aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/fs_enet/fs_enet-main.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/fs_enet/fs_enet-main.c')
-rw-r--r--drivers/net/fs_enet/fs_enet-main.c1226
1 files changed, 1226 insertions, 0 deletions
diff --git a/drivers/net/fs_enet/fs_enet-main.c b/drivers/net/fs_enet/fs_enet-main.c
new file mode 100644
index 000000000000..44fac7373289
--- /dev/null
+++ b/drivers/net/fs_enet/fs_enet-main.c
@@ -0,0 +1,1226 @@
1/*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/config.h>
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/types.h>
22#include <linux/sched.h>
23#include <linux/string.h>
24#include <linux/ptrace.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/skbuff.h>
35#include <linux/spinlock.h>
36#include <linux/mii.h>
37#include <linux/ethtool.h>
38#include <linux/bitops.h>
39#include <linux/fs.h>
40
41#include <linux/vmalloc.h>
42#include <asm/pgtable.h>
43
44#include <asm/pgtable.h>
45#include <asm/irq.h>
46#include <asm/uaccess.h>
47
48#include "fs_enet.h"
49
50/*************************************************/
51
52static char version[] __devinitdata =
53 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
54
55MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
56MODULE_DESCRIPTION("Freescale Ethernet Driver");
57MODULE_LICENSE("GPL");
58MODULE_VERSION(DRV_MODULE_VERSION);
59
60MODULE_PARM(fs_enet_debug, "i");
61MODULE_PARM_DESC(fs_enet_debug,
62 "Freescale bitmapped debugging message enable value");
63
64int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
65
66static void fs_set_multicast_list(struct net_device *dev)
67{
68 struct fs_enet_private *fep = netdev_priv(dev);
69
70 (*fep->ops->set_multicast_list)(dev);
71}
72
73/* NAPI receive function */
74static int fs_enet_rx_napi(struct net_device *dev, int *budget)
75{
76 struct fs_enet_private *fep = netdev_priv(dev);
77 const struct fs_platform_info *fpi = fep->fpi;
78 cbd_t *bdp;
79 struct sk_buff *skb, *skbn, *skbt;
80 int received = 0;
81 u16 pkt_len, sc;
82 int curidx;
83 int rx_work_limit = 0; /* pacify gcc */
84
85 rx_work_limit = min(dev->quota, *budget);
86
87 if (!netif_running(dev))
88 return 0;
89
90 /*
91 * First, grab all of the stats for the incoming packet.
92 * These get messed up if we get called due to a busy condition.
93 */
94 bdp = fep->cur_rx;
95
96 /* clear RX status bits for napi*/
97 (*fep->ops->napi_clear_rx_event)(dev);
98
99 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
100
101 curidx = bdp - fep->rx_bd_base;
102
103 /*
104 * Since we have allocated space to hold a complete frame,
105 * the last indicator should be set.
106 */
107 if ((sc & BD_ENET_RX_LAST) == 0)
108 printk(KERN_WARNING DRV_MODULE_NAME
109 ": %s rcv is not +last\n",
110 dev->name);
111
112 /*
113 * Check for errors.
114 */
115 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
116 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
117 fep->stats.rx_errors++;
118 /* Frame too long or too short. */
119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
120 fep->stats.rx_length_errors++;
121 /* Frame alignment */
122 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
123 fep->stats.rx_frame_errors++;
124 /* CRC Error */
125 if (sc & BD_ENET_RX_CR)
126 fep->stats.rx_crc_errors++;
127 /* FIFO overrun */
128 if (sc & BD_ENET_RX_OV)
129 fep->stats.rx_crc_errors++;
130
131 skb = fep->rx_skbuff[curidx];
132
133 dma_unmap_single(fep->dev, skb->data,
134 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
135 DMA_FROM_DEVICE);
136
137 skbn = skb;
138
139 } else {
140
141 /* napi, got packet but no quota */
142 if (--rx_work_limit < 0)
143 break;
144
145 skb = fep->rx_skbuff[curidx];
146
147 dma_unmap_single(fep->dev, skb->data,
148 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
149 DMA_FROM_DEVICE);
150
151 /*
152 * Process the incoming frame.
