_completion(ihost, ent);
527 break;
528
529 case SCU_COMPLETION_TYPE_UFI:
530 sci_controller_unsolicited_frame(ihost, ent);
531 break;
532
533 case SCU_COMPLETION_TYPE_EVENT:
534 case SCU_COMPLETION_TYPE_NOTIFY: {
535 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
536 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
537 event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
538
539 sci_controller_event_completion(ihost, ent);
540 break;
541 }
542 default:
543 dev_warn(&ihost->pdev->dev,
544 "%s: SCIC Controller received unknown "
545 "completion type %x\n",
546 __func__,
547 ent);
548 break;
549 }
550 }
551
552 /* Update the get register if we completed one or more entries */
553 if (completion_count > 0) {
554 ihost->completion_queue_get =
555 SMU_CQGR_GEN_BIT(ENABLE) |
556 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
557 event_cycle |
558 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
559 get_cycle |
560 SMU_CQGR_GEN_VAL(POINTER, get_index);
561
562 writel(ihost->completion_queue_get,
563 &ihost->smu_registers->completion_queue_get);
564
565 }
566
567 dev_dbg(&ihost->pdev->dev,
568 "%s: completion queue ending get:0x%08x\n",
569 __func__,
570 ihost->completion_queue_get);
571
572}
573
574static void sci_controller_error_handler(struct isci_host *ihost)
575{
576 u32 interrupt_status;
577
578 interrupt_status =
579 readl(&ihost->smu_registers->interrupt_status);
580
581 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
582 sci_controller_completion_queue_has_entries(ihost)) {
583
584 sci_controller_process_completions(ihost);
585 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
586 } else {
587 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
588 interrupt_status);
589
590 sci_change_state(&ihost->sm, SCIC_FAILED);
591
592 return;
593 }
594
595 /* If we dont process any completions I am not sure that we want to do this.
596 * We are in the middle of a hardware fault and should probably be reset.
597 */
598 writel(0, &ihost->smu_registers->interrupt_mask);
599}
600
601irqreturn_t isci_intx_isr(int vec, void *data)
602{
603 irqreturn_t ret = IRQ_NONE;
604 struct isci_host *ihost = data;
605
606 if (sci_controller_isr(ihost)) {
607 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
608 tasklet_schedule(&ihost->completion_tasklet);
609 ret = IRQ_HANDLED;
610 } else if (sci_controller_error_isr(ihost)) {
611 spin_lock(&ihost->scic_lock);
612 sci_controller_error_handler(ihost);
613 spin_unlock(&ihost->scic_lock);
614 ret = IRQ_HANDLED;
615 }
616
617 return ret;
618}
619
620irqreturn_t isci_error_isr(int vec, void *data)
621{
622 struct isci_host *ihost = data;
623
624 if (sci_controller_error_isr(ihost))
625 sci_controller_error_handler(ihost);
626
627 return IRQ_HANDLED;
628}
629
630/**
631 * isci_host_start_complete() - This function is called by the core library,
632 * through the ISCI Module, to indicate controller start status.
633 * @isci_host: This parameter specifies the ISCI host object
634 * @completion_status: This parameter specifies the completion status from the
635 * core library.
636 *
637 */
638static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
639{
640 if (completion_status != SCI_SUCCESS)
641 dev_info(&ihost->pdev->dev,
642 "controller start timed out, continuing...\n");
643 isci_host_change_state(ihost, isci_ready);
644 clear_bit(IHOST_START_PENDING, &ihost->flags);
645 wake_up(&ihost->eventq);
646}
647
648int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
649{
650 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
651
652 if (test_bit(IHOST_START_PENDING, &ihost->flags))
653 return 0;
654
655 /* todo: use sas_flush_discovery once it is upstream */
656 scsi_flush_work(shost);
657
658 scsi_flush_work(shost);
659
660 dev_dbg(&ihost->pdev->dev,
661 "%s: ihost->status = %d, time = %ld\n",
662 __func__, isci_host_get_state(ihost), time);
663
664 return 1;
665
666}
667
668/**
669 * sci_controller_get_suggested_start_timeout() - This method returns the
670 * suggested sci_controller_start() timeout amount. The user is free to
671 * use any timeout value, but this method provides the suggested minimum
672 * start timeout value. The returned value is based upon empirical
673 * information determined as a result of interoperability testing.
674 * @controller: the handle to the controller object for which to return the
675 * suggested start timeout.
676 *
677 * This method returns the number of milliseconds for the suggested start
678 * operation timeout.
679 */
680static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
681{
682 /* Validate the user supplied parameters. */
683 if (!ihost)
684 return 0;
685
686 /*
687 * The suggested minimum timeout value for a controller start operation:
688 *
689 * Signature FIS Timeout
690 * + Phy Start Timeout
691 * + Number of Phy Spin Up Intervals
692 * ---------------------------------
693 * Number of milliseconds for the controller start operation.
694 *
695 * NOTE: The number of phy spin up intervals will be equivalent
696 * to the number of phys divided by the number phys allowed
697 * per interval - 1 (once OEM parameters are supported).
698 * Currently we assume only 1 phy per interval. */
699
700 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
701 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
702 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
703}
704
705static void sci_controller_enable_interrupts(struct isci_host *ihost)
706{
707 BUG_ON(ihost->smu_registers == NULL);
708 writel(0, &ihost->smu_registers->interrupt_mask);
709}
710
711void sci_controller_disable_interrupts(struct isci_host *ihost)
712{
713 BUG_ON(ihost->smu_registers == NULL);
714 writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
715}
716
717static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
718{
719 u32 port_task_scheduler_value;
720
721 port_task_scheduler_value =
722 readl(&ihost->scu_registers->peg0.ptsg.control);
723 port_task_scheduler_value |=
724 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
725 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
726 writel(port_task_scheduler_value,
727 &ihost->scu_registers->peg0.ptsg.control);
728}
729
730static void sci_controller_assign_task_entries(struct isci_host *ihost)
731{
732 u32 task_assignment;
733
734 /*
735 * Assign all the TCs to function 0
736 * TODO: Do we actually need to read this register to write it back?
737 */
738
739 task_assignment =
740 readl(&ihost->smu_registers->task_context_assignment[0]);
741
742 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
743 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) |
744 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
745
746 writel(task_assignment,
747 &ihost->smu_registers->task_context_assignment[0]);
748
749}
750
751static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
752{
753 u32 index;
754 u32 completion_queue_control_value;
755 u32 completion_queue_get_value;
756 u32 completion_queue_put_value;
757
758 ihost->completion_queue_get = 0;
759
760 completion_queue_control_value =
761 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
762 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
763
764 writel(completion_queue_control_value,
765 &ihost->smu_registers->completion_queue_control);
766
767
768 /* Set the completion queue get pointer and enable the queue */
769 completion_queue_get_value = (
770 (SMU_CQGR_GEN_VAL(POINTER, 0))
771 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
772 | (SMU_CQGR_GEN_BIT(ENABLE))
773 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
774 );
775
776 writel(completion_queue_get_value,
777 &ihost->smu_registers->completion_queue_get);
778
779 /* Set the completion queue put pointer */
780 completion_queue_put_value = (
781 (SMU_CQPR_GEN_VAL(POINTER, 0))
782 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
783 );
784
785 writel(completion_queue_put_value,
786 &ihost->smu_registers->completion_queue_put);
787
788 /* Initialize the cycle bit of the completion queue entries */
789 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
790 /*
791 * If get.cycle_bit != completion_queue.cycle_bit
792 * its not a valid completion queue entry
793 * so at system start all entries are invalid */
794 ihost->completion_queue[index] = 0x80000000;
795 }
796}
797
798static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
799{
800 u32 frame_queue_control_value;
801 u32 frame_queue_get_value;
802 u32 frame_queue_put_value;
803
804 /* Write the queue size */
805 frame_queue_control_value =
806 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
807
808 writel(frame_queue_control_value,
809 &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
810
811 /* Setup the get pointer for the unsolicited frame queue */
812 frame_queue_get_value = (
813 SCU_UFQGP_GEN_VAL(POINTER, 0)
814 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
815 );
816
817 writel(frame_queue_get_value,
818 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
819 /* Setup the put pointer for the unsolicited frame queue */
820 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
821 writel(frame_queue_put_value,
822 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
823}
824
825static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
826{
827 if (ihost->sm.current_state_id == SCIC_STARTING) {
828 /*
829 * We move into the ready state, because some of the phys/ports
830 * may be up and operational.
