diff options
Diffstat (limited to 'drivers/net/ethernet/neterion/s2io.c')
-rw-r--r-- | drivers/net/ethernet/neterion/s2io.c | 8674 |
1 files changed, 8674 insertions, 0 deletions
diff --git a/drivers/net/ethernet/neterion/s2io.c b/drivers/net/ethernet/neterion/s2io.c new file mode 100644 index 000000000000..277d48b0800a --- /dev/null +++ b/drivers/net/ethernet/neterion/s2io.c | |||
@@ -0,0 +1,8674 @@ | |||
1 | /************************************************************************ | ||
2 | * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC | ||
3 | * Copyright(c) 2002-2010 Exar Corp. | ||
4 | * | ||
5 | * This software may be used and distributed according to the terms of | ||
6 | * the GNU General Public License (GPL), incorporated herein by reference. | ||
7 | * Drivers based on or derived from this code fall under the GPL and must | ||
8 | * retain the authorship, copyright and license notice. This file is not | ||
9 | * a complete program and may only be used when the entire operating | ||
10 | * system is licensed under the GPL. | ||
11 | * See the file COPYING in this distribution for more information. | ||
12 | * | ||
13 | * Credits: | ||
14 | * Jeff Garzik : For pointing out the improper error condition | ||
15 | * check in the s2io_xmit routine and also some | ||
16 | * issues in the Tx watch dog function. Also for | ||
17 | * patiently answering all those innumerable | ||
18 | * questions regaring the 2.6 porting issues. | ||
19 | * Stephen Hemminger : Providing proper 2.6 porting mechanism for some | ||
20 | * macros available only in 2.6 Kernel. | ||
21 | * Francois Romieu : For pointing out all code part that were | ||
22 | * deprecated and also styling related comments. | ||
23 | * Grant Grundler : For helping me get rid of some Architecture | ||
24 | * dependent code. | ||
25 | * Christopher Hellwig : Some more 2.6 specific issues in the driver. | ||
26 | * | ||
27 | * The module loadable parameters that are supported by the driver and a brief | ||
28 | * explanation of all the variables. | ||
29 | * | ||
30 | * rx_ring_num : This can be used to program the number of receive rings used | ||
31 | * in the driver. | ||
32 | * rx_ring_sz: This defines the number of receive blocks each ring can have. | ||
33 | * This is also an array of size 8. | ||
34 | * rx_ring_mode: This defines the operation mode of all 8 rings. The valid | ||
35 | * values are 1, 2. | ||
36 | * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. | ||
37 | * tx_fifo_len: This too is an array of 8. Each element defines the number of | ||
38 | * Tx descriptors that can be associated with each corresponding FIFO. | ||
39 | * intr_type: This defines the type of interrupt. The values can be 0(INTA), | ||
40 | * 2(MSI_X). Default value is '2(MSI_X)' | ||
41 | * lro_max_pkts: This parameter defines maximum number of packets can be | ||
42 | * aggregated as a single large packet | ||
43 | * napi: This parameter used to enable/disable NAPI (polling Rx) | ||
44 | * Possible values '1' for enable and '0' for disable. Default is '1' | ||
45 | * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO) | ||
46 | * Possible values '1' for enable and '0' for disable. Default is '0' | ||
47 | * vlan_tag_strip: This can be used to enable or disable vlan stripping. | ||
48 | * Possible values '1' for enable , '0' for disable. | ||
49 | * Default is '2' - which means disable in promisc mode | ||
50 | * and enable in non-promiscuous mode. | ||
51 | * multiq: This parameter used to enable/disable MULTIQUEUE support. | ||
52 | * Possible values '1' for enable and '0' for disable. Default is '0' | ||
53 | ************************************************************************/ | ||
54 | |||
55 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | ||
56 | |||
57 | #include <linux/module.h> | ||
58 | #include <linux/types.h> | ||
59 | #include <linux/errno.h> | ||
60 | #include <linux/ioport.h> | ||
61 | #include <linux/pci.h> | ||
62 | #include <linux/dma-mapping.h> | ||
63 | #include <linux/kernel.h> | ||
64 | #include <linux/netdevice.h> | ||
65 | #include <linux/etherdevice.h> | ||
66 | #include <linux/mdio.h> | ||
67 | #include <linux/skbuff.h> | ||
68 | #include <linux/init.h> | ||
69 | #include <linux/delay.h> | ||
70 | #include <linux/stddef.h> | ||
71 | #include <linux/ioctl.h> | ||
72 | #include <linux/timex.h> | ||
73 | #include <linux/ethtool.h> | ||
74 | #include <linux/workqueue.h> | ||
75 | #include <linux/if_vlan.h> | ||
76 | #include <linux/ip.h> | ||
77 | #include <linux/tcp.h> | ||
78 | #include <linux/uaccess.h> | ||
79 | #include <linux/io.h> | ||
80 | #include <linux/slab.h> | ||
81 | #include <linux/prefetch.h> | ||
82 | #include <net/tcp.h> | ||
83 | |||
84 | #include <asm/system.h> | ||
85 | #include <asm/div64.h> | ||
86 | #include <asm/irq.h> | ||
87 | |||
88 | /* local include */ | ||
89 | #include "s2io.h" | ||
90 | #include "s2io-regs.h" | ||
91 | |||
92 | #define DRV_VERSION "2.0.26.28" | ||
93 | |||
94 | /* S2io Driver name & version. */ | ||
95 | static const char s2io_driver_name[] = "Neterion"; | ||
96 | static const char s2io_driver_version[] = DRV_VERSION; | ||
97 | |||
98 | static const int rxd_size[2] = {32, 48}; | ||
99 | static const int rxd_count[2] = {127, 85}; | ||
100 | |||
101 | static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) | ||
102 | { | ||
103 | int ret; | ||
104 | |||
105 | ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && | ||
106 | (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); | ||
107 | |||
108 | return ret; | ||
109 | } | ||
110 | |||
111 | /* | ||
112 | * Cards with following subsystem_id have a link state indication | ||
113 | * problem, 600B, 600C, 600D, 640B, 640C and 640D. | ||
114 | * macro below identifies these cards given the subsystem_id. | ||
115 | */ | ||
116 | #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ | ||
117 | (dev_type == XFRAME_I_DEVICE) ? \ | ||
118 | ((((subid >= 0x600B) && (subid <= 0x600D)) || \ | ||
119 | ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 | ||
120 | |||
121 | #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ | ||
122 | ADAPTER_STATUS_RMAC_LOCAL_FAULT))) | ||
123 | |||
124 | static inline int is_s2io_card_up(const struct s2io_nic *sp) | ||
125 | { | ||
126 | return test_bit(__S2IO_STATE_CARD_UP, &sp->state); | ||
127 | } | ||
128 | |||
129 | /* Ethtool related variables and Macros. */ | ||
130 | static const char s2io_gstrings[][ETH_GSTRING_LEN] = { | ||
131 | "Register test\t(offline)", | ||
132 | "Eeprom test\t(offline)", | ||
133 | "Link test\t(online)", | ||
134 | "RLDRAM test\t(offline)", | ||
135 | "BIST Test\t(offline)" | ||
136 | }; | ||
137 | |||
138 | static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { | ||
139 | {"tmac_frms"}, | ||
140 | {"tmac_data_octets"}, | ||
141 | {"tmac_drop_frms"}, | ||
142 | {"tmac_mcst_frms"}, | ||
143 | {"tmac_bcst_frms"}, | ||
144 | {"tmac_pause_ctrl_frms"}, | ||
145 | {"tmac_ttl_octets"}, | ||
146 | {"tmac_ucst_frms"}, | ||
147 | {"tmac_nucst_frms"}, | ||
148 | {"tmac_any_err_frms"}, | ||
149 | {"tmac_ttl_less_fb_octets"}, | ||
150 | {"tmac_vld_ip_octets"}, | ||
151 | {"tmac_vld_ip"}, | ||
152 | {"tmac_drop_ip"}, | ||
153 | {"tmac_icmp"}, | ||
154 | {"tmac_rst_tcp"}, | ||
155 | {"tmac_tcp"}, | ||
156 | {"tmac_udp"}, | ||
157 | {"rmac_vld_frms"}, | ||
158 | {"rmac_data_octets"}, | ||
159 | {"rmac_fcs_err_frms"}, | ||
160 | {"rmac_drop_frms"}, | ||
161 | {"rmac_vld_mcst_frms"}, | ||
162 | {"rmac_vld_bcst_frms"}, | ||
163 | {"rmac_in_rng_len_err_frms"}, | ||
164 | {"rmac_out_rng_len_err_frms"}, | ||
165 | {"rmac_long_frms"}, | ||
166 | {"rmac_pause_ctrl_frms"}, | ||
167 | {"rmac_unsup_ctrl_frms"}, | ||
168 | {"rmac_ttl_octets"}, | ||
169 | {"rmac_accepted_ucst_frms"}, | ||
170 | {"rmac_accepted_nucst_frms"}, | ||
171 | {"rmac_discarded_frms"}, | ||
172 | {"rmac_drop_events"}, | ||
173 | {"rmac_ttl_less_fb_octets"}, | ||
174 | {"rmac_ttl_frms"}, | ||
175 | {"rmac_usized_frms"}, | ||
176 | {"rmac_osized_frms"}, | ||
177 | {"rmac_frag_frms"}, | ||
178 | {"rmac_jabber_frms"}, | ||
179 | {"rmac_ttl_64_frms"}, | ||
180 | {"rmac_ttl_65_127_frms"}, | ||
181 | {"rmac_ttl_128_255_frms"}, | ||
182 | {"rmac_ttl_256_511_frms"}, | ||
183 | {"rmac_ttl_512_1023_frms"}, | ||
184 | {"rmac_ttl_1024_1518_frms"}, | ||
185 | {"rmac_ip"}, | ||
186 | {"rmac_ip_octets"}, | ||
187 | {"rmac_hdr_err_ip"}, | ||
188 | {"rmac_drop_ip"}, | ||
189 | {"rmac_icmp"}, | ||
190 | {"rmac_tcp"}, | ||
191 | {"rmac_udp"}, | ||
192 | {"rmac_err_drp_udp"}, | ||
193 | {"rmac_xgmii_err_sym"}, | ||
194 | {"rmac_frms_q0"}, | ||
195 | {"rmac_frms_q1"}, | ||
196 | {"rmac_frms_q2"}, | ||
197 | {"rmac_frms_q3"}, | ||
198 | {"rmac_frms_q4"}, | ||
199 | {"rmac_frms_q5"}, | ||
200 | {"rmac_frms_q6"}, | ||
201 | {"rmac_frms_q7"}, | ||
202 | {"rmac_full_q0"}, | ||
203 | {"rmac_full_q1"}, | ||
204 | {"rmac_full_q2"}, | ||
205 | {"rmac_full_q3"}, | ||
206 | {"rmac_full_q4"}, | ||
207 | {"rmac_full_q5"}, | ||
208 | {"rmac_full_q6"}, | ||
209 | {"rmac_full_q7"}, | ||
210 | {"rmac_pause_cnt"}, | ||
211 | {"rmac_xgmii_data_err_cnt"}, | ||
212 | {"rmac_xgmii_ctrl_err_cnt"}, | ||
213 | {"rmac_accepted_ip"}, | ||
214 | {"rmac_err_tcp"}, | ||
215 | {"rd_req_cnt"}, | ||
216 | {"new_rd_req_cnt"}, | ||
217 | {"new_rd_req_rtry_cnt"}, | ||
218 | {"rd_rtry_cnt"}, | ||
219 | {"wr_rtry_rd_ack_cnt"}, | ||
220 | {"wr_req_cnt"}, | ||
221 | {"new_wr_req_cnt"}, | ||
222 | {"new_wr_req_rtry_cnt"}, | ||
223 | {"wr_rtry_cnt"}, | ||
224 | {"wr_disc_cnt"}, | ||
225 | {"rd_rtry_wr_ack_cnt"}, | ||
226 | {"txp_wr_cnt"}, | ||
227 | {"txd_rd_cnt"}, | ||
228 | {"txd_wr_cnt"}, | ||
229 | {"rxd_rd_cnt"}, | ||
230 | {"rxd_wr_cnt"}, | ||
231 | {"txf_rd_cnt"}, | ||
232 | {"rxf_wr_cnt"} | ||
233 | }; | ||
234 | |||
235 | static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { | ||
236 | {"rmac_ttl_1519_4095_frms"}, | ||
237 | {"rmac_ttl_4096_8191_frms"}, | ||
238 | {"rmac_ttl_8192_max_frms"}, | ||
239 | {"rmac_ttl_gt_max_frms"}, | ||
240 | {"rmac_osized_alt_frms"}, | ||
241 | {"rmac_jabber_alt_frms"}, | ||
242 | {"rmac_gt_max_alt_frms"}, | ||
243 | {"rmac_vlan_frms"}, | ||
244 | {"rmac_len_discard"}, | ||
245 | {"rmac_fcs_discard"}, | ||
246 | {"rmac_pf_discard"}, | ||
247 | {"rmac_da_discard"}, | ||
248 | {"rmac_red_discard"}, | ||
249 | {"rmac_rts_discard"}, | ||
250 | {"rmac_ingm_full_discard"}, | ||
251 | {"link_fault_cnt"} | ||
252 | }; | ||
253 | |||
254 | static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { | ||
255 | {"\n DRIVER STATISTICS"}, | ||
256 | {"single_bit_ecc_errs"}, | ||
257 | {"double_bit_ecc_errs"}, | ||
258 | {"parity_err_cnt"}, | ||
259 | {"serious_err_cnt"}, | ||
260 | {"soft_reset_cnt"}, | ||
261 | {"fifo_full_cnt"}, | ||
262 | {"ring_0_full_cnt"}, | ||
263 | {"ring_1_full_cnt"}, | ||
264 | {"ring_2_full_cnt"}, | ||
265 | {"ring_3_full_cnt"}, | ||
266 | {"ring_4_full_cnt"}, | ||
267 | {"ring_5_full_cnt"}, | ||
268 | {"ring_6_full_cnt"}, | ||
269 | {"ring_7_full_cnt"}, | ||
270 | {"alarm_transceiver_temp_high"}, | ||
271 | {"alarm_transceiver_temp_low"}, | ||
272 | {"alarm_laser_bias_current_high"}, | ||
273 | {"alarm_laser_bias_current_low"}, | ||
274 | {"alarm_laser_output_power_high"}, | ||
275 | {"alarm_laser_output_power_low"}, | ||
276 | {"warn_transceiver_temp_high"}, | ||
277 | {"warn_transceiver_temp_low"}, | ||
278 | {"warn_laser_bias_current_high"}, | ||
279 | {"warn_laser_bias_current_low"}, | ||
280 | {"warn_laser_output_power_high"}, | ||
281 | {"warn_laser_output_power_low"}, | ||
282 | {"lro_aggregated_pkts"}, | ||
283 | {"lro_flush_both_count"}, | ||
284 | {"lro_out_of_sequence_pkts"}, | ||
285 | {"lro_flush_due_to_max_pkts"}, | ||
286 | {"lro_avg_aggr_pkts"}, | ||
287 | {"mem_alloc_fail_cnt"}, | ||
288 | {"pci_map_fail_cnt"}, | ||
289 | {"watchdog_timer_cnt"}, | ||
290 | {"mem_allocated"}, | ||
291 | {"mem_freed"}, | ||
292 | {"link_up_cnt"}, | ||
293 | {"link_down_cnt"}, | ||
294 | {"link_up_time"}, | ||
295 | {"link_down_time"}, | ||
296 | {"tx_tcode_buf_abort_cnt"}, | ||
297 | {"tx_tcode_desc_abort_cnt"}, | ||
298 | {"tx_tcode_parity_err_cnt"}, | ||
299 | {"tx_tcode_link_loss_cnt"}, | ||
300 | {"tx_tcode_list_proc_err_cnt"}, | ||
301 | {"rx_tcode_parity_err_cnt"}, | ||
302 | {"rx_tcode_abort_cnt"}, | ||
303 | {"rx_tcode_parity_abort_cnt"}, | ||
304 | {"rx_tcode_rda_fail_cnt"}, | ||
305 | {"rx_tcode_unkn_prot_cnt"}, | ||
306 | {"rx_tcode_fcs_err_cnt"}, | ||
307 | {"rx_tcode_buf_size_err_cnt"}, | ||
308 | {"rx_tcode_rxd_corrupt_cnt"}, | ||
309 | {"rx_tcode_unkn_err_cnt"}, | ||
310 | {"tda_err_cnt"}, | ||
311 | {"pfc_err_cnt"}, | ||
312 | {"pcc_err_cnt"}, | ||
313 | {"tti_err_cnt"}, | ||
314 | {"tpa_err_cnt"}, | ||
315 | {"sm_err_cnt"}, | ||
316 | {"lso_err_cnt"}, | ||
317 | {"mac_tmac_err_cnt"}, | ||
318 | {"mac_rmac_err_cnt"}, | ||
319 | {"xgxs_txgxs_err_cnt"}, | ||
320 | {"xgxs_rxgxs_err_cnt"}, | ||
321 | {"rc_err_cnt"}, | ||
322 | {"prc_pcix_err_cnt"}, | ||
323 | {"rpa_err_cnt"}, | ||
324 | {"rda_err_cnt"}, | ||
325 | {"rti_err_cnt"}, | ||
326 | {"mc_err_cnt"} | ||
327 | }; | ||
328 | |||
329 | #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) | ||
330 | #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) | ||
331 | #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) | ||
332 | |||
333 | #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) | ||
334 | #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) | ||
335 | |||
336 | #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) | ||
337 | #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) | ||
338 | |||
339 | #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) | ||
340 | #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) | ||
341 | |||
342 | #define S2IO_TIMER_CONF(timer, handle, arg, exp) \ | ||
343 | init_timer(&timer); \ | ||
344 | timer.function = handle; \ | ||
345 | timer.data = (unsigned long)arg; \ | ||
346 | mod_timer(&timer, (jiffies + exp)) \ | ||
347 | |||
348 | /* copy mac addr to def_mac_addr array */ | ||
349 | static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) | ||
350 | { | ||
351 | sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); | ||
352 | sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); | ||
353 | sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); | ||
354 | sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); | ||
355 | sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); | ||
356 | sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); | ||
357 | } | ||
358 | |||
359 | /* | ||
360 | * Constants to be programmed into the Xena's registers, to configure | ||
361 | * the XAUI. | ||
362 | */ | ||
363 | |||
364 | #define END_SIGN 0x0 | ||
365 | static const u64 herc_act_dtx_cfg[] = { | ||
366 | /* Set address */ | ||
367 | 0x8000051536750000ULL, 0x80000515367500E0ULL, | ||
368 | /* Write data */ | ||
369 | 0x8000051536750004ULL, 0x80000515367500E4ULL, | ||
370 | /* Set address */ | ||
371 | 0x80010515003F0000ULL, 0x80010515003F00E0ULL, | ||
372 | /* Write data */ | ||
373 | 0x80010515003F0004ULL, 0x80010515003F00E4ULL, | ||
374 | /* Set address */ | ||
375 | 0x801205150D440000ULL, 0x801205150D4400E0ULL, | ||
376 | /* Write data */ | ||
377 | 0x801205150D440004ULL, 0x801205150D4400E4ULL, | ||
378 | /* Set address */ | ||
379 | 0x80020515F2100000ULL, 0x80020515F21000E0ULL, | ||
380 | /* Write data */ | ||
381 | 0x80020515F2100004ULL, 0x80020515F21000E4ULL, | ||
382 | /* Done */ | ||
383 | END_SIGN | ||
384 | }; | ||
385 | |||
386 | static const u64 xena_dtx_cfg[] = { | ||
387 | /* Set address */ | ||
388 | 0x8000051500000000ULL, 0x80000515000000E0ULL, | ||
389 | /* Write data */ | ||
390 | 0x80000515D9350004ULL, 0x80000515D93500E4ULL, | ||
391 | /* Set address */ | ||
392 | 0x8001051500000000ULL, 0x80010515000000E0ULL, | ||
393 | /* Write data */ | ||
394 | 0x80010515001E0004ULL, 0x80010515001E00E4ULL, | ||
395 | /* Set address */ | ||
396 | 0x8002051500000000ULL, 0x80020515000000E0ULL, | ||
397 | /* Write data */ | ||
398 | 0x80020515F2100004ULL, 0x80020515F21000E4ULL, | ||
399 | END_SIGN | ||
400 | }; | ||
401 | |||
402 | /* | ||
403 | * Constants for Fixing the MacAddress problem seen mostly on | ||
404 | * Alpha machines. | ||
405 | */ | ||
406 | static const u64 fix_mac[] = { | ||
407 | 0x0060000000000000ULL, 0x0060600000000000ULL, | ||
408 | 0x0040600000000000ULL, 0x0000600000000000ULL, | ||
409 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
410 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
411 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
412 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
413 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
414 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
415 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
416 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
417 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
418 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
419 | 0x0020600000000000ULL, 0x0000600000000000ULL, | ||
420 | 0x0040600000000000ULL, 0x0060600000000000ULL, | ||
421 | END_SIGN | ||
422 | }; | ||
423 | |||
424 | MODULE_LICENSE("GPL"); | ||
425 | MODULE_VERSION(DRV_VERSION); | ||
426 | |||
427 | |||
428 | /* Module Loadable parameters. */ | ||
429 | S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); | ||
430 | S2IO_PARM_INT(rx_ring_num, 1); | ||
431 | S2IO_PARM_INT(multiq, 0); | ||
432 | S2IO_PARM_INT(rx_ring_mode, 1); | ||
433 | S2IO_PARM_INT(use_continuous_tx_intrs, 1); | ||
434 | S2IO_PARM_INT(rmac_pause_time, 0x100); | ||
435 | S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); | ||
436 | S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); | ||
437 | S2IO_PARM_INT(shared_splits, 0); | ||
438 | S2IO_PARM_INT(tmac_util_period, 5); | ||
439 | S2IO_PARM_INT(rmac_util_period, 5); | ||
440 | S2IO_PARM_INT(l3l4hdr_size, 128); | ||
441 | /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ | ||
442 | S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); | ||
443 | /* Frequency of Rx desc syncs expressed as power of 2 */ | ||
444 | S2IO_PARM_INT(rxsync_frequency, 3); | ||
445 | /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ | ||
446 | S2IO_PARM_INT(intr_type, 2); | ||
447 | /* Large receive offload feature */ | ||
448 | |||
449 | /* Max pkts to be aggregated by LRO at one time. If not specified, | ||
450 | * aggregation happens until we hit max IP pkt size(64K) | ||
451 | */ | ||
452 | S2IO_PARM_INT(lro_max_pkts, 0xFFFF); | ||
453 | S2IO_PARM_INT(indicate_max_pkts, 0); | ||
454 | |||
455 | S2IO_PARM_INT(napi, 1); | ||
456 | S2IO_PARM_INT(ufo, 0); | ||
457 | S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); | ||
458 | |||
459 | static unsigned int tx_fifo_len[MAX_TX_FIFOS] = | ||
460 | {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; | ||
461 | static unsigned int rx_ring_sz[MAX_RX_RINGS] = | ||
462 | {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; | ||
463 | static unsigned int rts_frm_len[MAX_RX_RINGS] = | ||
464 | {[0 ...(MAX_RX_RINGS - 1)] = 0 }; | ||
465 | |||
466 | module_param_array(tx_fifo_len, uint, NULL, 0); | ||
467 | module_param_array(rx_ring_sz, uint, NULL, 0); | ||
468 | module_param_array(rts_frm_len, uint, NULL, 0); | ||
469 | |||
470 | /* | ||
471 | * S2IO device table. | ||
472 | * This table lists all the devices that this driver supports. | ||
473 | */ | ||
474 | static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = { | ||
475 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, | ||
476 | PCI_ANY_ID, PCI_ANY_ID}, | ||
477 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, | ||
478 | PCI_ANY_ID, PCI_ANY_ID}, | ||
479 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, | ||
480 | PCI_ANY_ID, PCI_ANY_ID}, | ||
481 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, | ||
482 | PCI_ANY_ID, PCI_ANY_ID}, | ||
483 | {0,} | ||
484 | }; | ||
485 | |||
486 | MODULE_DEVICE_TABLE(pci, s2io_tbl); | ||
487 | |||
488 | static struct pci_error_handlers s2io_err_handler = { | ||
489 | .error_detected = s2io_io_error_detected, | ||
490 | .slot_reset = s2io_io_slot_reset, | ||
491 | .resume = s2io_io_resume, | ||
492 | }; | ||
493 | |||
494 | static struct pci_driver s2io_driver = { | ||
495 | .name = "S2IO", | ||
496 | .id_table = s2io_tbl, | ||
497 | .probe = s2io_init_nic, | ||
498 | .remove = __devexit_p(s2io_rem_nic), | ||
499 | .err_handler = &s2io_err_handler, | ||
500 | }; | ||
501 | |||
502 | /* A simplifier macro used both by init and free shared_mem Fns(). */ | ||
503 | #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) | ||
504 | |||
505 | /* netqueue manipulation helper functions */ | ||
506 | static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) | ||
507 | { | ||
508 | if (!sp->config.multiq) { | ||
509 | int i; | ||
510 | |||
511 | for (i = 0; i < sp->config.tx_fifo_num; i++) | ||
512 | sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; | ||
513 | } | ||
514 | netif_tx_stop_all_queues(sp->dev); | ||
515 | } | ||
516 | |||
517 | static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) | ||
518 | { | ||
519 | if (!sp->config.multiq) | ||
520 | sp->mac_control.fifos[fifo_no].queue_state = | ||
521 | FIFO_QUEUE_STOP; | ||
522 | |||
523 | netif_tx_stop_all_queues(sp->dev); | ||
524 | } | ||
525 | |||
526 | static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) | ||
527 | { | ||
528 | if (!sp->config.multiq) { | ||
529 | int i; | ||
530 | |||
531 | for (i = 0; i < sp->config.tx_fifo_num; i++) | ||
532 | sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; | ||
533 | } | ||
534 | netif_tx_start_all_queues(sp->dev); | ||
535 | } | ||
536 | |||
537 | static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no) | ||
538 | { | ||
539 | if (!sp->config.multiq) | ||
540 | sp->mac_control.fifos[fifo_no].queue_state = | ||
541 | FIFO_QUEUE_START; | ||
542 | |||
543 | netif_tx_start_all_queues(sp->dev); | ||
544 | } | ||
545 | |||
546 | static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) | ||
547 | { | ||
548 | if (!sp->config.multiq) { | ||
549 | int i; | ||
550 | |||
551 | for (i = 0; i < sp->config.tx_fifo_num; i++) | ||
552 | sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; | ||
553 | } | ||
554 | netif_tx_wake_all_queues(sp->dev); | ||
555 | } | ||
556 | |||
557 | static inline void s2io_wake_tx_queue( | ||
558 | struct fifo_info *fifo, int cnt, u8 multiq) | ||
559 | { | ||
560 | |||
561 | if (multiq) { | ||
562 | if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) | ||
563 | netif_wake_subqueue(fifo->dev, fifo->fifo_no); | ||
564 | } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { | ||
565 | if (netif_queue_stopped(fifo->dev)) { | ||
566 | fifo->queue_state = FIFO_QUEUE_START; | ||
567 | netif_wake_queue(fifo->dev); | ||
568 | } | ||
569 | } | ||
570 | } | ||
571 | |||
572 | /** | ||
573 | * init_shared_mem - Allocation and Initialization of Memory | ||
574 | * @nic: Device private variable. | ||
575 | * Description: The function allocates all the memory areas shared | ||
576 | * between the NIC and the driver. This includes Tx descriptors, | ||
577 | * Rx descriptors and the statistics block. | ||
578 | */ | ||
579 | |||
580 | static int init_shared_mem(struct s2io_nic *nic) | ||
581 | { | ||
582 | u32 size; | ||
583 | void *tmp_v_addr, *tmp_v_addr_next; | ||
584 | dma_addr_t tmp_p_addr, tmp_p_addr_next; | ||
585 | struct RxD_block *pre_rxd_blk = NULL; | ||
586 | int i, j, blk_cnt; | ||
587 | int lst_size, lst_per_page; | ||
588 | struct net_device *dev = nic->dev; | ||
589 | unsigned long tmp; | ||
590 | struct buffAdd *ba; | ||
591 | struct config_param *config = &nic->config; | ||
592 | struct mac_info *mac_control = &nic->mac_control; | ||
593 | unsigned long long mem_allocated = 0; | ||
594 | |||
595 | /* Allocation and initialization of TXDLs in FIFOs */ | ||
596 | size = 0; | ||
597 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
598 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
599 | |||
600 | size += tx_cfg->fifo_len; | ||
601 | } | ||
602 | if (size > MAX_AVAILABLE_TXDS) { | ||
603 | DBG_PRINT(ERR_DBG, | ||
604 | "Too many TxDs requested: %d, max supported: %d\n", | ||
605 | size, MAX_AVAILABLE_TXDS); | ||
606 | return -EINVAL; | ||
607 | } | ||
608 | |||
609 | size = 0; | ||
610 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
611 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
612 | |||
613 | size = tx_cfg->fifo_len; | ||
614 | /* | ||
615 | * Legal values are from 2 to 8192 | ||
616 | */ | ||
617 | if (size < 2) { | ||
618 | DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " | ||
619 | "Valid lengths are 2 through 8192\n", | ||
620 | i, size); | ||
621 | return -EINVAL; | ||
622 | } | ||
623 | } | ||
624 | |||
625 | lst_size = (sizeof(struct TxD) * config->max_txds); | ||
626 | lst_per_page = PAGE_SIZE / lst_size; | ||
627 | |||
628 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
629 | struct fifo_info *fifo = &mac_control->fifos[i]; | ||
630 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
631 | int fifo_len = tx_cfg->fifo_len; | ||
632 | int list_holder_size = fifo_len * sizeof(struct list_info_hold); | ||
633 | |||
634 | fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); | ||
635 | if (!fifo->list_info) { | ||
636 | DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); | ||
637 | return -ENOMEM; | ||
638 | } | ||
639 | mem_allocated += list_holder_size; | ||
640 | } | ||
641 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
642 | int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, | ||
643 | lst_per_page); | ||
644 | struct fifo_info *fifo = &mac_control->fifos[i]; | ||
645 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
646 | |||
647 | fifo->tx_curr_put_info.offset = 0; | ||
648 | fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; | ||
649 | fifo->tx_curr_get_info.offset = 0; | ||
650 | fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; | ||
651 | fifo->fifo_no = i; | ||
652 | fifo->nic = nic; | ||
653 | fifo->max_txds = MAX_SKB_FRAGS + 2; | ||
654 | fifo->dev = dev; | ||
655 | |||
656 | for (j = 0; j < page_num; j++) { | ||
657 | int k = 0; | ||
658 | dma_addr_t tmp_p; | ||
659 | void *tmp_v; | ||
660 | tmp_v = pci_alloc_consistent(nic->pdev, | ||
661 | PAGE_SIZE, &tmp_p); | ||
662 | if (!tmp_v) { | ||
663 | DBG_PRINT(INFO_DBG, | ||
664 | "pci_alloc_consistent failed for TxDL\n"); | ||
665 | return -ENOMEM; | ||
666 | } | ||
667 | /* If we got a zero DMA address(can happen on | ||
668 | * certain platforms like PPC), reallocate. | ||
669 | * Store virtual address of page we don't want, | ||
670 | * to be freed later. | ||
671 | */ | ||
672 | if (!tmp_p) { | ||
673 | mac_control->zerodma_virt_addr = tmp_v; | ||
674 | DBG_PRINT(INIT_DBG, | ||
675 | "%s: Zero DMA address for TxDL. " | ||
676 | "Virtual address %p\n", | ||
677 | dev->name, tmp_v); | ||
678 | tmp_v = pci_alloc_consistent(nic->pdev, | ||
679 | PAGE_SIZE, &tmp_p); | ||
680 | if (!tmp_v) { | ||
681 | DBG_PRINT(INFO_DBG, | ||
682 | "pci_alloc_consistent failed for TxDL\n"); | ||
683 | return -ENOMEM; | ||
684 | } | ||
685 | mem_allocated += PAGE_SIZE; | ||
686 | } | ||
687 | while (k < lst_per_page) { | ||
688 | int l = (j * lst_per_page) + k; | ||
689 | if (l == tx_cfg->fifo_len) | ||
690 | break; | ||
691 | fifo->list_info[l].list_virt_addr = | ||
692 | tmp_v + (k * lst_size); | ||
693 | fifo->list_info[l].list_phy_addr = | ||
694 | tmp_p + (k * lst_size); | ||
695 | k++; | ||
696 | } | ||
697 | } | ||
698 | } | ||
699 | |||
700 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
701 | struct fifo_info *fifo = &mac_control->fifos[i]; | ||
702 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
703 | |||
704 | size = tx_cfg->fifo_len; | ||
705 | fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); | ||
706 | if (!fifo->ufo_in_band_v) | ||
707 | return -ENOMEM; | ||
708 | mem_allocated += (size * sizeof(u64)); | ||
709 | } | ||
710 | |||
711 | /* Allocation and initialization of RXDs in Rings */ | ||
712 | size = 0; | ||
713 | for (i = 0; i < config->rx_ring_num; i++) { | ||
714 | struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; | ||
715 | struct ring_info *ring = &mac_control->rings[i]; | ||
716 | |||
717 | if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { | ||
718 | DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " | ||
719 | "multiple of RxDs per Block\n", | ||
720 | dev->name, i); | ||
721 | return FAILURE; | ||
722 | } | ||
723 | size += rx_cfg->num_rxd; | ||
724 | ring->block_count = rx_cfg->num_rxd / | ||
725 | (rxd_count[nic->rxd_mode] + 1); | ||
726 | ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; | ||
727 | } | ||
728 | if (nic->rxd_mode == RXD_MODE_1) | ||
729 | size = (size * (sizeof(struct RxD1))); | ||
730 | else | ||
731 | size = (size * (sizeof(struct RxD3))); | ||
732 | |||
733 | for (i = 0; i < config->rx_ring_num; i++) { | ||
734 | struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; | ||
735 | struct ring_info *ring = &mac_control->rings[i]; | ||
736 | |||
737 | ring->rx_curr_get_info.block_index = 0; | ||
738 | ring->rx_curr_get_info.offset = 0; | ||
739 | ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; | ||
740 | ring->rx_curr_put_info.block_index = 0; | ||
741 | ring->rx_curr_put_info.offset = 0; | ||
742 | ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; | ||
743 | ring->nic = nic; | ||
744 | ring->ring_no = i; | ||
745 | |||
746 | blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); | ||
747 | /* Allocating all the Rx blocks */ | ||
748 | for (j = 0; j < blk_cnt; j++) { | ||
749 | struct rx_block_info *rx_blocks; | ||
750 | int l; | ||
751 | |||
752 | rx_blocks = &ring->rx_blocks[j]; | ||
753 | size = SIZE_OF_BLOCK; /* size is always page size */ | ||
754 | tmp_v_addr = pci_alloc_consistent(nic->pdev, size, | ||
755 | &tmp_p_addr); | ||
756 | if (tmp_v_addr == NULL) { | ||
757 | /* | ||
758 | * In case of failure, free_shared_mem() | ||
759 | * is called, which should free any | ||
760 | * memory that was alloced till the | ||
761 | * failure happened. | ||
762 | */ | ||
763 | rx_blocks->block_virt_addr = tmp_v_addr; | ||
764 | return -ENOMEM; | ||
765 | } | ||
766 | mem_allocated += size; | ||
767 | memset(tmp_v_addr, 0, size); | ||
768 | |||
769 | size = sizeof(struct rxd_info) * | ||
770 | rxd_count[nic->rxd_mode]; | ||
771 | rx_blocks->block_virt_addr = tmp_v_addr; | ||
772 | rx_blocks->block_dma_addr = tmp_p_addr; | ||
773 | rx_blocks->rxds = kmalloc(size, GFP_KERNEL); | ||
774 | if (!rx_blocks->rxds) | ||
775 | return -ENOMEM; | ||
776 | mem_allocated += size; | ||
777 | for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { | ||
778 | rx_blocks->rxds[l].virt_addr = | ||
779 | rx_blocks->block_virt_addr + | ||
780 | (rxd_size[nic->rxd_mode] * l); | ||
781 | rx_blocks->rxds[l].dma_addr = | ||
782 | rx_blocks->block_dma_addr + | ||
783 | (rxd_size[nic->rxd_mode] * l); | ||
784 | } | ||
785 | } | ||
786 | /* Interlinking all Rx Blocks */ | ||
787 | for (j = 0; j < blk_cnt; j++) { | ||
788 | int next = (j + 1) % blk_cnt; | ||
789 | tmp_v_addr = ring->rx_blocks[j].block_virt_addr; | ||
790 | tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; | ||
791 | tmp_p_addr = ring->rx_blocks[j].block_dma_addr; | ||
792 | tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; | ||
793 | |||
794 | pre_rxd_blk = tmp_v_addr; | ||
795 | pre_rxd_blk->reserved_2_pNext_RxD_block = | ||
796 | (unsigned long)tmp_v_addr_next; | ||
797 | pre_rxd_blk->pNext_RxD_Blk_physical = | ||
798 | (u64)tmp_p_addr_next; | ||
799 | } | ||
800 | } | ||
801 | if (nic->rxd_mode == RXD_MODE_3B) { | ||
802 | /* | ||
803 | * Allocation of Storages for buffer addresses in 2BUFF mode | ||
804 | * and the buffers as well. | ||
805 | */ | ||
806 | for (i = 0; i < config->rx_ring_num; i++) { | ||
807 | struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; | ||
808 | struct ring_info *ring = &mac_control->rings[i]; | ||
809 | |||
810 | blk_cnt = rx_cfg->num_rxd / | ||
811 | (rxd_count[nic->rxd_mode] + 1); | ||
812 | size = sizeof(struct buffAdd *) * blk_cnt; | ||
813 | ring->ba = kmalloc(size, GFP_KERNEL); | ||
814 | if (!ring->ba) | ||
815 | return -ENOMEM; | ||
816 | mem_allocated += size; | ||
817 | for (j = 0; j < blk_cnt; j++) { | ||
818 | int k = 0; | ||
819 | |||
820 | size = sizeof(struct buffAdd) * | ||
821 | (rxd_count[nic->rxd_mode] + 1); | ||
822 | ring->ba[j] = kmalloc(size, GFP_KERNEL); | ||
823 | if (!ring->ba[j]) | ||
824 | return -ENOMEM; | ||
825 | mem_allocated += size; | ||
826 | while (k != rxd_count[nic->rxd_mode]) { | ||
827 | ba = &ring->ba[j][k]; | ||
828 | size = BUF0_LEN + ALIGN_SIZE; | ||
829 | ba->ba_0_org = kmalloc(size, GFP_KERNEL); | ||
830 | if (!ba->ba_0_org) | ||
831 | return -ENOMEM; | ||
832 | mem_allocated += size; | ||
833 | tmp = (unsigned long)ba->ba_0_org; | ||
834 | tmp += ALIGN_SIZE; | ||
835 | tmp &= ~((unsigned long)ALIGN_SIZE); | ||
836 | ba->ba_0 = (void *)tmp; | ||
837 | |||
838 | size = BUF1_LEN + ALIGN_SIZE; | ||
839 | ba->ba_1_org = kmalloc(size, GFP_KERNEL); | ||
840 | if (!ba->ba_1_org) | ||
841 | return -ENOMEM; | ||
842 | mem_allocated += size; | ||
843 | tmp = (unsigned long)ba->ba_1_org; | ||
844 | tmp += ALIGN_SIZE; | ||
845 | tmp &= ~((unsigned long)ALIGN_SIZE); | ||
846 | ba->ba_1 = (void *)tmp; | ||
847 | k++; | ||
848 | } | ||
849 | } | ||
850 | } | ||
851 | } | ||
852 | |||
853 | /* Allocation and initialization of Statistics block */ | ||
854 | size = sizeof(struct stat_block); | ||
855 | mac_control->stats_mem = | ||
856 | pci_alloc_consistent(nic->pdev, size, | ||
857 | &mac_control->stats_mem_phy); | ||
858 | |||
859 | if (!mac_control->stats_mem) { | ||
860 | /* | ||
861 | * In case of failure, free_shared_mem() is called, which | ||
862 | * should free any memory that was alloced till the | ||
863 | * failure happened. | ||
864 | */ | ||
865 | return -ENOMEM; | ||
866 | } | ||
867 | mem_allocated += size; | ||
868 | mac_control->stats_mem_sz = size; | ||
869 | |||
870 | tmp_v_addr = mac_control->stats_mem; | ||
871 | mac_control->stats_info = tmp_v_addr; | ||
872 | memset(tmp_v_addr, 0, size); | ||
873 | DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", | ||
874 | dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); | ||
875 | mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; | ||
876 | return SUCCESS; | ||
877 | } | ||
878 | |||
879 | /** | ||
880 | * free_shared_mem - Free the allocated Memory | ||
881 | * @nic: Device private variable. | ||
882 | * Description: This function is to free all memory locations allocated by | ||
883 | * the init_shared_mem() function and return it to the kernel. | ||
884 | */ | ||
885 | |||
886 | static void free_shared_mem(struct s2io_nic *nic) | ||
887 | { | ||
888 | int i, j, blk_cnt, size; | ||
889 | void *tmp_v_addr; | ||
890 | dma_addr_t tmp_p_addr; | ||
891 | int lst_size, lst_per_page; | ||
892 | struct net_device *dev; | ||
893 | int page_num = 0; | ||
894 | struct config_param *config; | ||
895 | struct mac_info *mac_control; | ||
896 | struct stat_block *stats; | ||
897 | struct swStat *swstats; | ||
898 | |||
899 | if (!nic) | ||
900 | return; | ||
901 | |||
902 | dev = nic->dev; | ||
903 | |||
904 | config = &nic->config; | ||
905 | mac_control = &nic->mac_control; | ||
906 | stats = mac_control->stats_info; | ||
907 | swstats = &stats->sw_stat; | ||
908 | |||
909 | lst_size = sizeof(struct TxD) * config->max_txds; | ||
910 | lst_per_page = PAGE_SIZE / lst_size; | ||
911 | |||
912 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
913 | struct fifo_info *fifo = &mac_control->fifos[i]; | ||
914 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
915 | |||
916 | page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); | ||
917 | for (j = 0; j < page_num; j++) { | ||
918 | int mem_blks = (j * lst_per_page); | ||
919 | struct list_info_hold *fli; | ||
920 | |||
921 | if (!fifo->list_info) | ||
922 | return; | ||
923 | |||
924 | fli = &fifo->list_info[mem_blks]; | ||
925 | if (!fli->list_virt_addr) | ||
926 | break; | ||
927 | pci_free_consistent(nic->pdev, PAGE_SIZE, | ||
928 | fli->list_virt_addr, | ||
929 | fli->list_phy_addr); | ||
930 | swstats->mem_freed += PAGE_SIZE; | ||
931 | } | ||
932 | /* If we got a zero DMA address during allocation, | ||
933 | * free the page now | ||
934 | */ | ||
935 | if (mac_control->zerodma_virt_addr) { | ||
936 | pci_free_consistent(nic->pdev, PAGE_SIZE, | ||
937 | mac_control->zerodma_virt_addr, | ||
938 | (dma_addr_t)0); | ||
939 | DBG_PRINT(INIT_DBG, | ||
940 | "%s: Freeing TxDL with zero DMA address. " | ||
941 | "Virtual address %p\n", | ||
942 | dev->name, mac_control->zerodma_virt_addr); | ||
943 | swstats->mem_freed += PAGE_SIZE; | ||
944 | } | ||
945 | kfree(fifo->list_info); | ||
946 | swstats->mem_freed += tx_cfg->fifo_len * | ||
947 | sizeof(struct list_info_hold); | ||
948 | } | ||
949 | |||
