diff options
Diffstat (limited to 'drivers/net/igb/e1000_phy.c')
-rw-r--r-- | drivers/net/igb/e1000_phy.c | 1807 |
1 files changed, 1807 insertions, 0 deletions
diff --git a/drivers/net/igb/e1000_phy.c b/drivers/net/igb/e1000_phy.c new file mode 100644 index 000000000000..08a86b107229 --- /dev/null +++ b/drivers/net/igb/e1000_phy.c | |||
@@ -0,0 +1,1807 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | |||
31 | #include "e1000_mac.h" | ||
32 | #include "e1000_phy.h" | ||
33 | |||
34 | static s32 igb_get_phy_cfg_done(struct e1000_hw *hw); | ||
35 | static void igb_release_phy(struct e1000_hw *hw); | ||
36 | static s32 igb_acquire_phy(struct e1000_hw *hw); | ||
37 | static s32 igb_phy_reset_dsp(struct e1000_hw *hw); | ||
38 | static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); | ||
39 | static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, | ||
40 | u16 *phy_ctrl); | ||
41 | static s32 igb_wait_autoneg(struct e1000_hw *hw); | ||
42 | |||
43 | /* Cable length tables */ | ||
44 | static const u16 e1000_m88_cable_length_table[] = | ||
45 | { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; | ||
46 | #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
47 | (sizeof(e1000_m88_cable_length_table) / \ | ||
48 | sizeof(e1000_m88_cable_length_table[0])) | ||
49 | |||
50 | static const u16 e1000_igp_2_cable_length_table[] = | ||
51 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | ||
52 | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | ||
53 | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | ||
54 | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | ||
55 | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | ||
56 | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | ||
57 | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, | ||
58 | 104, 109, 114, 118, 121, 124}; | ||
59 | #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
60 | (sizeof(e1000_igp_2_cable_length_table) / \ | ||
61 | sizeof(e1000_igp_2_cable_length_table[0])) | ||
62 | |||
63 | /** | ||
64 | * e1000_check_reset_block - Check if PHY reset is blocked | ||
65 | * @hw: pointer to the HW structure | ||
66 | * | ||
67 | * Read the PHY management control register and check whether a PHY reset | ||
68 | * is blocked. If a reset is not blocked return 0, otherwise | ||
69 | * return E1000_BLK_PHY_RESET (12). | ||
70 | **/ | ||
71 | s32 igb_check_reset_block(struct e1000_hw *hw) | ||
72 | { | ||
73 | u32 manc; | ||
74 | |||
75 | manc = rd32(E1000_MANC); | ||
76 | |||
77 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
78 | E1000_BLK_PHY_RESET : 0; | ||
79 | } | ||
80 | |||
81 | /** | ||
82 | * e1000_get_phy_id - Retrieve the PHY ID and revision | ||
83 | * @hw: pointer to the HW structure | ||
84 | * | ||
85 | * Reads the PHY registers and stores the PHY ID and possibly the PHY | ||
86 | * revision in the hardware structure. | ||
87 | **/ | ||
88 | s32 igb_get_phy_id(struct e1000_hw *hw) | ||
89 | { | ||
90 | struct e1000_phy_info *phy = &hw->phy; | ||
91 | s32 ret_val = 0; | ||
92 | u16 phy_id; | ||
93 | |||
94 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_ID1, &phy_id); | ||
95 | if (ret_val) | ||
96 | goto out; | ||
97 | |||
98 | phy->id = (u32)(phy_id << 16); | ||
99 | udelay(20); | ||
100 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_ID2, &phy_id); | ||
101 | if (ret_val) | ||
102 | goto out; | ||
103 | |||
104 | phy->id |= (u32)(phy_id & PHY_REVISION_MASK); | ||
105 | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); | ||
106 | |||
107 | out: | ||
108 | return ret_val; | ||
109 | } | ||
110 | |||
111 | /** | ||
112 | * e1000_phy_reset_dsp - Reset PHY DSP | ||
113 | * @hw: pointer to the HW structure | ||
114 | * | ||
115 | * Reset the digital signal processor. | ||
116 | **/ | ||
117 | static s32 igb_phy_reset_dsp(struct e1000_hw *hw) | ||
118 | { | ||
119 | s32 ret_val; | ||
120 | |||
121 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); | ||
122 | if (ret_val) | ||
123 | goto out; | ||
124 | |||
125 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); | ||
126 | |||
127 | out: | ||
128 | return ret_val; | ||
129 | } | ||
130 | |||
131 | /** | ||
132 | * e1000_read_phy_reg_mdic - Read MDI control register | ||
133 | * @hw: pointer to the HW structure | ||
134 | * @offset: register offset to be read | ||
135 | * @data: pointer to the read data | ||
136 | * | ||
137 | * Reads the MDI control regsiter in the PHY at offset and stores the | ||
138 | * information read to data. | ||
139 | **/ | ||
140 | static s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) | ||
141 | { | ||
142 | struct e1000_phy_info *phy = &hw->phy; | ||
143 | u32 i, mdic = 0; | ||
144 | s32 ret_val = 0; | ||
145 | |||
146 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
147 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | ||
148 | ret_val = -E1000_ERR_PARAM; | ||
149 | goto out; | ||
150 | } | ||
151 | |||
152 | /* | ||
153 | * Set up Op-code, Phy Address, and register offset in the MDI | ||
154 | * Control register. The MAC will take care of interfacing with the | ||
155 | * PHY to retrieve the desired data. | ||
156 | */ | ||
157 | mdic = ((offset << E1000_MDIC_REG_SHIFT) | | ||
158 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
159 | (E1000_MDIC_OP_READ)); | ||
160 | |||
161 | wr32(E1000_MDIC, mdic); | ||
162 | |||
163 | /* | ||
164 | * Poll the ready bit to see if the MDI read completed | ||
165 | * Increasing the time out as testing showed failures with | ||
166 | * the lower time out | ||
167 | */ | ||
168 | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | ||
169 | udelay(50); | ||
170 | mdic = rd32(E1000_MDIC); | ||
171 | if (mdic & E1000_MDIC_READY) | ||
172 | break; | ||
173 | } | ||
174 | if (!(mdic & E1000_MDIC_READY)) { | ||
175 | hw_dbg(hw, "MDI Read did not complete\n"); | ||
176 | ret_val = -E1000_ERR_PHY; | ||
177 | goto out; | ||
178 | } | ||
179 | if (mdic & E1000_MDIC_ERROR) { | ||
180 | hw_dbg(hw, "MDI Error\n"); | ||
181 | ret_val = -E1000_ERR_PHY; | ||
182 | goto out; | ||
183 | } | ||
184 | *data = (u16) mdic; | ||
185 | |||
186 | out: | ||
187 | return ret_val; | ||
188 | } | ||
189 | |||
190 | /** | ||
191 | * e1000_write_phy_reg_mdic - Write MDI control register | ||
192 | * @hw: pointer to the HW structure | ||
193 | * @offset: register offset to write to | ||
194 | * @data: data to write to register at offset | ||
195 | * | ||
196 | * Writes data to MDI control register in the PHY at offset. | ||
197 | **/ | ||
198 | static s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) | ||
199 | { | ||
200 | struct e1000_phy_info *phy = &hw->phy; | ||
201 | u32 i, mdic = 0; | ||
202 | s32 ret_val = 0; | ||
203 | |||
204 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
205 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | ||
206 | ret_val = -E1000_ERR_PARAM; | ||
207 | goto out; | ||
208 | } | ||
209 | |||
210 | /* | ||
211 | * Set up Op-code, Phy Address, and register offset in the MDI | ||
212 | * Control register. The MAC will take care of interfacing with the | ||
213 | * PHY to retrieve the desired data. | ||
214 | */ | ||
215 | mdic = (((u32)data) | | ||
216 | (offset << E1000_MDIC_REG_SHIFT) | | ||
217 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
218 | (E1000_MDIC_OP_WRITE)); | ||
219 | |||
220 | wr32(E1000_MDIC, mdic); | ||
221 | |||
222 | /* | ||
223 | * Poll the ready bit to see if the MDI read completed | ||
224 | * Increasing the time out as testing showed failures with | ||
225 | * the lower time out | ||
226 | */ | ||
227 | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | ||
228 | udelay(50); | ||
229 | mdic = rd32(E1000_MDIC); | ||
230 | if (mdic & E1000_MDIC_READY) | ||
231 | break; | ||
232 | } | ||
233 | if (!(mdic & E1000_MDIC_READY)) { | ||
234 | hw_dbg(hw, "MDI Write did not complete\n"); | ||
235 | ret_val = -E1000_ERR_PHY; | ||
236 | goto out; | ||
237 | } | ||
238 | if (mdic & E1000_MDIC_ERROR) { | ||
239 | hw_dbg(hw, "MDI Error\n"); | ||
