diff options
Diffstat (limited to 'drivers/power/ab8500_fg.c')
-rw-r--r-- | drivers/power/ab8500_fg.c | 2637 |
1 files changed, 2637 insertions, 0 deletions
diff --git a/drivers/power/ab8500_fg.c b/drivers/power/ab8500_fg.c new file mode 100644 index 000000000000..c22f2f05657e --- /dev/null +++ b/drivers/power/ab8500_fg.c | |||
@@ -0,0 +1,2637 @@ | |||
1 | /* | ||
2 | * Copyright (C) ST-Ericsson AB 2012 | ||
3 | * | ||
4 | * Main and Back-up battery management driver. | ||
5 | * | ||
6 | * Note: Backup battery management is required in case of Li-Ion battery and not | ||
7 | * for capacitive battery. HREF boards have capacitive battery and hence backup | ||
8 | * battery management is not used and the supported code is available in this | ||
9 | * driver. | ||
10 | * | ||
11 | * License Terms: GNU General Public License v2 | ||
12 | * Author: | ||
13 | * Johan Palsson <johan.palsson@stericsson.com> | ||
14 | * Karl Komierowski <karl.komierowski@stericsson.com> | ||
15 | * Arun R Murthy <arun.murthy@stericsson.com> | ||
16 | */ | ||
17 | |||
18 | #include <linux/init.h> | ||
19 | #include <linux/module.h> | ||
20 | #include <linux/device.h> | ||
21 | #include <linux/interrupt.h> | ||
22 | #include <linux/platform_device.h> | ||
23 | #include <linux/power_supply.h> | ||
24 | #include <linux/kobject.h> | ||
25 | #include <linux/mfd/abx500/ab8500.h> | ||
26 | #include <linux/mfd/abx500.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include <linux/mfd/abx500/ab8500-bm.h> | ||
29 | #include <linux/delay.h> | ||
30 | #include <linux/mfd/abx500/ab8500-gpadc.h> | ||
31 | #include <linux/mfd/abx500.h> | ||
32 | #include <linux/time.h> | ||
33 | #include <linux/completion.h> | ||
34 | |||
35 | #define MILLI_TO_MICRO 1000 | ||
36 | #define FG_LSB_IN_MA 1627 | ||
37 | #define QLSB_NANO_AMP_HOURS_X10 1129 | ||
38 | #define INS_CURR_TIMEOUT (3 * HZ) | ||
39 | |||
40 | #define SEC_TO_SAMPLE(S) (S * 4) | ||
41 | |||
42 | #define NBR_AVG_SAMPLES 20 | ||
43 | |||
44 | #define LOW_BAT_CHECK_INTERVAL (2 * HZ) | ||
45 | |||
46 | #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */ | ||
47 | #define BATT_OK_MIN 2360 /* mV */ | ||
48 | #define BATT_OK_INCREMENT 50 /* mV */ | ||
49 | #define BATT_OK_MAX_NR_INCREMENTS 0xE | ||
50 | |||
51 | /* FG constants */ | ||
52 | #define BATT_OVV 0x01 | ||
53 | |||
54 | #define interpolate(x, x1, y1, x2, y2) \ | ||
55 | ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1)))); | ||
56 | |||
57 | #define to_ab8500_fg_device_info(x) container_of((x), \ | ||
58 | struct ab8500_fg, fg_psy); | ||
59 | |||
60 | /** | ||
61 | * struct ab8500_fg_interrupts - ab8500 fg interupts | ||
62 | * @name: name of the interrupt | ||
63 | * @isr function pointer to the isr | ||
64 | */ | ||
65 | struct ab8500_fg_interrupts { | ||
66 | char *name; | ||
67 | irqreturn_t (*isr)(int irq, void *data); | ||
68 | }; | ||
69 | |||
70 | enum ab8500_fg_discharge_state { | ||
71 | AB8500_FG_DISCHARGE_INIT, | ||
72 | AB8500_FG_DISCHARGE_INITMEASURING, | ||
73 | AB8500_FG_DISCHARGE_INIT_RECOVERY, | ||
74 | AB8500_FG_DISCHARGE_RECOVERY, | ||
75 | AB8500_FG_DISCHARGE_READOUT_INIT, | ||
76 | AB8500_FG_DISCHARGE_READOUT, | ||
77 | AB8500_FG_DISCHARGE_WAKEUP, | ||
78 | }; | ||
79 | |||
80 | static char *discharge_state[] = { | ||
81 | "DISCHARGE_INIT", | ||
82 | "DISCHARGE_INITMEASURING", | ||
83 | "DISCHARGE_INIT_RECOVERY", | ||
84 | "DISCHARGE_RECOVERY", | ||
85 | "DISCHARGE_READOUT_INIT", | ||
86 | "DISCHARGE_READOUT", | ||
87 | "DISCHARGE_WAKEUP", | ||
88 | }; | ||
89 | |||
90 | enum ab8500_fg_charge_state { | ||
91 | AB8500_FG_CHARGE_INIT, | ||
92 | AB8500_FG_CHARGE_READOUT, | ||
93 | }; | ||
94 | |||
95 | static char *charge_state[] = { | ||
96 | "CHARGE_INIT", | ||
97 | "CHARGE_READOUT", | ||
98 | }; | ||
99 | |||
100 | enum ab8500_fg_calibration_state { | ||
101 | AB8500_FG_CALIB_INIT, | ||
102 | AB8500_FG_CALIB_WAIT, | ||
103 | AB8500_FG_CALIB_END, | ||
104 | }; | ||
105 | |||
106 | struct ab8500_fg_avg_cap { | ||
107 | int avg; | ||
108 | int samples[NBR_AVG_SAMPLES]; | ||
109 | __kernel_time_t time_stamps[NBR_AVG_SAMPLES]; | ||
110 | int pos; | ||
111 | int nbr_samples; | ||
112 | int sum; | ||
113 | }; | ||
114 | |||
115 | struct ab8500_fg_battery_capacity { | ||
116 | int max_mah_design; | ||
117 | int max_mah; | ||
118 | int mah; | ||
119 | int permille; | ||
120 | int level; | ||
121 | int prev_mah; | ||
122 | int prev_percent; | ||
123 | int prev_level; | ||
124 | int user_mah; | ||
125 | }; | ||
126 | |||
127 | struct ab8500_fg_flags { | ||
128 | bool fg_enabled; | ||
129 | bool conv_done; | ||
130 | bool charging; | ||
131 | bool fully_charged; | ||
132 | bool force_full; | ||
133 | bool low_bat_delay; | ||
134 | bool low_bat; | ||
135 | bool bat_ovv; | ||
136 | bool batt_unknown; | ||
137 | bool calibrate; | ||
138 | bool user_cap; | ||
139 | bool batt_id_received; | ||
140 | }; | ||
141 | |||
142 | struct inst_curr_result_list { | ||
143 | struct list_head list; | ||
144 | int *result; | ||
145 | }; | ||
146 | |||
147 | /** | ||
148 | * struct ab8500_fg - ab8500 FG device information | ||
149 | * @dev: Pointer to the structure device | ||
150 | * @node: a list of AB8500 FGs, hence prepared for reentrance | ||
151 | * @irq holds the CCEOC interrupt number | ||
152 | * @vbat: Battery voltage in mV | ||
153 | * @vbat_nom: Nominal battery voltage in mV | ||
154 | * @inst_curr: Instantenous battery current in mA | ||
155 | * @avg_curr: Average battery current in mA | ||
156 | * @bat_temp battery temperature | ||
157 | * @fg_samples: Number of samples used in the FG accumulation | ||
158 | * @accu_charge: Accumulated charge from the last conversion | ||
159 | * @recovery_cnt: Counter for recovery mode | ||
160 | * @high_curr_cnt: Counter for high current mode | ||
161 | * @init_cnt: Counter for init mode | ||
162 | * @recovery_needed: Indicate if recovery is needed | ||
163 | * @high_curr_mode: Indicate if we're in high current mode | ||
164 | * @init_capacity: Indicate if initial capacity measuring should be done | ||
165 | * @turn_off_fg: True if fg was off before current measurement | ||
166 | * @calib_state State during offset calibration | ||
167 | * @discharge_state: Current discharge state | ||
168 | * @charge_state: Current charge state | ||
169 | * @ab8500_fg_complete Completion struct used for the instant current reading | ||
170 | * @flags: Structure for information about events triggered | ||
171 | * @bat_cap: Structure for battery capacity specific parameters | ||
172 | * @avg_cap: Average capacity filter | ||
173 | * @parent: Pointer to the struct ab8500 | ||
174 | * @gpadc: Pointer to the struct gpadc | ||
175 | * @pdata: Pointer to the abx500_fg platform data | ||
176 | * @bat: Pointer to the abx500_bm platform data | ||
177 | * @fg_psy: Structure that holds the FG specific battery properties | ||
178 | * @fg_wq: Work queue for running the FG algorithm | ||
179 | * @fg_periodic_work: Work to run the FG algorithm periodically | ||
180 | * @fg_low_bat_work: Work to check low bat condition | ||
181 | * @fg_reinit_work Work used to reset and reinitialise the FG algorithm | ||
182 | * @fg_work: Work to run the FG algorithm instantly | ||
183 | * @fg_acc_cur_work: Work to read the FG accumulator | ||
184 | * @fg_check_hw_failure_work: Work for checking HW state | ||
185 | * @cc_lock: Mutex for locking the CC | ||
186 | * @fg_kobject: Structure of type kobject | ||
187 | */ | ||
188 | struct ab8500_fg { | ||
189 | struct device *dev; | ||
190 | struct list_head node; | ||
191 | int irq; | ||
192 | int vbat; | ||
193 | int vbat_nom; | ||
194 | int inst_curr; | ||
195 | int avg_curr; | ||
196 | int bat_temp; | ||
197 | int fg_samples; | ||
198 | int accu_charge; | ||
199 | int recovery_cnt; | ||
200 | int high_curr_cnt; | ||
201 | int init_cnt; | ||
202 | bool recovery_needed; | ||
203 | bool high_curr_mode; | ||
204 | bool init_capacity; | ||
205 | bool turn_off_fg; | ||
206 | enum ab8500_fg_calibration_state calib_state; | ||
207 | enum ab8500_fg_discharge_state discharge_state; | ||
208 | enum ab8500_fg_charge_state charge_state; | ||
209 | struct completion ab8500_fg_complete; | ||
210 | struct ab8500_fg_flags flags; | ||
211 | struct ab8500_fg_battery_capacity bat_cap; | ||
212 | struct ab8500_fg_avg_cap avg_cap; | ||
213 | struct ab8500 *parent; | ||
214 | struct ab8500_gpadc *gpadc; | ||
215 | struct abx500_fg_platform_data *pdata; | ||
216 | struct abx500_bm_data *bat; | ||
217 | struct power_supply fg_psy; | ||
218 | struct workqueue_struct *fg_wq; | ||
219 | struct delayed_work fg_periodic_work; | ||
220 | struct delayed_work fg_low_bat_work; | ||
221 | struct delayed_work fg_reinit_work; | ||
222 | struct work_struct fg_work; | ||
223 | struct work_struct fg_acc_cur_work; | ||
224 | struct delayed_work fg_check_hw_failure_work; | ||
225 | struct mutex cc_lock; | ||
226 | struct kobject fg_kobject; | ||
227 | }; | ||
228 | static LIST_HEAD(ab8500_fg_list); | ||
229 | |||
230 | /** | ||
231 | * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge | ||
232 | * (i.e. the first fuel gauge in the instance list) | ||
233 | */ | ||
234 | struct ab8500_fg *ab8500_fg_get(void) | ||
235 | { | ||
236 | struct ab8500_fg *fg; | ||
237 | |||
238 | if (list_empty(&ab8500_fg_list)) | ||
239 | return NULL; | ||
240 | |||
241 | fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node); | ||
242 | return fg; | ||
243 | } | ||
244 | |||
245 | /* Main battery properties */ | ||
246 | static enum power_supply_property ab8500_fg_props[] = { | ||
247 | POWER_SUPPLY_PROP_VOLTAGE_NOW, | ||
248 | POWER_SUPPLY_PROP_CURRENT_NOW, | ||
249 | POWER_SUPPLY_PROP_CURRENT_AVG, | ||
250 | POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, | ||
251 | POWER_SUPPLY_PROP_ENERGY_FULL, | ||
252 | POWER_SUPPLY_PROP_ENERGY_NOW, | ||
253 | POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, | ||
254 | POWER_SUPPLY_PROP_CHARGE_FULL, | ||
255 | POWER_SUPPLY_PROP_CHARGE_NOW, | ||
256 | POWER_SUPPLY_PROP_CAPACITY, | ||
257 | POWER_SUPPLY_PROP_CAPACITY_LEVEL, | ||
258 | }; | ||
259 | |||
260 | /* | ||
261 | * This array maps the raw hex value to lowbat voltage used by the AB8500 | ||
262 | * Values taken from the UM0836 | ||
263 | */ | ||
264 | static int ab8500_fg_lowbat_voltage_map[] = { | ||
265 | 2300 , | ||
266 | 2325 , | ||
267 | 2350 , | ||
268 | 2375 , | ||
269 | 2400 , | ||
270 | 2425 , | ||
271 | 2450 , | ||
272 | 2475 , | ||
273 | 2500 , | ||
274 | 2525 , | ||
275 | 2550 , | ||
276 | 2575 , | ||
277 | 2600 , | ||
278 | 2625 , | ||
279 | 2650 , | ||
280 | 2675 , | ||
281 | 2700 , | ||
282 | 2725 , | ||
283 | 2750 , | ||
284 | 2775 , | ||
285 | 2800 , | ||
286 | 2825 , | ||
287 | 2850 , | ||
288 | 2875 , | ||
289 | 2900 , | ||
290 | 2925 , | ||
291 | 2950 , | ||
292 | 2975 , | ||
293 | 3000 , | ||
294 | 3025 , | ||
295 | 3050 , | ||
296 | 3075 , | ||
297 | 3100 , | ||
298 | 3125 , | ||
299 | 3150 , | ||
300 | 3175 , | ||
301 | 3200 , | ||
302 | 3225 , | ||
303 | 3250 , | ||
304 | 3275 , | ||
305 | 3300 , | ||
306 | 3325 , | ||
307 | 3350 , | ||
308 | 3375 , | ||
309 | 3400 , | ||
310 | 3425 , | ||
311 | 3450 , | ||
312 | 3475 , | ||
313 | 3500 , | ||
314 | 3525 , | ||
315 | 3550 , | ||
316 | 3575 , | ||
317 | 3600 , | ||
318 | 3625 , | ||
319 | 3650 , | ||
320 | 3675 , | ||
321 | 3700 , | ||
322 | 3725 , | ||
323 | 3750 , | ||
324 | 3775 , | ||
325 | 3800 , | ||
326 | 3825 , | ||
327 | 3850 , | ||
328 | 3850 , | ||
329 | }; | ||
330 | |||
331 | static u8 ab8500_volt_to_regval(int voltage) | ||
332 | { | ||
333 | int i; | ||
334 | |||
335 | if (voltage < ab8500_fg_lowbat_voltage_map[0]) | ||
336 | return 0; | ||
337 | |||
338 | for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) { | ||
339 | if (voltage < ab8500_fg_lowbat_voltage_map[i]) | ||
340 | return (u8) i - 1; | ||
341 | } | ||
342 | |||