950 | size = SIZE_OF_BLOCK; | ||
951 | for (i = 0; i < config->rx_ring_num; i++) { | ||
952 | struct ring_info *ring = &mac_control->rings[i]; | ||
953 | |||
954 | blk_cnt = ring->block_count; | ||
955 | for (j = 0; j < blk_cnt; j++) { | ||
956 | tmp_v_addr = ring->rx_blocks[j].block_virt_addr; | ||
957 | tmp_p_addr = ring->rx_blocks[j].block_dma_addr; | ||
958 | if (tmp_v_addr == NULL) | ||
959 | break; | ||
960 | pci_free_consistent(nic->pdev, size, | ||
961 | tmp_v_addr, tmp_p_addr); | ||
962 | swstats->mem_freed += size; | ||
963 | kfree(ring->rx_blocks[j].rxds); | ||
964 | swstats->mem_freed += sizeof(struct rxd_info) * | ||
965 | rxd_count[nic->rxd_mode]; | ||
966 | } | ||
967 | } | ||
968 | |||
969 | if (nic->rxd_mode == RXD_MODE_3B) { | ||
970 | /* Freeing buffer storage addresses in 2BUFF mode. */ | ||
971 | for (i = 0; i < config->rx_ring_num; i++) { | ||
972 | struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; | ||
973 | struct ring_info *ring = &mac_control->rings[i]; | ||
974 | |||
975 | blk_cnt = rx_cfg->num_rxd / | ||
976 | (rxd_count[nic->rxd_mode] + 1); | ||
977 | for (j = 0; j < blk_cnt; j++) { | ||
978 | int k = 0; | ||
979 | if (!ring->ba[j]) | ||
980 | continue; | ||
981 | while (k != rxd_count[nic->rxd_mode]) { | ||
982 | struct buffAdd *ba = &ring->ba[j][k]; | ||
983 | kfree(ba->ba_0_org); | ||
984 | swstats->mem_freed += | ||
985 | BUF0_LEN + ALIGN_SIZE; | ||
986 | kfree(ba->ba_1_org); | ||
987 | swstats->mem_freed += | ||
988 | BUF1_LEN + ALIGN_SIZE; | ||
989 | k++; | ||
990 | } | ||
991 | kfree(ring->ba[j]); | ||
992 | swstats->mem_freed += sizeof(struct buffAdd) * | ||
993 | (rxd_count[nic->rxd_mode] + 1); | ||
994 | } | ||
995 | kfree(ring->ba); | ||
996 | swstats->mem_freed += sizeof(struct buffAdd *) * | ||
997 | blk_cnt; | ||
998 | } | ||
999 | } | ||
1000 | |||
1001 | for (i = 0; i < nic->config.tx_fifo_num; i++) { | ||
1002 | struct fifo_info *fifo = &mac_control->fifos[i]; | ||
1003 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
1004 | |||
1005 | if (fifo->ufo_in_band_v) { | ||
1006 | swstats->mem_freed += tx_cfg->fifo_len * | ||
1007 | sizeof(u64); | ||
1008 | kfree(fifo->ufo_in_band_v); | ||
1009 | } | ||
1010 | } | ||
1011 | |||
1012 | if (mac_control->stats_mem) { | ||
1013 | swstats->mem_freed += mac_control->stats_mem_sz; | ||
1014 | pci_free_consistent(nic->pdev, | ||
1015 | mac_control->stats_mem_sz, | ||
1016 | mac_control->stats_mem, | ||
1017 | mac_control->stats_mem_phy); | ||
1018 | } | ||
1019 | } | ||
1020 | |||
1021 | /** | ||
1022 | * s2io_verify_pci_mode - | ||
1023 | */ | ||
1024 | |||
1025 | static int s2io_verify_pci_mode(struct s2io_nic *nic) | ||
1026 | { | ||
1027 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
1028 | register u64 val64 = 0; | ||
1029 | int mode; | ||
1030 | |||
1031 | val64 = readq(&bar0->pci_mode); | ||
1032 | mode = (u8)GET_PCI_MODE(val64); | ||
1033 | |||
1034 | if (val64 & PCI_MODE_UNKNOWN_MODE) | ||
1035 | return -1; /* Unknown PCI mode */ | ||
1036 | return mode; | ||
1037 | } | ||
1038 | |||
1039 | #define NEC_VENID 0x1033 | ||
1040 | #define NEC_DEVID 0x0125 | ||
1041 | static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) | ||
1042 | { | ||
1043 | struct pci_dev *tdev = NULL; | ||
1044 | while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) { | ||
1045 | if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { | ||
1046 | if (tdev->bus == s2io_pdev->bus->parent) { | ||
1047 | pci_dev_put(tdev); | ||
1048 | return 1; | ||
1049 | } | ||
1050 | } | ||
1051 | } | ||
1052 | return 0; | ||
1053 | } | ||
1054 | |||
1055 | static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; | ||
1056 | /** | ||
1057 | * s2io_print_pci_mode - | ||
1058 | */ | ||
1059 | static int s2io_print_pci_mode(struct s2io_nic *nic) | ||
1060 | { | ||
1061 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
1062 | register u64 val64 = 0; | ||
1063 | int mode; | ||
1064 | struct config_param *config = &nic->config; | ||
1065 | const char *pcimode; | ||
1066 | |||
1067 | val64 = readq(&bar0->pci_mode); | ||
1068 | mode = (u8)GET_PCI_MODE(val64); | ||
1069 | |||
1070 | if (val64 & PCI_MODE_UNKNOWN_MODE) | ||
1071 | return -1; /* Unknown PCI mode */ | ||
1072 | |||
1073 | config->bus_speed = bus_speed[mode]; | ||
1074 | |||
1075 | if (s2io_on_nec_bridge(nic->pdev)) { | ||
1076 | DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", | ||
1077 | nic->dev->name); | ||
1078 | return mode; | ||
1079 | } | ||
1080 | |||
1081 | switch (mode) { | ||
1082 | case PCI_MODE_PCI_33: | ||
1083 | pcimode = "33MHz PCI bus"; | ||
1084 | break; | ||
1085 | case PCI_MODE_PCI_66: | ||
1086 | pcimode = "66MHz PCI bus"; | ||
1087 | break; | ||
1088 | case PCI_MODE_PCIX_M1_66: | ||
1089 | pcimode = "66MHz PCIX(M1) bus"; | ||
1090 | break; | ||
1091 | case PCI_MODE_PCIX_M1_100: | ||
1092 | pcimode = "100MHz PCIX(M1) bus"; | ||
1093 | break; | ||
1094 | case PCI_MODE_PCIX_M1_133: | ||
1095 | pcimode = "133MHz PCIX(M1) bus"; | ||
1096 | break; | ||
1097 | case PCI_MODE_PCIX_M2_66: | ||
1098 | pcimode = "133MHz PCIX(M2) bus"; | ||
1099 | break; | ||
1100 | case PCI_MODE_PCIX_M2_100: | ||
1101 | pcimode = "200MHz PCIX(M2) bus"; | ||
1102 | break; | ||
1103 | case PCI_MODE_PCIX_M2_133: | ||
1104 | pcimode = "266MHz PCIX(M2) bus"; | ||
1105 | break; | ||
1106 | default: | ||
1107 | pcimode = "unsupported bus!"; | ||
1108 | mode = -1; | ||
1109 | } | ||
1110 | |||
1111 | DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", | ||
1112 | nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); | ||
1113 | |||
1114 | return mode; | ||
1115 | } | ||
1116 | |||
1117 | /** | ||
1118 | * init_tti - Initialization transmit traffic interrupt scheme | ||
1119 | * @nic: device private variable | ||
1120 | * @link: link status (UP/DOWN) used to enable/disable continuous | ||
1121 | * transmit interrupts | ||
1122 | * Description: The function configures transmit traffic interrupts | ||
1123 | * Return Value: SUCCESS on success and | ||
1124 | * '-1' on failure | ||
1125 | */ | ||
1126 | |||
1127 | static int init_tti(struct s2io_nic *nic, int link) | ||
1128 | { | ||
1129 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
1130 | register u64 val64 = 0; | ||
1131 | int i; | ||
1132 | struct config_param *config = &nic->config; | ||
1133 | |||
1134 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
1135 | /* | ||
1136 | * TTI Initialization. Default Tx timer gets us about | ||
1137 | * 250 interrupts per sec. Continuous interrupts are enabled | ||
1138 | * by default. | ||
1139 | */ | ||
1140 | if (nic->device_type == XFRAME_II_DEVICE) { | ||
1141 | int count = (nic->config.bus_speed * 125)/2; | ||
1142 | val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); | ||
1143 | } else | ||
1144 | val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); | ||
1145 | |||
1146 | val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | | ||
1147 | TTI_DATA1_MEM_TX_URNG_B(0x10) | | ||
1148 | TTI_DATA1_MEM_TX_URNG_C(0x30) | | ||
1149 | TTI_DATA1_MEM_TX_TIMER_AC_EN; | ||
1150 | if (i == 0) | ||
1151 | if (use_continuous_tx_intrs && (link == LINK_UP)) | ||
1152 | val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; | ||
1153 | writeq(val64, &bar0->tti_data1_mem); | ||
1154 | |||
1155 | if (nic->config.intr_type == MSI_X) { | ||
1156 | val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | | ||
1157 | TTI_DATA2_MEM_TX_UFC_B(0x100) | | ||
1158 | TTI_DATA2_MEM_TX_UFC_C(0x200) | | ||
1159 | TTI_DATA2_MEM_TX_UFC_D(0x300); | ||
1160 | } else { | ||
1161 | if ((nic->config.tx_steering_type == | ||
1162 | TX_DEFAULT_STEERING) && | ||
1163 | (config->tx_fifo_num > 1) && | ||
1164 | (i >= nic->udp_fifo_idx) && | ||
1165 | (i < (nic->udp_fifo_idx + | ||
1166 | nic->total_udp_fifos))) | ||
1167 | val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | | ||
1168 | TTI_DATA2_MEM_TX_UFC_B(0x80) | | ||
1169 | TTI_DATA2_MEM_TX_UFC_C(0x100) | | ||
1170 | TTI_DATA2_MEM_TX_UFC_D(0x120); | ||
1171 | else | ||
1172 | val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | | ||
1173 | TTI_DATA2_MEM_TX_UFC_B(0x20) | | ||
1174 | TTI_DATA2_MEM_TX_UFC_C(0x40) | | ||
1175 | TTI_DATA2_MEM_TX_UFC_D(0x80); | ||
1176 | } | ||
1177 | |||
1178 | writeq(val64, &bar0->tti_data2_mem); | ||
1179 | |||
1180 | val64 = TTI_CMD_MEM_WE | | ||
1181 | TTI_CMD_MEM_STROBE_NEW_CMD | | ||
1182 | TTI_CMD_MEM_OFFSET(i); | ||
1183 | writeq(val64, &bar0->tti_command_mem); | ||
1184 | |||
1185 | if (wait_for_cmd_complete(&bar0->tti_command_mem, | ||
1186 | TTI_CMD_MEM_STROBE_NEW_CMD, | ||
1187 | S2IO_BIT_RESET) != SUCCESS) | ||
1188 | return FAILURE; | ||
1189 | } | ||
1190 | |||
1191 | return SUCCESS; | ||
1192 | } | ||
1193 | |||
1194 | /** | ||
1195 | * init_nic - Initialization of hardware | ||
1196 | * @nic: device private variable | ||
1197 | * Description: The function sequentially configures every block | ||
1198 | * of the H/W from their reset values. | ||
1199 | * Return Value: SUCCESS on success and | ||
1200 | * '-1' on failure (endian settings incorrect). | ||
1201 | */ | ||
1202 | |||
1203 | static int init_nic(struct s2io_nic *nic) | ||
1204 | { | ||
1205 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
1206 | struct net_device *dev = nic->dev; | ||
1207 | register u64 val64 = 0; | ||
1208 | void __iomem *add; | ||
1209 | u32 time; | ||
1210 | int i, j; | ||
1211 | int dtx_cnt = 0; | ||
1212 | unsigned long long mem_share; | ||
1213 | int mem_size; | ||
1214 | struct config_param *config = &nic->config; | ||
1215 | struct mac_info *mac_control = &nic->mac_control; | ||
1216 | |||
1217 | /* to set the swapper controle on the card */ | ||
1218 | if (s2io_set_swapper(nic)) { | ||
1219 | DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); | ||
1220 | return -EIO; | ||
1221 | } | ||
1222 | |||
1223 | /* | ||
1224 | * Herc requires EOI to be removed from reset before XGXS, so.. | ||
1225 | */ | ||
1226 | if (nic->device_type & XFRAME_II_DEVICE) { | ||
1227 | val64 = 0xA500000000ULL; | ||
1228 | writeq(val64, &bar0->sw_reset); | ||
1229 | msleep(500); | ||
1230 | val64 = readq(&bar0->sw_reset); | ||
1231 | } | ||
1232 | |||
1233 | /* Remove XGXS from reset state */ | ||
1234 | val64 = 0; | ||
1235 | writeq(val64, &bar0->sw_reset); | ||
1236 | msleep(500); | ||
1237 | val64 = readq(&bar0->sw_reset); | ||
1238 | |||
1239 | /* Ensure that it's safe to access registers by checking | ||
1240 | * RIC_RUNNING bit is reset. Check is valid only for XframeII. | ||
1241 | */ | ||
1242 | if (nic->device_type == XFRAME_II_DEVICE) { | ||
1243 | for (i = 0; i < 50; i++) { | ||
1244 | val64 = readq(&bar0->adapter_status); | ||
1245 | if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) | ||
1246 | break; | ||
1247 | msleep(10); | ||
1248 | } | ||
1249 | if (i == 50) | ||
1250 | return -ENODEV; | ||
1251 | } | ||
1252 | |||
1253 | /* Enable Receiving broadcasts */ | ||
1254 | add = &bar0->mac_cfg; | ||
1255 | val64 = readq(&bar0->mac_cfg); | ||
1256 | val64 |= MAC_RMAC_BCAST_ENABLE; | ||
1257 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
1258 | writel((u32)val64, add); | ||
1259 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
1260 | writel((u32) (val64 >> 32), (add + 4)); | ||
1261 | |||
1262 | /* Read registers in all blocks */ | ||
1263 | val64 = readq(&bar0->mac_int_mask); | ||
1264 | val64 = readq(&bar0->mc_int_mask); | ||
1265 | val64 = readq(&bar0->xgxs_int_mask); | ||
1266 | |||
1267 | /* Set MTU */ | ||
1268 | val64 = dev->mtu; | ||
1269 | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); | ||
1270 | |||
1271 | if (nic->device_type & XFRAME_II_DEVICE) { | ||
1272 | while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { | ||
1273 | SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], | ||
1274 | &bar0->dtx_control, UF); | ||
1275 | if (dtx_cnt & 0x1) | ||
1276 | msleep(1); /* Necessary!! */ | ||
1277 | dtx_cnt++; | ||
1278 | } | ||
1279 | } else { | ||
1280 | while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { | ||
1281 | SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], | ||
1282 | &bar0->dtx_control, UF); | ||
1283 | val64 = readq(&bar0->dtx_control); | ||
1284 | dtx_cnt++; | ||
1285 | } | ||
1286 | } | ||
1287 | |||
1288 | /* Tx DMA Initialization */ | ||
1289 | val64 = 0; | ||
1290 | writeq(val64, &bar0->tx_fifo_partition_0); | ||
1291 | writeq(val64, &bar0->tx_fifo_partition_1); | ||
1292 | writeq(val64, &bar0->tx_fifo_partition_2); | ||
1293 | writeq(val64, &bar0->tx_fifo_partition_3); | ||
1294 | |||
1295 | for (i = 0, j = 0; i < config->tx_fifo_num; i++) { | ||
1296 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
1297 | |||
1298 | val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | | ||
1299 | vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); | ||
1300 | |||
1301 | if (i == (config->tx_fifo_num - 1)) { | ||
1302 | if (i % 2 == 0) | ||
1303 | i++; | ||
1304 | } | ||
1305 | |||
1306 | switch (i) { | ||
1307 | case 1: | ||
1308 | writeq(val64, &bar0->tx_fifo_partition_0); | ||
1309 | val64 = 0; | ||
1310 | j = 0; | ||
1311 | break; | ||
1312 | case 3: | ||
1313 | writeq(val64, &bar0->tx_fifo_partition_1); | ||
1314 | val64 = 0; | ||
1315 | j = 0; | ||
1316 | break; | ||
1317 | case 5: | ||
1318 | writeq(val64, &bar0->tx_fifo_partition_2); | ||
1319 | val64 = 0; | ||
1320 | j = 0; | ||
1321 | break; | ||
1322 | case 7: | ||
1323 | writeq(val64, &bar0->tx_fifo_partition_3); | ||
1324 | val64 = 0; | ||
1325 | j = 0; | ||
1326 | break; | ||
1327 | default: | ||
1328 | j++; | ||
1329 | break; | ||
1330 | } | ||
1331 | } | ||
1332 | |||
1333 | /* | ||
1334 | * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug | ||
1335 | * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. | ||
1336 | */ | ||
1337 | if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) | ||
1338 | writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); | ||
1339 | |||
1340 | val64 = readq(&bar0->tx_fifo_partition_0); | ||
1341 | DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", | ||
1342 | &bar0->tx_fifo_partition_0, (unsigned long long)val64); | ||
1343 | |||
1344 | /* | ||
1345 | * Initialization of Tx_PA_CONFIG register to ignore packet | ||
1346 | * integrity checking. | ||
1347 | */ | ||
1348 | val64 = readq(&bar0->tx_pa_cfg); | ||
1349 | val64 |= TX_PA_CFG_IGNORE_FRM_ERR | | ||
1350 | TX_PA_CFG_IGNORE_SNAP_OUI | | ||
1351 | TX_PA_CFG_IGNORE_LLC_CTRL | | ||
1352 | TX_PA_CFG_IGNORE_L2_ERR; | ||
1353 | writeq(val64, &bar0->tx_pa_cfg); | ||
1354 | |||
1355 | /* Rx DMA intialization. */ | ||
1356 | val64 = 0; | ||
1357 | for (i = 0; i < config->rx_ring_num; i++) { | ||
1358 | struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; | ||
1359 | |||
1360 | val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); | ||
1361 | } | ||
1362 | writeq(val64, &bar0->rx_queue_priority); | ||
1363 | |||
1364 | /* | ||
1365 | * Allocating equal share of memory to all the | ||
1366 | * configured Rings. | ||
1367 | */ | ||
1368 | val64 = 0; | ||
1369 | if (nic->device_type & XFRAME_II_DEVICE) | ||
1370 | mem_size = 32; | ||
1371 | else | ||
1372 | mem_size = 64; | ||
1373 | |||
1374 | for (i = 0; i < config->rx_ring_num; i++) { | ||
1375 | switch (i) { | ||
1376 | case 0: | ||
1377 | mem_share = (mem_size / config->rx_ring_num + | ||
1378 | mem_size % config->rx_ring_num); | ||
1379 | val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); | ||
1380 | continue; | ||
1381 | case 1: | ||
1382 | mem_share = (mem_size / config->rx_ring_num); | ||
1383 | val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); | ||
1384 | continue; | ||
1385 | case 2: | ||
1386 | mem_share = (mem_size / config->rx_ring_num); | ||
1387 | val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); | ||
1388 | continue; | ||
1389 | case 3: | ||
1390 | mem_share = (mem_size / config->rx_ring_num); | ||
1391 | val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); | ||
1392 | continue; | ||
1393 | case 4: | ||
1394 | mem_share = (mem_size / config->rx_ring_num); | ||
1395 | val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); | ||
1396 | continue; | ||
1397 | case 5: | ||
1398 | mem_share = (mem_size / config->rx_ring_num); | ||
1399 | val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); | ||
1400 | continue; | ||
1401 | case 6: | ||
1402 | mem_share = (mem_size / config->rx_ring_num); | ||
1403 | val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); | ||
1404 | continue; | ||
1405 | case 7: | ||
1406 | mem_share = (mem_size / config->rx_ring_num); | ||
1407 | val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); | ||
1408 | continue; | ||
1409 | } | ||
1410 | } | ||
1411 | writeq(val64, &bar0->rx_queue_cfg); | ||
1412 | |||
1413 | /* | ||
1414 | * Filling Tx round robin registers | ||
1415 | * as per the number of FIFOs for equal scheduling priority | ||
1416 | */ | ||
1417 | switch (config->tx_fifo_num) { | ||
1418 | case 1: | ||
1419 | val64 = 0x0; | ||
1420 | writeq(val64, &bar0->tx_w_round_robin_0); | ||
1421 | writeq(val64, &bar0->tx_w_round_robin_1); | ||
1422 | writeq(val64, &bar0->tx_w_round_robin_2); | ||
1423 | writeq(val64, &bar0->tx_w_round_robin_3); | ||
1424 | writeq(val64, &bar0->tx_w_round_robin_4); | ||
1425 | break; | ||
1426 | case 2: | ||
1427 | val64 = 0x0001000100010001ULL; | ||
1428 | writeq(val64, &bar0->tx_w_round_robin_0); | ||
1429 | writeq(val64, &bar0->tx_w_round_robin_1); | ||
1430 | writeq(val64, &bar0->tx_w_round_robin_2); | ||
1431 | writeq(val64, &bar0->tx_w_round_robin_3); | ||
1432 | val64 = 0x0001000100000000ULL; | ||
1433 | writeq(val64, &bar0->tx_w_round_robin_4); | ||
1434 | break; | ||
1435 | case 3: | ||
1436 | val64 = 0x0001020001020001ULL; | ||
1437 | writeq(val64, &bar0->tx_w_round_robin_0); | ||
1438 | val64 = 0x0200010200010200ULL; | ||
1439 | writeq(val64, &bar0->tx_w_round_robin_1); | ||
1440 | val64 = 0x0102000102000102ULL; | ||
1441 | writeq(val64, &bar0->tx_w_round_robin_2); | ||
1442 | val64 = 0x0001020001020001ULL; | ||
1443 | writeq(val64, &bar0->tx_w_round_robin_3); | ||
1444 | val64 = 0x0200010200000000ULL; | ||
1445 | writeq(val64, &bar0->tx_w_round_robin_4); | ||
1446 | break; | ||
1447 | case 4: | ||
1448 | val64 = 0x0001020300010203ULL; | ||
1449 | writeq(val64, &bar0->tx_w_round_robin_0); | ||
1450 | writeq(val64, &bar0->tx_w_round_robin_1); | ||
1451 | writeq(val64, &bar0->tx_w_round_robin_2); | ||
1452 | writeq(val64, &bar0->tx_w_round_robin_3); | ||
1453 | val64 = 0x0001020300000000ULL; | ||
1454 | writeq(val64, &bar0->tx_w_round_robin_4); | ||
1455 | break; | ||
1456 | case 5: | ||
1457 | val64 = 0x0001020304000102ULL; | ||
1458 | writeq(val64, &bar0->tx_w_round_robin_0); | ||
1459 | val64 = 0x0304000102030400ULL; | ||
1460 | writeq(val64, &bar0->tx_w_round_robin_1); | ||
1461 | val64 = 0x0102030400010203ULL; | ||
1462 | writeq(val64, &bar0->tx_w_round_robin_2); | ||
1463 | val64 = 0x0400010203040001ULL; | ||
1464 | writeq(val64, &bar0->tx_w_round_robin_3); | ||
1465 | val64 = 0x0203040000000000ULL; | ||
1466 | writeq(val64, &bar0->tx_w_round_robin_4); | ||
1467 | break; | ||
1468 | case 6: | ||
1469 | val64 = 0x0001020304050001ULL; | ||
1470 | writeq(val64, &bar0->tx_w_round_robin_0); | ||
1471 | val64 = 0x0203040500010203ULL; | ||
1472 | writeq(val64, &bar0->tx_w_round_robin_1); | ||
1473 | val64 = 0x0405000102030405ULL; | ||
1474 | writeq(val64, &bar0->tx_w_round_robin_2); | ||
1475 | val64 = 0x0001020304050001ULL; | ||
1476 | writeq(val64, &bar0->tx_w_round_robin_3); | ||
1477 | val64 = 0x0203040500000000ULL; | ||
1478 | writeq(val64, &bar0->tx_w_round_robin_4); | ||
1479 | break; | ||
1480 | case 7: | ||
1481 | val64 = 0x0001020304050600ULL; | ||
1482 | writeq(val64, &bar0->tx_w_round_robin_0); | ||
1483 | val64 = 0x0102030405060001ULL; | ||
1484 | writeq(val64, &bar0->tx_w_round_robin_1); | ||
1485 | val64 = 0x0203040506000102ULL; | ||
1486 | writeq(val64, &bar0->tx_w_round_robin_2); | ||
1487 | val64 = 0x0304050600010203ULL; | ||
1488 | writeq(val64, &bar0->tx_w_round_robin_3); | ||
1489 | val64 = 0x0405060000000000ULL; | ||
1490 | writeq(val64, &bar0->tx_w_round_robin_4); | ||
1491 | break; | ||
1492 | case 8: | ||
1493 | val64 = 0x0001020304050607ULL; | ||
1494 | writeq(val64, &bar0->tx_w_round_robin_0); | ||
1495 | writeq(val64, &bar0->tx_w_round_robin_1); | ||
1496 | writeq(val64, &bar0->tx_w_round_robin_2); | ||
1497 | writeq(val64, &bar0->tx_w_round_robin_3); | ||
1498 | val64 = 0x0001020300000000ULL; | ||
1499 | writeq(val64, &bar0->tx_w_round_robin_4); | ||
1500 | break; | ||
1501 | } | ||
1502 | |||
1503 | /* Enable all configured Tx FIFO partitions */ | ||
1504 | val64 = readq(&bar0->tx_fifo_partition_0); | ||
1505 | val64 |= (TX_FIFO_PARTITION_EN); | ||
1506 | writeq(val64, &bar0->tx_fifo_partition_0); | ||
1507 | |||
1508 | /* Filling the Rx round robin registers as per the | ||
1509 | * number of Rings and steering based on QoS with | ||
1510 | * equal priority. | ||
1511 | */ | ||
1512 | switch (config->rx_ring_num) { | ||
1513 | case 1: | ||
1514 | val64 = 0x0; | ||
1515 | writeq(val64, &bar0->rx_w_round_robin_0); | ||
1516 | writeq(val64, &bar0->rx_w_round_robin_1); | ||
1517 | writeq(val64, &bar0->rx_w_round_robin_2); | ||
1518 | writeq(val64, &bar0->rx_w_round_robin_3); | ||
1519 | writeq(val64, &bar0->rx_w_round_robin_4); | ||
1520 | |||
1521 | val64 = 0x8080808080808080ULL; | ||
1522 | writeq(val64, &bar0->rts_qos_steering); | ||
1523 | break; | ||
1524 | case 2: | ||
1525 | val64 = 0x0001000100010001ULL; | ||
1526 | writeq(val64, &bar0->rx_w_round_robin_0); | ||
1527 | writeq(val64, &bar0->rx_w_round_robin_1); | ||
1528 | writeq(val64, &bar0->rx_w_round_robin_2); | ||
1529 | writeq(val64, &bar0->rx_w_round_robin_3); | ||
1530 | val64 = 0x0001000100000000ULL; | ||
1531 | writeq(val64, &bar0->rx_w_round_robin_4); | ||
1532 | |||
1533 | val64 = 0x8080808040404040ULL; | ||
1534 | writeq(val64, &bar0->rts_qos_steering); | ||
1535 | break; | ||
1536 | case 3: | ||
1537 | val64 = 0x0001020001020001ULL; | ||
1538 | writeq(val64, &bar0->rx_w_round_robin_0); | ||
1539 | val64 = 0x0200010200010200ULL; | ||
1540 | writeq(val64, &bar0->rx_w_round_robin_1); | ||
1541 | val64 = 0x0102000102000102ULL; | ||
1542 | writeq(val64, &bar0->rx_w_round_robin_2); | ||
1543 | val64 = 0x0001020001020001ULL; | ||
1544 | writeq(val64, &bar0->rx_w_round_robin_3); | ||
1545 | val64 = 0x0200010200000000ULL; | ||
1546 | writeq(val64, &bar0->rx_w_round_robin_4); | ||
1547 | |||
1548 | val64 = 0x8080804040402020ULL; | ||
1549 | writeq(val64, &bar0->rts_qos_steering); | ||
1550 | break; | ||
1551 | case 4: | ||
1552 | val64 = 0x0001020300010203ULL; | ||
1553 | writeq(val64, &bar0->rx_w_round_robin_0); | ||
1554 | writeq(val64, &bar0->rx_w_round_robin_1); | ||
1555 | writeq(val64, &bar0->rx_w_round_robin_2); | ||
1556 | writeq(val64, &bar0->rx_w_round_robin_3); | ||
1557 | val64 = 0x0001020300000000ULL; | ||
1558 | writeq(val64, &bar0->rx_w_round_robin_4); | ||
1559 | |||
1560 | val64 = 0x8080404020201010ULL; | ||
1561 | writeq(val64, &bar0->rts_qos_steering); | ||
1562 | break; | ||
1563 | case 5: | ||
1564 | val64 = 0x0001020304000102ULL; | ||
1565 | writeq(val64, &bar0->rx_w_round_robin_0); | ||
1566 | val64 = 0x0304000102030400ULL; | ||
1567 | writeq(val64, &bar0->rx_w_round_robin_1); | ||
1568 | val64 = 0x0102030400010203ULL; | ||
1569 | writeq(val64, &bar0->rx_w_round_robin_2); | ||
1570 | val64 = 0x0400010203040001ULL; | ||
1571 | writeq(val64, &bar0->rx_w_round_robin_3); | ||
1572 | val64 = 0x0203040000000000ULL; | ||
1573 | writeq(val64, &bar0->rx_w_round_robin_4); | ||
1574 | |||
1575 | val64 = 0x8080404020201008ULL; | ||
1576 | writeq(val64, &bar0->rts_qos_steering); | ||
1577 | break; | ||
1578 | case 6: | ||
1579 | val64 = 0x0001020304050001ULL; | ||
1580 | writeq(val64, &bar0->rx_w_round_robin_0); | ||
1581 | val64 = 0x0203040500010203ULL; | ||
1582 | writeq(val64, &bar0->rx_w_round_robin_1); | ||
1583 | val64 = 0x0405000102030405ULL; | ||
1584 | writeq(val64, &bar0->rx_w_round_robin_2); | ||
1585 | val64 = 0x0001020304050001ULL; | ||
1586 | writeq(val64, &bar0->rx_w_round_robin_3); | ||
1587 | val64 = 0x0203040500000000ULL; | ||
1588 | writeq(val64, &bar0->rx_w_round_robin_4); | ||
1589 | |||
1590 | val64 = 0x8080404020100804ULL; | ||
1591 | writeq(val64, &bar0->rts_qos_steering); | ||
1592 | break; | ||
1593 | case 7: | ||
1594 | val64 = 0x0001020304050600ULL; | ||
1595 | writeq(val64, &bar0->rx_w_round_robin_0); | ||
1596 | val64 = 0x0102030405060001ULL; | ||
1597 | writeq(val64, &bar0->rx_w_round_robin_1); | ||
1598 | val64 = 0x0203040506000102ULL; | ||
1599 | writeq(val64, &bar0->rx_w_round_robin_2); | ||
1600 | val64 = 0x0304050600010203ULL; | ||
1601 | writeq(val64, &bar0->rx_w_round_robin_3); | ||
1602 | val64 = 0x0405060000000000ULL; | ||
1603 | writeq(val64, &bar0->rx_w_round_robin_4); | ||
1604 | |||
1605 | val64 = 0x8080402010080402ULL; | ||
1606 | writeq(val64, &bar0->rts_qos_steering); | ||
1607 | break; | ||
1608 | case 8: | ||
1609 | val64 = 0x0001020304050607ULL; | ||
1610 | writeq(val64, &bar0->rx_w_round_robin_0); | ||
1611 | writeq(val64, &bar0->rx_w_round_robin_1); | ||
1612 | writeq(val64, &bar0->rx_w_round_robin_2); | ||
1613 | writeq(val64, &bar0->rx_w_round_robin_3); | ||
1614 | val64 = 0x0001020300000000ULL; | ||
1615 | writeq(val64, &bar0->rx_w_round_robin_4); | ||
1616 | |||
1617 | val64 = 0x8040201008040201ULL; | ||
1618 | writeq(val64, &bar0->rts_qos_steering); | ||
1619 | break; | ||
1620 | } | ||
1621 | |||
1622 | /* UDP Fix */ | ||
1623 | val64 = 0; | ||
1624 | for (i = 0; i < 8; i++) | ||
1625 | writeq(val64, &bar0->rts_frm_len_n[i]); | ||
1626 | |||
1627 | /* Set the default rts frame length for the rings configured */ | ||
1628 | val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); | ||
1629 | for (i = 0 ; i < config->rx_ring_num ; i++) | ||
1630 | writeq(val64, &bar0->rts_frm_len_n[i]); | ||
1631 | |||
1632 | /* Set the frame length for the configured rings | ||
1633 | * desired by the user | ||
1634 | */ | ||
1635 | for (i = 0; i < config->rx_ring_num; i++) { | ||
1636 | /* If rts_frm_len[i] == 0 then it is assumed that user not | ||
1637 | * specified frame length steering. | ||
1638 | * If the user provides the frame length then program | ||
1639 | * the rts_frm_len register for those values or else | ||
1640 | * leave it as it is. | ||
1641 | */ | ||
1642 | if (rts_frm_len[i] != 0) { | ||
1643 | writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), | ||
1644 | &bar0->rts_frm_len_n[i]); | ||
1645 | } | ||
1646 | } | ||
1647 | |||
1648 | /* Disable differentiated services steering logic */ | ||
1649 | for (i = 0; i < 64; i++) { | ||
1650 | if (rts_ds_steer(nic, i, 0) == FAILURE) { | ||
1651 | DBG_PRINT(ERR_DBG, | ||
1652 | "%s: rts_ds_steer failed on codepoint %d\n", | ||
1653 | dev->name, i); | ||
1654 | return -ENODEV; | ||
1655 | } | ||
1656 | } | ||
1657 | |||
1658 | /* Program statistics memory */ | ||
1659 | writeq(mac_control->stats_mem_phy, &bar0->stat_addr); | ||
1660 | |||
1661 | if (nic->device_type == XFRAME_II_DEVICE) { | ||
1662 | val64 = STAT_BC(0x320); | ||
1663 | writeq(val64, &bar0->stat_byte_cnt); | ||
1664 | } | ||
1665 | |||
1666 | /* | ||
1667 | * Initializing the sampling rate for the device to calculate the | ||
1668 | * bandwidth utilization. | ||
1669 | */ | ||
1670 | val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | | ||
1671 | MAC_RX_LINK_UTIL_VAL(rmac_util_period); | ||
1672 | writeq(val64, &bar0->mac_link_util); | ||
1673 | |||
1674 | /* | ||
1675 | * Initializing the Transmit and Receive Traffic Interrupt | ||
1676 | * Scheme. | ||
1677 | */ | ||
1678 | |||
1679 | /* Initialize TTI */ | ||
1680 | if (SUCCESS != init_tti(nic, nic->last_link_state)) | ||
1681 | return -ENODEV; | ||
1682 | |||
1683 | /* RTI Initialization */ | ||
1684 | if (nic->device_type == XFRAME_II_DEVICE) { | ||
1685 | /* | ||
1686 | * Programmed to generate Apprx 500 Intrs per | ||
1687 | * second | ||
1688 | */ | ||
1689 | int count = (nic->config.bus_speed * 125)/4; | ||
1690 | val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); | ||
1691 | } else | ||
1692 | val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); | ||
1693 | val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | | ||
1694 | RTI_DATA1_MEM_RX_URNG_B(0x10) | | ||
1695 | RTI_DATA1_MEM_RX_URNG_C(0x30) | | ||
1696 | RTI_DATA1_MEM_RX_TIMER_AC_EN; | ||
1697 | |||
1698 | writeq(val64, &bar0->rti_data1_mem); | ||
1699 | |||
1700 | val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | | ||
1701 | RTI_DATA2_MEM_RX_UFC_B(0x2) ; | ||
1702 | if (nic->config.intr_type == MSI_X) | ||
1703 | val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | | ||
1704 | RTI_DATA2_MEM_RX_UFC_D(0x40)); | ||
1705 | else | ||
1706 | val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | | ||
1707 | RTI_DATA2_MEM_RX_UFC_D(0x80)); | ||
1708 | writeq(val64, &bar0->rti_data2_mem); | ||
1709 | |||
1710 | for (i = 0; i < config->rx_ring_num; i++) { | ||
1711 | val64 = RTI_CMD_MEM_WE | | ||
1712 | RTI_CMD_MEM_STROBE_NEW_CMD | | ||
1713 | RTI_CMD_MEM_OFFSET(i); | ||
1714 | writeq(val64, &bar0->rti_command_mem); | ||
1715 | |||
1716 | /* | ||
1717 | * Once the operation completes, the Strobe bit of the | ||
1718 | * command register will be reset. We poll for this | ||
1719 | * particular condition. We wait for a maximum of 500ms | ||
1720 | * for the operation to complete, if it's not complete | ||
1721 | * by then we return error. | ||
1722 | */ | ||
1723 | time = 0; | ||
1724 | while (true) { | ||
1725 | val64 = readq(&bar0->rti_command_mem); | ||
1726 | if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) | ||
1727 | break; | ||
1728 | |||
1729 | if (time > 10) { | ||
1730 | DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", | ||
1731 | dev->name); | ||
1732 | return -ENODEV; | ||
1733 | } | ||
1734 | time++; | ||
1735 | msleep(50); | ||
1736 | } | ||
1737 | } | ||
1738 | |||
1739 | /* | ||
1740 | * Initializing proper values as Pause threshold into all | ||
1741 | * the 8 Queues on Rx side. | ||
1742 | */ | ||
1743 | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); | ||
1744 | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); | ||
1745 | |||
1746 | /* Disable RMAC PAD STRIPPING */ | ||
1747 | add = &bar0->mac_cfg; | ||
1748 | val64 = readq(&bar0->mac_cfg); | ||
1749 | val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); | ||
1750 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
1751 | writel((u32) (val64), add); | ||
1752 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
1753 | writel((u32) (val64 >> 32), (add + 4)); | ||
1754 | val64 = readq(&bar0->mac_cfg); | ||
1755 | |||
1756 | /* Enable FCS stripping by adapter */ | ||
1757 | add = &bar0->mac_cfg; | ||
1758 | val64 = readq(&bar0->mac_cfg); | ||
1759 | val64 |= MAC_CFG_RMAC_STRIP_FCS; | ||
1760 | if (nic->device_type == XFRAME_II_DEVICE) | ||
1761 | writeq(val64, &bar0->mac_cfg); | ||
1762 | else { | ||
1763 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
1764 | writel((u32) (val64), add); | ||
1765 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
1766 | writel((u32) (val64 >> 32), (add + 4)); | ||
1767 | } | ||
1768 | |||
1769 | /* | ||
1770 | * Set the time value to be inserted in the pause frame | ||
1771 | * generated by xena. | ||
1772 | */ | ||
1773 | val64 = readq(&bar0->rmac_pause_cfg); | ||
1774 | val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); | ||
1775 | val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); | ||
1776 | writeq(val64, &bar0->rmac_pause_cfg); | ||
1777 | |||
1778 | /* | ||
1779 | * Set the Threshold Limit for Generating the pause frame | ||
1780 | * If the amount of data in any Queue exceeds ratio of | ||
1781 | * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 | ||
1782 | * pause frame is generated | ||
1783 | */ | ||
1784 | val64 = 0; | ||
1785 | for (i = 0; i < 4; i++) { | ||
1786 | val64 |= (((u64)0xFF00 | | ||
1787 | nic->mac_control.mc_pause_threshold_q0q3) | ||
1788 | << (i * 2 * 8)); | ||
1789 | } | ||
1790 | writeq(val64, &bar0->mc_pause_thresh_q0q3); | ||
1791 | |||
1792 | val64 = 0; | ||
1793 | for (i = 0; i < 4; i++) { | ||
1794 | val64 |= (((u64)0xFF00 | | ||
1795 | nic->mac_control.mc_pause_threshold_q4q7) | ||
1796 | << (i * 2 * 8)); | ||
1797 | } | ||
1798 | writeq(val64, &bar0->mc_pause_thresh_q4q7); | ||
1799 | |||
1800 | /* | ||
1801 | * TxDMA will stop Read request if the number of read split has | ||
1802 | * exceeded the limit pointed by shared_splits | ||
1803 | */ | ||
1804 | val64 = readq(&bar0->pic_control); | ||
1805 | val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); | ||
1806 | writeq(val64, &bar0->pic_control); | ||
1807 | |||
1808 | if (nic->config.bus_speed == 266) { | ||
1809 | writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); | ||
1810 | writeq(0x0, &bar0->read_retry_delay); | ||
1811 | writeq(0x0, &bar0->write_retry_delay); | ||
1812 | } | ||
1813 | |||
1814 | /* | ||
1815 | * Programming the Herc to split every write transaction | ||
1816 | * that does not start on an ADB to reduce disconnects. | ||
1817 | */ | ||
1818 | if (nic->device_type == XFRAME_II_DEVICE) { | ||
1819 | val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | | ||
1820 | MISC_LINK_STABILITY_PRD(3); | ||
1821 | writeq(val64, &bar0->misc_control); | ||
1822 | val64 = readq(&bar0->pic_control2); | ||
1823 | val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); | ||
1824 | writeq(val64, &bar0->pic_control2); | ||
1825 | } | ||
1826 | if (strstr(nic->product_name, "CX4")) { | ||
1827 | val64 = TMAC_AVG_IPG(0x17); | ||
1828 | writeq(val64, &bar0->tmac_avg_ipg); | ||
1829 | } | ||
1830 | |||
1831 | return SUCCESS; | ||
1832 | } | ||
1833 | #define LINK_UP_DOWN_INTERRUPT 1 | ||
1834 | #define MAC_RMAC_ERR_TIMER 2 | ||
1835 | |||
1836 | static int s2io_link_fault_indication(struct s2io_nic *nic) | ||
1837 | { | ||
1838 | if (nic->device_type == XFRAME_II_DEVICE) | ||
1839 | return LINK_UP_DOWN_INTERRUPT; | ||
1840 | else | ||
1841 | return MAC_RMAC_ERR_TIMER; | ||
1842 | } | ||
1843 | |||
1844 | /** | ||
1845 | * do_s2io_write_bits - update alarm bits in alarm register | ||
1846 | * @value: alarm bits | ||
1847 | * @flag: interrupt status | ||
1848 | * @addr: address value | ||
1849 | * Description: update alarm bits in alarm register | ||
1850 | * Return Value: | ||
1851 | * NONE. | ||
1852 | */ | ||
1853 | static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) | ||
1854 | { | ||
1855 | u64 temp64; | ||
1856 | |||
1857 | temp64 = readq(addr); | ||
1858 | |||
1859 | if (flag == ENABLE_INTRS) | ||
1860 | temp64 &= ~((u64)value); | ||
1861 | else | ||
1862 | temp64 |= ((u64)value); | ||
1863 | writeq(temp64, addr); | ||
1864 | } | ||
1865 | |||
1866 | static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) | ||
1867 | { | ||
1868 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
1869 | register u64 gen_int_mask = 0; | ||
1870 | u64 interruptible; | ||
1871 | |||
1872 | writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); | ||
1873 | if (mask & TX_DMA_INTR) { | ||
1874 | gen_int_mask |= TXDMA_INT_M; | ||
1875 | |||
1876 | do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | | ||
1877 | TXDMA_PCC_INT | TXDMA_TTI_INT | | ||
1878 | TXDMA_LSO_INT | TXDMA_TPA_INT | | ||
1879 | TXDMA_SM_INT, flag, &bar0->txdma_int_mask); | ||
1880 | |||
1881 | do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | | ||
1882 | PFC_MISC_0_ERR | PFC_MISC_1_ERR | | ||
1883 | PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, | ||
1884 | &bar0->pfc_err_mask); | ||
1885 | |||
1886 | do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | | ||
1887 | TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | | ||
1888 | TDA_PCIX_ERR, flag, &bar0->tda_err_mask); | ||
1889 | |||
1890 | do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | | ||
1891 | PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | | ||
1892 | PCC_N_SERR | PCC_6_COF_OV_ERR | | ||
1893 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | | ||
1894 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | | ||
1895 | PCC_TXB_ECC_SG_ERR, | ||
1896 | flag, &bar0->pcc_err_mask); | ||
1897 | |||
1898 | do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | | ||
1899 | TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); | ||
1900 | |||
1901 | do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | | ||
1902 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | | ||
1903 | LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, | ||
1904 | flag, &bar0->lso_err_mask); | ||
1905 | |||
1906 | do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, | ||
1907 | flag, &bar0->tpa_err_mask); | ||
1908 | |||
1909 | do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); | ||
1910 | } | ||
1911 | |||
1912 | if (mask & TX_MAC_INTR) { | ||
1913 | gen_int_mask |= TXMAC_INT_M; | ||
1914 | do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, | ||