240 | ret_val = -E1000_ERR_PHY; | ||
241 | goto out; | ||
242 | } | ||
243 | |||
244 | out: | ||
245 | return ret_val; | ||
246 | } | ||
247 | |||
248 | /** | ||
249 | * e1000_read_phy_reg_igp - Read igp PHY register | ||
250 | * @hw: pointer to the HW structure | ||
251 | * @offset: register offset to be read | ||
252 | * @data: pointer to the read data | ||
253 | * | ||
254 | * Acquires semaphore, if necessary, then reads the PHY register at offset | ||
255 | * and storing the retrieved information in data. Release any acquired | ||
256 | * semaphores before exiting. | ||
257 | **/ | ||
258 | s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) | ||
259 | { | ||
260 | s32 ret_val; | ||
261 | |||
262 | ret_val = igb_acquire_phy(hw); | ||
263 | if (ret_val) | ||
264 | goto out; | ||
265 | |||
266 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
267 | ret_val = igb_write_phy_reg_mdic(hw, | ||
268 | IGP01E1000_PHY_PAGE_SELECT, | ||
269 | (u16)offset); | ||
270 | if (ret_val) { | ||
271 | igb_release_phy(hw); | ||
272 | goto out; | ||
273 | } | ||
274 | } | ||
275 | |||
276 | ret_val = igb_read_phy_reg_mdic(hw, | ||
277 | MAX_PHY_REG_ADDRESS & offset, | ||
278 | data); | ||
279 | |||
280 | igb_release_phy(hw); | ||
281 | |||
282 | out: | ||
283 | return ret_val; | ||
284 | } | ||
285 | |||
286 | /** | ||
287 | * e1000_write_phy_reg_igp - Write igp PHY register | ||
288 | * @hw: pointer to the HW structure | ||
289 | * @offset: register offset to write to | ||
290 | * @data: data to write at register offset | ||
291 | * | ||
292 | * Acquires semaphore, if necessary, then writes the data to PHY register | ||
293 | * at the offset. Release any acquired semaphores before exiting. | ||
294 | **/ | ||
295 | s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) | ||
296 | { | ||
297 | s32 ret_val; | ||
298 | |||
299 | ret_val = igb_acquire_phy(hw); | ||
300 | if (ret_val) | ||
301 | goto out; | ||
302 | |||
303 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
304 | ret_val = igb_write_phy_reg_mdic(hw, | ||
305 | IGP01E1000_PHY_PAGE_SELECT, | ||
306 | (u16)offset); | ||
307 | if (ret_val) { | ||
308 | igb_release_phy(hw); | ||
309 | goto out; | ||
310 | } | ||
311 | } | ||
312 | |||
313 | ret_val = igb_write_phy_reg_mdic(hw, | ||
314 | MAX_PHY_REG_ADDRESS & offset, | ||
315 | data); | ||
316 | |||
317 | igb_release_phy(hw); | ||
318 | |||
319 | out: | ||
320 | return ret_val; | ||
321 | } | ||
322 | |||
323 | /** | ||
324 | * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link | ||
325 | * @hw: pointer to the HW structure | ||
326 | * | ||
327 | * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock | ||
328 | * and downshift values are set also. | ||
329 | **/ | ||
330 | s32 igb_copper_link_setup_m88(struct e1000_hw *hw) | ||
331 | { | ||
332 | struct e1000_phy_info *phy = &hw->phy; | ||
333 | s32 ret_val; | ||
334 | u16 phy_data; | ||
335 | |||
336 | if (phy->reset_disable) { | ||
337 | ret_val = 0; | ||
338 | goto out; | ||
339 | } | ||
340 | |||
341 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
342 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
343 | &phy_data); | ||
344 | if (ret_val) | ||
345 | goto out; | ||
346 | |||
347 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
348 | |||
349 | /* | ||
350 | * Options: | ||
351 | * MDI/MDI-X = 0 (default) | ||
352 | * 0 - Auto for all speeds | ||
353 | * 1 - MDI mode | ||
354 | * 2 - MDI-X mode | ||
355 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
356 | */ | ||
357 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
358 | |||
359 | switch (phy->mdix) { | ||
360 | case 1: | ||
361 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
362 | break; | ||
363 | case 2: | ||
364 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
365 | break; | ||
366 | case 3: | ||
367 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
368 | break; | ||
369 | case 0: | ||
370 | default: | ||
371 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
372 | break; | ||
373 | } | ||
374 | |||
375 | /* | ||
376 | * Options: | ||
377 | * disable_polarity_correction = 0 (default) | ||
378 | * Automatic Correction for Reversed Cable Polarity | ||
379 | * 0 - Disabled | ||
380 | * 1 - Enabled | ||
381 | */ | ||
382 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
383 | if (phy->disable_polarity_correction == 1) | ||
384 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
385 | |||
386 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
387 | phy_data); | ||
388 | if (ret_val) | ||
389 | goto out; | ||
390 | |||
391 | if (phy->revision < E1000_REVISION_4) { | ||
392 | /* | ||
393 | * Force TX_CLK in the Extended PHY Specific Control Register | ||
394 | * to 25MHz clock. | ||
395 | */ | ||
396 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
397 | M88E1000_EXT_PHY_SPEC_CTRL, | ||
398 | &phy_data); | ||
399 | if (ret_val) | ||
400 | goto out; | ||
401 | |||
402 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
403 | |||
404 | if ((phy->revision == E1000_REVISION_2) && | ||
405 | (phy->id == M88E1111_I_PHY_ID)) { | ||
406 | /* 82573L PHY - set the downshift counter to 5x. */ | ||
407 | phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; | ||
408 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
409 | } else { | ||
410 | /* Configure Master and Slave downshift values */ | ||
411 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
412 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | ||
413 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | ||
414 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | ||
415 | } | ||
416 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
417 | M88E1000_EXT_PHY_SPEC_CTRL, | ||
418 | phy_data); | ||
419 | if (ret_val) | ||
420 | goto out; | ||
421 | } | ||
422 | |||
423 | /* Commit the changes. */ | ||
424 | ret_val = igb_phy_sw_reset(hw); | ||
425 | if (ret_val) { | ||
426 | hw_dbg(hw, "Error committing the PHY changes\n"); | ||
427 | goto out; | ||
428 | } | ||
429 | |||
430 | out: | ||
431 | return ret_val; | ||
432 | } | ||
433 | |||
434 | /** | ||
435 | * e1000_copper_link_setup_igp - Setup igp PHY's for copper link | ||
436 | * @hw: pointer to the HW structure | ||
437 | * | ||
438 | * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for | ||
439 | * igp PHY's. | ||
440 | **/ | ||
441 | s32 igb_copper_link_setup_igp(struct e1000_hw *hw) | ||
442 | { | ||
443 | struct e1000_phy_info *phy = &hw->phy; | ||
444 | s32 ret_val; | ||
445 | u16 data; | ||
446 | |||
447 | if (phy->reset_disable) { | ||
448 | ret_val = 0; | ||
449 | goto out; | ||
450 | } | ||
451 | |||
452 | ret_val = hw->phy.ops.reset_phy(hw); | ||
453 | if (ret_val) { | ||
454 | hw_dbg(hw, "Error resetting the PHY.\n"); | ||
455 | goto out; | ||
456 | } | ||
457 | |||
458 | /* Wait 15ms for MAC to configure PHY from NVM settings. */ | ||
459 | msleep(15); | ||
460 | |||
461 | /* | ||
462 | * The NVM settings will configure LPLU in D3 for | ||
463 | * non-IGP1 PHYs. | ||
464 | */ | ||
465 | if (phy->type == e1000_phy_igp) { | ||
466 | /* disable lplu d3 during driver init */ | ||
467 | if (hw->phy.ops.set_d3_lplu_state) | ||
468 | ret_val = hw->phy.ops.set_d3_lplu_state(hw, false); | ||
469 | if (ret_val) { | ||
470 | hw_dbg(hw, "Error Disabling LPLU D3\n"); | ||
471 | goto out; | ||
472 | } | ||
473 | } | ||
474 | |||
475 | /* disable lplu d0 during driver init */ | ||
476 | ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); | ||
477 | if (ret_val) { | ||
478 | hw_dbg(hw, "Error Disabling LPLU D0\n"); | ||
479 | goto out; | ||
480 | } | ||
481 | /* Configure mdi-mdix settings */ | ||
482 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); | ||
483 | if (ret_val) | ||
484 | goto out; | ||
485 | |||
486 | data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
487 | |||
488 | switch (phy->mdix) { | ||
489 | case 1: | ||
490 | data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
491 | break; | ||
492 | case 2: | ||
