aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ixgbe/ixgbe_common.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ixgbe/ixgbe_common.c')
-rw-r--r--drivers/net/ixgbe/ixgbe_common.c539
1 files changed, 516 insertions, 23 deletions
diff --git a/drivers/net/ixgbe/ixgbe_common.c b/drivers/net/ixgbe/ixgbe_common.c
index eb49020903c1..1159d9138f05 100644
--- a/drivers/net/ixgbe/ixgbe_common.c
+++ b/drivers/net/ixgbe/ixgbe_common.c
@@ -34,7 +34,6 @@
34#include "ixgbe_common.h" 34#include "ixgbe_common.h"
35#include "ixgbe_phy.h" 35#include "ixgbe_phy.h"
36 36
37static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); 37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); 38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); 39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
@@ -595,14 +594,14 @@ out:
595} 594}
596 595
597/** 596/**
598 * ixgbe_read_eeprom_generic - Read EEPROM word using EERD 597 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
599 * @hw: pointer to hardware structure 598 * @hw: pointer to hardware structure
600 * @offset: offset of word in the EEPROM to read 599 * @offset: offset of word in the EEPROM to read
601 * @data: word read from the EEPROM 600 * @data: word read from the EEPROM
602 * 601 *
603 * Reads a 16 bit word from the EEPROM using the EERD register. 602 * Reads a 16 bit word from the EEPROM using the EERD register.
604 **/ 603 **/
605s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) 604s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
606{ 605{
607 u32 eerd; 606 u32 eerd;
608 s32 status; 607 s32 status;
@@ -614,15 +613,15 @@ s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
614 goto out; 613 goto out;
615 } 614 }
616 615
617 eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) + 616 eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
618 IXGBE_EEPROM_READ_REG_START; 617 IXGBE_EEPROM_RW_REG_START;
619 618
620 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); 619 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
621 status = ixgbe_poll_eeprom_eerd_done(hw); 620 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
622 621
623 if (status == 0) 622 if (status == 0)
624 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >> 623 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
625 IXGBE_EEPROM_READ_REG_DATA); 624 IXGBE_EEPROM_RW_REG_DATA);
626 else 625 else
627 hw_dbg(hw, "Eeprom read timed out\n"); 626 hw_dbg(hw, "Eeprom read timed out\n");
628 627
@@ -631,20 +630,26 @@ out:
631} 630}
632 631
633/** 632/**
634 * ixgbe_poll_eeprom_eerd_done - Poll EERD status 633 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
635 * @hw: pointer to hardware structure 634 * @hw: pointer to hardware structure
635 * @ee_reg: EEPROM flag for polling
636 * 636 *
637 * Polls the status bit (bit 1) of the EERD to determine when the read is done. 637 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
638 * read or write is done respectively.
638 **/ 639 **/
639static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw) 640s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
640{ 641{
641 u32 i; 642 u32 i;
642 u32 reg; 643 u32 reg;
643 s32 status = IXGBE_ERR_EEPROM; 644 s32 status = IXGBE_ERR_EEPROM;
644 645
645 for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) { 646 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
646 reg = IXGBE_READ_REG(hw, IXGBE_EERD); 647 if (ee_reg == IXGBE_NVM_POLL_READ)
647 if (reg & IXGBE_EEPROM_READ_REG_DONE) { 648 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
649 else
650 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
651
652 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
648 status = 0; 653 status = 0;
649 break; 654 break;
650 } 655 }
@@ -1392,14 +1397,17 @@ s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw,
1392 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 1397 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1393 fctrl |= IXGBE_FCTRL_UPE; 1398 fctrl |= IXGBE_FCTRL_UPE;
1394 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 1399 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1400 hw->addr_ctrl.uc_set_promisc = true;
1395 } 1401 }
1396 } else { 1402 } else {
1397 /* only disable if set by overflow, not by user */ 1403 /* only disable if set by overflow, not by user */
1398 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { 1404 if ((old_promisc_setting && hw->addr_ctrl.uc_set_promisc) &&
1405 !(hw->addr_ctrl.user_set_promisc)) {
1399 hw_dbg(hw, " Leaving address overflow promisc mode\n"); 1406 hw_dbg(hw, " Leaving address overflow promisc mode\n");
1400 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 1407 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1401 fctrl &= ~IXGBE_FCTRL_UPE; 1408 fctrl &= ~IXGBE_FCTRL_UPE;
1402 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 1409 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1410 hw->addr_ctrl.uc_set_promisc = false;
1403 } 1411 }
1404 } 1412 }
1405 1413
@@ -1484,26 +1492,24 @@ static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1484/** 1492/**
1485 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses 1493 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1486 * @hw: pointer to hardware structure 1494 * @hw: pointer to hardware structure
1487 * @mc_addr_list: the list of new multicast addresses 1495 * @netdev: pointer to net device structure
1488 * @mc_addr_count: number of addresses
1489 * @next: iterator function to walk the multicast address list
1490 * 1496 *
1491 * The given list replaces any existing list. Clears the MC addrs from receive 1497 * The given list replaces any existing list. Clears the MC addrs from receive
1492 * address registers and the multicast table. Uses unused receive address 1498 * address registers and the multicast table. Uses unused receive address
1493 * registers for the first multicast addresses, and hashes the rest into the 1499 * registers for the first multicast addresses, and hashes the rest into the
1494 * multicast table. 1500 * multicast table.
