diff options
Diffstat (limited to 'drivers/scsi/csiostor/csio_wr.c')
-rw-r--r-- | drivers/scsi/csiostor/csio_wr.c | 1632 |
1 files changed, 1632 insertions, 0 deletions
diff --git a/drivers/scsi/csiostor/csio_wr.c b/drivers/scsi/csiostor/csio_wr.c new file mode 100644 index 000000000000..c32df1bdaa97 --- /dev/null +++ b/drivers/scsi/csiostor/csio_wr.c | |||
@@ -0,0 +1,1632 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio FCoE driver for Linux. | ||
3 | * | ||
4 | * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. | ||
5 | * | ||
6 | * This software is available to you under a choice of one of two | ||
7 | * licenses. You may choose to be licensed under the terms of the GNU | ||
8 | * General Public License (GPL) Version 2, available from the file | ||
9 | * COPYING in the main directory of this source tree, or the | ||
10 | * OpenIB.org BSD license below: | ||
11 | * | ||
12 | * Redistribution and use in source and binary forms, with or | ||
13 | * without modification, are permitted provided that the following | ||
14 | * conditions are met: | ||
15 | * | ||
16 | * - Redistributions of source code must retain the above | ||
17 | * copyright notice, this list of conditions and the following | ||
18 | * disclaimer. | ||
19 | * | ||
20 | * - Redistributions in binary form must reproduce the above | ||
21 | * copyright notice, this list of conditions and the following | ||
22 | * disclaimer in the documentation and/or other materials | ||
23 | * provided with the distribution. | ||
24 | * | ||
25 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
26 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
27 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
28 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
29 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
30 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
31 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
32 | * SOFTWARE. | ||
33 | */ | ||
34 | |||
35 | #include <linux/kernel.h> | ||
36 | #include <linux/string.h> | ||
37 | #include <linux/compiler.h> | ||
38 | #include <linux/slab.h> | ||
39 | #include <asm/page.h> | ||
40 | #include <linux/cache.h> | ||
41 | |||
42 | #include "csio_hw.h" | ||
43 | #include "csio_wr.h" | ||
44 | #include "csio_mb.h" | ||
45 | #include "csio_defs.h" | ||
46 | |||
47 | int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */ | ||
48 | static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */ | ||
49 | |||
50 | int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */ | ||
51 | static int csio_sge_timer_reg = 1; | ||
52 | |||
53 | #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \ | ||
54 | csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg) | ||
55 | |||
56 | static void | ||
57 | csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg) | ||
58 | { | ||
59 | sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0 + | ||
60 | reg * sizeof(uint32_t)); | ||
61 | } | ||
62 | |||
63 | /* Free list buffer size */ | ||
64 | static inline uint32_t | ||
65 | csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf) | ||
66 | { | ||
67 | return sge->sge_fl_buf_size[buf->paddr & 0xF]; | ||
68 | } | ||
69 | |||
70 | /* Size of the egress queue status page */ | ||
71 | static inline uint32_t | ||
72 | csio_wr_qstat_pgsz(struct csio_hw *hw) | ||
73 | { | ||
74 | return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE(1)) ? 128 : 64; | ||
75 | } | ||
76 | |||
77 | /* Ring freelist doorbell */ | ||
78 | static inline void | ||
79 | csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq) | ||
80 | { | ||
81 | /* | ||
82 | * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ | ||
83 | * number of bytes in the freelist queue. This translates to atleast | ||
84 | * 8 freelist buffer pointers (since each pointer is 8 bytes). | ||
85 | */ | ||
86 | if (flq->inc_idx >= 8) { | ||
87 | csio_wr_reg32(hw, DBPRIO(1) | QID(flq->un.fl.flid) | | ||
88 | PIDX(flq->inc_idx / 8), | ||
89 | MYPF_REG(SGE_PF_KDOORBELL)); | ||
90 | flq->inc_idx &= 7; | ||
91 | } | ||
92 | } | ||
93 | |||
94 | /* Write a 0 cidx increment value to enable SGE interrupts for this queue */ | ||
95 | static void | ||
96 | csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid) | ||
97 | { | ||
98 | csio_wr_reg32(hw, CIDXINC(0) | | ||
99 | INGRESSQID(iqid) | | ||
100 | TIMERREG(X_TIMERREG_RESTART_COUNTER), | ||
101 | MYPF_REG(SGE_PF_GTS)); | ||
102 | } | ||
103 | |||
104 | /* | ||
105 | * csio_wr_fill_fl - Populate the FL buffers of a FL queue. | ||
106 | * @hw: HW module. | ||
107 | * @flq: Freelist queue. | ||
108 | * | ||
109 | * Fill up freelist buffer entries with buffers of size specified | ||
110 | * in the size register. | ||
111 | * | ||
112 | */ | ||
113 | static int | ||
114 | csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq) | ||
115 | { | ||
116 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
117 | struct csio_sge *sge = &wrm->sge; | ||
118 | __be64 *d = (__be64 *)(flq->vstart); | ||
119 | struct csio_dma_buf *buf = &flq->un.fl.bufs[0]; | ||
120 | uint64_t paddr; | ||
121 | int sreg = flq->un.fl.sreg; | ||
122 | int n = flq->credits; | ||
123 | |||
124 | while (n--) { | ||
125 | buf->len = sge->sge_fl_buf_size[sreg]; | ||
126 | buf->vaddr = pci_alloc_consistent(hw->pdev, buf->len, | ||
127 | &buf->paddr); | ||
128 | if (!buf->vaddr) { | ||
129 | csio_err(hw, "Could only fill %d buffers!\n", n + 1); | ||
130 | return -ENOMEM; | ||
131 | } | ||
132 | |||
133 | paddr = buf->paddr | (sreg & 0xF); | ||
134 | |||
135 | *d++ = cpu_to_be64(paddr); | ||
136 | buf++; | ||
137 | } | ||
138 | |||
139 | return 0; | ||
140 | } | ||
141 | |||
142 | /* | ||
143 | * csio_wr_update_fl - | ||
144 | * @hw: HW module. | ||
145 | * @flq: Freelist queue. | ||
146 | * | ||
147 | * | ||
148 | */ | ||
149 | static inline void | ||
150 | csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n) | ||
151 | { | ||
152 | |||
153 | flq->inc_idx += n; | ||
154 | flq->pidx += n; | ||
155 | if (unlikely(flq->pidx >= flq->credits)) | ||
156 | flq->pidx -= (uint16_t)flq->credits; | ||
157 | |||
158 | CSIO_INC_STATS(flq, n_flq_refill); | ||
159 | } | ||
160 | |||
161 | /* | ||
162 | * csio_wr_alloc_q - Allocate a WR queue and initialize it. | ||
163 | * @hw: HW module | ||
164 | * @qsize: Size of the queue in bytes | ||
165 | * @wrsize: Since of WR in this queue, if fixed. | ||
166 | * @type: Type of queue (Ingress/Egress/Freelist) | ||
167 | * @owner: Module that owns this queue. | ||
168 | * @nflb: Number of freelist buffers for FL. | ||
169 | * @sreg: What is the FL buffer size register? | ||
170 | * @iq_int_handler: Ingress queue handler in INTx mode. | ||
171 | * | ||
172 | * This function allocates and sets up a queue for the caller | ||
173 | * of size qsize, aligned at the required boundary. This is subject to | ||
174 | * be free entries being available in the queue array. If one is found, | ||
175 | * it is initialized with the allocated queue, marked as being used (owner), | ||
176 | * and a handle returned to the caller in form of the queue's index | ||
177 | * into the q_arr array. | ||
178 | * If user has indicated a freelist (by specifying nflb > 0), create | ||
179 | * another queue (with its own index into q_arr) for the freelist. Allocate | ||
180 | * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist | ||
181 | * idx in the ingress queue's flq.idx. This is how a Freelist is associated | ||