153 */
154 fep->stats.rx_packets++;
155 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
156 fep->stats.rx_bytes += pkt_len + 4;
157
158 if (pkt_len <= fpi->rx_copybreak) {
159 /* +2 to make IP header L1 cache aligned */
160 skbn = dev_alloc_skb(pkt_len + 2);
161 if (skbn != NULL) {
162 skb_reserve(skbn, 2); /* align IP header */
163 memcpy(skbn->data, skb->data, pkt_len);
164 /* swap */
165 skbt = skb;
166 skb = skbn;
167 skbn = skbt;
168 }
169 } else
170 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
171
172 if (skbn != NULL) {
173 skb->dev = dev;
174 skb_put(skb, pkt_len); /* Make room */
175 skb->protocol = eth_type_trans(skb, dev);
176 received++;
177 netif_receive_skb(skb);
178 } else {
179 printk(KERN_WARNING DRV_MODULE_NAME
180 ": %s Memory squeeze, dropping packet.\n",
181 dev->name);
182 fep->stats.rx_dropped++;
183 skbn = skb;
184 }
185 }
186
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 DMA_FROM_DEVICE));
191 CBDW_DATLEN(bdp, 0);
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193
194 /*
195 * Update BD pointer to next entry.
196 */
197 if ((sc & BD_ENET_RX_WRAP) == 0)
198 bdp++;
199 else
200 bdp = fep->rx_bd_base;
201
202 (*fep->ops->rx_bd_done)(dev);
203 }
204
205 fep->cur_rx = bdp;
206
207 dev->quota -= received;
208 *budget -= received;
209
210 if (rx_work_limit < 0)
211 return 1; /* not done */
212
213 /* done */
214 netif_rx_complete(dev);
215
216 (*fep->ops->napi_enable_rx)(dev);
217
218 return 0;
219}
220
221/* non NAPI receive function */
222static int fs_enet_rx_non_napi(struct net_device *dev)
223{
224 struct fs_enet_private *fep = netdev_priv(dev);
225 const struct fs_platform_info *fpi = fep->fpi;
226 cbd_t *bdp;
227 struct sk_buff *skb, *skbn, *skbt;
228 int received = 0;
229 u16 pkt_len, sc;
230 int curidx;
231 /*
232 * First, grab all of the stats for the incoming packet.
233 * These get messed up if we get called due to a busy condition.
234 */
235 bdp = fep->cur_rx;
236
237 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
238
239 curidx = bdp - fep->rx_bd_base;
240
241 /*
242 * Since we have allocated space to hold a complete frame,
243 * the last indicator should be set.
244 */
245 if ((sc & BD_ENET_RX_LAST) == 0)
246 printk(KERN_WARNING DRV_MODULE_NAME
247 ": %s rcv is not +last\n",
248 dev->name);
249
250 /*
251 * Check for errors.
252 */
253 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
254 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
255 fep->stats.rx_errors++;
256 /* Frame too long or too short. */
257 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
258 fep->stats.rx_length_errors++;
259 /* Frame alignment */
260 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
261 fep->stats.rx_frame_errors++;
262 /* CRC Error */
263 if (sc & BD_ENET_RX_CR)
264 fep->stats.rx_crc_errors++;
265 /* FIFO overrun */
266 if (sc & BD_ENET_RX_OV)
267 fep->stats.rx_crc_errors++;
268
269 skb = fep->rx_skbuff[curidx];
270
271 dma_unmap_single(fep->dev, skb->data,
272 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
273 DMA_FROM_DEVICE);
274
275 skbn = skb;
276
277 } else {
278
279 skb = fep->rx_skbuff[curidx];
280
281 dma_unmap_single(fep->dev, skb->data,
282 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
283 DMA_FROM_DEVICE);
284
285 /*
286 * Process the incoming frame.
287 */
288 fep->stats.rx_packets++;
289 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
290 fep->stats.rx_bytes += pkt_len + 4;
291
292 if (pkt_len <= fpi->rx_copybreak) {
293 /* +2 to make IP header L1 cache aligned */
294 skbn = dev_alloc_skb(pkt_len + 2);
295 if (skbn != NULL) {
296 skb_reserve(skbn, 2); /* align IP header */
297 memcpy(skbn->data, skb->data, pkt_len);
298 /* swap */
299 skbt = skb;
300 skb = skbn;
301 skbn = skbt;
302 }
303 } else
304 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
305
306 if (skbn != NULL) {
307 skb->dev = dev;
308 skb_put(skb, pkt_len); /* Make room */
309 skb->protocol = eth_type_trans(skb, dev);
310 received++;
311 netif_rx(skb);
312 } else {
313 printk(KERN_WARNING DRV_MODULE_NAME
314 ": %s Memory squeeze, dropping packet.\n",
315 dev->name);
316 fep->stats.rx_dropped++;
317 skbn = skb;
318 }
319 }
320
321 fep->rx_skbuff[curidx] = skbn;
322 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
323 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
324 DMA_FROM_DEVICE));
325 CBDW_DATLEN(bdp, 0);
326 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
327
328 /*
329 * Update BD pointer to next entry.