493 | data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
494 | break; | ||
495 | case 0: | ||
496 | default: | ||
497 | data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
498 | break; | ||
499 | } | ||
500 | ret_val = hw->phy.ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); | ||
501 | if (ret_val) | ||
502 | goto out; | ||
503 | |||
504 | /* set auto-master slave resolution settings */ | ||
505 | if (hw->mac.autoneg) { | ||
506 | /* | ||
507 | * when autonegotiation advertisement is only 1000Mbps then we | ||
508 | * should disable SmartSpeed and enable Auto MasterSlave | ||
509 | * resolution as hardware default. | ||
510 | */ | ||
511 | if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
512 | /* Disable SmartSpeed */ | ||
513 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
514 | IGP01E1000_PHY_PORT_CONFIG, | ||
515 | &data); | ||
516 | if (ret_val) | ||
517 | goto out; | ||
518 | |||
519 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
520 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
521 | IGP01E1000_PHY_PORT_CONFIG, | ||
522 | data); | ||
523 | if (ret_val) | ||
524 | goto out; | ||
525 | |||
526 | /* Set auto Master/Slave resolution process */ | ||
527 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_CTRL, | ||
528 | &data); | ||
529 | if (ret_val) | ||
530 | goto out; | ||
531 | |||
532 | data &= ~CR_1000T_MS_ENABLE; | ||
533 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_1000T_CTRL, | ||
534 | data); | ||
535 | if (ret_val) | ||
536 | goto out; | ||
537 | } | ||
538 | |||
539 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_CTRL, &data); | ||
540 | if (ret_val) | ||
541 | goto out; | ||
542 | |||
543 | /* load defaults for future use */ | ||
544 | phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? | ||
545 | ((data & CR_1000T_MS_VALUE) ? | ||
546 | e1000_ms_force_master : | ||
547 | e1000_ms_force_slave) : | ||
548 | e1000_ms_auto; | ||
549 | |||
550 | switch (phy->ms_type) { | ||
551 | case e1000_ms_force_master: | ||
552 | data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
553 | break; | ||
554 | case e1000_ms_force_slave: | ||
555 | data |= CR_1000T_MS_ENABLE; | ||
556 | data &= ~(CR_1000T_MS_VALUE); | ||
557 | break; | ||
558 | case e1000_ms_auto: | ||
559 | data &= ~CR_1000T_MS_ENABLE; | ||
560 | default: | ||
561 | break; | ||
562 | } | ||
563 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_1000T_CTRL, data); | ||
564 | if (ret_val) | ||
565 | goto out; | ||
566 | } | ||
567 | |||
568 | out: | ||
569 | return ret_val; | ||
570 | } | ||
571 | |||
572 | /** | ||
573 | * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link | ||
574 | * @hw: pointer to the HW structure | ||
575 | * | ||
576 | * Performs initial bounds checking on autoneg advertisement parameter, then | ||
577 | * configure to advertise the full capability. Setup the PHY to autoneg | ||
578 | * and restart the negotiation process between the link partner. If | ||
579 | * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. | ||
580 | **/ | ||
581 | s32 igb_copper_link_autoneg(struct e1000_hw *hw) | ||
582 | { | ||
583 | struct e1000_phy_info *phy = &hw->phy; | ||
584 | s32 ret_val; | ||
585 | u16 phy_ctrl; | ||
586 | |||
587 | /* | ||
588 | * Perform some bounds checking on the autoneg advertisement | ||
589 | * parameter. | ||
590 | */ | ||
591 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
592 | |||
593 | /* | ||
594 | * If autoneg_advertised is zero, we assume it was not defaulted | ||
595 | * by the calling code so we set to advertise full capability. | ||
596 | */ | ||
597 | if (phy->autoneg_advertised == 0) | ||
598 | phy->autoneg_advertised = phy->autoneg_mask; | ||
599 | |||
600 | hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n"); | ||
601 | ret_val = igb_phy_setup_autoneg(hw); | ||
602 | if (ret_val) { | ||
603 | hw_dbg(hw, "Error Setting up Auto-Negotiation\n"); | ||
604 | goto out; | ||
605 | } | ||
606 | hw_dbg(hw, "Restarting Auto-Neg\n"); | ||
607 | |||
608 | /* | ||
609 | * Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
610 | * the Auto Neg Restart bit in the PHY control register. | ||
611 | */ | ||
612 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); | ||
613 | if (ret_val) | ||
614 | goto out; | ||
615 | |||
616 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
617 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_ctrl); | ||
618 | if (ret_val) | ||
619 | goto out; | ||
620 | |||
621 | /* | ||
622 | * Does the user want to wait for Auto-Neg to complete here, or | ||
623 | * check at a later time (for example, callback routine). | ||
624 | */ | ||
625 | if (phy->autoneg_wait_to_complete) { | ||
626 | ret_val = igb_wait_autoneg(hw); | ||
627 | if (ret_val) { | ||
628 | hw_dbg(hw, "Error while waiting for " | ||
629 | "autoneg to complete\n"); | ||
630 | goto out; | ||
631 | } | ||
632 | } | ||
633 | |||
634 | hw->mac.get_link_status = true; | ||
635 | |||
636 | out: | ||
637 | return ret_val; | ||
638 | } | ||
639 | |||
640 | /** | ||
641 | * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation | ||
642 | * @hw: pointer to the HW structure | ||
643 | * | ||
644 | * Reads the MII auto-neg advertisement register and/or the 1000T control | ||
645 | * register and if the PHY is already setup for auto-negotiation, then | ||
646 | * return successful. Otherwise, setup advertisement and flow control to | ||
647 | * the appropriate values for the wanted auto-negotiation. | ||
648 | **/ | ||
649 | static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) | ||
650 | { | ||
651 | struct e1000_phy_info *phy = &hw->phy; | ||
652 | s32 ret_val; | ||
653 | u16 mii_autoneg_adv_reg; | ||
654 | u16 mii_1000t_ctrl_reg = 0; | ||
655 | |||
656 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
657 | |||
658 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
659 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV, | ||
660 | &mii_autoneg_adv_reg); | ||
661 | if (ret_val) | ||
662 | goto out; | ||
663 | |||
664 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
665 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
666 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
667 | PHY_1000T_CTRL, | ||
668 | &mii_1000t_ctrl_reg); | ||
669 | if (ret_val) | ||
670 | goto out; | ||
671 | } | ||
672 | |||
673 | /* | ||
674 | * Need to parse both autoneg_advertised and fc and set up | ||
675 | * the appropriate PHY registers. First we will parse for | ||
676 | * autoneg_advertised software override. Since we can advertise | ||
677 | * a plethora of combinations, we need to check each bit | ||
678 | * individually. | ||
679 | */ | ||
680 | |||
681 | /* | ||
682 | * First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
683 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
684 | * the 1000Base-T Control Register (Address 9). | ||
685 | */ | ||
686 | mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | | ||
687 | NWAY_AR_100TX_HD_CAPS | | ||
688 | NWAY_AR_10T_FD_CAPS | | ||
689 | NWAY_AR_10T_HD_CAPS); | ||
690 | mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); | ||
691 | |||
692 | hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised); | ||
693 | |||
694 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
695 | if (phy->autoneg_advertised & ADVERTISE_10_HALF) { | ||
696 | hw_dbg(hw, "Advertise 10mb Half duplex\n"); | ||
697 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
698 | } | ||
699 | |||
700 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
701 | if (phy->autoneg_advertised & ADVERTISE_10_FULL) { | ||
702 | hw_dbg(hw, "Advertise 10mb Full duplex\n"); | ||
703 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
704 | } | ||
705 | |||
706 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
707 | if (phy->autoneg_advertised & ADVERTISE_100_HALF) { | ||
708 | hw_dbg(hw, "Advertise 100mb Half duplex\n"); | ||
709 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
710 | } | ||
711 | |||
712 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