1915 | &bar0->mac_int_mask); | ||
1916 | do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | | ||
1917 | TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | | ||
1918 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, | ||
1919 | flag, &bar0->mac_tmac_err_mask); | ||
1920 | } | ||
1921 | |||
1922 | if (mask & TX_XGXS_INTR) { | ||
1923 | gen_int_mask |= TXXGXS_INT_M; | ||
1924 | do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, | ||
1925 | &bar0->xgxs_int_mask); | ||
1926 | do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | | ||
1927 | TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, | ||
1928 | flag, &bar0->xgxs_txgxs_err_mask); | ||
1929 | } | ||
1930 | |||
1931 | if (mask & RX_DMA_INTR) { | ||
1932 | gen_int_mask |= RXDMA_INT_M; | ||
1933 | do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | | ||
1934 | RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, | ||
1935 | flag, &bar0->rxdma_int_mask); | ||
1936 | do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | | ||
1937 | RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | | ||
1938 | RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | | ||
1939 | RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); | ||
1940 | do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | | ||
1941 | PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | | ||
1942 | PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, | ||
1943 | &bar0->prc_pcix_err_mask); | ||
1944 | do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | | ||
1945 | RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, | ||
1946 | &bar0->rpa_err_mask); | ||
1947 | do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | | ||
1948 | RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | | ||
1949 | RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | | ||
1950 | RDA_FRM_ECC_SG_ERR | | ||
1951 | RDA_MISC_ERR|RDA_PCIX_ERR, | ||
1952 | flag, &bar0->rda_err_mask); | ||
1953 | do_s2io_write_bits(RTI_SM_ERR_ALARM | | ||
1954 | RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, | ||
1955 | flag, &bar0->rti_err_mask); | ||
1956 | } | ||
1957 | |||
1958 | if (mask & RX_MAC_INTR) { | ||
1959 | gen_int_mask |= RXMAC_INT_M; | ||
1960 | do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, | ||
1961 | &bar0->mac_int_mask); | ||
1962 | interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | | ||
1963 | RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | | ||
1964 | RMAC_DOUBLE_ECC_ERR); | ||
1965 | if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) | ||
1966 | interruptible |= RMAC_LINK_STATE_CHANGE_INT; | ||
1967 | do_s2io_write_bits(interruptible, | ||
1968 | flag, &bar0->mac_rmac_err_mask); | ||
1969 | } | ||
1970 | |||
1971 | if (mask & RX_XGXS_INTR) { | ||
1972 | gen_int_mask |= RXXGXS_INT_M; | ||
1973 | do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, | ||
1974 | &bar0->xgxs_int_mask); | ||
1975 | do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, | ||
1976 | &bar0->xgxs_rxgxs_err_mask); | ||
1977 | } | ||
1978 | |||
1979 | if (mask & MC_INTR) { | ||
1980 | gen_int_mask |= MC_INT_M; | ||
1981 | do_s2io_write_bits(MC_INT_MASK_MC_INT, | ||
1982 | flag, &bar0->mc_int_mask); | ||
1983 | do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | | ||
1984 | MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, | ||
1985 | &bar0->mc_err_mask); | ||
1986 | } | ||
1987 | nic->general_int_mask = gen_int_mask; | ||
1988 | |||
1989 | /* Remove this line when alarm interrupts are enabled */ | ||
1990 | nic->general_int_mask = 0; | ||
1991 | } | ||
1992 | |||
1993 | /** | ||
1994 | * en_dis_able_nic_intrs - Enable or Disable the interrupts | ||
1995 | * @nic: device private variable, | ||
1996 | * @mask: A mask indicating which Intr block must be modified and, | ||
1997 | * @flag: A flag indicating whether to enable or disable the Intrs. | ||
1998 | * Description: This function will either disable or enable the interrupts | ||
1999 | * depending on the flag argument. The mask argument can be used to | ||
2000 | * enable/disable any Intr block. | ||
2001 | * Return Value: NONE. | ||
2002 | */ | ||
2003 | |||
2004 | static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) | ||
2005 | { | ||
2006 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
2007 | register u64 temp64 = 0, intr_mask = 0; | ||
2008 | |||
2009 | intr_mask = nic->general_int_mask; | ||
2010 | |||
2011 | /* Top level interrupt classification */ | ||
2012 | /* PIC Interrupts */ | ||
2013 | if (mask & TX_PIC_INTR) { | ||
2014 | /* Enable PIC Intrs in the general intr mask register */ | ||
2015 | intr_mask |= TXPIC_INT_M; | ||
2016 | if (flag == ENABLE_INTRS) { | ||
2017 | /* | ||
2018 | * If Hercules adapter enable GPIO otherwise | ||
2019 | * disable all PCIX, Flash, MDIO, IIC and GPIO | ||
2020 | * interrupts for now. | ||
2021 | * TODO | ||
2022 | */ | ||
2023 | if (s2io_link_fault_indication(nic) == | ||
2024 | LINK_UP_DOWN_INTERRUPT) { | ||
2025 | do_s2io_write_bits(PIC_INT_GPIO, flag, | ||
2026 | &bar0->pic_int_mask); | ||
2027 | do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, | ||
2028 | &bar0->gpio_int_mask); | ||
2029 | } else | ||
2030 | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); | ||
2031 | } else if (flag == DISABLE_INTRS) { | ||
2032 | /* | ||
2033 | * Disable PIC Intrs in the general | ||
2034 | * intr mask register | ||
2035 | */ | ||
2036 | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); | ||
2037 | } | ||
2038 | } | ||
2039 | |||
2040 | /* Tx traffic interrupts */ | ||
2041 | if (mask & TX_TRAFFIC_INTR) { | ||
2042 | intr_mask |= TXTRAFFIC_INT_M; | ||
2043 | if (flag == ENABLE_INTRS) { | ||
2044 | /* | ||
2045 | * Enable all the Tx side interrupts | ||
2046 | * writing 0 Enables all 64 TX interrupt levels | ||
2047 | */ | ||
2048 | writeq(0x0, &bar0->tx_traffic_mask); | ||
2049 | } else if (flag == DISABLE_INTRS) { | ||
2050 | /* | ||
2051 | * Disable Tx Traffic Intrs in the general intr mask | ||
2052 | * register. | ||
2053 | */ | ||
2054 | writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); | ||
2055 | } | ||
2056 | } | ||
2057 | |||
2058 | /* Rx traffic interrupts */ | ||
2059 | if (mask & RX_TRAFFIC_INTR) { | ||
2060 | intr_mask |= RXTRAFFIC_INT_M; | ||
2061 | if (flag == ENABLE_INTRS) { | ||
2062 | /* writing 0 Enables all 8 RX interrupt levels */ | ||
2063 | writeq(0x0, &bar0->rx_traffic_mask); | ||
2064 | } else if (flag == DISABLE_INTRS) { | ||
2065 | /* | ||
2066 | * Disable Rx Traffic Intrs in the general intr mask | ||
2067 | * register. | ||
2068 | */ | ||
2069 | writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); | ||
2070 | } | ||
2071 | } | ||
2072 | |||
2073 | temp64 = readq(&bar0->general_int_mask); | ||
2074 | if (flag == ENABLE_INTRS) | ||
2075 | temp64 &= ~((u64)intr_mask); | ||
2076 | else | ||
2077 | temp64 = DISABLE_ALL_INTRS; | ||
2078 | writeq(temp64, &bar0->general_int_mask); | ||
2079 | |||
2080 | nic->general_int_mask = readq(&bar0->general_int_mask); | ||
2081 | } | ||
2082 | |||
2083 | /** | ||
2084 | * verify_pcc_quiescent- Checks for PCC quiescent state | ||
2085 | * Return: 1 If PCC is quiescence | ||
2086 | * 0 If PCC is not quiescence | ||
2087 | */ | ||
2088 | static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) | ||
2089 | { | ||
2090 | int ret = 0, herc; | ||
2091 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
2092 | u64 val64 = readq(&bar0->adapter_status); | ||
2093 | |||
2094 | herc = (sp->device_type == XFRAME_II_DEVICE); | ||
2095 | |||
2096 | if (flag == false) { | ||
2097 | if ((!herc && (sp->pdev->revision >= 4)) || herc) { | ||
2098 | if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) | ||
2099 | ret = 1; | ||
2100 | } else { | ||
2101 | if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) | ||
2102 | ret = 1; | ||
2103 | } | ||
2104 | } else { | ||
2105 | if ((!herc && (sp->pdev->revision >= 4)) || herc) { | ||
2106 | if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == | ||
2107 | ADAPTER_STATUS_RMAC_PCC_IDLE)) | ||
2108 | ret = 1; | ||
2109 | } else { | ||
2110 | if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == | ||
2111 | ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) | ||
2112 | ret = 1; | ||
2113 | } | ||
2114 | } | ||
2115 | |||
2116 | return ret; | ||
2117 | } | ||
2118 | /** | ||
2119 | * verify_xena_quiescence - Checks whether the H/W is ready | ||
2120 | * Description: Returns whether the H/W is ready to go or not. Depending | ||
2121 | * on whether adapter enable bit was written or not the comparison | ||
2122 | * differs and the calling function passes the input argument flag to | ||
2123 | * indicate this. | ||
2124 | * Return: 1 If xena is quiescence | ||
2125 | * 0 If Xena is not quiescence | ||
2126 | */ | ||
2127 | |||
2128 | static int verify_xena_quiescence(struct s2io_nic *sp) | ||
2129 | { | ||
2130 | int mode; | ||
2131 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
2132 | u64 val64 = readq(&bar0->adapter_status); | ||
2133 | mode = s2io_verify_pci_mode(sp); | ||
2134 | |||
2135 | if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { | ||
2136 | DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); | ||
2137 | return 0; | ||
2138 | } | ||
2139 | if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { | ||
2140 | DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); | ||
2141 | return 0; | ||
2142 | } | ||
2143 | if (!(val64 & ADAPTER_STATUS_PFC_READY)) { | ||
2144 | DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); | ||
2145 | return 0; | ||
2146 | } | ||
2147 | if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { | ||
2148 | DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); | ||
2149 | return 0; | ||
2150 | } | ||
2151 | if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { | ||
2152 | DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); | ||
2153 | return 0; | ||
2154 | } | ||
2155 | if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { | ||
2156 | DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); | ||
2157 | return 0; | ||
2158 | } | ||
2159 | if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { | ||
2160 | DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); | ||
2161 | return 0; | ||
2162 | } | ||
2163 | if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { | ||
2164 | DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); | ||
2165 | return 0; | ||
2166 | } | ||
2167 | |||
2168 | /* | ||
2169 | * In PCI 33 mode, the P_PLL is not used, and therefore, | ||
2170 | * the the P_PLL_LOCK bit in the adapter_status register will | ||
2171 | * not be asserted. | ||
2172 | */ | ||
2173 | if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && | ||
2174 | sp->device_type == XFRAME_II_DEVICE && | ||
2175 | mode != PCI_MODE_PCI_33) { | ||
2176 | DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); | ||
2177 | return 0; | ||
2178 | } | ||
2179 | if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == | ||
2180 | ADAPTER_STATUS_RC_PRC_QUIESCENT)) { | ||
2181 | DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); | ||
2182 | return 0; | ||
2183 | } | ||
2184 | return 1; | ||
2185 | } | ||
2186 | |||
2187 | /** | ||
2188 | * fix_mac_address - Fix for Mac addr problem on Alpha platforms | ||
2189 | * @sp: Pointer to device specifc structure | ||
2190 | * Description : | ||
2191 | * New procedure to clear mac address reading problems on Alpha platforms | ||
2192 | * | ||
2193 | */ | ||
2194 | |||
2195 | static void fix_mac_address(struct s2io_nic *sp) | ||
2196 | { | ||
2197 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
2198 | int i = 0; | ||
2199 | |||
2200 | while (fix_mac[i] != END_SIGN) { | ||
2201 | writeq(fix_mac[i++], &bar0->gpio_control); | ||
2202 | udelay(10); | ||
2203 | (void) readq(&bar0->gpio_control); | ||
2204 | } | ||
2205 | } | ||
2206 | |||
2207 | /** | ||
2208 | * start_nic - Turns the device on | ||
2209 | * @nic : device private variable. | ||
2210 | * Description: | ||
2211 | * This function actually turns the device on. Before this function is | ||
2212 | * called,all Registers are configured from their reset states | ||
2213 | * and shared memory is allocated but the NIC is still quiescent. On | ||
2214 | * calling this function, the device interrupts are cleared and the NIC is | ||
2215 | * literally switched on by writing into the adapter control register. | ||
2216 | * Return Value: | ||
2217 | * SUCCESS on success and -1 on failure. | ||
2218 | */ | ||
2219 | |||
2220 | static int start_nic(struct s2io_nic *nic) | ||
2221 | { | ||
2222 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
2223 | struct net_device *dev = nic->dev; | ||
2224 | register u64 val64 = 0; | ||
2225 | u16 subid, i; | ||
2226 | struct config_param *config = &nic->config; | ||
2227 | struct mac_info *mac_control = &nic->mac_control; | ||
2228 | |||
2229 | /* PRC Initialization and configuration */ | ||
2230 | for (i = 0; i < config->rx_ring_num; i++) { | ||
2231 | struct ring_info *ring = &mac_control->rings[i]; | ||
2232 | |||
2233 | writeq((u64)ring->rx_blocks[0].block_dma_addr, | ||
2234 | &bar0->prc_rxd0_n[i]); | ||
2235 | |||
2236 | val64 = readq(&bar0->prc_ctrl_n[i]); | ||
2237 | if (nic->rxd_mode == RXD_MODE_1) | ||
2238 | val64 |= PRC_CTRL_RC_ENABLED; | ||
2239 | else | ||
2240 | val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; | ||
2241 | if (nic->device_type == XFRAME_II_DEVICE) | ||
2242 | val64 |= PRC_CTRL_GROUP_READS; | ||
2243 | val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); | ||
2244 | val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); | ||
2245 | writeq(val64, &bar0->prc_ctrl_n[i]); | ||
2246 | } | ||
2247 | |||
2248 | if (nic->rxd_mode == RXD_MODE_3B) { | ||
2249 | /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ | ||
2250 | val64 = readq(&bar0->rx_pa_cfg); | ||
2251 | val64 |= RX_PA_CFG_IGNORE_L2_ERR; | ||
2252 | writeq(val64, &bar0->rx_pa_cfg); | ||
2253 | } | ||
2254 | |||
2255 | if (vlan_tag_strip == 0) { | ||
2256 | val64 = readq(&bar0->rx_pa_cfg); | ||
2257 | val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; | ||
2258 | writeq(val64, &bar0->rx_pa_cfg); | ||
2259 | nic->vlan_strip_flag = 0; | ||
2260 | } | ||
2261 | |||
2262 | /* | ||
2263 | * Enabling MC-RLDRAM. After enabling the device, we timeout | ||
2264 | * for around 100ms, which is approximately the time required | ||
2265 | * for the device to be ready for operation. | ||
2266 | */ | ||
2267 | val64 = readq(&bar0->mc_rldram_mrs); | ||
2268 | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; | ||
2269 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | ||
2270 | val64 = readq(&bar0->mc_rldram_mrs); | ||
2271 | |||
2272 | msleep(100); /* Delay by around 100 ms. */ | ||
2273 | |||
2274 | /* Enabling ECC Protection. */ | ||
2275 | val64 = readq(&bar0->adapter_control); | ||
2276 | val64 &= ~ADAPTER_ECC_EN; | ||
2277 | writeq(val64, &bar0->adapter_control); | ||
2278 | |||
2279 | /* | ||
2280 | * Verify if the device is ready to be enabled, if so enable | ||
2281 | * it. | ||
2282 | */ | ||
2283 | val64 = readq(&bar0->adapter_status); | ||
2284 | if (!verify_xena_quiescence(nic)) { | ||
2285 | DBG_PRINT(ERR_DBG, "%s: device is not ready, " | ||
2286 | "Adapter status reads: 0x%llx\n", | ||
2287 | dev->name, (unsigned long long)val64); | ||
2288 | return FAILURE; | ||
2289 | } | ||
2290 | |||
2291 | /* | ||
2292 | * With some switches, link might be already up at this point. | ||
2293 | * Because of this weird behavior, when we enable laser, | ||
2294 | * we may not get link. We need to handle this. We cannot | ||
2295 | * figure out which switch is misbehaving. So we are forced to | ||
2296 | * make a global change. | ||
2297 | */ | ||
2298 | |||
2299 | /* Enabling Laser. */ | ||
2300 | val64 = readq(&bar0->adapter_control); | ||
2301 | val64 |= ADAPTER_EOI_TX_ON; | ||
2302 | writeq(val64, &bar0->adapter_control); | ||
2303 | |||
2304 | if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { | ||
2305 | /* | ||
2306 | * Dont see link state interrupts initially on some switches, | ||
2307 | * so directly scheduling the link state task here. | ||
2308 | */ | ||
2309 | schedule_work(&nic->set_link_task); | ||
2310 | } | ||
2311 | /* SXE-002: Initialize link and activity LED */ | ||
2312 | subid = nic->pdev->subsystem_device; | ||
2313 | if (((subid & 0xFF) >= 0x07) && | ||
2314 | (nic->device_type == XFRAME_I_DEVICE)) { | ||
2315 | val64 = readq(&bar0->gpio_control); | ||
2316 | val64 |= 0x0000800000000000ULL; | ||
2317 | writeq(val64, &bar0->gpio_control); | ||
2318 | val64 = 0x0411040400000000ULL; | ||
2319 | writeq(val64, (void __iomem *)bar0 + 0x2700); | ||
2320 | } | ||
2321 | |||
2322 | return SUCCESS; | ||
2323 | } | ||
2324 | /** | ||
2325 | * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb | ||
2326 | */ | ||
2327 | static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, | ||
2328 | struct TxD *txdlp, int get_off) | ||
2329 | { | ||
2330 | struct s2io_nic *nic = fifo_data->nic; | ||
2331 | struct sk_buff *skb; | ||
2332 | struct TxD *txds; | ||
2333 | u16 j, frg_cnt; | ||
2334 | |||
2335 | txds = txdlp; | ||
2336 | if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { | ||
2337 | pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, | ||
2338 | sizeof(u64), PCI_DMA_TODEVICE); | ||
2339 | txds++; | ||
2340 | } | ||
2341 | |||
2342 | skb = (struct sk_buff *)((unsigned long)txds->Host_Control); | ||
2343 | if (!skb) { | ||
2344 | memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); | ||
2345 | return NULL; | ||
2346 | } | ||
2347 | pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, | ||
2348 | skb_headlen(skb), PCI_DMA_TODEVICE); | ||
2349 | frg_cnt = skb_shinfo(skb)->nr_frags; | ||
2350 | if (frg_cnt) { | ||
2351 | txds++; | ||
2352 | for (j = 0; j < frg_cnt; j++, txds++) { | ||
2353 | skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; | ||
2354 | if (!txds->Buffer_Pointer) | ||
2355 | break; | ||
2356 | pci_unmap_page(nic->pdev, | ||
2357 | (dma_addr_t)txds->Buffer_Pointer, | ||
2358 | frag->size, PCI_DMA_TODEVICE); | ||
2359 | } | ||
2360 | } | ||
2361 | memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); | ||
2362 | return skb; | ||
2363 | } | ||
2364 | |||
2365 | /** | ||
2366 | * free_tx_buffers - Free all queued Tx buffers | ||
2367 | * @nic : device private variable. | ||
2368 | * Description: | ||
2369 | * Free all queued Tx buffers. | ||
2370 | * Return Value: void | ||
2371 | */ | ||
2372 | |||
2373 | static void free_tx_buffers(struct s2io_nic *nic) | ||
2374 | { | ||
2375 | struct net_device *dev = nic->dev; | ||
2376 | struct sk_buff *skb; | ||
2377 | struct TxD *txdp; | ||
2378 | int i, j; | ||
2379 | int cnt = 0; | ||
2380 | struct config_param *config = &nic->config; | ||
2381 | struct mac_info *mac_control = &nic->mac_control; | ||
2382 | struct stat_block *stats = mac_control->stats_info; | ||
2383 | struct swStat *swstats = &stats->sw_stat; | ||
2384 | |||
2385 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
2386 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
2387 | struct fifo_info *fifo = &mac_control->fifos[i]; | ||
2388 | unsigned long flags; | ||
2389 | |||
2390 | spin_lock_irqsave(&fifo->tx_lock, flags); | ||
2391 | for (j = 0; j < tx_cfg->fifo_len; j++) { | ||
2392 | txdp = fifo->list_info[j].list_virt_addr; | ||
2393 | skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); | ||
2394 | if (skb) { | ||
2395 | swstats->mem_freed += skb->truesize; | ||
2396 | dev_kfree_skb(skb); | ||
2397 | cnt++; | ||
2398 | } | ||
2399 | } | ||
2400 | DBG_PRINT(INTR_DBG, | ||
2401 | "%s: forcibly freeing %d skbs on FIFO%d\n", | ||
2402 | dev->name, cnt, i); | ||
2403 | fifo->tx_curr_get_info.offset = 0; | ||
2404 | fifo->tx_curr_put_info.offset = 0; | ||
2405 | spin_unlock_irqrestore(&fifo->tx_lock, flags); | ||
2406 | } | ||
2407 | } | ||
2408 | |||
2409 | /** | ||
2410 | * stop_nic - To stop the nic | ||
2411 | * @nic ; device private variable. | ||
2412 | * Description: | ||
2413 | * This function does exactly the opposite of what the start_nic() | ||
2414 | * function does. This function is called to stop the device. | ||
2415 | * Return Value: | ||
2416 | * void. | ||
2417 | */ | ||
2418 | |||
2419 | static void stop_nic(struct s2io_nic *nic) | ||
2420 | { | ||
2421 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
2422 | register u64 val64 = 0; | ||
2423 | u16 interruptible; | ||
2424 | |||
2425 | /* Disable all interrupts */ | ||
2426 | en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); | ||
2427 | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; | ||
2428 | interruptible |= TX_PIC_INTR; | ||
2429 | en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); | ||
2430 | |||
2431 | /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ | ||
2432 | val64 = readq(&bar0->adapter_control); | ||
2433 | val64 &= ~(ADAPTER_CNTL_EN); | ||
2434 | writeq(val64, &bar0->adapter_control); | ||
2435 | } | ||
2436 | |||
2437 | /** | ||
2438 | * fill_rx_buffers - Allocates the Rx side skbs | ||
2439 | * @ring_info: per ring structure | ||
2440 | * @from_card_up: If this is true, we will map the buffer to get | ||
2441 | * the dma address for buf0 and buf1 to give it to the card. | ||
2442 | * Else we will sync the already mapped buffer to give it to the card. | ||
2443 | * Description: | ||
2444 | * The function allocates Rx side skbs and puts the physical | ||
2445 | * address of these buffers into the RxD buffer pointers, so that the NIC | ||
2446 | * can DMA the received frame into these locations. | ||
2447 | * The NIC supports 3 receive modes, viz | ||
2448 | * 1. single buffer, | ||
2449 | * 2. three buffer and | ||
2450 | * 3. Five buffer modes. | ||
2451 | * Each mode defines how many fragments the received frame will be split | ||
2452 | * up into by the NIC. The frame is split into L3 header, L4 Header, | ||
2453 | * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself | ||
2454 | * is split into 3 fragments. As of now only single buffer mode is | ||
2455 | * supported. | ||
2456 | * Return Value: | ||
2457 | * SUCCESS on success or an appropriate -ve value on failure. | ||
2458 | */ | ||
2459 | static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, | ||
2460 | int from_card_up) | ||
2461 | { | ||
2462 | struct sk_buff *skb; | ||
2463 | struct RxD_t *rxdp; | ||
2464 | int off, size, block_no, block_no1; | ||
2465 | u32 alloc_tab = 0; | ||
2466 | u32 alloc_cnt; | ||
2467 | u64 tmp; | ||
2468 | struct buffAdd *ba; | ||
2469 | struct RxD_t *first_rxdp = NULL; | ||
2470 | u64 Buffer0_ptr = 0, Buffer1_ptr = 0; | ||
2471 | int rxd_index = 0; | ||
2472 | struct RxD1 *rxdp1; | ||
2473 | struct RxD3 *rxdp3; | ||
2474 | struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; | ||
2475 | |||
2476 | alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; | ||
2477 | |||
2478 | block_no1 = ring->rx_curr_get_info.block_index; | ||
2479 | while (alloc_tab < alloc_cnt) { | ||
2480 | block_no = ring->rx_curr_put_info.block_index; | ||
2481 | |||
2482 | off = ring->rx_curr_put_info.offset; | ||
2483 | |||
2484 | rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; | ||
2485 | |||
2486 | rxd_index = off + 1; | ||
2487 | if (block_no) | ||
2488 | rxd_index += (block_no * ring->rxd_count); | ||
2489 | |||
2490 | if ((block_no == block_no1) && | ||
2491 | (off == ring->rx_curr_get_info.offset) && | ||
2492 | (rxdp->Host_Control)) { | ||
2493 | DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", | ||
2494 | ring->dev->name); | ||
2495 | goto end; | ||
2496 | } | ||
2497 | if (off && (off == ring->rxd_count)) { | ||
2498 | ring->rx_curr_put_info.block_index++; | ||
2499 | if (ring->rx_curr_put_info.block_index == | ||
2500 | ring->block_count) | ||
2501 | ring->rx_curr_put_info.block_index = 0; | ||
2502 | block_no = ring->rx_curr_put_info.block_index; | ||
2503 | off = 0; | ||
2504 | ring->rx_curr_put_info.offset = off; | ||
2505 | rxdp = ring->rx_blocks[block_no].block_virt_addr; | ||
2506 | DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", | ||
2507 | ring->dev->name, rxdp); | ||
2508 | |||
2509 | } | ||
2510 | |||
2511 | if ((rxdp->Control_1 & RXD_OWN_XENA) && | ||
2512 | ((ring->rxd_mode == RXD_MODE_3B) && | ||
2513 | (rxdp->Control_2 & s2BIT(0)))) { | ||
2514 | ring->rx_curr_put_info.offset = off; | ||
2515 | goto end; | ||
2516 | } | ||
2517 | /* calculate size of skb based on ring mode */ | ||
2518 | size = ring->mtu + | ||
2519 | HEADER_ETHERNET_II_802_3_SIZE + | ||
2520 | HEADER_802_2_SIZE + HEADER_SNAP_SIZE; | ||
2521 | if (ring->rxd_mode == RXD_MODE_1) | ||
2522 | size += NET_IP_ALIGN; | ||
2523 | else | ||
2524 | size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; | ||
2525 | |||
2526 | /* allocate skb */ | ||
2527 | skb = dev_alloc_skb(size); | ||
2528 | if (!skb) { | ||
2529 | DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", | ||
2530 | ring->dev->name); | ||
2531 | if (first_rxdp) { | ||
2532 | wmb(); | ||
2533 | first_rxdp->Control_1 |= RXD_OWN_XENA; | ||
2534 | } | ||
2535 | swstats->mem_alloc_fail_cnt++; | ||
2536 | |||
2537 | return -ENOMEM ; | ||
2538 | } | ||
2539 | swstats->mem_allocated += skb->truesize; | ||
2540 | |||
2541 | if (ring->rxd_mode == RXD_MODE_1) { | ||
2542 | /* 1 buffer mode - normal operation mode */ | ||
2543 | rxdp1 = (struct RxD1 *)rxdp; | ||
2544 | memset(rxdp, 0, sizeof(struct RxD1)); | ||
2545 | skb_reserve(skb, NET_IP_ALIGN); | ||
2546 | rxdp1->Buffer0_ptr = | ||
2547 | pci_map_single(ring->pdev, skb->data, | ||
2548 | size - NET_IP_ALIGN, | ||
2549 | PCI_DMA_FROMDEVICE); | ||
2550 | if (pci_dma_mapping_error(nic->pdev, | ||
2551 | rxdp1->Buffer0_ptr)) | ||
2552 | goto pci_map_failed; | ||
2553 | |||
2554 | rxdp->Control_2 = | ||
2555 | SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); | ||
2556 | rxdp->Host_Control = (unsigned long)skb; | ||
2557 | } else if (ring->rxd_mode == RXD_MODE_3B) { | ||
2558 | /* | ||
2559 | * 2 buffer mode - | ||
2560 | * 2 buffer mode provides 128 | ||
2561 | * byte aligned receive buffers. | ||
2562 | */ | ||
2563 | |||
2564 | rxdp3 = (struct RxD3 *)rxdp; | ||
2565 | /* save buffer pointers to avoid frequent dma mapping */ | ||
2566 | Buffer0_ptr = rxdp3->Buffer0_ptr; | ||
2567 | Buffer1_ptr = rxdp3->Buffer1_ptr; | ||
2568 | memset(rxdp, 0, sizeof(struct RxD3)); | ||
2569 | /* restore the buffer pointers for dma sync*/ | ||
2570 | rxdp3->Buffer0_ptr = Buffer0_ptr; | ||
2571 | rxdp3->Buffer1_ptr = Buffer1_ptr; | ||
2572 | |||
2573 | ba = &ring->ba[block_no][off]; | ||
2574 | skb_reserve(skb, BUF0_LEN); | ||
2575 | tmp = (u64)(unsigned long)skb->data; | ||
2576 | tmp += ALIGN_SIZE; | ||
2577 | tmp &= ~ALIGN_SIZE; | ||
2578 | skb->data = (void *) (unsigned long)tmp; | ||
2579 | skb_reset_tail_pointer(skb); | ||
2580 | |||
2581 | if (from_card_up) { | ||
2582 | rxdp3->Buffer0_ptr = | ||
2583 | pci_map_single(ring->pdev, ba->ba_0, | ||
2584 | BUF0_LEN, | ||
2585 | PCI_DMA_FROMDEVICE); | ||
2586 | if (pci_dma_mapping_error(nic->pdev, | ||
2587 | rxdp3->Buffer0_ptr)) | ||
2588 | goto pci_map_failed; | ||
2589 | } else | ||
2590 | pci_dma_sync_single_for_device(ring->pdev, | ||
2591 | (dma_addr_t)rxdp3->Buffer0_ptr, | ||
2592 | BUF0_LEN, | ||
2593 | PCI_DMA_FROMDEVICE); | ||
2594 | |||
2595 | rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); | ||
2596 | if (ring->rxd_mode == RXD_MODE_3B) { | ||
2597 | /* Two buffer mode */ | ||
2598 | |||
2599 | /* | ||
2600 | * Buffer2 will have L3/L4 header plus | ||
2601 | * L4 payload | ||
2602 | */ | ||
2603 | rxdp3->Buffer2_ptr = pci_map_single(ring->pdev, | ||
2604 | skb->data, | ||
2605 | ring->mtu + 4, | ||
2606 | PCI_DMA_FROMDEVICE); | ||
2607 | |||
2608 | if (pci_dma_mapping_error(nic->pdev, | ||
2609 | rxdp3->Buffer2_ptr)) | ||
2610 | goto pci_map_failed; | ||
2611 | |||
2612 | if (from_card_up) { | ||
2613 | rxdp3->Buffer1_ptr = | ||
2614 | pci_map_single(ring->pdev, | ||
2615 | ba->ba_1, | ||
2616 | BUF1_LEN, | ||
2617 | PCI_DMA_FROMDEVICE); | ||
2618 | |||
2619 | if (pci_dma_mapping_error(nic->pdev, | ||
2620 | rxdp3->Buffer1_ptr)) { | ||
2621 | pci_unmap_single(ring->pdev, | ||
2622 | (dma_addr_t)(unsigned long) | ||
2623 | skb->data, | ||
2624 | ring->mtu + 4, | ||
2625 | PCI_DMA_FROMDEVICE); | ||
2626 | goto pci_map_failed; | ||
2627 | } | ||
2628 | } | ||
2629 | rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); | ||
2630 | rxdp->Control_2 |= SET_BUFFER2_SIZE_3 | ||
2631 | (ring->mtu + 4); | ||
2632 | } | ||
2633 | rxdp->Control_2 |= s2BIT(0); | ||
2634 | rxdp->Host_Control = (unsigned long) (skb); | ||
2635 | } | ||
2636 | if (alloc_tab & ((1 << rxsync_frequency) - 1)) | ||
2637 | rxdp->Control_1 |= RXD_OWN_XENA; | ||
2638 | off++; | ||
2639 | if (off == (ring->rxd_count + 1)) | ||
2640 | off = 0; | ||
2641 | ring->rx_curr_put_info.offset = off; | ||
2642 | |||
2643 | rxdp->Control_2 |= SET_RXD_MARKER; | ||
2644 | if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { | ||
2645 | if (first_rxdp) { | ||
2646 | wmb(); | ||
2647 | first_rxdp->Control_1 |= RXD_OWN_XENA; | ||
2648 | } | ||
2649 | first_rxdp = rxdp; | ||
2650 | } | ||
2651 | ring->rx_bufs_left += 1; | ||
2652 | alloc_tab++; | ||
2653 | } | ||
2654 | |||
2655 | end: | ||
2656 | /* Transfer ownership of first descriptor to adapter just before | ||
2657 | * exiting. Before that, use memory barrier so that ownership | ||
2658 | * and other fields are seen by adapter correctly. | ||
2659 | */ | ||
2660 | if (first_rxdp) { | ||
2661 | wmb(); | ||
2662 | first_rxdp->Control_1 |= RXD_OWN_XENA; | ||
2663 | } | ||
2664 | |||
2665 | return SUCCESS; | ||
2666 | |||
2667 | pci_map_failed: | ||
2668 | swstats->pci_map_fail_cnt++; | ||
2669 | swstats->mem_freed += skb->truesize; | ||
2670 | dev_kfree_skb_irq(skb); | ||
2671 | return -ENOMEM; | ||
2672 | } | ||
2673 | |||
2674 | static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) | ||
2675 | { | ||
2676 | struct net_device *dev = sp->dev; | ||
2677 | int j; | ||
2678 | struct sk_buff *skb; | ||
2679 | struct RxD_t *rxdp; | ||
2680 | struct RxD1 *rxdp1; | ||
2681 | struct RxD3 *rxdp3; | ||
2682 | struct mac_info *mac_control = &sp->mac_control; | ||
2683 | struct stat_block *stats = mac_control->stats_info; | ||
2684 | struct swStat *swstats = &stats->sw_stat; | ||
2685 | |||
2686 | for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { | ||
2687 | rxdp = mac_control->rings[ring_no]. | ||
2688 | rx_blocks[blk].rxds[j].virt_addr; | ||
2689 | skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); | ||
2690 | if (!skb) | ||
2691 | continue; | ||
2692 | if (sp->rxd_mode == RXD_MODE_1) { | ||
2693 | rxdp1 = (struct RxD1 *)rxdp; | ||
2694 | pci_unmap_single(sp->pdev, | ||
2695 | (dma_addr_t)rxdp1->Buffer0_ptr, | ||
2696 | dev->mtu + | ||
2697 | HEADER_ETHERNET_II_802_3_SIZE + | ||
2698 | HEADER_802_2_SIZE + HEADER_SNAP_SIZE, | ||
2699 | PCI_DMA_FROMDEVICE); | ||
2700 | memset(rxdp, 0, sizeof(struct RxD1)); | ||
2701 | } else if (sp->rxd_mode == RXD_MODE_3B) { | ||
2702 | rxdp3 = (struct RxD3 *)rxdp; | ||
2703 | pci_unmap_single(sp->pdev, | ||
2704 | (dma_addr_t)rxdp3->Buffer0_ptr, | ||
2705 | BUF0_LEN, | ||
2706 | PCI_DMA_FROMDEVICE); | ||
2707 | pci_unmap_single(sp->pdev, | ||
2708 | (dma_addr_t)rxdp3->Buffer1_ptr, | ||
2709 | BUF1_LEN, | ||
2710 | PCI_DMA_FROMDEVICE); | ||
2711 | pci_unmap_single(sp->pdev, | ||
2712 | (dma_addr_t)rxdp3->Buffer2_ptr, | ||
2713 | dev->mtu + 4, | ||
2714 | PCI_DMA_FROMDEVICE); | ||
2715 | memset(rxdp, 0, sizeof(struct RxD3)); | ||
2716 | } | ||
2717 | swstats->mem_freed += skb->truesize; | ||
2718 | dev_kfree_skb(skb); | ||
2719 | mac_control->rings[ring_no].rx_bufs_left -= 1; | ||
2720 | } | ||
2721 | } | ||
2722 | |||
2723 | /** | ||
2724 | * free_rx_buffers - Frees all Rx buffers | ||
2725 | * @sp: device private variable. | ||
2726 | * Description: | ||
2727 | * This function will free all Rx buffers allocated by host. | ||
2728 | * Return Value: | ||
2729 | * NONE. | ||
2730 | */ | ||
2731 | |||
2732 | static void free_rx_buffers(struct s2io_nic *sp) | ||
2733 | { | ||
2734 | struct net_device *dev = sp->dev; | ||
2735 | int i, blk = 0, buf_cnt = 0; | ||
2736 | struct config_param *config = &sp->config; | ||
2737 | struct mac_info *mac_control = &sp->mac_control; | ||
2738 | |||
2739 | for (i = 0; i < config->rx_ring_num; i++) { | ||
2740 | struct ring_info *ring = &mac_control->rings[i]; | ||
2741 | |||
2742 | for (blk = 0; blk < rx_ring_sz[i]; blk++) | ||
2743 | free_rxd_blk(sp, i, blk); | ||
2744 | |||
2745 | ring->rx_curr_put_info.block_index = 0; | ||
2746 | ring->rx_curr_get_info.block_index = 0; | ||
2747 | ring->rx_curr_put_info.offset = 0; | ||
2748 | ring->rx_curr_get_info.offset = 0; | ||
2749 | ring->rx_bufs_left = 0; | ||
2750 | DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", | ||
2751 | dev->name, buf_cnt, i); | ||
2752 | } | ||
2753 | } | ||
2754 | |||
2755 | static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) | ||
2756 | { | ||
2757 | if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { | ||
2758 | DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", | ||
2759 | ring->dev->name); | ||
2760 | } | ||
2761 | return 0; | ||
2762 | } | ||
2763 | |||
2764 | /** | ||
2765 | * s2io_poll - Rx interrupt handler for NAPI support | ||
2766 | * @napi : pointer to the napi structure. | ||
2767 | * @budget : The number of packets that were budgeted to be processed | ||
2768 | * during one pass through the 'Poll" function. | ||
2769 | * Description: | ||
2770 | * Comes into picture only if NAPI support has been incorporated. It does | ||
2771 | * the same thing that rx_intr_handler does, but not in a interrupt context | ||
2772 | * also It will process only a given number of packets. | ||
2773 | * Return value: | ||
2774 | * 0 on success and 1 if there are No Rx packets to be processed. | ||
2775 | */ | ||
2776 | |||
2777 | static int s2io_poll_msix(struct napi_struct *napi, int budget) | ||
2778 | { | ||
2779 | struct ring_info *ring = container_of(napi, struct ring_info, napi); | ||
2780 | struct net_device *dev = ring->dev; | ||
2781 | int pkts_processed = 0; | ||
2782 | u8 __iomem *addr = NULL; | ||
2783 | u8 val8 = 0; | ||
2784 | struct s2io_nic *nic = netdev_priv(dev); | ||
2785 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
2786 | int budget_org = budget; | ||
2787 | |||
2788 | if (unlikely(!is_s2io_card_up(nic))) | ||
2789 | return 0; | ||
2790 | |||
2791 | pkts_processed = rx_intr_handler(ring, budget); | ||
2792 | s2io_chk_rx_buffers(nic, ring); | ||
2793 | |||
2794 | if (pkts_processed < budget_org) { | ||
2795 | napi_complete(napi); | ||
2796 | /*Re Enable MSI-Rx Vector*/ | ||
2797 | addr = (u8 __iomem *)&bar0->xmsi_mask_reg; | ||
2798 | addr += 7 - ring->ring_no; | ||
2799 | val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; | ||
2800 | writeb(val8, addr); | ||
2801 | val8 = readb(addr); | ||
2802 | } | ||
2803 | return pkts_processed; | ||
2804 | } | ||
2805 | |||
2806 | static int s2io_poll_inta(struct napi_struct *napi, int budget) | ||
2807 | { | ||
2808 | struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); | ||
2809 | int pkts_processed = 0; | ||
2810 | int ring_pkts_processed, i; | ||
2811 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
2812 | int budget_org = budget; | ||
2813 | struct config_param *config = &nic->config; | ||
2814 | struct mac_info *mac_control = &nic->mac_control; | ||
2815 | |||
2816 | if (unlikely(!is_s2io_card_up(nic))) | ||
2817 | return 0; | ||
2818 | |||
2819 | for (i = 0; i < config->rx_ring_num; i++) { | ||
2820 | struct ring_info *ring = &mac_control->rings[i]; | ||
2821 | ring_pkts_processed = rx_intr_handler(ring, budget); | ||
2822 | s2io_chk_rx_buffers(nic, ring); | ||
2823 | pkts_processed += ring_pkts_processed; | ||
2824 | budget -= ring_pkts_processed; | ||
2825 | if (budget <= 0) | ||
2826 | break; | ||
2827 | } | ||
2828 | if (pkts_processed < budget_org) { | ||
2829 | napi_complete(napi); | ||
2830 | /* Re enable the Rx interrupts for the ring */ | ||
2831 | writeq(0, &bar0->rx_traffic_mask); | ||
2832 | readl(&bar0->rx_traffic_mask); | ||
2833 | } | ||
2834 | return pkts_processed; | ||
2835 | } | ||
2836 | |||
2837 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2838 | /** | ||
2839 | * s2io_netpoll - netpoll event handler entry point | ||
2840 | * @dev : pointer to the device structure. | ||
2841 | * Description: | ||
2842 | * This function will be called by upper layer to check for events on the | ||
2843 | * interface in situations where interrupts are disabled. It is used for | ||
2844 | * specific in-kernel networking tasks, such as remote consoles and kernel | ||
2845 | * debugging over the network (example netdump in RedHat). | ||
2846 | */ | ||
2847 | static void s2io_netpoll(struct net_device *dev) | ||
2848 | { | ||