330 */
331 if ((sc & BD_ENET_RX_WRAP) == 0)
332 bdp++;
333 else
334 bdp = fep->rx_bd_base;
335
336 (*fep->ops->rx_bd_done)(dev);
337 }
338
339 fep->cur_rx = bdp;
340
341 return 0;
342}
343
344static void fs_enet_tx(struct net_device *dev)
345{
346 struct fs_enet_private *fep = netdev_priv(dev);
347 cbd_t *bdp;
348 struct sk_buff *skb;
349 int dirtyidx, do_wake, do_restart;
350 u16 sc;
351
352 spin_lock(&fep->lock);
353 bdp = fep->dirty_tx;
354
355 do_wake = do_restart = 0;
356 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
357
358 dirtyidx = bdp - fep->tx_bd_base;
359
360 if (fep->tx_free == fep->tx_ring)
361 break;
362
363 skb = fep->tx_skbuff[dirtyidx];
364
365 /*
366 * Check for errors.
367 */
368 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
369 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
370
371 if (sc & BD_ENET_TX_HB) /* No heartbeat */
372 fep->stats.tx_heartbeat_errors++;
373 if (sc & BD_ENET_TX_LC) /* Late collision */
374 fep->stats.tx_window_errors++;
375 if (sc & BD_ENET_TX_RL) /* Retrans limit */
376 fep->stats.tx_aborted_errors++;
377 if (sc & BD_ENET_TX_UN) /* Underrun */
378 fep->stats.tx_fifo_errors++;
379 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
380 fep->stats.tx_carrier_errors++;
381
382 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
383 fep->stats.tx_errors++;
384 do_restart = 1;
385 }
386 } else
387 fep->stats.tx_packets++;
388
389 if (sc & BD_ENET_TX_READY)
390 printk(KERN_WARNING DRV_MODULE_NAME
391 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
392 dev->name);
393
394 /*
395 * Deferred means some collisions occurred during transmit,
396 * but we eventually sent the packet OK.
397 */
398 if (sc & BD_ENET_TX_DEF)
399 fep->stats.collisions++;
400
401 /* unmap */
402 dma_unmap_single(fep->dev, skb->data, skb->len, DMA_TO_DEVICE);
403
404 /*
405 * Free the sk buffer associated with this last transmit.
406 */
407 dev_kfree_skb_irq(skb);
408 fep->tx_skbuff[dirtyidx] = NULL;
409
410 /*
411 * Update pointer to next buffer descriptor to be transmitted.
412 */
413 if ((sc & BD_ENET_TX_WRAP) == 0)
414 bdp++;
415 else
416 bdp = fep->tx_bd_base;
417
418 /*
419 * Since we have freed up a buffer, the ring is no longer
420 * full.
421 */
422 if (!fep->tx_free++)
423 do_wake = 1;
424 }
425
426 fep->dirty_tx = bdp;
427
428 if (do_restart)
429 (*fep->ops->tx_restart)(dev);
430
431 spin_unlock(&fep->lock);
432
433 if (do_wake)
434 netif_wake_queue(dev);
435}
436
437/*
438 * The interrupt handler.
439 * This is called from the MPC core interrupt.
440 */
441static irqreturn_t
442fs_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
443{
444 struct net_device *dev = dev_id;
445 struct fs_enet_private *fep;
446 const struct fs_platform_info *fpi;
447 u32 int_events;
448 u32 int_clr_events;
449 int nr, napi_ok;
450 int handled;
451
452 fep = netdev_priv(dev);
453 fpi = fep->fpi;
454
455 nr = 0;
456 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
457
458 nr++;
459
460 int_clr_events = int_events;
461 if (fpi->use_napi)
462 int_clr_events &= ~fep->ev_napi_rx;
463
464 (*fep->ops->clear_int_events)(dev, int_clr_events);
465
466 if (int_events & fep->ev_err)
467 (*fep->ops->ev_error)(dev, int_events);
468
469 if (int_events & fep->ev_rx) {
470 if (!fpi->use_napi)
471 fs_enet_rx_non_napi(dev);
472 else {
473 napi_ok = netif_rx_schedule_prep(dev);
474
475 (*fep->ops->napi_disable_rx)(dev);
476 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
477
478 /* NOTE: it is possible for FCCs in NAPI mode */
479 /* to submit a spurious interrupt while in poll */
480 if (napi_ok)
481 __netif_rx_schedule(dev);
482 }
483 }
484
485 if (int_events & fep->ev_tx)
486 fs_enet_tx(dev);
487 }
488
489 handled = nr > 0;
490 return IRQ_RETVAL(handled);
491}
492
493void fs_init_bds(struct net_device *dev)
494{
495 struct fs_enet_private *fep = netdev_priv(dev);
496 cbd_t *bdp;
497 struct sk_buff *skb;
498 int i;
499
500 fs_cleanup_bds(dev);
501
502 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
503 fep->tx_free = fep->tx_ring;
504 fep->cur_rx = fep->rx_bd_base;
505
506 /*
507 * Initialize the receive buffer descriptors.