713 | if (phy->autoneg_advertised & ADVERTISE_100_FULL) { | ||
714 | hw_dbg(hw, "Advertise 100mb Full duplex\n"); | ||
715 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
716 | } | ||
717 | |||
718 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
719 | if (phy->autoneg_advertised & ADVERTISE_1000_HALF) | ||
720 | hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n"); | ||
721 | |||
722 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
723 | if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
724 | hw_dbg(hw, "Advertise 1000mb Full duplex\n"); | ||
725 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
726 | } | ||
727 | |||
728 | /* | ||
729 | * Check for a software override of the flow control settings, and | ||
730 | * setup the PHY advertisement registers accordingly. If | ||
731 | * auto-negotiation is enabled, then software will have to set the | ||
732 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
733 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- | ||
734 | * negotiation. | ||
735 | * | ||
736 | * The possible values of the "fc" parameter are: | ||
737 | * 0: Flow control is completely disabled | ||
738 | * 1: Rx flow control is enabled (we can receive pause frames | ||
739 | * but not send pause frames). | ||
740 | * 2: Tx flow control is enabled (we can send pause frames | ||
741 | * but we do not support receiving pause frames). | ||
742 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
743 | * other: No software override. The flow control configuration | ||
744 | * in the EEPROM is used. | ||
745 | */ | ||
746 | switch (hw->fc.type) { | ||
747 | case e1000_fc_none: | ||
748 | /* | ||
749 | * Flow control (RX & TX) is completely disabled by a | ||
750 | * software over-ride. | ||
751 | */ | ||
752 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
753 | break; | ||
754 | case e1000_fc_rx_pause: | ||
755 | /* | ||
756 | * RX Flow control is enabled, and TX Flow control is | ||
757 | * disabled, by a software over-ride. | ||
758 | * | ||
759 | * Since there really isn't a way to advertise that we are | ||
760 | * capable of RX Pause ONLY, we will advertise that we | ||
761 | * support both symmetric and asymmetric RX PAUSE. Later | ||
762 | * (in e1000_config_fc_after_link_up) we will disable the | ||
763 | * hw's ability to send PAUSE frames. | ||
764 | */ | ||
765 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
766 | break; | ||
767 | case e1000_fc_tx_pause: | ||
768 | /* | ||
769 | * TX Flow control is enabled, and RX Flow control is | ||
770 | * disabled, by a software over-ride. | ||
771 | */ | ||
772 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
773 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
774 | break; | ||
775 | case e1000_fc_full: | ||
776 | /* | ||
777 | * Flow control (both RX and TX) is enabled by a software | ||
778 | * over-ride. | ||
779 | */ | ||
780 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
781 | break; | ||
782 | default: | ||
783 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
784 | ret_val = -E1000_ERR_CONFIG; | ||
785 | goto out; | ||
786 | } | ||
787 | |||
788 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_AUTONEG_ADV, | ||
789 | mii_autoneg_adv_reg); | ||
790 | if (ret_val) | ||
791 | goto out; | ||
792 | |||
793 | hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
794 | |||
795 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
796 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
797 | PHY_1000T_CTRL, | ||
798 | mii_1000t_ctrl_reg); | ||
799 | if (ret_val) | ||
800 | goto out; | ||
801 | } | ||
802 | |||
803 | out: | ||
804 | return ret_val; | ||
805 | } | ||
806 | |||
807 | /** | ||
808 | * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY | ||
809 | * @hw: pointer to the HW structure | ||
810 | * | ||
811 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
812 | * auto-crossover to force MDI manually. Waits for link and returns | ||
813 | * successful if link up is successful, else -E1000_ERR_PHY (-2). | ||
814 | **/ | ||
815 | s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) | ||
816 | { | ||
817 | struct e1000_phy_info *phy = &hw->phy; | ||
818 | s32 ret_val; | ||
819 | u16 phy_data; | ||
820 | bool link; | ||
821 | |||
822 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_data); | ||
823 | if (ret_val) | ||
824 | goto out; | ||
825 | |||
826 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
827 | |||
828 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_data); | ||
829 | if (ret_val) | ||
830 | goto out; | ||
831 | |||
832 | /* | ||
833 | * Clear Auto-Crossover to force MDI manually. IGP requires MDI | ||
834 | * forced whenever speed and duplex are forced. | ||
835 | */ | ||
836 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
837 | &phy_data); | ||
838 | if (ret_val) | ||
839 | goto out; | ||
840 | |||
841 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
842 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
843 | |||
844 | ret_val = hw->phy.ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
845 | phy_data); | ||
846 | if (ret_val) | ||
847 | goto out; | ||
848 | |||
849 | hw_dbg(hw, "IGP PSCR: %X\n", phy_data); | ||
850 | |||
851 | udelay(1); | ||
852 | |||
853 | if (phy->autoneg_wait_to_complete) { | ||
854 | hw_dbg(hw, | ||
855 | "Waiting for forced speed/duplex link on IGP phy.\n"); | ||
856 | |||
857 | ret_val = igb_phy_has_link(hw, | ||
858 | PHY_FORCE_LIMIT, | ||
859 | 100000, | ||
860 | &link); | ||
861 | if (ret_val) | ||
862 | goto out; | ||
863 | |||
864 | if (!link) | ||
865 | hw_dbg(hw, "Link taking longer than expected.\n"); | ||
866 | |||
867 | /* Try once more */ | ||
868 | ret_val = igb_phy_has_link(hw, | ||
869 | PHY_FORCE_LIMIT, | ||
870 | 100000, | ||
871 | &link); | ||
872 | if (ret_val) | ||
873 | goto out; | ||
874 | } | ||
875 | |||
876 | out: | ||
877 | return ret_val; | ||
878 | } | ||
879 | |||
880 | /** | ||
881 | * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY | ||
882 | * @hw: pointer to the HW structure | ||
883 | * | ||
884 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
885 | * auto-crossover to force MDI manually. Resets the PHY to commit the | ||
886 | * changes. If time expires while waiting for link up, we reset the DSP. | ||
887 | * After reset, TX_CLK and CRS on TX must be set. Return successful upon | ||
888 | * successful completion, else return corresponding error code. | ||
889 | **/ | ||
890 | s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) | ||
891 | { | ||
892 | struct e1000_phy_info *phy = &hw->phy; | ||
893 | s32 ret_val; | ||
894 | u16 phy_data; | ||
895 | bool link; | ||
896 | |||
897 | /* | ||
898 | * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
899 | * forced whenever speed and duplex are forced. | ||
900 | */ | ||
901 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
902 | &phy_data); | ||
903 | if (ret_val) | ||
904 | goto out; | ||
905 | |||
906 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
907 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
908 | phy_data); | ||
909 | if (ret_val) | ||
910 | goto out; | ||
911 | |||
912 | hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data); | ||
913 | |||
914 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_data); | ||
915 | if (ret_val) | ||
916 | goto out; | ||
917 | |||
918 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
919 | |||
920 | /* Reset the phy to commit changes. */ | ||
921 | phy_data |= MII_CR_RESET; | ||
922 | |||
923 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_data); | ||
924 | if (ret_val) | ||
925 | goto out; | ||
926 | |||
927 | udelay(1); | ||
928 | |||
929 | if (phy->autoneg_wait_to_complete) { | ||
930 | hw_dbg(hw, | ||
931 | "Waiting for forced speed/duplex link on M88 phy.\n"); | ||
932 | |||
933 | ret_val = igb_phy_has_link(hw, | ||
934 | PHY_FORCE_LIMIT, | ||
935 | 100000, | ||
936 | &link); | ||
937 | if (ret_val) | ||
938 | goto out; | ||
939 | |||