1495 **/ 1501 **/
1496s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list, 1502s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1497 u32 mc_addr_count, ixgbe_mc_addr_itr next) 1503 struct net_device *netdev)
1498{ 1504{
1505 struct netdev_hw_addr *ha;
1499 u32 i; 1506 u32 i;
1500 u32 vmdq;
1501 1507
1502 /* 1508 /*
1503 * Set the new number of MC addresses that we are being requested to 1509 * Set the new number of MC addresses that we are being requested to
1504 * use. 1510 * use.
1505 */ 1511 */
1506 hw->addr_ctrl.num_mc_addrs = mc_addr_count; 1512 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1507 hw->addr_ctrl.mta_in_use = 0; 1513 hw->addr_ctrl.mta_in_use = 0;
1508 1514
1509 /* Clear the MTA */ 1515 /* Clear the MTA */
@@ -1512,9 +1518,9 @@ s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1512 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); 1518 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1513 1519
1514 /* Add the new addresses */ 1520 /* Add the new addresses */
1515 for (i = 0; i < mc_addr_count; i++) { 1521 netdev_for_each_mc_addr(ha, netdev) {
1516 hw_dbg(hw, " Adding the multicast addresses:\n"); 1522 hw_dbg(hw, " Adding the multicast addresses:\n");
1517 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq)); 1523 ixgbe_set_mta(hw, ha->addr);
1518 } 1524 }
1519 1525
1520 /* Enable mta */ 1526 /* Enable mta */
@@ -2254,3 +2260,490 @@ s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2254 2260
2255 return 0; 2261 return 0;
2256} 2262}
2263
2264/**
2265 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2266 * @hw: pointer to hardware structure
2267 * @san_mac_offset: SAN MAC address offset
2268 *
2269 * This function will read the EEPROM location for the SAN MAC address
2270 * pointer, and returns the value at that location. This is used in both
2271 * get and set mac_addr routines.
2272 **/
2273static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2274 u16 *san_mac_offset)
2275{
2276 /*
2277 * First read the EEPROM pointer to see if the MAC addresses are
2278 * available.
2279 */
2280 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2281
2282 return 0;
2283}
2284
2285/**
2286 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2287 * @hw: pointer to hardware structure
2288 * @san_mac_addr: SAN MAC address
2289 *
2290 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2291 * per-port, so set_lan_id() must be called before reading the addresses.
2292 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2293 * upon for non-SFP connections, so we must call it here.
2294 **/
2295s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2296{
2297 u16 san_mac_data, san_mac_offset;
2298 u8 i;
2299
2300 /*
2301 * First read the EEPROM pointer to see if the MAC addresses are
2302 * available. If they're not, no point in calling set_lan_id() here.
2303 */
2304 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2305
2306 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2307 /*
2308 * No addresses available in this EEPROM. It's not an
2309 * error though, so just wipe the local address and return.