508 */
509 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
510 skb = dev_alloc_skb(ENET_RX_FRSIZE);
511 if (skb == NULL) {
512 printk(KERN_WARNING DRV_MODULE_NAME
513 ": %s Memory squeeze, unable to allocate skb\n",
514 dev->name);
515 break;
516 }
517 fep->rx_skbuff[i] = skb;
518 skb->dev = dev;
519 CBDW_BUFADDR(bdp,
520 dma_map_single(fep->dev, skb->data,
521 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
522 DMA_FROM_DEVICE));
523 CBDW_DATLEN(bdp, 0); /* zero */
524 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
525 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
526 }
527 /*
528 * if we failed, fillup remainder
529 */
530 for (; i < fep->rx_ring; i++, bdp++) {
531 fep->rx_skbuff[i] = NULL;
532 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
533 }
534
535 /*
536 * ...and the same for transmit.
537 */
538 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
539 fep->tx_skbuff[i] = NULL;
540 CBDW_BUFADDR(bdp, 0);
541 CBDW_DATLEN(bdp, 0);
542 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
543 }
544}
545
546void fs_cleanup_bds(struct net_device *dev)
547{
548 struct fs_enet_private *fep = netdev_priv(dev);
549 struct sk_buff *skb;
550 int i;
551
552 /*
553 * Reset SKB transmit buffers.
554 */
555 for (i = 0; i < fep->tx_ring; i++) {
556 if ((skb = fep->tx_skbuff[i]) == NULL)
557 continue;
558
559 /* unmap */
560 dma_unmap_single(fep->dev, skb->data, skb->len, DMA_TO_DEVICE);
561
562 fep->tx_skbuff[i] = NULL;
563 dev_kfree_skb(skb);
564 }
565
566 /*
567 * Reset SKB receive buffers
568 */
569 for (i = 0; i < fep->rx_ring; i++) {
570 if ((skb = fep->rx_skbuff[i]) == NULL)
571 continue;
572
573 /* unmap */
574 dma_unmap_single(fep->dev, skb->data,
575 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
576 DMA_FROM_DEVICE);
577
578 fep->rx_skbuff[i] = NULL;
579
580 dev_kfree_skb(skb);
581 }
582}
583
584/**********************************************************************************/
585
586static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
587{
588 struct fs_enet_private *fep = netdev_priv(dev);
589 cbd_t *bdp;
590 int curidx;
591 u16 sc;
592 unsigned long flags;
593
594 spin_lock_irqsave(&fep->tx_lock, flags);
595
596 /*
597 * Fill in a Tx ring entry
598 */
599 bdp = fep->cur_tx;
600
601 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
602 netif_stop_queue(dev);
603 spin_unlock_irqrestore(&fep->tx_lock, flags);
604
605 /*
606 * Ooops. All transmit buffers are full. Bail out.
607 * This should not happen, since the tx queue should be stopped.
608 */
609 printk(KERN_WARNING DRV_MODULE_NAME
610 ": %s tx queue full!.\n", dev->name);
611 return NETDEV_TX_BUSY;
612 }
613
614 curidx = bdp - fep->tx_bd_base;
615 /*
616 * Clear all of the status flags.
617 */
618 CBDC_SC(bdp, BD_ENET_TX_STATS);
619
620 /*
621 * Save skb pointer.
622 */
623 fep->tx_skbuff[curidx] = skb;
624
625 fep->stats.tx_bytes += skb->len;
626
627 /*
628 * Push the data cache so the CPM does not get stale memory data.
629 */
630 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
631 skb->data, skb->len, DMA_TO_DEVICE));
632 CBDW_DATLEN(bdp, skb->len);
633
634 dev->trans_start = jiffies;
635
636 /*
637 * If this was the last BD in the ring, start at the beginning again.