831 */
832 sci_change_state(&ihost->sm, SCIC_READY);
833
834 isci_host_start_complete(ihost, status);
835 }
836}
837
838static bool is_phy_starting(struct isci_phy *iphy)
839{
840 enum sci_phy_states state;
841
842 state = iphy->sm.current_state_id;
843 switch (state) {
844 case SCI_PHY_STARTING:
845 case SCI_PHY_SUB_INITIAL:
846 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
847 case SCI_PHY_SUB_AWAIT_IAF_UF:
848 case SCI_PHY_SUB_AWAIT_SAS_POWER:
849 case SCI_PHY_SUB_AWAIT_SATA_POWER:
850 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
851 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
852 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
853 case SCI_PHY_SUB_FINAL:
854 return true;
855 default:
856 return false;
857 }
858}
859
860/**
861 * sci_controller_start_next_phy - start phy
862 * @scic: controller
863 *
864 * If all the phys have been started, then attempt to transition the
865 * controller to the READY state and inform the user
866 * (sci_cb_controller_start_complete()).
867 */
868static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
869{
870 struct sci_oem_params *oem = &ihost->oem_parameters;
871 struct isci_phy *iphy;
872 enum sci_status status;
873
874 status = SCI_SUCCESS;
875
876 if (ihost->phy_startup_timer_pending)
877 return status;
878
879 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
880 bool is_controller_start_complete = true;
881 u32 state;
882 u8 index;
883
884 for (index = 0; index < SCI_MAX_PHYS; index++) {
885 iphy = &ihost->phys[index];
886 state = iphy->sm.current_state_id;
887
888 if (!phy_get_non_dummy_port(iphy))
889 continue;
890
891 /* The controller start operation is complete iff:
892 * - all links have been given an opportunity to start
893 * - have no indication of a connected device
894 * - have an indication of a connected device and it has
895 * finished the link training process.
896 */
897 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
898 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
899 (iphy->is_in_link_training == true && is_phy_starting(iphy))) {
900 is_controller_start_complete = false;
901 break;
902 }
903 }
904
905 /*
906 * The controller has successfully finished the start process.
907 * Inform the SCI Core user and transition to the READY state. */
908 if (is_controller_start_complete == true) {
909 sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
910 sci_del_timer(&ihost->phy_timer);
911 ihost->phy_startup_timer_pending = false;
912 }
913 } else {
914 iphy = &ihost->phys[ihost->next_phy_to_start];
915
916 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
917 if (phy_get_non_dummy_port(iphy) == NULL) {
918 ihost->next_phy_to_start++;
919
920 /* Caution recursion ahead be forwarned
921 *
922 * The PHY was never added to a PORT in MPC mode
923 * so start the next phy in sequence This phy
924 * will never go link up and will not draw power
925 * the OEM parameters either configured the phy
926 * incorrectly for the PORT or it was never
927 * assigned to a PORT
928 */
929 return sci_controller_start_next_phy(ihost);
930 }
931 }
932
933 status = sci_phy_start(iphy);
934
935 if (status == SCI_SUCCESS) {
936 sci_mod_timer(&ihost->phy_timer,
937 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
938 ihost->phy_startup_timer_pending = true;
939 } else {
940 dev_warn(&ihost->pdev->dev,
941 "%s: Controller stop operation failed "
942 "to stop phy %d because of status "
943 "%d.\n",
944 __func__,
945 ihost->phys[ihost->next_phy_to_start].phy_index,
946 status);
947 }
948
949 ihost->next_phy_to_start++;
950 }
951
952 return status;
953}
954
955static void phy_startup_timeout(unsigned long data)
956{
957 struct sci_timer *tmr = (struct sci_timer *)data;
958 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
959 unsigned long flags;
960 enum sci_status status;
961
962 spin_lock_irqsave(&ihost->scic_lock, flags);
963
964 if (tmr->cancel)
965 goto done;
966
967 ihost->phy_startup_timer_pending = false;
968
969 do {
970 status = sci_controller_start_next_phy(ihost);
971 } while (status != SCI_SUCCESS);
972
973done:
974 spin_unlock_irqrestore(&ihost->scic_lock, flags);
975}
976
977static u16 isci_tci_active(struct isci_host *ihost)
978{
979 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
980}
981
982static enum sci_status sci_controller_start(struct isci_host *ihost,
983 u32 timeout)
984{
985 enum sci_status result;
986 u16 index;
987
988 if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
989 dev_warn(&ihost->pdev->dev,
990 "SCIC Controller start operation requested in "
991 "invalid state\n");
992 return SCI_FAILURE_INVALID_STATE;
993 }
994
995 /* Build the TCi free pool */
996 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
997 ihost->tci_head = 0;
998 ihost->tci_tail = 0;
999 for (index = 0; index < ihost->task_context_entries; index++)
1000 isci_tci_free(ihost, index);
1001
1002 /* Build the RNi free pool */
1003 sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1004 ihost->remote_node_entries);
1005
1006 /*
1007 * Before anything else lets make sure we will not be
1008 * interrupted by the hardware.
1009 */
1010 sci_controller_disable_interrupts(ihost);
1011
1012 /* Enable the port task scheduler */
1013 sci_controller_enable_port_task_scheduler(ihost);
1014
1015 /* Assign all the task entries to ihost physical function */
1016 sci_controller_assign_task_entries(ihost);
1017
1018 /* Now initialize the completion queue */
1019 sci_controller_initialize_completion_queue(ihost);
1020
1021 /* Initialize the unsolicited frame queue for use */
1022 sci_controller_initialize_unsolicited_frame_queue(ihost);
1023
1024 /* Start all of the ports on this controller */
1025 for (index = 0; index < ihost->logical_port_entries; index++) {
1026 struct isci_port *iport = &ihost->ports[index];
1027
1028 result = sci_port_start(iport);
1029 if (result)
1030 return result;
1031 }
1032
1033 sci_controller_start_next_phy(ihost);
1034
1035 sci_mod_timer(&ihost->timer, timeout);
1036
1037 sci_change_state(&ihost->sm, SCIC_STARTING);
1038
1039 return SCI_SUCCESS;
1040}
1041
1042void isci_host_scan_start(struct Scsi_Host *shost)
1043{
1044 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1045 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1046
1047 set_bit(IHOST_START_PENDING, &ihost->flags);
1048
1049 spin_lock_irq(&ihost->scic_lock);
1050 sci_controller_start(ihost, tmo);
1051 sci_controller_enable_interrupts(ihost);
1052 spin_unlock_irq(&ihost->scic_lock);
1053}
1054
1055static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1056{
1057 isci_host_change_state(ihost, isci_stopped);
1058 sci_controller_disable_interrupts(ihost);
1059 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1060 wake_up(&ihost->eventq);
1061}
1062
1063static void sci_controller_completion_handler(struct isci_host *ihost)
1064{
1065 /* Empty out the completion queue */
1066 if (sci_controller_completion_queue_has_entries(ihost))
1067 sci_controller_process_completions(ihost);
1068
1069 /* Clear the interrupt and enable all interrupts again */
1070 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1071 /* Could we write the value of SMU_ISR_COMPLETION? */
1072 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1073 writel(0, &ihost->smu_registers->interrupt_mask);
1074}
1075
1076/**
1077 * isci_host_completion_routine() - This function is the delayed service
1078 * routine that calls the sci core library's completion handler. It's
1079 * scheduled as a tasklet from the interrupt service routine when interrupts
1080 * in use, or set as the timeout function in polled mode.
1081 * @data: This parameter specifies the ISCI host object
1082 *
1083 */
1084static void isci_host_completion_routine(unsigned long data)
1085{
1086 struct isci_host *ihost = (struct isci_host *)data;
1087 struct list_head completed_request_list;
1088 struct list_head errored_request_list;
1089 struct list_head *current_position;
1090 struct list_head *next_position;
1091 struct isci_request *request;
1092 struct isci_request *next_request;
1093 struct sas_task *task;
1094
1095 INIT_LIST_HEAD(&completed_request_list);
1096 INIT_LIST_HEAD(&errored_request_list);
1097
1098 spin_lock_irq(&ihost->scic_lock);
1099
1100 sci_controller_completion_handler(ihost);
1101
1102 /* Take the lists of completed I/Os from the host. */
1103
1104 list_splice_init(&ihost->requests_to_complete,
1105 &completed_request_list);
1106
1107 /* Take the list of errored I/Os from the host. */
1108 list_splice_init(&ihost->requests_to_errorback,
1109 &errored_request_list);
1110
1111 spin_unlock_irq(&ihost->scic_lock);
1112
1113 /* Process any completions in the lists. */
1114 list_for_each_safe(current_position, next_position,
1115 &completed_request_list) {
1116
1117 request = list_entry(current_position, struct isci_request,
1118 completed_node);
1119 task = isci_request_access_task(request);
1120
1121 /* Normal notification (task_done) */
1122 dev_dbg(&ihost->pdev->dev,
1123 "%s: Normal - request/task = %p/%p\n",
1124 __func__,
1125 request,
1126 task);
1127
1128 /* Return the task to libsas */
1129 if (task != NULL) {
1130
1131 task->lldd_task = NULL;
1132 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1133
1134 /* If the task is already in the abort path,
1135 * the task_done callback cannot be called.