2849 | struct s2io_nic *nic = netdev_priv(dev); | ||
2850 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
2851 | u64 val64 = 0xFFFFFFFFFFFFFFFFULL; | ||
2852 | int i; | ||
2853 | struct config_param *config = &nic->config; | ||
2854 | struct mac_info *mac_control = &nic->mac_control; | ||
2855 | |||
2856 | if (pci_channel_offline(nic->pdev)) | ||
2857 | return; | ||
2858 | |||
2859 | disable_irq(dev->irq); | ||
2860 | |||
2861 | writeq(val64, &bar0->rx_traffic_int); | ||
2862 | writeq(val64, &bar0->tx_traffic_int); | ||
2863 | |||
2864 | /* we need to free up the transmitted skbufs or else netpoll will | ||
2865 | * run out of skbs and will fail and eventually netpoll application such | ||
2866 | * as netdump will fail. | ||
2867 | */ | ||
2868 | for (i = 0; i < config->tx_fifo_num; i++) | ||
2869 | tx_intr_handler(&mac_control->fifos[i]); | ||
2870 | |||
2871 | /* check for received packet and indicate up to network */ | ||
2872 | for (i = 0; i < config->rx_ring_num; i++) { | ||
2873 | struct ring_info *ring = &mac_control->rings[i]; | ||
2874 | |||
2875 | rx_intr_handler(ring, 0); | ||
2876 | } | ||
2877 | |||
2878 | for (i = 0; i < config->rx_ring_num; i++) { | ||
2879 | struct ring_info *ring = &mac_control->rings[i]; | ||
2880 | |||
2881 | if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { | ||
2882 | DBG_PRINT(INFO_DBG, | ||
2883 | "%s: Out of memory in Rx Netpoll!!\n", | ||
2884 | dev->name); | ||
2885 | break; | ||
2886 | } | ||
2887 | } | ||
2888 | enable_irq(dev->irq); | ||
2889 | } | ||
2890 | #endif | ||
2891 | |||
2892 | /** | ||
2893 | * rx_intr_handler - Rx interrupt handler | ||
2894 | * @ring_info: per ring structure. | ||
2895 | * @budget: budget for napi processing. | ||
2896 | * Description: | ||
2897 | * If the interrupt is because of a received frame or if the | ||
2898 | * receive ring contains fresh as yet un-processed frames,this function is | ||
2899 | * called. It picks out the RxD at which place the last Rx processing had | ||
2900 | * stopped and sends the skb to the OSM's Rx handler and then increments | ||
2901 | * the offset. | ||
2902 | * Return Value: | ||
2903 | * No. of napi packets processed. | ||
2904 | */ | ||
2905 | static int rx_intr_handler(struct ring_info *ring_data, int budget) | ||
2906 | { | ||
2907 | int get_block, put_block; | ||
2908 | struct rx_curr_get_info get_info, put_info; | ||
2909 | struct RxD_t *rxdp; | ||
2910 | struct sk_buff *skb; | ||
2911 | int pkt_cnt = 0, napi_pkts = 0; | ||
2912 | int i; | ||
2913 | struct RxD1 *rxdp1; | ||
2914 | struct RxD3 *rxdp3; | ||
2915 | |||
2916 | get_info = ring_data->rx_curr_get_info; | ||
2917 | get_block = get_info.block_index; | ||
2918 | memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); | ||
2919 | put_block = put_info.block_index; | ||
2920 | rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; | ||
2921 | |||
2922 | while (RXD_IS_UP2DT(rxdp)) { | ||
2923 | /* | ||
2924 | * If your are next to put index then it's | ||
2925 | * FIFO full condition | ||
2926 | */ | ||
2927 | if ((get_block == put_block) && | ||
2928 | (get_info.offset + 1) == put_info.offset) { | ||
2929 | DBG_PRINT(INTR_DBG, "%s: Ring Full\n", | ||
2930 | ring_data->dev->name); | ||
2931 | break; | ||
2932 | } | ||
2933 | skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); | ||
2934 | if (skb == NULL) { | ||
2935 | DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", | ||
2936 | ring_data->dev->name); | ||
2937 | return 0; | ||
2938 | } | ||
2939 | if (ring_data->rxd_mode == RXD_MODE_1) { | ||
2940 | rxdp1 = (struct RxD1 *)rxdp; | ||
2941 | pci_unmap_single(ring_data->pdev, (dma_addr_t) | ||
2942 | rxdp1->Buffer0_ptr, | ||
2943 | ring_data->mtu + | ||
2944 | HEADER_ETHERNET_II_802_3_SIZE + | ||
2945 | HEADER_802_2_SIZE + | ||
2946 | HEADER_SNAP_SIZE, | ||
2947 | PCI_DMA_FROMDEVICE); | ||
2948 | } else if (ring_data->rxd_mode == RXD_MODE_3B) { | ||
2949 | rxdp3 = (struct RxD3 *)rxdp; | ||
2950 | pci_dma_sync_single_for_cpu(ring_data->pdev, | ||
2951 | (dma_addr_t)rxdp3->Buffer0_ptr, | ||
2952 | BUF0_LEN, | ||
2953 | PCI_DMA_FROMDEVICE); | ||
2954 | pci_unmap_single(ring_data->pdev, | ||
2955 | (dma_addr_t)rxdp3->Buffer2_ptr, | ||
2956 | ring_data->mtu + 4, | ||
2957 | PCI_DMA_FROMDEVICE); | ||
2958 | } | ||
2959 | prefetch(skb->data); | ||
2960 | rx_osm_handler(ring_data, rxdp); | ||
2961 | get_info.offset++; | ||
2962 | ring_data->rx_curr_get_info.offset = get_info.offset; | ||
2963 | rxdp = ring_data->rx_blocks[get_block]. | ||
2964 | rxds[get_info.offset].virt_addr; | ||
2965 | if (get_info.offset == rxd_count[ring_data->rxd_mode]) { | ||
2966 | get_info.offset = 0; | ||
2967 | ring_data->rx_curr_get_info.offset = get_info.offset; | ||
2968 | get_block++; | ||
2969 | if (get_block == ring_data->block_count) | ||
2970 | get_block = 0; | ||
2971 | ring_data->rx_curr_get_info.block_index = get_block; | ||
2972 | rxdp = ring_data->rx_blocks[get_block].block_virt_addr; | ||
2973 | } | ||
2974 | |||
2975 | if (ring_data->nic->config.napi) { | ||
2976 | budget--; | ||
2977 | napi_pkts++; | ||
2978 | if (!budget) | ||
2979 | break; | ||
2980 | } | ||
2981 | pkt_cnt++; | ||
2982 | if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) | ||
2983 | break; | ||
2984 | } | ||
2985 | if (ring_data->lro) { | ||
2986 | /* Clear all LRO sessions before exiting */ | ||
2987 | for (i = 0; i < MAX_LRO_SESSIONS; i++) { | ||
2988 | struct lro *lro = &ring_data->lro0_n[i]; | ||
2989 | if (lro->in_use) { | ||
2990 | update_L3L4_header(ring_data->nic, lro); | ||
2991 | queue_rx_frame(lro->parent, lro->vlan_tag); | ||
2992 | clear_lro_session(lro); | ||
2993 | } | ||
2994 | } | ||
2995 | } | ||
2996 | return napi_pkts; | ||
2997 | } | ||
2998 | |||
2999 | /** | ||
3000 | * tx_intr_handler - Transmit interrupt handler | ||
3001 | * @nic : device private variable | ||
3002 | * Description: | ||
3003 | * If an interrupt was raised to indicate DMA complete of the | ||
3004 | * Tx packet, this function is called. It identifies the last TxD | ||
3005 | * whose buffer was freed and frees all skbs whose data have already | ||
3006 | * DMA'ed into the NICs internal memory. | ||
3007 | * Return Value: | ||
3008 | * NONE | ||
3009 | */ | ||
3010 | |||
3011 | static void tx_intr_handler(struct fifo_info *fifo_data) | ||
3012 | { | ||
3013 | struct s2io_nic *nic = fifo_data->nic; | ||
3014 | struct tx_curr_get_info get_info, put_info; | ||
3015 | struct sk_buff *skb = NULL; | ||
3016 | struct TxD *txdlp; | ||
3017 | int pkt_cnt = 0; | ||
3018 | unsigned long flags = 0; | ||
3019 | u8 err_mask; | ||
3020 | struct stat_block *stats = nic->mac_control.stats_info; | ||
3021 | struct swStat *swstats = &stats->sw_stat; | ||
3022 | |||
3023 | if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) | ||
3024 | return; | ||
3025 | |||
3026 | get_info = fifo_data->tx_curr_get_info; | ||
3027 | memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); | ||
3028 | txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; | ||
3029 | while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && | ||
3030 | (get_info.offset != put_info.offset) && | ||
3031 | (txdlp->Host_Control)) { | ||
3032 | /* Check for TxD errors */ | ||
3033 | if (txdlp->Control_1 & TXD_T_CODE) { | ||
3034 | unsigned long long err; | ||
3035 | err = txdlp->Control_1 & TXD_T_CODE; | ||
3036 | if (err & 0x1) { | ||
3037 | swstats->parity_err_cnt++; | ||
3038 | } | ||
3039 | |||
3040 | /* update t_code statistics */ | ||
3041 | err_mask = err >> 48; | ||
3042 | switch (err_mask) { | ||
3043 | case 2: | ||
3044 | swstats->tx_buf_abort_cnt++; | ||
3045 | break; | ||
3046 | |||
3047 | case 3: | ||
3048 | swstats->tx_desc_abort_cnt++; | ||
3049 | break; | ||
3050 | |||
3051 | case 7: | ||
3052 | swstats->tx_parity_err_cnt++; | ||
3053 | break; | ||
3054 | |||
3055 | case 10: | ||
3056 | swstats->tx_link_loss_cnt++; | ||
3057 | break; | ||
3058 | |||
3059 | case 15: | ||
3060 | swstats->tx_list_proc_err_cnt++; | ||
3061 | break; | ||
3062 | } | ||
3063 | } | ||
3064 | |||
3065 | skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); | ||
3066 | if (skb == NULL) { | ||
3067 | spin_unlock_irqrestore(&fifo_data->tx_lock, flags); | ||
3068 | DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", | ||
3069 | __func__); | ||
3070 | return; | ||
3071 | } | ||
3072 | pkt_cnt++; | ||
3073 | |||
3074 | /* Updating the statistics block */ | ||
3075 | swstats->mem_freed += skb->truesize; | ||
3076 | dev_kfree_skb_irq(skb); | ||
3077 | |||
3078 | get_info.offset++; | ||
3079 | if (get_info.offset == get_info.fifo_len + 1) | ||
3080 | get_info.offset = 0; | ||
3081 | txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; | ||
3082 | fifo_data->tx_curr_get_info.offset = get_info.offset; | ||
3083 | } | ||
3084 | |||
3085 | s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); | ||
3086 | |||
3087 | spin_unlock_irqrestore(&fifo_data->tx_lock, flags); | ||
3088 | } | ||
3089 | |||
3090 | /** | ||
3091 | * s2io_mdio_write - Function to write in to MDIO registers | ||
3092 | * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) | ||
3093 | * @addr : address value | ||
3094 | * @value : data value | ||
3095 | * @dev : pointer to net_device structure | ||
3096 | * Description: | ||
3097 | * This function is used to write values to the MDIO registers | ||
3098 | * NONE | ||
3099 | */ | ||
3100 | static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, | ||
3101 | struct net_device *dev) | ||
3102 | { | ||
3103 | u64 val64; | ||
3104 | struct s2io_nic *sp = netdev_priv(dev); | ||
3105 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
3106 | |||
3107 | /* address transaction */ | ||
3108 | val64 = MDIO_MMD_INDX_ADDR(addr) | | ||
3109 | MDIO_MMD_DEV_ADDR(mmd_type) | | ||
3110 | MDIO_MMS_PRT_ADDR(0x0); | ||
3111 | writeq(val64, &bar0->mdio_control); | ||
3112 | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | ||
3113 | writeq(val64, &bar0->mdio_control); | ||
3114 | udelay(100); | ||
3115 | |||
3116 | /* Data transaction */ | ||
3117 | val64 = MDIO_MMD_INDX_ADDR(addr) | | ||
3118 | MDIO_MMD_DEV_ADDR(mmd_type) | | ||
3119 | MDIO_MMS_PRT_ADDR(0x0) | | ||
3120 | MDIO_MDIO_DATA(value) | | ||
3121 | MDIO_OP(MDIO_OP_WRITE_TRANS); | ||
3122 | writeq(val64, &bar0->mdio_control); | ||
3123 | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | ||
3124 | writeq(val64, &bar0->mdio_control); | ||
3125 | udelay(100); | ||
3126 | |||
3127 | val64 = MDIO_MMD_INDX_ADDR(addr) | | ||
3128 | MDIO_MMD_DEV_ADDR(mmd_type) | | ||
3129 | MDIO_MMS_PRT_ADDR(0x0) | | ||
3130 | MDIO_OP(MDIO_OP_READ_TRANS); | ||
3131 | writeq(val64, &bar0->mdio_control); | ||
3132 | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | ||
3133 | writeq(val64, &bar0->mdio_control); | ||
3134 | udelay(100); | ||
3135 | } | ||
3136 | |||
3137 | /** | ||
3138 | * s2io_mdio_read - Function to write in to MDIO registers | ||
3139 | * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) | ||
3140 | * @addr : address value | ||
3141 | * @dev : pointer to net_device structure | ||
3142 | * Description: | ||
3143 | * This function is used to read values to the MDIO registers | ||
3144 | * NONE | ||
3145 | */ | ||
3146 | static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) | ||
3147 | { | ||
3148 | u64 val64 = 0x0; | ||
3149 | u64 rval64 = 0x0; | ||
3150 | struct s2io_nic *sp = netdev_priv(dev); | ||
3151 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
3152 | |||
3153 | /* address transaction */ | ||
3154 | val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) | ||
3155 | | MDIO_MMD_DEV_ADDR(mmd_type) | ||
3156 | | MDIO_MMS_PRT_ADDR(0x0)); | ||
3157 | writeq(val64, &bar0->mdio_control); | ||
3158 | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | ||
3159 | writeq(val64, &bar0->mdio_control); | ||
3160 | udelay(100); | ||
3161 | |||
3162 | /* Data transaction */ | ||
3163 | val64 = MDIO_MMD_INDX_ADDR(addr) | | ||
3164 | MDIO_MMD_DEV_ADDR(mmd_type) | | ||
3165 | MDIO_MMS_PRT_ADDR(0x0) | | ||
3166 | MDIO_OP(MDIO_OP_READ_TRANS); | ||
3167 | writeq(val64, &bar0->mdio_control); | ||
3168 | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | ||
3169 | writeq(val64, &bar0->mdio_control); | ||
3170 | udelay(100); | ||
3171 | |||
3172 | /* Read the value from regs */ | ||
3173 | rval64 = readq(&bar0->mdio_control); | ||
3174 | rval64 = rval64 & 0xFFFF0000; | ||
3175 | rval64 = rval64 >> 16; | ||
3176 | return rval64; | ||
3177 | } | ||
3178 | |||
3179 | /** | ||
3180 | * s2io_chk_xpak_counter - Function to check the status of the xpak counters | ||
3181 | * @counter : counter value to be updated | ||
3182 | * @flag : flag to indicate the status | ||
3183 | * @type : counter type | ||
3184 | * Description: | ||
3185 | * This function is to check the status of the xpak counters value | ||
3186 | * NONE | ||
3187 | */ | ||
3188 | |||
3189 | static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, | ||
3190 | u16 flag, u16 type) | ||
3191 | { | ||
3192 | u64 mask = 0x3; | ||
3193 | u64 val64; | ||
3194 | int i; | ||
3195 | for (i = 0; i < index; i++) | ||
3196 | mask = mask << 0x2; | ||
3197 | |||
3198 | if (flag > 0) { | ||
3199 | *counter = *counter + 1; | ||
3200 | val64 = *regs_stat & mask; | ||
3201 | val64 = val64 >> (index * 0x2); | ||
3202 | val64 = val64 + 1; | ||
3203 | if (val64 == 3) { | ||
3204 | switch (type) { | ||
3205 | case 1: | ||
3206 | DBG_PRINT(ERR_DBG, | ||
3207 | "Take Xframe NIC out of service.\n"); | ||
3208 | DBG_PRINT(ERR_DBG, | ||
3209 | "Excessive temperatures may result in premature transceiver failure.\n"); | ||
3210 | break; | ||
3211 | case 2: | ||
3212 | DBG_PRINT(ERR_DBG, | ||
3213 | "Take Xframe NIC out of service.\n"); | ||
3214 | DBG_PRINT(ERR_DBG, | ||
3215 | "Excessive bias currents may indicate imminent laser diode failure.\n"); | ||
3216 | break; | ||
3217 | case 3: | ||
3218 | DBG_PRINT(ERR_DBG, | ||
3219 | "Take Xframe NIC out of service.\n"); | ||
3220 | DBG_PRINT(ERR_DBG, | ||
3221 | "Excessive laser output power may saturate far-end receiver.\n"); | ||
3222 | break; | ||
3223 | default: | ||
3224 | DBG_PRINT(ERR_DBG, | ||
3225 | "Incorrect XPAK Alarm type\n"); | ||
3226 | } | ||
3227 | val64 = 0x0; | ||
3228 | } | ||
3229 | val64 = val64 << (index * 0x2); | ||
3230 | *regs_stat = (*regs_stat & (~mask)) | (val64); | ||
3231 | |||
3232 | } else { | ||
3233 | *regs_stat = *regs_stat & (~mask); | ||
3234 | } | ||
3235 | } | ||
3236 | |||
3237 | /** | ||
3238 | * s2io_updt_xpak_counter - Function to update the xpak counters | ||
3239 | * @dev : pointer to net_device struct | ||
3240 | * Description: | ||
3241 | * This function is to upate the status of the xpak counters value | ||
3242 | * NONE | ||
3243 | */ | ||
3244 | static void s2io_updt_xpak_counter(struct net_device *dev) | ||
3245 | { | ||
3246 | u16 flag = 0x0; | ||
3247 | u16 type = 0x0; | ||
3248 | u16 val16 = 0x0; | ||
3249 | u64 val64 = 0x0; | ||
3250 | u64 addr = 0x0; | ||
3251 | |||
3252 | struct s2io_nic *sp = netdev_priv(dev); | ||
3253 | struct stat_block *stats = sp->mac_control.stats_info; | ||
3254 | struct xpakStat *xstats = &stats->xpak_stat; | ||
3255 | |||
3256 | /* Check the communication with the MDIO slave */ | ||
3257 | addr = MDIO_CTRL1; | ||
3258 | val64 = 0x0; | ||
3259 | val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); | ||
3260 | if ((val64 == 0xFFFF) || (val64 == 0x0000)) { | ||
3261 | DBG_PRINT(ERR_DBG, | ||
3262 | "ERR: MDIO slave access failed - Returned %llx\n", | ||
3263 | (unsigned long long)val64); | ||
3264 | return; | ||
3265 | } | ||
3266 | |||
3267 | /* Check for the expected value of control reg 1 */ | ||
3268 | if (val64 != MDIO_CTRL1_SPEED10G) { | ||
3269 | DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " | ||
3270 | "Returned: %llx- Expected: 0x%x\n", | ||
3271 | (unsigned long long)val64, MDIO_CTRL1_SPEED10G); | ||
3272 | return; | ||
3273 | } | ||
3274 | |||
3275 | /* Loading the DOM register to MDIO register */ | ||
3276 | addr = 0xA100; | ||
3277 | s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); | ||
3278 | val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); | ||
3279 | |||
3280 | /* Reading the Alarm flags */ | ||
3281 | addr = 0xA070; | ||
3282 | val64 = 0x0; | ||
3283 | val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); | ||
3284 | |||
3285 | flag = CHECKBIT(val64, 0x7); | ||
3286 | type = 1; | ||
3287 | s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, | ||
3288 | &xstats->xpak_regs_stat, | ||
3289 | 0x0, flag, type); | ||
3290 | |||
3291 | if (CHECKBIT(val64, 0x6)) | ||
3292 | xstats->alarm_transceiver_temp_low++; | ||
3293 | |||
3294 | flag = CHECKBIT(val64, 0x3); | ||
3295 | type = 2; | ||
3296 | s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, | ||
3297 | &xstats->xpak_regs_stat, | ||
3298 | 0x2, flag, type); | ||
3299 | |||
3300 | if (CHECKBIT(val64, 0x2)) | ||
3301 | xstats->alarm_laser_bias_current_low++; | ||
3302 | |||
3303 | flag = CHECKBIT(val64, 0x1); | ||
3304 | type = 3; | ||
3305 | s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, | ||
3306 | &xstats->xpak_regs_stat, | ||
3307 | 0x4, flag, type); | ||
3308 | |||
3309 | if (CHECKBIT(val64, 0x0)) | ||
3310 | xstats->alarm_laser_output_power_low++; | ||
3311 | |||
3312 | /* Reading the Warning flags */ | ||
3313 | addr = 0xA074; | ||
3314 | val64 = 0x0; | ||
3315 | val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); | ||
3316 | |||
3317 | if (CHECKBIT(val64, 0x7)) | ||
3318 | xstats->warn_transceiver_temp_high++; | ||
3319 | |||
3320 | if (CHECKBIT(val64, 0x6)) | ||
3321 | xstats->warn_transceiver_temp_low++; | ||
3322 | |||
3323 | if (CHECKBIT(val64, 0x3)) | ||
3324 | xstats->warn_laser_bias_current_high++; | ||
3325 | |||
3326 | if (CHECKBIT(val64, 0x2)) | ||
3327 | xstats->warn_laser_bias_current_low++; | ||
3328 | |||
3329 | if (CHECKBIT(val64, 0x1)) | ||
3330 | xstats->warn_laser_output_power_high++; | ||
3331 | |||
3332 | if (CHECKBIT(val64, 0x0)) | ||
3333 | xstats->warn_laser_output_power_low++; | ||
3334 | } | ||
3335 | |||
3336 | /** | ||
3337 | * wait_for_cmd_complete - waits for a command to complete. | ||
3338 | * @sp : private member of the device structure, which is a pointer to the | ||
3339 | * s2io_nic structure. | ||
3340 | * Description: Function that waits for a command to Write into RMAC | ||
3341 | * ADDR DATA registers to be completed and returns either success or | ||
3342 | * error depending on whether the command was complete or not. | ||
3343 | * Return value: | ||
3344 | * SUCCESS on success and FAILURE on failure. | ||
3345 | */ | ||
3346 | |||
3347 | static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, | ||
3348 | int bit_state) | ||
3349 | { | ||
3350 | int ret = FAILURE, cnt = 0, delay = 1; | ||
3351 | u64 val64; | ||
3352 | |||
3353 | if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) | ||
3354 | return FAILURE; | ||
3355 | |||
3356 | do { | ||
3357 | val64 = readq(addr); | ||
3358 | if (bit_state == S2IO_BIT_RESET) { | ||
3359 | if (!(val64 & busy_bit)) { | ||
3360 | ret = SUCCESS; | ||
3361 | break; | ||
3362 | } | ||
3363 | } else { | ||
3364 | if (val64 & busy_bit) { | ||
3365 | ret = SUCCESS; | ||
3366 | break; | ||
3367 | } | ||
3368 | } | ||
3369 | |||
3370 | if (in_interrupt()) | ||
3371 | mdelay(delay); | ||
3372 | else | ||
3373 | msleep(delay); | ||
3374 | |||
3375 | if (++cnt >= 10) | ||
3376 | delay = 50; | ||
3377 | } while (cnt < 20); | ||
3378 | return ret; | ||
3379 | } | ||
3380 | /* | ||
3381 | * check_pci_device_id - Checks if the device id is supported | ||
3382 | * @id : device id | ||
3383 | * Description: Function to check if the pci device id is supported by driver. | ||
3384 | * Return value: Actual device id if supported else PCI_ANY_ID | ||
3385 | */ | ||
3386 | static u16 check_pci_device_id(u16 id) | ||
3387 | { | ||
3388 | switch (id) { | ||
3389 | case PCI_DEVICE_ID_HERC_WIN: | ||
3390 | case PCI_DEVICE_ID_HERC_UNI: | ||
3391 | return XFRAME_II_DEVICE; | ||
3392 | case PCI_DEVICE_ID_S2IO_UNI: | ||
3393 | case PCI_DEVICE_ID_S2IO_WIN: | ||
3394 | return XFRAME_I_DEVICE; | ||
3395 | default: | ||
3396 | return PCI_ANY_ID; | ||
3397 | } | ||
3398 | } | ||
3399 | |||
3400 | /** | ||
3401 | * s2io_reset - Resets the card. | ||
3402 | * @sp : private member of the device structure. | ||
3403 | * Description: Function to Reset the card. This function then also | ||
3404 | * restores the previously saved PCI configuration space registers as | ||
3405 | * the card reset also resets the configuration space. | ||
3406 | * Return value: | ||
3407 | * void. | ||
3408 | */ | ||
3409 | |||
3410 | static void s2io_reset(struct s2io_nic *sp) | ||
3411 | { | ||
3412 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
3413 | u64 val64; | ||
3414 | u16 subid, pci_cmd; | ||
3415 | int i; | ||
3416 | u16 val16; | ||
3417 | unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; | ||
3418 | unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; | ||
3419 | struct stat_block *stats; | ||
3420 | struct swStat *swstats; | ||
3421 | |||
3422 | DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", | ||
3423 | __func__, pci_name(sp->pdev)); | ||
3424 | |||
3425 | /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ | ||
3426 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); | ||
3427 | |||
3428 | val64 = SW_RESET_ALL; | ||
3429 | writeq(val64, &bar0->sw_reset); | ||
3430 | if (strstr(sp->product_name, "CX4")) | ||
3431 | msleep(750); | ||
3432 | msleep(250); | ||
3433 | for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { | ||
3434 | |||
3435 | /* Restore the PCI state saved during initialization. */ | ||
3436 | pci_restore_state(sp->pdev); | ||
3437 | pci_save_state(sp->pdev); | ||
3438 | pci_read_config_word(sp->pdev, 0x2, &val16); | ||
3439 | if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) | ||
3440 | break; | ||
3441 | msleep(200); | ||
3442 | } | ||
3443 | |||
3444 | if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) | ||
3445 | DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); | ||
3446 | |||
3447 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); | ||
3448 | |||
3449 | s2io_init_pci(sp); | ||
3450 | |||
3451 | /* Set swapper to enable I/O register access */ | ||
3452 | s2io_set_swapper(sp); | ||
3453 | |||
3454 | /* restore mac_addr entries */ | ||
3455 | do_s2io_restore_unicast_mc(sp); | ||
3456 | |||
3457 | /* Restore the MSIX table entries from local variables */ | ||
3458 | restore_xmsi_data(sp); | ||
3459 | |||
3460 | /* Clear certain PCI/PCI-X fields after reset */ | ||
3461 | if (sp->device_type == XFRAME_II_DEVICE) { | ||
3462 | /* Clear "detected parity error" bit */ | ||
3463 | pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); | ||
3464 | |||
3465 | /* Clearing PCIX Ecc status register */ | ||
3466 | pci_write_config_dword(sp->pdev, 0x68, 0x7C); | ||
3467 | |||
3468 | /* Clearing PCI_STATUS error reflected here */ | ||
3469 | writeq(s2BIT(62), &bar0->txpic_int_reg); | ||
3470 | } | ||
3471 | |||
3472 | /* Reset device statistics maintained by OS */ | ||
3473 | memset(&sp->stats, 0, sizeof(struct net_device_stats)); | ||
3474 | |||
3475 | stats = sp->mac_control.stats_info; | ||
3476 | swstats = &stats->sw_stat; | ||
3477 | |||
3478 | /* save link up/down time/cnt, reset/memory/watchdog cnt */ | ||
3479 | up_cnt = swstats->link_up_cnt; | ||
3480 | down_cnt = swstats->link_down_cnt; | ||
3481 | up_time = swstats->link_up_time; | ||
3482 | down_time = swstats->link_down_time; | ||
3483 | reset_cnt = swstats->soft_reset_cnt; | ||
3484 | mem_alloc_cnt = swstats->mem_allocated; | ||
3485 | mem_free_cnt = swstats->mem_freed; | ||
3486 | watchdog_cnt = swstats->watchdog_timer_cnt; | ||
3487 | |||
3488 | memset(stats, 0, sizeof(struct stat_block)); | ||
3489 | |||
3490 | /* restore link up/down time/cnt, reset/memory/watchdog cnt */ | ||
3491 | swstats->link_up_cnt = up_cnt; | ||
3492 | swstats->link_down_cnt = down_cnt; | ||
3493 | swstats->link_up_time = up_time; | ||
3494 | swstats->link_down_time = down_time; | ||
3495 | swstats->soft_reset_cnt = reset_cnt; | ||
3496 | swstats->mem_allocated = mem_alloc_cnt; | ||
3497 | swstats->mem_freed = mem_free_cnt; | ||
3498 | swstats->watchdog_timer_cnt = watchdog_cnt; | ||
3499 | |||
3500 | /* SXE-002: Configure link and activity LED to turn it off */ | ||
3501 | subid = sp->pdev->subsystem_device; | ||
3502 | if (((subid & 0xFF) >= 0x07) && | ||
3503 | (sp->device_type == XFRAME_I_DEVICE)) { | ||
3504 | val64 = readq(&bar0->gpio_control); | ||
3505 | val64 |= 0x0000800000000000ULL; | ||
3506 | writeq(val64, &bar0->gpio_control); | ||
3507 | val64 = 0x0411040400000000ULL; | ||
3508 | writeq(val64, (void __iomem *)bar0 + 0x2700); | ||
3509 | } | ||
3510 | |||
3511 | /* | ||
3512 | * Clear spurious ECC interrupts that would have occurred on | ||
3513 | * XFRAME II cards after reset. | ||
3514 | */ | ||
3515 | if (sp->device_type == XFRAME_II_DEVICE) { | ||
3516 | val64 = readq(&bar0->pcc_err_reg); | ||
3517 | writeq(val64, &bar0->pcc_err_reg); | ||
3518 | } | ||
3519 | |||
3520 | sp->device_enabled_once = false; | ||
3521 | } | ||
3522 | |||
3523 | /** | ||
3524 | * s2io_set_swapper - to set the swapper controle on the card | ||
3525 | * @sp : private member of the device structure, | ||
3526 | * pointer to the s2io_nic structure. | ||
3527 | * Description: Function to set the swapper control on the card | ||
3528 | * correctly depending on the 'endianness' of the system. | ||
3529 | * Return value: | ||
3530 | * SUCCESS on success and FAILURE on failure. | ||
3531 | */ | ||
3532 | |||
3533 | static int s2io_set_swapper(struct s2io_nic *sp) | ||
3534 | { | ||
3535 | struct net_device *dev = sp->dev; | ||
3536 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
3537 | u64 val64, valt, valr; | ||
3538 | |||
3539 | /* | ||
3540 | * Set proper endian settings and verify the same by reading | ||
3541 | * the PIF Feed-back register. | ||
3542 | */ | ||
3543 | |||
3544 | val64 = readq(&bar0->pif_rd_swapper_fb); | ||
3545 | if (val64 != 0x0123456789ABCDEFULL) { | ||
3546 | int i = 0; | ||
3547 | static const u64 value[] = { | ||
3548 | 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ | ||
3549 | 0x8100008181000081ULL, /* FE=1, SE=0 */ | ||
3550 | 0x4200004242000042ULL, /* FE=0, SE=1 */ | ||
3551 | 0 /* FE=0, SE=0 */ | ||
3552 | }; | ||
3553 | |||
3554 | while (i < 4) { | ||
3555 | writeq(value[i], &bar0->swapper_ctrl); | ||
3556 | val64 = readq(&bar0->pif_rd_swapper_fb); | ||
3557 | if (val64 == 0x0123456789ABCDEFULL) | ||
3558 | break; | ||
3559 | i++; | ||
3560 | } | ||
3561 | if (i == 4) { | ||
3562 | DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " | ||
3563 | "feedback read %llx\n", | ||
3564 | dev->name, (unsigned long long)val64); | ||
3565 | return FAILURE; | ||
3566 | } | ||
3567 | valr = value[i]; | ||
3568 | } else { | ||
3569 | valr = readq(&bar0->swapper_ctrl); | ||
3570 | } | ||
3571 | |||
3572 | valt = 0x0123456789ABCDEFULL; | ||
3573 | writeq(valt, &bar0->xmsi_address); | ||
3574 | val64 = readq(&bar0->xmsi_address); | ||
3575 | |||
3576 | if (val64 != valt) { | ||
3577 | int i = 0; | ||
3578 | static const u64 value[] = { | ||
3579 | 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ | ||
3580 | 0x0081810000818100ULL, /* FE=1, SE=0 */ | ||
3581 | 0x0042420000424200ULL, /* FE=0, SE=1 */ | ||
3582 | 0 /* FE=0, SE=0 */ | ||
3583 | }; | ||
3584 | |||
3585 | while (i < 4) { | ||
3586 | writeq((value[i] | valr), &bar0->swapper_ctrl); | ||
3587 | writeq(valt, &bar0->xmsi_address); | ||
3588 | val64 = readq(&bar0->xmsi_address); | ||
3589 | if (val64 == valt) | ||
3590 | break; | ||
3591 | i++; | ||
3592 | } | ||
3593 | if (i == 4) { | ||
3594 | unsigned long long x = val64; | ||
3595 | DBG_PRINT(ERR_DBG, | ||
3596 | "Write failed, Xmsi_addr reads:0x%llx\n", x); | ||
3597 | return FAILURE; | ||
3598 | } | ||
3599 | } | ||
3600 | val64 = readq(&bar0->swapper_ctrl); | ||
3601 | val64 &= 0xFFFF000000000000ULL; | ||
3602 | |||
3603 | #ifdef __BIG_ENDIAN | ||
3604 | /* | ||
3605 | * The device by default set to a big endian format, so a | ||
3606 | * big endian driver need not set anything. | ||
3607 | */ | ||
3608 | val64 |= (SWAPPER_CTRL_TXP_FE | | ||
3609 | SWAPPER_CTRL_TXP_SE | | ||
3610 | SWAPPER_CTRL_TXD_R_FE | | ||
3611 | SWAPPER_CTRL_TXD_W_FE | | ||
3612 | SWAPPER_CTRL_TXF_R_FE | | ||
3613 | SWAPPER_CTRL_RXD_R_FE | | ||
3614 | SWAPPER_CTRL_RXD_W_FE | | ||
3615 | SWAPPER_CTRL_RXF_W_FE | | ||
3616 | SWAPPER_CTRL_XMSI_FE | | ||
3617 | SWAPPER_CTRL_STATS_FE | | ||
3618 | SWAPPER_CTRL_STATS_SE); | ||
3619 | if (sp->config.intr_type == INTA) | ||
3620 | val64 |= SWAPPER_CTRL_XMSI_SE; | ||
3621 | writeq(val64, &bar0->swapper_ctrl); | ||
3622 | #else | ||
3623 | /* | ||
3624 | * Initially we enable all bits to make it accessible by the | ||
3625 | * driver, then we selectively enable only those bits that | ||
3626 | * we want to set. | ||
3627 | */ | ||
3628 | val64 |= (SWAPPER_CTRL_TXP_FE | | ||
3629 | SWAPPER_CTRL_TXP_SE | | ||
3630 | SWAPPER_CTRL_TXD_R_FE | | ||
3631 | SWAPPER_CTRL_TXD_R_SE | | ||
3632 | SWAPPER_CTRL_TXD_W_FE | | ||
3633 | SWAPPER_CTRL_TXD_W_SE | | ||
3634 | SWAPPER_CTRL_TXF_R_FE | | ||
3635 | SWAPPER_CTRL_RXD_R_FE | | ||
3636 | SWAPPER_CTRL_RXD_R_SE | | ||
3637 | SWAPPER_CTRL_RXD_W_FE | | ||
3638 | SWAPPER_CTRL_RXD_W_SE | | ||
3639 | SWAPPER_CTRL_RXF_W_FE | | ||
3640 | SWAPPER_CTRL_XMSI_FE | | ||
3641 | SWAPPER_CTRL_STATS_FE | | ||
3642 | SWAPPER_CTRL_STATS_SE); | ||
3643 | if (sp->config.intr_type == INTA) | ||
3644 | val64 |= SWAPPER_CTRL_XMSI_SE; | ||
3645 | writeq(val64, &bar0->swapper_ctrl); | ||
3646 | #endif | ||
3647 | val64 = readq(&bar0->swapper_ctrl); | ||
3648 | |||
3649 | /* | ||
3650 | * Verifying if endian settings are accurate by reading a | ||
3651 | * feedback register. | ||
3652 | */ | ||
3653 | val64 = readq(&bar0->pif_rd_swapper_fb); | ||
3654 | if (val64 != 0x0123456789ABCDEFULL) { | ||
3655 | /* Endian settings are incorrect, calls for another dekko. */ | ||
3656 | DBG_PRINT(ERR_DBG, | ||
3657 | "%s: Endian settings are wrong, feedback read %llx\n", | ||
3658 | dev->name, (unsigned long long)val64); | ||
3659 | return FAILURE; | ||
3660 | } | ||
3661 | |||
3662 | return SUCCESS; | ||
3663 | } | ||
3664 | |||
3665 | static int wait_for_msix_trans(struct s2io_nic *nic, int i) | ||
3666 | { | ||
3667 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
3668 | u64 val64; | ||
3669 | int ret = 0, cnt = 0; | ||
3670 | |||
3671 | do { | ||
3672 | val64 = readq(&bar0->xmsi_access); | ||
3673 | if (!(val64 & s2BIT(15))) | ||
3674 | break; | ||
3675 | mdelay(1); | ||
3676 | cnt++; | ||
3677 | } while (cnt < 5); | ||
3678 | if (cnt == 5) { | ||
3679 | DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); | ||
3680 | ret = 1; | ||
3681 | } | ||
3682 | |||
3683 | return ret; | ||
3684 | } | ||
3685 | |||
3686 | static void restore_xmsi_data(struct s2io_nic *nic) | ||
3687 | { | ||
3688 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
3689 | u64 val64; | ||
3690 | int i, msix_index; | ||
3691 | |||
3692 | if (nic->device_type == XFRAME_I_DEVICE) | ||
3693 | return; | ||
3694 | |||
3695 | for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { | ||
3696 | msix_index = (i) ? ((i-1) * 8 + 1) : 0; | ||
3697 | writeq(nic->msix_info[i].addr, &bar0->xmsi_address); | ||
3698 | writeq(nic->msix_info[i].data, &bar0->xmsi_data); | ||
3699 | val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); | ||
3700 | writeq(val64, &bar0->xmsi_access); | ||
3701 | if (wait_for_msix_trans(nic, msix_index)) { | ||
3702 | DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", | ||
3703 | __func__, msix_index); | ||
3704 | continue; | ||
3705 | } | ||
3706 | } | ||
3707 | } | ||
3708 | |||
3709 | static void store_xmsi_data(struct s2io_nic *nic) | ||
3710 | { | ||
3711 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
3712 | u64 val64, addr, data; | ||
3713 | int i, msix_index; | ||
3714 | |||
3715 | if (nic->device_type == XFRAME_I_DEVICE) | ||
3716 | return; | ||
3717 | |||
3718 | /* Store and display */ | ||
3719 | for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { | ||
3720 | msix_index = (i) ? ((i-1) * 8 + 1) : 0; | ||
3721 | val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); | ||
3722 | writeq(val64, &bar0->xmsi_access); | ||
3723 | if (wait_for_msix_trans(nic, msix_index)) { | ||
3724 | DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", | ||
3725 | __func__, msix_index); | ||
3726 | continue; | ||
3727 | } | ||
3728 | addr = readq(&bar0->xmsi_address); | ||
3729 | data = readq(&bar0->xmsi_data); | ||
3730 | if (addr && data) { | ||
3731 | nic->msix_info[i].addr = addr; | ||
3732 | nic->msix_info[i].data = data; | ||
3733 | } | ||
3734 | } | ||
3735 | } | ||
3736 | |||
3737 | static int s2io_enable_msi_x(struct s2io_nic *nic) | ||
3738 | { | ||
3739 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
3740 | u64 rx_mat; | ||
3741 | u16 msi_control; /* Temp variable */ | ||
3742 | int ret, i, j, msix_indx = 1; | ||
3743 | int size; | ||
3744 | struct stat_block *stats = nic->mac_control.stats_info; | ||
3745 | struct swStat *swstats = &stats->sw_stat; | ||
3746 | |||
3747 | size = nic->num_entries * sizeof(struct msix_entry); | ||
3748 | nic->entries = kzalloc(size, GFP_KERNEL); | ||
3749 | if (!nic->entries) { | ||
3750 | DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", | ||
3751 | __func__); | ||
3752 | swstats->mem_alloc_fail_cnt++; | ||
3753 | return -ENOMEM; | ||
3754 | } | ||
3755 | swstats->mem_allocated += size; | ||
3756 | |||
3757 | size = nic->num_entries * sizeof(struct s2io_msix_entry); | ||
3758 | nic->s2io_entries = kzalloc(size, GFP_KERNEL); | ||
3759 | if (!nic->s2io_entries) { | ||
3760 | DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", | ||
3761 | __func__); | ||
3762 | swstats->mem_alloc_fail_cnt++; | ||
3763 | kfree(nic->entries); | ||
3764 | swstats->mem_freed | ||
3765 | += (nic->num_entries * sizeof(struct msix_entry)); | ||
3766 | return -ENOMEM; | ||
3767 | } | ||
3768 | swstats->mem_allocated += size; | ||
3769 | |||
3770 | nic->entries[0].entry = 0; | ||
3771 | nic->s2io_entries[0].entry = 0; | ||
3772 | nic->s2io_entries[0].in_use = MSIX_FLG; | ||
3773 | nic->s2io_entries[0].type = MSIX_ALARM_TYPE; | ||
3774 | nic->s2io_entries[0].arg = &nic->mac_control.fifos; | ||
3775 | |||
3776 | for (i = 1; i < nic->num_entries; i++) { | ||
3777 | nic->entries[i].entry = ((i - 1) * 8) + 1; | ||
3778 | nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; | ||
3779 | nic->s2io_entries[i].arg = NULL; | ||
3780 | nic->s2io_entries[i].in_use = 0; | ||
3781 | } | ||
3782 | |||
3783 | rx_mat = readq(&bar0->rx_mat); | ||
3784 | for (j = 0; j < nic->config.rx_ring_num; j++) { | ||
3785 | rx_mat |= RX_MAT_SET(j, msix_indx); | ||
3786 | nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; | ||
3787 | nic->s2io_entries[j+1].type = MSIX_RING_TYPE; | ||
3788 | nic->s2io_entries[j+1].in_use = MSIX_FLG; | ||
3789 | msix_indx += 8; | ||
3790 | } | ||
3791 | writeq(rx_mat, &bar0->rx_mat); | ||
3792 | readq(&bar0->rx_mat); | ||
3793 | |||
3794 | ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries); | ||
3795 | /* We fail init if error or we get less vectors than min required */ | ||
3796 | if (ret) { | ||
3797 | DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); | ||
3798 | kfree(nic->entries); | ||
3799 | swstats->mem_freed += nic->num_entries * | ||
3800 | sizeof(struct msix_entry); | ||
3801 | kfree(nic->s2io_entries); | ||
3802 | swstats->mem_freed += nic->num_entries * | ||
3803 | sizeof(struct s2io_msix_entry); | ||
3804 | nic->entries = NULL; | ||
3805 | nic->s2io_entries = NULL; | ||
3806 | return -ENOMEM; | ||
3807 | } | ||
3808 | |||
3809 | /* | ||
3810 | * To enable MSI-X, MSI also needs to be enabled, due to a bug | ||
3811 | * in the herc NIC. (Temp change, needs to be removed later) | ||
3812 | */ | ||
3813 | pci_read_config_word(nic->pdev, 0x42, &msi_control); | ||
3814 | msi_control |= 0x1; /* Enable MSI */ | ||
3815 | pci_write_config_word(nic->pdev, 0x42, msi_control); | ||
3816 | |||
3817 | return 0; | ||
3818 | } | ||
3819 | |||
3820 | /* Handle software interrupt used during MSI(X) test */ | ||
3821 | static irqreturn_t s2io_test_intr(int irq, void *dev_id) | ||
3822 | { | ||
3823 | struct s2io_nic *sp = dev_id; | ||
3824 | |||
3825 | sp->msi_detected = 1; | ||
3826 | wake_up(&sp->msi_wait); | ||
3827 | |||
3828 | return IRQ_HANDLED; | ||
3829 | } | ||
3830 | |||
3831 | /* Test interrupt path by forcing a a software IRQ */ | ||
3832 | static int s2io_test_msi(struct s2io_nic *sp) | ||
3833 | { | ||
3834 | struct pci_dev *pdev = sp->pdev; | ||
3835 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
3836 | int err; | ||
3837 | u64 val64, saved64; | ||
3838 | |||
3839 | err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, | ||
3840 | sp->name, sp); | ||
3841 | if (err) { | ||