343 | /* If not captured above, return index of last element */ | ||
344 | return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1; | ||
345 | } | ||
346 | |||
347 | /** | ||
348 | * ab8500_fg_is_low_curr() - Low or high current mode | ||
349 | * @di: pointer to the ab8500_fg structure | ||
350 | * @curr: the current to base or our decision on | ||
351 | * | ||
352 | * Low current mode if the current consumption is below a certain threshold | ||
353 | */ | ||
354 | static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr) | ||
355 | { | ||
356 | /* | ||
357 | * We want to know if we're in low current mode | ||
358 | */ | ||
359 | if (curr > -di->bat->fg_params->high_curr_threshold) | ||
360 | return true; | ||
361 | else | ||
362 | return false; | ||
363 | } | ||
364 | |||
365 | /** | ||
366 | * ab8500_fg_add_cap_sample() - Add capacity to average filter | ||
367 | * @di: pointer to the ab8500_fg structure | ||
368 | * @sample: the capacity in mAh to add to the filter | ||
369 | * | ||
370 | * A capacity is added to the filter and a new mean capacity is calculated and | ||
371 | * returned | ||
372 | */ | ||
373 | static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample) | ||
374 | { | ||
375 | struct timespec ts; | ||
376 | struct ab8500_fg_avg_cap *avg = &di->avg_cap; | ||
377 | |||
378 | getnstimeofday(&ts); | ||
379 | |||
380 | do { | ||
381 | avg->sum += sample - avg->samples[avg->pos]; | ||
382 | avg->samples[avg->pos] = sample; | ||
383 | avg->time_stamps[avg->pos] = ts.tv_sec; | ||
384 | avg->pos++; | ||
385 | |||
386 | if (avg->pos == NBR_AVG_SAMPLES) | ||
387 | avg->pos = 0; | ||
388 | |||
389 | if (avg->nbr_samples < NBR_AVG_SAMPLES) | ||
390 | avg->nbr_samples++; | ||
391 | |||
392 | /* | ||
393 | * Check the time stamp for each sample. If too old, | ||
394 | * replace with latest sample | ||
395 | */ | ||
396 | } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]); | ||
397 | |||
398 | avg->avg = avg->sum / avg->nbr_samples; | ||
399 | |||
400 | return avg->avg; | ||
401 | } | ||
402 | |||
403 | /** | ||
404 | * ab8500_fg_clear_cap_samples() - Clear average filter | ||
405 | * @di: pointer to the ab8500_fg structure | ||
406 | * | ||
407 | * The capacity filter is is reset to zero. | ||
408 | */ | ||
409 | static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di) | ||
410 | { | ||
411 | int i; | ||
412 | struct ab8500_fg_avg_cap *avg = &di->avg_cap; | ||
413 | |||
414 | avg->pos = 0; | ||
415 | avg->nbr_samples = 0; | ||
416 | avg->sum = 0; | ||
417 | avg->avg = 0; | ||
418 | |||
419 | for (i = 0; i < NBR_AVG_SAMPLES; i++) { | ||
420 | avg->samples[i] = 0; | ||
421 | avg->time_stamps[i] = 0; | ||
422 | } | ||
423 | } | ||
424 | |||
425 | /** | ||
426 | * ab8500_fg_fill_cap_sample() - Fill average filter | ||
427 | * @di: pointer to the ab8500_fg structure | ||
428 | * @sample: the capacity in mAh to fill the filter with | ||
429 | * | ||
430 | * The capacity filter is filled with a capacity in mAh | ||
431 | */ | ||
432 | static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample) | ||
433 | { | ||
434 | int i; | ||
435 | struct timespec ts; | ||
436 | struct ab8500_fg_avg_cap *avg = &di->avg_cap; | ||
437 | |||
438 | getnstimeofday(&ts); | ||
439 | |||
440 | for (i = 0; i < NBR_AVG_SAMPLES; i++) { | ||
441 | avg->samples[i] = sample; | ||
442 | avg->time_stamps[i] = ts.tv_sec; | ||
443 | } | ||
444 | |||
445 | avg->pos = 0; | ||
446 | avg->nbr_samples = NBR_AVG_SAMPLES; | ||
447 | avg->sum = sample * NBR_AVG_SAMPLES; | ||
448 | avg->avg = sample; | ||
449 | } | ||
450 | |||
451 | /** | ||
452 | * ab8500_fg_coulomb_counter() - enable coulomb counter | ||
453 | * @di: pointer to the ab8500_fg structure | ||
454 | * @enable: enable/disable | ||
455 | * | ||
456 | * Enable/Disable coulomb counter. | ||
457 | * On failure returns negative value. | ||
458 | */ | ||
459 | static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable) | ||
460 | { | ||
461 | int ret = 0; | ||
462 | mutex_lock(&di->cc_lock); | ||
463 | if (enable) { | ||
464 | /* To be able to reprogram the number of samples, we have to | ||
465 | * first stop the CC and then enable it again */ | ||
466 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, | ||
467 | AB8500_RTC_CC_CONF_REG, 0x00); | ||
468 | if (ret) | ||
469 | goto cc_err; | ||
470 | |||
471 | /* Program the samples */ | ||
472 | ret = abx500_set_register_interruptible(di->dev, | ||
473 | AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, | ||
474 | di->fg_samples); | ||
475 | if (ret) | ||
476 | goto cc_err; | ||
477 | |||
478 | /* Start the CC */ | ||
479 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, | ||
480 | AB8500_RTC_CC_CONF_REG, | ||
481 | (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); | ||
482 | if (ret) | ||
483 | goto cc_err; | ||
484 | |||
485 | di->flags.fg_enabled = true; | ||
486 | } else { | ||
487 | /* Clear any pending read requests */ | ||
488 | ret = abx500_set_register_interruptible(di->dev, | ||
489 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0); | ||
490 | if (ret) | ||
491 | goto cc_err; | ||
492 | |||
493 | ret = abx500_set_register_interruptible(di->dev, | ||
494 | AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0); | ||
495 | if (ret) | ||
496 | goto cc_err; | ||
497 | |||
498 | /* Stop the CC */ | ||
499 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, | ||
500 | AB8500_RTC_CC_CONF_REG, 0); | ||
501 | if (ret) | ||
502 | goto cc_err; | ||
503 | |||
504 | di->flags.fg_enabled = false; | ||
505 | |||
506 | } | ||
507 | dev_dbg(di->dev, " CC enabled: %d Samples: %d\n", | ||
508 | enable, di->fg_samples); | ||
509 | |||
510 | mutex_unlock(&di->cc_lock); | ||
511 | |||
512 | return ret; | ||
513 | cc_err: | ||
514 | dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__); | ||
515 | mutex_unlock(&di->cc_lock); | ||
516 | return ret; | ||
517 | } | ||
518 | |||
519 | /** | ||
520 | * ab8500_fg_inst_curr_start() - start battery instantaneous current | ||
521 | * @di: pointer to the ab8500_fg structure | ||
522 | * | ||
523 | * Returns 0 or error code | ||
524 | * Note: This is part "one" and has to be called before | ||
525 | * ab8500_fg_inst_curr_finalize() | ||
526 | */ | ||
527 | int ab8500_fg_inst_curr_start(struct ab8500_fg *di) | ||
528 | { | ||
529 | u8 reg_val; | ||
530 | int ret; | ||
531 | |||
532 | mutex_lock(&di->cc_lock); | ||
533 | |||
534 | ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, | ||
535 | AB8500_RTC_CC_CONF_REG, ®_val); | ||
536 | if (ret < 0) | ||
537 | goto fail; | ||
538 | |||
539 | if (!(reg_val & CC_PWR_UP_ENA)) { | ||
540 | dev_dbg(di->dev, "%s Enable FG\n", __func__); | ||
541 | di->turn_off_fg = true; | ||
542 | |||
543 | /* Program the samples */ | ||
544 | ret = abx500_set_register_interruptible(di->dev, | ||
545 | AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, | ||
546 | SEC_TO_SAMPLE(10)); | ||
547 | if (ret) | ||
548 | goto fail; | ||
549 | |||
550 | /* Start the CC */ | ||
551 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, | ||
552 | AB8500_RTC_CC_CONF_REG, | ||
553 | (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); | ||
554 | if (ret) | ||
555 | goto fail; | ||
556 | } else { | ||
557 | di->turn_off_fg = false; | ||
558 | } | ||
559 | |||
560 | /* Return and WFI */ | ||
561 | INIT_COMPLETION(di->ab8500_fg_complete); | ||
562 | enable_irq(di->irq); | ||
563 | |||
564 | /* Note: cc_lock is still locked */ | ||
565 | return 0; | ||
566 | fail: | ||
567 | mutex_unlock(&di->cc_lock); | ||
568 | return ret; | ||
569 | } | ||
570 | |||
571 | /** | ||
572 | * ab8500_fg_inst_curr_done() - check if fg conversion is done | ||
573 | * @di: pointer to the ab8500_fg structure | ||
574 | * | ||
575 | * Returns 1 if conversion done, 0 if still waiting | ||
576 | */ | ||
577 | int ab8500_fg_inst_curr_done(struct ab8500_fg *di) | ||
578 | { | ||
579 | return completion_done(&di->ab8500_fg_complete); | ||
580 | } | ||
581 | |||
582 | /** | ||
583 | * ab8500_fg_inst_curr_finalize() - battery instantaneous current | ||
584 | * @di: pointer to the ab8500_fg structure | ||
585 | * @res: battery instantenous current(on success) | ||
586 | * | ||
587 | * Returns 0 or an error code | ||
588 | * Note: This is part "two" and has to be called at earliest 250 ms | ||
589 | * after ab8500_fg_inst_curr_start() | ||
590 | */ | ||
591 | int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res) | ||
592 | { | ||
593 | u8 low, high; | ||
594 | int val; | ||
595 | int ret; | ||
596 | int timeout; | ||
597 | |||
598 | if (!completion_done(&di->ab8500_fg_complete)) { | ||
599 | timeout = wait_for_completion_timeout(&di->ab8500_fg_complete, | ||
600 | INS_CURR_TIMEOUT); | ||
601 | dev_dbg(di->dev, "Finalize time: %d ms\n", | ||
602 | ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ); | ||
603 | if (!timeout) { | ||
604 | ret = -ETIME; | ||
605 | disable_irq(di->irq); | ||
606 | dev_err(di->dev, "completion timed out [%d]\n", | ||
607 | __LINE__); | ||
608 | goto fail; | ||
609 | } | ||
610 | } | ||
611 | |||
612 | disable_irq(di->irq); | ||
613 | |||
614 | ret = abx500_mask_and_set_register_interruptible(di->dev, | ||
615 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, | ||
616 | READ_REQ, READ_REQ); | ||
617 | |||
618 | /* 100uS between read request and read is needed */ | ||
619 | usleep_range(100, 100); | ||
620 | |||
621 | /* Read CC Sample conversion value Low and high */ | ||
622 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, | ||
623 | AB8500_GASG_CC_SMPL_CNVL_REG, &low); | ||
624 | if (ret < 0) | ||
625 | goto fail; | ||
626 | |||
627 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, | ||
628 | AB8500_GASG_CC_SMPL_CNVH_REG, &high); | ||
629 | if (ret < 0) | ||
630 | goto fail; | ||
631 | |||
632 | /* | ||
633 | * negative value for Discharging | ||
634 | * convert 2's compliment into decimal | ||
635 | */ | ||
636 | if (high & 0x10) | ||
637 | val = (low | (high << 8) | 0xFFFFE000); | ||
638 | else | ||
639 | val = (low | (high << 8)); | ||
640 | |||
641 | /* | ||
642 | * Convert to unit value in mA | ||
643 | * Full scale input voltage is | ||
644 | * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA | ||
645 | * Given a 250ms conversion cycle time the LSB corresponds | ||
646 | * to 112.9 nAh. Convert to current by dividing by the conversion | ||
647 | * time in hours (250ms = 1 / (3600 * 4)h) | ||
648 | * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm | ||
649 | */ | ||
650 | val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) / | ||
651 | (1000 * di->bat->fg_res); | ||
652 | |||
653 | if (di->turn_off_fg) { | ||
654 | dev_dbg(di->dev, "%s Disable FG\n", __func__); | ||
655 | |||
656 | /* Clear any pending read requests */ | ||
657 | ret = abx500_set_register_interruptible(di->dev, | ||
658 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0); | ||
659 | if (ret) | ||
660 | goto fail; | ||
661 | |||
662 | /* Stop the CC */ | ||
663 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, | ||
664 | AB8500_RTC_CC_CONF_REG, 0); | ||
665 | if (ret) | ||
666 | goto fail; | ||
667 | } | ||
668 | mutex_unlock(&di->cc_lock); | ||
669 | (*res) = val; | ||
670 | |||
671 | return 0; | ||
672 | fail: | ||
673 | mutex_unlock(&di->cc_lock); | ||
674 | return ret; | ||
675 | } | ||
676 | |||
677 | /** | ||
678 | * ab8500_fg_inst_curr_blocking() - battery instantaneous current | ||
679 | * @di: pointer to the ab8500_fg structure | ||
680 | * @res: battery instantenous current(on success) | ||
681 | * | ||
682 | * Returns 0 else error code | ||
683 | */ | ||
684 | int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di) | ||
685 | { | ||
686 | int ret; | ||
687 | int res = 0; | ||
688 | |||
689 | ret = ab8500_fg_inst_curr_start(di); | ||
690 | if (ret) { | ||
691 | dev_err(di->dev, "Failed to initialize fg_inst\n"); | ||