940 | if (!link) { | ||
941 | /* | ||
942 | * We didn't get link. | ||
943 | * Reset the DSP and cross our fingers. | ||
944 | */ | ||
945 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
946 | M88E1000_PHY_PAGE_SELECT, | ||
947 | 0x001d); | ||
948 | if (ret_val) | ||
949 | goto out; | ||
950 | ret_val = igb_phy_reset_dsp(hw); | ||
951 | if (ret_val) | ||
952 | goto out; | ||
953 | } | ||
954 | |||
955 | /* Try once more */ | ||
956 | ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, | ||
957 | 100000, &link); | ||
958 | if (ret_val) | ||
959 | goto out; | ||
960 | } | ||
961 | |||
962 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
963 | &phy_data); | ||
964 | if (ret_val) | ||
965 | goto out; | ||
966 | |||
967 | /* | ||
968 | * Resetting the phy means we need to re-force TX_CLK in the | ||
969 | * Extended PHY Specific Control Register to 25MHz clock from | ||
970 | * the reset value of 2.5MHz. | ||
971 | */ | ||
972 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
973 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
974 | phy_data); | ||
975 | if (ret_val) | ||
976 | goto out; | ||
977 | |||
978 | /* | ||
979 | * In addition, we must re-enable CRS on Tx for both half and full | ||
980 | * duplex. | ||
981 | */ | ||
982 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
983 | &phy_data); | ||
984 | if (ret_val) | ||
985 | goto out; | ||
986 | |||
987 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
988 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
989 | phy_data); | ||
990 | |||
991 | out: | ||
992 | return ret_val; | ||
993 | } | ||
994 | |||
995 | /** | ||
996 | * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex | ||
997 | * @hw: pointer to the HW structure | ||
998 | * @phy_ctrl: pointer to current value of PHY_CONTROL | ||
999 | * | ||
1000 | * Forces speed and duplex on the PHY by doing the following: disable flow | ||
1001 | * control, force speed/duplex on the MAC, disable auto speed detection, | ||
1002 | * disable auto-negotiation, configure duplex, configure speed, configure | ||
1003 | * the collision distance, write configuration to CTRL register. The | ||
1004 | * caller must write to the PHY_CONTROL register for these settings to | ||
1005 | * take affect. | ||
1006 | **/ | ||
1007 | static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, | ||
1008 | u16 *phy_ctrl) | ||
1009 | { | ||
1010 | struct e1000_mac_info *mac = &hw->mac; | ||
1011 | u32 ctrl; | ||
1012 | |||
1013 | /* Turn off flow control when forcing speed/duplex */ | ||
1014 | hw->fc.type = e1000_fc_none; | ||
1015 | |||
1016 | /* Force speed/duplex on the mac */ | ||
1017 | ctrl = rd32(E1000_CTRL); | ||
1018 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1019 | ctrl &= ~E1000_CTRL_SPD_SEL; | ||
1020 | |||
1021 | /* Disable Auto Speed Detection */ | ||
1022 | ctrl &= ~E1000_CTRL_ASDE; | ||
1023 | |||
1024 | /* Disable autoneg on the phy */ | ||
1025 | *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; | ||
1026 | |||
1027 | /* Forcing Full or Half Duplex? */ | ||
1028 | if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { | ||
1029 | ctrl &= ~E1000_CTRL_FD; | ||
1030 | *phy_ctrl &= ~MII_CR_FULL_DUPLEX; | ||
1031 | hw_dbg(hw, "Half Duplex\n"); | ||
1032 | } else { | ||
1033 | ctrl |= E1000_CTRL_FD; | ||
1034 | *phy_ctrl |= MII_CR_FULL_DUPLEX; | ||
1035 | hw_dbg(hw, "Full Duplex\n"); | ||
1036 | } | ||
1037 | |||
1038 | /* Forcing 10mb or 100mb? */ | ||
1039 | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { | ||
1040 | ctrl |= E1000_CTRL_SPD_100; | ||
1041 | *phy_ctrl |= MII_CR_SPEED_100; | ||
1042 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | ||
1043 | hw_dbg(hw, "Forcing 100mb\n"); | ||
1044 | } else { | ||
1045 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1046 | *phy_ctrl |= MII_CR_SPEED_10; | ||
1047 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | ||
1048 | hw_dbg(hw, "Forcing 10mb\n"); | ||
1049 | } | ||
1050 | |||
1051 | igb_config_collision_dist(hw); | ||
1052 | |||
1053 | wr32(E1000_CTRL, ctrl); | ||
1054 | } | ||
1055 | |||
1056 | /** | ||
1057 | * e1000_set_d3_lplu_state - Sets low power link up state for D3 | ||
1058 | * @hw: pointer to the HW structure | ||
1059 | * @active: boolean used to enable/disable lplu | ||
1060 | * | ||
1061 | * Success returns 0, Failure returns 1 | ||
1062 | * | ||
1063 | * The low power link up (lplu) state is set to the power management level D3 | ||
1064 | * and SmartSpeed is disabled when active is true, else clear lplu for D3 | ||
1065 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU | ||
1066 | * is used during Dx states where the power conservation is most important. | ||
1067 | * During driver activity, SmartSpeed should be enabled so performance is | ||
1068 | * maintained. | ||
1069 | **/ | ||
1070 | s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) | ||
1071 | { | ||
1072 | struct e1000_phy_info *phy = &hw->phy; | ||
1073 | s32 ret_val; | ||
1074 | u16 data; | ||
1075 | |||
1076 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
1077 | &data); | ||
1078 | if (ret_val) | ||
1079 | goto out; | ||
1080 | |||
1081 | if (!active) { | ||
1082 | data &= ~IGP02E1000_PM_D3_LPLU; | ||
1083 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1084 | IGP02E1000_PHY_POWER_MGMT, | ||
1085 | data); | ||
1086 | if (ret_val) | ||
1087 | goto out; | ||
1088 | /* | ||
1089 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
1090 | * during Dx states where the power conservation is most | ||
1091 | * important. During driver activity we should enable | ||
1092 | * SmartSpeed, so performance is maintained. | ||
1093 | */ | ||
1094 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
1095 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
1096 | IGP01E1000_PHY_PORT_CONFIG, | ||
1097 | &data); | ||
1098 | if (ret_val) | ||
1099 | goto out; | ||
1100 | |||
1101 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
1102 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1103 | IGP01E1000_PHY_PORT_CONFIG, | ||
1104 | data); | ||
1105 | if (ret_val) | ||
1106 | goto out; | ||
1107 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
1108 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
1109 | IGP01E1000_PHY_PORT_CONFIG, | ||
1110 | &data); | ||
1111 | if (ret_val) | ||
1112 | goto out; | ||
1113 | |||
1114 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1115 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1116 | IGP01E1000_PHY_PORT_CONFIG, | ||
1117 | data); | ||
1118 | if (ret_val) | ||
1119 | goto out; | ||
1120 | } | ||
1121 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | ||
1122 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | ||
1123 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | ||
1124 | data |= IGP02E1000_PM_D3_LPLU; | ||
1125 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1126 | IGP02E1000_PHY_POWER_MGMT, | ||
1127 | data); | ||
1128 | if (ret_val) | ||
1129 | goto out; | ||
1130 | |||
1131 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
1132 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
1133 | IGP01E1000_PHY_PORT_CONFIG, | ||
1134 | &data); | ||
1135 | if (ret_val) | ||
1136 | goto out; | ||
1137 | |||
1138 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1139 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1140 | IGP01E1000_PHY_PORT_CONFIG, | ||
1141 | data); | ||
1142 | } | ||
1143 | |||
1144 | out: | ||
1145 | return ret_val; | ||
1146 | } | ||
1147 | |||
1148 | /** | ||
1149 | * e1000_check_downshift - Checks whether a downshift in speed occured | ||
1150 | * @hw: pointer to the HW structure | ||
1151 | * | ||
1152 | * Success returns 0, Failure returns 1 | ||
1153 | * | ||
1154 | * A downshift is detected by querying the PHY link health. | ||
1155 | **/ | ||
1156 | s32 igb_check_downshift(struct e1000_hw *hw) | ||
1157 | { | ||
1158 | struct e1000_phy_info *phy = &hw->phy; | ||
1159 | s32 ret_val; | ||
1160 | u16 phy_data, offset, mask; | ||
1161 | |||
