aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/wl12xx/wl1251_spi.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wireless/wl12xx/wl1251_spi.c')
-rw-r--r--drivers/net/wireless/wl12xx/wl1251_spi.c394
1 files changed, 394 insertions, 0 deletions
diff --git a/drivers/net/wireless/wl12xx/wl1251_spi.c b/drivers/net/wireless/wl12xx/wl1251_spi.c
new file mode 100644
index 000000000000..d7eee8ce7ef2
--- /dev/null
+++ b/drivers/net/wireless/wl12xx/wl1251_spi.c
@@ -0,0 +1,394 @@
1/*
2 * This file is part of wl12xx
3 *
4 * Copyright (C) 2008 Nokia Corporation
5 *
6 * Contact: Kalle Valo <kalle.valo@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/crc7.h>
26#include <linux/spi/spi.h>
27
28#include "wl12xx.h"
29#include "wl12xx_80211.h"
30#include "reg.h"
31#include "wl1251_spi.h"
32
33static int wl12xx_translate_reg_addr(struct wl12xx *wl, int addr)
34{
35 /* If the address is lower than REGISTERS_BASE, it means that this is
36 * a chip-specific register address, so look it up in the registers
37 * table */
38 if (addr < REGISTERS_BASE) {
39 /* Make sure we don't go over the table */
40 if (addr >= ACX_REG_TABLE_LEN) {
41 wl12xx_error("address out of range (%d)", addr);
42 return -EINVAL;
43 }
44 addr = wl->chip.acx_reg_table[addr];
45 }
46
47 return addr - wl->physical_reg_addr + wl->virtual_reg_addr;
48}
49
50static int wl12xx_translate_mem_addr(struct wl12xx *wl, int addr)
51{
52 return addr - wl->physical_mem_addr + wl->virtual_mem_addr;
53}
54
55
56void wl12xx_spi_reset(struct wl12xx *wl)
57{
58 u8 *cmd;
59 struct spi_transfer t;
60 struct spi_message m;
61
62 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
63 if (!cmd) {
64 wl12xx_error("could not allocate cmd for spi reset");
65 return;
66 }
67
68 memset(&t, 0, sizeof(t));
69 spi_message_init(&m);
70
71 memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
72
73 t.tx_buf = cmd;
74 t.len = WSPI_INIT_CMD_LEN;
75 spi_message_add_tail(&t, &m);
76
77 spi_sync(wl->spi, &m);
78
79 wl12xx_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
80}
81
82void wl12xx_spi_init(struct wl12xx *wl)
83{
84 u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
85 struct spi_transfer t;
86 struct spi_message m;
87
88 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
89 if (!cmd) {
90 wl12xx_error("could not allocate cmd for spi init");
91 return;
92 }
93
94 memset(crc, 0, sizeof(crc));
95 memset(&t, 0, sizeof(t));
96 spi_message_init(&m);
97
98 /*
99 * Set WSPI_INIT_COMMAND
100 * the data is being send from the MSB to LSB
101 */
102 cmd[2] = 0xff;
103 cmd[3] = 0xff;
104 cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
105 cmd[0] = 0;
106 cmd[7] = 0;
107 cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
108 cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
109
110 if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
111 cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY;
112 else
113 cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
114
115 cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
116 | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
117
118 crc[0] = cmd[1];
119 crc[1] = cmd[0];
120 crc[2] = cmd[7];
121 crc[3] = cmd[6];
122 crc[4] = cmd[5];
123
124 cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
125 cmd[4] |= WSPI_INIT_CMD_END;
126
127 t.tx_buf = cmd;
128 t.len = WSPI_INIT_CMD_LEN;
129 spi_message_add_tail(&t, &m);
130
131 spi_sync(wl->spi, &m);
132
133 wl12xx_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
134}
135
136/* Set the SPI partitions to access the chip addresses
137 *
138 * There are two VIRTUAL (SPI) partitions (the memory partition and the
139 * registers partition), which are mapped to two different areas of the
140 * PHYSICAL (hardware) memory. This function also makes other checks to
141 * ensure that the partitions are not overlapping. In the diagram below, the
142 * memory partition comes before the register partition, but the opposite is
143 * also supported.