692 | return 0; | ||
693 | } | ||
694 | |||
695 | ret = ab8500_fg_inst_curr_finalize(di, &res); | ||
696 | if (ret) { | ||
697 | dev_err(di->dev, "Failed to finalize fg_inst\n"); | ||
698 | return 0; | ||
699 | } | ||
700 | |||
701 | return res; | ||
702 | } | ||
703 | |||
704 | /** | ||
705 | * ab8500_fg_acc_cur_work() - average battery current | ||
706 | * @work: pointer to the work_struct structure | ||
707 | * | ||
708 | * Updated the average battery current obtained from the | ||
709 | * coulomb counter. | ||
710 | */ | ||
711 | static void ab8500_fg_acc_cur_work(struct work_struct *work) | ||
712 | { | ||
713 | int val; | ||
714 | int ret; | ||
715 | u8 low, med, high; | ||
716 | |||
717 | struct ab8500_fg *di = container_of(work, | ||
718 | struct ab8500_fg, fg_acc_cur_work); | ||
719 | |||
720 | mutex_lock(&di->cc_lock); | ||
721 | ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, | ||
722 | AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ); | ||
723 | if (ret) | ||
724 | goto exit; | ||
725 | |||
726 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, | ||
727 | AB8500_GASG_CC_NCOV_ACCU_LOW, &low); | ||
728 | if (ret < 0) | ||
729 | goto exit; | ||
730 | |||
731 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, | ||
732 | AB8500_GASG_CC_NCOV_ACCU_MED, &med); | ||
733 | if (ret < 0) | ||
734 | goto exit; | ||
735 | |||
736 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, | ||
737 | AB8500_GASG_CC_NCOV_ACCU_HIGH, &high); | ||
738 | if (ret < 0) | ||
739 | goto exit; | ||
740 | |||
741 | /* Check for sign bit in case of negative value, 2's compliment */ | ||
742 | if (high & 0x10) | ||
743 | val = (low | (med << 8) | (high << 16) | 0xFFE00000); | ||
744 | else | ||
745 | val = (low | (med << 8) | (high << 16)); | ||
746 | |||
747 | /* | ||
748 | * Convert to uAh | ||
749 | * Given a 250ms conversion cycle time the LSB corresponds | ||
750 | * to 112.9 nAh. | ||
751 | * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm | ||
752 | */ | ||
753 | di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) / | ||
754 | (100 * di->bat->fg_res); | ||
755 | |||
756 | /* | ||
757 | * Convert to unit value in mA | ||
758 | * Full scale input voltage is | ||
759 | * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA | ||
760 | * Given a 250ms conversion cycle time the LSB corresponds | ||
761 | * to 112.9 nAh. Convert to current by dividing by the conversion | ||
762 | * time in hours (= samples / (3600 * 4)h) | ||
763 | * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm | ||
764 | */ | ||
765 | di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) / | ||
766 | (1000 * di->bat->fg_res * (di->fg_samples / 4)); | ||
767 | |||
768 | di->flags.conv_done = true; | ||
769 | |||
770 | mutex_unlock(&di->cc_lock); | ||
771 | |||
772 | queue_work(di->fg_wq, &di->fg_work); | ||
773 | |||
774 | return; | ||
775 | exit: | ||
776 | dev_err(di->dev, | ||
777 | "Failed to read or write gas gauge registers\n"); | ||
778 | mutex_unlock(&di->cc_lock); | ||
779 | queue_work(di->fg_wq, &di->fg_work); | ||
780 | } | ||
781 | |||
782 | /** | ||
783 | * ab8500_fg_bat_voltage() - get battery voltage | ||
784 | * @di: pointer to the ab8500_fg structure | ||
785 | * | ||
786 | * Returns battery voltage(on success) else error code | ||
787 | */ | ||
788 | static int ab8500_fg_bat_voltage(struct ab8500_fg *di) | ||
789 | { | ||
790 | int vbat; | ||
791 | static int prev; | ||
792 | |||
793 | vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V); | ||
794 | if (vbat < 0) { | ||
795 | dev_err(di->dev, | ||
796 | "%s gpadc conversion failed, using previous value\n", | ||
797 | __func__); | ||
798 | return prev; | ||
799 | } | ||
800 | |||
801 | prev = vbat; | ||
802 | return vbat; | ||
803 | } | ||
804 | |||
805 | /** | ||
806 | * ab8500_fg_volt_to_capacity() - Voltage based capacity | ||
807 | * @di: pointer to the ab8500_fg structure | ||
808 | * @voltage: The voltage to convert to a capacity | ||
809 | * | ||
810 | * Returns battery capacity in per mille based on voltage | ||
811 | */ | ||
812 | static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage) | ||
813 | { | ||
814 | int i, tbl_size; | ||
815 | struct abx500_v_to_cap *tbl; | ||
816 | int cap = 0; | ||
817 | |||
818 | tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl, | ||
819 | tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements; | ||
820 | |||
821 | for (i = 0; i < tbl_size; ++i) { | ||
822 | if (voltage > tbl[i].voltage) | ||
823 | break; | ||
824 | } | ||
825 | |||
826 | if ((i > 0) && (i < tbl_size)) { | ||
827 | cap = interpolate(voltage, | ||
828 | tbl[i].voltage, | ||
829 | tbl[i].capacity * 10, | ||
830 | tbl[i-1].voltage, | ||
831 | tbl[i-1].capacity * 10); | ||
832 | } else if (i == 0) { | ||
833 | cap = 1000; | ||
834 | } else { | ||
835 | cap = 0; | ||
836 | } | ||
837 | |||
838 | dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille", | ||
839 | __func__, voltage, cap); | ||
840 | |||
841 | return cap; | ||
842 | } | ||
843 | |||
844 | /** | ||
845 | * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity | ||
846 | * @di: pointer to the ab8500_fg structure | ||
847 | * | ||
848 | * Returns battery capacity based on battery voltage that is not compensated | ||
849 | * for the voltage drop due to the load | ||
850 | */ | ||
851 | static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di) | ||
852 | { | ||
853 | di->vbat = ab8500_fg_bat_voltage(di); | ||
854 | return ab8500_fg_volt_to_capacity(di, di->vbat); | ||
855 | } | ||
856 | |||
857 | /** | ||
858 | * ab8500_fg_battery_resistance() - Returns the battery inner resistance | ||
859 | * @di: pointer to the ab8500_fg structure | ||
860 | * | ||
861 | * Returns battery inner resistance added with the fuel gauge resistor value | ||
862 | * to get the total resistance in the whole link from gnd to bat+ node. | ||
863 | */ | ||
864 | static int ab8500_fg_battery_resistance(struct ab8500_fg *di) | ||
865 | { | ||
866 | int i, tbl_size; | ||
867 | struct batres_vs_temp *tbl; | ||
868 | int resist = 0; | ||
869 | |||
870 | tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl; | ||
871 | tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements; | ||
872 | |||
873 | for (i = 0; i < tbl_size; ++i) { | ||
874 | if (di->bat_temp / 10 > tbl[i].temp) | ||
875 | break; | ||
876 | } | ||
877 | |||
878 | if ((i > 0) && (i < tbl_size)) { | ||
879 | resist = interpolate(di->bat_temp / 10, | ||
880 | tbl[i].temp, | ||
881 | tbl[i].resist, | ||
882 | tbl[i-1].temp, | ||
883 | tbl[i-1].resist); | ||
884 | } else if (i == 0) { | ||
885 | resist = tbl[0].resist; | ||
886 | } else { | ||
887 | resist = tbl[tbl_size - 1].resist; | ||
888 | } | ||
889 | |||
890 | dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d" | ||
891 | " fg resistance %d, total: %d (mOhm)\n", | ||
892 | __func__, di->bat_temp, resist, di->bat->fg_res / 10, | ||
893 | (di->bat->fg_res / 10) + resist); | ||
894 | |||
895 | /* fg_res variable is in 0.1mOhm */ | ||
896 | resist += di->bat->fg_res / 10; | ||
897 | |||
898 | return resist; | ||
899 | } | ||
900 | |||
901 | /** | ||
902 | * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity | ||
903 | * @di: pointer to the ab8500_fg structure | ||
904 | * | ||
905 | * Returns battery capacity based on battery voltage that is load compensated | ||
906 | * for the voltage drop | ||
907 | */ | ||
908 | static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di) | ||
909 | { | ||
910 | int vbat_comp, res; | ||
911 | int i = 0; | ||
912 | int vbat = 0; | ||
913 | |||
914 | ab8500_fg_inst_curr_start(di); | ||
915 | |||
916 | do { | ||
917 | vbat += ab8500_fg_bat_voltage(di); | ||
918 | i++; | ||
919 | msleep(5); | ||
920 | } while (!ab8500_fg_inst_curr_done(di)); | ||
921 | |||
922 | ab8500_fg_inst_curr_finalize(di, &di->inst_curr); | ||
923 | |||
924 | di->vbat = vbat / i; | ||
925 | res = ab8500_fg_battery_resistance(di); | ||
926 | |||
927 | /* Use Ohms law to get the load compensated voltage */ | ||
928 | vbat_comp = di->vbat - (di->inst_curr * res) / 1000; | ||
929 | |||
930 | dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, " | ||
931 | "R: %dmOhm, Current: %dmA Vbat Samples: %d\n", | ||
932 | __func__, di->vbat, vbat_comp, res, di->inst_curr, i); | ||
933 | |||
934 | return ab8500_fg_volt_to_capacity(di, vbat_comp); | ||
935 | } | ||
936 | |||
937 | /** | ||
938 | * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille | ||
939 | * @di: pointer to the ab8500_fg structure | ||
940 | * @cap_mah: capacity in mAh | ||
941 | * | ||
942 | * Converts capacity in mAh to capacity in permille | ||
943 | */ | ||
944 | static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah) | ||
945 | { | ||
946 | return (cap_mah * 1000) / di->bat_cap.max_mah_design; | ||
947 | } | ||
948 | |||
949 | /** | ||
950 | * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh | ||
951 | * @di: pointer to the ab8500_fg structure | ||
952 | * @cap_pm: capacity in permille | ||
953 | * | ||
954 | * Converts capacity in permille to capacity in mAh | ||
955 | */ | ||
956 | static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm) | ||
957 | { | ||
958 | return cap_pm * di->bat_cap.max_mah_design / 1000; | ||
959 | } | ||
960 | |||
961 | /** | ||
962 | * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh | ||
963 | * @di: pointer to the ab8500_fg structure | ||
964 | * @cap_mah: capacity in mAh | ||
965 | * | ||
966 | * Converts capacity in mAh to capacity in uWh | ||
967 | */ | ||
968 | static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah) | ||
969 | { | ||
970 | u64 div_res; | ||
971 | u32 div_rem; | ||
972 | |||
973 | div_res = ((u64) cap_mah) * ((u64) di->vbat_nom); | ||
974 | div_rem = do_div(div_res, 1000); | ||
975 | |||
976 | /* Make sure to round upwards if necessary */ | ||
977 | if (div_rem >= 1000 / 2) | ||
978 | div_res++; | ||
979 | |||
980 | return (int) div_res; | ||
981 | } | ||
982 | |||
983 | /** | ||
984 | * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging | ||
985 | * @di: pointer to the ab8500_fg structure | ||
986 | * | ||
987 | * Return the capacity in mAh based on previous calculated capcity and the FG | ||
988 | * accumulator register value. The filter is filled with this capacity | ||
989 | */ | ||
990 | static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di) | ||
991 | { | ||
992 | dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", | ||
993 | __func__, | ||
994 | di->bat_cap.mah, | ||
995 | di->accu_charge); | ||
996 | |||
997 | /* Capacity should not be less than 0 */ | ||
998 | if (di->bat_cap.mah + di->accu_charge > 0) | ||
999 | di->bat_cap.mah += di->accu_charge; | ||
1000 | else | ||
1001 | di->bat_cap.mah = 0; | ||
1002 | /* | ||
1003 | * We force capacity to 100% once when the algorithm | ||
1004 | * reports that it's full. | ||
1005 | */ | ||
1006 | if (di->bat_cap.mah >= di->bat_cap.max_mah_design || | ||
1007 | di->flags.force_full) { | ||
1008 | di->bat_cap.mah = di->bat_cap.max_mah_design; | ||
1009 | } | ||
1010 | |||
1011 | ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); | ||
1012 | di->bat_cap.permille = | ||
1013 | ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); | ||
1014 | |||
1015 | /* We need to update battery voltage and inst current when charging */ | ||
1016 | di->vbat = ab8500_fg_bat_voltage(di); | ||
1017 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); | ||
1018 | |||
1019 | return di->bat_cap.mah; | ||
1020 | } | ||
1021 | |||
1022 | /** | ||
1023 | * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage | ||
1024 | * @di: pointer to the ab8500_fg structure | ||
1025 | * @comp: if voltage should be load compensated before capacity calc | ||
1026 | * | ||
1027 | * Return the capacity in mAh based on the battery voltage. The voltage can | ||