1136 */
1137 task->task_done(task);
1138 }
1139 }
1140
1141 spin_lock_irq(&ihost->scic_lock);
1142 isci_free_tag(ihost, request->io_tag);
1143 spin_unlock_irq(&ihost->scic_lock);
1144 }
1145 list_for_each_entry_safe(request, next_request, &errored_request_list,
1146 completed_node) {
1147
1148 task = isci_request_access_task(request);
1149
1150 /* Use sas_task_abort */
1151 dev_warn(&ihost->pdev->dev,
1152 "%s: Error - request/task = %p/%p\n",
1153 __func__,
1154 request,
1155 task);
1156
1157 if (task != NULL) {
1158
1159 /* Put the task into the abort path if it's not there
1160 * already.
1161 */
1162 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1163 sas_task_abort(task);
1164
1165 } else {
1166 /* This is a case where the request has completed with a
1167 * status such that it needed further target servicing,
1168 * but the sas_task reference has already been removed
1169 * from the request. Since it was errored, it was not
1170 * being aborted, so there is nothing to do except free
1171 * it.
1172 */
1173
1174 spin_lock_irq(&ihost->scic_lock);
1175 /* Remove the request from the remote device's list
1176 * of pending requests.
1177 */
1178 list_del_init(&request->dev_node);
1179 isci_free_tag(ihost, request->io_tag);
1180 spin_unlock_irq(&ihost->scic_lock);
1181 }
1182 }
1183
1184}
1185
1186/**
1187 * sci_controller_stop() - This method will stop an individual controller
1188 * object.This method will invoke the associated user callback upon
1189 * completion. The completion callback is called when the following
1190 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1191 * controller has been quiesced. This method will ensure that all IO
1192 * requests are quiesced, phys are stopped, and all additional operation by
1193 * the hardware is halted.
1194 * @controller: the handle to the controller object to stop.
1195 * @timeout: This parameter specifies the number of milliseconds in which the
1196 * stop operation should complete.
1197 *
1198 * The controller must be in the STARTED or STOPPED state. Indicate if the
1199 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1200 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1201 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1202 * controller is not either in the STARTED or STOPPED states.
1203 */
1204static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1205{
1206 if (ihost->sm.current_state_id != SCIC_READY) {
1207 dev_warn(&ihost->pdev->dev,
1208 "SCIC Controller stop operation requested in "
1209 "invalid state\n");
1210 return SCI_FAILURE_INVALID_STATE;
1211 }
1212
1213 sci_mod_timer(&ihost->timer, timeout);
1214 sci_change_state(&ihost->sm, SCIC_STOPPING);
1215 return SCI_SUCCESS;
1216}
1217
1218/**
1219 * sci_controller_reset() - This method will reset the supplied core
1220 * controller regardless of the state of said controller. This operation is
1221 * considered destructive. In other words, all current operations are wiped
1222 * out. No IO completions for outstanding devices occur. Outstanding IO
1223 * requests are not aborted or completed at the actual remote device.
1224 * @controller: the handle to the controller object to reset.
1225 *
1226 * Indicate if the controller reset method succeeded or failed in some way.
1227 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1228 * the controller reset operation is unable to complete.
1229 */
1230static enum sci_status sci_controller_reset(struct isci_host *ihost)
1231{
1232 switch (ihost->sm.current_state_id) {
1233 case SCIC_RESET:
1234 case SCIC_READY:
1235 case SCIC_STOPPED:
1236 case SCIC_FAILED:
1237 /*
1238 * The reset operation is not a graceful cleanup, just
1239 * perform the state transition.
1240 */
1241 sci_change_state(&ihost->sm, SCIC_RESETTING);
1242 return SCI_SUCCESS;
1243 default:
1244 dev_warn(&ihost->pdev->dev,
1245 "SCIC Controller reset operation requested in "
1246 "invalid state\n");
1247 return SCI_FAILURE_INVALID_STATE;
1248 }
1249}
1250
1251void isci_host_deinit(struct isci_host *ihost)
1252{
1253 int i;
1254
1255 isci_host_change_state(ihost, isci_stopping);
1256 for (i = 0; i < SCI_MAX_PORTS; i++) {
1257 struct isci_port *iport = &ihost->ports[i];
1258 struct isci_remote_device *idev, *d;
1259
1260 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1261 if (test_bit(IDEV_ALLOCATED, &idev->flags))
1262 isci_remote_device_stop(ihost, idev);
1263 }
1264 }
1265
1266 set_bit(IHOST_STOP_PENDING, &ihost->flags);
1267
1268 spin_lock_irq(&ihost->scic_lock);
1269 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1270 spin_unlock_irq(&ihost->scic_lock);
1271
1272 wait_for_stop(ihost);
1273 sci_controller_reset(ihost);
1274
1275 /* Cancel any/all outstanding port timers */
1276 for (i = 0; i < ihost->logical_port_entries; i++) {
1277 struct isci_port *iport = &ihost->ports[i];
1278 del_timer_sync(&iport->timer.timer);
1279 }
1280
1281 /* Cancel any/all outstanding phy timers */
1282 for (i = 0; i < SCI_MAX_PHYS; i++) {
1283 struct isci_phy *iphy = &ihost->phys[i];
1284 del_timer_sync(&iphy->sata_timer.timer);
1285 }
1286
1287 del_timer_sync(&ihost->port_agent.timer.timer);
1288
1289 del_timer_sync(&ihost->power_control.timer.timer);
1290
1291 del_timer_sync(&ihost->timer.timer);
1292
1293 del_timer_sync(&ihost->phy_timer.timer);
1294}
1295
1296static void __iomem *scu_base(struct isci_host *isci_host)
1297{
1298 struct pci_dev *pdev = isci_host->pdev;
1299 int id = isci_host->id;
1300
1301 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1302}
1303
1304static void __iomem *smu_base(struct isci_host *isci_host)
1305{
1306 struct pci_dev *pdev = isci_host->pdev;
1307 int id = isci_host->id;
1308
1309 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1310}
1311
1312static void isci_user_parameters_get(struct sci_user_parameters *u)
1313{
1314 int i;
1315
1316 for (i = 0; i < SCI_MAX_PHYS; i++) {
1317 struct sci_phy_user_params *u_phy = &u->phys[i];
1318
1319 u_phy->max_speed_generation = phy_gen;
1320
1321 /* we are not exporting these for now */
1322 u_phy->align_insertion_frequency = 0x7f;
1323 u_phy->in_connection_align_insertion_frequency = 0xff;
1324 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1325 }
1326
1327 u->stp_inactivity_timeout = stp_inactive_to;
1328 u->ssp_inactivity_timeout = ssp_inactive_to;
1329 u->stp_max_occupancy_timeout = stp_max_occ_to;
1330 u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1331 u->no_outbound_task_timeout = no_outbound_task_to;
1332 u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1333}
1334
1335static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1336{
1337 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1338
1339 sci_change_state(&ihost->sm, SCIC_RESET);
1340}
1341
1342static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1343{
1344 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1345
1346 sci_del_timer(&ihost->timer);
1347}
1348
1349#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1350#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1351#define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1352#define INTERRUPT_COALESCE_NUMBER_MAX 256
1353#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1354#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1355
1356/**
1357 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1358 * configure the interrupt coalescence.
1359 * @controller: This parameter represents the handle to the controller object
1360 * for which its interrupt coalesce register is overridden.
1361 * @coalesce_number: Used to control the number of entries in the Completion
1362 * Queue before an interrupt is generated. If the number of entries exceed
1363 * this number, an interrupt will be generated. The valid range of the input
1364 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1365 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1366 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1367 * interrupt coalescing timeout.
1368 *
1369 * Indicate if the user successfully set the interrupt coalesce parameters.