144 *
145 * PHYSICAL address
146 * space
147 *
148 * | |
149 * ...+----+--> mem_start
150 * VIRTUAL address ... | |
151 * space ... | | [PART_0]
152 * ... | |
153 * 0x00000000 <--+----+... ...+----+--> mem_start + mem_size
154 * | | ... | |
155 * |MEM | ... | |
156 * | | ... | |
157 * part_size <--+----+... | | {unused area)
158 * | | ... | |
159 * |REG | ... | |
160 * part_size | | ... | |
161 * + <--+----+... ...+----+--> reg_start
162 * reg_size ... | |
163 * ... | | [PART_1]
164 * ... | |
165 * ...+----+--> reg_start + reg_size
166 * | |
167 *
168 */
169int wl12xx_set_partition(struct wl12xx *wl,
170 u32 mem_start, u32 mem_size,
171 u32 reg_start, u32 reg_size)
172{
173 struct wl12xx_partition *partition;
174 struct spi_transfer t;
175 struct spi_message m;
176 size_t len, cmd_len;
177 u32 *cmd;
178 int addr;
179
180 cmd_len = sizeof(u32) + 2 * sizeof(struct wl12xx_partition);
181 cmd = kzalloc(cmd_len, GFP_KERNEL);
182 if (!cmd)
183 return -ENOMEM;
184
185 spi_message_init(&m);
186 memset(&t, 0, sizeof(t));
187
188 partition = (struct wl12xx_partition *) (cmd + 1);
189 addr = HW_ACCESS_PART0_SIZE_ADDR;
190 len = 2 * sizeof(struct wl12xx_partition);
191
192 *cmd |= WSPI_CMD_WRITE;
193 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
194 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
195
196 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
197 mem_start, mem_size);
198 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
199 reg_start, reg_size);
200
201 /* Make sure that the two partitions together don't exceed the
202 * address range */
203 if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) {
204 wl12xx_debug(DEBUG_SPI, "Total size exceeds maximum virtual"
205 " address range. Truncating partition[0].");
206 mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size;
207 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
208 mem_start, mem_size);
209 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
210 reg_start, reg_size);
211 }
212
213 if ((mem_start < reg_start) &&
214 ((mem_start + mem_size) > reg_start)) {
215 /* Guarantee that the memory partition doesn't overlap the
216 * registers partition */
217 wl12xx_debug(DEBUG_SPI, "End of partition[0] is "
218 "overlapping partition[1]. Adjusted.");
219 mem_size = reg_start - mem_start;
220 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
221 mem_start, mem_size);
222 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
223 reg_start, reg_size);
224 } else if ((reg_start < mem_start) &&
225 ((reg_start + reg_size) > mem_start)) {
226 /* Guarantee that the register partition doesn't overlap the
227 * memory partition */
228 wl12xx_debug(DEBUG_SPI, "End of partition[1] is"
229 " overlapping partition[0]. Adjusted.");
230 reg_size = mem_start - reg_start;
231 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
232 mem_start, mem_size);
233 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
234 reg_start, reg_size);
235 }
236
237 partition[0].start = mem_start;
238 partition[0].size = mem_size;
239 partition[1].start = reg_start;
240 partition[1].size = reg_size;
241
242 wl->physical_mem_addr = mem_start;
243 wl->physical_reg_addr = reg_start;
244
245 wl->virtual_mem_addr = 0;
246 wl->virtual_reg_addr = mem_size;
247
248 t.tx_buf = cmd;
249 t.len = cmd_len;
250 spi_message_add_tail(&t, &m);
251
252 spi_sync(wl->spi, &m);
253
254 kfree(cmd);