1028 | * either be load compensated or not. This value is added to the filter and a | ||
1029 | * new mean value is calculated and returned. | ||
1030 | */ | ||
1031 | static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp) | ||
1032 | { | ||
1033 | int permille, mah; | ||
1034 | |||
1035 | if (comp) | ||
1036 | permille = ab8500_fg_load_comp_volt_to_capacity(di); | ||
1037 | else | ||
1038 | permille = ab8500_fg_uncomp_volt_to_capacity(di); | ||
1039 | |||
1040 | mah = ab8500_fg_convert_permille_to_mah(di, permille); | ||
1041 | |||
1042 | di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah); | ||
1043 | di->bat_cap.permille = | ||
1044 | ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); | ||
1045 | |||
1046 | return di->bat_cap.mah; | ||
1047 | } | ||
1048 | |||
1049 | /** | ||
1050 | * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG | ||
1051 | * @di: pointer to the ab8500_fg structure | ||
1052 | * | ||
1053 | * Return the capacity in mAh based on previous calculated capcity and the FG | ||
1054 | * accumulator register value. This value is added to the filter and a | ||
1055 | * new mean value is calculated and returned. | ||
1056 | */ | ||
1057 | static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di) | ||
1058 | { | ||
1059 | int permille_volt, permille; | ||
1060 | |||
1061 | dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", | ||
1062 | __func__, | ||
1063 | di->bat_cap.mah, | ||
1064 | di->accu_charge); | ||
1065 | |||
1066 | /* Capacity should not be less than 0 */ | ||
1067 | if (di->bat_cap.mah + di->accu_charge > 0) | ||
1068 | di->bat_cap.mah += di->accu_charge; | ||
1069 | else | ||
1070 | di->bat_cap.mah = 0; | ||
1071 | |||
1072 | if (di->bat_cap.mah >= di->bat_cap.max_mah_design) | ||
1073 | di->bat_cap.mah = di->bat_cap.max_mah_design; | ||
1074 | |||
1075 | /* | ||
1076 | * Check against voltage based capacity. It can not be lower | ||
1077 | * than what the uncompensated voltage says | ||
1078 | */ | ||
1079 | permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); | ||
1080 | permille_volt = ab8500_fg_uncomp_volt_to_capacity(di); | ||
1081 | |||
1082 | if (permille < permille_volt) { | ||
1083 | di->bat_cap.permille = permille_volt; | ||
1084 | di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di, | ||
1085 | di->bat_cap.permille); | ||
1086 | |||
1087 | dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n", | ||
1088 | __func__, | ||
1089 | permille, | ||
1090 | permille_volt); | ||
1091 | |||
1092 | ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); | ||
1093 | } else { | ||
1094 | ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); | ||
1095 | di->bat_cap.permille = | ||
1096 | ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); | ||
1097 | } | ||
1098 | |||
1099 | return di->bat_cap.mah; | ||
1100 | } | ||
1101 | |||
1102 | /** | ||
1103 | * ab8500_fg_capacity_level() - Get the battery capacity level | ||
1104 | * @di: pointer to the ab8500_fg structure | ||
1105 | * | ||
1106 | * Get the battery capacity level based on the capacity in percent | ||
1107 | */ | ||
1108 | static int ab8500_fg_capacity_level(struct ab8500_fg *di) | ||
1109 | { | ||
1110 | int ret, percent; | ||
1111 | |||
1112 | percent = di->bat_cap.permille / 10; | ||
1113 | |||
1114 | if (percent <= di->bat->cap_levels->critical || | ||
1115 | di->flags.low_bat) | ||
1116 | ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; | ||
1117 | else if (percent <= di->bat->cap_levels->low) | ||
1118 | ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW; | ||
1119 | else if (percent <= di->bat->cap_levels->normal) | ||
1120 | ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; | ||
1121 | else if (percent <= di->bat->cap_levels->high) | ||
1122 | ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; | ||
1123 | else | ||
1124 | ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL; | ||
1125 | |||
1126 | return ret; | ||
1127 | } | ||
1128 | |||
1129 | /** | ||
1130 | * ab8500_fg_check_capacity_limits() - Check if capacity has changed | ||
1131 | * @di: pointer to the ab8500_fg structure | ||
1132 | * @init: capacity is allowed to go up in init mode | ||
1133 | * | ||
1134 | * Check if capacity or capacity limit has changed and notify the system | ||
1135 | * about it using the power_supply framework | ||
1136 | */ | ||
1137 | static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init) | ||
1138 | { | ||
1139 | bool changed = false; | ||
1140 | |||
1141 | di->bat_cap.level = ab8500_fg_capacity_level(di); | ||
1142 | |||
1143 | if (di->bat_cap.level != di->bat_cap.prev_level) { | ||
1144 | /* | ||
1145 | * We do not allow reported capacity level to go up | ||
1146 | * unless we're charging or if we're in init | ||
1147 | */ | ||
1148 | if (!(!di->flags.charging && di->bat_cap.level > | ||
1149 | di->bat_cap.prev_level) || init) { | ||
1150 | dev_dbg(di->dev, "level changed from %d to %d\n", | ||
1151 | di->bat_cap.prev_level, | ||
1152 | di->bat_cap.level); | ||
1153 | di->bat_cap.prev_level = di->bat_cap.level; | ||
1154 | changed = true; | ||
1155 | } else { | ||
1156 | dev_dbg(di->dev, "level not allowed to go up " | ||
1157 | "since no charger is connected: %d to %d\n", | ||
1158 | di->bat_cap.prev_level, | ||
1159 | di->bat_cap.level); | ||
1160 | } | ||
1161 | } | ||
1162 | |||
1163 | /* | ||
1164 | * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate | ||
1165 | * shutdown | ||
1166 | */ | ||
1167 | if (di->flags.low_bat) { | ||
1168 | dev_dbg(di->dev, "Battery low, set capacity to 0\n"); | ||
1169 | di->bat_cap.prev_percent = 0; | ||
1170 | di->bat_cap.permille = 0; | ||
1171 | di->bat_cap.prev_mah = 0; | ||
1172 | di->bat_cap.mah = 0; | ||
1173 | changed = true; | ||
1174 | } else if (di->flags.fully_charged) { | ||
1175 | /* | ||
1176 | * We report 100% if algorithm reported fully charged | ||
1177 | * unless capacity drops too much | ||
1178 | */ | ||
1179 | if (di->flags.force_full) { | ||
1180 | di->bat_cap.prev_percent = di->bat_cap.permille / 10; | ||
1181 | di->bat_cap.prev_mah = di->bat_cap.mah; | ||
1182 | } else if (!di->flags.force_full && | ||
1183 | di->bat_cap.prev_percent != | ||
1184 | (di->bat_cap.permille) / 10 && | ||
1185 | (di->bat_cap.permille / 10) < | ||
1186 | di->bat->fg_params->maint_thres) { | ||
1187 | dev_dbg(di->dev, | ||
1188 | "battery reported full " | ||
1189 | "but capacity dropping: %d\n", | ||
1190 | di->bat_cap.permille / 10); | ||
1191 | di->bat_cap.prev_percent = di->bat_cap.permille / 10; | ||
1192 | di->bat_cap.prev_mah = di->bat_cap.mah; | ||
1193 | |||
1194 | changed = true; | ||
1195 | } | ||
1196 | } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) { | ||
1197 | if (di->bat_cap.permille / 10 == 0) { | ||
1198 | /* | ||
1199 | * We will not report 0% unless we've got | ||
1200 | * the LOW_BAT IRQ, no matter what the FG | ||
1201 | * algorithm says. | ||
1202 | */ | ||
1203 | di->bat_cap.prev_percent = 1; | ||
1204 | di->bat_cap.permille = 1; | ||
1205 | di->bat_cap.prev_mah = 1; | ||
1206 | di->bat_cap.mah = 1; | ||
1207 | |||
1208 | changed = true; | ||
1209 | } else if (!(!di->flags.charging && | ||
1210 | (di->bat_cap.permille / 10) > | ||
1211 | di->bat_cap.prev_percent) || init) { | ||
1212 | /* | ||
1213 | * We do not allow reported capacity to go up | ||
1214 | * unless we're charging or if we're in init | ||
1215 | */ | ||
1216 | dev_dbg(di->dev, | ||
1217 | "capacity changed from %d to %d (%d)\n", | ||
1218 | di->bat_cap.prev_percent, | ||
1219 | di->bat_cap.permille / 10, | ||
1220 | di->bat_cap.permille); | ||
1221 | di->bat_cap.prev_percent = di->bat_cap.permille / 10; | ||
1222 | di->bat_cap.prev_mah = di->bat_cap.mah; | ||
1223 | |||
1224 | changed = true; | ||
1225 | } else { | ||
1226 | dev_dbg(di->dev, "capacity not allowed to go up since " | ||
1227 | "no charger is connected: %d to %d (%d)\n", | ||
1228 | di->bat_cap.prev_percent, | ||
1229 | di->bat_cap.permille / 10, | ||
1230 | di->bat_cap.permille); | ||
1231 | } | ||
1232 | } | ||
1233 | |||
1234 | if (changed) { | ||
1235 | power_supply_changed(&di->fg_psy); | ||
1236 | if (di->flags.fully_charged && di->flags.force_full) { | ||
1237 | dev_dbg(di->dev, "Battery full, notifying.\n"); | ||
1238 | di->flags.force_full = false; | ||
1239 | sysfs_notify(&di->fg_kobject, NULL, "charge_full"); | ||
1240 | } | ||
1241 | sysfs_notify(&di->fg_kobject, NULL, "charge_now"); | ||
1242 | } | ||
1243 | } | ||
1244 | |||
1245 | static void ab8500_fg_charge_state_to(struct ab8500_fg *di, | ||
1246 | enum ab8500_fg_charge_state new_state) | ||
1247 | { | ||
1248 | dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n", | ||
1249 | di->charge_state, | ||
1250 | charge_state[di->charge_state], | ||
1251 | new_state, | ||
1252 | charge_state[new_state]); | ||
1253 | |||
1254 | di->charge_state = new_state; | ||
1255 | } | ||
1256 | |||
1257 | static void ab8500_fg_discharge_state_to(struct ab8500_fg *di, | ||
1258 | enum ab8500_fg_discharge_state new_state) | ||
1259 | { | ||
1260 | dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n", | ||
1261 | di->discharge_state, | ||
1262 | discharge_state[di->discharge_state], | ||
1263 | new_state, | ||
1264 | discharge_state[new_state]); | ||
1265 | |||
1266 | di->discharge_state = new_state; | ||
1267 | } | ||
1268 | |||
1269 | /** | ||
1270 | * ab8500_fg_algorithm_charging() - FG algorithm for when charging | ||
1271 | * @di: pointer to the ab8500_fg structure | ||
1272 | * | ||
1273 | * Battery capacity calculation state machine for when we're charging | ||
1274 | */ | ||
1275 | static void ab8500_fg_algorithm_charging(struct ab8500_fg *di) | ||
1276 | { | ||
1277 | /* | ||
1278 | * If we change to discharge mode | ||
1279 | * we should start with recovery | ||
1280 | */ | ||
1281 | if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY) | ||
1282 | ab8500_fg_discharge_state_to(di, | ||
1283 | AB8500_FG_DISCHARGE_INIT_RECOVERY); | ||
1284 | |||
1285 | switch (di->charge_state) { | ||
1286 | case AB8500_FG_CHARGE_INIT: | ||
1287 | di->fg_samples = SEC_TO_SAMPLE( | ||
1288 | di->bat->fg_params->accu_charging); | ||
1289 | |||
1290 | ab8500_fg_coulomb_counter(di, true); | ||
1291 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT); | ||
1292 | |||
1293 | break; | ||
1294 | |||
1295 | case AB8500_FG_CHARGE_READOUT: | ||
1296 | /* | ||
1297 | * Read the FG and calculate the new capacity | ||
1298 | */ | ||
1299 | mutex_lock(&di->cc_lock); | ||
1300 | if (!di->flags.conv_done) { | ||
1301 | /* Wasn't the CC IRQ that got us here */ | ||
1302 | mutex_unlock(&di->cc_lock); | ||
1303 | dev_dbg(di->dev, "%s CC conv not done\n", | ||
1304 | __func__); | ||
1305 | |||
1306 | break; | ||
1307 | } | ||
1308 | di->flags.conv_done = false; | ||
1309 | mutex_unlock(&di->cc_lock); | ||
1310 | |||
1311 | ab8500_fg_calc_cap_charging(di); | ||
1312 | |||
1313 | break; | ||
1314 | |||
1315 | default: | ||
1316 | break; | ||
1317 | } | ||
1318 | |||
1319 | /* Check capacity limits */ | ||
1320 | ab8500_fg_check_capacity_limits(di, false); | ||
1321 | } | ||
1322 | |||
1323 | static void force_capacity(struct ab8500_fg *di) | ||
1324 | { | ||
1325 | int cap; | ||
1326 | |||
1327 | ab8500_fg_clear_cap_samples(di); | ||
1328 | cap = di->bat_cap.user_mah; | ||
1329 | if (cap > di->bat_cap.max_mah_design) { | ||
1330 | dev_dbg(di->dev, "Remaining cap %d can't be bigger than total" | ||
1331 | " %d\n", cap, di->bat_cap.max_mah_design); | ||
1332 | cap = di->bat_cap.max_mah_design; | ||
1333 | } | ||
1334 | ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah); | ||
1335 | di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap); | ||
1336 | di->bat_cap.mah = cap; | ||
1337 | ab8500_fg_check_capacity_limits(di, true); | ||
1338 | } | ||
1339 | |||
1340 | static bool check_sysfs_capacity(struct ab8500_fg *di) | ||