1370 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1371 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1372 */
1373static enum sci_status
1374sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1375 u32 coalesce_number,
1376 u32 coalesce_timeout)
1377{
1378 u8 timeout_encode = 0;
1379 u32 min = 0;
1380 u32 max = 0;
1381
1382 /* Check if the input parameters fall in the range. */
1383 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1384 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1385
1386 /*
1387 * Defined encoding for interrupt coalescing timeout:
1388 * Value Min Max Units
1389 * ----- --- --- -----
1390 * 0 - - Disabled
1391 * 1 13.3 20.0 ns
1392 * 2 26.7 40.0
1393 * 3 53.3 80.0
1394 * 4 106.7 160.0
1395 * 5 213.3 320.0
1396 * 6 426.7 640.0
1397 * 7 853.3 1280.0
1398 * 8 1.7 2.6 us
1399 * 9 3.4 5.1
1400 * 10 6.8 10.2
1401 * 11 13.7 20.5
1402 * 12 27.3 41.0
1403 * 13 54.6 81.9
1404 * 14 109.2 163.8
1405 * 15 218.5 327.7
1406 * 16 436.9 655.4
1407 * 17 873.8 1310.7
1408 * 18 1.7 2.6 ms
1409 * 19 3.5 5.2
1410 * 20 7.0 10.5
1411 * 21 14.0 21.0
1412 * 22 28.0 41.9
1413 * 23 55.9 83.9
1414 * 24 111.8 167.8
1415 * 25 223.7 335.5
1416 * 26 447.4 671.1
1417 * 27 894.8 1342.2
1418 * 28 1.8 2.7 s
1419 * Others Undefined */
1420
1421 /*
1422 * Use the table above to decide the encode of interrupt coalescing timeout
1423 * value for register writing. */
1424 if (coalesce_timeout == 0)
1425 timeout_encode = 0;
1426 else{
1427 /* make the timeout value in unit of (10 ns). */
1428 coalesce_timeout = coalesce_timeout * 100;
1429 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1430 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1431
1432 /* get the encode of timeout for register writing. */
1433 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1434 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1435 timeout_encode++) {
1436 if (min <= coalesce_timeout && max > coalesce_timeout)
1437 break;
1438 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1439 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1440 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1441 break;
1442 else{
1443 timeout_encode++;
1444 break;
1445 }
1446 } else {
1447 max = max * 2;
1448 min = min * 2;
1449 }
1450 }
1451
1452 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1453 /* the value is out of range. */
1454 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1455 }
1456
1457 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1458 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1459 &ihost->smu_registers->interrupt_coalesce_control);
1460
1461
1462 ihost->interrupt_coalesce_number = (u16)coalesce_number;
1463 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1464
1465 return SCI_SUCCESS;
1466}
1467
1468
1469static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1470{
1471 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1472
1473 /* set the default interrupt coalescence number and timeout value. */
1474 sci_controller_set_interrupt_coalescence(ihost, 0x10, 250);
1475}
1476
1477static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1478{
1479 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1480
1481 /* disable interrupt coalescence. */
1482 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1483}
1484
1485static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1486{
1487 u32 index;
1488 enum sci_status status;
1489 enum sci_status phy_status;
1490
1491 status = SCI_SUCCESS;
1492
1493 for (index = 0; index < SCI_MAX_PHYS; index++) {
1494 phy_status = sci_phy_stop(&ihost->phys[index]);
1495
1496 if (phy_status != SCI_SUCCESS &&
1497 phy_status != SCI_FAILURE_INVALID_STATE) {
1498 status = SCI_FAILURE;
1499
1500 dev_warn(&ihost->pdev->dev,
1501 "%s: Controller stop operation failed to stop "
1502 "phy %d because of status %d.\n",
1503 __func__,
1504 ihost->phys[index].phy_index, phy_status);
1505 }
1506 }
1507
1508 return status;
1509}
1510
1511static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1512{
1513 u32 index;
1514 enum sci_status port_status;
1515 enum sci_status status = SCI_SUCCESS;
1516
1517 for (index = 0; index < ihost->logical_port_entries; index++) {
1518 struct isci_port *iport = &ihost->ports[index];
1519
1520 port_status = sci_port_stop(iport);
1521
1522 if ((port_status != SCI_SUCCESS) &&
1523 (port_status != SCI_FAILURE_INVALID_STATE)) {
1524 status = SCI_FAILURE;
1525
1526 dev_warn(&ihost->pdev->dev,
1527 "%s: Controller stop operation failed to "
1528 "stop port %d because of status %d.\n",
1529 __func__,
1530 iport->logical_port_index,
1531 port_status);
1532 }
1533 }
1534
1535 return status;
1536}
1537
1538static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1539{
1540 u32 index;
1541 enum sci_status status;
1542 enum sci_status device_status;
1543
1544 status = SCI_SUCCESS;
1545
1546 for (index = 0; index < ihost->remote_node_entries; index++) {
1547 if (ihost->device_table[index] != NULL) {
1548 /* / @todo What timeout value do we want to provide to this request? */
1549 device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1550
1551 if ((device_status != SCI_SUCCESS) &&
1552 (device_status != SCI_FAILURE_INVALID_STATE)) {
1553 dev_warn(&ihost->pdev->dev,
1554 "%s: Controller stop operation failed "
1555 "to stop device 0x%p because of "
1556 "status %d.\n",
1557 __func__,
1558 ihost->device_table[index], device_status);
1559 }
1560 }
1561 }
1562
1563 return status;
1564}
1565
1566static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1567{
1568 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1569
1570 /* Stop all of the components for this controller */
1571 sci_controller_stop_phys(ihost);
1572 sci_controller_stop_ports(ihost);
1573 sci_controller_stop_devices(ihost);
1574}
1575
1576static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1577{
1578 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1579
1580 sci_del_timer(&ihost->timer);
1581}
1582
1583static void sci_controller_reset_hardware(struct isci_host *ihost)
1584{
1585 /* Disable interrupts so we dont take any spurious interrupts */
1586 sci_controller_disable_interrupts(ihost);
1587
1588 /* Reset the SCU */
1589 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1590
1591 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1592 udelay(1000);
1593
1594 /* The write to the CQGR clears the CQP */
1595 writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1596
1597 /* The write to the UFQGP clears the UFQPR */
1598 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1599}
1600
1601static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1602{
1603 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1604
1605 sci_controller_reset_hardware(ihost);
1606 sci_change_state(&ihost->sm, SCIC_RESET);
1607}
1608
1609static const struct sci_base_state sci_controller_state_table[] = {
1610 [SCIC_INITIAL] = {
1611 .enter_state = sci_controller_initial_state_enter,
1612 },
1613 [SCIC_RESET] = {},
1614 [SCIC_INITIALIZING] = {},
1615 [SCIC_INITIALIZED] = {},
1616 [SCIC_STARTING] = {
1617 .exit_state = sci_controller_starting_state_exit,
1618 },
1619 [SCIC_READY] = {
1620 .enter_state = sci_controller_ready_state_enter,
1621 .exit_state = sci_controller_ready_state_exit,
1622 },
1623 [SCIC_RESETTING] = {
1624 .enter_state = sci_controller_resetting_state_enter,
1625 },
1626 [SCIC_STOPPING] = {
1627 .enter_state = sci_controller_stopping_state_enter,
1628 .exit_state = sci_controller_stopping_state_exit,
1629 },
1630 [SCIC_STOPPED] = {},
1631 [SCIC_FAILED] = {}
1632};
1633
1634static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1635{
1636 /* these defaults are overridden by the platform / firmware */
1637 u16 index;
1638
1639 /* Default to APC mode. */
1640 ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1641
1642 /* Default to APC mode. */
1643 ihost->oem_parameters.controller.max_concurrent_dev_spin_up = 1;
1644
1645 /* Default to no SSC operation. */
1646 ihost->oem_parameters.controller.do_enable_ssc = false;
1647
1648 /* Initialize all of the port parameter information to narrow ports. */
1649 for (index = 0; index < SCI_MAX_PORTS; index++) {
1650 ihost->oem_parameters.ports[index].phy_mask = 0;
1651 }
1652
1653 /* Initialize all of the phy parameter information. */
1654 for (index = 0; index < SCI_MAX_PHYS; index++) {
1655 /* Default to 6G (i.e. Gen 3) for now. */
1656 ihost->user_parameters.phys[index].max_speed_generation = 3;
1657
1658 /* the frequencies cannot be 0 */
1659 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1660 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1661 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1662
1663 /*
1664 * Previous Vitesse based expanders had a arbitration issue that
1665 * is worked around by having the upper 32-bits of SAS address
1666 * with a value greater then the Vitesse company identifier.