3842 | DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", | ||
3843 | sp->dev->name, pci_name(pdev), pdev->irq); | ||
3844 | return err; | ||
3845 | } | ||
3846 | |||
3847 | init_waitqueue_head(&sp->msi_wait); | ||
3848 | sp->msi_detected = 0; | ||
3849 | |||
3850 | saved64 = val64 = readq(&bar0->scheduled_int_ctrl); | ||
3851 | val64 |= SCHED_INT_CTRL_ONE_SHOT; | ||
3852 | val64 |= SCHED_INT_CTRL_TIMER_EN; | ||
3853 | val64 |= SCHED_INT_CTRL_INT2MSI(1); | ||
3854 | writeq(val64, &bar0->scheduled_int_ctrl); | ||
3855 | |||
3856 | wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); | ||
3857 | |||
3858 | if (!sp->msi_detected) { | ||
3859 | /* MSI(X) test failed, go back to INTx mode */ | ||
3860 | DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " | ||
3861 | "using MSI(X) during test\n", | ||
3862 | sp->dev->name, pci_name(pdev)); | ||
3863 | |||
3864 | err = -EOPNOTSUPP; | ||
3865 | } | ||
3866 | |||
3867 | free_irq(sp->entries[1].vector, sp); | ||
3868 | |||
3869 | writeq(saved64, &bar0->scheduled_int_ctrl); | ||
3870 | |||
3871 | return err; | ||
3872 | } | ||
3873 | |||
3874 | static void remove_msix_isr(struct s2io_nic *sp) | ||
3875 | { | ||
3876 | int i; | ||
3877 | u16 msi_control; | ||
3878 | |||
3879 | for (i = 0; i < sp->num_entries; i++) { | ||
3880 | if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { | ||
3881 | int vector = sp->entries[i].vector; | ||
3882 | void *arg = sp->s2io_entries[i].arg; | ||
3883 | free_irq(vector, arg); | ||
3884 | } | ||
3885 | } | ||
3886 | |||
3887 | kfree(sp->entries); | ||
3888 | kfree(sp->s2io_entries); | ||
3889 | sp->entries = NULL; | ||
3890 | sp->s2io_entries = NULL; | ||
3891 | |||
3892 | pci_read_config_word(sp->pdev, 0x42, &msi_control); | ||
3893 | msi_control &= 0xFFFE; /* Disable MSI */ | ||
3894 | pci_write_config_word(sp->pdev, 0x42, msi_control); | ||
3895 | |||
3896 | pci_disable_msix(sp->pdev); | ||
3897 | } | ||
3898 | |||
3899 | static void remove_inta_isr(struct s2io_nic *sp) | ||
3900 | { | ||
3901 | struct net_device *dev = sp->dev; | ||
3902 | |||
3903 | free_irq(sp->pdev->irq, dev); | ||
3904 | } | ||
3905 | |||
3906 | /* ********************************************************* * | ||
3907 | * Functions defined below concern the OS part of the driver * | ||
3908 | * ********************************************************* */ | ||
3909 | |||
3910 | /** | ||
3911 | * s2io_open - open entry point of the driver | ||
3912 | * @dev : pointer to the device structure. | ||
3913 | * Description: | ||
3914 | * This function is the open entry point of the driver. It mainly calls a | ||
3915 | * function to allocate Rx buffers and inserts them into the buffer | ||
3916 | * descriptors and then enables the Rx part of the NIC. | ||
3917 | * Return value: | ||
3918 | * 0 on success and an appropriate (-)ve integer as defined in errno.h | ||
3919 | * file on failure. | ||
3920 | */ | ||
3921 | |||
3922 | static int s2io_open(struct net_device *dev) | ||
3923 | { | ||
3924 | struct s2io_nic *sp = netdev_priv(dev); | ||
3925 | struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; | ||
3926 | int err = 0; | ||
3927 | |||
3928 | /* | ||
3929 | * Make sure you have link off by default every time | ||
3930 | * Nic is initialized | ||
3931 | */ | ||
3932 | netif_carrier_off(dev); | ||
3933 | sp->last_link_state = 0; | ||
3934 | |||
3935 | /* Initialize H/W and enable interrupts */ | ||
3936 | err = s2io_card_up(sp); | ||
3937 | if (err) { | ||
3938 | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", | ||
3939 | dev->name); | ||
3940 | goto hw_init_failed; | ||
3941 | } | ||
3942 | |||
3943 | if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { | ||
3944 | DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); | ||
3945 | s2io_card_down(sp); | ||
3946 | err = -ENODEV; | ||
3947 | goto hw_init_failed; | ||
3948 | } | ||
3949 | s2io_start_all_tx_queue(sp); | ||
3950 | return 0; | ||
3951 | |||
3952 | hw_init_failed: | ||
3953 | if (sp->config.intr_type == MSI_X) { | ||
3954 | if (sp->entries) { | ||
3955 | kfree(sp->entries); | ||
3956 | swstats->mem_freed += sp->num_entries * | ||
3957 | sizeof(struct msix_entry); | ||
3958 | } | ||
3959 | if (sp->s2io_entries) { | ||
3960 | kfree(sp->s2io_entries); | ||
3961 | swstats->mem_freed += sp->num_entries * | ||
3962 | sizeof(struct s2io_msix_entry); | ||
3963 | } | ||
3964 | } | ||
3965 | return err; | ||
3966 | } | ||
3967 | |||
3968 | /** | ||
3969 | * s2io_close -close entry point of the driver | ||
3970 | * @dev : device pointer. | ||
3971 | * Description: | ||
3972 | * This is the stop entry point of the driver. It needs to undo exactly | ||
3973 | * whatever was done by the open entry point,thus it's usually referred to | ||
3974 | * as the close function.Among other things this function mainly stops the | ||
3975 | * Rx side of the NIC and frees all the Rx buffers in the Rx rings. | ||
3976 | * Return value: | ||
3977 | * 0 on success and an appropriate (-)ve integer as defined in errno.h | ||
3978 | * file on failure. | ||
3979 | */ | ||
3980 | |||
3981 | static int s2io_close(struct net_device *dev) | ||
3982 | { | ||
3983 | struct s2io_nic *sp = netdev_priv(dev); | ||
3984 | struct config_param *config = &sp->config; | ||
3985 | u64 tmp64; | ||
3986 | int offset; | ||
3987 | |||
3988 | /* Return if the device is already closed * | ||
3989 | * Can happen when s2io_card_up failed in change_mtu * | ||
3990 | */ | ||
3991 | if (!is_s2io_card_up(sp)) | ||
3992 | return 0; | ||
3993 | |||
3994 | s2io_stop_all_tx_queue(sp); | ||
3995 | /* delete all populated mac entries */ | ||
3996 | for (offset = 1; offset < config->max_mc_addr; offset++) { | ||
3997 | tmp64 = do_s2io_read_unicast_mc(sp, offset); | ||
3998 | if (tmp64 != S2IO_DISABLE_MAC_ENTRY) | ||
3999 | do_s2io_delete_unicast_mc(sp, tmp64); | ||
4000 | } | ||
4001 | |||
4002 | s2io_card_down(sp); | ||
4003 | |||
4004 | return 0; | ||
4005 | } | ||
4006 | |||
4007 | /** | ||
4008 | * s2io_xmit - Tx entry point of te driver | ||
4009 | * @skb : the socket buffer containing the Tx data. | ||
4010 | * @dev : device pointer. | ||
4011 | * Description : | ||
4012 | * This function is the Tx entry point of the driver. S2IO NIC supports | ||
4013 | * certain protocol assist features on Tx side, namely CSO, S/G, LSO. | ||
4014 | * NOTE: when device can't queue the pkt,just the trans_start variable will | ||
4015 | * not be upadted. | ||
4016 | * Return value: | ||
4017 | * 0 on success & 1 on failure. | ||
4018 | */ | ||
4019 | |||
4020 | static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) | ||
4021 | { | ||
4022 | struct s2io_nic *sp = netdev_priv(dev); | ||
4023 | u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; | ||
4024 | register u64 val64; | ||
4025 | struct TxD *txdp; | ||
4026 | struct TxFIFO_element __iomem *tx_fifo; | ||
4027 | unsigned long flags = 0; | ||
4028 | u16 vlan_tag = 0; | ||
4029 | struct fifo_info *fifo = NULL; | ||
4030 | int do_spin_lock = 1; | ||
4031 | int offload_type; | ||
4032 | int enable_per_list_interrupt = 0; | ||
4033 | struct config_param *config = &sp->config; | ||
4034 | struct mac_info *mac_control = &sp->mac_control; | ||
4035 | struct stat_block *stats = mac_control->stats_info; | ||
4036 | struct swStat *swstats = &stats->sw_stat; | ||
4037 | |||
4038 | DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); | ||
4039 | |||
4040 | if (unlikely(skb->len <= 0)) { | ||
4041 | DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); | ||
4042 | dev_kfree_skb_any(skb); | ||
4043 | return NETDEV_TX_OK; | ||
4044 | } | ||
4045 | |||
4046 | if (!is_s2io_card_up(sp)) { | ||
4047 | DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", | ||
4048 | dev->name); | ||
4049 | dev_kfree_skb(skb); | ||
4050 | return NETDEV_TX_OK; | ||
4051 | } | ||
4052 | |||
4053 | queue = 0; | ||
4054 | if (vlan_tx_tag_present(skb)) | ||
4055 | vlan_tag = vlan_tx_tag_get(skb); | ||
4056 | if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { | ||
4057 | if (skb->protocol == htons(ETH_P_IP)) { | ||
4058 | struct iphdr *ip; | ||
4059 | struct tcphdr *th; | ||
4060 | ip = ip_hdr(skb); | ||
4061 | |||
4062 | if (!ip_is_fragment(ip)) { | ||
4063 | th = (struct tcphdr *)(((unsigned char *)ip) + | ||
4064 | ip->ihl*4); | ||
4065 | |||
4066 | if (ip->protocol == IPPROTO_TCP) { | ||
4067 | queue_len = sp->total_tcp_fifos; | ||
4068 | queue = (ntohs(th->source) + | ||
4069 | ntohs(th->dest)) & | ||
4070 | sp->fifo_selector[queue_len - 1]; | ||
4071 | if (queue >= queue_len) | ||
4072 | queue = queue_len - 1; | ||
4073 | } else if (ip->protocol == IPPROTO_UDP) { | ||
4074 | queue_len = sp->total_udp_fifos; | ||
4075 | queue = (ntohs(th->source) + | ||
4076 | ntohs(th->dest)) & | ||
4077 | sp->fifo_selector[queue_len - 1]; | ||
4078 | if (queue >= queue_len) | ||
4079 | queue = queue_len - 1; | ||
4080 | queue += sp->udp_fifo_idx; | ||
4081 | if (skb->len > 1024) | ||
4082 | enable_per_list_interrupt = 1; | ||
4083 | do_spin_lock = 0; | ||
4084 | } | ||
4085 | } | ||
4086 | } | ||
4087 | } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) | ||
4088 | /* get fifo number based on skb->priority value */ | ||
4089 | queue = config->fifo_mapping | ||
4090 | [skb->priority & (MAX_TX_FIFOS - 1)]; | ||
4091 | fifo = &mac_control->fifos[queue]; | ||
4092 | |||
4093 | if (do_spin_lock) | ||
4094 | spin_lock_irqsave(&fifo->tx_lock, flags); | ||
4095 | else { | ||
4096 | if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags))) | ||
4097 | return NETDEV_TX_LOCKED; | ||
4098 | } | ||
4099 | |||
4100 | if (sp->config.multiq) { | ||
4101 | if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { | ||
4102 | spin_unlock_irqrestore(&fifo->tx_lock, flags); | ||
4103 | return NETDEV_TX_BUSY; | ||
4104 | } | ||
4105 | } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { | ||
4106 | if (netif_queue_stopped(dev)) { | ||
4107 | spin_unlock_irqrestore(&fifo->tx_lock, flags); | ||
4108 | return NETDEV_TX_BUSY; | ||
4109 | } | ||
4110 | } | ||
4111 | |||
4112 | put_off = (u16)fifo->tx_curr_put_info.offset; | ||
4113 | get_off = (u16)fifo->tx_curr_get_info.offset; | ||
4114 | txdp = fifo->list_info[put_off].list_virt_addr; | ||
4115 | |||
4116 | queue_len = fifo->tx_curr_put_info.fifo_len + 1; | ||
4117 | /* Avoid "put" pointer going beyond "get" pointer */ | ||
4118 | if (txdp->Host_Control || | ||
4119 | ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { | ||
4120 | DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); | ||
4121 | s2io_stop_tx_queue(sp, fifo->fifo_no); | ||
4122 | dev_kfree_skb(skb); | ||
4123 | spin_unlock_irqrestore(&fifo->tx_lock, flags); | ||
4124 | return NETDEV_TX_OK; | ||
4125 | } | ||
4126 | |||
4127 | offload_type = s2io_offload_type(skb); | ||
4128 | if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { | ||
4129 | txdp->Control_1 |= TXD_TCP_LSO_EN; | ||
4130 | txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); | ||
4131 | } | ||
4132 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
4133 | txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | | ||
4134 | TXD_TX_CKO_TCP_EN | | ||
4135 | TXD_TX_CKO_UDP_EN); | ||
4136 | } | ||
4137 | txdp->Control_1 |= TXD_GATHER_CODE_FIRST; | ||
4138 | txdp->Control_1 |= TXD_LIST_OWN_XENA; | ||
4139 | txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); | ||
4140 | if (enable_per_list_interrupt) | ||
4141 | if (put_off & (queue_len >> 5)) | ||
4142 | txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; | ||
4143 | if (vlan_tag) { | ||
4144 | txdp->Control_2 |= TXD_VLAN_ENABLE; | ||
4145 | txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); | ||
4146 | } | ||
4147 | |||
4148 | frg_len = skb_headlen(skb); | ||
4149 | if (offload_type == SKB_GSO_UDP) { | ||
4150 | int ufo_size; | ||
4151 | |||
4152 | ufo_size = s2io_udp_mss(skb); | ||
4153 | ufo_size &= ~7; | ||
4154 | txdp->Control_1 |= TXD_UFO_EN; | ||
4155 | txdp->Control_1 |= TXD_UFO_MSS(ufo_size); | ||
4156 | txdp->Control_1 |= TXD_BUFFER0_SIZE(8); | ||
4157 | #ifdef __BIG_ENDIAN | ||
4158 | /* both variants do cpu_to_be64(be32_to_cpu(...)) */ | ||
4159 | fifo->ufo_in_band_v[put_off] = | ||
4160 | (__force u64)skb_shinfo(skb)->ip6_frag_id; | ||
4161 | #else | ||
4162 | fifo->ufo_in_band_v[put_off] = | ||
4163 | (__force u64)skb_shinfo(skb)->ip6_frag_id << 32; | ||
4164 | #endif | ||
4165 | txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v; | ||
4166 | txdp->Buffer_Pointer = pci_map_single(sp->pdev, | ||
4167 | fifo->ufo_in_band_v, | ||
4168 | sizeof(u64), | ||
4169 | PCI_DMA_TODEVICE); | ||
4170 | if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) | ||
4171 | goto pci_map_failed; | ||
4172 | txdp++; | ||
4173 | } | ||
4174 | |||
4175 | txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data, | ||
4176 | frg_len, PCI_DMA_TODEVICE); | ||
4177 | if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) | ||
4178 | goto pci_map_failed; | ||
4179 | |||
4180 | txdp->Host_Control = (unsigned long)skb; | ||
4181 | txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); | ||
4182 | if (offload_type == SKB_GSO_UDP) | ||
4183 | txdp->Control_1 |= TXD_UFO_EN; | ||
4184 | |||
4185 | frg_cnt = skb_shinfo(skb)->nr_frags; | ||
4186 | /* For fragmented SKB. */ | ||
4187 | for (i = 0; i < frg_cnt; i++) { | ||
4188 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
4189 | /* A '0' length fragment will be ignored */ | ||
4190 | if (!frag->size) | ||
4191 | continue; | ||
4192 | txdp++; | ||
4193 | txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page, | ||
4194 | frag->page_offset, | ||
4195 | frag->size, | ||
4196 | PCI_DMA_TODEVICE); | ||
4197 | txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size); | ||
4198 | if (offload_type == SKB_GSO_UDP) | ||
4199 | txdp->Control_1 |= TXD_UFO_EN; | ||
4200 | } | ||
4201 | txdp->Control_1 |= TXD_GATHER_CODE_LAST; | ||
4202 | |||
4203 | if (offload_type == SKB_GSO_UDP) | ||
4204 | frg_cnt++; /* as Txd0 was used for inband header */ | ||
4205 | |||
4206 | tx_fifo = mac_control->tx_FIFO_start[queue]; | ||
4207 | val64 = fifo->list_info[put_off].list_phy_addr; | ||
4208 | writeq(val64, &tx_fifo->TxDL_Pointer); | ||
4209 | |||
4210 | val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | | ||
4211 | TX_FIFO_LAST_LIST); | ||
4212 | if (offload_type) | ||
4213 | val64 |= TX_FIFO_SPECIAL_FUNC; | ||
4214 | |||
4215 | writeq(val64, &tx_fifo->List_Control); | ||
4216 | |||
4217 | mmiowb(); | ||
4218 | |||
4219 | put_off++; | ||
4220 | if (put_off == fifo->tx_curr_put_info.fifo_len + 1) | ||
4221 | put_off = 0; | ||
4222 | fifo->tx_curr_put_info.offset = put_off; | ||
4223 | |||
4224 | /* Avoid "put" pointer going beyond "get" pointer */ | ||
4225 | if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { | ||
4226 | swstats->fifo_full_cnt++; | ||
4227 | DBG_PRINT(TX_DBG, | ||
4228 | "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", | ||
4229 | put_off, get_off); | ||
4230 | s2io_stop_tx_queue(sp, fifo->fifo_no); | ||
4231 | } | ||
4232 | swstats->mem_allocated += skb->truesize; | ||
4233 | spin_unlock_irqrestore(&fifo->tx_lock, flags); | ||
4234 | |||
4235 | if (sp->config.intr_type == MSI_X) | ||
4236 | tx_intr_handler(fifo); | ||
4237 | |||
4238 | return NETDEV_TX_OK; | ||
4239 | |||
4240 | pci_map_failed: | ||
4241 | swstats->pci_map_fail_cnt++; | ||
4242 | s2io_stop_tx_queue(sp, fifo->fifo_no); | ||
4243 | swstats->mem_freed += skb->truesize; | ||
4244 | dev_kfree_skb(skb); | ||
4245 | spin_unlock_irqrestore(&fifo->tx_lock, flags); | ||
4246 | return NETDEV_TX_OK; | ||
4247 | } | ||
4248 | |||
4249 | static void | ||
4250 | s2io_alarm_handle(unsigned long data) | ||
4251 | { | ||
4252 | struct s2io_nic *sp = (struct s2io_nic *)data; | ||
4253 | struct net_device *dev = sp->dev; | ||
4254 | |||
4255 | s2io_handle_errors(dev); | ||
4256 | mod_timer(&sp->alarm_timer, jiffies + HZ / 2); | ||
4257 | } | ||
4258 | |||
4259 | static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) | ||
4260 | { | ||
4261 | struct ring_info *ring = (struct ring_info *)dev_id; | ||
4262 | struct s2io_nic *sp = ring->nic; | ||
4263 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
4264 | |||
4265 | if (unlikely(!is_s2io_card_up(sp))) | ||
4266 | return IRQ_HANDLED; | ||
4267 | |||
4268 | if (sp->config.napi) { | ||
4269 | u8 __iomem *addr = NULL; | ||
4270 | u8 val8 = 0; | ||
4271 | |||
4272 | addr = (u8 __iomem *)&bar0->xmsi_mask_reg; | ||
4273 | addr += (7 - ring->ring_no); | ||
4274 | val8 = (ring->ring_no == 0) ? 0x7f : 0xff; | ||
4275 | writeb(val8, addr); | ||
4276 | val8 = readb(addr); | ||
4277 | napi_schedule(&ring->napi); | ||
4278 | } else { | ||
4279 | rx_intr_handler(ring, 0); | ||
4280 | s2io_chk_rx_buffers(sp, ring); | ||
4281 | } | ||
4282 | |||
4283 | return IRQ_HANDLED; | ||
4284 | } | ||
4285 | |||
4286 | static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) | ||
4287 | { | ||
4288 | int i; | ||
4289 | struct fifo_info *fifos = (struct fifo_info *)dev_id; | ||
4290 | struct s2io_nic *sp = fifos->nic; | ||
4291 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
4292 | struct config_param *config = &sp->config; | ||
4293 | u64 reason; | ||
4294 | |||
4295 | if (unlikely(!is_s2io_card_up(sp))) | ||
4296 | return IRQ_NONE; | ||
4297 | |||
4298 | reason = readq(&bar0->general_int_status); | ||
4299 | if (unlikely(reason == S2IO_MINUS_ONE)) | ||
4300 | /* Nothing much can be done. Get out */ | ||
4301 | return IRQ_HANDLED; | ||
4302 | |||
4303 | if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { | ||
4304 | writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); | ||
4305 | |||
4306 | if (reason & GEN_INTR_TXPIC) | ||
4307 | s2io_txpic_intr_handle(sp); | ||
4308 | |||
4309 | if (reason & GEN_INTR_TXTRAFFIC) | ||
4310 | writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); | ||
4311 | |||
4312 | for (i = 0; i < config->tx_fifo_num; i++) | ||
4313 | tx_intr_handler(&fifos[i]); | ||
4314 | |||
4315 | writeq(sp->general_int_mask, &bar0->general_int_mask); | ||
4316 | readl(&bar0->general_int_status); | ||
4317 | return IRQ_HANDLED; | ||
4318 | } | ||
4319 | /* The interrupt was not raised by us */ | ||
4320 | return IRQ_NONE; | ||
4321 | } | ||
4322 | |||
4323 | static void s2io_txpic_intr_handle(struct s2io_nic *sp) | ||
4324 | { | ||
4325 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
4326 | u64 val64; | ||
4327 | |||
4328 | val64 = readq(&bar0->pic_int_status); | ||
4329 | if (val64 & PIC_INT_GPIO) { | ||
4330 | val64 = readq(&bar0->gpio_int_reg); | ||
4331 | if ((val64 & GPIO_INT_REG_LINK_DOWN) && | ||
4332 | (val64 & GPIO_INT_REG_LINK_UP)) { | ||
4333 | /* | ||
4334 | * This is unstable state so clear both up/down | ||
4335 | * interrupt and adapter to re-evaluate the link state. | ||
4336 | */ | ||
4337 | val64 |= GPIO_INT_REG_LINK_DOWN; | ||
4338 | val64 |= GPIO_INT_REG_LINK_UP; | ||
4339 | writeq(val64, &bar0->gpio_int_reg); | ||
4340 | val64 = readq(&bar0->gpio_int_mask); | ||
4341 | val64 &= ~(GPIO_INT_MASK_LINK_UP | | ||
4342 | GPIO_INT_MASK_LINK_DOWN); | ||
4343 | writeq(val64, &bar0->gpio_int_mask); | ||
4344 | } else if (val64 & GPIO_INT_REG_LINK_UP) { | ||
4345 | val64 = readq(&bar0->adapter_status); | ||
4346 | /* Enable Adapter */ | ||
4347 | val64 = readq(&bar0->adapter_control); | ||
4348 | val64 |= ADAPTER_CNTL_EN; | ||
4349 | writeq(val64, &bar0->adapter_control); | ||
4350 | val64 |= ADAPTER_LED_ON; | ||
4351 | writeq(val64, &bar0->adapter_control); | ||
4352 | if (!sp->device_enabled_once) | ||
4353 | sp->device_enabled_once = 1; | ||
4354 | |||
4355 | s2io_link(sp, LINK_UP); | ||
4356 | /* | ||
4357 | * unmask link down interrupt and mask link-up | ||
4358 | * intr | ||
4359 | */ | ||
4360 | val64 = readq(&bar0->gpio_int_mask); | ||
4361 | val64 &= ~GPIO_INT_MASK_LINK_DOWN; | ||
4362 | val64 |= GPIO_INT_MASK_LINK_UP; | ||
4363 | writeq(val64, &bar0->gpio_int_mask); | ||
4364 | |||
4365 | } else if (val64 & GPIO_INT_REG_LINK_DOWN) { | ||
4366 | val64 = readq(&bar0->adapter_status); | ||
4367 | s2io_link(sp, LINK_DOWN); | ||
4368 | /* Link is down so unmaks link up interrupt */ | ||
4369 | val64 = readq(&bar0->gpio_int_mask); | ||
4370 | val64 &= ~GPIO_INT_MASK_LINK_UP; | ||
4371 | val64 |= GPIO_INT_MASK_LINK_DOWN; | ||
4372 | writeq(val64, &bar0->gpio_int_mask); | ||
4373 | |||
4374 | /* turn off LED */ | ||
4375 | val64 = readq(&bar0->adapter_control); | ||
4376 | val64 = val64 & (~ADAPTER_LED_ON); | ||
4377 | writeq(val64, &bar0->adapter_control); | ||
4378 | } | ||
4379 | } | ||
4380 | val64 = readq(&bar0->gpio_int_mask); | ||
4381 | } | ||
4382 | |||
4383 | /** | ||
4384 | * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter | ||
4385 | * @value: alarm bits | ||
4386 | * @addr: address value | ||
4387 | * @cnt: counter variable | ||
4388 | * Description: Check for alarm and increment the counter | ||
4389 | * Return Value: | ||
4390 | * 1 - if alarm bit set | ||
4391 | * 0 - if alarm bit is not set | ||
4392 | */ | ||
4393 | static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, | ||
4394 | unsigned long long *cnt) | ||
4395 | { | ||
4396 | u64 val64; | ||
4397 | val64 = readq(addr); | ||
4398 | if (val64 & value) { | ||
4399 | writeq(val64, addr); | ||
4400 | (*cnt)++; | ||
4401 | return 1; | ||
4402 | } | ||
4403 | return 0; | ||
4404 | |||
4405 | } | ||
4406 | |||
4407 | /** | ||
4408 | * s2io_handle_errors - Xframe error indication handler | ||
4409 | * @nic: device private variable | ||
4410 | * Description: Handle alarms such as loss of link, single or | ||
4411 | * double ECC errors, critical and serious errors. | ||
4412 | * Return Value: | ||
4413 | * NONE | ||
4414 | */ | ||
4415 | static void s2io_handle_errors(void *dev_id) | ||
4416 | { | ||
4417 | struct net_device *dev = (struct net_device *)dev_id; | ||
4418 | struct s2io_nic *sp = netdev_priv(dev); | ||
4419 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
4420 | u64 temp64 = 0, val64 = 0; | ||
4421 | int i = 0; | ||
4422 | |||
4423 | struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; | ||
4424 | struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; | ||
4425 | |||
4426 | if (!is_s2io_card_up(sp)) | ||
4427 | return; | ||
4428 | |||
4429 | if (pci_channel_offline(sp->pdev)) | ||
4430 | return; | ||
4431 | |||
4432 | memset(&sw_stat->ring_full_cnt, 0, | ||
4433 | sizeof(sw_stat->ring_full_cnt)); | ||
4434 | |||
4435 | /* Handling the XPAK counters update */ | ||
4436 | if (stats->xpak_timer_count < 72000) { | ||
4437 | /* waiting for an hour */ | ||
4438 | stats->xpak_timer_count++; | ||
4439 | } else { | ||
4440 | s2io_updt_xpak_counter(dev); | ||
4441 | /* reset the count to zero */ | ||
4442 | stats->xpak_timer_count = 0; | ||
4443 | } | ||
4444 | |||
4445 | /* Handling link status change error Intr */ | ||
4446 | if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { | ||
4447 | val64 = readq(&bar0->mac_rmac_err_reg); | ||
4448 | writeq(val64, &bar0->mac_rmac_err_reg); | ||
4449 | if (val64 & RMAC_LINK_STATE_CHANGE_INT) | ||
4450 | schedule_work(&sp->set_link_task); | ||
4451 | } | ||
4452 | |||
4453 | /* In case of a serious error, the device will be Reset. */ | ||
4454 | if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, | ||
4455 | &sw_stat->serious_err_cnt)) | ||
4456 | goto reset; | ||
4457 | |||
4458 | /* Check for data parity error */ | ||
4459 | if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, | ||
4460 | &sw_stat->parity_err_cnt)) | ||
4461 | goto reset; | ||
4462 | |||
4463 | /* Check for ring full counter */ | ||
4464 | if (sp->device_type == XFRAME_II_DEVICE) { | ||
4465 | val64 = readq(&bar0->ring_bump_counter1); | ||
4466 | for (i = 0; i < 4; i++) { | ||
4467 | temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); | ||
4468 | temp64 >>= 64 - ((i+1)*16); | ||
4469 | sw_stat->ring_full_cnt[i] += temp64; | ||
4470 | } | ||
4471 | |||
4472 | val64 = readq(&bar0->ring_bump_counter2); | ||
4473 | for (i = 0; i < 4; i++) { | ||
4474 | temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); | ||
4475 | temp64 >>= 64 - ((i+1)*16); | ||
4476 | sw_stat->ring_full_cnt[i+4] += temp64; | ||
4477 | } | ||
4478 | } | ||
4479 | |||
4480 | val64 = readq(&bar0->txdma_int_status); | ||
4481 | /*check for pfc_err*/ | ||
4482 | if (val64 & TXDMA_PFC_INT) { | ||
4483 | if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | | ||
4484 | PFC_MISC_0_ERR | PFC_MISC_1_ERR | | ||
4485 | PFC_PCIX_ERR, | ||
4486 | &bar0->pfc_err_reg, | ||
4487 | &sw_stat->pfc_err_cnt)) | ||
4488 | goto reset; | ||
4489 | do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, | ||
4490 | &bar0->pfc_err_reg, | ||
4491 | &sw_stat->pfc_err_cnt); | ||
4492 | } | ||
4493 | |||
4494 | /*check for tda_err*/ | ||
4495 | if (val64 & TXDMA_TDA_INT) { | ||
4496 | if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | | ||
4497 | TDA_SM0_ERR_ALARM | | ||
4498 | TDA_SM1_ERR_ALARM, | ||
4499 | &bar0->tda_err_reg, | ||
4500 | &sw_stat->tda_err_cnt)) | ||
4501 | goto reset; | ||
4502 | do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, | ||
4503 | &bar0->tda_err_reg, | ||
4504 | &sw_stat->tda_err_cnt); | ||
4505 | } | ||
4506 | /*check for pcc_err*/ | ||
4507 | if (val64 & TXDMA_PCC_INT) { | ||
4508 | if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | | ||
4509 | PCC_N_SERR | PCC_6_COF_OV_ERR | | ||
4510 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | | ||
4511 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | | ||
4512 | PCC_TXB_ECC_DB_ERR, | ||
4513 | &bar0->pcc_err_reg, | ||
4514 | &sw_stat->pcc_err_cnt)) | ||
4515 | goto reset; | ||
4516 | do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, | ||
4517 | &bar0->pcc_err_reg, | ||
4518 | &sw_stat->pcc_err_cnt); | ||
4519 | } | ||
4520 | |||
4521 | /*check for tti_err*/ | ||
4522 | if (val64 & TXDMA_TTI_INT) { | ||
4523 | if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, | ||
4524 | &bar0->tti_err_reg, | ||
4525 | &sw_stat->tti_err_cnt)) | ||
4526 | goto reset; | ||
4527 | do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, | ||
4528 | &bar0->tti_err_reg, | ||
4529 | &sw_stat->tti_err_cnt); | ||
4530 | } | ||
4531 | |||
4532 | /*check for lso_err*/ | ||
4533 | if (val64 & TXDMA_LSO_INT) { | ||
4534 | if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | | ||
4535 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, | ||
4536 | &bar0->lso_err_reg, | ||
4537 | &sw_stat->lso_err_cnt)) | ||
4538 | goto reset; | ||
4539 | do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, | ||
4540 | &bar0->lso_err_reg, | ||
4541 | &sw_stat->lso_err_cnt); | ||
4542 | } | ||
4543 | |||
4544 | /*check for tpa_err*/ | ||
4545 | if (val64 & TXDMA_TPA_INT) { | ||
4546 | if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, | ||
4547 | &bar0->tpa_err_reg, | ||
4548 | &sw_stat->tpa_err_cnt)) | ||
4549 | goto reset; | ||
4550 | do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, | ||
4551 | &bar0->tpa_err_reg, | ||
4552 | &sw_stat->tpa_err_cnt); | ||
4553 | } | ||
4554 | |||
4555 | /*check for sm_err*/ | ||
4556 | if (val64 & TXDMA_SM_INT) { | ||
4557 | if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, | ||
4558 | &bar0->sm_err_reg, | ||
4559 | &sw_stat->sm_err_cnt)) | ||
4560 | goto reset; | ||
4561 | } | ||
4562 | |||
4563 | val64 = readq(&bar0->mac_int_status); | ||
4564 | if (val64 & MAC_INT_STATUS_TMAC_INT) { | ||
4565 | if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, | ||
4566 | &bar0->mac_tmac_err_reg, | ||
4567 | &sw_stat->mac_tmac_err_cnt)) | ||
4568 | goto reset; | ||
4569 | do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | | ||
4570 | TMAC_DESC_ECC_SG_ERR | | ||
4571 | TMAC_DESC_ECC_DB_ERR, | ||
4572 | &bar0->mac_tmac_err_reg, | ||
4573 | &sw_stat->mac_tmac_err_cnt); | ||
4574 | } | ||
4575 | |||
4576 | val64 = readq(&bar0->xgxs_int_status); | ||
4577 | if (val64 & XGXS_INT_STATUS_TXGXS) { | ||
4578 | if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, | ||
4579 | &bar0->xgxs_txgxs_err_reg, | ||
4580 | &sw_stat->xgxs_txgxs_err_cnt)) | ||
4581 | goto reset; | ||
4582 | do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, | ||
4583 | &bar0->xgxs_txgxs_err_reg, | ||
4584 | &sw_stat->xgxs_txgxs_err_cnt); | ||
4585 | } | ||
4586 | |||
4587 | val64 = readq(&bar0->rxdma_int_status); | ||
4588 | if (val64 & RXDMA_INT_RC_INT_M) { | ||
4589 | if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | | ||
4590 | RC_FTC_ECC_DB_ERR | | ||
4591 | RC_PRCn_SM_ERR_ALARM | | ||
4592 | RC_FTC_SM_ERR_ALARM, | ||
4593 | &bar0->rc_err_reg, | ||
4594 | &sw_stat->rc_err_cnt)) | ||
4595 | goto reset; | ||
4596 | do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | | ||
4597 | RC_FTC_ECC_SG_ERR | | ||
4598 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, | ||
4599 | &sw_stat->rc_err_cnt); | ||
4600 | if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | | ||
4601 | PRC_PCI_AB_WR_Rn | | ||
4602 | PRC_PCI_AB_F_WR_Rn, | ||
4603 | &bar0->prc_pcix_err_reg, | ||
4604 | &sw_stat->prc_pcix_err_cnt)) | ||
4605 | goto reset; | ||
4606 | do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | | ||
4607 | PRC_PCI_DP_WR_Rn | | ||
4608 | PRC_PCI_DP_F_WR_Rn, | ||
4609 | &bar0->prc_pcix_err_reg, | ||
4610 | &sw_stat->prc_pcix_err_cnt); | ||
4611 | } | ||
4612 | |||
4613 | if (val64 & RXDMA_INT_RPA_INT_M) { | ||
4614 | if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, | ||
4615 | &bar0->rpa_err_reg, | ||
4616 | &sw_stat->rpa_err_cnt)) | ||
4617 | goto reset; | ||
4618 | do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, | ||
4619 | &bar0->rpa_err_reg, | ||
4620 | &sw_stat->rpa_err_cnt); | ||
4621 | } | ||
4622 | |||
4623 | if (val64 & RXDMA_INT_RDA_INT_M) { | ||
4624 | if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | | ||
4625 | RDA_FRM_ECC_DB_N_AERR | | ||
4626 | RDA_SM1_ERR_ALARM | | ||
4627 | RDA_SM0_ERR_ALARM | | ||
4628 | RDA_RXD_ECC_DB_SERR, | ||
4629 | &bar0->rda_err_reg, | ||
4630 | &sw_stat->rda_err_cnt)) | ||
4631 | goto reset; | ||
4632 | do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | | ||
4633 | RDA_FRM_ECC_SG_ERR | | ||
4634 | RDA_MISC_ERR | | ||
4635 | RDA_PCIX_ERR, | ||
4636 | &bar0->rda_err_reg, | ||
4637 | &sw_stat->rda_err_cnt); | ||
4638 | } | ||
4639 | |||
4640 | if (val64 & RXDMA_INT_RTI_INT_M) { | ||
4641 | if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, | ||
4642 | &bar0->rti_err_reg, | ||
4643 | &sw_stat->rti_err_cnt)) | ||
4644 | goto reset; | ||
4645 | do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, | ||
4646 | &bar0->rti_err_reg, | ||
4647 | &sw_stat->rti_err_cnt); | ||
4648 | } | ||
4649 | |||
4650 | val64 = readq(&bar0->mac_int_status); | ||
4651 | if (val64 & MAC_INT_STATUS_RMAC_INT) { | ||
4652 | if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, | ||
4653 | &bar0->mac_rmac_err_reg, | ||
4654 | &sw_stat->mac_rmac_err_cnt)) | ||
4655 | goto reset; | ||
4656 | do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | | ||
4657 | RMAC_SINGLE_ECC_ERR | | ||
4658 | RMAC_DOUBLE_ECC_ERR, | ||
4659 | &bar0->mac_rmac_err_reg, | ||
4660 | &sw_stat->mac_rmac_err_cnt); | ||
4661 | } | ||
4662 | |||
4663 | val64 = readq(&bar0->xgxs_int_status); | ||
4664 | if (val64 & XGXS_INT_STATUS_RXGXS) { | ||
4665 | if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, | ||
4666 | &bar0->xgxs_rxgxs_err_reg, | ||
4667 | &sw_stat->xgxs_rxgxs_err_cnt)) | ||
4668 | goto reset; | ||
4669 | } | ||
4670 | |||
4671 | val64 = readq(&bar0->mc_int_status); | ||
4672 | if (val64 & MC_INT_STATUS_MC_INT) { | ||
4673 | if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, | ||
4674 | &bar0->mc_err_reg, | ||
4675 | &sw_stat->mc_err_cnt)) | ||
4676 | goto reset; | ||
4677 | |||
4678 | /* Handling Ecc errors */ | ||
4679 | if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { | ||
4680 | writeq(val64, &bar0->mc_err_reg); | ||
4681 | if (val64 & MC_ERR_REG_ECC_ALL_DBL) { | ||
4682 | sw_stat->double_ecc_errs++; | ||
4683 | if (sp->device_type != XFRAME_II_DEVICE) { | ||
4684 | /* | ||
4685 | * Reset XframeI only if critical error | ||
4686 | */ | ||
4687 | if (val64 & | ||
4688 | (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | | ||
4689 | MC_ERR_REG_MIRI_ECC_DB_ERR_1)) | ||
4690 | goto reset; | ||
4691 | } | ||
4692 | } else | ||
4693 | sw_stat->single_ecc_errs++; | ||
4694 | } | ||
4695 | } | ||
4696 | return; | ||
4697 | |||
4698 | reset: | ||
4699 | s2io_stop_all_tx_queue(sp); | ||
4700 | schedule_work(&sp->rst_timer_task); | ||
4701 | sw_stat->soft_reset_cnt++; | ||
4702 | } | ||
4703 | |||
4704 | /** | ||
4705 | * s2io_isr - ISR handler of the device . | ||
4706 | * @irq: the irq of the device. | ||
4707 | * @dev_id: a void pointer to the dev structure of the NIC. | ||
4708 | * Description: This function is the ISR handler of the device. It | ||
4709 | * identifies the reason for the interrupt and calls the relevant | ||
4710 | * service routines. As a contongency measure, this ISR allocates the | ||
4711 | * recv buffers, if their numbers are below the panic value which is | ||
4712 | * presently set to 25% of the original number of rcv buffers allocated. | ||
4713 | * Return value: | ||
4714 | * IRQ_HANDLED: will be returned if IRQ was handled by this routine | ||
4715 | * IRQ_NONE: will be returned if interrupt is not from our device | ||
4716 | */ | ||
4717 | static irqreturn_t s2io_isr(int irq, void *dev_id) | ||
4718 | { | ||
4719 | struct net_device *dev = (struct net_device *)dev_id; | ||
4720 | struct s2io_nic *sp = netdev_priv(dev); | ||
4721 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
4722 | int i; | ||
4723 | u64 reason = 0; | ||
4724 | struct mac_info *mac_control; | ||
4725 | struct config_param *config; | ||
4726 | |||
4727 | /* Pretend we handled any irq's from a disconnected card */ | ||
4728 | if (pci_channel_offline(sp->pdev)) | ||
4729 | return IRQ_NONE; | ||
4730 | |||
4731 | if (!is_s2io_card_up(sp)) | ||
4732 | return IRQ_NONE; | ||
4733 | |||
4734 | config = &sp->config; | ||
4735 | mac_control = &sp->mac_control; | ||
4736 | |||
4737 | /* | ||
4738 | * Identify the cause for interrupt and call the appropriate | ||
4739 | * interrupt handler. Causes for the interrupt could be; | ||
4740 | * 1. Rx of packet. | ||
4741 | * 2. Tx complete. | ||
4742 | * 3. Link down. | ||
4743 | */ | ||
4744 | reason = readq(&bar0->general_int_status); | ||
4745 | |||
4746 | if (unlikely(reason == S2IO_MINUS_ONE)) | ||
4747 | return IRQ_HANDLED; /* Nothing much can be done. Get out */ | ||
4748 | |||
4749 | if (reason & | ||
4750 | (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { | ||
4751 | writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); | ||
4752 | |||
4753 | if (config->napi) { | ||
4754 | if (reason & GEN_INTR_RXTRAFFIC) { | ||
4755 | napi_schedule(&sp->napi); | ||
4756 | writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); | ||
4757 | writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); | ||
4758 | readl(&bar0->rx_traffic_int); | ||
4759 | } | ||
4760 | } else { | ||
4761 | /* | ||
4762 | * rx_traffic_int reg is an R1 register, writing all 1's | ||
4763 | * will ensure that the actual interrupt causing bit | ||
4764 | * get's cleared and hence a read can be avoided. | ||
4765 | */ | ||
4766 | if (reason & GEN_INTR_RXTRAFFIC) | ||
4767 | writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); | ||
4768 | |||
4769 | for (i = 0; i < config->rx_ring_num; i++) { | ||
4770 | struct ring_info *ring = &mac_control->rings[i]; | ||
4771 | |||
4772 | rx_intr_handler(ring, 0); | ||
4773 | } | ||
4774 | } | ||
4775 | |||
4776 | /* | ||
4777 | * tx_traffic_int reg is an R1 register, writing all 1's | ||
4778 | * will ensure that the actual interrupt causing bit get's | ||
4779 | * cleared and hence a read can be avoided. | ||
4780 | */ | ||
4781 | if (reason & GEN_INTR_TXTRAFFIC) | ||
4782 | writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); | ||
4783 | |||
4784 | for (i = 0; i < config->tx_fifo_num; i++) | ||
4785 | tx_intr_handler(&mac_control->fifos[i]); | ||
4786 | |||
4787 | if (reason & GEN_INTR_TXPIC) | ||
4788 | s2io_txpic_intr_handle(sp); | ||
4789 | |||
4790 | /* | ||
4791 | * Reallocate the buffers from the interrupt handler itself. | ||
4792 | */ | ||
4793 | if (!config->napi) { | ||
4794 | for (i = 0; i < config->rx_ring_num; i++) { | ||
4795 | struct ring_info *ring = &mac_control->rings[i]; | ||
4796 | |||
4797 | s2io_chk_rx_buffers(sp, ring); | ||
4798 | } | ||
4799 | } | ||
4800 | writeq(sp->general_int_mask, &bar0->general_int_mask); | ||
4801 | readl(&bar0->general_int_status); | ||
4802 | |||
4803 | return IRQ_HANDLED; | ||
4804 | |||
4805 | } else if (!reason) { | ||
4806 | /* The interrupt was not raised by us */ | ||
4807 | return IRQ_NONE; | ||
4808 | } | ||
4809 | |||
4810 | return IRQ_HANDLED; | ||
4811 | } | ||
4812 | |||
4813 | /** | ||
4814 | * s2io_updt_stats - | ||
4815 | */ | ||
4816 | static void s2io_updt_stats(struct s2io_nic *sp) | ||