1341 | { | ||
1342 | int cap, lower, upper; | ||
1343 | int cap_permille; | ||
1344 | |||
1345 | cap = di->bat_cap.user_mah; | ||
1346 | |||
1347 | cap_permille = ab8500_fg_convert_mah_to_permille(di, | ||
1348 | di->bat_cap.user_mah); | ||
1349 | |||
1350 | lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10; | ||
1351 | upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10; | ||
1352 | |||
1353 | if (lower < 0) | ||
1354 | lower = 0; | ||
1355 | /* 1000 is permille, -> 100 percent */ | ||
1356 | if (upper > 1000) | ||
1357 | upper = 1000; | ||
1358 | |||
1359 | dev_dbg(di->dev, "Capacity limits:" | ||
1360 | " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n", | ||
1361 | lower, cap_permille, upper, cap, di->bat_cap.mah); | ||
1362 | |||
1363 | /* If within limits, use the saved capacity and exit estimation...*/ | ||
1364 | if (cap_permille > lower && cap_permille < upper) { | ||
1365 | dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap); | ||
1366 | force_capacity(di); | ||
1367 | return true; | ||
1368 | } | ||
1369 | dev_dbg(di->dev, "Capacity from user out of limits, ignoring"); | ||
1370 | return false; | ||
1371 | } | ||
1372 | |||
1373 | /** | ||
1374 | * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging | ||
1375 | * @di: pointer to the ab8500_fg structure | ||
1376 | * | ||
1377 | * Battery capacity calculation state machine for when we're discharging | ||
1378 | */ | ||
1379 | static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di) | ||
1380 | { | ||
1381 | int sleep_time; | ||
1382 | |||
1383 | /* If we change to charge mode we should start with init */ | ||
1384 | if (di->charge_state != AB8500_FG_CHARGE_INIT) | ||
1385 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); | ||
1386 | |||
1387 | switch (di->discharge_state) { | ||
1388 | case AB8500_FG_DISCHARGE_INIT: | ||
1389 | /* We use the FG IRQ to work on */ | ||
1390 | di->init_cnt = 0; | ||
1391 | di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer); | ||
1392 | ab8500_fg_coulomb_counter(di, true); | ||
1393 | ab8500_fg_discharge_state_to(di, | ||
1394 | AB8500_FG_DISCHARGE_INITMEASURING); | ||
1395 | |||
1396 | /* Intentional fallthrough */ | ||
1397 | case AB8500_FG_DISCHARGE_INITMEASURING: | ||
1398 | /* | ||
1399 | * Discard a number of samples during startup. | ||
1400 | * After that, use compensated voltage for a few | ||
1401 | * samples to get an initial capacity. | ||
1402 | * Then go to READOUT | ||
1403 | */ | ||
1404 | sleep_time = di->bat->fg_params->init_timer; | ||
1405 | |||
1406 | /* Discard the first [x] seconds */ | ||
1407 | if (di->init_cnt > | ||
1408 | di->bat->fg_params->init_discard_time) { | ||
1409 | ab8500_fg_calc_cap_discharge_voltage(di, true); | ||
1410 | |||
1411 | ab8500_fg_check_capacity_limits(di, true); | ||
1412 | } | ||
1413 | |||
1414 | di->init_cnt += sleep_time; | ||
1415 | if (di->init_cnt > di->bat->fg_params->init_total_time) | ||
1416 | ab8500_fg_discharge_state_to(di, | ||
1417 | AB8500_FG_DISCHARGE_READOUT_INIT); | ||
1418 | |||
1419 | break; | ||
1420 | |||
1421 | case AB8500_FG_DISCHARGE_INIT_RECOVERY: | ||
1422 | di->recovery_cnt = 0; | ||
1423 | di->recovery_needed = true; | ||
1424 | ab8500_fg_discharge_state_to(di, | ||
1425 | AB8500_FG_DISCHARGE_RECOVERY); | ||
1426 | |||
1427 | /* Intentional fallthrough */ | ||
1428 | |||
1429 | case AB8500_FG_DISCHARGE_RECOVERY: | ||
1430 | sleep_time = di->bat->fg_params->recovery_sleep_timer; | ||
1431 | |||
1432 | /* | ||
1433 | * We should check the power consumption | ||
1434 | * If low, go to READOUT (after x min) or | ||
1435 | * RECOVERY_SLEEP if time left. | ||
1436 | * If high, go to READOUT | ||
1437 | */ | ||
1438 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); | ||
1439 | |||
1440 | if (ab8500_fg_is_low_curr(di, di->inst_curr)) { | ||
1441 | if (di->recovery_cnt > | ||
1442 | di->bat->fg_params->recovery_total_time) { | ||
1443 | di->fg_samples = SEC_TO_SAMPLE( | ||
1444 | di->bat->fg_params->accu_high_curr); | ||
1445 | ab8500_fg_coulomb_counter(di, true); | ||
1446 | ab8500_fg_discharge_state_to(di, | ||
1447 | AB8500_FG_DISCHARGE_READOUT); | ||
1448 | di->recovery_needed = false; | ||
1449 | } else { | ||
1450 | queue_delayed_work(di->fg_wq, | ||
1451 | &di->fg_periodic_work, | ||
1452 | sleep_time * HZ); | ||
1453 | } | ||
1454 | di->recovery_cnt += sleep_time; | ||
1455 | } else { | ||
1456 | di->fg_samples = SEC_TO_SAMPLE( | ||
1457 | di->bat->fg_params->accu_high_curr); | ||
1458 | ab8500_fg_coulomb_counter(di, true); | ||
1459 | ab8500_fg_discharge_state_to(di, | ||
1460 | AB8500_FG_DISCHARGE_READOUT); | ||
1461 | } | ||
1462 | break; | ||
1463 | |||
1464 | case AB8500_FG_DISCHARGE_READOUT_INIT: | ||
1465 | di->fg_samples = SEC_TO_SAMPLE( | ||
1466 | di->bat->fg_params->accu_high_curr); | ||
1467 | ab8500_fg_coulomb_counter(di, true); | ||
1468 | ab8500_fg_discharge_state_to(di, | ||
1469 | AB8500_FG_DISCHARGE_READOUT); | ||
1470 | break; | ||
1471 | |||
1472 | case AB8500_FG_DISCHARGE_READOUT: | ||
1473 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); | ||
1474 | |||
1475 | if (ab8500_fg_is_low_curr(di, di->inst_curr)) { | ||
1476 | /* Detect mode change */ | ||
1477 | if (di->high_curr_mode) { | ||
1478 | di->high_curr_mode = false; | ||
1479 | di->high_curr_cnt = 0; | ||
1480 | } | ||
1481 | |||
1482 | if (di->recovery_needed) { | ||
1483 | ab8500_fg_discharge_state_to(di, | ||
1484 | AB8500_FG_DISCHARGE_RECOVERY); | ||
1485 | |||
1486 | queue_delayed_work(di->fg_wq, | ||
1487 | &di->fg_periodic_work, 0); | ||
1488 | |||
1489 | break; | ||
1490 | } | ||
1491 | |||
1492 | ab8500_fg_calc_cap_discharge_voltage(di, true); | ||
1493 | } else { | ||
1494 | mutex_lock(&di->cc_lock); | ||
1495 | if (!di->flags.conv_done) { | ||
1496 | /* Wasn't the CC IRQ that got us here */ | ||
1497 | mutex_unlock(&di->cc_lock); | ||
1498 | dev_dbg(di->dev, "%s CC conv not done\n", | ||
1499 | __func__); | ||
1500 | |||
1501 | break; | ||
1502 | } | ||
1503 | di->flags.conv_done = false; | ||
1504 | mutex_unlock(&di->cc_lock); | ||
1505 | |||
1506 | /* Detect mode change */ | ||
1507 | if (!di->high_curr_mode) { | ||
1508 | di->high_curr_mode = true; | ||
1509 | di->high_curr_cnt = 0; | ||
1510 | } | ||
1511 | |||
1512 | di->high_curr_cnt += | ||
1513 | di->bat->fg_params->accu_high_curr; | ||
1514 | if (di->high_curr_cnt > | ||
1515 | di->bat->fg_params->high_curr_time) | ||
1516 | di->recovery_needed = true; | ||
1517 | |||
1518 | ab8500_fg_calc_cap_discharge_fg(di); | ||
1519 | } | ||
1520 | |||
1521 | ab8500_fg_check_capacity_limits(di, false); | ||
1522 | |||
1523 | break; | ||
1524 | |||
1525 | case AB8500_FG_DISCHARGE_WAKEUP: | ||
1526 | ab8500_fg_coulomb_counter(di, true); | ||
1527 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); | ||
1528 | |||
1529 | ab8500_fg_calc_cap_discharge_voltage(di, true); | ||
1530 | |||
1531 | di->fg_samples = SEC_TO_SAMPLE( | ||
1532 | di->bat->fg_params->accu_high_curr); | ||
1533 | ab8500_fg_coulomb_counter(di, true); | ||
1534 | ab8500_fg_discharge_state_to(di, | ||
1535 | AB8500_FG_DISCHARGE_READOUT); | ||
1536 | |||
1537 | ab8500_fg_check_capacity_limits(di, false); | ||
1538 | |||
1539 | break; | ||
1540 | |||
1541 | default: | ||
1542 | break; | ||
1543 | } | ||
1544 | } | ||
1545 | |||
1546 | /** | ||
1547 | * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration | ||
1548 | * @di: pointer to the ab8500_fg structure | ||
1549 | * | ||
1550 | */ | ||
1551 | static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di) | ||
1552 | { | ||
1553 | int ret; | ||
1554 | |||
1555 | switch (di->calib_state) { | ||
1556 | case AB8500_FG_CALIB_INIT: | ||
1557 | dev_dbg(di->dev, "Calibration ongoing...\n"); | ||
1558 | |||
1559 | ret = abx500_mask_and_set_register_interruptible(di->dev, | ||
1560 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, | ||
1561 | CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8); | ||
1562 | if (ret < 0) | ||
1563 | goto err; | ||
1564 | |||
1565 | ret = abx500_mask_and_set_register_interruptible(di->dev, | ||
1566 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, | ||
1567 | CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA); | ||
1568 | if (ret < 0) | ||
1569 | goto err; | ||
1570 | di->calib_state = AB8500_FG_CALIB_WAIT; | ||
1571 | break; | ||
1572 | case AB8500_FG_CALIB_END: | ||
1573 | ret = abx500_mask_and_set_register_interruptible(di->dev, | ||
1574 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, | ||
1575 | CC_MUXOFFSET, CC_MUXOFFSET); | ||
1576 | if (ret < 0) | ||
1577 | goto err; | ||
1578 | di->flags.calibrate = false; | ||
1579 | dev_dbg(di->dev, "Calibration done...\n"); | ||
1580 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); | ||
1581 | break; | ||
1582 | case AB8500_FG_CALIB_WAIT: | ||
1583 | dev_dbg(di->dev, "Calibration WFI\n"); | ||
1584 | default: | ||
1585 | break; | ||
1586 | } | ||
1587 | return; | ||
1588 | err: | ||
1589 | /* Something went wrong, don't calibrate then */ | ||
1590 | dev_err(di->dev, "failed to calibrate the CC\n"); | ||
1591 | di->flags.calibrate = false; | ||
1592 | di->calib_state = AB8500_FG_CALIB_INIT; | ||
1593 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); | ||
1594 | } | ||
1595 | |||
1596 | /** | ||
1597 | * ab8500_fg_algorithm() - Entry point for the FG algorithm | ||
1598 | * @di: pointer to the ab8500_fg structure | ||
1599 | * | ||
1600 | * Entry point for the battery capacity calculation state machine | ||
1601 | */ | ||
1602 | static void ab8500_fg_algorithm(struct ab8500_fg *di) | ||
1603 | { | ||
1604 | if (di->flags.calibrate) | ||
1605 | ab8500_fg_algorithm_calibrate(di); | ||
1606 | else { | ||
1607 | if (di->flags.charging) | ||
1608 | ab8500_fg_algorithm_charging(di); | ||
1609 | else | ||
1610 | ab8500_fg_algorithm_discharging(di); | ||
1611 | } | ||
1612 | |||
1613 | dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d " | ||
1614 | "%d %d %d %d %d %d %d\n", | ||
1615 | di->bat_cap.max_mah_design, | ||
1616 | di->bat_cap.mah, | ||
1617 | di->bat_cap.permille, | ||
1618 | di->bat_cap.level, | ||
1619 | di->bat_cap.prev_mah, | ||
1620 | di->bat_cap.prev_percent, | ||
1621 | di->bat_cap.prev_level, | ||
1622 | di->vbat, | ||
1623 | di->inst_curr, | ||
1624 | di->avg_curr, | ||
1625 | di->accu_charge, | ||
1626 | di->flags.charging, | ||
1627 | di->charge_state, | ||
1628 | di->discharge_state, | ||
1629 | di->high_curr_mode, | ||
1630 | di->recovery_needed); | ||
1631 | } | ||
1632 | |||
1633 | /** | ||
1634 | * ab8500_fg_periodic_work() - Run the FG state machine periodically | ||
1635 | * @work: pointer to the work_struct structure | ||
1636 | * | ||
1637 | * Work queue function for periodic work | ||
1638 | */ | ||
1639 | static void ab8500_fg_periodic_work(struct work_struct *work) | ||
1640 | { | ||
1641 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, | ||
1642 | fg_periodic_work.work); | ||
1643 | |||
1644 | if (di->init_capacity) { | ||
1645 | /* A dummy read that will return 0 */ | ||
1646 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); | ||
1647 | /* Get an initial capacity calculation */ | ||
1648 | ab8500_fg_calc_cap_discharge_voltage(di, true); | ||
1649 | ab8500_fg_check_capacity_limits(di, true); | ||
1650 | di->init_capacity = false; | ||
1651 | |||
1652 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); | ||
1653 | } else if (di->flags.user_cap) { | ||
1654 | if (check_sysfs_capacity(di)) { | ||
1655 | ab8500_fg_check_capacity_limits(di, true); | ||
1656 | if (di->flags.charging) | ||
1657 | ab8500_fg_charge_state_to(di, | ||
1658 | AB8500_FG_CHARGE_INIT); | ||
1659 | else | ||
1660 | ab8500_fg_discharge_state_to(di, | ||
1661 | AB8500_FG_DISCHARGE_READOUT_INIT); | ||
1662 | } | ||
1663 | di->flags.user_cap = false; | ||