1667 * Hence, usage of 0x5FCFFFFF. */
1668 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1669 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1670 }
1671
1672 ihost->user_parameters.stp_inactivity_timeout = 5;
1673 ihost->user_parameters.ssp_inactivity_timeout = 5;
1674 ihost->user_parameters.stp_max_occupancy_timeout = 5;
1675 ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1676 ihost->user_parameters.no_outbound_task_timeout = 20;
1677}
1678
1679static void controller_timeout(unsigned long data)
1680{
1681 struct sci_timer *tmr = (struct sci_timer *)data;
1682 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1683 struct sci_base_state_machine *sm = &ihost->sm;
1684 unsigned long flags;
1685
1686 spin_lock_irqsave(&ihost->scic_lock, flags);
1687
1688 if (tmr->cancel)
1689 goto done;
1690
1691 if (sm->current_state_id == SCIC_STARTING)
1692 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1693 else if (sm->current_state_id == SCIC_STOPPING) {
1694 sci_change_state(sm, SCIC_FAILED);
1695 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1696 } else /* / @todo Now what do we want to do in this case? */
1697 dev_err(&ihost->pdev->dev,
1698 "%s: Controller timer fired when controller was not "
1699 "in a state being timed.\n",
1700 __func__);
1701
1702done:
1703 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1704}
1705
1706static enum sci_status sci_controller_construct(struct isci_host *ihost,
1707 void __iomem *scu_base,
1708 void __iomem *smu_base)
1709{
1710 u8 i;
1711
1712 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1713
1714 ihost->scu_registers = scu_base;
1715 ihost->smu_registers = smu_base;
1716
1717 sci_port_configuration_agent_construct(&ihost->port_agent);
1718
1719 /* Construct the ports for this controller */
1720 for (i = 0; i < SCI_MAX_PORTS; i++)
1721 sci_port_construct(&ihost->ports[i], i, ihost);
1722 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1723
1724 /* Construct the phys for this controller */
1725 for (i = 0; i < SCI_MAX_PHYS; i++) {
1726 /* Add all the PHYs to the dummy port */
1727 sci_phy_construct(&ihost->phys[i],
1728 &ihost->ports[SCI_MAX_PORTS], i);
1729 }
1730
1731 ihost->invalid_phy_mask = 0;
1732
1733 sci_init_timer(&ihost->timer, controller_timeout);
1734
1735 /* Initialize the User and OEM parameters to default values. */
1736 sci_controller_set_default_config_parameters(ihost);
1737
1738 return sci_controller_reset(ihost);
1739}
1740
1741int sci_oem_parameters_validate(struct sci_oem_params *oem)
1742{
1743 int i;
1744
1745 for (i = 0; i < SCI_MAX_PORTS; i++)
1746 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1747 return -EINVAL;
1748
1749 for (i = 0; i < SCI_MAX_PHYS; i++)
1750 if (oem->phys[i].sas_address.high == 0 &&
1751 oem->phys[i].sas_address.low == 0)
1752 return -EINVAL;
1753
1754 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1755 for (i = 0; i < SCI_MAX_PHYS; i++)
1756 if (oem->ports[i].phy_mask != 0)
1757 return -EINVAL;
1758 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1759 u8 phy_mask = 0;
1760
1761 for (i = 0; i < SCI_MAX_PHYS; i++)
1762 phy_mask |= oem->ports[i].phy_mask;
1763
1764 if (phy_mask == 0)
1765 return -EINVAL;
1766 } else
1767 return -EINVAL;
1768
1769 if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1770 return -EINVAL;
1771
1772 return 0;
1773}
1774
1775static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1776{
1777 u32 state = ihost->sm.current_state_id;
1778
1779 if (state == SCIC_RESET ||
1780 state == SCIC_INITIALIZING ||
1781 state == SCIC_INITIALIZED) {
1782
1783 if (sci_oem_parameters_validate(&ihost->oem_parameters))
1784 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1785
1786 return SCI_SUCCESS;
1787 }
1788
1789 return SCI_FAILURE_INVALID_STATE;
1790}
1791
1792static void power_control_timeout(unsigned long data)
1793{
1794 struct sci_timer *tmr = (struct sci_timer *)data;
1795 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1796 struct isci_phy *iphy;
1797 unsigned long flags;
1798 u8 i;
1799
1800 spin_lock_irqsave(&ihost->scic_lock, flags);
1801
1802 if (tmr->cancel)
1803 goto done;
1804
1805 ihost->power_control.phys_granted_power = 0;
1806
1807 if (ihost->power_control.phys_waiting == 0) {
1808 ihost->power_control.timer_started = false;
1809 goto done;
1810 }
1811
1812 for (i = 0; i < SCI_MAX_PHYS; i++) {
1813
1814 if (ihost->power_control.phys_waiting == 0)
1815 break;
1816
1817 iphy = ihost->power_control.requesters[i];
1818 if (iphy == NULL)
1819 continue;
1820
1821 if (ihost->power_control.phys_granted_power >=
1822 ihost->oem_parameters.controller.max_concurrent_dev_spin_up)
1823 break;
1824
1825 ihost->power_control.requesters[i] = NULL;
1826 ihost->power_control.phys_waiting--;
1827 ihost->power_control.phys_granted_power++;
1828 sci_phy_consume_power_handler(iphy);
1829 }
1830
1831 /*
1832 * It doesn't matter if the power list is empty, we need to start the
1833 * timer in case another phy becomes ready.
1834 */
1835 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1836 ihost->power_control.timer_started = true;
1837
1838done:
1839 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1840}
1841
1842void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1843 struct isci_phy *iphy)
1844{
1845 BUG_ON(iphy == NULL);
1846
1847 if (ihost->power_control.phys_granted_power <
1848 ihost->oem_parameters.controller.max_concurrent_dev_spin_up) {
1849 ihost->power_control.phys_granted_power++;
1850 sci_phy_consume_power_handler(iphy);
1851
1852 /*
1853 * stop and start the power_control timer. When the timer fires, the
1854 * no_of_phys_granted_power will be set to 0
1855 */
1856 if (ihost->power_control.timer_started)
1857 sci_del_timer(&ihost->power_control.timer);
1858
1859 sci_mod_timer(&ihost->power_control.timer,
1860 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1861 ihost->power_control.timer_started = true;
1862
1863 } else {
1864 /* Add the phy in the waiting list */
1865 ihost->power_control.requesters[iphy->phy_index] = iphy;
1866 ihost->power_control.phys_waiting++;
1867 }
1868}
1869
1870void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1871 struct isci_phy *iphy)
1872{
1873 BUG_ON(iphy == NULL);
1874
1875 if (ihost->power_control.requesters[iphy->phy_index])
1876 ihost->power_control.phys_waiting--;
1877
1878 ihost->power_control.requesters[iphy->phy_index] = NULL;
1879}
1880
1881#define AFE_REGISTER_WRITE_DELAY 10
1882
1883/* Initialize the AFE for this phy index. We need to read the AFE setup from
1884 * the OEM parameters
1885 */
1886static void sci_controller_afe_initialization(struct isci_host *ihost)
1887{
1888 const struct sci_oem_params *oem = &ihost->oem_parameters;
1889 struct pci_dev *pdev = ihost->pdev;
1890 u32 afe_status;
1891 u32 phy_id;
1892
1893 /* Clear DFX Status registers */
1894 writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0);
1895 udelay(AFE_REGISTER_WRITE_DELAY);
1896
1897 if (is_b0(pdev)) {
1898 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1899 * Timer, PM Stagger Timer */
1900 writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2);
1901 udelay(AFE_REGISTER_WRITE_DELAY);
1902 }
1903
1904 /* Configure bias currents to normal */
1905 if (is_a2(pdev))
1906 writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control);
1907 else if (is_b0(pdev) || is_c0(pdev))
1908 writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control);
1909
1910 udelay(AFE_REGISTER_WRITE_DELAY);
1911
1912 /* Enable PLL */
1913 if (is_b0(pdev) || is_c0(pdev))
1914 writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0);
1915 else
1916 writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0);
1917
1918 udelay(AFE_REGISTER_WRITE_DELAY);
1919
1920 /* Wait for the PLL to lock */
1921 do {
1922 afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status);
1923 udelay(AFE_REGISTER_WRITE_DELAY);
1924 } while ((afe_status & 0x00001000) == 0);
1925
1926 if (is_a2(pdev)) {
1927 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
1928 writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0);
1929 udelay(AFE_REGISTER_WRITE_DELAY);
1930 }
1931
1932 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1933 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1934