4817 | { | ||
4818 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
4819 | u64 val64; | ||
4820 | int cnt = 0; | ||
4821 | |||
4822 | if (is_s2io_card_up(sp)) { | ||
4823 | /* Apprx 30us on a 133 MHz bus */ | ||
4824 | val64 = SET_UPDT_CLICKS(10) | | ||
4825 | STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; | ||
4826 | writeq(val64, &bar0->stat_cfg); | ||
4827 | do { | ||
4828 | udelay(100); | ||
4829 | val64 = readq(&bar0->stat_cfg); | ||
4830 | if (!(val64 & s2BIT(0))) | ||
4831 | break; | ||
4832 | cnt++; | ||
4833 | if (cnt == 5) | ||
4834 | break; /* Updt failed */ | ||
4835 | } while (1); | ||
4836 | } | ||
4837 | } | ||
4838 | |||
4839 | /** | ||
4840 | * s2io_get_stats - Updates the device statistics structure. | ||
4841 | * @dev : pointer to the device structure. | ||
4842 | * Description: | ||
4843 | * This function updates the device statistics structure in the s2io_nic | ||
4844 | * structure and returns a pointer to the same. | ||
4845 | * Return value: | ||
4846 | * pointer to the updated net_device_stats structure. | ||
4847 | */ | ||
4848 | static struct net_device_stats *s2io_get_stats(struct net_device *dev) | ||
4849 | { | ||
4850 | struct s2io_nic *sp = netdev_priv(dev); | ||
4851 | struct mac_info *mac_control = &sp->mac_control; | ||
4852 | struct stat_block *stats = mac_control->stats_info; | ||
4853 | u64 delta; | ||
4854 | |||
4855 | /* Configure Stats for immediate updt */ | ||
4856 | s2io_updt_stats(sp); | ||
4857 | |||
4858 | /* A device reset will cause the on-adapter statistics to be zero'ed. | ||
4859 | * This can be done while running by changing the MTU. To prevent the | ||
4860 | * system from having the stats zero'ed, the driver keeps a copy of the | ||
4861 | * last update to the system (which is also zero'ed on reset). This | ||
4862 | * enables the driver to accurately know the delta between the last | ||
4863 | * update and the current update. | ||
4864 | */ | ||
4865 | delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | | ||
4866 | le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; | ||
4867 | sp->stats.rx_packets += delta; | ||
4868 | dev->stats.rx_packets += delta; | ||
4869 | |||
4870 | delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | | ||
4871 | le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; | ||
4872 | sp->stats.tx_packets += delta; | ||
4873 | dev->stats.tx_packets += delta; | ||
4874 | |||
4875 | delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | | ||
4876 | le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; | ||
4877 | sp->stats.rx_bytes += delta; | ||
4878 | dev->stats.rx_bytes += delta; | ||
4879 | |||
4880 | delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | | ||
4881 | le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; | ||
4882 | sp->stats.tx_bytes += delta; | ||
4883 | dev->stats.tx_bytes += delta; | ||
4884 | |||
4885 | delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; | ||
4886 | sp->stats.rx_errors += delta; | ||
4887 | dev->stats.rx_errors += delta; | ||
4888 | |||
4889 | delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | | ||
4890 | le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; | ||
4891 | sp->stats.tx_errors += delta; | ||
4892 | dev->stats.tx_errors += delta; | ||
4893 | |||
4894 | delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; | ||
4895 | sp->stats.rx_dropped += delta; | ||
4896 | dev->stats.rx_dropped += delta; | ||
4897 | |||
4898 | delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; | ||
4899 | sp->stats.tx_dropped += delta; | ||
4900 | dev->stats.tx_dropped += delta; | ||
4901 | |||
4902 | /* The adapter MAC interprets pause frames as multicast packets, but | ||
4903 | * does not pass them up. This erroneously increases the multicast | ||
4904 | * packet count and needs to be deducted when the multicast frame count | ||
4905 | * is queried. | ||
4906 | */ | ||
4907 | delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | | ||
4908 | le32_to_cpu(stats->rmac_vld_mcst_frms); | ||
4909 | delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); | ||
4910 | delta -= sp->stats.multicast; | ||
4911 | sp->stats.multicast += delta; | ||
4912 | dev->stats.multicast += delta; | ||
4913 | |||
4914 | delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | | ||
4915 | le32_to_cpu(stats->rmac_usized_frms)) + | ||
4916 | le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; | ||
4917 | sp->stats.rx_length_errors += delta; | ||
4918 | dev->stats.rx_length_errors += delta; | ||
4919 | |||
4920 | delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; | ||
4921 | sp->stats.rx_crc_errors += delta; | ||
4922 | dev->stats.rx_crc_errors += delta; | ||
4923 | |||
4924 | return &dev->stats; | ||
4925 | } | ||
4926 | |||
4927 | /** | ||
4928 | * s2io_set_multicast - entry point for multicast address enable/disable. | ||
4929 | * @dev : pointer to the device structure | ||
4930 | * Description: | ||
4931 | * This function is a driver entry point which gets called by the kernel | ||
4932 | * whenever multicast addresses must be enabled/disabled. This also gets | ||
4933 | * called to set/reset promiscuous mode. Depending on the deivce flag, we | ||
4934 | * determine, if multicast address must be enabled or if promiscuous mode | ||
4935 | * is to be disabled etc. | ||
4936 | * Return value: | ||
4937 | * void. | ||
4938 | */ | ||
4939 | |||
4940 | static void s2io_set_multicast(struct net_device *dev) | ||
4941 | { | ||
4942 | int i, j, prev_cnt; | ||
4943 | struct netdev_hw_addr *ha; | ||
4944 | struct s2io_nic *sp = netdev_priv(dev); | ||
4945 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
4946 | u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = | ||
4947 | 0xfeffffffffffULL; | ||
4948 | u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; | ||
4949 | void __iomem *add; | ||
4950 | struct config_param *config = &sp->config; | ||
4951 | |||
4952 | if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { | ||
4953 | /* Enable all Multicast addresses */ | ||
4954 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), | ||
4955 | &bar0->rmac_addr_data0_mem); | ||
4956 | writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), | ||
4957 | &bar0->rmac_addr_data1_mem); | ||
4958 | val64 = RMAC_ADDR_CMD_MEM_WE | | ||
4959 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
4960 | RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); | ||
4961 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
4962 | /* Wait till command completes */ | ||
4963 | wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | ||
4964 | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | ||
4965 | S2IO_BIT_RESET); | ||
4966 | |||
4967 | sp->m_cast_flg = 1; | ||
4968 | sp->all_multi_pos = config->max_mc_addr - 1; | ||
4969 | } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { | ||
4970 | /* Disable all Multicast addresses */ | ||
4971 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), | ||
4972 | &bar0->rmac_addr_data0_mem); | ||
4973 | writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), | ||
4974 | &bar0->rmac_addr_data1_mem); | ||
4975 | val64 = RMAC_ADDR_CMD_MEM_WE | | ||
4976 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
4977 | RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); | ||
4978 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
4979 | /* Wait till command completes */ | ||
4980 | wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | ||
4981 | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | ||
4982 | S2IO_BIT_RESET); | ||
4983 | |||
4984 | sp->m_cast_flg = 0; | ||
4985 | sp->all_multi_pos = 0; | ||
4986 | } | ||
4987 | |||
4988 | if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { | ||
4989 | /* Put the NIC into promiscuous mode */ | ||
4990 | add = &bar0->mac_cfg; | ||
4991 | val64 = readq(&bar0->mac_cfg); | ||
4992 | val64 |= MAC_CFG_RMAC_PROM_ENABLE; | ||
4993 | |||
4994 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
4995 | writel((u32)val64, add); | ||
4996 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
4997 | writel((u32) (val64 >> 32), (add + 4)); | ||
4998 | |||
4999 | if (vlan_tag_strip != 1) { | ||
5000 | val64 = readq(&bar0->rx_pa_cfg); | ||
5001 | val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; | ||
5002 | writeq(val64, &bar0->rx_pa_cfg); | ||
5003 | sp->vlan_strip_flag = 0; | ||
5004 | } | ||
5005 | |||
5006 | val64 = readq(&bar0->mac_cfg); | ||
5007 | sp->promisc_flg = 1; | ||
5008 | DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", | ||
5009 | dev->name); | ||
5010 | } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { | ||
5011 | /* Remove the NIC from promiscuous mode */ | ||
5012 | add = &bar0->mac_cfg; | ||
5013 | val64 = readq(&bar0->mac_cfg); | ||
5014 | val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; | ||
5015 | |||
5016 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
5017 | writel((u32)val64, add); | ||
5018 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
5019 | writel((u32) (val64 >> 32), (add + 4)); | ||
5020 | |||
5021 | if (vlan_tag_strip != 0) { | ||
5022 | val64 = readq(&bar0->rx_pa_cfg); | ||
5023 | val64 |= RX_PA_CFG_STRIP_VLAN_TAG; | ||
5024 | writeq(val64, &bar0->rx_pa_cfg); | ||
5025 | sp->vlan_strip_flag = 1; | ||
5026 | } | ||
5027 | |||
5028 | val64 = readq(&bar0->mac_cfg); | ||
5029 | sp->promisc_flg = 0; | ||
5030 | DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); | ||
5031 | } | ||
5032 | |||
5033 | /* Update individual M_CAST address list */ | ||
5034 | if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { | ||
5035 | if (netdev_mc_count(dev) > | ||
5036 | (config->max_mc_addr - config->max_mac_addr)) { | ||
5037 | DBG_PRINT(ERR_DBG, | ||
5038 | "%s: No more Rx filters can be added - " | ||
5039 | "please enable ALL_MULTI instead\n", | ||
5040 | dev->name); | ||
5041 | return; | ||
5042 | } | ||
5043 | |||
5044 | prev_cnt = sp->mc_addr_count; | ||
5045 | sp->mc_addr_count = netdev_mc_count(dev); | ||
5046 | |||
5047 | /* Clear out the previous list of Mc in the H/W. */ | ||
5048 | for (i = 0; i < prev_cnt; i++) { | ||
5049 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), | ||
5050 | &bar0->rmac_addr_data0_mem); | ||
5051 | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), | ||
5052 | &bar0->rmac_addr_data1_mem); | ||
5053 | val64 = RMAC_ADDR_CMD_MEM_WE | | ||
5054 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
5055 | RMAC_ADDR_CMD_MEM_OFFSET | ||
5056 | (config->mc_start_offset + i); | ||
5057 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
5058 | |||
5059 | /* Wait for command completes */ | ||
5060 | if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | ||
5061 | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | ||
5062 | S2IO_BIT_RESET)) { | ||
5063 | DBG_PRINT(ERR_DBG, | ||
5064 | "%s: Adding Multicasts failed\n", | ||
5065 | dev->name); | ||
5066 | return; | ||
5067 | } | ||
5068 | } | ||
5069 | |||
5070 | /* Create the new Rx filter list and update the same in H/W. */ | ||
5071 | i = 0; | ||
5072 | netdev_for_each_mc_addr(ha, dev) { | ||
5073 | mac_addr = 0; | ||
5074 | for (j = 0; j < ETH_ALEN; j++) { | ||
5075 | mac_addr |= ha->addr[j]; | ||
5076 | mac_addr <<= 8; | ||
5077 | } | ||
5078 | mac_addr >>= 8; | ||
5079 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), | ||
5080 | &bar0->rmac_addr_data0_mem); | ||
5081 | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), | ||
5082 | &bar0->rmac_addr_data1_mem); | ||
5083 | val64 = RMAC_ADDR_CMD_MEM_WE | | ||
5084 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
5085 | RMAC_ADDR_CMD_MEM_OFFSET | ||
5086 | (i + config->mc_start_offset); | ||
5087 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
5088 | |||
5089 | /* Wait for command completes */ | ||
5090 | if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | ||
5091 | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | ||
5092 | S2IO_BIT_RESET)) { | ||
5093 | DBG_PRINT(ERR_DBG, | ||
5094 | "%s: Adding Multicasts failed\n", | ||
5095 | dev->name); | ||
5096 | return; | ||
5097 | } | ||
5098 | i++; | ||
5099 | } | ||
5100 | } | ||
5101 | } | ||
5102 | |||
5103 | /* read from CAM unicast & multicast addresses and store it in | ||
5104 | * def_mac_addr structure | ||
5105 | */ | ||
5106 | static void do_s2io_store_unicast_mc(struct s2io_nic *sp) | ||
5107 | { | ||
5108 | int offset; | ||
5109 | u64 mac_addr = 0x0; | ||
5110 | struct config_param *config = &sp->config; | ||
5111 | |||
5112 | /* store unicast & multicast mac addresses */ | ||
5113 | for (offset = 0; offset < config->max_mc_addr; offset++) { | ||
5114 | mac_addr = do_s2io_read_unicast_mc(sp, offset); | ||
5115 | /* if read fails disable the entry */ | ||
5116 | if (mac_addr == FAILURE) | ||
5117 | mac_addr = S2IO_DISABLE_MAC_ENTRY; | ||
5118 | do_s2io_copy_mac_addr(sp, offset, mac_addr); | ||
5119 | } | ||
5120 | } | ||
5121 | |||
5122 | /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ | ||
5123 | static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) | ||
5124 | { | ||
5125 | int offset; | ||
5126 | struct config_param *config = &sp->config; | ||
5127 | /* restore unicast mac address */ | ||
5128 | for (offset = 0; offset < config->max_mac_addr; offset++) | ||
5129 | do_s2io_prog_unicast(sp->dev, | ||
5130 | sp->def_mac_addr[offset].mac_addr); | ||
5131 | |||
5132 | /* restore multicast mac address */ | ||
5133 | for (offset = config->mc_start_offset; | ||
5134 | offset < config->max_mc_addr; offset++) | ||
5135 | do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); | ||
5136 | } | ||
5137 | |||
5138 | /* add a multicast MAC address to CAM */ | ||
5139 | static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) | ||
5140 | { | ||
5141 | int i; | ||
5142 | u64 mac_addr = 0; | ||
5143 | struct config_param *config = &sp->config; | ||
5144 | |||
5145 | for (i = 0; i < ETH_ALEN; i++) { | ||
5146 | mac_addr <<= 8; | ||
5147 | mac_addr |= addr[i]; | ||
5148 | } | ||
5149 | if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) | ||
5150 | return SUCCESS; | ||
5151 | |||
5152 | /* check if the multicast mac already preset in CAM */ | ||
5153 | for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { | ||
5154 | u64 tmp64; | ||
5155 | tmp64 = do_s2io_read_unicast_mc(sp, i); | ||
5156 | if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ | ||
5157 | break; | ||
5158 | |||
5159 | if (tmp64 == mac_addr) | ||
5160 | return SUCCESS; | ||
5161 | } | ||
5162 | if (i == config->max_mc_addr) { | ||
5163 | DBG_PRINT(ERR_DBG, | ||
5164 | "CAM full no space left for multicast MAC\n"); | ||
5165 | return FAILURE; | ||
5166 | } | ||
5167 | /* Update the internal structure with this new mac address */ | ||
5168 | do_s2io_copy_mac_addr(sp, i, mac_addr); | ||
5169 | |||
5170 | return do_s2io_add_mac(sp, mac_addr, i); | ||
5171 | } | ||
5172 | |||
5173 | /* add MAC address to CAM */ | ||
5174 | static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) | ||
5175 | { | ||
5176 | u64 val64; | ||
5177 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
5178 | |||
5179 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), | ||
5180 | &bar0->rmac_addr_data0_mem); | ||
5181 | |||
5182 | val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
5183 | RMAC_ADDR_CMD_MEM_OFFSET(off); | ||
5184 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
5185 | |||
5186 | /* Wait till command completes */ | ||
5187 | if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | ||
5188 | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | ||
5189 | S2IO_BIT_RESET)) { | ||
5190 | DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); | ||
5191 | return FAILURE; | ||
5192 | } | ||
5193 | return SUCCESS; | ||
5194 | } | ||
5195 | /* deletes a specified unicast/multicast mac entry from CAM */ | ||
5196 | static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) | ||
5197 | { | ||
5198 | int offset; | ||
5199 | u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; | ||
5200 | struct config_param *config = &sp->config; | ||
5201 | |||
5202 | for (offset = 1; | ||
5203 | offset < config->max_mc_addr; offset++) { | ||
5204 | tmp64 = do_s2io_read_unicast_mc(sp, offset); | ||
5205 | if (tmp64 == addr) { | ||
5206 | /* disable the entry by writing 0xffffffffffffULL */ | ||
5207 | if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) | ||
5208 | return FAILURE; | ||
5209 | /* store the new mac list from CAM */ | ||
5210 | do_s2io_store_unicast_mc(sp); | ||
5211 | return SUCCESS; | ||
5212 | } | ||
5213 | } | ||
5214 | DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", | ||
5215 | (unsigned long long)addr); | ||
5216 | return FAILURE; | ||
5217 | } | ||
5218 | |||
5219 | /* read mac entries from CAM */ | ||
5220 | static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) | ||
5221 | { | ||
5222 | u64 tmp64 = 0xffffffffffff0000ULL, val64; | ||
5223 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
5224 | |||
5225 | /* read mac addr */ | ||
5226 | val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
5227 | RMAC_ADDR_CMD_MEM_OFFSET(offset); | ||
5228 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
5229 | |||
5230 | /* Wait till command completes */ | ||
5231 | if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | ||
5232 | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | ||
5233 | S2IO_BIT_RESET)) { | ||
5234 | DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); | ||
5235 | return FAILURE; | ||
5236 | } | ||
5237 | tmp64 = readq(&bar0->rmac_addr_data0_mem); | ||
5238 | |||
5239 | return tmp64 >> 16; | ||
5240 | } | ||
5241 | |||
5242 | /** | ||
5243 | * s2io_set_mac_addr driver entry point | ||
5244 | */ | ||
5245 | |||
5246 | static int s2io_set_mac_addr(struct net_device *dev, void *p) | ||
5247 | { | ||
5248 | struct sockaddr *addr = p; | ||
5249 | |||
5250 | if (!is_valid_ether_addr(addr->sa_data)) | ||
5251 | return -EINVAL; | ||
5252 | |||
5253 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | ||
5254 | |||
5255 | /* store the MAC address in CAM */ | ||
5256 | return do_s2io_prog_unicast(dev, dev->dev_addr); | ||
5257 | } | ||
5258 | /** | ||
5259 | * do_s2io_prog_unicast - Programs the Xframe mac address | ||
5260 | * @dev : pointer to the device structure. | ||
5261 | * @addr: a uchar pointer to the new mac address which is to be set. | ||
5262 | * Description : This procedure will program the Xframe to receive | ||
5263 | * frames with new Mac Address | ||
5264 | * Return value: SUCCESS on success and an appropriate (-)ve integer | ||
5265 | * as defined in errno.h file on failure. | ||
5266 | */ | ||
5267 | |||
5268 | static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr) | ||
5269 | { | ||
5270 | struct s2io_nic *sp = netdev_priv(dev); | ||
5271 | register u64 mac_addr = 0, perm_addr = 0; | ||
5272 | int i; | ||
5273 | u64 tmp64; | ||
5274 | struct config_param *config = &sp->config; | ||
5275 | |||
5276 | /* | ||
5277 | * Set the new MAC address as the new unicast filter and reflect this | ||
5278 | * change on the device address registered with the OS. It will be | ||
5279 | * at offset 0. | ||
5280 | */ | ||
5281 | for (i = 0; i < ETH_ALEN; i++) { | ||
5282 | mac_addr <<= 8; | ||
5283 | mac_addr |= addr[i]; | ||
5284 | perm_addr <<= 8; | ||
5285 | perm_addr |= sp->def_mac_addr[0].mac_addr[i]; | ||
5286 | } | ||
5287 | |||
5288 | /* check if the dev_addr is different than perm_addr */ | ||
5289 | if (mac_addr == perm_addr) | ||
5290 | return SUCCESS; | ||
5291 | |||
5292 | /* check if the mac already preset in CAM */ | ||
5293 | for (i = 1; i < config->max_mac_addr; i++) { | ||
5294 | tmp64 = do_s2io_read_unicast_mc(sp, i); | ||
5295 | if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ | ||
5296 | break; | ||
5297 | |||
5298 | if (tmp64 == mac_addr) { | ||
5299 | DBG_PRINT(INFO_DBG, | ||
5300 | "MAC addr:0x%llx already present in CAM\n", | ||
5301 | (unsigned long long)mac_addr); | ||
5302 | return SUCCESS; | ||
5303 | } | ||
5304 | } | ||
5305 | if (i == config->max_mac_addr) { | ||
5306 | DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); | ||
5307 | return FAILURE; | ||
5308 | } | ||
5309 | /* Update the internal structure with this new mac address */ | ||
5310 | do_s2io_copy_mac_addr(sp, i, mac_addr); | ||
5311 | |||
5312 | return do_s2io_add_mac(sp, mac_addr, i); | ||
5313 | } | ||
5314 | |||
5315 | /** | ||
5316 | * s2io_ethtool_sset - Sets different link parameters. | ||
5317 | * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. | ||
5318 | * @info: pointer to the structure with parameters given by ethtool to set | ||
5319 | * link information. | ||
5320 | * Description: | ||
5321 | * The function sets different link parameters provided by the user onto | ||
5322 | * the NIC. | ||
5323 | * Return value: | ||
5324 | * 0 on success. | ||
5325 | */ | ||
5326 | |||
5327 | static int s2io_ethtool_sset(struct net_device *dev, | ||
5328 | struct ethtool_cmd *info) | ||
5329 | { | ||
5330 | struct s2io_nic *sp = netdev_priv(dev); | ||
5331 | if ((info->autoneg == AUTONEG_ENABLE) || | ||
5332 | (ethtool_cmd_speed(info) != SPEED_10000) || | ||
5333 | (info->duplex != DUPLEX_FULL)) | ||
5334 | return -EINVAL; | ||
5335 | else { | ||
5336 | s2io_close(sp->dev); | ||
5337 | s2io_open(sp->dev); | ||
5338 | } | ||
5339 | |||
5340 | return 0; | ||
5341 | } | ||
5342 | |||
5343 | /** | ||
5344 | * s2io_ethtol_gset - Return link specific information. | ||
5345 | * @sp : private member of the device structure, pointer to the | ||
5346 | * s2io_nic structure. | ||
5347 | * @info : pointer to the structure with parameters given by ethtool | ||
5348 | * to return link information. | ||
5349 | * Description: | ||
5350 | * Returns link specific information like speed, duplex etc.. to ethtool. | ||
5351 | * Return value : | ||
5352 | * return 0 on success. | ||
5353 | */ | ||
5354 | |||
5355 | static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) | ||
5356 | { | ||
5357 | struct s2io_nic *sp = netdev_priv(dev); | ||
5358 | info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); | ||
5359 | info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); | ||
5360 | info->port = PORT_FIBRE; | ||
5361 | |||
5362 | /* info->transceiver */ | ||
5363 | info->transceiver = XCVR_EXTERNAL; | ||
5364 | |||
5365 | if (netif_carrier_ok(sp->dev)) { | ||
5366 | ethtool_cmd_speed_set(info, SPEED_10000); | ||
5367 | info->duplex = DUPLEX_FULL; | ||
5368 | } else { | ||
5369 | ethtool_cmd_speed_set(info, -1); | ||
5370 | info->duplex = -1; | ||
5371 | } | ||
5372 | |||
5373 | info->autoneg = AUTONEG_DISABLE; | ||
5374 | return 0; | ||
5375 | } | ||
5376 | |||
5377 | /** | ||
5378 | * s2io_ethtool_gdrvinfo - Returns driver specific information. | ||
5379 | * @sp : private member of the device structure, which is a pointer to the | ||
5380 | * s2io_nic structure. | ||
5381 | * @info : pointer to the structure with parameters given by ethtool to | ||
5382 | * return driver information. | ||
5383 | * Description: | ||
5384 | * Returns driver specefic information like name, version etc.. to ethtool. | ||
5385 | * Return value: | ||
5386 | * void | ||
5387 | */ | ||
5388 | |||
5389 | static void s2io_ethtool_gdrvinfo(struct net_device *dev, | ||
5390 | struct ethtool_drvinfo *info) | ||
5391 | { | ||
5392 | struct s2io_nic *sp = netdev_priv(dev); | ||
5393 | |||
5394 | strncpy(info->driver, s2io_driver_name, sizeof(info->driver)); | ||
5395 | strncpy(info->version, s2io_driver_version, sizeof(info->version)); | ||
5396 | strncpy(info->fw_version, "", sizeof(info->fw_version)); | ||
5397 | strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); | ||
5398 | info->regdump_len = XENA_REG_SPACE; | ||
5399 | info->eedump_len = XENA_EEPROM_SPACE; | ||
5400 | } | ||
5401 | |||
5402 | /** | ||
5403 | * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. | ||
5404 | * @sp: private member of the device structure, which is a pointer to the | ||
5405 | * s2io_nic structure. | ||
5406 | * @regs : pointer to the structure with parameters given by ethtool for | ||
5407 | * dumping the registers. | ||
5408 | * @reg_space: The input argumnet into which all the registers are dumped. | ||
5409 | * Description: | ||
5410 | * Dumps the entire register space of xFrame NIC into the user given | ||
5411 | * buffer area. | ||
5412 | * Return value : | ||
5413 | * void . | ||
5414 | */ | ||
5415 | |||
5416 | static void s2io_ethtool_gregs(struct net_device *dev, | ||
5417 | struct ethtool_regs *regs, void *space) | ||
5418 | { | ||
5419 | int i; | ||
5420 | u64 reg; | ||
5421 | u8 *reg_space = (u8 *)space; | ||
5422 | struct s2io_nic *sp = netdev_priv(dev); | ||
5423 | |||
5424 | regs->len = XENA_REG_SPACE; | ||
5425 | regs->version = sp->pdev->subsystem_device; | ||
5426 | |||
5427 | for (i = 0; i < regs->len; i += 8) { | ||
5428 | reg = readq(sp->bar0 + i); | ||
5429 | memcpy((reg_space + i), ®, 8); | ||
5430 | } | ||
5431 | } | ||
5432 | |||
5433 | /* | ||
5434 | * s2io_set_led - control NIC led | ||
5435 | */ | ||
5436 | static void s2io_set_led(struct s2io_nic *sp, bool on) | ||
5437 | { | ||
5438 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
5439 | u16 subid = sp->pdev->subsystem_device; | ||
5440 | u64 val64; | ||
5441 | |||
5442 | if ((sp->device_type == XFRAME_II_DEVICE) || | ||
5443 | ((subid & 0xFF) >= 0x07)) { | ||
5444 | val64 = readq(&bar0->gpio_control); | ||
5445 | if (on) | ||
5446 | val64 |= GPIO_CTRL_GPIO_0; | ||
5447 | else | ||
5448 | val64 &= ~GPIO_CTRL_GPIO_0; | ||
5449 | |||
5450 | writeq(val64, &bar0->gpio_control); | ||
5451 | } else { | ||
5452 | val64 = readq(&bar0->adapter_control); | ||
5453 | if (on) | ||
5454 | val64 |= ADAPTER_LED_ON; | ||
5455 | else | ||
5456 | val64 &= ~ADAPTER_LED_ON; | ||
5457 | |||
5458 | writeq(val64, &bar0->adapter_control); | ||
5459 | } | ||
5460 | |||
5461 | } | ||
5462 | |||
5463 | /** | ||
5464 | * s2io_ethtool_set_led - To physically identify the nic on the system. | ||
5465 | * @dev : network device | ||
5466 | * @state: led setting | ||
5467 | * | ||
5468 | * Description: Used to physically identify the NIC on the system. | ||
5469 | * The Link LED will blink for a time specified by the user for | ||
5470 | * identification. | ||
5471 | * NOTE: The Link has to be Up to be able to blink the LED. Hence | ||
5472 | * identification is possible only if it's link is up. | ||
5473 | */ | ||
5474 | |||
5475 | static int s2io_ethtool_set_led(struct net_device *dev, | ||
5476 | enum ethtool_phys_id_state state) | ||
5477 | { | ||
5478 | struct s2io_nic *sp = netdev_priv(dev); | ||
5479 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
5480 | u16 subid = sp->pdev->subsystem_device; | ||
5481 | |||
5482 | if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { | ||
5483 | u64 val64 = readq(&bar0->adapter_control); | ||
5484 | if (!(val64 & ADAPTER_CNTL_EN)) { | ||
5485 | pr_err("Adapter Link down, cannot blink LED\n"); | ||
5486 | return -EAGAIN; | ||
5487 | } | ||
5488 | } | ||
5489 | |||
5490 | switch (state) { | ||
5491 | case ETHTOOL_ID_ACTIVE: | ||
5492 | sp->adapt_ctrl_org = readq(&bar0->gpio_control); | ||
5493 | return 1; /* cycle on/off once per second */ | ||
5494 | |||
5495 | case ETHTOOL_ID_ON: | ||
5496 | s2io_set_led(sp, true); | ||
5497 | break; | ||
5498 | |||
5499 | case ETHTOOL_ID_OFF: | ||
5500 | s2io_set_led(sp, false); | ||
5501 | break; | ||
5502 | |||
5503 | case ETHTOOL_ID_INACTIVE: | ||
5504 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) | ||
5505 | writeq(sp->adapt_ctrl_org, &bar0->gpio_control); | ||
5506 | } | ||
5507 | |||
5508 | return 0; | ||
5509 | } | ||
5510 | |||
5511 | static void s2io_ethtool_gringparam(struct net_device *dev, | ||
5512 | struct ethtool_ringparam *ering) | ||
5513 | { | ||
5514 | struct s2io_nic *sp = netdev_priv(dev); | ||
5515 | int i, tx_desc_count = 0, rx_desc_count = 0; | ||
5516 | |||
5517 | if (sp->rxd_mode == RXD_MODE_1) { | ||
5518 | ering->rx_max_pending = MAX_RX_DESC_1; | ||
5519 | ering->rx_jumbo_max_pending = MAX_RX_DESC_1; | ||
5520 | } else { | ||
5521 | ering->rx_max_pending = MAX_RX_DESC_2; | ||
5522 | ering->rx_jumbo_max_pending = MAX_RX_DESC_2; | ||
5523 | } | ||
5524 | |||
5525 | ering->rx_mini_max_pending = 0; | ||
5526 | ering->tx_max_pending = MAX_TX_DESC; | ||
5527 | |||
5528 | for (i = 0; i < sp->config.rx_ring_num; i++) | ||
5529 | rx_desc_count += sp->config.rx_cfg[i].num_rxd; | ||
5530 | ering->rx_pending = rx_desc_count; | ||
5531 | ering->rx_jumbo_pending = rx_desc_count; | ||
5532 | ering->rx_mini_pending = 0; | ||
5533 | |||
5534 | for (i = 0; i < sp->config.tx_fifo_num; i++) | ||
5535 | tx_desc_count += sp->config.tx_cfg[i].fifo_len; | ||
5536 | ering->tx_pending = tx_desc_count; | ||
5537 | DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); | ||
5538 | } | ||
5539 | |||
5540 | /** | ||
5541 | * s2io_ethtool_getpause_data -Pause frame frame generation and reception. | ||
5542 | * @sp : private member of the device structure, which is a pointer to the | ||
5543 | * s2io_nic structure. | ||
5544 | * @ep : pointer to the structure with pause parameters given by ethtool. | ||
5545 | * Description: | ||
5546 | * Returns the Pause frame generation and reception capability of the NIC. | ||
5547 | * Return value: | ||
5548 | * void | ||
5549 | */ | ||
5550 | static void s2io_ethtool_getpause_data(struct net_device *dev, | ||
5551 | struct ethtool_pauseparam *ep) | ||
5552 | { | ||
5553 | u64 val64; | ||
5554 | struct s2io_nic *sp = netdev_priv(dev); | ||
5555 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
5556 | |||
5557 | val64 = readq(&bar0->rmac_pause_cfg); | ||
5558 | if (val64 & RMAC_PAUSE_GEN_ENABLE) | ||
5559 | ep->tx_pause = true; | ||
5560 | if (val64 & RMAC_PAUSE_RX_ENABLE) | ||
5561 | ep->rx_pause = true; | ||
5562 | ep->autoneg = false; | ||
5563 | } | ||
5564 | |||
5565 | /** | ||
5566 | * s2io_ethtool_setpause_data - set/reset pause frame generation. | ||
5567 | * @sp : private member of the device structure, which is a pointer to the | ||
5568 | * s2io_nic structure. | ||
5569 | * @ep : pointer to the structure with pause parameters given by ethtool. | ||
5570 | * Description: | ||
5571 | * It can be used to set or reset Pause frame generation or reception | ||
5572 | * support of the NIC. | ||
5573 | * Return value: | ||
5574 | * int, returns 0 on Success | ||
5575 | */ | ||
5576 | |||
5577 | static int s2io_ethtool_setpause_data(struct net_device *dev, | ||
5578 | struct ethtool_pauseparam *ep) | ||
5579 | { | ||
5580 | u64 val64; | ||
5581 | struct s2io_nic *sp = netdev_priv(dev); | ||
5582 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
5583 | |||
5584 | val64 = readq(&bar0->rmac_pause_cfg); | ||
5585 | if (ep->tx_pause) | ||
5586 | val64 |= RMAC_PAUSE_GEN_ENABLE; | ||
5587 | else | ||
5588 | val64 &= ~RMAC_PAUSE_GEN_ENABLE; | ||
5589 | if (ep->rx_pause) | ||
5590 | val64 |= RMAC_PAUSE_RX_ENABLE; | ||
5591 | else | ||
5592 | val64 &= ~RMAC_PAUSE_RX_ENABLE; | ||
5593 | writeq(val64, &bar0->rmac_pause_cfg); | ||
5594 | return 0; | ||
5595 | } | ||
5596 | |||
5597 | /** | ||
5598 | * read_eeprom - reads 4 bytes of data from user given offset. | ||
5599 | * @sp : private member of the device structure, which is a pointer to the | ||
5600 | * s2io_nic structure. | ||
5601 | * @off : offset at which the data must be written | ||
5602 | * @data : Its an output parameter where the data read at the given | ||
5603 | * offset is stored. | ||
5604 | * Description: | ||
5605 | * Will read 4 bytes of data from the user given offset and return the | ||
5606 | * read data. | ||
5607 | * NOTE: Will allow to read only part of the EEPROM visible through the | ||
5608 | * I2C bus. | ||
5609 | * Return value: | ||
5610 | * -1 on failure and 0 on success. | ||
5611 | */ | ||
5612 | |||
5613 | #define S2IO_DEV_ID 5 | ||
5614 | static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) | ||
5615 | { | ||
5616 | int ret = -1; | ||
5617 | u32 exit_cnt = 0; | ||
5618 | u64 val64; | ||
5619 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
5620 | |||
5621 | if (sp->device_type == XFRAME_I_DEVICE) { | ||
5622 | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | | ||
5623 | I2C_CONTROL_ADDR(off) | | ||
5624 | I2C_CONTROL_BYTE_CNT(0x3) | | ||
5625 | I2C_CONTROL_READ | | ||
5626 | I2C_CONTROL_CNTL_START; | ||
5627 | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); | ||
5628 | |||
5629 | while (exit_cnt < 5) { | ||
5630 | val64 = readq(&bar0->i2c_control); | ||
5631 | if (I2C_CONTROL_CNTL_END(val64)) { | ||
5632 | *data = I2C_CONTROL_GET_DATA(val64); | ||
5633 | ret = 0; | ||
5634 | break; | ||
5635 | } | ||
5636 | msleep(50); | ||
5637 | exit_cnt++; | ||
5638 | } | ||
5639 | } | ||
5640 | |||
5641 | if (sp->device_type == XFRAME_II_DEVICE) { | ||
5642 | val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | | ||
5643 | SPI_CONTROL_BYTECNT(0x3) | | ||
5644 | SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); | ||
5645 | SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); | ||
5646 | val64 |= SPI_CONTROL_REQ; | ||
5647 | SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); | ||
5648 | while (exit_cnt < 5) { | ||
5649 | val64 = readq(&bar0->spi_control); | ||
5650 | if (val64 & SPI_CONTROL_NACK) { | ||
5651 | ret = 1; | ||
5652 | break; | ||
5653 | } else if (val64 & SPI_CONTROL_DONE) { | ||
5654 | *data = readq(&bar0->spi_data); | ||
5655 | *data &= 0xffffff; | ||
5656 | ret = 0; | ||
5657 | break; | ||
5658 | } | ||
5659 | msleep(50); | ||
5660 | exit_cnt++; | ||
5661 | } | ||
5662 | } | ||
5663 | return ret; | ||
5664 | } | ||
5665 | |||
5666 | /** | ||
5667 | * write_eeprom - actually writes the relevant part of the data value. | ||
5668 | * @sp : private member of the device structure, which is a pointer to the | ||
5669 | * s2io_nic structure. | ||
5670 | * @off : offset at which the data must be written | ||
5671 | * @data : The data that is to be written | ||
5672 | * @cnt : Number of bytes of the data that are actually to be written into | ||
5673 | * the Eeprom. (max of 3) | ||
5674 | * Description: | ||
5675 | * Actually writes the relevant part of the data value into the Eeprom | ||
5676 | * through the I2C bus. | ||
5677 | * Return value: | ||
5678 | * 0 on success, -1 on failure. | ||
5679 | */ | ||
5680 | |||
5681 | static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) | ||
5682 | { | ||
5683 | int exit_cnt = 0, ret = -1; | ||
5684 | u64 val64; | ||
5685 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
5686 | |||
5687 | if (sp->device_type == XFRAME_I_DEVICE) { | ||
5688 | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | | ||
5689 | I2C_CONTROL_ADDR(off) | | ||
5690 | I2C_CONTROL_BYTE_CNT(cnt) | | ||
5691 | I2C_CONTROL_SET_DATA((u32)data) | | ||
5692 | I2C_CONTROL_CNTL_START; | ||
5693 | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); | ||
5694 | |||
5695 | while (exit_cnt < 5) { | ||
5696 | val64 = readq(&bar0->i2c_control); | ||
5697 | if (I2C_CONTROL_CNTL_END(val64)) { | ||
5698 | if (!(val64 & I2C_CONTROL_NACK)) | ||
5699 | ret = 0; | ||
5700 | break; | ||
5701 | } | ||
5702 | msleep(50); | ||
5703 | exit_cnt++; | ||
5704 | } | ||
5705 | } | ||
5706 | |||
5707 | if (sp->device_type == XFRAME_II_DEVICE) { | ||
5708 | int write_cnt = (cnt == 8) ? 0 : cnt; | ||
5709 | writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); | ||
5710 | |||
5711 | val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | | ||
5712 | SPI_CONTROL_BYTECNT(write_cnt) | | ||
5713 | SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); | ||
5714 | SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); | ||
5715 | val64 |= SPI_CONTROL_REQ; | ||
5716 | SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); | ||
5717 | while (exit_cnt < 5) { | ||
5718 | val64 = readq(&bar0->spi_control); | ||
5719 | if (val64 & SPI_CONTROL_NACK) { | ||
5720 | ret = 1; | ||
5721 | break; | ||
5722 | } else if (val64 & SPI_CONTROL_DONE) { | ||
5723 | ret = 0; | ||
5724 | break; | ||
5725 | } | ||
5726 | msleep(50); | ||
5727 | exit_cnt++; | ||
5728 | } | ||
5729 | } | ||
5730 | return ret; | ||
5731 | } | ||
5732 | static void s2io_vpd_read(struct s2io_nic *nic) | ||
5733 | { | ||
5734 | u8 *vpd_data; | ||
5735 | u8 data; | ||
5736 | int i = 0, cnt, len, fail = 0; | ||
5737 | int vpd_addr = 0x80; | ||
5738 | struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; | ||
5739 | |||
5740 | if (nic->device_type == XFRAME_II_DEVICE) { | ||
5741 | strcpy(nic->product_name, "Xframe II 10GbE network adapter"); | ||
5742 | vpd_addr = 0x80; | ||
5743 | } else { | ||
5744 | strcpy(nic->product_name, "Xframe I 10GbE network adapter"); | ||
5745 | vpd_addr = 0x50; | ||
5746 | } | ||
5747 | strcpy(nic->serial_num, "NOT AVAILABLE"); | ||
5748 | |||
5749 | vpd_data = kmalloc(256, GFP_KERNEL); | ||
5750 | if (!vpd_data) { | ||
5751 | swstats->mem_alloc_fail_cnt++; | ||