2310 */
2311 for (i = 0; i < 6; i++)
2312 san_mac_addr[i] = 0xFF;
2313
2314 goto san_mac_addr_out;
2315 }
2316
2317 /* make sure we know which port we need to program */
2318 hw->mac.ops.set_lan_id(hw);
2319 /* apply the port offset to the address offset */
2320 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2321 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2322 for (i = 0; i < 3; i++) {
2323 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2324 san_mac_addr[i * 2] = (u8)(san_mac_data);
2325 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2326 san_mac_offset++;
2327 }
2328
2329san_mac_addr_out:
2330 return 0;
2331}
2332
2333/**
2334 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2335 * @hw: pointer to hardware structure
2336 *
2337 * Read PCIe configuration space, and get the MSI-X vector count from
2338 * the capabilities table.
2339 **/
2340u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2341{
2342 struct ixgbe_adapter *adapter = hw->back;
2343 u16 msix_count;
2344 pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2345 &msix_count);
2346 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2347
2348 /* MSI-X count is zero-based in HW, so increment to give proper value */
2349 msix_count++;
2350
2351 return msix_count;
2352}
2353
2354/**
2355 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2356 * @hw: pointer to hardware struct
2357 * @rar: receive address register index to disassociate
2358 * @vmdq: VMDq pool index to remove from the rar
2359 **/
2360s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2361{
2362 u32 mpsar_lo, mpsar_hi;
2363 u32 rar_entries = hw->mac.num_rar_entries;
2364
2365 if (rar < rar_entries) {
2366 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2367 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2368
2369 if (!mpsar_lo && !mpsar_hi)
2370 goto done;
2371
2372 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2373 if (mpsar_lo) {
2374 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2375 mpsar_lo = 0;
2376 }
2377 if (mpsar_hi) {
2378 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2379 mpsar_hi = 0;
2380 }
2381 } else if (vmdq < 32) {
2382 mpsar_lo &= ~(1 << vmdq);
2383 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2384 } else {
2385 mpsar_hi &= ~(1 << (vmdq - 32));
2386 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2387 }
2388
2389 /* was that the last pool using this rar? */
2390 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2391 hw->mac.ops.clear_rar(hw, rar);
2392 } else {
2393 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2394 }
2395
2396done:
2397 return 0;
2398}
2399
2400/**
2401 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2402 * @hw: pointer to hardware struct
2403 * @rar: receive address register index to associate with a VMDq index
2404 * @vmdq: VMDq pool index
2405 **/
2406s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2407{
2408 u32 mpsar;
2409 u32 rar_entries = hw->mac.num_rar_entries;
2410
2411 if (rar < rar_entries) {
2412 if (vmdq < 32) {
2413 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2414 mpsar |= 1 << vmdq;
2415 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2416 } else {
2417 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2418 mpsar |= 1 << (vmdq - 32);
2419 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2420 }
2421 } else {
2422 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2423 }
2424 return 0;
2425}
2426
2427/**
2428 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2429 * @hw: pointer to hardware structure
2430 **/
2431s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2432{
2433 int i;
2434
2435
2436 for (i = 0; i < 128; i++)
2437 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2438
2439 return 0;
2440}
2441
2442/**
2443 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2444 * @hw: pointer to hardware structure
2445 * @vlan: VLAN id to write to VLAN filter
2446 *
2447 * return the VLVF index where this VLAN id should be placed
2448 *
2449 **/
2450s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2451{
2452 u32 bits = 0;
2453 u32 first_empty_slot = 0;
2454 s32 regindex;
2455
2456 /* short cut the special case */
2457 if (vlan == 0)
2458 return 0;
2459
2460 /*
2461 * Search for the vlan id in the VLVF entries. Save off the first empty
2462 * slot found along the way
2463 */
2464 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2465 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2466 if (!bits && !(first_empty_slot))
2467 first_empty_slot = regindex;
2468 else if ((bits & 0x0FFF) == vlan)
2469 break;
2470 }
2471
2472 /*
2473 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2474 * in the VLVF. Else use the first empty VLVF register for this
2475 * vlan id.
2476 */
2477 if (regindex >= IXGBE_VLVF_ENTRIES) {
2478 if (first_empty_slot)
2479 regindex = first_empty_slot;
2480 else {
2481 hw_dbg(hw, "No space in VLVF.\n");
2482 regindex = IXGBE_ERR_NO_SPACE;
2483 }
2484 }
2485
2486 return regindex;
2487}
2488
2489/**
2490 * ixgbe_set_vfta_generic - Set VLAN filter table
2491 * @hw: pointer to hardware structure
2492 * @vlan: VLAN id to write to VLAN filter
2493 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2494 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2495 *
2496 * Turn on/off specified VLAN in the VLAN filter table.