182 | * with its owning ingress queue. | ||
183 | */ | ||
184 | int | ||
185 | csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize, | ||
186 | uint16_t type, void *owner, uint32_t nflb, int sreg, | ||
187 | iq_handler_t iq_intx_handler) | ||
188 | { | ||
189 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
190 | struct csio_q *q, *flq; | ||
191 | int free_idx = wrm->free_qidx; | ||
192 | int ret_idx = free_idx; | ||
193 | uint32_t qsz; | ||
194 | int flq_idx; | ||
195 | |||
196 | if (free_idx >= wrm->num_q) { | ||
197 | csio_err(hw, "No more free queues.\n"); | ||
198 | return -1; | ||
199 | } | ||
200 | |||
201 | switch (type) { | ||
202 | case CSIO_EGRESS: | ||
203 | qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw); | ||
204 | break; | ||
205 | case CSIO_INGRESS: | ||
206 | switch (wrsize) { | ||
207 | case 16: | ||
208 | case 32: | ||
209 | case 64: | ||
210 | case 128: | ||
211 | break; | ||
212 | default: | ||
213 | csio_err(hw, "Invalid Ingress queue WR size:%d\n", | ||
214 | wrsize); | ||
215 | return -1; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * Number of elements must be a multiple of 16 | ||
220 | * So this includes status page size | ||
221 | */ | ||
222 | qsz = ALIGN(qsize/wrsize, 16) * wrsize; | ||
223 | |||
224 | break; | ||
225 | case CSIO_FREELIST: | ||
226 | qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw); | ||
227 | break; | ||
228 | default: | ||
229 | csio_err(hw, "Invalid queue type: 0x%x\n", type); | ||
230 | return -1; | ||
231 | } | ||
232 | |||
233 | q = wrm->q_arr[free_idx]; | ||
234 | |||
235 | q->vstart = pci_alloc_consistent(hw->pdev, qsz, &q->pstart); | ||
236 | if (!q->vstart) { | ||
237 | csio_err(hw, | ||
238 | "Failed to allocate DMA memory for " | ||
239 | "queue at id: %d size: %d\n", free_idx, qsize); | ||
240 | return -1; | ||
241 | } | ||
242 | |||
243 | /* | ||
244 | * We need to zero out the contents, importantly for ingress, | ||
245 | * since we start with a generatiom bit of 1 for ingress. | ||
246 | */ | ||
247 | memset(q->vstart, 0, qsz); | ||
248 | |||
249 | q->type = type; | ||
250 | q->owner = owner; | ||
251 | q->pidx = q->cidx = q->inc_idx = 0; | ||
252 | q->size = qsz; | ||
253 | q->wr_sz = wrsize; /* If using fixed size WRs */ | ||
254 | |||
255 | wrm->free_qidx++; | ||
256 | |||
257 | if (type == CSIO_INGRESS) { | ||
258 | /* Since queue area is set to zero */ | ||
259 | q->un.iq.genbit = 1; | ||
260 | |||
261 | /* | ||
262 | * Ingress queue status page size is always the size of | ||
263 | * the ingress queue entry. | ||
264 | */ | ||
265 | q->credits = (qsz - q->wr_sz) / q->wr_sz; | ||
266 | q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz | ||
267 | - q->wr_sz); | ||
268 | |||
269 | /* Allocate memory for FL if requested */ | ||
270 | if (nflb > 0) { | ||
271 | flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64), | ||
272 | sizeof(__be64), CSIO_FREELIST, | ||
273 | owner, 0, sreg, NULL); | ||
274 | if (flq_idx == -1) { | ||
275 | csio_err(hw, | ||
276 | "Failed to allocate FL queue" | ||
277 | " for IQ idx:%d\n", free_idx); | ||
278 | return -1; | ||
279 | } | ||
280 | |||
281 | /* Associate the new FL with the Ingress quue */ | ||
282 | q->un.iq.flq_idx = flq_idx; | ||
283 | |||
284 | flq = wrm->q_arr[q->un.iq.flq_idx]; | ||
285 | flq->un.fl.bufs = kzalloc(flq->credits * | ||
286 | sizeof(struct csio_dma_buf), | ||
287 | GFP_KERNEL); | ||
288 | if (!flq->un.fl.bufs) { | ||
289 | csio_err(hw, | ||
290 | "Failed to allocate FL queue bufs" | ||
291 | " for IQ idx:%d\n", free_idx); | ||
292 | return -1; | ||
293 | } | ||
294 | |||
295 | flq->un.fl.packen = 0; | ||
296 | flq->un.fl.offset = 0; | ||
297 | flq->un.fl.sreg = sreg; | ||
298 | |||
299 | /* Fill up the free list buffers */ | ||
300 | if (csio_wr_fill_fl(hw, flq)) | ||
301 | return -1; | ||
302 | |||
303 | /* | ||
304 | * Make sure in a FLQ, atleast 1 credit (8 FL buffers) | ||
305 | * remains unpopulated,otherwise HW thinks | ||
306 | * FLQ is empty. | ||
307 | */ | ||
308 | flq->pidx = flq->inc_idx = flq->credits - 8; | ||
309 | } else { | ||
310 | q->un.iq.flq_idx = -1; | ||
311 | } | ||
312 | |||
313 | /* Associate the IQ INTx handler. */ | ||
314 | q->un.iq.iq_intx_handler = iq_intx_handler; | ||
315 | |||
316 | csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID; | ||
317 | |||
318 | } else if (type == CSIO_EGRESS) { | ||
319 | q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ; | ||
320 | q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz | ||
321 | - csio_wr_qstat_pgsz(hw)); | ||
322 | csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID; | ||
323 | } else { /* Freelist */ | ||
324 | q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64); | ||
325 | q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz | ||
326 | - csio_wr_qstat_pgsz(hw)); | ||
327 | csio_q_flid(hw, ret_idx) = CSIO_MAX_QID; | ||
328 | } | ||
329 | |||
330 | return ret_idx; | ||
331 | } | ||
332 | |||
333 | /* | ||
334 | * csio_wr_iq_create_rsp - Response handler for IQ creation. | ||
335 | * @hw: The HW module. | ||
336 | * @mbp: Mailbox. | ||
337 | * @iq_idx: Ingress queue that got created. | ||
338 | * | ||
339 | * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids. | ||
340 | */ | ||
341 | static int | ||
342 | csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx) | ||
343 | { | ||
344 | struct csio_iq_params iqp; | ||
345 | enum fw_retval retval; | ||
346 | uint32_t iq_id; | ||
347 | int flq_idx; | ||
348 | |||
349 | memset(&iqp, 0, sizeof(struct csio_iq_params)); | ||
350 | |||
351 | csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp); | ||
352 | |||
353 | if (retval != FW_SUCCESS) { | ||
354 | csio_err(hw, "IQ cmd returned 0x%x!\n", retval); | ||
355 | mempool_free(mbp, hw->mb_mempool); | ||
356 | return -EINVAL; | ||
357 | } | ||
358 | |||
359 | csio_q_iqid(hw, iq_idx) = iqp.iqid; | ||
360 | csio_q_physiqid(hw, iq_idx) = iqp.physiqid; | ||
361 | csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0; | ||
362 | csio_q_inc_idx(hw, iq_idx) = 0; | ||
363 | |||
364 | /* Actual iq-id. */ | ||
365 | iq_id = iqp.iqid - hw->wrm.fw_iq_start; | ||
366 | |||
367 | /* Set the iq-id to iq map table. */ | ||
368 | if (iq_id >= CSIO_MAX_IQ) { | ||
369 | csio_err(hw, | ||
370 | "Exceeding MAX_IQ(%d) supported!" | ||
371 | " iqid:%d rel_iqid:%d FW iq_start:%d\n", | ||
372 | CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start); | ||
373 | mempool_free(mbp, hw->mb_mempool); | ||
374 | return -EINVAL; | ||
375 | } | ||
376 | csio_q_set_intr_map(hw, iq_idx, iq_id); | ||
377 | |||
378 | /* | ||
379 | * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE | ||
380 | * ingress context of this queue. This will block interrupts to | ||
381 | * this queue until the next GTS write. Therefore, we do a | ||
382 | * 0-cidx increment GTS write for this queue just to clear the | ||
383 | * interrupt_sent bit. This will re-enable interrupts to this | ||
384 | * queue. | ||
385 | */ | ||
386 | csio_wr_sge_intr_enable(hw, iqp.physiqid); | ||
387 | |||
388 | flq_idx = csio_q_iq_flq_idx(hw, iq_idx); | ||
389 | if (flq_idx != -1) { | ||
390 | struct csio_q *flq = hw->wrm.q_arr[flq_idx]; | ||
391 | |||
392 | csio_q_flid(hw, flq_idx) = iqp.fl0id; | ||
393 | csio_q_cidx(hw, flq_idx) = 0; | ||
394 | csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8; | ||
395 | csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8; | ||