5752 | return; | ||
5753 | } | ||
5754 | swstats->mem_allocated += 256; | ||
5755 | |||
5756 | for (i = 0; i < 256; i += 4) { | ||
5757 | pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); | ||
5758 | pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); | ||
5759 | pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); | ||
5760 | for (cnt = 0; cnt < 5; cnt++) { | ||
5761 | msleep(2); | ||
5762 | pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); | ||
5763 | if (data == 0x80) | ||
5764 | break; | ||
5765 | } | ||
5766 | if (cnt >= 5) { | ||
5767 | DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); | ||
5768 | fail = 1; | ||
5769 | break; | ||
5770 | } | ||
5771 | pci_read_config_dword(nic->pdev, (vpd_addr + 4), | ||
5772 | (u32 *)&vpd_data[i]); | ||
5773 | } | ||
5774 | |||
5775 | if (!fail) { | ||
5776 | /* read serial number of adapter */ | ||
5777 | for (cnt = 0; cnt < 252; cnt++) { | ||
5778 | if ((vpd_data[cnt] == 'S') && | ||
5779 | (vpd_data[cnt+1] == 'N')) { | ||
5780 | len = vpd_data[cnt+2]; | ||
5781 | if (len < min(VPD_STRING_LEN, 256-cnt-2)) { | ||
5782 | memcpy(nic->serial_num, | ||
5783 | &vpd_data[cnt + 3], | ||
5784 | len); | ||
5785 | memset(nic->serial_num+len, | ||
5786 | 0, | ||
5787 | VPD_STRING_LEN-len); | ||
5788 | break; | ||
5789 | } | ||
5790 | } | ||
5791 | } | ||
5792 | } | ||
5793 | |||
5794 | if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { | ||
5795 | len = vpd_data[1]; | ||
5796 | memcpy(nic->product_name, &vpd_data[3], len); | ||
5797 | nic->product_name[len] = 0; | ||
5798 | } | ||
5799 | kfree(vpd_data); | ||
5800 | swstats->mem_freed += 256; | ||
5801 | } | ||
5802 | |||
5803 | /** | ||
5804 | * s2io_ethtool_geeprom - reads the value stored in the Eeprom. | ||
5805 | * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. | ||
5806 | * @eeprom : pointer to the user level structure provided by ethtool, | ||
5807 | * containing all relevant information. | ||
5808 | * @data_buf : user defined value to be written into Eeprom. | ||
5809 | * Description: Reads the values stored in the Eeprom at given offset | ||
5810 | * for a given length. Stores these values int the input argument data | ||
5811 | * buffer 'data_buf' and returns these to the caller (ethtool.) | ||
5812 | * Return value: | ||
5813 | * int 0 on success | ||
5814 | */ | ||
5815 | |||
5816 | static int s2io_ethtool_geeprom(struct net_device *dev, | ||
5817 | struct ethtool_eeprom *eeprom, u8 * data_buf) | ||
5818 | { | ||
5819 | u32 i, valid; | ||
5820 | u64 data; | ||
5821 | struct s2io_nic *sp = netdev_priv(dev); | ||
5822 | |||
5823 | eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); | ||
5824 | |||
5825 | if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) | ||
5826 | eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; | ||
5827 | |||
5828 | for (i = 0; i < eeprom->len; i += 4) { | ||
5829 | if (read_eeprom(sp, (eeprom->offset + i), &data)) { | ||
5830 | DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); | ||
5831 | return -EFAULT; | ||
5832 | } | ||
5833 | valid = INV(data); | ||
5834 | memcpy((data_buf + i), &valid, 4); | ||
5835 | } | ||
5836 | return 0; | ||
5837 | } | ||
5838 | |||
5839 | /** | ||
5840 | * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom | ||
5841 | * @sp : private member of the device structure, which is a pointer to the | ||
5842 | * s2io_nic structure. | ||
5843 | * @eeprom : pointer to the user level structure provided by ethtool, | ||
5844 | * containing all relevant information. | ||
5845 | * @data_buf ; user defined value to be written into Eeprom. | ||
5846 | * Description: | ||
5847 | * Tries to write the user provided value in the Eeprom, at the offset | ||
5848 | * given by the user. | ||
5849 | * Return value: | ||
5850 | * 0 on success, -EFAULT on failure. | ||
5851 | */ | ||
5852 | |||
5853 | static int s2io_ethtool_seeprom(struct net_device *dev, | ||
5854 | struct ethtool_eeprom *eeprom, | ||
5855 | u8 *data_buf) | ||
5856 | { | ||
5857 | int len = eeprom->len, cnt = 0; | ||
5858 | u64 valid = 0, data; | ||
5859 | struct s2io_nic *sp = netdev_priv(dev); | ||
5860 | |||
5861 | if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { | ||
5862 | DBG_PRINT(ERR_DBG, | ||
5863 | "ETHTOOL_WRITE_EEPROM Err: " | ||
5864 | "Magic value is wrong, it is 0x%x should be 0x%x\n", | ||
5865 | (sp->pdev->vendor | (sp->pdev->device << 16)), | ||
5866 | eeprom->magic); | ||
5867 | return -EFAULT; | ||
5868 | } | ||
5869 | |||
5870 | while (len) { | ||
5871 | data = (u32)data_buf[cnt] & 0x000000FF; | ||
5872 | if (data) | ||
5873 | valid = (u32)(data << 24); | ||
5874 | else | ||
5875 | valid = data; | ||
5876 | |||
5877 | if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { | ||
5878 | DBG_PRINT(ERR_DBG, | ||
5879 | "ETHTOOL_WRITE_EEPROM Err: " | ||
5880 | "Cannot write into the specified offset\n"); | ||
5881 | return -EFAULT; | ||
5882 | } | ||
5883 | cnt++; | ||
5884 | len--; | ||
5885 | } | ||
5886 | |||
5887 | return 0; | ||
5888 | } | ||
5889 | |||
5890 | /** | ||
5891 | * s2io_register_test - reads and writes into all clock domains. | ||
5892 | * @sp : private member of the device structure, which is a pointer to the | ||
5893 | * s2io_nic structure. | ||
5894 | * @data : variable that returns the result of each of the test conducted b | ||
5895 | * by the driver. | ||
5896 | * Description: | ||
5897 | * Read and write into all clock domains. The NIC has 3 clock domains, | ||
5898 | * see that registers in all the three regions are accessible. | ||
5899 | * Return value: | ||
5900 | * 0 on success. | ||
5901 | */ | ||
5902 | |||
5903 | static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) | ||
5904 | { | ||
5905 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
5906 | u64 val64 = 0, exp_val; | ||
5907 | int fail = 0; | ||
5908 | |||
5909 | val64 = readq(&bar0->pif_rd_swapper_fb); | ||
5910 | if (val64 != 0x123456789abcdefULL) { | ||
5911 | fail = 1; | ||
5912 | DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); | ||
5913 | } | ||
5914 | |||
5915 | val64 = readq(&bar0->rmac_pause_cfg); | ||
5916 | if (val64 != 0xc000ffff00000000ULL) { | ||
5917 | fail = 1; | ||
5918 | DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); | ||
5919 | } | ||
5920 | |||
5921 | val64 = readq(&bar0->rx_queue_cfg); | ||
5922 | if (sp->device_type == XFRAME_II_DEVICE) | ||
5923 | exp_val = 0x0404040404040404ULL; | ||
5924 | else | ||
5925 | exp_val = 0x0808080808080808ULL; | ||
5926 | if (val64 != exp_val) { | ||
5927 | fail = 1; | ||
5928 | DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); | ||
5929 | } | ||
5930 | |||
5931 | val64 = readq(&bar0->xgxs_efifo_cfg); | ||
5932 | if (val64 != 0x000000001923141EULL) { | ||
5933 | fail = 1; | ||
5934 | DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); | ||
5935 | } | ||
5936 | |||
5937 | val64 = 0x5A5A5A5A5A5A5A5AULL; | ||
5938 | writeq(val64, &bar0->xmsi_data); | ||
5939 | val64 = readq(&bar0->xmsi_data); | ||
5940 | if (val64 != 0x5A5A5A5A5A5A5A5AULL) { | ||
5941 | fail = 1; | ||
5942 | DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); | ||
5943 | } | ||
5944 | |||
5945 | val64 = 0xA5A5A5A5A5A5A5A5ULL; | ||
5946 | writeq(val64, &bar0->xmsi_data); | ||
5947 | val64 = readq(&bar0->xmsi_data); | ||
5948 | if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { | ||
5949 | fail = 1; | ||
5950 | DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); | ||
5951 | } | ||
5952 | |||
5953 | *data = fail; | ||
5954 | return fail; | ||
5955 | } | ||
5956 | |||
5957 | /** | ||
5958 | * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. | ||
5959 | * @sp : private member of the device structure, which is a pointer to the | ||
5960 | * s2io_nic structure. | ||
5961 | * @data:variable that returns the result of each of the test conducted by | ||
5962 | * the driver. | ||
5963 | * Description: | ||
5964 | * Verify that EEPROM in the xena can be programmed using I2C_CONTROL | ||
5965 | * register. | ||
5966 | * Return value: | ||
5967 | * 0 on success. | ||
5968 | */ | ||
5969 | |||
5970 | static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) | ||
5971 | { | ||
5972 | int fail = 0; | ||
5973 | u64 ret_data, org_4F0, org_7F0; | ||
5974 | u8 saved_4F0 = 0, saved_7F0 = 0; | ||
5975 | struct net_device *dev = sp->dev; | ||
5976 | |||
5977 | /* Test Write Error at offset 0 */ | ||
5978 | /* Note that SPI interface allows write access to all areas | ||
5979 | * of EEPROM. Hence doing all negative testing only for Xframe I. | ||
5980 | */ | ||
5981 | if (sp->device_type == XFRAME_I_DEVICE) | ||
5982 | if (!write_eeprom(sp, 0, 0, 3)) | ||
5983 | fail = 1; | ||
5984 | |||
5985 | /* Save current values at offsets 0x4F0 and 0x7F0 */ | ||
5986 | if (!read_eeprom(sp, 0x4F0, &org_4F0)) | ||
5987 | saved_4F0 = 1; | ||
5988 | if (!read_eeprom(sp, 0x7F0, &org_7F0)) | ||
5989 | saved_7F0 = 1; | ||
5990 | |||
5991 | /* Test Write at offset 4f0 */ | ||
5992 | if (write_eeprom(sp, 0x4F0, 0x012345, 3)) | ||
5993 | fail = 1; | ||
5994 | if (read_eeprom(sp, 0x4F0, &ret_data)) | ||
5995 | fail = 1; | ||
5996 | |||
5997 | if (ret_data != 0x012345) { | ||
5998 | DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " | ||
5999 | "Data written %llx Data read %llx\n", | ||
6000 | dev->name, (unsigned long long)0x12345, | ||
6001 | (unsigned long long)ret_data); | ||
6002 | fail = 1; | ||
6003 | } | ||
6004 | |||
6005 | /* Reset the EEPROM data go FFFF */ | ||
6006 | write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); | ||
6007 | |||
6008 | /* Test Write Request Error at offset 0x7c */ | ||
6009 | if (sp->device_type == XFRAME_I_DEVICE) | ||
6010 | if (!write_eeprom(sp, 0x07C, 0, 3)) | ||
6011 | fail = 1; | ||
6012 | |||
6013 | /* Test Write Request at offset 0x7f0 */ | ||
6014 | if (write_eeprom(sp, 0x7F0, 0x012345, 3)) | ||
6015 | fail = 1; | ||
6016 | if (read_eeprom(sp, 0x7F0, &ret_data)) | ||
6017 | fail = 1; | ||
6018 | |||
6019 | if (ret_data != 0x012345) { | ||
6020 | DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " | ||
6021 | "Data written %llx Data read %llx\n", | ||
6022 | dev->name, (unsigned long long)0x12345, | ||
6023 | (unsigned long long)ret_data); | ||
6024 | fail = 1; | ||
6025 | } | ||
6026 | |||
6027 | /* Reset the EEPROM data go FFFF */ | ||
6028 | write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); | ||
6029 | |||
6030 | if (sp->device_type == XFRAME_I_DEVICE) { | ||
6031 | /* Test Write Error at offset 0x80 */ | ||
6032 | if (!write_eeprom(sp, 0x080, 0, 3)) | ||
6033 | fail = 1; | ||
6034 | |||
6035 | /* Test Write Error at offset 0xfc */ | ||
6036 | if (!write_eeprom(sp, 0x0FC, 0, 3)) | ||
6037 | fail = 1; | ||
6038 | |||
6039 | /* Test Write Error at offset 0x100 */ | ||
6040 | if (!write_eeprom(sp, 0x100, 0, 3)) | ||
6041 | fail = 1; | ||
6042 | |||
6043 | /* Test Write Error at offset 4ec */ | ||
6044 | if (!write_eeprom(sp, 0x4EC, 0, 3)) | ||
6045 | fail = 1; | ||
6046 | } | ||
6047 | |||
6048 | /* Restore values at offsets 0x4F0 and 0x7F0 */ | ||
6049 | if (saved_4F0) | ||
6050 | write_eeprom(sp, 0x4F0, org_4F0, 3); | ||
6051 | if (saved_7F0) | ||
6052 | write_eeprom(sp, 0x7F0, org_7F0, 3); | ||
6053 | |||
6054 | *data = fail; | ||
6055 | return fail; | ||
6056 | } | ||
6057 | |||
6058 | /** | ||
6059 | * s2io_bist_test - invokes the MemBist test of the card . | ||
6060 | * @sp : private member of the device structure, which is a pointer to the | ||
6061 | * s2io_nic structure. | ||
6062 | * @data:variable that returns the result of each of the test conducted by | ||
6063 | * the driver. | ||
6064 | * Description: | ||
6065 | * This invokes the MemBist test of the card. We give around | ||
6066 | * 2 secs time for the Test to complete. If it's still not complete | ||
6067 | * within this peiod, we consider that the test failed. | ||
6068 | * Return value: | ||
6069 | * 0 on success and -1 on failure. | ||
6070 | */ | ||
6071 | |||
6072 | static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) | ||
6073 | { | ||
6074 | u8 bist = 0; | ||
6075 | int cnt = 0, ret = -1; | ||
6076 | |||
6077 | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); | ||
6078 | bist |= PCI_BIST_START; | ||
6079 | pci_write_config_word(sp->pdev, PCI_BIST, bist); | ||
6080 | |||
6081 | while (cnt < 20) { | ||
6082 | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); | ||
6083 | if (!(bist & PCI_BIST_START)) { | ||
6084 | *data = (bist & PCI_BIST_CODE_MASK); | ||
6085 | ret = 0; | ||
6086 | break; | ||
6087 | } | ||
6088 | msleep(100); | ||
6089 | cnt++; | ||
6090 | } | ||
6091 | |||
6092 | return ret; | ||
6093 | } | ||
6094 | |||
6095 | /** | ||
6096 | * s2io-link_test - verifies the link state of the nic | ||
6097 | * @sp ; private member of the device structure, which is a pointer to the | ||
6098 | * s2io_nic structure. | ||
6099 | * @data: variable that returns the result of each of the test conducted by | ||
6100 | * the driver. | ||
6101 | * Description: | ||
6102 | * The function verifies the link state of the NIC and updates the input | ||
6103 | * argument 'data' appropriately. | ||
6104 | * Return value: | ||
6105 | * 0 on success. | ||
6106 | */ | ||
6107 | |||
6108 | static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) | ||
6109 | { | ||
6110 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
6111 | u64 val64; | ||
6112 | |||
6113 | val64 = readq(&bar0->adapter_status); | ||
6114 | if (!(LINK_IS_UP(val64))) | ||
6115 | *data = 1; | ||
6116 | else | ||
6117 | *data = 0; | ||
6118 | |||
6119 | return *data; | ||
6120 | } | ||
6121 | |||
6122 | /** | ||
6123 | * s2io_rldram_test - offline test for access to the RldRam chip on the NIC | ||
6124 | * @sp - private member of the device structure, which is a pointer to the | ||
6125 | * s2io_nic structure. | ||
6126 | * @data - variable that returns the result of each of the test | ||
6127 | * conducted by the driver. | ||
6128 | * Description: | ||
6129 | * This is one of the offline test that tests the read and write | ||
6130 | * access to the RldRam chip on the NIC. | ||
6131 | * Return value: | ||
6132 | * 0 on success. | ||
6133 | */ | ||
6134 | |||
6135 | static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) | ||
6136 | { | ||
6137 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
6138 | u64 val64; | ||
6139 | int cnt, iteration = 0, test_fail = 0; | ||
6140 | |||
6141 | val64 = readq(&bar0->adapter_control); | ||
6142 | val64 &= ~ADAPTER_ECC_EN; | ||
6143 | writeq(val64, &bar0->adapter_control); | ||
6144 | |||
6145 | val64 = readq(&bar0->mc_rldram_test_ctrl); | ||
6146 | val64 |= MC_RLDRAM_TEST_MODE; | ||
6147 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); | ||
6148 | |||
6149 | val64 = readq(&bar0->mc_rldram_mrs); | ||
6150 | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; | ||
6151 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | ||
6152 | |||
6153 | val64 |= MC_RLDRAM_MRS_ENABLE; | ||
6154 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | ||
6155 | |||
6156 | while (iteration < 2) { | ||
6157 | val64 = 0x55555555aaaa0000ULL; | ||
6158 | if (iteration == 1) | ||
6159 | val64 ^= 0xFFFFFFFFFFFF0000ULL; | ||
6160 | writeq(val64, &bar0->mc_rldram_test_d0); | ||
6161 | |||
6162 | val64 = 0xaaaa5a5555550000ULL; | ||
6163 | if (iteration == 1) | ||
6164 | val64 ^= 0xFFFFFFFFFFFF0000ULL; | ||
6165 | writeq(val64, &bar0->mc_rldram_test_d1); | ||
6166 | |||
6167 | val64 = 0x55aaaaaaaa5a0000ULL; | ||
6168 | if (iteration == 1) | ||
6169 | val64 ^= 0xFFFFFFFFFFFF0000ULL; | ||
6170 | writeq(val64, &bar0->mc_rldram_test_d2); | ||
6171 | |||
6172 | val64 = (u64) (0x0000003ffffe0100ULL); | ||
6173 | writeq(val64, &bar0->mc_rldram_test_add); | ||
6174 | |||
6175 | val64 = MC_RLDRAM_TEST_MODE | | ||
6176 | MC_RLDRAM_TEST_WRITE | | ||
6177 | MC_RLDRAM_TEST_GO; | ||
6178 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); | ||
6179 | |||
6180 | for (cnt = 0; cnt < 5; cnt++) { | ||
6181 | val64 = readq(&bar0->mc_rldram_test_ctrl); | ||
6182 | if (val64 & MC_RLDRAM_TEST_DONE) | ||
6183 | break; | ||
6184 | msleep(200); | ||
6185 | } | ||
6186 | |||
6187 | if (cnt == 5) | ||
6188 | break; | ||
6189 | |||
6190 | val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; | ||
6191 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); | ||
6192 | |||
6193 | for (cnt = 0; cnt < 5; cnt++) { | ||
6194 | val64 = readq(&bar0->mc_rldram_test_ctrl); | ||
6195 | if (val64 & MC_RLDRAM_TEST_DONE) | ||
6196 | break; | ||
6197 | msleep(500); | ||
6198 | } | ||
6199 | |||
6200 | if (cnt == 5) | ||
6201 | break; | ||
6202 | |||
6203 | val64 = readq(&bar0->mc_rldram_test_ctrl); | ||
6204 | if (!(val64 & MC_RLDRAM_TEST_PASS)) | ||
6205 | test_fail = 1; | ||
6206 | |||
6207 | iteration++; | ||
6208 | } | ||
6209 | |||
6210 | *data = test_fail; | ||
6211 | |||
6212 | /* Bring the adapter out of test mode */ | ||
6213 | SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); | ||
6214 | |||
6215 | return test_fail; | ||
6216 | } | ||
6217 | |||
6218 | /** | ||
6219 | * s2io_ethtool_test - conducts 6 tsets to determine the health of card. | ||
6220 | * @sp : private member of the device structure, which is a pointer to the | ||
6221 | * s2io_nic structure. | ||
6222 | * @ethtest : pointer to a ethtool command specific structure that will be | ||
6223 | * returned to the user. | ||
6224 | * @data : variable that returns the result of each of the test | ||
6225 | * conducted by the driver. | ||
6226 | * Description: | ||
6227 | * This function conducts 6 tests ( 4 offline and 2 online) to determine | ||
6228 | * the health of the card. | ||
6229 | * Return value: | ||
6230 | * void | ||
6231 | */ | ||
6232 | |||
6233 | static void s2io_ethtool_test(struct net_device *dev, | ||
6234 | struct ethtool_test *ethtest, | ||
6235 | uint64_t *data) | ||
6236 | { | ||
6237 | struct s2io_nic *sp = netdev_priv(dev); | ||
6238 | int orig_state = netif_running(sp->dev); | ||
6239 | |||
6240 | if (ethtest->flags == ETH_TEST_FL_OFFLINE) { | ||
6241 | /* Offline Tests. */ | ||
6242 | if (orig_state) | ||
6243 | s2io_close(sp->dev); | ||
6244 | |||
6245 | if (s2io_register_test(sp, &data[0])) | ||
6246 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
6247 | |||
6248 | s2io_reset(sp); | ||
6249 | |||
6250 | if (s2io_rldram_test(sp, &data[3])) | ||
6251 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
6252 | |||
6253 | s2io_reset(sp); | ||
6254 | |||
6255 | if (s2io_eeprom_test(sp, &data[1])) | ||
6256 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
6257 | |||
6258 | if (s2io_bist_test(sp, &data[4])) | ||
6259 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
6260 | |||
6261 | if (orig_state) | ||
6262 | s2io_open(sp->dev); | ||
6263 | |||
6264 | data[2] = 0; | ||
6265 | } else { | ||
6266 | /* Online Tests. */ | ||
6267 | if (!orig_state) { | ||
6268 | DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", | ||
6269 | dev->name); | ||
6270 | data[0] = -1; | ||
6271 | data[1] = -1; | ||
6272 | data[2] = -1; | ||
6273 | data[3] = -1; | ||
6274 | data[4] = -1; | ||
6275 | } | ||
6276 | |||
6277 | if (s2io_link_test(sp, &data[2])) | ||
6278 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
6279 | |||
6280 | data[0] = 0; | ||
6281 | data[1] = 0; | ||
6282 | data[3] = 0; | ||
6283 | data[4] = 0; | ||
6284 | } | ||
6285 | } | ||
6286 | |||
6287 | static void s2io_get_ethtool_stats(struct net_device *dev, | ||
6288 | struct ethtool_stats *estats, | ||
6289 | u64 *tmp_stats) | ||
6290 | { | ||
6291 | int i = 0, k; | ||
6292 | struct s2io_nic *sp = netdev_priv(dev); | ||
6293 | struct stat_block *stats = sp->mac_control.stats_info; | ||
6294 | struct swStat *swstats = &stats->sw_stat; | ||
6295 | struct xpakStat *xstats = &stats->xpak_stat; | ||
6296 | |||
6297 | s2io_updt_stats(sp); | ||
6298 | tmp_stats[i++] = | ||
6299 | (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | | ||
6300 | le32_to_cpu(stats->tmac_frms); | ||
6301 | tmp_stats[i++] = | ||
6302 | (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | | ||
6303 | le32_to_cpu(stats->tmac_data_octets); | ||
6304 | tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); | ||
6305 | tmp_stats[i++] = | ||
6306 | (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | | ||
6307 | le32_to_cpu(stats->tmac_mcst_frms); | ||
6308 | tmp_stats[i++] = | ||
6309 | (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | | ||
6310 | le32_to_cpu(stats->tmac_bcst_frms); | ||
6311 | tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); | ||
6312 | tmp_stats[i++] = | ||
6313 | (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | | ||
6314 | le32_to_cpu(stats->tmac_ttl_octets); | ||
6315 | tmp_stats[i++] = | ||
6316 | (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | | ||
6317 | le32_to_cpu(stats->tmac_ucst_frms); | ||
6318 | tmp_stats[i++] = | ||
6319 | (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | | ||
6320 | le32_to_cpu(stats->tmac_nucst_frms); | ||
6321 | tmp_stats[i++] = | ||
6322 | (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | | ||
6323 | le32_to_cpu(stats->tmac_any_err_frms); | ||
6324 | tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); | ||
6325 | tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); | ||
6326 | tmp_stats[i++] = | ||
6327 | (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | | ||
6328 | le32_to_cpu(stats->tmac_vld_ip); | ||
6329 | tmp_stats[i++] = | ||
6330 | (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | | ||
6331 | le32_to_cpu(stats->tmac_drop_ip); | ||
6332 | tmp_stats[i++] = | ||
6333 | (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | | ||
6334 | le32_to_cpu(stats->tmac_icmp); | ||
6335 | tmp_stats[i++] = | ||
6336 | (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | | ||
6337 | le32_to_cpu(stats->tmac_rst_tcp); | ||
6338 | tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); | ||
6339 | tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | | ||
6340 | le32_to_cpu(stats->tmac_udp); | ||
6341 | tmp_stats[i++] = | ||
6342 | (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | | ||
6343 | le32_to_cpu(stats->rmac_vld_frms); | ||
6344 | tmp_stats[i++] = | ||
6345 | (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | | ||
6346 | le32_to_cpu(stats->rmac_data_octets); | ||
6347 | tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); | ||
6348 | tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); | ||
6349 | tmp_stats[i++] = | ||
6350 | (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | | ||
6351 | le32_to_cpu(stats->rmac_vld_mcst_frms); | ||
6352 | tmp_stats[i++] = | ||
6353 | (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | | ||
6354 | le32_to_cpu(stats->rmac_vld_bcst_frms); | ||
6355 | tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); | ||
6356 | tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); | ||
6357 | tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); | ||
6358 | tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); | ||
6359 | tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); | ||
6360 | tmp_stats[i++] = | ||
6361 | (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | | ||
6362 | le32_to_cpu(stats->rmac_ttl_octets); | ||
6363 | tmp_stats[i++] = | ||
6364 | (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 | ||
6365 | | le32_to_cpu(stats->rmac_accepted_ucst_frms); | ||
6366 | tmp_stats[i++] = | ||
6367 | (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) | ||
6368 | << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); | ||
6369 | tmp_stats[i++] = | ||
6370 | (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | | ||
6371 | le32_to_cpu(stats->rmac_discarded_frms); | ||
6372 | tmp_stats[i++] = | ||
6373 | (u64)le32_to_cpu(stats->rmac_drop_events_oflow) | ||
6374 | << 32 | le32_to_cpu(stats->rmac_drop_events); | ||
6375 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); | ||
6376 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); | ||
6377 | tmp_stats[i++] = | ||
6378 | (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | | ||
6379 | le32_to_cpu(stats->rmac_usized_frms); | ||
6380 | tmp_stats[i++] = | ||
6381 | (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | | ||
6382 | le32_to_cpu(stats->rmac_osized_frms); | ||
6383 | tmp_stats[i++] = | ||
6384 | (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | | ||
6385 | le32_to_cpu(stats->rmac_frag_frms); | ||
6386 | tmp_stats[i++] = | ||
6387 | (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | | ||
6388 | le32_to_cpu(stats->rmac_jabber_frms); | ||
6389 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); | ||
6390 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); | ||
6391 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); | ||
6392 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); | ||
6393 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); | ||
6394 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); | ||
6395 | tmp_stats[i++] = | ||
6396 | (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | | ||
6397 | le32_to_cpu(stats->rmac_ip); | ||
6398 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); | ||
6399 | tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); | ||
6400 | tmp_stats[i++] = | ||
6401 | (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | | ||
6402 | le32_to_cpu(stats->rmac_drop_ip); | ||
6403 | tmp_stats[i++] = | ||
6404 | (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | | ||
6405 | le32_to_cpu(stats->rmac_icmp); | ||
6406 | tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); | ||
6407 | tmp_stats[i++] = | ||
6408 | (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | | ||
6409 | le32_to_cpu(stats->rmac_udp); | ||
6410 | tmp_stats[i++] = | ||
6411 | (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | | ||
6412 | le32_to_cpu(stats->rmac_err_drp_udp); | ||
6413 | tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); | ||
6414 | tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); | ||
6415 | tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); | ||
6416 | tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); | ||
6417 | tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); | ||
6418 | tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); | ||
6419 | tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); | ||
6420 | tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); | ||
6421 | tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); | ||
6422 | tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); | ||
6423 | tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); | ||
6424 | tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); | ||
6425 | tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); | ||
6426 | tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); | ||
6427 | tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); | ||
6428 | tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); | ||
6429 | tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); | ||
6430 | tmp_stats[i++] = | ||
6431 | (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | | ||
6432 | le32_to_cpu(stats->rmac_pause_cnt); | ||
6433 | tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); | ||
6434 | tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); | ||
6435 | tmp_stats[i++] = | ||
6436 | (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | | ||
6437 | le32_to_cpu(stats->rmac_accepted_ip); | ||
6438 | tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); | ||
6439 | tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); | ||
6440 | tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); | ||
6441 | tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); | ||
6442 | tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); | ||
6443 | tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); | ||
6444 | tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); | ||
6445 | tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); | ||
6446 | tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); | ||
6447 | tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); | ||
6448 | tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); | ||
6449 | tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); | ||
6450 | tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); | ||
6451 | tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); | ||
6452 | tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); | ||
6453 | tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); | ||
6454 | tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); | ||
6455 | tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); | ||
6456 | tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); | ||
6457 | |||
6458 | /* Enhanced statistics exist only for Hercules */ | ||
6459 | if (sp->device_type == XFRAME_II_DEVICE) { | ||
6460 | tmp_stats[i++] = | ||
6461 | le64_to_cpu(stats->rmac_ttl_1519_4095_frms); | ||
6462 | tmp_stats[i++] = | ||
6463 | le64_to_cpu(stats->rmac_ttl_4096_8191_frms); | ||
6464 | tmp_stats[i++] = | ||
6465 | le64_to_cpu(stats->rmac_ttl_8192_max_frms); | ||
6466 | tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); | ||
6467 | tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); | ||
6468 | tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); | ||
6469 | tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); | ||
6470 | tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); | ||
6471 | tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); | ||
6472 | tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); | ||
6473 | tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); | ||
6474 | tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); | ||
6475 | tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); | ||
6476 | tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); | ||
6477 | tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); | ||
6478 | tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); | ||
6479 | } | ||
6480 | |||
6481 | tmp_stats[i++] = 0; | ||
6482 | tmp_stats[i++] = swstats->single_ecc_errs; | ||
6483 | tmp_stats[i++] = swstats->double_ecc_errs; | ||
6484 | tmp_stats[i++] = swstats->parity_err_cnt; | ||
6485 | tmp_stats[i++] = swstats->serious_err_cnt; | ||
6486 | tmp_stats[i++] = swstats->soft_reset_cnt; | ||
6487 | tmp_stats[i++] = swstats->fifo_full_cnt; | ||
6488 | for (k = 0; k < MAX_RX_RINGS; k++) | ||
6489 | tmp_stats[i++] = swstats->ring_full_cnt[k]; | ||
6490 | tmp_stats[i++] = xstats->alarm_transceiver_temp_high; | ||
6491 | tmp_stats[i++] = xstats->alarm_transceiver_temp_low; | ||
6492 | tmp_stats[i++] = xstats->alarm_laser_bias_current_high; | ||
6493 | tmp_stats[i++] = xstats->alarm_laser_bias_current_low; | ||
6494 | tmp_stats[i++] = xstats->alarm_laser_output_power_high; | ||
6495 | tmp_stats[i++] = xstats->alarm_laser_output_power_low; | ||
6496 | tmp_stats[i++] = xstats->warn_transceiver_temp_high; | ||
6497 | tmp_stats[i++] = xstats->warn_transceiver_temp_low; | ||
6498 | tmp_stats[i++] = xstats->warn_laser_bias_current_high; | ||
6499 | tmp_stats[i++] = xstats->warn_laser_bias_current_low; | ||
6500 | tmp_stats[i++] = xstats->warn_laser_output_power_high; | ||
6501 | tmp_stats[i++] = xstats->warn_laser_output_power_low; | ||
6502 | tmp_stats[i++] = swstats->clubbed_frms_cnt; | ||
6503 | tmp_stats[i++] = swstats->sending_both; | ||
6504 | tmp_stats[i++] = swstats->outof_sequence_pkts; | ||
6505 | tmp_stats[i++] = swstats->flush_max_pkts; | ||
6506 | if (swstats->num_aggregations) { | ||
6507 | u64 tmp = swstats->sum_avg_pkts_aggregated; | ||
6508 | int count = 0; | ||
6509 | /* | ||
6510 | * Since 64-bit divide does not work on all platforms, | ||
6511 | * do repeated subtraction. | ||
6512 | */ | ||
6513 | while (tmp >= swstats->num_aggregations) { | ||
6514 | tmp -= swstats->num_aggregations; | ||
6515 | count++; | ||
6516 | } | ||
6517 | tmp_stats[i++] = count; | ||
6518 | } else | ||
6519 | tmp_stats[i++] = 0; | ||
6520 | tmp_stats[i++] = swstats->mem_alloc_fail_cnt; | ||
6521 | tmp_stats[i++] = swstats->pci_map_fail_cnt; | ||
6522 | tmp_stats[i++] = swstats->watchdog_timer_cnt; | ||
6523 | tmp_stats[i++] = swstats->mem_allocated; | ||
6524 | tmp_stats[i++] = swstats->mem_freed; | ||
6525 | tmp_stats[i++] = swstats->link_up_cnt; | ||
6526 | tmp_stats[i++] = swstats->link_down_cnt; | ||
6527 | tmp_stats[i++] = swstats->link_up_time; | ||
6528 | tmp_stats[i++] = swstats->link_down_time; | ||
6529 | |||
6530 | tmp_stats[i++] = swstats->tx_buf_abort_cnt; | ||
6531 | tmp_stats[i++] = swstats->tx_desc_abort_cnt; | ||
6532 | tmp_stats[i++] = swstats->tx_parity_err_cnt; | ||
6533 | tmp_stats[i++] = swstats->tx_link_loss_cnt; | ||
6534 | tmp_stats[i++] = swstats->tx_list_proc_err_cnt; | ||
6535 | |||
6536 | tmp_stats[i++] = swstats->rx_parity_err_cnt; | ||
6537 | tmp_stats[i++] = swstats->rx_abort_cnt; | ||
6538 | tmp_stats[i++] = swstats->rx_parity_abort_cnt; | ||
6539 | tmp_stats[i++] = swstats->rx_rda_fail_cnt; | ||
6540 | tmp_stats[i++] = swstats->rx_unkn_prot_cnt; | ||
6541 | tmp_stats[i++] = swstats->rx_fcs_err_cnt; | ||
6542 | tmp_stats[i++] = swstats->rx_buf_size_err_cnt; | ||
6543 | tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; | ||
6544 | tmp_stats[i++] = swstats->rx_unkn_err_cnt; | ||
6545 | tmp_stats[i++] = swstats->tda_err_cnt; | ||
6546 | tmp_stats[i++] = swstats->pfc_err_cnt; | ||
6547 | tmp_stats[i++] = swstats->pcc_err_cnt; | ||
6548 | tmp_stats[i++] = swstats->tti_err_cnt; | ||
6549 | tmp_stats[i++] = swstats->tpa_err_cnt; | ||
6550 | tmp_stats[i++] = swstats->sm_err_cnt; | ||
6551 | tmp_stats[i++] = swstats->lso_err_cnt; | ||
6552 | tmp_stats[i++] = swstats->mac_tmac_err_cnt; | ||
6553 | tmp_stats[i++] = swstats->mac_rmac_err_cnt; | ||
6554 | tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; | ||
6555 | tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; | ||
6556 | tmp_stats[i++] = swstats->rc_err_cnt; | ||
6557 | tmp_stats[i++] = swstats->prc_pcix_err_cnt; | ||
6558 | tmp_stats[i++] = swstats->rpa_err_cnt; | ||
6559 | tmp_stats[i++] = swstats->rda_err_cnt; | ||
6560 | tmp_stats[i++] = swstats->rti_err_cnt; | ||
6561 | tmp_stats[i++] = swstats->mc_err_cnt; | ||
6562 | } | ||
6563 | |||
6564 | static int s2io_ethtool_get_regs_len(struct net_device *dev) | ||
6565 | { | ||
6566 | return XENA_REG_SPACE; | ||
6567 | } | ||
6568 | |||
6569 | |||
6570 | static int s2io_get_eeprom_len(struct net_device *dev) | ||
6571 | { | ||
6572 | return XENA_EEPROM_SPACE; | ||
6573 | } | ||
6574 | |||
6575 | static int s2io_get_sset_count(struct net_device *dev, int sset) | ||
6576 | { | ||
6577 | struct s2io_nic *sp = netdev_priv(dev); | ||
6578 | |||
6579 | switch (sset) { | ||
6580 | case ETH_SS_TEST: | ||
6581 | return S2IO_TEST_LEN; | ||
6582 | case ETH_SS_STATS: | ||
6583 | switch (sp->device_type) { | ||
6584 | case XFRAME_I_DEVICE: | ||
6585 | return XFRAME_I_STAT_LEN; | ||
6586 | case XFRAME_II_DEVICE: | ||
6587 | return XFRAME_II_STAT_LEN; | ||
6588 | default: | ||
6589 | return 0; | ||
6590 | } | ||
6591 | default: | ||
6592 | return -EOPNOTSUPP; | ||
6593 | } | ||
6594 | } | ||
6595 | |||
6596 | static void s2io_ethtool_get_strings(struct net_device *dev, | ||
6597 | u32 stringset, u8 *data) | ||
6598 | { | ||
6599 | int stat_size = 0; | ||
6600 | struct s2io_nic *sp = netdev_priv(dev); | ||
6601 | |||
6602 | switch (stringset) { | ||
6603 | case ETH_SS_TEST: | ||
6604 | memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); | ||
6605 | break; | ||
6606 | case ETH_SS_STATS: | ||
6607 | stat_size = sizeof(ethtool_xena_stats_keys); | ||
6608 | memcpy(data, ðtool_xena_stats_keys, stat_size); | ||
6609 | if (sp->device_type == XFRAME_II_DEVICE) { | ||
6610 | memcpy(data + stat_size, | ||
6611 | ðtool_enhanced_stats_keys, | ||
6612 | sizeof(ethtool_enhanced_stats_keys)); | ||
6613 | stat_size += sizeof(ethtool_enhanced_stats_keys); | ||
6614 | } | ||
6615 | |||
6616 | memcpy(data + stat_size, ðtool_driver_stats_keys, | ||
6617 | sizeof(ethtool_driver_stats_keys)); | ||
6618 | } | ||
6619 | } | ||
6620 | |||
6621 | static int s2io_set_features(struct net_device *dev, u32 features) | ||
6622 | { | ||
6623 | struct s2io_nic *sp = netdev_priv(dev); | ||
6624 | u32 changed = (features ^ dev->features) & NETIF_F_LRO; | ||
6625 | |||
6626 | if (changed && netif_running(dev)) { | ||
6627 | int rc; | ||
6628 | |||
6629 | s2io_stop_all_tx_queue(sp); | ||
6630 | s2io_card_down(sp); | ||
6631 | dev->features = features; | ||
6632 | rc = s2io_card_up(sp); | ||
6633 | if (rc) | ||
6634 | s2io_reset(sp); | ||
6635 | else | ||
6636 | s2io_start_all_tx_queue(sp); | ||
6637 | |||
6638 | return rc ? rc : 1; | ||
6639 | } | ||
6640 | |||
6641 | return 0; | ||
6642 | } | ||
6643 | |||
6644 | static const struct ethtool_ops netdev_ethtool_ops = { | ||
6645 | .get_settings = s2io_ethtool_gset, | ||