638 */
639 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
640 fep->cur_tx++;
641 else
642 fep->cur_tx = fep->tx_bd_base;
643
644 if (!--fep->tx_free)
645 netif_stop_queue(dev);
646
647 /* Trigger transmission start */
648 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
649 BD_ENET_TX_LAST | BD_ENET_TX_TC;
650
651 /* note that while FEC does not have this bit
652 * it marks it as available for software use
653 * yay for hw reuse :) */
654 if (skb->len <= 60)
655 sc |= BD_ENET_TX_PAD;
656 CBDS_SC(bdp, sc);
657
658 (*fep->ops->tx_kickstart)(dev);
659
660 spin_unlock_irqrestore(&fep->tx_lock, flags);
661
662 return NETDEV_TX_OK;
663}
664
665static int fs_request_irq(struct net_device *dev, int irq, const char *name,
666 irqreturn_t (*irqf)(int irq, void *dev_id, struct pt_regs *regs))
667{
668 struct fs_enet_private *fep = netdev_priv(dev);
669
670 (*fep->ops->pre_request_irq)(dev, irq);
671 return request_irq(irq, irqf, SA_SHIRQ, name, dev);
672}
673
674static void fs_free_irq(struct net_device *dev, int irq)
675{
676 struct fs_enet_private *fep = netdev_priv(dev);
677
678 free_irq(irq, dev);
679 (*fep->ops->post_free_irq)(dev, irq);
680}
681
682/**********************************************************************************/
683
684/* This interrupt occurs when the PHY detects a link change. */
685static irqreturn_t
686fs_mii_link_interrupt(int irq, void *dev_id, struct pt_regs *regs)
687{
688 struct net_device *dev = dev_id;
689 struct fs_enet_private *fep;
690 const struct fs_platform_info *fpi;
691
692 fep = netdev_priv(dev);
693 fpi = fep->fpi;
694
695 /*
696 * Acknowledge the interrupt if possible. If we have not
697 * found the PHY yet we can't process or acknowledge the
698 * interrupt now. Instead we ignore this interrupt for now,
699 * which we can do since it is edge triggered. It will be
700 * acknowledged later by fs_enet_open().
701 */
702 if (!fep->phy)
703 return IRQ_NONE;
704
705 fs_mii_ack_int(dev);
706 fs_mii_link_status_change_check(dev, 0);
707
708 return IRQ_HANDLED;
709}
710
711static void fs_timeout(struct net_device *dev)
712{
713 struct fs_enet_private *fep = netdev_priv(dev);
714 unsigned long flags;
715 int wake = 0;
716
717 fep->stats.tx_errors++;
718
719 spin_lock_irqsave(&fep->lock, flags);
720
721 if (dev->flags & IFF_UP) {
722 (*fep->ops->stop)(dev);
723 (*fep->ops->restart)(dev);
724 }
725
726 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
727 spin_unlock_irqrestore(&fep->lock, flags);
728
729 if (wake)
730 netif_wake_queue(dev);
731}
732
733static int fs_enet_open(struct net_device *dev)
734{
735 struct fs_enet_private *fep = netdev_priv(dev);
736 const struct fs_platform_info *fpi = fep->fpi;
737 int r;
738
739 /* Install our interrupt handler. */
740 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
741 if (r != 0) {
742 printk(KERN_ERR DRV_MODULE_NAME
743 ": %s Could not allocate FEC IRQ!", dev->name);
744 return -EINVAL;
745 }
746
747 /* Install our phy interrupt handler */
748 if (fpi->phy_irq != -1) {
749
750 r = fs_request_irq(dev, fpi->phy_irq, "fs_enet-phy", fs_mii_link_interrupt);
751 if (r != 0) {
752 printk(KERN_ERR DRV_MODULE_NAME
753 ": %s Could not allocate PHY IRQ!", dev->name);
754 fs_free_irq(dev, fep->interrupt);
755 return -EINVAL;
756 }
757 }
758
759 fs_mii_startup(dev);
760 netif_carrier_off(dev);
761 fs_mii_link_status_change_check(dev, 1);
762
763 return 0;
764}
765
766static int fs_enet_close(struct net_device *dev)
767{
768 struct fs_enet_private *fep = netdev_priv(dev);
769 const struct fs_platform_info *fpi = fep->fpi;
770 unsigned long flags;
771
772 netif_stop_queue(dev);
773 netif_carrier_off(dev);
774 fs_mii_shutdown(dev);
775