1664 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); | ||
1665 | } else | ||
1666 | ab8500_fg_algorithm(di); | ||
1667 | |||
1668 | } | ||
1669 | |||
1670 | /** | ||
1671 | * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition | ||
1672 | * @work: pointer to the work_struct structure | ||
1673 | * | ||
1674 | * Work queue function for checking the OVV_BAT condition | ||
1675 | */ | ||
1676 | static void ab8500_fg_check_hw_failure_work(struct work_struct *work) | ||
1677 | { | ||
1678 | int ret; | ||
1679 | u8 reg_value; | ||
1680 | |||
1681 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, | ||
1682 | fg_check_hw_failure_work.work); | ||
1683 | |||
1684 | /* | ||
1685 | * If we have had a battery over-voltage situation, | ||
1686 | * check ovv-bit to see if it should be reset. | ||
1687 | */ | ||
1688 | if (di->flags.bat_ovv) { | ||
1689 | ret = abx500_get_register_interruptible(di->dev, | ||
1690 | AB8500_CHARGER, AB8500_CH_STAT_REG, | ||
1691 | ®_value); | ||
1692 | if (ret < 0) { | ||
1693 | dev_err(di->dev, "%s ab8500 read failed\n", __func__); | ||
1694 | return; | ||
1695 | } | ||
1696 | if ((reg_value & BATT_OVV) != BATT_OVV) { | ||
1697 | dev_dbg(di->dev, "Battery recovered from OVV\n"); | ||
1698 | di->flags.bat_ovv = false; | ||
1699 | power_supply_changed(&di->fg_psy); | ||
1700 | return; | ||
1701 | } | ||
1702 | |||
1703 | /* Not yet recovered from ovv, reschedule this test */ | ||
1704 | queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, | ||
1705 | round_jiffies(HZ)); | ||
1706 | } | ||
1707 | } | ||
1708 | |||
1709 | /** | ||
1710 | * ab8500_fg_low_bat_work() - Check LOW_BAT condition | ||
1711 | * @work: pointer to the work_struct structure | ||
1712 | * | ||
1713 | * Work queue function for checking the LOW_BAT condition | ||
1714 | */ | ||
1715 | static void ab8500_fg_low_bat_work(struct work_struct *work) | ||
1716 | { | ||
1717 | int vbat; | ||
1718 | |||
1719 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, | ||
1720 | fg_low_bat_work.work); | ||
1721 | |||
1722 | vbat = ab8500_fg_bat_voltage(di); | ||
1723 | |||
1724 | /* Check if LOW_BAT still fulfilled */ | ||
1725 | if (vbat < di->bat->fg_params->lowbat_threshold) { | ||
1726 | di->flags.low_bat = true; | ||
1727 | dev_warn(di->dev, "Battery voltage still LOW\n"); | ||
1728 | |||
1729 | /* | ||
1730 | * We need to re-schedule this check to be able to detect | ||
1731 | * if the voltage increases again during charging | ||
1732 | */ | ||
1733 | queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, | ||
1734 | round_jiffies(LOW_BAT_CHECK_INTERVAL)); | ||
1735 | } else { | ||
1736 | di->flags.low_bat = false; | ||
1737 | dev_warn(di->dev, "Battery voltage OK again\n"); | ||
1738 | } | ||
1739 | |||
1740 | /* This is needed to dispatch LOW_BAT */ | ||
1741 | ab8500_fg_check_capacity_limits(di, false); | ||
1742 | |||
1743 | /* Set this flag to check if LOW_BAT IRQ still occurs */ | ||
1744 | di->flags.low_bat_delay = false; | ||
1745 | } | ||
1746 | |||
1747 | /** | ||
1748 | * ab8500_fg_battok_calc - calculate the bit pattern corresponding | ||
1749 | * to the target voltage. | ||
1750 | * @di: pointer to the ab8500_fg structure | ||
1751 | * @target target voltage | ||
1752 | * | ||
1753 | * Returns bit pattern closest to the target voltage | ||
1754 | * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS) | ||
1755 | */ | ||
1756 | |||
1757 | static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target) | ||
1758 | { | ||
1759 | if (target > BATT_OK_MIN + | ||
1760 | (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS)) | ||
1761 | return BATT_OK_MAX_NR_INCREMENTS; | ||
1762 | if (target < BATT_OK_MIN) | ||
1763 | return 0; | ||
1764 | return (target - BATT_OK_MIN) / BATT_OK_INCREMENT; | ||
1765 | } | ||
1766 | |||
1767 | /** | ||
1768 | * ab8500_fg_battok_init_hw_register - init battok levels | ||
1769 | * @di: pointer to the ab8500_fg structure | ||
1770 | * | ||
1771 | */ | ||
1772 | |||
1773 | static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di) | ||
1774 | { | ||
1775 | int selected; | ||
1776 | int sel0; | ||
1777 | int sel1; | ||
1778 | int cbp_sel0; | ||
1779 | int cbp_sel1; | ||
1780 | int ret; | ||
1781 | int new_val; | ||
1782 | |||
1783 | sel0 = di->bat->fg_params->battok_falling_th_sel0; | ||
1784 | sel1 = di->bat->fg_params->battok_raising_th_sel1; | ||
1785 | |||
1786 | cbp_sel0 = ab8500_fg_battok_calc(di, sel0); | ||
1787 | cbp_sel1 = ab8500_fg_battok_calc(di, sel1); | ||
1788 | |||
1789 | selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT; | ||
1790 | |||
1791 | if (selected != sel0) | ||
1792 | dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", | ||
1793 | sel0, selected, cbp_sel0); | ||
1794 | |||
1795 | selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT; | ||
1796 | |||
1797 | if (selected != sel1) | ||
1798 | dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", | ||
1799 | sel1, selected, cbp_sel1); | ||
1800 | |||
1801 | new_val = cbp_sel0 | (cbp_sel1 << 4); | ||
1802 | |||
1803 | dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1); | ||
1804 | ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK, | ||
1805 | AB8500_BATT_OK_REG, new_val); | ||
1806 | return ret; | ||
1807 | } | ||
1808 | |||
1809 | /** | ||
1810 | * ab8500_fg_instant_work() - Run the FG state machine instantly | ||
1811 | * @work: pointer to the work_struct structure | ||
1812 | * | ||
1813 | * Work queue function for instant work | ||
1814 | */ | ||
1815 | static void ab8500_fg_instant_work(struct work_struct *work) | ||
1816 | { | ||
1817 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work); | ||
1818 | |||
1819 | ab8500_fg_algorithm(di); | ||
1820 | } | ||
1821 | |||
1822 | /** | ||
1823 | * ab8500_fg_cc_data_end_handler() - isr to get battery avg current. | ||
1824 | * @irq: interrupt number | ||
1825 | * @_di: pointer to the ab8500_fg structure | ||
1826 | * | ||
1827 | * Returns IRQ status(IRQ_HANDLED) | ||
1828 | */ | ||
1829 | static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di) | ||
1830 | { | ||
1831 | struct ab8500_fg *di = _di; | ||
1832 | complete(&di->ab8500_fg_complete); | ||
1833 | return IRQ_HANDLED; | ||
1834 | } | ||
1835 | |||
1836 | /** | ||
1837 | * ab8500_fg_cc_convend_handler() - isr to get battery avg current. | ||
1838 | * @irq: interrupt number | ||
1839 | * @_di: pointer to the ab8500_fg structure | ||
1840 | * | ||
1841 | * Returns IRQ status(IRQ_HANDLED) | ||
1842 | */ | ||
1843 | static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di) | ||
1844 | { | ||
1845 | struct ab8500_fg *di = _di; | ||
1846 | di->calib_state = AB8500_FG_CALIB_END; | ||
1847 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); | ||
1848 | return IRQ_HANDLED; | ||
1849 | } | ||
1850 | |||
1851 | /** | ||
1852 | * ab8500_fg_cc_convend_handler() - isr to get battery avg current. | ||
1853 | * @irq: interrupt number | ||
1854 | * @_di: pointer to the ab8500_fg structure | ||
1855 | * | ||
1856 | * Returns IRQ status(IRQ_HANDLED) | ||
1857 | */ | ||
1858 | static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di) | ||
1859 | { | ||
1860 | struct ab8500_fg *di = _di; | ||
1861 | |||
1862 | queue_work(di->fg_wq, &di->fg_acc_cur_work); | ||
1863 | |||
1864 | return IRQ_HANDLED; | ||
1865 | } | ||
1866 | |||
1867 | /** | ||
1868 | * ab8500_fg_batt_ovv_handler() - Battery OVV occured | ||
1869 | * @irq: interrupt number | ||
1870 | * @_di: pointer to the ab8500_fg structure | ||
1871 | * | ||
1872 | * Returns IRQ status(IRQ_HANDLED) | ||
1873 | */ | ||
1874 | static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di) | ||
1875 | { | ||
1876 | struct ab8500_fg *di = _di; | ||
1877 | |||
1878 | dev_dbg(di->dev, "Battery OVV\n"); | ||
1879 | di->flags.bat_ovv = true; | ||
1880 | power_supply_changed(&di->fg_psy); | ||
1881 | |||
1882 | /* Schedule a new HW failure check */ | ||
1883 | queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0); | ||
1884 | |||
1885 | return IRQ_HANDLED; | ||
1886 | } | ||
1887 | |||
1888 | /** | ||
1889 | * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold | ||
1890 | * @irq: interrupt number | ||
1891 | * @_di: pointer to the ab8500_fg structure | ||
1892 | * | ||
1893 | * Returns IRQ status(IRQ_HANDLED) | ||
1894 | */ | ||
1895 | static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di) | ||
1896 | { | ||
1897 | struct ab8500_fg *di = _di; | ||
1898 | |||
1899 | if (!di->flags.low_bat_delay) { | ||
1900 | dev_warn(di->dev, "Battery voltage is below LOW threshold\n"); | ||
1901 | di->flags.low_bat_delay = true; | ||
1902 | /* | ||
1903 | * Start a timer to check LOW_BAT again after some time | ||
1904 | * This is done to avoid shutdown on single voltage dips | ||
1905 | */ | ||
1906 | queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, | ||
1907 | round_jiffies(LOW_BAT_CHECK_INTERVAL)); | ||
1908 | } | ||
1909 | return IRQ_HANDLED; | ||
1910 | } | ||
1911 | |||
1912 | /** | ||
1913 | * ab8500_fg_get_property() - get the fg properties | ||
1914 | * @psy: pointer to the power_supply structure | ||
1915 | * @psp: pointer to the power_supply_property structure | ||
1916 | * @val: pointer to the power_supply_propval union | ||
1917 | * | ||
1918 | * This function gets called when an application tries to get the | ||
1919 | * fg properties by reading the sysfs files. | ||
1920 | * voltage_now: battery voltage | ||
1921 | * current_now: battery instant current | ||
1922 | * current_avg: battery average current | ||
1923 | * charge_full_design: capacity where battery is considered full | ||
1924 | * charge_now: battery capacity in nAh | ||
1925 | * capacity: capacity in percent | ||
1926 | * capacity_level: capacity level | ||
1927 | * | ||
1928 | * Returns error code in case of failure else 0 on success | ||
1929 | */ | ||
1930 | static int ab8500_fg_get_property(struct power_supply *psy, | ||
1931 | enum power_supply_property psp, | ||
1932 | union power_supply_propval *val) | ||
1933 | { | ||
1934 | struct ab8500_fg *di; | ||
1935 | |||
1936 | di = to_ab8500_fg_device_info(psy); | ||
1937 | |||
1938 | /* | ||
1939 | * If battery is identified as unknown and charging of unknown | ||
1940 | * batteries is disabled, we always report 100% capacity and | ||
1941 | * capacity level UNKNOWN, since we can't calculate | ||
1942 | * remaining capacity | ||
1943 | */ | ||
1944 | |||
1945 | switch (psp) { | ||
1946 | case POWER_SUPPLY_PROP_VOLTAGE_NOW: | ||
1947 | if (di->flags.bat_ovv) | ||
1948 | val->intval = BATT_OVV_VALUE * 1000; | ||
1949 | else | ||
1950 | val->intval = di->vbat * 1000; | ||
1951 | break; | ||
1952 | case POWER_SUPPLY_PROP_CURRENT_NOW: | ||
1953 | val->intval = di->inst_curr * 1000; | ||
1954 | break; | ||
1955 | case POWER_SUPPLY_PROP_CURRENT_AVG: | ||
1956 | val->intval = di->avg_curr * 1000; | ||
1957 | break; | ||
1958 | case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: | ||
1959 | val->intval = ab8500_fg_convert_mah_to_uwh(di, | ||
1960 | di->bat_cap.max_mah_design); | ||
1961 | break; | ||
1962 | case POWER_SUPPLY_PROP_ENERGY_FULL: | ||
1963 | val->intval = ab8500_fg_convert_mah_to_uwh(di, | ||
1964 | di->bat_cap.max_mah); | ||
1965 | break; | ||
1966 | case POWER_SUPPLY_PROP_ENERGY_NOW: | ||
1967 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && | ||
1968 | di->flags.batt_id_received) | ||
1969 | val->intval = ab8500_fg_convert_mah_to_uwh(di, | ||
1970 | di->bat_cap.max_mah); | ||
1971 | else | ||
1972 | val->intval = ab8500_fg_convert_mah_to_uwh(di, | ||
1973 | di->bat_cap.prev_mah); | ||
1974 | break; | ||
1975 | case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: | ||
1976 | val->intval = di->bat_cap.max_mah_design; | ||
1977 | break; | ||
1978 | case POWER_SUPPLY_PROP_CHARGE_FULL: | ||
1979 | val->intval = di->bat_cap.max_mah; | ||
1980 | break; | ||