255
256 return 0;
257}
258
259void wl12xx_spi_read(struct wl12xx *wl, int addr, void *buf,
260 size_t len, bool fixed)
261{
262 struct spi_transfer t[3];
263 struct spi_message m;
264 u8 *busy_buf;
265 u32 *cmd;
266
267 cmd = &wl->buffer_cmd;
268 busy_buf = wl->buffer_busyword;
269
270 *cmd = 0;
271 *cmd |= WSPI_CMD_READ;
272 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
273 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
274
275 if (fixed)
276 *cmd |= WSPI_CMD_FIXED;
277
278 spi_message_init(&m);
279 memset(t, 0, sizeof(t));
280
281 t[0].tx_buf = cmd;
282 t[0].len = 4;
283 spi_message_add_tail(&t[0], &m);
284
285 /* Busy and non busy words read */
286 t[1].rx_buf = busy_buf;
287 t[1].len = WL12XX_BUSY_WORD_LEN;
288 spi_message_add_tail(&t[1], &m);
289
290 t[2].rx_buf = buf;
291 t[2].len = len;
292 spi_message_add_tail(&t[2], &m);
293
294 spi_sync(wl->spi, &m);
295
296 /* FIXME: check busy words */
297
298 wl12xx_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd));
299 wl12xx_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
300}
301
302void wl12xx_spi_write(struct wl12xx *wl, int addr, void *buf,
303 size_t len, bool fixed)
304{
305 struct spi_transfer t[2];
306 struct spi_message m;
307 u32 *cmd;
308
309 cmd = &wl->buffer_cmd;
310
311 *cmd = 0;
312 *cmd |= WSPI_CMD_WRITE;
313 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
314 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
315
316 if (fixed)
317 *cmd |= WSPI_CMD_FIXED;
318
319 spi_message_init(&m);
320 memset(t, 0, sizeof(t));
321
322 t[0].tx_buf = cmd;
323 t[0].len = sizeof(*cmd);
324 spi_message_add_tail(&t[0], &m);
325
326 t[1].tx_buf = buf;
327 t[1].len = len;
328 spi_message_add_tail(&t[1], &m);
329
330 spi_sync(wl->spi, &m);
331
332 wl12xx_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd));
333 wl12xx_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
334}
335
336void wl12xx_spi_mem_read(struct wl12xx *wl, int addr, void *buf,
337 size_t len)
338{
339 int physical;
340
341 physical = wl12xx_translate_mem_addr(wl, addr);
342
343 wl12xx_spi_read(wl, physical, buf, len, false);
344}
345
346void wl12xx_spi_mem_write(struct wl12xx *wl, int addr, void *buf,
347 size_t len)
348{
349 int physical;
350
351 physical = wl12xx_translate_mem_addr(wl, addr);
352
353 wl12xx_spi_write(wl, physical, buf, len, false);
354}
355
356void wl12xx_spi_reg_read(struct wl12xx *wl, int addr, void *buf, size_t len,
357 bool fixed)
358{
359 int physical;
360
361 physical = wl12xx_translate_reg_addr(wl, addr);
362
363 wl12xx_spi_read(wl, physical, buf, len, fixed);
364}
365
366void wl12xx_spi_reg_write(struct wl12xx *wl, int addr, void *buf, size_t len,
367 bool fixed)
368{
369 int physical;
370
371 physical = wl12xx_translate_reg_addr(wl, addr);
372
373 wl12xx_spi_write(wl, physical, buf, len, fixed);
374}
375
376u32 wl12xx_mem_read32(struct wl12xx *wl, int addr)
377{
378 return wl12xx_read32(wl, wl12xx_translate_mem_addr(wl, addr));
379}
380
381void wl12xx_mem_write32(struct wl12xx *wl, int addr, u32 val)
382{
383 wl12xx_write32(wl, wl12xx_translate_mem_addr(wl, addr), val);
384}
385
386u32 wl12xx_reg_read32(struct wl12xx *wl, int addr)
387{
388 return wl12xx_read32(wl, wl12xx_translate_reg_addr(wl, addr));
389}
390
391void wl12xx_reg_write32(struct wl12xx *wl, int addr, u32 val)
392{
393 wl12xx_write32(wl, wl12xx_translate_reg_addr(wl, addr), val);
394}