776 spin_lock_irqsave(&fep->lock, flags);
777 (*fep->ops->stop)(dev);
778 spin_unlock_irqrestore(&fep->lock, flags);
779
780 /* release any irqs */
781 if (fpi->phy_irq != -1)
782 fs_free_irq(dev, fpi->phy_irq);
783 fs_free_irq(dev, fep->interrupt);
784
785 return 0;
786}
787
788static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
789{
790 struct fs_enet_private *fep = netdev_priv(dev);
791 return &fep->stats;
792}
793
794/*************************************************************************/
795
796static void fs_get_drvinfo(struct net_device *dev,
797 struct ethtool_drvinfo *info)
798{
799 strcpy(info->driver, DRV_MODULE_NAME);
800 strcpy(info->version, DRV_MODULE_VERSION);
801}
802
803static int fs_get_regs_len(struct net_device *dev)
804{
805 struct fs_enet_private *fep = netdev_priv(dev);
806
807 return (*fep->ops->get_regs_len)(dev);
808}
809
810static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
811 void *p)
812{
813 struct fs_enet_private *fep = netdev_priv(dev);
814 unsigned long flags;
815 int r, len;
816
817 len = regs->len;
818
819 spin_lock_irqsave(&fep->lock, flags);
820 r = (*fep->ops->get_regs)(dev, p, &len);
821 spin_unlock_irqrestore(&fep->lock, flags);
822
823 if (r == 0)
824 regs->version = 0;
825}
826
827static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
828{
829 struct fs_enet_private *fep = netdev_priv(dev);
830 unsigned long flags;
831 int rc;
832
833 spin_lock_irqsave(&fep->lock, flags);
834 rc = mii_ethtool_gset(&fep->mii_if, cmd);
835 spin_unlock_irqrestore(&fep->lock, flags);
836
837 return rc;
838}
839
840static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
841{
842 struct fs_enet_private *fep = netdev_priv(dev);
843 unsigned long flags;
844 int rc;
845
846 spin_lock_irqsave(&fep->lock, flags);
847 rc = mii_ethtool_sset(&fep->mii_if, cmd);
848 spin_unlock_irqrestore(&fep->lock, flags);
849
850 return rc;
851}
852
853static int fs_nway_reset(struct net_device *dev)
854{
855 struct fs_enet_private *fep = netdev_priv(dev);
856 return mii_nway_restart(&fep->mii_if);
857}
858
859static u32 fs_get_msglevel(struct net_device *dev)
860{
861 struct fs_enet_private *fep = netdev_priv(dev);
862 return fep->msg_enable;
863}
864
865static void fs_set_msglevel(struct net_device *dev, u32 value)
866{
867 struct fs_enet_private *fep = netdev_priv(dev);
868 fep->msg_enable = value;
869}
870
871static struct ethtool_ops fs_ethtool_ops = {
872 .get_drvinfo = fs_get_drvinfo,
873 .get_regs_len = fs_get_regs_len,
874 .get_settings = fs_get_settings,
875 .set_settings = fs_set_settings,
876 .nway_reset = fs_nway_reset,
877 .get_link = ethtool_op_get_link,
878 .get_msglevel = fs_get_msglevel,
879 .set_msglevel = fs_set_msglevel,
880 .get_tx_csum = ethtool_op_get_tx_csum,
881 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
882 .get_sg = ethtool_op_get_sg,
883 .set_sg = ethtool_op_set_sg,
884 .get_regs = fs_get_regs,
885};
886
887static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
888{
889 struct fs_enet_private *fep = netdev_priv(dev);
890 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
891 unsigned long flags;
892 int rc;
893
894 if (!netif_running(dev))
895 return -EINVAL;
896
897 spin_lock_irqsave(&fep->lock, flags);
898 rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
899 spin_unlock_irqrestore(&fep->lock, flags);
900 return rc;
901}
902
903extern int fs_mii_connect(struct net_device *dev);
904extern void fs_mii_disconnect(struct net_device *dev);
905
906static struct net_device *fs_init_instance(struct device *dev,
907 const struct fs_platform_info *fpi)
908{
909 struct net_device *ndev = NULL;
910 struct fs_enet_private *fep = NULL;
911 int privsize, i, r, err = 0, registered = 0;