1162 | switch (phy->type) { | ||
1163 | case e1000_phy_m88: | ||
1164 | case e1000_phy_gg82563: | ||
1165 | offset = M88E1000_PHY_SPEC_STATUS; | ||
1166 | mask = M88E1000_PSSR_DOWNSHIFT; | ||
1167 | break; | ||
1168 | case e1000_phy_igp_2: | ||
1169 | case e1000_phy_igp: | ||
1170 | case e1000_phy_igp_3: | ||
1171 | offset = IGP01E1000_PHY_LINK_HEALTH; | ||
1172 | mask = IGP01E1000_PLHR_SS_DOWNGRADE; | ||
1173 | break; | ||
1174 | default: | ||
1175 | /* speed downshift not supported */ | ||
1176 | phy->speed_downgraded = false; | ||
1177 | ret_val = 0; | ||
1178 | goto out; | ||
1179 | } | ||
1180 | |||
1181 | ret_val = hw->phy.ops.read_phy_reg(hw, offset, &phy_data); | ||
1182 | |||
1183 | if (!ret_val) | ||
1184 | phy->speed_downgraded = (phy_data & mask) ? true : false; | ||
1185 | |||
1186 | out: | ||
1187 | return ret_val; | ||
1188 | } | ||
1189 | |||
1190 | /** | ||
1191 | * e1000_check_polarity_m88 - Checks the polarity. | ||
1192 | * @hw: pointer to the HW structure | ||
1193 | * | ||
1194 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1195 | * | ||
1196 | * Polarity is determined based on the PHY specific status register. | ||
1197 | **/ | ||
1198 | static s32 igb_check_polarity_m88(struct e1000_hw *hw) | ||
1199 | { | ||
1200 | struct e1000_phy_info *phy = &hw->phy; | ||
1201 | s32 ret_val; | ||
1202 | u16 data; | ||
1203 | |||
1204 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); | ||
1205 | |||
1206 | if (!ret_val) | ||
1207 | phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) | ||
1208 | ? e1000_rev_polarity_reversed | ||
1209 | : e1000_rev_polarity_normal; | ||
1210 | |||
1211 | return ret_val; | ||
1212 | } | ||
1213 | |||
1214 | /** | ||
1215 | * e1000_check_polarity_igp - Checks the polarity. | ||
1216 | * @hw: pointer to the HW structure | ||
1217 | * | ||
1218 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1219 | * | ||
1220 | * Polarity is determined based on the PHY port status register, and the | ||
1221 | * current speed (since there is no polarity at 100Mbps). | ||
1222 | **/ | ||
1223 | static s32 igb_check_polarity_igp(struct e1000_hw *hw) | ||
1224 | { | ||
1225 | struct e1000_phy_info *phy = &hw->phy; | ||
1226 | s32 ret_val; | ||
1227 | u16 data, offset, mask; | ||
1228 | |||
1229 | /* | ||
1230 | * Polarity is determined based on the speed of | ||
1231 | * our connection. | ||
1232 | */ | ||
1233 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | ||
1234 | &data); | ||
1235 | if (ret_val) | ||
1236 | goto out; | ||
1237 | |||
1238 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1239 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1240 | offset = IGP01E1000_PHY_PCS_INIT_REG; | ||
1241 | mask = IGP01E1000_PHY_POLARITY_MASK; | ||
1242 | } else { | ||
1243 | /* | ||
1244 | * This really only applies to 10Mbps since | ||
1245 | * there is no polarity for 100Mbps (always 0). | ||
1246 | */ | ||
1247 | offset = IGP01E1000_PHY_PORT_STATUS; | ||
1248 | mask = IGP01E1000_PSSR_POLARITY_REVERSED; | ||
1249 | } | ||
1250 | |||
1251 | ret_val = hw->phy.ops.read_phy_reg(hw, offset, &data); | ||
1252 | |||
1253 | if (!ret_val) | ||
1254 | phy->cable_polarity = (data & mask) | ||
1255 | ? e1000_rev_polarity_reversed | ||
1256 | : e1000_rev_polarity_normal; | ||
1257 | |||
1258 | out: | ||
1259 | return ret_val; | ||
1260 | } | ||
1261 | |||
1262 | /** | ||
1263 | * e1000_wait_autoneg - Wait for auto-neg compeletion | ||
1264 | * @hw: pointer to the HW structure | ||
1265 | * | ||
1266 | * Waits for auto-negotiation to complete or for the auto-negotiation time | ||
1267 | * limit to expire, which ever happens first. | ||
1268 | **/ | ||
1269 | static s32 igb_wait_autoneg(struct e1000_hw *hw) | ||
1270 | { | ||
1271 | s32 ret_val = 0; | ||
1272 | u16 i, phy_status; | ||
1273 | |||
1274 | /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ | ||
1275 | for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { | ||
1276 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status); | ||
1277 | if (ret_val) | ||
1278 | break; | ||
1279 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status); | ||
1280 | if (ret_val) | ||
1281 | break; | ||
1282 | if (phy_status & MII_SR_AUTONEG_COMPLETE) | ||
1283 | break; | ||
1284 | msleep(100); | ||
1285 | } | ||
1286 | |||
1287 | /* | ||
1288 | * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation | ||
1289 | * has completed. | ||
1290 | */ | ||
1291 | return ret_val; | ||
1292 | } | ||
1293 | |||
1294 | /** | ||
1295 | * e1000_phy_has_link - Polls PHY for link | ||
1296 | * @hw: pointer to the HW structure | ||
1297 | * @iterations: number of times to poll for link | ||
1298 | * @usec_interval: delay between polling attempts | ||
1299 | * @success: pointer to whether polling was successful or not | ||
1300 | * | ||
1301 | * Polls the PHY status register for link, 'iterations' number of times. | ||
1302 | **/ | ||
1303 | s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, | ||
1304 | u32 usec_interval, bool *success) | ||
1305 | { | ||
1306 | s32 ret_val = 0; | ||
1307 | u16 i, phy_status; | ||
1308 | |||
1309 | for (i = 0; i < iterations; i++) { | ||
1310 | /* | ||
1311 | * Some PHYs require the PHY_STATUS register to be read | ||
1312 | * twice due to the link bit being sticky. No harm doing | ||
1313 | * it across the board. | ||
1314 | */ | ||
1315 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status); | ||
1316 | if (ret_val) | ||
1317 | break; | ||
1318 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status); | ||
1319 | if (ret_val) | ||
1320 | break; | ||
1321 | if (phy_status & MII_SR_LINK_STATUS) | ||
1322 | break; | ||
1323 | if (usec_interval >= 1000) | ||
1324 | mdelay(usec_interval/1000); | ||
1325 | else | ||
1326 | udelay(usec_interval); | ||
1327 | } | ||
1328 | |||
1329 | *success = (i < iterations) ? true : false; | ||
1330 | |||
1331 | return ret_val; | ||
1332 | } | ||
1333 | |||
1334 | /** | ||
1335 | * e1000_get_cable_length_m88 - Determine cable length for m88 PHY | ||
1336 | * @hw: pointer to the HW structure | ||
1337 | * | ||
1338 | * Reads the PHY specific status register to retrieve the cable length | ||
1339 | * information. The cable length is determined by averaging the minimum and | ||
1340 | * maximum values to get the "average" cable length. The m88 PHY has four | ||
1341 | * possible cable length values, which are: | ||
1342 | * Register Value Cable Length | ||
1343 | * 0 < 50 meters | ||
1344 | * 1 50 - 80 meters | ||
1345 | * 2 80 - 110 meters | ||
1346 | * 3 110 - 140 meters | ||
1347 | * 4 > 140 meters | ||
1348 | **/ | ||
1349 | s32 igb_get_cable_length_m88(struct e1000_hw *hw) | ||
1350 | { | ||
1351 | struct e1000_phy_info *phy = &hw->phy; | ||
1352 | s32 ret_val; | ||
1353 | u16 phy_data, index; | ||
1354 | |||
1355 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1356 | &phy_data); | ||
1357 | if (ret_val) | ||
1358 | goto out; | ||
1359 | |||
1360 | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
1361 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
1362 | phy->min_cable_length = e1000_m88_cable_length_table[index]; | ||
1363 | phy->max_cable_length = e1000_m88_cable_length_table[index+1]; | ||
1364 | |||
1365 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1366 | |||
1367 | out: | ||
1368 | return ret_val; | ||
1369 | } | ||
1370 | |||
1371 | /** | ||
1372 | * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY | ||
1373 | * @hw: pointer to the HW structure | ||
1374 | * | ||
1375 | * The automatic gain control (agc) normalizes the amplitude of the | ||
1376 | * received signal, adjusting for the attenuation produced by the | ||
1377 | * cable. By reading the AGC registers, which reperesent the | ||
1378 | * cobination of course and fine gain value, the value can be put | ||
1379 | * into a lookup table to obtain the approximate cable length | ||
1380 | * for each channel. | ||
1381 | **/ | ||
1382 | s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) | ||
1383 | { | ||