1935 if (is_b0(pdev)) {
1936 /* Configure transmitter SSC parameters */
1937 writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1938 udelay(AFE_REGISTER_WRITE_DELAY);
1939 } else if (is_c0(pdev)) {
1940 /* Configure transmitter SSC parameters */
1941 writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1942 udelay(AFE_REGISTER_WRITE_DELAY);
1943
1944 /*
1945 * All defaults, except the Receive Word Alignament/Comma Detect
1946 * Enable....(0xe800) */
1947 writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1948 udelay(AFE_REGISTER_WRITE_DELAY);
1949 } else {
1950 /*
1951 * All defaults, except the Receive Word Alignament/Comma Detect
1952 * Enable....(0xe800) */
1953 writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1954 udelay(AFE_REGISTER_WRITE_DELAY);
1955
1956 writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
1957 udelay(AFE_REGISTER_WRITE_DELAY);
1958 }
1959
1960 /*
1961 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1962 * & increase TX int & ext bias 20%....(0xe85c) */
1963 if (is_a2(pdev))
1964 writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1965 else if (is_b0(pdev)) {
1966 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
1967 writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1968 udelay(AFE_REGISTER_WRITE_DELAY);
1969
1970 /*
1971 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1972 * & increase TX int & ext bias 20%....(0xe85c) */
1973 writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1974 } else {
1975 writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1976 udelay(AFE_REGISTER_WRITE_DELAY);
1977
1978 /*
1979 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1980 * & increase TX int & ext bias 20%....(0xe85c) */
1981 writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1982 }
1983 udelay(AFE_REGISTER_WRITE_DELAY);
1984
1985 if (is_a2(pdev)) {
1986 /* Enable TX equalization (0xe824) */
1987 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
1988 udelay(AFE_REGISTER_WRITE_DELAY);
1989 }
1990
1991 /*
1992 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
1993 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
1994 writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1995 udelay(AFE_REGISTER_WRITE_DELAY);
1996
1997 /* Leave DFE/FFE on */
1998 if (is_a2(pdev))
1999 writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2000 else if (is_b0(pdev)) {
2001 writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2002 udelay(AFE_REGISTER_WRITE_DELAY);
2003 /* Enable TX equalization (0xe824) */
2004 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2005 } else {
2006 writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
2007 udelay(AFE_REGISTER_WRITE_DELAY);
2008
2009 writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2010 udelay(AFE_REGISTER_WRITE_DELAY);
2011
2012 /* Enable TX equalization (0xe824) */
2013 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2014 }
2015
2016 udelay(AFE_REGISTER_WRITE_DELAY);
2017
2018 writel(oem_phy->afe_tx_amp_control0,
2019 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2020 udelay(AFE_REGISTER_WRITE_DELAY);
2021
2022 writel(oem_phy->afe_tx_amp_control1,
2023 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2024 udelay(AFE_REGISTER_WRITE_DELAY);
2025
2026 writel(oem_phy->afe_tx_amp_control2,
2027 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2028 udelay(AFE_REGISTER_WRITE_DELAY);
2029
2030 writel(oem_phy->afe_tx_amp_control3,
2031 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2032 udelay(AFE_REGISTER_WRITE_DELAY);
2033 }
2034
2035 /* Transfer control to the PEs */
2036 writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0);
2037 udelay(AFE_REGISTER_WRITE_DELAY);
2038}
2039
2040static void sci_controller_initialize_power_control(struct isci_host *ihost)
2041{
2042 sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2043
2044 memset(ihost->power_control.requesters, 0,
2045 sizeof(ihost->power_control.requesters));
2046
2047 ihost->power_control.phys_waiting = 0;
2048 ihost->power_control.phys_granted_power = 0;
2049}
2050
2051static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2052{
2053 struct sci_base_state_machine *sm = &ihost->sm;
2054 enum sci_status result = SCI_FAILURE;
2055 unsigned long i, state, val;
2056
2057 if (ihost->sm.current_state_id != SCIC_RESET) {
2058 dev_warn(&ihost->pdev->dev,
2059 "SCIC Controller initialize operation requested "
2060 "in invalid state\n");
2061 return SCI_FAILURE_INVALID_STATE;
2062 }
2063
2064 sci_change_state(sm, SCIC_INITIALIZING);
2065
2066 sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2067
2068 ihost->next_phy_to_start = 0;
2069 ihost->phy_startup_timer_pending = false;
2070
2071 sci_controller_initialize_power_control(ihost);
2072
2073 /*
2074 * There is nothing to do here for B0 since we do not have to
2075 * program the AFE registers.
2076 * / @todo The AFE settings are supposed to be correct for the B0 but
2077 * / presently they seem to be wrong. */
2078 sci_controller_afe_initialization(ihost);
2079
2080
2081 /* Take the hardware out of reset */
2082 writel(0, &ihost->smu_registers->soft_reset_control);
2083
2084 /*
2085 * / @todo Provide meaningfull error code for hardware failure
2086 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2087 for (i = 100; i >= 1; i--) {
2088 u32 status;
2089
2090 /* Loop until the hardware reports success */
2091 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2092 status = readl(&ihost->smu_registers->control_status);
2093
2094 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2095 break;
2096 }
2097 if (i == 0)
2098 goto out;
2099
2100 /*
2101 * Determine what are the actaul device capacities that the
2102 * hardware will support */
2103 val = readl(&ihost->smu_registers->device_context_capacity);
2104
2105 /* Record the smaller of the two capacity values */
2106 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2107 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2108 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2109
2110 /*
2111 * Make all PEs that are unassigned match up with the
2112 * logical ports
2113 */
2114 for (i = 0; i < ihost->logical_port_entries; i++) {
2115 struct scu_port_task_scheduler_group_registers __iomem
2116 *ptsg = &ihost->scu_registers->peg0.ptsg;
2117
2118 writel(i, &ptsg->protocol_engine[i]);
2119 }
2120
2121 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2122 val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2123 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2124 writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2125
2126 val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2127 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2128 writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2129
2130 /*
2131 * Initialize the PHYs before the PORTs because the PHY registers
2132 * are accessed during the port initialization.
2133 */
2134 for (i = 0; i < SCI_MAX_PHYS; i++) {
2135 result = sci_phy_initialize(&ihost->phys[i],
2136 &ihost->scu_registers->peg0.pe[i].tl,
2137 &ihost->scu_registers->peg0.pe[i].ll);
2138 if (result != SCI_SUCCESS)
2139 goto out;
2140 }
2141
2142 for (i = 0; i < ihost->logical_port_entries; i++) {
2143 struct isci_port *iport = &ihost->ports[i];
2144
2145 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2146 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2147 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2148 }
2149
2150 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2151
2152 out:
2153 /* Advance the controller state machine */
2154 if (result == SCI_SUCCESS)
2155 state = SCIC_INITIALIZED;
2156 else
2157 state = SCIC_FAILED;
2158 sci_change_state(sm, state);
2159
2160 return result;
2161}
2162
2163static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2164 struct sci_user_parameters *sci_parms)
2165{
2166 u32 state = ihost->sm.current_state_id;
2167
2168 if (state == SCIC_RESET ||
2169 state == SCIC_INITIALIZING ||
2170 state == SCIC_INITIALIZED) {
2171 u16 index;
2172
2173 /*
2174 * Validate the user parameters. If they are not legal, then
2175 * return a failure.