912
913 /* guard */
914 if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
915 return ERR_PTR(-EINVAL);
916
917 privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
918 (fpi->rx_ring + fpi->tx_ring));
919
920 ndev = alloc_etherdev(privsize);
921 if (!ndev) {
922 err = -ENOMEM;
923 goto err;
924 }
925 SET_MODULE_OWNER(ndev);
926
927 fep = netdev_priv(ndev);
928 memset(fep, 0, privsize); /* clear everything */
929
930 fep->dev = dev;
931 dev_set_drvdata(dev, ndev);
932 fep->fpi = fpi;
933 if (fpi->init_ioports)
934 fpi->init_ioports();
935
936#ifdef CONFIG_FS_ENET_HAS_FEC
937 if (fs_get_fec_index(fpi->fs_no) >= 0)
938 fep->ops = &fs_fec_ops;
939#endif
940
941#ifdef CONFIG_FS_ENET_HAS_SCC
942 if (fs_get_scc_index(fpi->fs_no) >=0 )
943 fep->ops = &fs_scc_ops;
944#endif
945
946#ifdef CONFIG_FS_ENET_HAS_FCC
947 if (fs_get_fcc_index(fpi->fs_no) >= 0)
948 fep->ops = &fs_fcc_ops;
949#endif
950
951 if (fep->ops == NULL) {
952 printk(KERN_ERR DRV_MODULE_NAME
953 ": %s No matching ops found (%d).\n",
954 ndev->name, fpi->fs_no);
955 err = -EINVAL;
956 goto err;
957 }
958
959 r = (*fep->ops->setup_data)(ndev);
960 if (r != 0) {
961 printk(KERN_ERR DRV_MODULE_NAME
962 ": %s setup_data failed\n",
963 ndev->name);
964 err = r;
965 goto err;
966 }
967
968 /* point rx_skbuff, tx_skbuff */
969 fep->rx_skbuff = (struct sk_buff **)&fep[1];
970 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
971
972 /* init locks */
973 spin_lock_init(&fep->lock);
974 spin_lock_init(&fep->tx_lock);
975
976 /*
977 * Set the Ethernet address.
978 */
979 for (i = 0; i < 6; i++)
980 ndev->dev_addr[i] = fpi->macaddr[i];
981
982 r = (*fep->ops->allocate_bd)(ndev);
983
984 if (fep->ring_base == NULL) {
985 printk(KERN_ERR DRV_MODULE_NAME
986 ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
987 err = r;
988 goto err;
989 }
990
991 /*
992 * Set receive and transmit descriptor base.
993 */
994 fep->rx_bd_base = fep->ring_base;
995 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
996
997 /* initialize ring size variables */
998 fep->tx_ring = fpi->tx_ring;
999 fep->rx_ring = fpi->rx_ring;
1000
1001 /*
1002 * The FEC Ethernet specific entries in the device structure.
1003 */
1004 ndev->open = fs_enet_open;
1005 ndev->hard_start_xmit = fs_enet_start_xmit;
1006 ndev->tx_timeout = fs_timeout;
1007 ndev->watchdog_timeo = 2 * HZ;
1008 ndev->stop = fs_enet_close;
1009 ndev->get_stats = fs_enet_get_stats;
1010 ndev->set_multicast_list = fs_set_multicast_list;
1011 if (fpi->use_napi) {
1012 ndev->poll = fs_enet_rx_napi;
1013 ndev->weight = fpi->napi_weight;
1014 }
1015 ndev->ethtool_ops = &fs_ethtool_ops;
1016 ndev->do_ioctl = fs_ioctl;
1017
1018 init_timer(&fep->phy_timer_list);
1019
1020 netif_carrier_off(ndev);
1021
1022 err = register_netdev(ndev);
1023 if (err != 0) {
1024 printk(KERN_ERR DRV_MODULE_NAME
1025 ": %s register_netdev failed.\n", ndev->name);
1026 goto err;
1027 }
1028 registered = 1;
1029
1030 err = fs_mii_connect(ndev);
1031 if (err != 0) {
1032 printk(KERN_ERR DRV_MODULE_NAME
1033 ": %s fs_mii_connect failed.\n", ndev->name);
1034 goto err;
1035 }
1036
1037 return ndev;
1038
1039 err:
1040 if (ndev != NULL) {
1041
1042 if (registered)
1043 unregister_netdev(ndev);
1044
1045 if (fep != NULL) {
1046 (*fep->ops->free_bd)(ndev);
1047 (*fep->ops->cleanup_data)(ndev);
1048 }
1049
1050 free_netdev(ndev);
1051 }
1052
1053 dev_set_drvdata(dev, NULL);
1054
1055 return ERR_PTR(err);
1056}
1057
1058static int fs_cleanup_instance(struct net_device *ndev)
1059{
1060 struct fs_enet_private *fep;
1061 const struct fs_platform_info *fpi;
1062 struct device *dev;
1063
1064 if (ndev == NULL)
1065 return -EINVAL;
1066
1067 fep = netdev_priv(ndev);