2497 **/
2498s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2499 bool vlan_on)
2500{
2501 s32 regindex;
2502 u32 bitindex;
2503 u32 vfta;
2504 u32 bits;
2505 u32 vt;
2506 u32 targetbit;
2507 bool vfta_changed = false;
2508
2509 if (vlan > 4095)
2510 return IXGBE_ERR_PARAM;
2511
2512 /*
2513 * this is a 2 part operation - first the VFTA, then the
2514 * VLVF and VLVFB if VT Mode is set
2515 * We don't write the VFTA until we know the VLVF part succeeded.
2516 */
2517
2518 /* Part 1
2519 * The VFTA is a bitstring made up of 128 32-bit registers
2520 * that enable the particular VLAN id, much like the MTA:
2521 * bits[11-5]: which register
2522 * bits[4-0]: which bit in the register
2523 */
2524 regindex = (vlan >> 5) & 0x7F;
2525 bitindex = vlan & 0x1F;
2526 targetbit = (1 << bitindex);
2527 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2528
2529 if (vlan_on) {
2530 if (!(vfta & targetbit)) {
2531 vfta |= targetbit;
2532 vfta_changed = true;
2533 }
2534 } else {
2535 if ((vfta & targetbit)) {
2536 vfta &= ~targetbit;
2537 vfta_changed = true;
2538 }
2539 }
2540
2541 /* Part 2
2542 * If VT Mode is set
2543 * Either vlan_on
2544 * make sure the vlan is in VLVF
2545 * set the vind bit in the matching VLVFB
2546 * Or !vlan_on
2547 * clear the pool bit and possibly the vind
2548 */
2549 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2550 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2551 s32 vlvf_index;
2552
2553 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2554 if (vlvf_index < 0)
2555 return vlvf_index;
2556
2557 if (vlan_on) {
2558 /* set the pool bit */
2559 if (vind < 32) {
2560 bits = IXGBE_READ_REG(hw,
2561 IXGBE_VLVFB(vlvf_index*2));
2562 bits |= (1 << vind);
2563 IXGBE_WRITE_REG(hw,
2564 IXGBE_VLVFB(vlvf_index*2),
2565 bits);
2566 } else {
2567 bits = IXGBE_READ_REG(hw,
2568 IXGBE_VLVFB((vlvf_index*2)+1));
2569 bits |= (1 << (vind-32));
2570 IXGBE_WRITE_REG(hw,
2571 IXGBE_VLVFB((vlvf_index*2)+1),
2572 bits);
2573 }
2574 } else {
2575 /* clear the pool bit */
2576 if (vind < 32) {
2577 bits = IXGBE_READ_REG(hw,
2578 IXGBE_VLVFB(vlvf_index*2));
2579 bits &= ~(1 << vind);
2580 IXGBE_WRITE_REG(hw,
2581 IXGBE_VLVFB(vlvf_index*2),
2582 bits);
2583 bits |= IXGBE_READ_REG(hw,
2584 IXGBE_VLVFB((vlvf_index*2)+1));
2585 } else {
2586 bits = IXGBE_READ_REG(hw,
2587 IXGBE_VLVFB((vlvf_index*2)+1));
2588 bits &= ~(1 << (vind-32));
2589 IXGBE_WRITE_REG(hw,
2590 IXGBE_VLVFB((vlvf_index*2)+1),
2591 bits);
2592 bits |= IXGBE_READ_REG(hw,
2593 IXGBE_VLVFB(vlvf_index*2));
2594 }
2595 }
2596
2597 /*
2598 * If there are still bits set in the VLVFB registers
2599 * for the VLAN ID indicated we need to see if the
2600 * caller is requesting that we clear the VFTA entry bit.
2601 * If the caller has requested that we clear the VFTA
2602 * entry bit but there are still pools/VFs using this VLAN
2603 * ID entry then ignore the request. We're not worried
2604 * about the case where we're turning the VFTA VLAN ID
2605 * entry bit on, only when requested to turn it off as
2606 * there may be multiple pools and/or VFs using the
2607 * VLAN ID entry. In that case we cannot clear the
2608 * VFTA bit until all pools/VFs using that VLAN ID have also
2609 * been cleared. This will be indicated by "bits" being
2610 * zero.