396 | |||
397 | /* Now update SGE about the buffers allocated during init */ | ||
398 | csio_wr_ring_fldb(hw, flq); | ||
399 | } | ||
400 | |||
401 | mempool_free(mbp, hw->mb_mempool); | ||
402 | |||
403 | return 0; | ||
404 | } | ||
405 | |||
406 | /* | ||
407 | * csio_wr_iq_create - Configure an Ingress queue with FW. | ||
408 | * @hw: The HW module. | ||
409 | * @priv: Private data object. | ||
410 | * @iq_idx: Ingress queue index in the WR module. | ||
411 | * @vec: MSIX vector. | ||
412 | * @portid: PCIE Channel to be associated with this queue. | ||
413 | * @async: Is this a FW asynchronous message handling queue? | ||
414 | * @cbfn: Completion callback. | ||
415 | * | ||
416 | * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox | ||
417 | * with alloc/write bits set. | ||
418 | */ | ||
419 | int | ||
420 | csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx, | ||
421 | uint32_t vec, uint8_t portid, bool async, | ||
422 | void (*cbfn) (struct csio_hw *, struct csio_mb *)) | ||
423 | { | ||
424 | struct csio_mb *mbp; | ||
425 | struct csio_iq_params iqp; | ||
426 | int flq_idx; | ||
427 | |||
428 | memset(&iqp, 0, sizeof(struct csio_iq_params)); | ||
429 | csio_q_portid(hw, iq_idx) = portid; | ||
430 | |||
431 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | ||
432 | if (!mbp) { | ||
433 | csio_err(hw, "IQ command out of memory!\n"); | ||
434 | return -ENOMEM; | ||
435 | } | ||
436 | |||
437 | switch (hw->intr_mode) { | ||
438 | case CSIO_IM_INTX: | ||
439 | case CSIO_IM_MSI: | ||
440 | /* For interrupt forwarding queue only */ | ||
441 | if (hw->intr_iq_idx == iq_idx) | ||
442 | iqp.iqandst = X_INTERRUPTDESTINATION_PCIE; | ||
443 | else | ||
444 | iqp.iqandst = X_INTERRUPTDESTINATION_IQ; | ||
445 | iqp.iqandstindex = | ||
446 | csio_q_physiqid(hw, hw->intr_iq_idx); | ||
447 | break; | ||
448 | case CSIO_IM_MSIX: | ||
449 | iqp.iqandst = X_INTERRUPTDESTINATION_PCIE; | ||
450 | iqp.iqandstindex = (uint16_t)vec; | ||
451 | break; | ||
452 | case CSIO_IM_NONE: | ||
453 | mempool_free(mbp, hw->mb_mempool); | ||
454 | return -EINVAL; | ||
455 | } | ||
456 | |||
457 | /* Pass in the ingress queue cmd parameters */ | ||
458 | iqp.pfn = hw->pfn; | ||
459 | iqp.vfn = 0; | ||
460 | iqp.iq_start = 1; | ||
461 | iqp.viid = 0; | ||
462 | iqp.type = FW_IQ_TYPE_FL_INT_CAP; | ||
463 | iqp.iqasynch = async; | ||
464 | if (csio_intr_coalesce_cnt) | ||
465 | iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER; | ||
466 | else | ||
467 | iqp.iqanus = X_UPDATESCHEDULING_TIMER; | ||
468 | iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT; | ||
469 | iqp.iqpciech = portid; | ||
470 | iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg; | ||
471 | |||
472 | switch (csio_q_wr_sz(hw, iq_idx)) { | ||
473 | case 16: | ||
474 | iqp.iqesize = 0; break; | ||
475 | case 32: | ||
476 | iqp.iqesize = 1; break; | ||
477 | case 64: | ||
478 | iqp.iqesize = 2; break; | ||
479 | case 128: | ||
480 | iqp.iqesize = 3; break; | ||
481 | } | ||
482 | |||
483 | iqp.iqsize = csio_q_size(hw, iq_idx) / | ||
484 | csio_q_wr_sz(hw, iq_idx); | ||
485 | iqp.iqaddr = csio_q_pstart(hw, iq_idx); | ||
486 | |||
487 | flq_idx = csio_q_iq_flq_idx(hw, iq_idx); | ||
488 | if (flq_idx != -1) { | ||
489 | struct csio_q *flq = hw->wrm.q_arr[flq_idx]; | ||
490 | |||
491 | iqp.fl0paden = 1; | ||
492 | iqp.fl0packen = flq->un.fl.packen ? 1 : 0; | ||
493 | iqp.fl0fbmin = X_FETCHBURSTMIN_64B; | ||
494 | iqp.fl0fbmax = X_FETCHBURSTMAX_512B; | ||
495 | iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ; | ||
496 | iqp.fl0addr = csio_q_pstart(hw, flq_idx); | ||
497 | } | ||
498 | |||
499 | csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn); | ||
500 | |||
501 | if (csio_mb_issue(hw, mbp)) { | ||
502 | csio_err(hw, "Issue of IQ cmd failed!\n"); | ||
503 | mempool_free(mbp, hw->mb_mempool); | ||
504 | return -EINVAL; | ||
505 | } | ||
506 | |||
507 | if (cbfn != NULL) | ||
508 | return 0; | ||
509 | |||
510 | return csio_wr_iq_create_rsp(hw, mbp, iq_idx); | ||
511 | } | ||
512 | |||
513 | /* | ||
514 | * csio_wr_eq_create_rsp - Response handler for EQ creation. | ||
515 | * @hw: The HW module. | ||
516 | * @mbp: Mailbox. | ||
517 | * @eq_idx: Egress queue that got created. | ||
518 | * | ||
519 | * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids. | ||
520 | */ | ||
521 | static int | ||
522 | csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx) | ||
523 | { | ||
524 | struct csio_eq_params eqp; | ||
525 | enum fw_retval retval; | ||
526 | |||
527 | memset(&eqp, 0, sizeof(struct csio_eq_params)); | ||
528 | |||
529 | csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp); | ||
530 | |||
531 | if (retval != FW_SUCCESS) { | ||
532 | csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval); | ||
533 | mempool_free(mbp, hw->mb_mempool); | ||
534 | return -EINVAL; | ||
535 | } | ||
536 | |||
537 | csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid; | ||
538 | csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid; | ||
539 | csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0; | ||
540 | csio_q_inc_idx(hw, eq_idx) = 0; | ||
541 | |||
542 | mempool_free(mbp, hw->mb_mempool); | ||
543 | |||
544 | return 0; | ||
545 | } | ||
546 | |||
547 | /* | ||
548 | * csio_wr_eq_create - Configure an Egress queue with FW. | ||
549 | * @hw: HW module. | ||
550 | * @priv: Private data. | ||
551 | * @eq_idx: Egress queue index in the WR module. | ||
552 | * @iq_idx: Associated ingress queue index. | ||
553 | * @cbfn: Completion callback. | ||
554 | * | ||
555 | * This API configures a offload egress queue with FW by issuing a | ||
556 | * FW_EQ_OFLD_CMD (with alloc + write ) mailbox. | ||
557 | */ | ||
558 | int | ||
559 | csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx, | ||
560 | int iq_idx, uint8_t portid, | ||
561 | void (*cbfn) (struct csio_hw *, struct csio_mb *)) | ||
562 | { | ||
563 | struct csio_mb *mbp; | ||
564 | struct csio_eq_params eqp; | ||
565 | |||
566 | memset(&eqp, 0, sizeof(struct csio_eq_params)); | ||
567 | |||
568 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | ||
569 | if (!mbp) { | ||
570 | csio_err(hw, "EQ command out of memory!\n"); | ||
571 | return -ENOMEM; | ||
572 | } | ||
573 | |||
574 | eqp.pfn = hw->pfn; | ||
575 | eqp.vfn = 0; | ||
576 | eqp.eqstart = 1; | ||
577 | eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE; | ||
578 | eqp.iqid = csio_q_iqid(hw, iq_idx); | ||
579 | eqp.fbmin = X_FETCHBURSTMIN_64B; | ||
580 | eqp.fbmax = X_FETCHBURSTMAX_512B; | ||
581 | eqp.cidxfthresh = 0; | ||
582 | eqp.pciechn = portid; | ||
583 | eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ; | ||
584 | eqp.eqaddr = csio_q_pstart(hw, eq_idx); | ||
585 | |||
586 | csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, | ||
587 | &eqp, cbfn); | ||
588 | |||
589 | if (csio_mb_issue(hw, mbp)) { | ||
590 | csio_err(hw, "Issue of EQ OFLD cmd failed!\n"); | ||
591 | mempool_free(mbp, hw->mb_mempool); | ||
592 | return -EINVAL; | ||
593 | } | ||
594 | |||
595 | if (cbfn != NULL) | ||
596 | return 0; | ||
597 | |||
598 | return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx); | ||
599 | } | ||
600 | |||
601 | /* | ||
602 | * csio_wr_iq_destroy_rsp - Response handler for IQ removal. | ||
603 | * @hw: The HW module. | ||
604 | * @mbp: Mailbox. | ||
605 | * @iq_idx: Ingress queue that was freed. | ||
606 | * | ||
607 | * Handle FW_IQ_CMD (free) mailbox completion. | ||