1068 if (fep == NULL)
1069 return -EINVAL;
1070
1071 fpi = fep->fpi;
1072
1073 fs_mii_disconnect(ndev);
1074
1075 unregister_netdev(ndev);
1076
1077 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1078 fep->ring_base, fep->ring_mem_addr);
1079
1080 /* reset it */
1081 (*fep->ops->cleanup_data)(ndev);
1082
1083 dev = fep->dev;
1084 if (dev != NULL) {
1085 dev_set_drvdata(dev, NULL);
1086 fep->dev = NULL;
1087 }
1088
1089 free_netdev(ndev);
1090
1091 return 0;
1092}
1093
1094/**************************************************************************************/
1095
1096/* handy pointer to the immap */
1097void *fs_enet_immap = NULL;
1098
1099static int setup_immap(void)
1100{
1101 phys_addr_t paddr = 0;
1102 unsigned long size = 0;
1103
1104#ifdef CONFIG_CPM1
1105 paddr = IMAP_ADDR;
1106 size = 0x10000; /* map 64K */
1107#endif
1108
1109#ifdef CONFIG_CPM2
1110 paddr = CPM_MAP_ADDR;
1111 size = 0x40000; /* map 256 K */
1112#endif
1113 fs_enet_immap = ioremap(paddr, size);
1114 if (fs_enet_immap == NULL)
1115 return -EBADF; /* XXX ahem; maybe just BUG_ON? */
1116
1117 return 0;
1118}
1119
1120static void cleanup_immap(void)
1121{
1122 if (fs_enet_immap != NULL) {
1123 iounmap(fs_enet_immap);
1124 fs_enet_immap = NULL;
1125 }
1126}
1127
1128/**************************************************************************************/
1129
1130static int __devinit fs_enet_probe(struct device *dev)
1131{
1132 struct net_device *ndev;
1133
1134 /* no fixup - no device */
1135 if (dev->platform_data == NULL) {
1136 printk(KERN_INFO "fs_enet: "
1137 "probe called with no platform data; "
1138 "remove unused devices\n");
1139 return -ENODEV;
1140 }
1141
1142 ndev = fs_init_instance(dev, dev->platform_data);
1143 if (IS_ERR(ndev))
1144 return PTR_ERR(ndev);
1145 return 0;
1146}
1147
1148static int fs_enet_remove(struct device *dev)
1149{
1150 return fs_cleanup_instance(dev_get_drvdata(dev));
1151}
1152
1153static struct device_driver fs_enet_fec_driver = {
1154 .name = "fsl-cpm-fec",
1155 .bus = &platform_bus_type,
1156 .probe = fs_enet_probe,
1157 .remove = fs_enet_remove,
1158#ifdef CONFIG_PM
1159/* .suspend = fs_enet_suspend, TODO */
1160/* .resume = fs_enet_resume, TODO */
1161#endif
1162};
1163
1164static struct device_driver fs_enet_scc_driver = {
1165 .name = "fsl-cpm-scc",
1166 .bus = &platform_bus_type,
1167 .probe = fs_enet_probe,
1168 .remove = fs_enet_remove,
1169#ifdef CONFIG_PM
1170/* .suspend = fs_enet_suspend, TODO */
1171/* .resume = fs_enet_resume, TODO */
1172#endif
1173};
1174
1175static struct device_driver fs_enet_fcc_driver = {
1176 .name = "fsl-cpm-fcc",
1177 .bus = &platform_bus_type,
1178 .probe = fs_enet_probe,
1179 .remove = fs_enet_remove,
1180#ifdef CONFIG_PM
1181/* .suspend = fs_enet_suspend, TODO */
1182/* .resume = fs_enet_resume, TODO */
1183#endif
1184};
1185
1186static int __init fs_init(void)
1187{
1188 int r;
1189
1190 printk(KERN_INFO
1191 "%s", version);
1192
1193 r = setup_immap();
1194 if (r != 0)
1195 return r;
1196 r = driver_register(&fs_enet_fec_driver);
1197 if (r != 0)
1198 goto err;
1199
1200 r = driver_register(&fs_enet_fcc_driver);
1201 if (r != 0)
1202 goto err;
1203
1204 r = driver_register(&fs_enet_scc_driver);
1205 if (r != 0)
1206 goto err;
1207
1208 return 0;
1209err:
1210 cleanup_immap();
1211 return r;
1212
1213}
1214
1215static void __exit fs_cleanup(void)
1216{
1217 driver_unregister(&fs_enet_fec_driver);
1218 driver_unregister(&fs_enet_fcc_driver);
1219 driver_unregister(&fs_enet_scc_driver);
1220 cleanup_immap();
1221}
1222
1223/**************************************************************************************/
1224
1225module_init(fs_init);
1226module_exit(fs_cleanup);