2611 */
2612 if (bits) {
2613 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
2614 (IXGBE_VLVF_VIEN | vlan));
2615 if (!vlan_on) {
2616 /* someone wants to clear the vfta entry
2617 * but some pools/VFs are still using it.
2618 * Ignore it. */
2619 vfta_changed = false;
2620 }
2621 }
2622 else
2623 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
2624 }
2625
2626 if (vfta_changed)
2627 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
2628
2629 return 0;
2630}
2631
2632/**
2633 * ixgbe_clear_vfta_generic - Clear VLAN filter table
2634 * @hw: pointer to hardware structure
2635 *
2636 * Clears the VLAN filer table, and the VMDq index associated with the filter
2637 **/
2638s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
2639{
2640 u32 offset;
2641
2642 for (offset = 0; offset < hw->mac.vft_size; offset++)
2643 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
2644
2645 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
2646 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
2647 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
2648 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
2649 }
2650
2651 return 0;
2652}
2653
2654/**
2655 * ixgbe_check_mac_link_generic - Determine link and speed status
2656 * @hw: pointer to hardware structure
2657 * @speed: pointer to link speed
2658 * @link_up: true when link is up
2659 * @link_up_wait_to_complete: bool used to wait for link up or not
2660 *
2661 * Reads the links register to determine if link is up and the current speed
2662 **/
2663s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
2664 bool *link_up, bool link_up_wait_to_complete)
2665{
2666 u32 links_reg;
2667 u32 i;
2668
2669 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2670 if (link_up_wait_to_complete) {
2671 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
2672 if (links_reg & IXGBE_LINKS_UP) {
2673 *link_up = true;
2674 break;
2675 } else {
2676 *link_up = false;
2677 }
2678 msleep(100);
2679 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2680 }
2681 } else {
2682 if (links_reg & IXGBE_LINKS_UP)
2683 *link_up = true;
2684 else
2685 *link_up = false;
2686 }
2687
2688 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2689 IXGBE_LINKS_SPEED_10G_82599)
2690 *speed = IXGBE_LINK_SPEED_10GB_FULL;
2691 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2692 IXGBE_LINKS_SPEED_1G_82599)
2693 *speed = IXGBE_LINK_SPEED_1GB_FULL;
2694 else
2695 *speed = IXGBE_LINK_SPEED_100_FULL;
2696
2697 /* if link is down, zero out the current_mode */
2698 if (*link_up == false) {
2699 hw->fc.current_mode = ixgbe_fc_none;
2700 hw->fc.fc_was_autonegged = false;
2701 }
2702
2703 return 0;
2704}
2705
2706/**
2707 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
2708 * the EEPROM
2709 * @hw: pointer to hardware structure
2710 * @wwnn_prefix: the alternative WWNN prefix
2711 * @wwpn_prefix: the alternative WWPN prefix
2712 *
2713 * This function will read the EEPROM from the alternative SAN MAC address
2714 * block to check the support for the alternative WWNN/WWPN prefix support.
2715 **/
2716s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
2717 u16 *wwpn_prefix)
2718{
2719 u16 offset, caps;
2720 u16 alt_san_mac_blk_offset;
2721
2722 /* clear output first */
2723 *wwnn_prefix = 0xFFFF;
2724 *wwpn_prefix = 0xFFFF;
2725
2726 /* check if alternative SAN MAC is supported */
2727 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
2728 &alt_san_mac_blk_offset);
2729
2730 if ((alt_san_mac_blk_offset == 0) ||
2731 (alt_san_mac_blk_offset == 0xFFFF))
2732 goto wwn_prefix_out;
2733
2734 /* check capability in alternative san mac address block */
2735 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
2736 hw->eeprom.ops.read(hw, offset, &caps);
2737 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
2738 goto wwn_prefix_out;
2739
2740 /* get the corresponding prefix for WWNN/WWPN */
2741 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
2742 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
2743
2744 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
2745 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
2746
2747wwn_prefix_out:
2748 return 0;
2749}