2176 */
2177 for (index = 0; index < SCI_MAX_PHYS; index++) {
2178 struct sci_phy_user_params *user_phy;
2179
2180 user_phy = &sci_parms->phys[index];
2181
2182 if (!((user_phy->max_speed_generation <=
2183 SCIC_SDS_PARM_MAX_SPEED) &&
2184 (user_phy->max_speed_generation >
2185 SCIC_SDS_PARM_NO_SPEED)))
2186 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2187
2188 if (user_phy->in_connection_align_insertion_frequency <
2189 3)
2190 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2191
2192 if ((user_phy->in_connection_align_insertion_frequency <
2193 3) ||
2194 (user_phy->align_insertion_frequency == 0) ||
2195 (user_phy->
2196 notify_enable_spin_up_insertion_frequency ==
2197 0))
2198 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2199 }
2200
2201 if ((sci_parms->stp_inactivity_timeout == 0) ||
2202 (sci_parms->ssp_inactivity_timeout == 0) ||
2203 (sci_parms->stp_max_occupancy_timeout == 0) ||
2204 (sci_parms->ssp_max_occupancy_timeout == 0) ||
2205 (sci_parms->no_outbound_task_timeout == 0))
2206 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2207
2208 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2209
2210 return SCI_SUCCESS;
2211 }
2212
2213 return SCI_FAILURE_INVALID_STATE;
2214}
2215
2216static int sci_controller_mem_init(struct isci_host *ihost)
2217{
2218 struct device *dev = &ihost->pdev->dev;
2219 dma_addr_t dma;
2220 size_t size;
2221 int err;
2222
2223 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2224 ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2225 if (!ihost->completion_queue)
2226 return -ENOMEM;
2227
2228 writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2229 writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2230
2231 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2232 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2233 GFP_KERNEL);
2234 if (!ihost->remote_node_context_table)
2235 return -ENOMEM;
2236
2237 writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2238 writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2239
2240 size = ihost->task_context_entries * sizeof(struct scu_task_context),
2241 ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2242 if (!ihost->task_context_table)
2243 return -ENOMEM;
2244
2245 ihost->task_context_dma = dma;
2246 writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2247 writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2248
2249 err = sci_unsolicited_frame_control_construct(ihost);
2250 if (err)
2251 return err;
2252
2253 /*
2254 * Inform the silicon as to the location of the UF headers and
2255 * address table.
2256 */
2257 writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2258 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2259 writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2260 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2261
2262 writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2263 &ihost->scu_registers->sdma.uf_address_table_lower);
2264 writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2265 &ihost->scu_registers->sdma.uf_address_table_upper);
2266
2267 return 0;
2268}
2269
2270int isci_host_init(struct isci_host *ihost)
2271{
2272 int err = 0, i;
2273 enum sci_status status;
2274 struct sci_user_parameters sci_user_params;
2275 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2276
2277 spin_lock_init(&ihost->state_lock);
2278 spin_lock_init(&ihost->scic_lock);
2279 init_waitqueue_head(&ihost->eventq);
2280
2281 isci_host_change_state(ihost, isci_starting);
2282
2283 status = sci_controller_construct(ihost, scu_base(ihost),
2284 smu_base(ihost));
2285
2286 if (status != SCI_SUCCESS) {
2287 dev_err(&ihost->pdev->dev,
2288 "%s: sci_controller_construct failed - status = %x\n",
2289 __func__,
2290 status);
2291 return -ENODEV;
2292 }
2293
2294 ihost->sas_ha.dev = &ihost->pdev->dev;
2295 ihost->sas_ha.lldd_ha = ihost;
2296
2297 /*
2298 * grab initial values stored in the controller object for OEM and USER
2299 * parameters
2300 */
2301 isci_user_parameters_get(&sci_user_params);
2302 status = sci_user_parameters_set(ihost, &sci_user_params);
2303 if (status != SCI_SUCCESS) {
2304 dev_warn(&ihost->pdev->dev,
2305 "%s: sci_user_parameters_set failed\n",
2306 __func__);
2307 return -ENODEV;
2308 }
2309
2310 /* grab any OEM parameters specified in orom */
2311 if (pci_info->orom) {
2312 status = isci_parse_oem_parameters(&ihost->oem_parameters,
2313 pci_info->orom,
2314 ihost->id);
2315 if (status != SCI_SUCCESS) {
2316 dev_warn(&ihost->pdev->dev,
2317 "parsing firmware oem parameters failed\n");
2318 return -EINVAL;
2319 }
2320 }
2321
2322 status = sci_oem_parameters_set(ihost);
2323 if (status != SCI_SUCCESS) {
2324 dev_warn(&ihost->pdev->dev,
2325 "%s: sci_oem_parameters_set failed\n",
2326 __func__);
2327 return -ENODEV;
2328 }
2329
2330 tasklet_init(&ihost->completion_tasklet,
2331 isci_host_completion_routine, (unsigned long)ihost);
2332
2333 INIT_LIST_HEAD(&ihost->requests_to_complete);
2334 INIT_LIST_HEAD(&ihost->requests_to_errorback);
2335
2336 spin_lock_irq(&ihost->scic_lock);
2337 status = sci_controller_initialize(ihost);
2338 spin_unlock_irq(&ihost->scic_lock);
2339 if (status != SCI_SUCCESS) {
2340 dev_warn(&ihost->pdev->dev,
2341 "%s: sci_controller_initialize failed -"
2342 " status = 0x%x\n",
2343 __func__, status);
2344 return -ENODEV;
2345 }
2346
2347 err = sci_controller_mem_init(ihost);
2348 if (err)
2349 return err;
2350
2351 for (i = 0; i < SCI_MAX_PORTS; i++)
2352 isci_port_init(&ihost->ports[i], ihost, i);
2353
2354 for (i = 0; i < SCI_MAX_PHYS; i++)
2355 isci_phy_init(&ihost->phys[i], ihost, i);
2356
2357 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2358 struct isci_remote_device *idev = &ihost->devices[i];
2359
2360 INIT_LIST_HEAD(&idev->reqs_in_process);
2361 INIT_LIST_HEAD(&idev->node);
2362 }
2363
2364 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2365 struct isci_request *ireq;
2366 dma_addr_t dma;
2367
2368 ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2369 sizeof(struct isci_request), &dma,
2370 GFP_KERNEL);
2371 if (!ireq)
2372 return -ENOMEM;
2373
2374 ireq->tc = &ihost->task_context_table[i];
2375 ireq->owning_controller = ihost;
2376 spin_lock_init(&ireq->state_lock);
2377 ireq->request_daddr = dma;
2378 ireq->isci_host = ihost;
2379 ihost->reqs[i] = ireq;
2380 }
2381
2382 return 0;
2383}
2384
2385void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2386 struct isci_phy *iphy)
2387{
2388 switch (ihost->sm.current_state_id) {
2389 case SCIC_STARTING:
2390 sci_del_timer(&ihost->phy_timer);
2391 ihost->phy_startup_timer_pending = false;
2392 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2393 iport, iphy);
2394 sci_controller_start_next_phy(ihost);
2395 break;
2396 case SCIC_READY:
2397 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2398 iport, iphy);
2399 break;
2400 default:
2401 dev_dbg(&ihost->pdev->dev,
2402 "%s: SCIC Controller linkup event from phy %d in "
2403 "unexpected state %d\n", __func__, iphy->phy_index,
2404 ihost->sm.current_state_id);
2405 }
2406}
2407
2408void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2409 struct isci_phy *iphy)
2410{
2411 switch (ihost->sm.current_state_id) {
2412 case SCIC_STARTING:
2413 case SCIC_READY:
2414 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2415 iport, iphy);
2416 break;
2417 default:
2418 dev_dbg(&ihost->pdev->dev,
2419 "%s: SCIC Controller linkdown event from phy %d in "
2420 "unexpected state %d\n",
2421 __func__,
2422 iphy->phy_index,
2423 ihost->sm.current_state_id);
2424 }
2425}
2426
2427static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2428{
2429 u32 index;
2430
2431 for (index = 0; index < ihost->remote_node_entries; index++) {
2432 if ((ihost->device_table[index] != NULL) &&
2433 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2434 return true;
2435 }
2436
2437 return false;
2438}
2439
2440void sci_controller_remote_device_stopped(struct isci_host *ihost,
2441 struct isci_remote_device *idev)
2442{
2443 if (ihost->sm.current_state_id != SCIC_STOPPING) {
2444 dev_dbg(&ihost->pdev->dev,
2445 "SCIC Controller 0x%p remote device stopped event "
2446 "from device 0x%p in unexpected state %d\n",
2447 ihost, idev,
2448 ihost->sm.current_state_id);
2449 return;
2450 }
2451
2452 if (!sci_controller_has_remote_devices_stopping(ihost))
2453 sci_change_state(&ihost->sm, SCIC_STOPPED);
2454}
2455
2456void sci_controller_post_request(struct isci_host *ihost, u32 request)
2457{
2458 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2459 __func__, ihost->id, request);
2460
2461 writel(request, &ihost->smu_registers->post_context_port);
2462}
2463
2464struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2465{
2466 u16 task_index;
2467 u16 task_sequence;
2468
2469 task_index = ISCI_TAG_TCI(io_tag);
2470
2471 if (task_index < ihost->task_context_entries) {
2472 struct isci_request *ireq = ihost->reqs[task_index];
2473
2474 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2475 task_sequence = ISCI_TAG_SEQ(io_tag);
2476
2477 if (task_sequence == ihost->io_request_sequence[task_index])
2478 return ireq;
2479 }
2480 }
2481
2482 return NULL;
2483}
2484
2485/**
2486 * This method allocates remote node index and the reserves the remote node
2487 * context space for use. This method can fail if there are no more remote
2488 * node index available.