608 | */ | ||
609 | static int | ||
610 | csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx) | ||
611 | { | ||
612 | enum fw_retval retval = csio_mb_fw_retval(mbp); | ||
613 | int rv = 0; | ||
614 | |||
615 | if (retval != FW_SUCCESS) | ||
616 | rv = -EINVAL; | ||
617 | |||
618 | mempool_free(mbp, hw->mb_mempool); | ||
619 | |||
620 | return rv; | ||
621 | } | ||
622 | |||
623 | /* | ||
624 | * csio_wr_iq_destroy - Free an ingress queue. | ||
625 | * @hw: The HW module. | ||
626 | * @priv: Private data object. | ||
627 | * @iq_idx: Ingress queue index to destroy | ||
628 | * @cbfn: Completion callback. | ||
629 | * | ||
630 | * This API frees an ingress queue by issuing the FW_IQ_CMD | ||
631 | * with the free bit set. | ||
632 | */ | ||
633 | static int | ||
634 | csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx, | ||
635 | void (*cbfn)(struct csio_hw *, struct csio_mb *)) | ||
636 | { | ||
637 | int rv = 0; | ||
638 | struct csio_mb *mbp; | ||
639 | struct csio_iq_params iqp; | ||
640 | int flq_idx; | ||
641 | |||
642 | memset(&iqp, 0, sizeof(struct csio_iq_params)); | ||
643 | |||
644 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | ||
645 | if (!mbp) | ||
646 | return -ENOMEM; | ||
647 | |||
648 | iqp.pfn = hw->pfn; | ||
649 | iqp.vfn = 0; | ||
650 | iqp.iqid = csio_q_iqid(hw, iq_idx); | ||
651 | iqp.type = FW_IQ_TYPE_FL_INT_CAP; | ||
652 | |||
653 | flq_idx = csio_q_iq_flq_idx(hw, iq_idx); | ||
654 | if (flq_idx != -1) | ||
655 | iqp.fl0id = csio_q_flid(hw, flq_idx); | ||
656 | else | ||
657 | iqp.fl0id = 0xFFFF; | ||
658 | |||
659 | iqp.fl1id = 0xFFFF; | ||
660 | |||
661 | csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn); | ||
662 | |||
663 | rv = csio_mb_issue(hw, mbp); | ||
664 | if (rv != 0) { | ||
665 | mempool_free(mbp, hw->mb_mempool); | ||
666 | return rv; | ||
667 | } | ||
668 | |||
669 | if (cbfn != NULL) | ||
670 | return 0; | ||
671 | |||
672 | return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx); | ||
673 | } | ||
674 | |||
675 | /* | ||
676 | * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation. | ||
677 | * @hw: The HW module. | ||
678 | * @mbp: Mailbox. | ||
679 | * @eq_idx: Egress queue that was freed. | ||
680 | * | ||
681 | * Handle FW_OFLD_EQ_CMD (free) mailbox completion. | ||
682 | */ | ||
683 | static int | ||
684 | csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx) | ||
685 | { | ||
686 | enum fw_retval retval = csio_mb_fw_retval(mbp); | ||
687 | int rv = 0; | ||
688 | |||
689 | if (retval != FW_SUCCESS) | ||
690 | rv = -EINVAL; | ||
691 | |||
692 | mempool_free(mbp, hw->mb_mempool); | ||
693 | |||
694 | return rv; | ||
695 | } | ||
696 | |||
697 | /* | ||
698 | * csio_wr_eq_destroy - Free an Egress queue. | ||
699 | * @hw: The HW module. | ||
700 | * @priv: Private data object. | ||
701 | * @eq_idx: Egress queue index to destroy | ||
702 | * @cbfn: Completion callback. | ||
703 | * | ||
704 | * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD | ||
705 | * with the free bit set. | ||
706 | */ | ||
707 | static int | ||
708 | csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx, | ||
709 | void (*cbfn) (struct csio_hw *, struct csio_mb *)) | ||
710 | { | ||
711 | int rv = 0; | ||
712 | struct csio_mb *mbp; | ||
713 | struct csio_eq_params eqp; | ||
714 | |||
715 | memset(&eqp, 0, sizeof(struct csio_eq_params)); | ||
716 | |||
717 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | ||
718 | if (!mbp) | ||
719 | return -ENOMEM; | ||
720 | |||
721 | eqp.pfn = hw->pfn; | ||
722 | eqp.vfn = 0; | ||
723 | eqp.eqid = csio_q_eqid(hw, eq_idx); | ||
724 | |||
725 | csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn); | ||
726 | |||
727 | rv = csio_mb_issue(hw, mbp); | ||
728 | if (rv != 0) { | ||
729 | mempool_free(mbp, hw->mb_mempool); | ||
730 | return rv; | ||
731 | } | ||
732 | |||
733 | if (cbfn != NULL) | ||
734 | return 0; | ||
735 | |||
736 | return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx); | ||
737 | } | ||
738 | |||
739 | /* | ||
740 | * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page | ||
741 | * @hw: HW module | ||
742 | * @qidx: Egress queue index | ||
743 | * | ||
744 | * Cleanup the Egress queue status page. | ||
745 | */ | ||
746 | static void | ||
747 | csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx) | ||
748 | { | ||
749 | struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx]; | ||
750 | struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap; | ||
751 | |||
752 | memset(stp, 0, sizeof(*stp)); | ||
753 | } | ||
754 | |||
755 | /* | ||
756 | * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ | ||
757 | * @hw: HW module | ||
758 | * @qidx: Ingress queue index | ||
759 | * | ||
760 | * Cleanup the footer entries in the given ingress queue, | ||
761 | * set to 1 the internal copy of genbit. | ||
762 | */ | ||
763 | static void | ||
764 | csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx) | ||
765 | { | ||
766 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
767 | struct csio_q *q = wrm->q_arr[qidx]; | ||
768 | void *wr; | ||
769 | struct csio_iqwr_footer *ftr; | ||
770 | uint32_t i = 0; | ||
771 | |||
772 | /* set to 1 since we are just about zero out genbit */ | ||
773 | q->un.iq.genbit = 1; | ||
774 | |||
775 | for (i = 0; i < q->credits; i++) { | ||
776 | /* Get the WR */ | ||
777 | wr = (void *)((uintptr_t)q->vstart + | ||
778 | (i * q->wr_sz)); | ||
779 | /* Get the footer */ | ||
780 | ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + | ||
781 | (q->wr_sz - sizeof(*ftr))); | ||
782 | /* Zero out footer */ | ||
783 | memset(ftr, 0, sizeof(*ftr)); | ||
784 | } | ||
785 | } | ||
786 | |||
787 | int | ||
788 | csio_wr_destroy_queues(struct csio_hw *hw, bool cmd) | ||
789 | { | ||
790 | int i, flq_idx; | ||
791 | struct csio_q *q; | ||
792 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
793 | int rv; | ||
794 | |||
795 | for (i = 0; i < wrm->free_qidx; i++) { | ||
796 | q = wrm->q_arr[i]; | ||
797 | |||
798 | switch (q->type) { | ||
799 | case CSIO_EGRESS: | ||
800 | if (csio_q_eqid(hw, i) != CSIO_MAX_QID) { | ||
801 | csio_wr_cleanup_eq_stpg(hw, i); | ||
802 | if (!cmd) { | ||
803 | csio_q_eqid(hw, i) = CSIO_MAX_QID; | ||
804 | continue; | ||
805 | } | ||
806 | |||
807 | rv = csio_wr_eq_destroy(hw, NULL, i, NULL); | ||
808 | if ((rv == -EBUSY) || (rv == -ETIMEDOUT)) | ||
809 | cmd = false; | ||
810 | |||
811 | csio_q_eqid(hw, i) = CSIO_MAX_QID; | ||
812 | } | ||
813 | case CSIO_INGRESS: | ||
814 | if (csio_q_iqid(hw, i) != CSIO_MAX_QID) { | ||
815 | csio_wr_cleanup_iq_ftr(hw, i); | ||
816 | if (!cmd) { | ||
817 | csio_q_iqid(hw, i) = CSIO_MAX_QID; | ||
818 | flq_idx = csio_q_iq_flq_idx(hw, i); | ||
819 | if (flq_idx != -1) | ||
820 | csio_q_flid(hw, flq_idx) = | ||
821 | CSIO_MAX_QID; | ||
822 | continue; | ||
823 | } | ||
824 | |||
825 | rv = csio_wr_iq_destroy(hw, NULL, i, NULL); | ||
826 | if ((rv == -EBUSY) || (rv == -ETIMEDOUT)) | ||
827 | cmd = false; | ||
828 | |||
829 | csio_q_iqid(hw, i) = CSIO_MAX_QID; | ||
830 | flq_idx = csio_q_iq_flq_idx(hw, i); | ||
831 | if (flq_idx != -1) | ||
832 | csio_q_flid(hw, flq_idx) = CSIO_MAX_QID; | ||
833 | } | ||
834 | default: | ||
835 | break; | ||
836 | } | ||
837 | } | ||
838 | |||
839 | hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED; | ||
840 | |||
841 | return 0; | ||
842 | } | ||
843 | |||
844 | /* | ||