1981 | case POWER_SUPPLY_PROP_CHARGE_NOW: | ||
1982 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && | ||
1983 | di->flags.batt_id_received) | ||
1984 | val->intval = di->bat_cap.max_mah; | ||
1985 | else | ||
1986 | val->intval = di->bat_cap.prev_mah; | ||
1987 | break; | ||
1988 | case POWER_SUPPLY_PROP_CAPACITY: | ||
1989 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && | ||
1990 | di->flags.batt_id_received) | ||
1991 | val->intval = 100; | ||
1992 | else | ||
1993 | val->intval = di->bat_cap.prev_percent; | ||
1994 | break; | ||
1995 | case POWER_SUPPLY_PROP_CAPACITY_LEVEL: | ||
1996 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && | ||
1997 | di->flags.batt_id_received) | ||
1998 | val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; | ||
1999 | else | ||
2000 | val->intval = di->bat_cap.prev_level; | ||
2001 | break; | ||
2002 | default: | ||
2003 | return -EINVAL; | ||
2004 | } | ||
2005 | return 0; | ||
2006 | } | ||
2007 | |||
2008 | static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data) | ||
2009 | { | ||
2010 | struct power_supply *psy; | ||
2011 | struct power_supply *ext; | ||
2012 | struct ab8500_fg *di; | ||
2013 | union power_supply_propval ret; | ||
2014 | int i, j; | ||
2015 | bool psy_found = false; | ||
2016 | |||
2017 | psy = (struct power_supply *)data; | ||
2018 | ext = dev_get_drvdata(dev); | ||
2019 | di = to_ab8500_fg_device_info(psy); | ||
2020 | |||
2021 | /* | ||
2022 | * For all psy where the name of your driver | ||
2023 | * appears in any supplied_to | ||
2024 | */ | ||
2025 | for (i = 0; i < ext->num_supplicants; i++) { | ||
2026 | if (!strcmp(ext->supplied_to[i], psy->name)) | ||
2027 | psy_found = true; | ||
2028 | } | ||
2029 | |||
2030 | if (!psy_found) | ||
2031 | return 0; | ||
2032 | |||
2033 | /* Go through all properties for the psy */ | ||
2034 | for (j = 0; j < ext->num_properties; j++) { | ||
2035 | enum power_supply_property prop; | ||
2036 | prop = ext->properties[j]; | ||
2037 | |||
2038 | if (ext->get_property(ext, prop, &ret)) | ||
2039 | continue; | ||
2040 | |||
2041 | switch (prop) { | ||
2042 | case POWER_SUPPLY_PROP_STATUS: | ||
2043 | switch (ext->type) { | ||
2044 | case POWER_SUPPLY_TYPE_BATTERY: | ||
2045 | switch (ret.intval) { | ||
2046 | case POWER_SUPPLY_STATUS_UNKNOWN: | ||
2047 | case POWER_SUPPLY_STATUS_DISCHARGING: | ||
2048 | case POWER_SUPPLY_STATUS_NOT_CHARGING: | ||
2049 | if (!di->flags.charging) | ||
2050 | break; | ||
2051 | di->flags.charging = false; | ||
2052 | di->flags.fully_charged = false; | ||
2053 | queue_work(di->fg_wq, &di->fg_work); | ||
2054 | break; | ||
2055 | case POWER_SUPPLY_STATUS_FULL: | ||
2056 | if (di->flags.fully_charged) | ||
2057 | break; | ||
2058 | di->flags.fully_charged = true; | ||
2059 | di->flags.force_full = true; | ||
2060 | /* Save current capacity as maximum */ | ||
2061 | di->bat_cap.max_mah = di->bat_cap.mah; | ||
2062 | queue_work(di->fg_wq, &di->fg_work); | ||
2063 | break; | ||
2064 | case POWER_SUPPLY_STATUS_CHARGING: | ||
2065 | if (di->flags.charging) | ||
2066 | break; | ||
2067 | di->flags.charging = true; | ||
2068 | di->flags.fully_charged = false; | ||
2069 | queue_work(di->fg_wq, &di->fg_work); | ||
2070 | break; | ||
2071 | }; | ||
2072 | default: | ||
2073 | break; | ||
2074 | }; | ||
2075 | break; | ||
2076 | case POWER_SUPPLY_PROP_TECHNOLOGY: | ||
2077 | switch (ext->type) { | ||
2078 | case POWER_SUPPLY_TYPE_BATTERY: | ||
2079 | if (!di->flags.batt_id_received) { | ||
2080 | const struct abx500_battery_type *b; | ||
2081 | |||
2082 | b = &(di->bat->bat_type[di->bat->batt_id]); | ||
2083 | |||
2084 | di->flags.batt_id_received = true; | ||
2085 | |||
2086 | di->bat_cap.max_mah_design = | ||
2087 | MILLI_TO_MICRO * | ||
2088 | b->charge_full_design; | ||
2089 | |||
2090 | di->bat_cap.max_mah = | ||
2091 | di->bat_cap.max_mah_design; | ||
2092 | |||
2093 | di->vbat_nom = b->nominal_voltage; | ||
2094 | } | ||
2095 | |||
2096 | if (ret.intval) | ||
2097 | di->flags.batt_unknown = false; | ||
2098 | else | ||
2099 | di->flags.batt_unknown = true; | ||
2100 | break; | ||
2101 | default: | ||
2102 | break; | ||
2103 | } | ||
2104 | break; | ||
2105 | case POWER_SUPPLY_PROP_TEMP: | ||
2106 | switch (ext->type) { | ||
2107 | case POWER_SUPPLY_TYPE_BATTERY: | ||
2108 | if (di->flags.batt_id_received) | ||
2109 | di->bat_temp = ret.intval; | ||
2110 | break; | ||
2111 | default: | ||
2112 | break; | ||
2113 | } | ||
2114 | break; | ||
2115 | default: | ||
2116 | break; | ||
2117 | } | ||
2118 | } | ||
2119 | return 0; | ||
2120 | } | ||
2121 | |||
2122 | /** | ||
2123 | * ab8500_fg_init_hw_registers() - Set up FG related registers | ||
2124 | * @di: pointer to the ab8500_fg structure | ||
2125 | * | ||
2126 | * Set up battery OVV, low battery voltage registers | ||
2127 | */ | ||
2128 | static int ab8500_fg_init_hw_registers(struct ab8500_fg *di) | ||
2129 | { | ||
2130 | int ret; | ||
2131 | |||
2132 | /* Set VBAT OVV threshold */ | ||
2133 | ret = abx500_mask_and_set_register_interruptible(di->dev, | ||
2134 | AB8500_CHARGER, | ||
2135 | AB8500_BATT_OVV, | ||
2136 | BATT_OVV_TH_4P75, | ||
2137 | BATT_OVV_TH_4P75); | ||
2138 | if (ret) { | ||
2139 | dev_err(di->dev, "failed to set BATT_OVV\n"); | ||
2140 | goto out; | ||
2141 | } | ||
2142 | |||
2143 | /* Enable VBAT OVV detection */ | ||
2144 | ret = abx500_mask_and_set_register_interruptible(di->dev, | ||
2145 | AB8500_CHARGER, | ||
2146 | AB8500_BATT_OVV, | ||
2147 | BATT_OVV_ENA, | ||
2148 | BATT_OVV_ENA); | ||
2149 | if (ret) { | ||
2150 | dev_err(di->dev, "failed to enable BATT_OVV\n"); | ||
2151 | goto out; | ||
2152 | } | ||
2153 | |||
2154 | /* Low Battery Voltage */ | ||
2155 | ret = abx500_set_register_interruptible(di->dev, | ||
2156 | AB8500_SYS_CTRL2_BLOCK, | ||
2157 | AB8500_LOW_BAT_REG, | ||
2158 | ab8500_volt_to_regval( | ||
2159 | di->bat->fg_params->lowbat_threshold) << 1 | | ||
2160 | LOW_BAT_ENABLE); | ||
2161 | if (ret) { | ||
2162 | dev_err(di->dev, "%s write failed\n", __func__); | ||
2163 | goto out; | ||
2164 | } | ||
2165 | |||
2166 | /* Battery OK threshold */ | ||
2167 | ret = ab8500_fg_battok_init_hw_register(di); | ||
2168 | if (ret) { | ||
2169 | dev_err(di->dev, "BattOk init write failed.\n"); | ||
2170 | goto out; | ||
2171 | } | ||
2172 | out: | ||
2173 | return ret; | ||
2174 | } | ||
2175 | |||
2176 | /** | ||
2177 | * ab8500_fg_external_power_changed() - callback for power supply changes | ||
2178 | * @psy: pointer to the structure power_supply | ||
2179 | * | ||
2180 | * This function is the entry point of the pointer external_power_changed | ||
2181 | * of the structure power_supply. | ||
2182 | * This function gets executed when there is a change in any external power | ||
2183 | * supply that this driver needs to be notified of. | ||
2184 | */ | ||
2185 | static void ab8500_fg_external_power_changed(struct power_supply *psy) | ||
2186 | { | ||
2187 | struct ab8500_fg *di = to_ab8500_fg_device_info(psy); | ||
2188 | |||
2189 | class_for_each_device(power_supply_class, NULL, | ||
2190 | &di->fg_psy, ab8500_fg_get_ext_psy_data); | ||
2191 | } | ||
2192 | |||
2193 | /** | ||
2194 | * abab8500_fg_reinit_work() - work to reset the FG algorithm | ||
2195 | * @work: pointer to the work_struct structure | ||
2196 | * | ||
2197 | * Used to reset the current battery capacity to be able to | ||
2198 | * retrigger a new voltage base capacity calculation. For | ||
2199 | * test and verification purpose. | ||
2200 | */ | ||
2201 | static void ab8500_fg_reinit_work(struct work_struct *work) | ||
2202 | { | ||
2203 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, | ||
2204 | fg_reinit_work.work); | ||
2205 | |||
2206 | if (di->flags.calibrate == false) { | ||
2207 | dev_dbg(di->dev, "Resetting FG state machine to init.\n"); | ||
2208 | ab8500_fg_clear_cap_samples(di); | ||
2209 | ab8500_fg_calc_cap_discharge_voltage(di, true); | ||
2210 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); | ||
2211 | ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); | ||
2212 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); | ||
2213 | |||
2214 | } else { | ||
2215 | dev_err(di->dev, "Residual offset calibration ongoing " | ||
2216 | "retrying..\n"); | ||
2217 | /* Wait one second until next try*/ | ||
2218 | queue_delayed_work(di->fg_wq, &di->fg_reinit_work, | ||
2219 | round_jiffies(1)); | ||
2220 | } | ||
2221 | } | ||
2222 | |||
2223 | /** | ||
2224 | * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values | ||
2225 | * | ||
2226 | * This function can be used to force the FG algorithm to recalculate a new | ||
2227 | * voltage based battery capacity. | ||
2228 | */ | ||
2229 | void ab8500_fg_reinit(void) | ||
2230 | { | ||
2231 | struct ab8500_fg *di = ab8500_fg_get(); | ||
2232 | /* User won't be notified if a null pointer returned. */ | ||
2233 | if (di != NULL) | ||
2234 | queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0); | ||
2235 | } | ||
2236 | |||
2237 | /* Exposure to the sysfs interface */ | ||
2238 | |||
2239 | struct ab8500_fg_sysfs_entry { | ||
2240 | struct attribute attr; | ||
2241 | ssize_t (*show)(struct ab8500_fg *, char *); | ||
2242 | ssize_t (*store)(struct ab8500_fg *, const char *, size_t); | ||
2243 | }; | ||
2244 | |||
2245 | static ssize_t charge_full_show(struct ab8500_fg *di, char *buf) | ||
2246 | { | ||
2247 | return sprintf(buf, "%d\n", di->bat_cap.max_mah); | ||
2248 | } | ||
2249 | |||
2250 | static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf, | ||
2251 | size_t count) | ||
2252 | { | ||
2253 | unsigned long charge_full; | ||
2254 | ssize_t ret = -EINVAL; | ||
2255 | |||
2256 | ret = strict_strtoul(buf, 10, &charge_full); | ||
2257 | |||
2258 | dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full); | ||
2259 | |||
2260 | if (!ret) { | ||
2261 | di->bat_cap.max_mah = (int) charge_full; | ||
2262 | ret = count; | ||
2263 | } | ||
2264 | return ret; | ||
2265 | } | ||
2266 | |||
2267 | static ssize_t charge_now_show(struct ab8500_fg *di, char *buf) | ||
2268 | { | ||
2269 | return sprintf(buf, "%d\n", di->bat_cap.prev_mah); | ||
2270 | } | ||
2271 | |||
2272 | static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf, | ||
2273 | size_t count) | ||
2274 | { | ||
2275 | unsigned long charge_now; | ||
2276 | ssize_t ret; | ||
2277 | |||
2278 | ret = strict_strtoul(buf, 10, &charge_now); | ||
2279 | |||
2280 | dev_dbg(di->dev, "Ret %zd charge_now %lu was %d", | ||
2281 | ret, charge_now, di->bat_cap.prev_mah); | ||
2282 | |||
2283 | if (!ret) { | ||
2284 | di->bat_cap.user_mah = (int) charge_now; | ||
2285 | di->flags.user_cap = true; | ||
2286 | ret = count; | ||
2287 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); | ||
2288 | } | ||
2289 | return ret; | ||
2290 | } | ||
2291 | |||
2292 | static struct ab8500_fg_sysfs_entry charge_full_attr = | ||
2293 | __ATTR(charge_full, 0644, charge_full_show, charge_full_store); | ||
2294 | |||
2295 | static struct ab8500_fg_sysfs_entry charge_now_attr = | ||
2296 | __ATTR(charge_now, 0644, charge_now_show, charge_now_store); | ||
2297 | |||
2298 | static ssize_t | ||
2299 | ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf) | ||
2300 | { | ||
2301 | struct ab8500_fg_sysfs_entry *entry; | ||
2302 | struct ab8500_fg *di; | ||
2303 | |||
2304 | entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); | ||
2305 | di = container_of(kobj, struct ab8500_fg, fg_kobject); | ||
2306 | |||
2307 | if (!entry->show) | ||
2308 | return -EIO; | ||
2309 | |||
2310 | return entry->show(di, buf); | ||
2311 | } | ||
2312 | static ssize_t | ||
2313 | ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf, | ||
2314 | size_t count) | ||
2315 | { | ||
2316 | struct ab8500_fg_sysfs_entry *entry; | ||
2317 | struct ab8500_fg *di; | ||
2318 | |||