2489 * @scic: This is the controller object which contains the set of
2490 * free remote node ids
2491 * @sci_dev: This is the device object which is requesting the a remote node
2492 * id
2493 * @node_id: This is the remote node id that is assinged to the device if one
2494 * is available
2495 *
2496 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2497 * node index available.
2498 */
2499enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2500 struct isci_remote_device *idev,
2501 u16 *node_id)
2502{
2503 u16 node_index;
2504 u32 remote_node_count = sci_remote_device_node_count(idev);
2505
2506 node_index = sci_remote_node_table_allocate_remote_node(
2507 &ihost->available_remote_nodes, remote_node_count
2508 );
2509
2510 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2511 ihost->device_table[node_index] = idev;
2512
2513 *node_id = node_index;
2514
2515 return SCI_SUCCESS;
2516 }
2517
2518 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2519}
2520
2521void sci_controller_free_remote_node_context(struct isci_host *ihost,
2522 struct isci_remote_device *idev,
2523 u16 node_id)
2524{
2525 u32 remote_node_count = sci_remote_device_node_count(idev);
2526
2527 if (ihost->device_table[node_id] == idev) {
2528 ihost->device_table[node_id] = NULL;
2529
2530 sci_remote_node_table_release_remote_node_index(
2531 &ihost->available_remote_nodes, remote_node_count, node_id
2532 );
2533 }
2534}
2535
2536void sci_controller_copy_sata_response(void *response_buffer,
2537 void *frame_header,
2538 void *frame_buffer)
2539{
2540 /* XXX type safety? */
2541 memcpy(response_buffer, frame_header, sizeof(u32));
2542
2543 memcpy(response_buffer + sizeof(u32),
2544 frame_buffer,
2545 sizeof(struct dev_to_host_fis) - sizeof(u32));
2546}
2547
2548void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2549{
2550 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2551 writel(ihost->uf_control.get,
2552 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2553}
2554
2555void isci_tci_free(struct isci_host *ihost, u16 tci)
2556{
2557 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2558
2559 ihost->tci_pool[tail] = tci;
2560 ihost->tci_tail = tail + 1;
2561}
2562
2563static u16 isci_tci_alloc(struct isci_host *ihost)
2564{
2565 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2566 u16 tci = ihost->tci_pool[head];
2567
2568 ihost->tci_head = head + 1;
2569 return tci;
2570}
2571
2572static u16 isci_tci_space(struct isci_host *ihost)
2573{
2574 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2575}
2576
2577u16 isci_alloc_tag(struct isci_host *ihost)
2578{
2579 if (isci_tci_space(ihost)) {
2580 u16 tci = isci_tci_alloc(ihost);
2581 u8 seq = ihost->io_request_sequence[tci];
2582
2583 return ISCI_TAG(seq, tci);
2584 }
2585
2586 return SCI_CONTROLLER_INVALID_IO_TAG;
2587}
2588
2589enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2590{
2591 u16 tci = ISCI_TAG_TCI(io_tag);
2592 u16 seq = ISCI_TAG_SEQ(io_tag);
2593
2594 /* prevent tail from passing head */
2595 if (isci_tci_active(ihost) == 0)
2596 return SCI_FAILURE_INVALID_IO_TAG;
2597
2598 if (seq == ihost->io_request_sequence[tci]) {
2599 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2600
2601 isci_tci_free(ihost, tci);
2602
2603 return SCI_SUCCESS;
2604 }
2605 return SCI_FAILURE_INVALID_IO_TAG;
2606}
2607
2608enum sci_status sci_controller_start_io(struct isci_host *ihost,
2609 struct isci_remote_device *idev,
2610 struct isci_request *ireq)
2611{
2612 enum sci_status status;
2613
2614 if (ihost->sm.current_state_id != SCIC_READY) {
2615 dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2616 return SCI_FAILURE_INVALID_STATE;
2617 }
2618
2619 status = sci_remote_device_start_io(ihost, idev, ireq);
2620 if (status != SCI_SUCCESS)
2621 return status;
2622
2623 set_bit(IREQ_ACTIVE, &ireq->flags);
2624 sci_controller_post_request(ihost, ireq->post_context);
2625 return SCI_SUCCESS;
2626}
2627
2628enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2629 struct isci_remote_device *idev,
2630 struct isci_request *ireq)
2631{
2632 /* terminate an ongoing (i.e. started) core IO request. This does not
2633 * abort the IO request at the target, but rather removes the IO
2634 * request from the host controller.
2635 */
2636 enum sci_status status;
2637
2638 if (ihost->sm.current_state_id != SCIC_READY) {
2639 dev_warn(&ihost->pdev->dev,
2640 "invalid state to terminate request\n");
2641 return SCI_FAILURE_INVALID_STATE;
2642 }
2643
2644 status = sci_io_request_terminate(ireq);
2645 if (status != SCI_SUCCESS)
2646 return status;
2647
2648 /*
2649 * Utilize the original post context command and or in the POST_TC_ABORT
2650 * request sub-type.
2651 */
2652 sci_controller_post_request(ihost,
2653 ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2654 return SCI_SUCCESS;
2655}
2656
2657/**
2658 * sci_controller_complete_io() - This method will perform core specific
2659 * completion operations for an IO request. After this method is invoked,
2660 * the user should consider the IO request as invalid until it is properly
2661 * reused (i.e. re-constructed).
2662 * @ihost: The handle to the controller object for which to complete the
2663 * IO request.
2664 * @idev: The handle to the remote device object for which to complete
2665 * the IO request.
2666 * @ireq: the handle to the io request object to complete.
2667 */
2668enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669 struct isci_remote_device *idev,
2670 struct isci_request *ireq)
2671{
2672 enum sci_status status;
2673 u16 index;
2674
2675 switch (ihost->sm.current_state_id) {
2676 case SCIC_STOPPING:
2677 /* XXX: Implement this function */
2678 return SCI_FAILURE;
2679 case SCIC_READY:
2680 status = sci_remote_device_complete_io(ihost, idev, ireq);
2681 if (status != SCI_SUCCESS)
2682 return status;
2683
2684 index = ISCI_TAG_TCI(ireq->io_tag);
2685 clear_bit(IREQ_ACTIVE, &ireq->flags);
2686 return SCI_SUCCESS;
2687 default:
2688 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2689 return SCI_FAILURE_INVALID_STATE;
2690 }
2691
2692}
2693
2694enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2695{
2696 struct isci_host *ihost = ireq->owning_controller;
2697
2698 if (ihost->sm.current_state_id != SCIC_READY) {
2699 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2700 return SCI_FAILURE_INVALID_STATE;
2701 }
2702
2703 set_bit(IREQ_ACTIVE, &ireq->flags);
2704 sci_controller_post_request(ihost, ireq->post_context);
2705 return SCI_SUCCESS;
2706}
2707
2708/**
2709 * sci_controller_start_task() - This method is called by the SCIC user to
2710 * send/start a framework task management request.
2711 * @controller: the handle to the controller object for which to start the task
2712 * management request.
2713 * @remote_device: the handle to the remote device object for which to start
2714 * the task management request.
2715 * @task_request: the handle to the task request object to start.
2716 */
2717enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2718 struct isci_remote_device *idev,
2719 struct isci_request *ireq)
2720{
2721 enum sci_status status;
2722
2723 if (ihost->sm.current_state_id != SCIC_READY) {
2724 dev_warn(&ihost->pdev->dev,
2725 "%s: SCIC Controller starting task from invalid "
2726 "state\n",
2727 __func__);
2728 return SCI_TASK_FAILURE_INVALID_STATE;
2729 }
2730
2731 status = sci_remote_device_start_task(ihost, idev, ireq);
2732 switch (status) {
2733 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734 set_bit(IREQ_ACTIVE, &ireq->flags);
2735
2736 /*
2737 * We will let framework know this task request started successfully,
2738 * although core is still woring on starting the request (to post tc when
2739 * RNC is resumed.)
2740 */
2741 return SCI_SUCCESS;
2742 case SCI_SUCCESS:
2743 set_bit(IREQ_ACTIVE, &ireq->flags);
2744 sci_controller_post_request(ihost, ireq->post_context);
2745 break;
2746 default:
2747 break;
2748 }
2749
2750 return status;
2751}