845 | * csio_wr_get - Get requested size of WR entry/entries from queue. | ||
846 | * @hw: HW module. | ||
847 | * @qidx: Index of queue. | ||
848 | * @size: Cumulative size of Work request(s). | ||
849 | * @wrp: Work request pair. | ||
850 | * | ||
851 | * If requested credits are available, return the start address of the | ||
852 | * work request in the work request pair. Set pidx accordingly and | ||
853 | * return. | ||
854 | * | ||
855 | * NOTE about WR pair: | ||
856 | * ================== | ||
857 | * A WR can start towards the end of a queue, and then continue at the | ||
858 | * beginning, since the queue is considered to be circular. This will | ||
859 | * require a pair of address/size to be passed back to the caller - | ||
860 | * hence Work request pair format. | ||
861 | */ | ||
862 | int | ||
863 | csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size, | ||
864 | struct csio_wr_pair *wrp) | ||
865 | { | ||
866 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
867 | struct csio_q *q = wrm->q_arr[qidx]; | ||
868 | void *cwr = (void *)((uintptr_t)(q->vstart) + | ||
869 | (q->pidx * CSIO_QCREDIT_SZ)); | ||
870 | struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap; | ||
871 | uint16_t cidx = q->cidx = ntohs(stp->cidx); | ||
872 | uint16_t pidx = q->pidx; | ||
873 | uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ); | ||
874 | int req_credits = req_sz / CSIO_QCREDIT_SZ; | ||
875 | int credits; | ||
876 | |||
877 | CSIO_DB_ASSERT(q->owner != NULL); | ||
878 | CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx)); | ||
879 | CSIO_DB_ASSERT(cidx <= q->credits); | ||
880 | |||
881 | /* Calculate credits */ | ||
882 | if (pidx > cidx) { | ||
883 | credits = q->credits - (pidx - cidx) - 1; | ||
884 | } else if (cidx > pidx) { | ||
885 | credits = cidx - pidx - 1; | ||
886 | } else { | ||
887 | /* cidx == pidx, empty queue */ | ||
888 | credits = q->credits; | ||
889 | CSIO_INC_STATS(q, n_qempty); | ||
890 | } | ||
891 | |||
892 | /* | ||
893 | * Check if we have enough credits. | ||
894 | * credits = 1 implies queue is full. | ||
895 | */ | ||
896 | if (!credits || (req_credits > credits)) { | ||
897 | CSIO_INC_STATS(q, n_qfull); | ||
898 | return -EBUSY; | ||
899 | } | ||
900 | |||
901 | /* | ||
902 | * If we are here, we have enough credits to satisfy the | ||
903 | * request. Check if we are near the end of q, and if WR spills over. | ||
904 | * If it does, use the first addr/size to cover the queue until | ||
905 | * the end. Fit the remainder portion of the request at the top | ||
906 | * of queue and return it in the second addr/len. Set pidx | ||
907 | * accordingly. | ||
908 | */ | ||
909 | if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) { | ||
910 | wrp->addr1 = cwr; | ||
911 | wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr); | ||
912 | wrp->addr2 = q->vstart; | ||
913 | wrp->size2 = req_sz - wrp->size1; | ||
914 | q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) / | ||
915 | CSIO_QCREDIT_SZ); | ||
916 | CSIO_INC_STATS(q, n_qwrap); | ||
917 | CSIO_INC_STATS(q, n_eq_wr_split); | ||
918 | } else { | ||
919 | wrp->addr1 = cwr; | ||
920 | wrp->size1 = req_sz; | ||
921 | wrp->addr2 = NULL; | ||
922 | wrp->size2 = 0; | ||
923 | q->pidx += (uint16_t)req_credits; | ||
924 | |||
925 | /* We are the end of queue, roll back pidx to top of queue */ | ||
926 | if (unlikely(q->pidx == q->credits)) { | ||
927 | q->pidx = 0; | ||
928 | CSIO_INC_STATS(q, n_qwrap); | ||
929 | } | ||
930 | } | ||
931 | |||
932 | q->inc_idx = (uint16_t)req_credits; | ||
933 | |||
934 | CSIO_INC_STATS(q, n_tot_reqs); | ||
935 | |||
936 | return 0; | ||
937 | } | ||
938 | |||
939 | /* | ||
940 | * csio_wr_copy_to_wrp - Copies given data into WR. | ||
941 | * @data_buf - Data buffer | ||
942 | * @wrp - Work request pair. | ||
943 | * @wr_off - Work request offset. | ||
944 | * @data_len - Data length. | ||
945 | * | ||
946 | * Copies the given data in Work Request. Work request pair(wrp) specifies | ||
947 | * address information of Work request. | ||
948 | * Returns: none | ||
949 | */ | ||
950 | void | ||
951 | csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp, | ||
952 | uint32_t wr_off, uint32_t data_len) | ||
953 | { | ||
954 | uint32_t nbytes; | ||
955 | |||
956 | /* Number of space available in buffer addr1 of WRP */ | ||
957 | nbytes = ((wrp->size1 - wr_off) >= data_len) ? | ||
958 | data_len : (wrp->size1 - wr_off); | ||
959 | |||
960 | memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes); | ||
961 | data_len -= nbytes; | ||
962 | |||
963 | /* Write the remaining data from the begining of circular buffer */ | ||
964 | if (data_len) { | ||
965 | CSIO_DB_ASSERT(data_len <= wrp->size2); | ||
966 | CSIO_DB_ASSERT(wrp->addr2 != NULL); | ||
967 | memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len); | ||
968 | } | ||
969 | } | ||
970 | |||
971 | /* | ||
972 | * csio_wr_issue - Notify chip of Work request. | ||
973 | * @hw: HW module. | ||
974 | * @qidx: Index of queue. | ||
975 | * @prio: 0: Low priority, 1: High priority | ||
976 | * | ||
977 | * Rings the SGE Doorbell by writing the current producer index of the passed | ||
978 | * in queue into the register. | ||
979 | * | ||
980 | */ | ||
981 | int | ||
982 | csio_wr_issue(struct csio_hw *hw, int qidx, bool prio) | ||
983 | { | ||
984 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
985 | struct csio_q *q = wrm->q_arr[qidx]; | ||
986 | |||
987 | CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx)); | ||
988 | |||
989 | wmb(); | ||
990 | /* Ring SGE Doorbell writing q->pidx into it */ | ||
991 | csio_wr_reg32(hw, DBPRIO(prio) | QID(q->un.eq.physeqid) | | ||
992 | PIDX(q->inc_idx), MYPF_REG(SGE_PF_KDOORBELL)); | ||
993 | q->inc_idx = 0; | ||
994 | |||
995 | return 0; | ||
996 | } | ||
997 | |||
998 | static inline uint32_t | ||
999 | csio_wr_avail_qcredits(struct csio_q *q) | ||
1000 | { | ||
1001 | if (q->pidx > q->cidx) | ||
1002 | return q->pidx - q->cidx; | ||
1003 | else if (q->cidx > q->pidx) | ||
1004 | return q->credits - (q->cidx - q->pidx); | ||
1005 | else | ||
1006 | return 0; /* cidx == pidx, empty queue */ | ||
1007 | } | ||
1008 | |||
1009 | /* | ||
1010 | * csio_wr_inval_flq_buf - Invalidate a free list buffer entry. | ||
1011 | * @hw: HW module. | ||
1012 | * @flq: The freelist queue. | ||
1013 | * | ||
1014 | * Invalidate the driver's version of a freelist buffer entry, | ||
1015 | * without freeing the associated the DMA memory. The entry | ||
1016 | * to be invalidated is picked up from the current Free list | ||
1017 | * queue cidx. | ||
1018 | * | ||
1019 | */ | ||
1020 | static inline void | ||
1021 | csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq) | ||
1022 | { | ||
1023 | flq->cidx++; | ||
1024 | if (flq->cidx == flq->credits) { | ||
1025 | flq->cidx = 0; | ||
1026 | CSIO_INC_STATS(flq, n_qwrap); | ||
1027 | } | ||
1028 | } | ||
1029 | |||
1030 | /* | ||
1031 | * csio_wr_process_fl - Process a freelist completion. | ||
1032 | * @hw: HW module. | ||
1033 | * @q: The ingress queue attached to the Freelist. | ||
1034 | * @wr: The freelist completion WR in the ingress queue. | ||
1035 | * @len_to_qid: The lower 32-bits of the first flit of the RSP footer | ||
1036 | * @iq_handler: Caller's handler for this completion. | ||
1037 | * @priv: Private pointer of caller | ||
1038 | * | ||
1039 | */ | ||
1040 | static inline void | ||
1041 | csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q, | ||