2319 | entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); | ||
2320 | di = container_of(kobj, struct ab8500_fg, fg_kobject); | ||
2321 | |||
2322 | if (!entry->store) | ||
2323 | return -EIO; | ||
2324 | |||
2325 | return entry->store(di, buf, count); | ||
2326 | } | ||
2327 | |||
2328 | static const struct sysfs_ops ab8500_fg_sysfs_ops = { | ||
2329 | .show = ab8500_fg_show, | ||
2330 | .store = ab8500_fg_store, | ||
2331 | }; | ||
2332 | |||
2333 | static struct attribute *ab8500_fg_attrs[] = { | ||
2334 | &charge_full_attr.attr, | ||
2335 | &charge_now_attr.attr, | ||
2336 | NULL, | ||
2337 | }; | ||
2338 | |||
2339 | static struct kobj_type ab8500_fg_ktype = { | ||
2340 | .sysfs_ops = &ab8500_fg_sysfs_ops, | ||
2341 | .default_attrs = ab8500_fg_attrs, | ||
2342 | }; | ||
2343 | |||
2344 | /** | ||
2345 | * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry | ||
2346 | * @di: pointer to the struct ab8500_chargalg | ||
2347 | * | ||
2348 | * This function removes the entry in sysfs. | ||
2349 | */ | ||
2350 | static void ab8500_fg_sysfs_exit(struct ab8500_fg *di) | ||
2351 | { | ||
2352 | kobject_del(&di->fg_kobject); | ||
2353 | } | ||
2354 | |||
2355 | /** | ||
2356 | * ab8500_chargalg_sysfs_init() - init of sysfs entry | ||
2357 | * @di: pointer to the struct ab8500_chargalg | ||
2358 | * | ||
2359 | * This function adds an entry in sysfs. | ||
2360 | * Returns error code in case of failure else 0(on success) | ||
2361 | */ | ||
2362 | static int ab8500_fg_sysfs_init(struct ab8500_fg *di) | ||
2363 | { | ||
2364 | int ret = 0; | ||
2365 | |||
2366 | ret = kobject_init_and_add(&di->fg_kobject, | ||
2367 | &ab8500_fg_ktype, | ||
2368 | NULL, "battery"); | ||
2369 | if (ret < 0) | ||
2370 | dev_err(di->dev, "failed to create sysfs entry\n"); | ||
2371 | |||
2372 | return ret; | ||
2373 | } | ||
2374 | /* Exposure to the sysfs interface <<END>> */ | ||
2375 | |||
2376 | #if defined(CONFIG_PM) | ||
2377 | static int ab8500_fg_resume(struct platform_device *pdev) | ||
2378 | { | ||
2379 | struct ab8500_fg *di = platform_get_drvdata(pdev); | ||
2380 | |||
2381 | /* | ||
2382 | * Change state if we're not charging. If we're charging we will wake | ||
2383 | * up on the FG IRQ | ||
2384 | */ | ||
2385 | if (!di->flags.charging) { | ||
2386 | ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP); | ||
2387 | queue_work(di->fg_wq, &di->fg_work); | ||
2388 | } | ||
2389 | |||
2390 | return 0; | ||
2391 | } | ||
2392 | |||
2393 | static int ab8500_fg_suspend(struct platform_device *pdev, | ||
2394 | pm_message_t state) | ||
2395 | { | ||
2396 | struct ab8500_fg *di = platform_get_drvdata(pdev); | ||
2397 | |||
2398 | flush_delayed_work(&di->fg_periodic_work); | ||
2399 | |||
2400 | /* | ||
2401 | * If the FG is enabled we will disable it before going to suspend | ||
2402 | * only if we're not charging | ||
2403 | */ | ||
2404 | if (di->flags.fg_enabled && !di->flags.charging) | ||
2405 | ab8500_fg_coulomb_counter(di, false); | ||
2406 | |||
2407 | return 0; | ||
2408 | } | ||
2409 | #else | ||
2410 | #define ab8500_fg_suspend NULL | ||
2411 | #define ab8500_fg_resume NULL | ||
2412 | #endif | ||
2413 | |||
2414 | static int __devexit ab8500_fg_remove(struct platform_device *pdev) | ||
2415 | { | ||
2416 | int ret = 0; | ||
2417 | struct ab8500_fg *di = platform_get_drvdata(pdev); | ||
2418 | |||
2419 | list_del(&di->node); | ||
2420 | |||
2421 | /* Disable coulomb counter */ | ||
2422 | ret = ab8500_fg_coulomb_counter(di, false); | ||
2423 | if (ret) | ||
2424 | dev_err(di->dev, "failed to disable coulomb counter\n"); | ||
2425 | |||
2426 | destroy_workqueue(di->fg_wq); | ||
2427 | ab8500_fg_sysfs_exit(di); | ||
2428 | |||
2429 | flush_scheduled_work(); | ||
2430 | power_supply_unregister(&di->fg_psy); | ||
2431 | platform_set_drvdata(pdev, NULL); | ||
2432 | kfree(di); | ||
2433 | return ret; | ||
2434 | } | ||
2435 | |||
2436 | /* ab8500 fg driver interrupts and their respective isr */ | ||
2437 | static struct ab8500_fg_interrupts ab8500_fg_irq[] = { | ||
2438 | {"NCONV_ACCU", ab8500_fg_cc_convend_handler}, | ||
2439 | {"BATT_OVV", ab8500_fg_batt_ovv_handler}, | ||
2440 | {"LOW_BAT_F", ab8500_fg_lowbatf_handler}, | ||
2441 | {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler}, | ||
2442 | {"CCEOC", ab8500_fg_cc_data_end_handler}, | ||
2443 | }; | ||
2444 | |||
2445 | static int __devinit ab8500_fg_probe(struct platform_device *pdev) | ||
2446 | { | ||
2447 | int i, irq; | ||
2448 | int ret = 0; | ||
2449 | struct abx500_bm_plat_data *plat_data; | ||
2450 | |||
2451 | struct ab8500_fg *di = | ||
2452 | kzalloc(sizeof(struct ab8500_fg), GFP_KERNEL); | ||
2453 | if (!di) | ||
2454 | return -ENOMEM; | ||
2455 | |||
2456 | mutex_init(&di->cc_lock); | ||
2457 | |||
2458 | /* get parent data */ | ||
2459 | di->dev = &pdev->dev; | ||
2460 | di->parent = dev_get_drvdata(pdev->dev.parent); | ||
2461 | di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0"); | ||
2462 | |||
2463 | /* get fg specific platform data */ | ||
2464 | plat_data = pdev->dev.platform_data; | ||
2465 | di->pdata = plat_data->fg; | ||
2466 | if (!di->pdata) { | ||
2467 | dev_err(di->dev, "no fg platform data supplied\n"); | ||
2468 | ret = -EINVAL; | ||
2469 | goto free_device_info; | ||
2470 | } | ||
2471 | |||
2472 | /* get battery specific platform data */ | ||
2473 | di->bat = plat_data->battery; | ||
2474 | if (!di->bat) { | ||
2475 | dev_err(di->dev, "no battery platform data supplied\n"); | ||
2476 | ret = -EINVAL; | ||
2477 | goto free_device_info; | ||
2478 | } | ||
2479 | |||
2480 | di->fg_psy.name = "ab8500_fg"; | ||
2481 | di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY; | ||
2482 | di->fg_psy.properties = ab8500_fg_props; | ||
2483 | di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props); | ||
2484 | di->fg_psy.get_property = ab8500_fg_get_property; | ||
2485 | di->fg_psy.supplied_to = di->pdata->supplied_to; | ||
2486 | di->fg_psy.num_supplicants = di->pdata->num_supplicants; | ||
2487 | di->fg_psy.external_power_changed = ab8500_fg_external_power_changed; | ||
2488 | |||
2489 | di->bat_cap.max_mah_design = MILLI_TO_MICRO * | ||
2490 | di->bat->bat_type[di->bat->batt_id].charge_full_design; | ||
2491 | |||
2492 | di->bat_cap.max_mah = di->bat_cap.max_mah_design; | ||
2493 | |||
2494 | di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage; | ||
2495 | |||
2496 | di->init_capacity = true; | ||
2497 | |||
2498 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); | ||
2499 | ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); | ||
2500 | |||
2501 | /* Create a work queue for running the FG algorithm */ | ||
2502 | di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq"); | ||
2503 | if (di->fg_wq == NULL) { | ||
2504 | dev_err(di->dev, "failed to create work queue\n"); | ||
2505 | goto free_device_info; | ||
2506 | } | ||
2507 | |||
2508 | /* Init work for running the fg algorithm instantly */ | ||
2509 | INIT_WORK(&di->fg_work, ab8500_fg_instant_work); | ||
2510 | |||
2511 | /* Init work for getting the battery accumulated current */ | ||
2512 | INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work); | ||
2513 | |||
2514 | /* Init work for reinitialising the fg algorithm */ | ||
2515 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_reinit_work, | ||
2516 | ab8500_fg_reinit_work); | ||
2517 | |||
2518 | /* Work delayed Queue to run the state machine */ | ||
2519 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_periodic_work, | ||
2520 | ab8500_fg_periodic_work); | ||
2521 | |||
2522 | /* Work to check low battery condition */ | ||
2523 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_low_bat_work, | ||
2524 | ab8500_fg_low_bat_work); | ||
2525 | |||
2526 | /* Init work for HW failure check */ | ||
2527 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_check_hw_failure_work, | ||
2528 | ab8500_fg_check_hw_failure_work); | ||
2529 | |||
2530 | /* Initialize OVV, and other registers */ | ||
2531 | ret = ab8500_fg_init_hw_registers(di); | ||
2532 | if (ret) { | ||
2533 | dev_err(di->dev, "failed to initialize registers\n"); | ||
2534 | goto free_inst_curr_wq; | ||
2535 | } | ||
2536 | |||
2537 | /* Consider battery unknown until we're informed otherwise */ | ||
2538 | di->flags.batt_unknown = true; | ||
2539 | di->flags.batt_id_received = false; | ||
2540 | |||
2541 | /* Register FG power supply class */ | ||
2542 | ret = power_supply_register(di->dev, &di->fg_psy); | ||
2543 | if (ret) { | ||
2544 | dev_err(di->dev, "failed to register FG psy\n"); | ||
2545 | goto free_inst_curr_wq; | ||
2546 | } | ||
2547 | |||
2548 | di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer); | ||
2549 | ab8500_fg_coulomb_counter(di, true); | ||
2550 | |||
2551 | /* Initialize completion used to notify completion of inst current */ | ||
2552 | init_completion(&di->ab8500_fg_complete); | ||
2553 | |||
2554 | /* Register interrupts */ | ||
2555 | for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) { | ||
2556 | irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name); | ||
2557 | ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr, | ||
2558 | IRQF_SHARED | IRQF_NO_SUSPEND, | ||
2559 | ab8500_fg_irq[i].name, di); | ||
2560 | |||
2561 | if (ret != 0) { | ||
2562 | dev_err(di->dev, "failed to request %s IRQ %d: %d\n" | ||
2563 | , ab8500_fg_irq[i].name, irq, ret); | ||
2564 | goto free_irq; | ||
2565 | } | ||
2566 | dev_dbg(di->dev, "Requested %s IRQ %d: %d\n", | ||
2567 | ab8500_fg_irq[i].name, irq, ret); | ||
2568 | } | ||
2569 | di->irq = platform_get_irq_byname(pdev, "CCEOC"); | ||
2570 | disable_irq(di->irq); | ||
2571 | |||
2572 | platform_set_drvdata(pdev, di); | ||
2573 | |||
2574 | ret = ab8500_fg_sysfs_init(di); | ||
2575 | if (ret) { | ||
2576 | dev_err(di->dev, "failed to create sysfs entry\n"); | ||
2577 | goto free_irq; | ||
2578 | } | ||
2579 | |||
2580 | /* Calibrate the fg first time */ | ||
2581 | di->flags.calibrate = true; | ||
2582 | di->calib_state = AB8500_FG_CALIB_INIT; | ||
2583 | |||
2584 | /* Use room temp as default value until we get an update from driver. */ | ||
2585 | di->bat_temp = 210; | ||
2586 | |||
2587 | /* Run the FG algorithm */ | ||
2588 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); | ||
2589 | |||
2590 | list_add_tail(&di->node, &ab8500_fg_list); | ||
2591 | |||
2592 | return ret; | ||
2593 | |||
2594 | free_irq: | ||
2595 | power_supply_unregister(&di->fg_psy); | ||
2596 | |||
2597 | /* We also have to free all successfully registered irqs */ | ||
2598 | for (i = i - 1; i >= 0; i--) { | ||
2599 | irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name); | ||
2600 | free_irq(irq, di); | ||
2601 | } | ||
2602 | free_inst_curr_wq: | ||
2603 | destroy_workqueue(di->fg_wq); | ||
2604 | free_device_info: | ||
2605 | kfree(di); | ||
2606 | |||
2607 | return ret; | ||
2608 | } | ||
2609 | |||
2610 | static struct platform_driver ab8500_fg_driver = { | ||
2611 | .probe = ab8500_fg_probe, | ||
2612 | .remove = __devexit_p(ab8500_fg_remove), | ||
2613 | .suspend = ab8500_fg_suspend, | ||
2614 | .resume = ab8500_fg_resume, | ||
2615 | .driver = { | ||
2616 | .name = "ab8500-fg", | ||
2617 | .owner = THIS_MODULE, | ||
2618 | }, | ||
2619 | }; | ||
2620 | |||
2621 | static int __init ab8500_fg_init(void) | ||
2622 | { | ||
2623 | return platform_driver_register(&ab8500_fg_driver); | ||
2624 | } | ||
2625 | |||
2626 | static void __exit ab8500_fg_exit(void) | ||
2627 | { | ||
2628 | platform_driver_unregister(&ab8500_fg_driver); | ||
2629 | } | ||
2630 | |||
2631 | subsys_initcall_sync(ab8500_fg_init); | ||
2632 | module_exit(ab8500_fg_exit); | ||
2633 | |||
2634 | MODULE_LICENSE("GPL v2"); | ||
2635 | MODULE_AUTHOR("Johan Palsson, Karl Komierowski"); | ||
2636 | MODULE_ALIAS("platform:ab8500-fg"); | ||
2637 | MODULE_DESCRIPTION("AB8500 Fuel Gauge driver"); | ||