1384 | struct e1000_phy_info *phy = &hw->phy; | ||
1385 | s32 ret_val = 0; | ||
1386 | u16 phy_data, i, agc_value = 0; | ||
1387 | u16 cur_agc_index, max_agc_index = 0; | ||
1388 | u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; | ||
1389 | u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | ||
1390 | {IGP02E1000_PHY_AGC_A, | ||
1391 | IGP02E1000_PHY_AGC_B, | ||
1392 | IGP02E1000_PHY_AGC_C, | ||
1393 | IGP02E1000_PHY_AGC_D}; | ||
1394 | |||
1395 | /* Read the AGC registers for all channels */ | ||
1396 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | ||
1397 | ret_val = hw->phy.ops.read_phy_reg(hw, agc_reg_array[i], | ||
1398 | &phy_data); | ||
1399 | if (ret_val) | ||
1400 | goto out; | ||
1401 | |||
1402 | /* | ||
1403 | * Getting bits 15:9, which represent the combination of | ||
1404 | * course and fine gain values. The result is a number | ||
1405 | * that can be put into the lookup table to obtain the | ||
1406 | * approximate cable length. | ||
1407 | */ | ||
1408 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | ||
1409 | IGP02E1000_AGC_LENGTH_MASK; | ||
1410 | |||
1411 | /* Array index bound check. */ | ||
1412 | if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || | ||
1413 | (cur_agc_index == 0)) { | ||
1414 | ret_val = -E1000_ERR_PHY; | ||
1415 | goto out; | ||
1416 | } | ||
1417 | |||
1418 | /* Remove min & max AGC values from calculation. */ | ||
1419 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
1420 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1421 | min_agc_index = cur_agc_index; | ||
1422 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
1423 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1424 | max_agc_index = cur_agc_index; | ||
1425 | |||
1426 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
1427 | } | ||
1428 | |||
1429 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | ||
1430 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
1431 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | ||
1432 | |||
1433 | /* Calculate cable length with the error range of +/- 10 meters. */ | ||
1434 | phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | ||
1435 | (agc_value - IGP02E1000_AGC_RANGE) : 0; | ||
1436 | phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; | ||
1437 | |||
1438 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1439 | |||
1440 | out: | ||
1441 | return ret_val; | ||
1442 | } | ||
1443 | |||
1444 | /** | ||
1445 | * e1000_get_phy_info_m88 - Retrieve PHY information | ||
1446 | * @hw: pointer to the HW structure | ||
1447 | * | ||
1448 | * Valid for only copper links. Read the PHY status register (sticky read) | ||
1449 | * to verify that link is up. Read the PHY special control register to | ||
1450 | * determine the polarity and 10base-T extended distance. Read the PHY | ||
1451 | * special status register to determine MDI/MDIx and current speed. If | ||
1452 | * speed is 1000, then determine cable length, local and remote receiver. | ||
1453 | **/ | ||
1454 | s32 igb_get_phy_info_m88(struct e1000_hw *hw) | ||
1455 | { | ||
1456 | struct e1000_phy_info *phy = &hw->phy; | ||
1457 | s32 ret_val; | ||
1458 | u16 phy_data; | ||
1459 | bool link; | ||
1460 | |||
1461 | if (hw->phy.media_type != e1000_media_type_copper) { | ||
1462 | hw_dbg(hw, "Phy info is only valid for copper media\n"); | ||
1463 | ret_val = -E1000_ERR_CONFIG; | ||
1464 | goto out; | ||
1465 | } | ||
1466 | |||
1467 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
1468 | if (ret_val) | ||
1469 | goto out; | ||
1470 | |||
1471 | if (!link) { | ||
1472 | hw_dbg(hw, "Phy info is only valid if link is up\n"); | ||
1473 | ret_val = -E1000_ERR_CONFIG; | ||
1474 | goto out; | ||
1475 | } | ||
1476 | |||
1477 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1478 | &phy_data); | ||
1479 | if (ret_val) | ||
1480 | goto out; | ||
1481 | |||
1482 | phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) | ||
1483 | ? true | ||
1484 | : false; | ||
1485 | |||
1486 | ret_val = igb_check_polarity_m88(hw); | ||
1487 | if (ret_val) | ||
1488 | goto out; | ||
1489 | |||
1490 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1491 | &phy_data); | ||
1492 | if (ret_val) | ||
1493 | goto out; | ||
1494 | |||
1495 | phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; | ||
1496 | |||
1497 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | ||
1498 | ret_val = hw->phy.ops.get_cable_length(hw); | ||
1499 | if (ret_val) | ||
1500 | goto out; | ||
1501 | |||
1502 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS, | ||
1503 | &phy_data); | ||
1504 | if (ret_val) | ||
1505 | goto out; | ||
1506 | |||
1507 | phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) | ||
1508 | ? e1000_1000t_rx_status_ok | ||
1509 | : e1000_1000t_rx_status_not_ok; | ||
1510 | |||
1511 | phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) | ||
1512 | ? e1000_1000t_rx_status_ok | ||
1513 | : e1000_1000t_rx_status_not_ok; | ||
1514 | } else { | ||
1515 | /* Set values to "undefined" */ | ||
1516 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1517 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1518 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1519 | } | ||
1520 | |||
1521 | out: | ||
1522 | return ret_val; | ||
1523 | } | ||
1524 | |||
1525 | /** | ||
1526 | * e1000_get_phy_info_igp - Retrieve igp PHY information | ||
1527 | * @hw: pointer to the HW structure | ||
1528 | * | ||
1529 | * Read PHY status to determine if link is up. If link is up, then | ||
1530 | * set/determine 10base-T extended distance and polarity correction. Read | ||
1531 | * PHY port status to determine MDI/MDIx and speed. Based on the speed, | ||
1532 | * determine on the cable length, local and remote receiver. | ||
1533 | **/ | ||
1534 | s32 igb_get_phy_info_igp(struct e1000_hw *hw) | ||
1535 | { | ||
1536 | struct e1000_phy_info *phy = &hw->phy; | ||
1537 | s32 ret_val; | ||
1538 | u16 data; | ||
1539 | bool link; | ||
1540 | |||
1541 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
1542 | if (ret_val) | ||
1543 | goto out; | ||
1544 | |||
1545 | if (!link) { | ||
1546 | hw_dbg(hw, "Phy info is only valid if link is up\n"); | ||
1547 | ret_val = -E1000_ERR_CONFIG; | ||
1548 | goto out; | ||
1549 | } | ||
1550 | |||
1551 | phy->polarity_correction = true; | ||
1552 | |||
1553 | ret_val = igb_check_polarity_igp(hw); | ||
1554 | if (ret_val) | ||
1555 | goto out; | ||
1556 | |||
1557 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | ||
1558 | &data); | ||
1559 | if (ret_val) | ||
1560 | goto out; | ||
1561 | |||
1562 | phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; | ||
1563 | |||
1564 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1565 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1566 | ret_val = hw->phy.ops.get_cable_length(hw); | ||
1567 | if (ret_val) | ||
1568 | goto out; | ||
1569 | |||
1570 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS, | ||
1571 | &data); | ||
1572 | if (ret_val) | ||
1573 | goto out; | ||
1574 | |||
1575 | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | ||
1576 | ? e1000_1000t_rx_status_ok | ||
1577 | : e1000_1000t_rx_status_not_ok; | ||
1578 | |||
1579 | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | ||
1580 | ? e1000_1000t_rx_status_ok | ||
1581 | : e1000_1000t_rx_status_not_ok; | ||
1582 | } else { | ||
1583 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1584 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1585 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1586 | } | ||
1587 | |||
1588 | out: | ||
1589 | return ret_val; | ||
1590 | } | ||
1591 | |||
1592 | /** | ||
1593 | * e1000_phy_sw_reset - PHY software reset | ||
1594 | * @hw: pointer to the HW structure | ||
1595 | * | ||
1596 | * Does a software reset of the PHY by reading the PHY control register and | ||
1597 | * setting/write the control register reset bit to the PHY. | ||
1598 | **/ | ||
1599 | s32 igb_phy_sw_reset(struct e1000_hw *hw) | ||