1042 | void *wr, uint32_t len_to_qid, | ||
1043 | void (*iq_handler)(struct csio_hw *, void *, | ||
1044 | uint32_t, struct csio_fl_dma_buf *, | ||
1045 | void *), | ||
1046 | void *priv) | ||
1047 | { | ||
1048 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
1049 | struct csio_sge *sge = &wrm->sge; | ||
1050 | struct csio_fl_dma_buf flb; | ||
1051 | struct csio_dma_buf *buf, *fbuf; | ||
1052 | uint32_t bufsz, len, lastlen = 0; | ||
1053 | int n; | ||
1054 | struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx]; | ||
1055 | |||
1056 | CSIO_DB_ASSERT(flq != NULL); | ||
1057 | |||
1058 | len = len_to_qid; | ||
1059 | |||
1060 | if (len & IQWRF_NEWBUF) { | ||
1061 | if (flq->un.fl.offset > 0) { | ||
1062 | csio_wr_inval_flq_buf(hw, flq); | ||
1063 | flq->un.fl.offset = 0; | ||
1064 | } | ||
1065 | len = IQWRF_LEN_GET(len); | ||
1066 | } | ||
1067 | |||
1068 | CSIO_DB_ASSERT(len != 0); | ||
1069 | |||
1070 | flb.totlen = len; | ||
1071 | |||
1072 | /* Consume all freelist buffers used for len bytes */ | ||
1073 | for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) { | ||
1074 | buf = &flq->un.fl.bufs[flq->cidx]; | ||
1075 | bufsz = csio_wr_fl_bufsz(sge, buf); | ||
1076 | |||
1077 | fbuf->paddr = buf->paddr; | ||
1078 | fbuf->vaddr = buf->vaddr; | ||
1079 | |||
1080 | flb.offset = flq->un.fl.offset; | ||
1081 | lastlen = min(bufsz, len); | ||
1082 | fbuf->len = lastlen; | ||
1083 | |||
1084 | len -= lastlen; | ||
1085 | if (!len) | ||
1086 | break; | ||
1087 | csio_wr_inval_flq_buf(hw, flq); | ||
1088 | } | ||
1089 | |||
1090 | flb.defer_free = flq->un.fl.packen ? 0 : 1; | ||
1091 | |||
1092 | iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer), | ||
1093 | &flb, priv); | ||
1094 | |||
1095 | if (flq->un.fl.packen) | ||
1096 | flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align); | ||
1097 | else | ||
1098 | csio_wr_inval_flq_buf(hw, flq); | ||
1099 | |||
1100 | } | ||
1101 | |||
1102 | /* | ||
1103 | * csio_is_new_iqwr - Is this a new Ingress queue entry ? | ||
1104 | * @q: Ingress quueue. | ||
1105 | * @ftr: Ingress queue WR SGE footer. | ||
1106 | * | ||
1107 | * The entry is new if our generation bit matches the corresponding | ||
1108 | * bit in the footer of the current WR. | ||
1109 | */ | ||
1110 | static inline bool | ||
1111 | csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr) | ||
1112 | { | ||
1113 | return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT)); | ||
1114 | } | ||
1115 | |||
1116 | /* | ||
1117 | * csio_wr_process_iq - Process elements in Ingress queue. | ||
1118 | * @hw: HW pointer | ||
1119 | * @qidx: Index of queue | ||
1120 | * @iq_handler: Handler for this queue | ||
1121 | * @priv: Caller's private pointer | ||
1122 | * | ||
1123 | * This routine walks through every entry of the ingress queue, calling | ||
1124 | * the provided iq_handler with the entry, until the generation bit | ||
1125 | * flips. | ||
1126 | */ | ||
1127 | int | ||
1128 | csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q, | ||
1129 | void (*iq_handler)(struct csio_hw *, void *, | ||
1130 | uint32_t, struct csio_fl_dma_buf *, | ||
1131 | void *), | ||
1132 | void *priv) | ||
1133 | { | ||
1134 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
1135 | void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz)); | ||
1136 | struct csio_iqwr_footer *ftr; | ||
1137 | uint32_t wr_type, fw_qid, qid; | ||
1138 | struct csio_q *q_completed; | ||
1139 | struct csio_q *flq = csio_iq_has_fl(q) ? | ||
1140 | wrm->q_arr[q->un.iq.flq_idx] : NULL; | ||
1141 | int rv = 0; | ||
1142 | |||
1143 | /* Get the footer */ | ||
1144 | ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + | ||
1145 | (q->wr_sz - sizeof(*ftr))); | ||
1146 | |||
1147 | /* | ||
1148 | * When q wrapped around last time, driver should have inverted | ||
1149 | * ic.genbit as well. | ||
1150 | */ | ||
1151 | while (csio_is_new_iqwr(q, ftr)) { | ||
1152 | |||
1153 | CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <= | ||
1154 | (uintptr_t)q->vwrap); | ||
1155 | rmb(); | ||
1156 | wr_type = IQWRF_TYPE_GET(ftr->u.type_gen); | ||
1157 | |||
1158 | switch (wr_type) { | ||
1159 | case X_RSPD_TYPE_CPL: | ||
1160 | /* Subtract footer from WR len */ | ||
1161 | iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv); | ||
1162 | break; | ||
1163 | case X_RSPD_TYPE_FLBUF: | ||
1164 | csio_wr_process_fl(hw, q, wr, | ||
1165 | ntohl(ftr->pldbuflen_qid), | ||
1166 | iq_handler, priv); | ||
1167 | break; | ||
1168 | case X_RSPD_TYPE_INTR: | ||
1169 | fw_qid = ntohl(ftr->pldbuflen_qid); | ||
1170 | qid = fw_qid - wrm->fw_iq_start; | ||
1171 | q_completed = hw->wrm.intr_map[qid]; | ||
1172 | |||
1173 | if (unlikely(qid == | ||
1174 | csio_q_physiqid(hw, hw->intr_iq_idx))) { | ||
1175 | /* | ||
1176 | * We are already in the Forward Interrupt | ||
1177 | * Interrupt Queue Service! Do-not service | ||
1178 | * again! | ||
1179 | * | ||
1180 | */ | ||
1181 | } else { | ||
1182 | CSIO_DB_ASSERT(q_completed); | ||
1183 | CSIO_DB_ASSERT( | ||
1184 | q_completed->un.iq.iq_intx_handler); | ||
1185 | |||
1186 | /* Call the queue handler. */ | ||
1187 | q_completed->un.iq.iq_intx_handler(hw, NULL, | ||
1188 | 0, NULL, (void *)q_completed); | ||
1189 | } | ||
1190 | break; | ||
1191 | default: | ||
1192 | csio_warn(hw, "Unknown resp type 0x%x received\n", | ||
1193 | wr_type); | ||
1194 | CSIO_INC_STATS(q, n_rsp_unknown); | ||
1195 | break; | ||
1196 | } | ||
1197 | |||
1198 | /* | ||
1199 | * Ingress *always* has fixed size WR entries. Therefore, | ||
1200 | * there should always be complete WRs towards the end of | ||
1201 | * queue. | ||
1202 | */ | ||
1203 | if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) { | ||
1204 | |||
1205 | /* Roll over to start of queue */ | ||
1206 | q->cidx = 0; | ||
1207 | wr = q->vstart; | ||
1208 | |||
1209 | /* Toggle genbit */ | ||
1210 | q->un.iq.genbit ^= 0x1; | ||
1211 | |||
1212 | CSIO_INC_STATS(q, n_qwrap); | ||
1213 | } else { | ||
1214 | q->cidx++; | ||
1215 | wr = (void *)((uintptr_t)(q->vstart) + | ||
1216 | (q->cidx * q->wr_sz)); | ||
1217 | } | ||
1218 | |||
1219 | ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + | ||
1220 | (q->wr_sz - sizeof(*ftr))); | ||
1221 | q->inc_idx++; | ||
1222 | |||
1223 | } /* while (q->un.iq.genbit == hdr->genbit) */ | ||
1224 | |||
1225 | /* | ||
1226 | * We need to re-arm SGE interrupts in case we got a stray interrupt, | ||
1227 | * especially in msix mode. With INTx, this may be a common occurence. | ||
1228 | */ | ||
1229 | if (unlikely(!q->inc_idx)) { | ||
1230 | CSIO_INC_STATS(q, n_stray_comp); | ||
1231 | rv = -EINVAL; | ||
1232 | goto restart; | ||
1233 | } | ||
1234 | |||
1235 | /* Replenish free list buffers if pending falls below low water mark */ | ||
1236 | if (flq) { | ||
1237 | uint32_t avail = csio_wr_avail_qcredits(flq); | ||
1238 | if (avail <= 16) { | ||
1239 | /* Make sure in FLQ, atleast 1 credit (8 FL buffers) | ||
1240 | * remains unpopulated otherwise HW thinks | ||
1241 | * FLQ is empty. | ||
1242 | */ | ||
1243 | csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail); | ||
1244 | csio_wr_ring_fldb(hw, flq); | ||
1245 | } | ||
1246 | } | ||
1247 | |||
1248 | restart: | ||
1249 | /* Now inform SGE about our incremental index value */ | ||
1250 | csio_wr_reg32(hw, CIDXINC(q->inc_idx) | | ||
1251 | INGRESSQID(q->un.iq.physiqid) | | ||
1252 | TIMERREG(csio_sge_timer_reg), | ||
1253 | MYPF_REG(SGE_PF_GTS)); | ||
1254 | q->stats.n_tot_rsps += q->inc_idx; | ||
1255 | |||
1256 | q->inc_idx = 0; | ||
1257 | |||
1258 | return rv; | ||
1259 | } | ||
1260 | |||
1261 | int | ||
1262 | csio_wr_process_iq_idx(struct csio_hw *hw, int qidx, | ||
1263 | void (*iq_handler)(struct csio_hw *, void *, | ||
1264 | uint32_t, struct csio_fl_dma_buf *, | ||
1265 | void *), | ||
1266 | void *priv) | ||
1267 | { | ||
1268 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
1269 | struct csio_q *iq = wrm->q_arr[qidx]; | ||
1270 | |||
1271 | return csio_wr_process_iq(hw, iq, iq_handler, priv); | ||
1272 | } | ||
1273 | |||
1274 | static int | ||
1275 | csio_closest_timer(struct csio_sge *s, int time) | ||
1276 | { | ||
1277 | int i, delta, match = 0, min_delta = INT_MAX; | ||
1278 | |||
1279 | for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { | ||
1280 | delta = time - s->timer_val[i]; | ||
1281 | if (delta < 0) | ||
1282 | delta = -delta; | ||
1283 | if (delta < min_delta) { | ||
1284 | min_delta = delta; | ||
1285 | match = i; | ||
1286 | } | ||
1287 | } | ||
1288 | return match; | ||
1289 | } | ||
1290 | |||
1291 | static int | ||
1292 | csio_closest_thresh(struct csio_sge *s, int cnt) | ||
1293 | { | ||
1294 | int i, delta, match = 0, min_delta = INT_MAX; | ||
1295 | |||
1296 | for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { | ||
1297 | delta = cnt - s->counter_val[i]; | ||
1298 | if (delta < 0) | ||
1299 | delta = -delta; | ||
1300 | if (delta < min_delta) { | ||
1301 | min_delta = delta; | ||
1302 | match = i; | ||
1303 | } | ||
1304 | } | ||
1305 | return match; | ||
1306 | } | ||
1307 | |||
1308 | static void | ||
1309 | csio_wr_fixup_host_params(struct csio_hw *hw) | ||
1310 | { | ||
1311 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
1312 | struct csio_sge *sge = &wrm->sge; | ||
1313 | uint32_t clsz = L1_CACHE_BYTES; | ||
1314 | uint32_t s_hps = PAGE_SHIFT - 10; | ||
1315 | uint32_t ingpad = 0; | ||
1316 | uint32_t stat_len = clsz > 64 ? 128 : 64; | ||
1317 | |||
1318 | csio_wr_reg32(hw, HOSTPAGESIZEPF0(s_hps) | HOSTPAGESIZEPF1(s_hps) | | ||
1319 | HOSTPAGESIZEPF2(s_hps) | HOSTPAGESIZEPF3(s_hps) | | ||
1320 | HOSTPAGESIZEPF4(s_hps) | HOSTPAGESIZEPF5(s_hps) | | ||
1321 | HOSTPAGESIZEPF6(s_hps) | HOSTPAGESIZEPF7(s_hps), | ||
1322 | SGE_HOST_PAGE_SIZE); | ||
1323 | |||
1324 | sge->csio_fl_align = clsz < 32 ? 32 : clsz; | ||
1325 | ingpad = ilog2(sge->csio_fl_align) - 5; | ||
1326 | |||
1327 | csio_set_reg_field(hw, SGE_CONTROL, INGPADBOUNDARY_MASK | | ||
1328 | EGRSTATUSPAGESIZE(1), | ||
1329 | INGPADBOUNDARY(ingpad) | | ||
1330 | EGRSTATUSPAGESIZE(stat_len != 64)); | ||
1331 | |||
1332 | /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */ | ||
1333 | csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0); | ||
1334 | csio_wr_reg32(hw, | ||
1335 | (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2) + | ||
1336 | sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1), | ||
1337 | SGE_FL_BUFFER_SIZE2); | ||
1338 | csio_wr_reg32(hw, | ||
1339 | (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3) + | ||
1340 | sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1), | ||
1341 | SGE_FL_BUFFER_SIZE3); | ||
1342 | |||
1343 | csio_wr_reg32(hw, HPZ0(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ); | ||
1344 | |||
1345 | /* default value of rx_dma_offset of the NIC driver */ | ||
1346 | csio_set_reg_field(hw, SGE_CONTROL, PKTSHIFT_MASK, | ||
1347 | PKTSHIFT(CSIO_SGE_RX_DMA_OFFSET)); | ||
1348 | } | ||
1349 | |||
1350 | static void | ||
1351 | csio_init_intr_coalesce_parms(struct csio_hw *hw) | ||
1352 | { | ||
1353 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
1354 | struct csio_sge *sge = &wrm->sge; | ||
1355 | |||
1356 | csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt); | ||
1357 | if (csio_intr_coalesce_cnt) { | ||
1358 | csio_sge_thresh_reg = 0; | ||
1359 | csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER; | ||
1360 | return; | ||
1361 | } | ||
1362 | |||
1363 | csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time); | ||
1364 | } | ||
1365 | |||
1366 | /* | ||
1367 | * csio_wr_get_sge - Get SGE register values. | ||
1368 | * @hw: HW module. | ||
1369 | * | ||
1370 | * Used by non-master functions and by master-functions relying on config file. | ||
1371 | */ | ||
1372 | static void | ||
1373 | csio_wr_get_sge(struct csio_hw *hw) | ||
1374 | { | ||
1375 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
1376 | struct csio_sge *sge = &wrm->sge; | ||
1377 | uint32_t ingpad; | ||
1378 | int i; | ||
1379 | u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; | ||
1380 | u32 ingress_rx_threshold; | ||
1381 | |||
1382 | sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL); | ||
1383 | |||
1384 | ingpad = INGPADBOUNDARY_GET(sge->sge_control); | ||
1385 | |||
1386 | switch (ingpad) { | ||
1387 | case X_INGPCIEBOUNDARY_32B: | ||
1388 | sge->csio_fl_align = 32; break; | ||
1389 | case X_INGPCIEBOUNDARY_64B: | ||
1390 | sge->csio_fl_align = 64; break; | ||
1391 | case X_INGPCIEBOUNDARY_128B: | ||
1392 | sge->csio_fl_align = 128; break; | ||
1393 | case X_INGPCIEBOUNDARY_256B: | ||
1394 | sge->csio_fl_align = 256; break; | ||
1395 | case X_INGPCIEBOUNDARY_512B: | ||
1396 | sge->csio_fl_align = 512; break; | ||
1397 | case X_INGPCIEBOUNDARY_1024B: | ||
1398 | sge->csio_fl_align = 1024; break; | ||
1399 | case X_INGPCIEBOUNDARY_2048B: | ||
1400 | sge->csio_fl_align = 2048; break; | ||
1401 | case X_INGPCIEBOUNDARY_4096B: | ||
1402 | sge->csio_fl_align = 4096; break; | ||
1403 | } | ||
1404 | |||
1405 | for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++) | ||
1406 | csio_get_flbuf_size(hw, sge, i); | ||
1407 | |||
1408 | timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1); | ||
1409 | timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3); | ||
1410 | timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5); | ||
1411 | |||
1412 | sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw, | ||
1413 | TIMERVALUE0_GET(timer_value_0_and_1)); | ||
1414 | sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw, | ||
1415 | TIMERVALUE1_GET(timer_value_0_and_1)); | ||
1416 | sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw, | ||
1417 | TIMERVALUE2_GET(timer_value_2_and_3)); | ||
1418 | sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw, | ||
1419 | TIMERVALUE3_GET(timer_value_2_and_3)); | ||
1420 | sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw, | ||
1421 | TIMERVALUE4_GET(timer_value_4_and_5)); | ||
1422 | sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw, | ||
1423 | TIMERVALUE5_GET(timer_value_4_and_5)); | ||
1424 | |||
1425 | ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD); | ||
1426 | sge->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold); | ||
1427 | sge->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold); | ||
1428 | sge->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold); | ||
1429 | sge->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold); | ||
1430 | |||
1431 | csio_init_intr_coalesce_parms(hw); | ||
1432 | } | ||
1433 | |||
1434 | /* | ||
1435 | * csio_wr_set_sge - Initialize SGE registers | ||
1436 | * @hw: HW module. | ||
1437 | * | ||
1438 | * Used by Master function to initialize SGE registers in the absence | ||
1439 | * of a config file. | ||
1440 | */ | ||
1441 | static void | ||