1600 | { | ||
1601 | s32 ret_val; | ||
1602 | u16 phy_ctrl; | ||
1603 | |||
1604 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); | ||
1605 | if (ret_val) | ||
1606 | goto out; | ||
1607 | |||
1608 | phy_ctrl |= MII_CR_RESET; | ||
1609 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_ctrl); | ||
1610 | if (ret_val) | ||
1611 | goto out; | ||
1612 | |||
1613 | udelay(1); | ||
1614 | |||
1615 | out: | ||
1616 | return ret_val; | ||
1617 | } | ||
1618 | |||
1619 | /** | ||
1620 | * e1000_phy_hw_reset - PHY hardware reset | ||
1621 | * @hw: pointer to the HW structure | ||
1622 | * | ||
1623 | * Verify the reset block is not blocking us from resetting. Acquire | ||
1624 | * semaphore (if necessary) and read/set/write the device control reset | ||
1625 | * bit in the PHY. Wait the appropriate delay time for the device to | ||
1626 | * reset and relase the semaphore (if necessary). | ||
1627 | **/ | ||
1628 | s32 igb_phy_hw_reset(struct e1000_hw *hw) | ||
1629 | { | ||
1630 | struct e1000_phy_info *phy = &hw->phy; | ||
1631 | s32 ret_val; | ||
1632 | u32 ctrl; | ||
1633 | |||
1634 | ret_val = igb_check_reset_block(hw); | ||
1635 | if (ret_val) { | ||
1636 | ret_val = 0; | ||
1637 | goto out; | ||
1638 | } | ||
1639 | |||
1640 | ret_val = igb_acquire_phy(hw); | ||
1641 | if (ret_val) | ||
1642 | goto out; | ||
1643 | |||
1644 | ctrl = rd32(E1000_CTRL); | ||
1645 | wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); | ||
1646 | wrfl(); | ||
1647 | |||
1648 | udelay(phy->reset_delay_us); | ||
1649 | |||
1650 | wr32(E1000_CTRL, ctrl); | ||
1651 | wrfl(); | ||
1652 | |||
1653 | udelay(150); | ||
1654 | |||
1655 | igb_release_phy(hw); | ||
1656 | |||
1657 | ret_val = igb_get_phy_cfg_done(hw); | ||
1658 | |||
1659 | out: | ||
1660 | return ret_val; | ||
1661 | } | ||
1662 | |||
1663 | /* Internal function pointers */ | ||
1664 | |||
1665 | /** | ||
1666 | * e1000_get_phy_cfg_done - Generic PHY configuration done | ||
1667 | * @hw: pointer to the HW structure | ||
1668 | * | ||
1669 | * Return success if silicon family did not implement a family specific | ||
1670 | * get_cfg_done function. | ||
1671 | **/ | ||
1672 | static s32 igb_get_phy_cfg_done(struct e1000_hw *hw) | ||
1673 | { | ||
1674 | if (hw->phy.ops.get_cfg_done) | ||
1675 | return hw->phy.ops.get_cfg_done(hw); | ||
1676 | |||
1677 | return 0; | ||
1678 | } | ||
1679 | |||
1680 | /** | ||
1681 | * e1000_release_phy - Generic release PHY | ||
1682 | * @hw: pointer to the HW structure | ||
1683 | * | ||
1684 | * Return if silicon family does not require a semaphore when accessing the | ||
1685 | * PHY. | ||
1686 | **/ | ||
1687 | static void igb_release_phy(struct e1000_hw *hw) | ||
1688 | { | ||
1689 | if (hw->phy.ops.release_phy) | ||
1690 | hw->phy.ops.release_phy(hw); | ||
1691 | } | ||
1692 | |||
1693 | /** | ||
1694 | * e1000_acquire_phy - Generic acquire PHY | ||
1695 | * @hw: pointer to the HW structure | ||
1696 | * | ||
1697 | * Return success if silicon family does not require a semaphore when | ||
1698 | * accessing the PHY. | ||
1699 | **/ | ||
1700 | static s32 igb_acquire_phy(struct e1000_hw *hw) | ||
1701 | { | ||
1702 | if (hw->phy.ops.acquire_phy) | ||
1703 | return hw->phy.ops.acquire_phy(hw); | ||
1704 | |||
1705 | return 0; | ||
1706 | } | ||
1707 | |||
1708 | /** | ||
1709 | * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex | ||
1710 | * @hw: pointer to the HW structure | ||
1711 | * | ||
1712 | * When the silicon family has not implemented a forced speed/duplex | ||
1713 | * function for the PHY, simply return 0. | ||
1714 | **/ | ||
1715 | s32 igb_phy_force_speed_duplex(struct e1000_hw *hw) | ||
1716 | { | ||
1717 | if (hw->phy.ops.force_speed_duplex) | ||
1718 | return hw->phy.ops.force_speed_duplex(hw); | ||
1719 | |||
1720 | return 0; | ||
1721 | } | ||
1722 | |||
1723 | /** | ||
1724 | * e1000_phy_init_script_igp3 - Inits the IGP3 PHY | ||
1725 | * @hw: pointer to the HW structure | ||
1726 | * | ||
1727 | * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. | ||
1728 | **/ | ||
1729 | s32 igb_phy_init_script_igp3(struct e1000_hw *hw) | ||
1730 | { | ||
1731 | hw_dbg(hw, "Running IGP 3 PHY init script\n"); | ||
1732 | |||
1733 | /* PHY init IGP 3 */ | ||
1734 | /* Enable rise/fall, 10-mode work in class-A */ | ||
1735 | hw->phy.ops.write_phy_reg(hw, 0x2F5B, 0x9018); | ||
1736 | /* Remove all caps from Replica path filter */ | ||
1737 | hw->phy.ops.write_phy_reg(hw, 0x2F52, 0x0000); | ||
1738 | /* Bias trimming for ADC, AFE and Driver (Default) */ | ||
1739 | hw->phy.ops.write_phy_reg(hw, 0x2FB1, 0x8B24); | ||
1740 | /* Increase Hybrid poly bias */ | ||
1741 | hw->phy.ops.write_phy_reg(hw, 0x2FB2, 0xF8F0); | ||
1742 | /* Add 4% to TX amplitude in Giga mode */ | ||
1743 | hw->phy.ops.write_phy_reg(hw, 0x2010, 0x10B0); | ||
1744 | /* Disable trimming (TTT) */ | ||
1745 | hw->phy.ops.write_phy_reg(hw, 0x2011, 0x0000); | ||
1746 | /* Poly DC correction to 94.6% + 2% for all channels */ | ||
1747 | hw->phy.ops.write_phy_reg(hw, 0x20DD, 0x249A); | ||
1748 | /* ABS DC correction to 95.9% */ | ||
1749 | hw->phy.ops.write_phy_reg(hw, 0x20DE, 0x00D3); | ||
1750 | /* BG temp curve trim */ | ||
1751 | hw->phy.ops.write_phy_reg(hw, 0x28B4, 0x04CE); | ||
1752 | /* Increasing ADC OPAMP stage 1 currents to max */ | ||
1753 | hw->phy.ops.write_phy_reg(hw, 0x2F70, 0x29E4); | ||
1754 | /* Force 1000 ( required for enabling PHY regs configuration) */ | ||
1755 | hw->phy.ops.write_phy_reg(hw, 0x0000, 0x0140); | ||
1756 | /* Set upd_freq to 6 */ | ||
1757 | hw->phy.ops.write_phy_reg(hw, 0x1F30, 0x1606); | ||
1758 | /* Disable NPDFE */ | ||
1759 | hw->phy.ops.write_phy_reg(hw, 0x1F31, 0xB814); | ||
1760 | /* Disable adaptive fixed FFE (Default) */ | ||
1761 | hw->phy.ops.write_phy_reg(hw, 0x1F35, 0x002A); | ||
1762 | /* Enable FFE hysteresis */ | ||
1763 | hw->phy.ops.write_phy_reg(hw, 0x1F3E, 0x0067); | ||
1764 | /* Fixed FFE for short cable lengths */ | ||
1765 | hw->phy.ops.write_phy_reg(hw, 0x1F54, 0x0065); | ||
1766 | /* Fixed FFE for medium cable lengths */ | ||
1767 | hw->phy.ops.write_phy_reg(hw, 0x1F55, 0x002A); | ||
1768 | /* Fixed FFE for long cable lengths */ | ||
1769 | hw->phy.ops.write_phy_reg(hw, 0x1F56, 0x002A); | ||
1770 | /* Enable Adaptive Clip Threshold */ | ||
1771 | hw->phy.ops.write_phy_reg(hw, 0x1F72, 0x3FB0); | ||
1772 | /* AHT reset limit to 1 */ | ||
1773 | hw->phy.ops.write_phy_reg(hw, 0x1F76, 0xC0FF); | ||
1774 | /* Set AHT master delay to 127 msec */ | ||
1775 | hw->phy.ops.write_phy_reg(hw, 0x1F77, 0x1DEC); | ||
1776 | /* Set scan bits for AHT */ | ||
1777 | hw->phy.ops.write_phy_reg(hw, 0x1F78, 0xF9EF); | ||
1778 | /* Set AHT Preset bits */ | ||
1779 | hw->phy.ops.write_phy_reg(hw, 0x1F79, 0x0210); | ||
1780 | /* Change integ_factor of channel A to 3 */ | ||
1781 | hw->phy.ops.write_phy_reg(hw, 0x1895, 0x0003); | ||
1782 | /* Change prop_factor of channels BCD to 8 */ | ||
1783 | hw->phy.ops.write_phy_reg(hw, 0x1796, 0x0008); | ||
1784 | /* Change cg_icount + enable integbp for channels BCD */ | ||
1785 | hw->phy.ops.write_phy_reg(hw, 0x1798, 0xD008); | ||
1786 | /* | ||
1787 | * Change cg_icount + enable integbp + change prop_factor_master | ||
1788 | * to 8 for channel A | ||
1789 | */ | ||
1790 | hw->phy.ops.write_phy_reg(hw, 0x1898, 0xD918); | ||
1791 | /* Disable AHT in Slave mode on channel A */ | ||
1792 | hw->phy.ops.write_phy_reg(hw, 0x187A, 0x0800); | ||
1793 | /* | ||
1794 | * Enable LPLU and disable AN to 1000 in non-D0a states, | ||
1795 | * Enable SPD+B2B | ||
1796 | */ | ||
1797 | hw->phy.ops.write_phy_reg(hw, 0x0019, 0x008D); | ||
1798 | /* Enable restart AN on an1000_dis change */ | ||
1799 | hw->phy.ops.write_phy_reg(hw, 0x001B, 0x2080); | ||
1800 | /* Enable wh_fifo read clock in 10/100 modes */ | ||
1801 | hw->phy.ops.write_phy_reg(hw, 0x0014, 0x0045); | ||
1802 | /* Restart AN, Speed selection is 1000 */ | ||
1803 | hw->phy.ops.write_phy_reg(hw, 0x0000, 0x1340); | ||
1804 | |||
1805 | return 0; | ||
1806 | } | ||
1807 | |||