1442 | csio_wr_set_sge(struct csio_hw *hw) | ||
1443 | { | ||
1444 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); | ||
1445 | struct csio_sge *sge = &wrm->sge; | ||
1446 | int i; | ||
1447 | |||
1448 | /* | ||
1449 | * Set up our basic SGE mode to deliver CPL messages to our Ingress | ||
1450 | * Queue and Packet Date to the Free List. | ||
1451 | */ | ||
1452 | csio_set_reg_field(hw, SGE_CONTROL, RXPKTCPLMODE(1), RXPKTCPLMODE(1)); | ||
1453 | |||
1454 | sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL); | ||
1455 | |||
1456 | /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */ | ||
1457 | |||
1458 | /* | ||
1459 | * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows | ||
1460 | * and generate an interrupt when this occurs so we can recover. | ||
1461 | */ | ||
1462 | csio_set_reg_field(hw, SGE_DBFIFO_STATUS, | ||
1463 | HP_INT_THRESH(HP_INT_THRESH_MASK) | | ||
1464 | LP_INT_THRESH(LP_INT_THRESH_MASK), | ||
1465 | HP_INT_THRESH(CSIO_SGE_DBFIFO_INT_THRESH) | | ||
1466 | LP_INT_THRESH(CSIO_SGE_DBFIFO_INT_THRESH)); | ||
1467 | csio_set_reg_field(hw, SGE_DOORBELL_CONTROL, ENABLE_DROP, | ||
1468 | ENABLE_DROP); | ||
1469 | |||
1470 | /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */ | ||
1471 | |||
1472 | CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1); | ||
1473 | CSIO_SET_FLBUF_SIZE(hw, 2, CSIO_SGE_FLBUF_SIZE2); | ||
1474 | CSIO_SET_FLBUF_SIZE(hw, 3, CSIO_SGE_FLBUF_SIZE3); | ||
1475 | CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4); | ||
1476 | CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5); | ||
1477 | CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6); | ||
1478 | CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7); | ||
1479 | CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8); | ||
1480 | |||
1481 | for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++) | ||
1482 | csio_get_flbuf_size(hw, sge, i); | ||
1483 | |||
1484 | /* Initialize interrupt coalescing attributes */ | ||
1485 | sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0; | ||
1486 | sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1; | ||
1487 | sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2; | ||
1488 | sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3; | ||
1489 | sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4; | ||
1490 | sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5; | ||
1491 | |||
1492 | sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0; | ||
1493 | sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1; | ||
1494 | sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2; | ||
1495 | sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3; | ||
1496 | |||
1497 | csio_wr_reg32(hw, THRESHOLD_0(sge->counter_val[0]) | | ||
1498 | THRESHOLD_1(sge->counter_val[1]) | | ||
1499 | THRESHOLD_2(sge->counter_val[2]) | | ||
1500 | THRESHOLD_3(sge->counter_val[3]), | ||
1501 | SGE_INGRESS_RX_THRESHOLD); | ||
1502 | |||
1503 | csio_wr_reg32(hw, | ||
1504 | TIMERVALUE0(csio_us_to_core_ticks(hw, sge->timer_val[0])) | | ||
1505 | TIMERVALUE1(csio_us_to_core_ticks(hw, sge->timer_val[1])), | ||
1506 | SGE_TIMER_VALUE_0_AND_1); | ||
1507 | |||
1508 | csio_wr_reg32(hw, | ||
1509 | TIMERVALUE2(csio_us_to_core_ticks(hw, sge->timer_val[2])) | | ||
1510 | TIMERVALUE3(csio_us_to_core_ticks(hw, sge->timer_val[3])), | ||
1511 | SGE_TIMER_VALUE_2_AND_3); | ||
1512 | |||
1513 | csio_wr_reg32(hw, | ||
1514 | TIMERVALUE4(csio_us_to_core_ticks(hw, sge->timer_val[4])) | | ||
1515 | TIMERVALUE5(csio_us_to_core_ticks(hw, sge->timer_val[5])), | ||
1516 | SGE_TIMER_VALUE_4_AND_5); | ||
1517 | |||
1518 | csio_init_intr_coalesce_parms(hw); | ||
1519 | } | ||
1520 | |||
1521 | void | ||
1522 | csio_wr_sge_init(struct csio_hw *hw) | ||
1523 | { | ||
1524 | /* | ||
1525 | * If we are master: | ||
1526 | * - If we plan to use the config file, we need to fixup some | ||
1527 | * host specific registers, and read the rest of the SGE | ||
1528 | * configuration. | ||
1529 | * - If we dont plan to use the config file, we need to initialize | ||
1530 | * SGE entirely, including fixing the host specific registers. | ||
1531 | * If we arent the master, we are only allowed to read and work off of | ||
1532 | * the already initialized SGE values. | ||
1533 | * | ||
1534 | * Therefore, before calling this function, we assume that the master- | ||
1535 | * ship of the card, and whether to use config file or not, have | ||
1536 | * already been decided. In other words, CSIO_HWF_USING_SOFT_PARAMS and | ||
1537 | * CSIO_HWF_MASTER should be set/unset. | ||
1538 | */ | ||
1539 | if (csio_is_hw_master(hw)) { | ||
1540 | csio_wr_fixup_host_params(hw); | ||
1541 | |||
1542 | if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) | ||
1543 | csio_wr_get_sge(hw); | ||
1544 | else | ||
1545 | csio_wr_set_sge(hw); | ||
1546 | } else | ||
1547 | csio_wr_get_sge(hw); | ||
1548 | } | ||
1549 | |||
1550 | /* | ||
1551 | * csio_wrm_init - Initialize Work request module. | ||
1552 | * @wrm: WR module | ||
1553 | * @hw: HW pointer | ||
1554 | * | ||
1555 | * Allocates memory for an array of queue pointers starting at q_arr. | ||
1556 | */ | ||
1557 | int | ||
1558 | csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw) | ||
1559 | { | ||
1560 | int i; | ||
1561 | |||
1562 | if (!wrm->num_q) { | ||
1563 | csio_err(hw, "Num queues is not set\n"); | ||
1564 | return -EINVAL; | ||
1565 | } | ||
1566 | |||
1567 | wrm->q_arr = kzalloc(sizeof(struct csio_q *) * wrm->num_q, GFP_KERNEL); | ||
1568 | if (!wrm->q_arr) | ||
1569 | goto err; | ||
1570 | |||
1571 | for (i = 0; i < wrm->num_q; i++) { | ||
1572 | wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL); | ||
1573 | if (!wrm->q_arr[i]) { | ||
1574 | while (--i >= 0) | ||
1575 | kfree(wrm->q_arr[i]); | ||
1576 | goto err_free_arr; | ||
1577 | } | ||
1578 | } | ||
1579 | wrm->free_qidx = 0; | ||
1580 | |||
1581 | return 0; | ||
1582 | |||
1583 | err_free_arr: | ||
1584 | kfree(wrm->q_arr); | ||
1585 | err: | ||
1586 | return -ENOMEM; | ||
1587 | } | ||
1588 | |||
1589 | /* | ||
1590 | * csio_wrm_exit - Initialize Work request module. | ||
1591 | * @wrm: WR module | ||
1592 | * @hw: HW module | ||
1593 | * | ||
1594 | * Uninitialize WR module. Free q_arr and pointers in it. | ||
1595 | * We have the additional job of freeing the DMA memory associated | ||
1596 | * with the queues. | ||
1597 | */ | ||
1598 | void | ||
1599 | csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw) | ||
1600 | { | ||
1601 | int i; | ||
1602 | uint32_t j; | ||
1603 | struct csio_q *q; | ||
1604 | struct csio_dma_buf *buf; | ||
1605 | |||
1606 | for (i = 0; i < wrm->num_q; i++) { | ||
1607 | q = wrm->q_arr[i]; | ||
1608 | |||
1609 | if (wrm->free_qidx && (i < wrm->free_qidx)) { | ||
1610 | if (q->type == CSIO_FREELIST) { | ||
1611 | if (!q->un.fl.bufs) | ||
1612 | continue; | ||
1613 | for (j = 0; j < q->credits; j++) { | ||
1614 | buf = &q->un.fl.bufs[j]; | ||
1615 | if (!buf->vaddr) | ||
1616 | continue; | ||
1617 | pci_free_consistent(hw->pdev, buf->len, | ||
1618 | buf->vaddr, | ||
1619 | buf->paddr); | ||
1620 | } | ||
1621 | kfree(q->un.fl.bufs); | ||
1622 | } | ||
1623 | pci_free_consistent(hw->pdev, q->size, | ||
1624 | q->vstart, q->pstart); | ||
1625 | } | ||
1626 | kfree(q); | ||
1627 | } | ||
1628 | |||
1629 | hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED; | ||
1630 | |||
1631 | kfree(wrm->q_arr); | ||
1632 | } | ||