6646 | .set_settings = s2io_ethtool_sset, | ||
6647 | .get_drvinfo = s2io_ethtool_gdrvinfo, | ||
6648 | .get_regs_len = s2io_ethtool_get_regs_len, | ||
6649 | .get_regs = s2io_ethtool_gregs, | ||
6650 | .get_link = ethtool_op_get_link, | ||
6651 | .get_eeprom_len = s2io_get_eeprom_len, | ||
6652 | .get_eeprom = s2io_ethtool_geeprom, | ||
6653 | .set_eeprom = s2io_ethtool_seeprom, | ||
6654 | .get_ringparam = s2io_ethtool_gringparam, | ||
6655 | .get_pauseparam = s2io_ethtool_getpause_data, | ||
6656 | .set_pauseparam = s2io_ethtool_setpause_data, | ||
6657 | .self_test = s2io_ethtool_test, | ||
6658 | .get_strings = s2io_ethtool_get_strings, | ||
6659 | .set_phys_id = s2io_ethtool_set_led, | ||
6660 | .get_ethtool_stats = s2io_get_ethtool_stats, | ||
6661 | .get_sset_count = s2io_get_sset_count, | ||
6662 | }; | ||
6663 | |||
6664 | /** | ||
6665 | * s2io_ioctl - Entry point for the Ioctl | ||
6666 | * @dev : Device pointer. | ||
6667 | * @ifr : An IOCTL specefic structure, that can contain a pointer to | ||
6668 | * a proprietary structure used to pass information to the driver. | ||
6669 | * @cmd : This is used to distinguish between the different commands that | ||
6670 | * can be passed to the IOCTL functions. | ||
6671 | * Description: | ||
6672 | * Currently there are no special functionality supported in IOCTL, hence | ||
6673 | * function always return EOPNOTSUPPORTED | ||
6674 | */ | ||
6675 | |||
6676 | static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | ||
6677 | { | ||
6678 | return -EOPNOTSUPP; | ||
6679 | } | ||
6680 | |||
6681 | /** | ||
6682 | * s2io_change_mtu - entry point to change MTU size for the device. | ||
6683 | * @dev : device pointer. | ||
6684 | * @new_mtu : the new MTU size for the device. | ||
6685 | * Description: A driver entry point to change MTU size for the device. | ||
6686 | * Before changing the MTU the device must be stopped. | ||
6687 | * Return value: | ||
6688 | * 0 on success and an appropriate (-)ve integer as defined in errno.h | ||
6689 | * file on failure. | ||
6690 | */ | ||
6691 | |||
6692 | static int s2io_change_mtu(struct net_device *dev, int new_mtu) | ||
6693 | { | ||
6694 | struct s2io_nic *sp = netdev_priv(dev); | ||
6695 | int ret = 0; | ||
6696 | |||
6697 | if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { | ||
6698 | DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name); | ||
6699 | return -EPERM; | ||
6700 | } | ||
6701 | |||
6702 | dev->mtu = new_mtu; | ||
6703 | if (netif_running(dev)) { | ||
6704 | s2io_stop_all_tx_queue(sp); | ||
6705 | s2io_card_down(sp); | ||
6706 | ret = s2io_card_up(sp); | ||
6707 | if (ret) { | ||
6708 | DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", | ||
6709 | __func__); | ||
6710 | return ret; | ||
6711 | } | ||
6712 | s2io_wake_all_tx_queue(sp); | ||
6713 | } else { /* Device is down */ | ||
6714 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
6715 | u64 val64 = new_mtu; | ||
6716 | |||
6717 | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); | ||
6718 | } | ||
6719 | |||
6720 | return ret; | ||
6721 | } | ||
6722 | |||
6723 | /** | ||
6724 | * s2io_set_link - Set the LInk status | ||
6725 | * @data: long pointer to device private structue | ||
6726 | * Description: Sets the link status for the adapter | ||
6727 | */ | ||
6728 | |||
6729 | static void s2io_set_link(struct work_struct *work) | ||
6730 | { | ||
6731 | struct s2io_nic *nic = container_of(work, struct s2io_nic, | ||
6732 | set_link_task); | ||
6733 | struct net_device *dev = nic->dev; | ||
6734 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
6735 | register u64 val64; | ||
6736 | u16 subid; | ||
6737 | |||
6738 | rtnl_lock(); | ||
6739 | |||
6740 | if (!netif_running(dev)) | ||
6741 | goto out_unlock; | ||
6742 | |||
6743 | if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { | ||
6744 | /* The card is being reset, no point doing anything */ | ||
6745 | goto out_unlock; | ||
6746 | } | ||
6747 | |||
6748 | subid = nic->pdev->subsystem_device; | ||
6749 | if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { | ||
6750 | /* | ||
6751 | * Allow a small delay for the NICs self initiated | ||
6752 | * cleanup to complete. | ||
6753 | */ | ||
6754 | msleep(100); | ||
6755 | } | ||
6756 | |||
6757 | val64 = readq(&bar0->adapter_status); | ||
6758 | if (LINK_IS_UP(val64)) { | ||
6759 | if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { | ||
6760 | if (verify_xena_quiescence(nic)) { | ||
6761 | val64 = readq(&bar0->adapter_control); | ||
6762 | val64 |= ADAPTER_CNTL_EN; | ||
6763 | writeq(val64, &bar0->adapter_control); | ||
6764 | if (CARDS_WITH_FAULTY_LINK_INDICATORS( | ||
6765 | nic->device_type, subid)) { | ||
6766 | val64 = readq(&bar0->gpio_control); | ||
6767 | val64 |= GPIO_CTRL_GPIO_0; | ||
6768 | writeq(val64, &bar0->gpio_control); | ||
6769 | val64 = readq(&bar0->gpio_control); | ||
6770 | } else { | ||
6771 | val64 |= ADAPTER_LED_ON; | ||
6772 | writeq(val64, &bar0->adapter_control); | ||
6773 | } | ||
6774 | nic->device_enabled_once = true; | ||
6775 | } else { | ||
6776 | DBG_PRINT(ERR_DBG, | ||
6777 | "%s: Error: device is not Quiescent\n", | ||
6778 | dev->name); | ||
6779 | s2io_stop_all_tx_queue(nic); | ||
6780 | } | ||
6781 | } | ||
6782 | val64 = readq(&bar0->adapter_control); | ||
6783 | val64 |= ADAPTER_LED_ON; | ||
6784 | writeq(val64, &bar0->adapter_control); | ||
6785 | s2io_link(nic, LINK_UP); | ||
6786 | } else { | ||
6787 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, | ||
6788 | subid)) { | ||
6789 | val64 = readq(&bar0->gpio_control); | ||
6790 | val64 &= ~GPIO_CTRL_GPIO_0; | ||
6791 | writeq(val64, &bar0->gpio_control); | ||
6792 | val64 = readq(&bar0->gpio_control); | ||
6793 | } | ||
6794 | /* turn off LED */ | ||
6795 | val64 = readq(&bar0->adapter_control); | ||
6796 | val64 = val64 & (~ADAPTER_LED_ON); | ||
6797 | writeq(val64, &bar0->adapter_control); | ||
6798 | s2io_link(nic, LINK_DOWN); | ||
6799 | } | ||
6800 | clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); | ||
6801 | |||
6802 | out_unlock: | ||
6803 | rtnl_unlock(); | ||
6804 | } | ||
6805 | |||
6806 | static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, | ||
6807 | struct buffAdd *ba, | ||
6808 | struct sk_buff **skb, u64 *temp0, u64 *temp1, | ||
6809 | u64 *temp2, int size) | ||
6810 | { | ||
6811 | struct net_device *dev = sp->dev; | ||
6812 | struct swStat *stats = &sp->mac_control.stats_info->sw_stat; | ||
6813 | |||
6814 | if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { | ||
6815 | struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; | ||
6816 | /* allocate skb */ | ||
6817 | if (*skb) { | ||
6818 | DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); | ||
6819 | /* | ||
6820 | * As Rx frame are not going to be processed, | ||
6821 | * using same mapped address for the Rxd | ||
6822 | * buffer pointer | ||
6823 | */ | ||
6824 | rxdp1->Buffer0_ptr = *temp0; | ||
6825 | } else { | ||
6826 | *skb = dev_alloc_skb(size); | ||
6827 | if (!(*skb)) { | ||
6828 | DBG_PRINT(INFO_DBG, | ||
6829 | "%s: Out of memory to allocate %s\n", | ||
6830 | dev->name, "1 buf mode SKBs"); | ||
6831 | stats->mem_alloc_fail_cnt++; | ||
6832 | return -ENOMEM ; | ||
6833 | } | ||
6834 | stats->mem_allocated += (*skb)->truesize; | ||
6835 | /* storing the mapped addr in a temp variable | ||
6836 | * such it will be used for next rxd whose | ||
6837 | * Host Control is NULL | ||
6838 | */ | ||
6839 | rxdp1->Buffer0_ptr = *temp0 = | ||
6840 | pci_map_single(sp->pdev, (*skb)->data, | ||
6841 | size - NET_IP_ALIGN, | ||
6842 | PCI_DMA_FROMDEVICE); | ||
6843 | if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr)) | ||
6844 | goto memalloc_failed; | ||
6845 | rxdp->Host_Control = (unsigned long) (*skb); | ||
6846 | } | ||
6847 | } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { | ||
6848 | struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; | ||
6849 | /* Two buffer Mode */ | ||
6850 | if (*skb) { | ||
6851 | rxdp3->Buffer2_ptr = *temp2; | ||
6852 | rxdp3->Buffer0_ptr = *temp0; | ||
6853 | rxdp3->Buffer1_ptr = *temp1; | ||
6854 | } else { | ||
6855 | *skb = dev_alloc_skb(size); | ||
6856 | if (!(*skb)) { | ||
6857 | DBG_PRINT(INFO_DBG, | ||
6858 | "%s: Out of memory to allocate %s\n", | ||
6859 | dev->name, | ||
6860 | "2 buf mode SKBs"); | ||
6861 | stats->mem_alloc_fail_cnt++; | ||
6862 | return -ENOMEM; | ||
6863 | } | ||
6864 | stats->mem_allocated += (*skb)->truesize; | ||
6865 | rxdp3->Buffer2_ptr = *temp2 = | ||
6866 | pci_map_single(sp->pdev, (*skb)->data, | ||
6867 | dev->mtu + 4, | ||
6868 | PCI_DMA_FROMDEVICE); | ||
6869 | if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr)) | ||
6870 | goto memalloc_failed; | ||
6871 | rxdp3->Buffer0_ptr = *temp0 = | ||
6872 | pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN, | ||
6873 | PCI_DMA_FROMDEVICE); | ||
6874 | if (pci_dma_mapping_error(sp->pdev, | ||
6875 | rxdp3->Buffer0_ptr)) { | ||
6876 | pci_unmap_single(sp->pdev, | ||
6877 | (dma_addr_t)rxdp3->Buffer2_ptr, | ||
6878 | dev->mtu + 4, | ||
6879 | PCI_DMA_FROMDEVICE); | ||
6880 | goto memalloc_failed; | ||
6881 | } | ||
6882 | rxdp->Host_Control = (unsigned long) (*skb); | ||
6883 | |||
6884 | /* Buffer-1 will be dummy buffer not used */ | ||
6885 | rxdp3->Buffer1_ptr = *temp1 = | ||
6886 | pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN, | ||
6887 | PCI_DMA_FROMDEVICE); | ||
6888 | if (pci_dma_mapping_error(sp->pdev, | ||
6889 | rxdp3->Buffer1_ptr)) { | ||
6890 | pci_unmap_single(sp->pdev, | ||
6891 | (dma_addr_t)rxdp3->Buffer0_ptr, | ||
6892 | BUF0_LEN, PCI_DMA_FROMDEVICE); | ||
6893 | pci_unmap_single(sp->pdev, | ||
6894 | (dma_addr_t)rxdp3->Buffer2_ptr, | ||
6895 | dev->mtu + 4, | ||
6896 | PCI_DMA_FROMDEVICE); | ||
6897 | goto memalloc_failed; | ||
6898 | } | ||
6899 | } | ||
6900 | } | ||
6901 | return 0; | ||
6902 | |||
6903 | memalloc_failed: | ||
6904 | stats->pci_map_fail_cnt++; | ||
6905 | stats->mem_freed += (*skb)->truesize; | ||
6906 | dev_kfree_skb(*skb); | ||
6907 | return -ENOMEM; | ||
6908 | } | ||
6909 | |||
6910 | static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, | ||
6911 | int size) | ||
6912 | { | ||
6913 | struct net_device *dev = sp->dev; | ||
6914 | if (sp->rxd_mode == RXD_MODE_1) { | ||
6915 | rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); | ||
6916 | } else if (sp->rxd_mode == RXD_MODE_3B) { | ||
6917 | rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); | ||
6918 | rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); | ||
6919 | rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); | ||
6920 | } | ||
6921 | } | ||
6922 | |||
6923 | static int rxd_owner_bit_reset(struct s2io_nic *sp) | ||
6924 | { | ||
6925 | int i, j, k, blk_cnt = 0, size; | ||
6926 | struct config_param *config = &sp->config; | ||
6927 | struct mac_info *mac_control = &sp->mac_control; | ||
6928 | struct net_device *dev = sp->dev; | ||
6929 | struct RxD_t *rxdp = NULL; | ||
6930 | struct sk_buff *skb = NULL; | ||
6931 | struct buffAdd *ba = NULL; | ||
6932 | u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; | ||
6933 | |||
6934 | /* Calculate the size based on ring mode */ | ||
6935 | size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + | ||
6936 | HEADER_802_2_SIZE + HEADER_SNAP_SIZE; | ||
6937 | if (sp->rxd_mode == RXD_MODE_1) | ||
6938 | size += NET_IP_ALIGN; | ||
6939 | else if (sp->rxd_mode == RXD_MODE_3B) | ||
6940 | size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; | ||
6941 | |||
6942 | for (i = 0; i < config->rx_ring_num; i++) { | ||
6943 | struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; | ||
6944 | struct ring_info *ring = &mac_control->rings[i]; | ||
6945 | |||
6946 | blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); | ||
6947 | |||
6948 | for (j = 0; j < blk_cnt; j++) { | ||
6949 | for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { | ||
6950 | rxdp = ring->rx_blocks[j].rxds[k].virt_addr; | ||
6951 | if (sp->rxd_mode == RXD_MODE_3B) | ||
6952 | ba = &ring->ba[j][k]; | ||
6953 | if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, | ||
6954 | (u64 *)&temp0_64, | ||
6955 | (u64 *)&temp1_64, | ||
6956 | (u64 *)&temp2_64, | ||
6957 | size) == -ENOMEM) { | ||
6958 | return 0; | ||
6959 | } | ||
6960 | |||
6961 | set_rxd_buffer_size(sp, rxdp, size); | ||
6962 | wmb(); | ||
6963 | /* flip the Ownership bit to Hardware */ | ||
6964 | rxdp->Control_1 |= RXD_OWN_XENA; | ||
6965 | } | ||
6966 | } | ||
6967 | } | ||
6968 | return 0; | ||
6969 | |||
6970 | } | ||
6971 | |||
6972 | static int s2io_add_isr(struct s2io_nic *sp) | ||
6973 | { | ||
6974 | int ret = 0; | ||
6975 | struct net_device *dev = sp->dev; | ||
6976 | int err = 0; | ||
6977 | |||
6978 | if (sp->config.intr_type == MSI_X) | ||
6979 | ret = s2io_enable_msi_x(sp); | ||
6980 | if (ret) { | ||
6981 | DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); | ||
6982 | sp->config.intr_type = INTA; | ||
6983 | } | ||
6984 | |||
6985 | /* | ||
6986 | * Store the values of the MSIX table in | ||
6987 | * the struct s2io_nic structure | ||
6988 | */ | ||
6989 | store_xmsi_data(sp); | ||
6990 | |||
6991 | /* After proper initialization of H/W, register ISR */ | ||
6992 | if (sp->config.intr_type == MSI_X) { | ||
6993 | int i, msix_rx_cnt = 0; | ||
6994 | |||
6995 | for (i = 0; i < sp->num_entries; i++) { | ||
6996 | if (sp->s2io_entries[i].in_use == MSIX_FLG) { | ||
6997 | if (sp->s2io_entries[i].type == | ||
6998 | MSIX_RING_TYPE) { | ||
6999 | sprintf(sp->desc[i], "%s:MSI-X-%d-RX", | ||
7000 | dev->name, i); | ||
7001 | err = request_irq(sp->entries[i].vector, | ||
7002 | s2io_msix_ring_handle, | ||
7003 | 0, | ||
7004 | sp->desc[i], | ||
7005 | sp->s2io_entries[i].arg); | ||
7006 | } else if (sp->s2io_entries[i].type == | ||
7007 | MSIX_ALARM_TYPE) { | ||
7008 | sprintf(sp->desc[i], "%s:MSI-X-%d-TX", | ||
7009 | dev->name, i); | ||
7010 | err = request_irq(sp->entries[i].vector, | ||
7011 | s2io_msix_fifo_handle, | ||
7012 | 0, | ||
7013 | sp->desc[i], | ||
7014 | sp->s2io_entries[i].arg); | ||
7015 | |||
7016 | } | ||
7017 | /* if either data or addr is zero print it. */ | ||
7018 | if (!(sp->msix_info[i].addr && | ||
7019 | sp->msix_info[i].data)) { | ||
7020 | DBG_PRINT(ERR_DBG, | ||
7021 | "%s @Addr:0x%llx Data:0x%llx\n", | ||
7022 | sp->desc[i], | ||
7023 | (unsigned long long) | ||
7024 | sp->msix_info[i].addr, | ||
7025 | (unsigned long long) | ||
7026 | ntohl(sp->msix_info[i].data)); | ||
7027 | } else | ||
7028 | msix_rx_cnt++; | ||
7029 | if (err) { | ||
7030 | remove_msix_isr(sp); | ||
7031 | |||
7032 | DBG_PRINT(ERR_DBG, | ||
7033 | "%s:MSI-X-%d registration " | ||
7034 | "failed\n", dev->name, i); | ||
7035 | |||
7036 | DBG_PRINT(ERR_DBG, | ||
7037 | "%s: Defaulting to INTA\n", | ||
7038 | dev->name); | ||
7039 | sp->config.intr_type = INTA; | ||
7040 | break; | ||
7041 | } | ||
7042 | sp->s2io_entries[i].in_use = | ||
7043 | MSIX_REGISTERED_SUCCESS; | ||
7044 | } | ||
7045 | } | ||
7046 | if (!err) { | ||
7047 | pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); | ||
7048 | DBG_PRINT(INFO_DBG, | ||
7049 | "MSI-X-TX entries enabled through alarm vector\n"); | ||
7050 | } | ||
7051 | } | ||
7052 | if (sp->config.intr_type == INTA) { | ||
7053 | err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED, | ||
7054 | sp->name, dev); | ||
7055 | if (err) { | ||
7056 | DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", | ||
7057 | dev->name); | ||
7058 | return -1; | ||
7059 | } | ||
7060 | } | ||
7061 | return 0; | ||
7062 | } | ||
7063 | |||
7064 | static void s2io_rem_isr(struct s2io_nic *sp) | ||
7065 | { | ||
7066 | if (sp->config.intr_type == MSI_X) | ||
7067 | remove_msix_isr(sp); | ||
7068 | else | ||
7069 | remove_inta_isr(sp); | ||
7070 | } | ||
7071 | |||
7072 | static void do_s2io_card_down(struct s2io_nic *sp, int do_io) | ||
7073 | { | ||
7074 | int cnt = 0; | ||
7075 | struct XENA_dev_config __iomem *bar0 = sp->bar0; | ||
7076 | register u64 val64 = 0; | ||
7077 | struct config_param *config; | ||
7078 | config = &sp->config; | ||
7079 | |||
7080 | if (!is_s2io_card_up(sp)) | ||
7081 | return; | ||
7082 | |||
7083 | del_timer_sync(&sp->alarm_timer); | ||
7084 | /* If s2io_set_link task is executing, wait till it completes. */ | ||
7085 | while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) | ||
7086 | msleep(50); | ||
7087 | clear_bit(__S2IO_STATE_CARD_UP, &sp->state); | ||
7088 | |||
7089 | /* Disable napi */ | ||
7090 | if (sp->config.napi) { | ||
7091 | int off = 0; | ||
7092 | if (config->intr_type == MSI_X) { | ||
7093 | for (; off < sp->config.rx_ring_num; off++) | ||
7094 | napi_disable(&sp->mac_control.rings[off].napi); | ||
7095 | } | ||
7096 | else | ||
7097 | napi_disable(&sp->napi); | ||
7098 | } | ||
7099 | |||
7100 | /* disable Tx and Rx traffic on the NIC */ | ||
7101 | if (do_io) | ||
7102 | stop_nic(sp); | ||
7103 | |||
7104 | s2io_rem_isr(sp); | ||
7105 | |||
7106 | /* stop the tx queue, indicate link down */ | ||
7107 | s2io_link(sp, LINK_DOWN); | ||
7108 | |||
7109 | /* Check if the device is Quiescent and then Reset the NIC */ | ||
7110 | while (do_io) { | ||
7111 | /* As per the HW requirement we need to replenish the | ||
7112 | * receive buffer to avoid the ring bump. Since there is | ||
7113 | * no intention of processing the Rx frame at this pointwe are | ||
7114 | * just setting the ownership bit of rxd in Each Rx | ||
7115 | * ring to HW and set the appropriate buffer size | ||
7116 | * based on the ring mode | ||
7117 | */ | ||
7118 | rxd_owner_bit_reset(sp); | ||
7119 | |||
7120 | val64 = readq(&bar0->adapter_status); | ||
7121 | if (verify_xena_quiescence(sp)) { | ||
7122 | if (verify_pcc_quiescent(sp, sp->device_enabled_once)) | ||
7123 | break; | ||
7124 | } | ||
7125 | |||
7126 | msleep(50); | ||
7127 | cnt++; | ||
7128 | if (cnt == 10) { | ||
7129 | DBG_PRINT(ERR_DBG, "Device not Quiescent - " | ||
7130 | "adapter status reads 0x%llx\n", | ||
7131 | (unsigned long long)val64); | ||
7132 | break; | ||
7133 | } | ||
7134 | } | ||
7135 | if (do_io) | ||
7136 | s2io_reset(sp); | ||
7137 | |||
7138 | /* Free all Tx buffers */ | ||
7139 | free_tx_buffers(sp); | ||
7140 | |||
7141 | /* Free all Rx buffers */ | ||
7142 | free_rx_buffers(sp); | ||
7143 | |||
7144 | clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); | ||
7145 | } | ||
7146 | |||
7147 | static void s2io_card_down(struct s2io_nic *sp) | ||
7148 | { | ||
7149 | do_s2io_card_down(sp, 1); | ||
7150 | } | ||
7151 | |||
7152 | static int s2io_card_up(struct s2io_nic *sp) | ||
7153 | { | ||
7154 | int i, ret = 0; | ||
7155 | struct config_param *config; | ||
7156 | struct mac_info *mac_control; | ||
7157 | struct net_device *dev = (struct net_device *)sp->dev; | ||
7158 | u16 interruptible; | ||
7159 | |||
7160 | /* Initialize the H/W I/O registers */ | ||
7161 | ret = init_nic(sp); | ||
7162 | if (ret != 0) { | ||
7163 | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", | ||
7164 | dev->name); | ||
7165 | if (ret != -EIO) | ||
7166 | s2io_reset(sp); | ||
7167 | return ret; | ||
7168 | } | ||
7169 | |||
7170 | /* | ||
7171 | * Initializing the Rx buffers. For now we are considering only 1 | ||
7172 | * Rx ring and initializing buffers into 30 Rx blocks | ||
7173 | */ | ||
7174 | config = &sp->config; | ||
7175 | mac_control = &sp->mac_control; | ||
7176 | |||
7177 | for (i = 0; i < config->rx_ring_num; i++) { | ||
7178 | struct ring_info *ring = &mac_control->rings[i]; | ||
7179 | |||
7180 | ring->mtu = dev->mtu; | ||
7181 | ring->lro = !!(dev->features & NETIF_F_LRO); | ||
7182 | ret = fill_rx_buffers(sp, ring, 1); | ||
7183 | if (ret) { | ||
7184 | DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", | ||
7185 | dev->name); | ||
7186 | s2io_reset(sp); | ||
7187 | free_rx_buffers(sp); | ||
7188 | return -ENOMEM; | ||
7189 | } | ||
7190 | DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, | ||
7191 | ring->rx_bufs_left); | ||
7192 | } | ||
7193 | |||
7194 | /* Initialise napi */ | ||
7195 | if (config->napi) { | ||
7196 | if (config->intr_type == MSI_X) { | ||
7197 | for (i = 0; i < sp->config.rx_ring_num; i++) | ||
7198 | napi_enable(&sp->mac_control.rings[i].napi); | ||
7199 | } else { | ||
7200 | napi_enable(&sp->napi); | ||
7201 | } | ||
7202 | } | ||
7203 | |||
7204 | /* Maintain the state prior to the open */ | ||
7205 | if (sp->promisc_flg) | ||
7206 | sp->promisc_flg = 0; | ||
7207 | if (sp->m_cast_flg) { | ||
7208 | sp->m_cast_flg = 0; | ||
7209 | sp->all_multi_pos = 0; | ||
7210 | } | ||
7211 | |||
7212 | /* Setting its receive mode */ | ||
7213 | s2io_set_multicast(dev); | ||
7214 | |||
7215 | if (dev->features & NETIF_F_LRO) { | ||
7216 | /* Initialize max aggregatable pkts per session based on MTU */ | ||
7217 | sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; | ||
7218 | /* Check if we can use (if specified) user provided value */ | ||
7219 | if (lro_max_pkts < sp->lro_max_aggr_per_sess) | ||
7220 | sp->lro_max_aggr_per_sess = lro_max_pkts; | ||
7221 | } | ||
7222 | |||
7223 | /* Enable Rx Traffic and interrupts on the NIC */ | ||
7224 | if (start_nic(sp)) { | ||
7225 | DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); | ||
7226 | s2io_reset(sp); | ||
7227 | free_rx_buffers(sp); | ||
7228 | return -ENODEV; | ||
7229 | } | ||
7230 | |||
7231 | /* Add interrupt service routine */ | ||
7232 | if (s2io_add_isr(sp) != 0) { | ||
7233 | if (sp->config.intr_type == MSI_X) | ||
7234 | s2io_rem_isr(sp); | ||
7235 | s2io_reset(sp); | ||
7236 | free_rx_buffers(sp); | ||
7237 | return -ENODEV; | ||
7238 | } | ||
7239 | |||
7240 | S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); | ||
7241 | |||
7242 | set_bit(__S2IO_STATE_CARD_UP, &sp->state); | ||
7243 | |||
7244 | /* Enable select interrupts */ | ||
7245 | en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); | ||
7246 | if (sp->config.intr_type != INTA) { | ||
7247 | interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; | ||
7248 | en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); | ||
7249 | } else { | ||
7250 | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; | ||
7251 | interruptible |= TX_PIC_INTR; | ||
7252 | en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); | ||
7253 | } | ||
7254 | |||
7255 | return 0; | ||
7256 | } | ||
7257 | |||
7258 | /** | ||
7259 | * s2io_restart_nic - Resets the NIC. | ||
7260 | * @data : long pointer to the device private structure | ||
7261 | * Description: | ||
7262 | * This function is scheduled to be run by the s2io_tx_watchdog | ||
7263 | * function after 0.5 secs to reset the NIC. The idea is to reduce | ||
7264 | * the run time of the watch dog routine which is run holding a | ||
7265 | * spin lock. | ||
7266 | */ | ||
7267 | |||
7268 | static void s2io_restart_nic(struct work_struct *work) | ||
7269 | { | ||
7270 | struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); | ||
7271 | struct net_device *dev = sp->dev; | ||
7272 | |||
7273 | rtnl_lock(); | ||
7274 | |||
7275 | if (!netif_running(dev)) | ||
7276 | goto out_unlock; | ||
7277 | |||
7278 | s2io_card_down(sp); | ||
7279 | if (s2io_card_up(sp)) { | ||
7280 | DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); | ||
7281 | } | ||
7282 | s2io_wake_all_tx_queue(sp); | ||
7283 | DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); | ||
7284 | out_unlock: | ||
7285 | rtnl_unlock(); | ||
7286 | } | ||
7287 | |||
7288 | /** | ||
7289 | * s2io_tx_watchdog - Watchdog for transmit side. | ||
7290 | * @dev : Pointer to net device structure | ||
7291 | * Description: | ||
7292 | * This function is triggered if the Tx Queue is stopped | ||
7293 | * for a pre-defined amount of time when the Interface is still up. | ||
7294 | * If the Interface is jammed in such a situation, the hardware is | ||
7295 | * reset (by s2io_close) and restarted again (by s2io_open) to | ||
7296 | * overcome any problem that might have been caused in the hardware. | ||
7297 | * Return value: | ||
7298 | * void | ||
7299 | */ | ||
7300 | |||
7301 | static void s2io_tx_watchdog(struct net_device *dev) | ||
7302 | { | ||
7303 | struct s2io_nic *sp = netdev_priv(dev); | ||
7304 | struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; | ||
7305 | |||
7306 | if (netif_carrier_ok(dev)) { | ||
7307 | swstats->watchdog_timer_cnt++; | ||
7308 | schedule_work(&sp->rst_timer_task); | ||
7309 | swstats->soft_reset_cnt++; | ||
7310 | } | ||
7311 | } | ||
7312 | |||
7313 | /** | ||
7314 | * rx_osm_handler - To perform some OS related operations on SKB. | ||
7315 | * @sp: private member of the device structure,pointer to s2io_nic structure. | ||
7316 | * @skb : the socket buffer pointer. | ||
7317 | * @len : length of the packet | ||
7318 | * @cksum : FCS checksum of the frame. | ||
7319 | * @ring_no : the ring from which this RxD was extracted. | ||
7320 | * Description: | ||
7321 | * This function is called by the Rx interrupt serivce routine to perform | ||
7322 | * some OS related operations on the SKB before passing it to the upper | ||
7323 | * layers. It mainly checks if the checksum is OK, if so adds it to the | ||
7324 | * SKBs cksum variable, increments the Rx packet count and passes the SKB | ||
7325 | * to the upper layer. If the checksum is wrong, it increments the Rx | ||
7326 | * packet error count, frees the SKB and returns error. | ||
7327 | * Return value: | ||
7328 | * SUCCESS on success and -1 on failure. | ||
7329 | */ | ||
7330 | static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) | ||
7331 | { | ||
7332 | struct s2io_nic *sp = ring_data->nic; | ||
7333 | struct net_device *dev = (struct net_device *)ring_data->dev; | ||
7334 | struct sk_buff *skb = (struct sk_buff *) | ||
7335 | ((unsigned long)rxdp->Host_Control); | ||
7336 | int ring_no = ring_data->ring_no; | ||
7337 | u16 l3_csum, l4_csum; | ||
7338 | unsigned long long err = rxdp->Control_1 & RXD_T_CODE; | ||
7339 | struct lro *uninitialized_var(lro); | ||
7340 | u8 err_mask; | ||
7341 | struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; | ||
7342 | |||
7343 | skb->dev = dev; | ||
7344 | |||
7345 | if (err) { | ||
7346 | /* Check for parity error */ | ||
7347 | if (err & 0x1) | ||
7348 | swstats->parity_err_cnt++; | ||
7349 | |||
7350 | err_mask = err >> 48; | ||
7351 | switch (err_mask) { | ||
7352 | case 1: | ||
7353 | swstats->rx_parity_err_cnt++; | ||
7354 | break; | ||
7355 | |||
7356 | case 2: | ||
7357 | swstats->rx_abort_cnt++; | ||
7358 | break; | ||
7359 | |||
7360 | case 3: | ||
7361 | swstats->rx_parity_abort_cnt++; | ||
7362 | break; | ||
7363 | |||
7364 | case 4: | ||
7365 | swstats->rx_rda_fail_cnt++; | ||
7366 | break; | ||
7367 | |||
7368 | case 5: | ||
7369 | swstats->rx_unkn_prot_cnt++; | ||
7370 | break; | ||
7371 | |||
7372 | case 6: | ||
7373 | swstats->rx_fcs_err_cnt++; | ||
7374 | break; | ||
7375 | |||
7376 | case 7: | ||
7377 | swstats->rx_buf_size_err_cnt++; | ||
7378 | break; | ||
7379 | |||
7380 | case 8: | ||
7381 | swstats->rx_rxd_corrupt_cnt++; | ||
7382 | break; | ||
7383 | |||
7384 | case 15: | ||
7385 | swstats->rx_unkn_err_cnt++; | ||
7386 | break; | ||
7387 | } | ||
7388 | /* | ||
7389 | * Drop the packet if bad transfer code. Exception being | ||
7390 | * 0x5, which could be due to unsupported IPv6 extension header. | ||
7391 | * In this case, we let stack handle the packet. | ||
7392 | * Note that in this case, since checksum will be incorrect, | ||
7393 | * stack will validate the same. | ||
7394 | */ | ||
7395 | if (err_mask != 0x5) { | ||
7396 | DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", | ||
7397 | dev->name, err_mask); | ||
7398 | dev->stats.rx_crc_errors++; | ||
7399 | swstats->mem_freed | ||
7400 | += skb->truesize; | ||
7401 | dev_kfree_skb(skb); | ||
7402 | ring_data->rx_bufs_left -= 1; | ||
7403 | rxdp->Host_Control = 0; | ||
7404 | return 0; | ||
7405 | } | ||
7406 | } | ||
7407 | |||
7408 | rxdp->Host_Control = 0; | ||
7409 | if (sp->rxd_mode == RXD_MODE_1) { | ||
7410 | int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); | ||
7411 | |||
7412 | skb_put(skb, len); | ||
7413 | } else if (sp->rxd_mode == RXD_MODE_3B) { | ||
7414 | int get_block = ring_data->rx_curr_get_info.block_index; | ||
7415 | int get_off = ring_data->rx_curr_get_info.offset; | ||
7416 | int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); | ||
7417 | int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); | ||
7418 | unsigned char *buff = skb_push(skb, buf0_len); | ||
7419 | |||
7420 | struct buffAdd *ba = &ring_data->ba[get_block][get_off]; | ||
7421 | memcpy(buff, ba->ba_0, buf0_len); | ||
7422 | skb_put(skb, buf2_len); | ||
7423 | } | ||
7424 | |||
7425 | if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && | ||
7426 | ((!ring_data->lro) || | ||
7427 | (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) && | ||
7428 | (dev->features & NETIF_F_RXCSUM)) { | ||
7429 | l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); | ||
7430 | l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); | ||
7431 | if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { | ||
7432 | /* | ||
7433 | * NIC verifies if the Checksum of the received | ||
7434 | * frame is Ok or not and accordingly returns | ||
7435 | * a flag in the RxD. | ||
7436 | */ | ||
7437 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
7438 | if (ring_data->lro) { | ||
7439 | u32 tcp_len = 0; | ||
7440 | u8 *tcp; | ||
7441 | int ret = 0; | ||
7442 | |||
7443 | ret = s2io_club_tcp_session(ring_data, | ||
7444 | skb->data, &tcp, | ||
7445 | &tcp_len, &lro, | ||
7446 | rxdp, sp); | ||
7447 | switch (ret) { | ||
7448 | case 3: /* Begin anew */ | ||
7449 | lro->parent = skb; | ||
7450 | goto aggregate; | ||
7451 | case 1: /* Aggregate */ | ||
7452 | lro_append_pkt(sp, lro, skb, tcp_len); | ||
7453 | goto aggregate; | ||
7454 | case 4: /* Flush session */ | ||
7455 | lro_append_pkt(sp, lro, skb, tcp_len); | ||
7456 | queue_rx_frame(lro->parent, | ||
7457 | lro->vlan_tag); | ||
7458 | clear_lro_session(lro); | ||
7459 | swstats->flush_max_pkts++; | ||
7460 | goto aggregate; | ||
7461 | case 2: /* Flush both */ | ||
7462 | lro->parent->data_len = lro->frags_len; | ||
7463 | swstats->sending_both++; | ||
7464 | queue_rx_frame(lro->parent, | ||
7465 | lro->vlan_tag); | ||
7466 | clear_lro_session(lro); | ||
7467 | goto send_up; | ||
7468 | case 0: /* sessions exceeded */ | ||
7469 | case -1: /* non-TCP or not L2 aggregatable */ | ||
7470 | case 5: /* | ||
7471 | * First pkt in session not | ||
7472 | * L3/L4 aggregatable | ||
7473 | */ | ||
7474 | break; | ||
7475 | default: | ||
7476 | DBG_PRINT(ERR_DBG, | ||
7477 | "%s: Samadhana!!\n", | ||
7478 | __func__); | ||
7479 | BUG(); | ||
7480 | } | ||
7481 | } | ||
7482 | } else { | ||
7483 | /* | ||
7484 | * Packet with erroneous checksum, let the | ||
7485 | * upper layers deal with it. | ||
7486 | */ | ||
7487 | skb_checksum_none_assert(skb); | ||
7488 | } | ||
7489 | } else | ||
7490 | skb_checksum_none_assert(skb); | ||
7491 | |||
7492 | swstats->mem_freed += skb->truesize; | ||
7493 | send_up: | ||
7494 | skb_record_rx_queue(skb, ring_no); | ||
7495 | queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); | ||
7496 | aggregate: | ||
7497 | sp->mac_control.rings[ring_no].rx_bufs_left -= 1; | ||
7498 | return SUCCESS; | ||
7499 | } | ||
7500 | |||
7501 | /** | ||
7502 | * s2io_link - stops/starts the Tx queue. | ||
7503 | * @sp : private member of the device structure, which is a pointer to the | ||
7504 | * s2io_nic structure. | ||
7505 | * @link : inidicates whether link is UP/DOWN. | ||
7506 | * Description: | ||
7507 | * This function stops/starts the Tx queue depending on whether the link | ||
7508 | * status of the NIC is is down or up. This is called by the Alarm | ||
7509 | * interrupt handler whenever a link change interrupt comes up. | ||
7510 | * Return value: | ||
7511 | * void. | ||
7512 | */ | ||
7513 | |||
7514 | static void s2io_link(struct s2io_nic *sp, int link) | ||
7515 | { | ||
7516 | struct net_device *dev = (struct net_device *)sp->dev; | ||
7517 | struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; | ||
7518 | |||
7519 | if (link != sp->last_link_state) { | ||
7520 | init_tti(sp, link); | ||
7521 | if (link == LINK_DOWN) { | ||
7522 | DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); | ||
7523 | s2io_stop_all_tx_queue(sp); | ||
7524 | netif_carrier_off(dev); | ||
7525 | if (swstats->link_up_cnt) | ||
7526 | swstats->link_up_time = | ||
7527 | jiffies - sp->start_time; | ||
7528 | swstats->link_down_cnt++; | ||
7529 | } else { | ||
7530 | DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); | ||
7531 | if (swstats->link_down_cnt) | ||
7532 | swstats->link_down_time = | ||
7533 | jiffies - sp->start_time; | ||
7534 | swstats->link_up_cnt++; | ||
7535 | netif_carrier_on(dev); | ||
7536 | s2io_wake_all_tx_queue(sp); | ||
7537 | } | ||
7538 | } | ||
7539 | sp->last_link_state = link; | ||
7540 | sp->start_time = jiffies; | ||
7541 | } | ||
7542 | |||
7543 | /** | ||
7544 | * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . | ||
7545 | * @sp : private member of the device structure, which is a pointer to the | ||
7546 | * s2io_nic structure. | ||
7547 | * Description: | ||
7548 | * This function initializes a few of the PCI and PCI-X configuration registers | ||
7549 | * with recommended values. | ||
7550 | * Return value: | ||
7551 | * void | ||
7552 | */ | ||
7553 | |||
7554 | static void s2io_init_pci(struct s2io_nic *sp) | ||
7555 | { | ||
7556 | u16 pci_cmd = 0, pcix_cmd = 0; | ||
7557 | |||
7558 | /* Enable Data Parity Error Recovery in PCI-X command register. */ | ||
7559 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
7560 | &(pcix_cmd)); | ||
7561 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
7562 | (pcix_cmd | 1)); | ||
7563 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
7564 | &(pcix_cmd)); | ||
7565 | |||
7566 | /* Set the PErr Response bit in PCI command register. */ | ||
7567 | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); | ||
7568 | pci_write_config_word(sp->pdev, PCI_COMMAND, | ||
7569 | (pci_cmd | PCI_COMMAND_PARITY)); | ||
7570 | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); | ||
7571 | } | ||
7572 | |||
7573 | static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, | ||
7574 | u8 *dev_multiq) | ||
7575 | { | ||
7576 | int i; | ||
7577 | |||
7578 | if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { | ||
7579 | DBG_PRINT(ERR_DBG, "Requested number of tx fifos " | ||
7580 | "(%d) not supported\n", tx_fifo_num); | ||
7581 | |||
7582 | if (tx_fifo_num < 1) | ||
7583 | tx_fifo_num = 1; | ||
7584 | else | ||
7585 | tx_fifo_num = MAX_TX_FIFOS; | ||
7586 | |||
7587 | DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); | ||
7588 | } | ||
7589 | |||
7590 | if (multiq) | ||
7591 | *dev_multiq = multiq; | ||
7592 | |||
7593 | if (tx_steering_type && (1 == tx_fifo_num)) { | ||
7594 | if (tx_steering_type != TX_DEFAULT_STEERING) | ||
7595 | DBG_PRINT(ERR_DBG, | ||
7596 | "Tx steering is not supported with " | ||
7597 | "one fifo. Disabling Tx steering.\n"); | ||
7598 | tx_steering_type = NO_STEERING; | ||
7599 | } | ||
7600 | |||
7601 | if ((tx_steering_type < NO_STEERING) || | ||
7602 | (tx_steering_type > TX_DEFAULT_STEERING)) { | ||
7603 | DBG_PRINT(ERR_DBG, | ||
7604 | "Requested transmit steering not supported\n"); | ||
7605 | DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); | ||
7606 | tx_steering_type = NO_STEERING; | ||
7607 | } | ||
7608 | |||
7609 | if (rx_ring_num > MAX_RX_RINGS) { | ||
7610 | DBG_PRINT(ERR_DBG, | ||
7611 | "Requested number of rx rings not supported\n"); | ||
7612 | DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", | ||
7613 | MAX_RX_RINGS); | ||
7614 | rx_ring_num = MAX_RX_RINGS; | ||
7615 | } | ||
7616 | |||
7617 | if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { | ||
7618 | DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " | ||
7619 | "Defaulting to INTA\n"); | ||
7620 | *dev_intr_type = INTA; | ||
7621 | } | ||
7622 | |||
7623 | if ((*dev_intr_type == MSI_X) && | ||
7624 | ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && | ||
7625 | (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { | ||
7626 | DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " | ||
7627 | "Defaulting to INTA\n"); | ||
7628 | *dev_intr_type = INTA; | ||
7629 | } | ||
7630 | |||
7631 | if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { | ||
7632 | DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); | ||
7633 | DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); | ||
7634 | rx_ring_mode = 1; | ||
7635 | } | ||
7636 | |||
7637 | for (i = 0; i < MAX_RX_RINGS; i++) | ||
7638 | if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { | ||
7639 | DBG_PRINT(ERR_DBG, "Requested rx ring size not " | ||
7640 | "supported\nDefaulting to %d\n", | ||
7641 | MAX_RX_BLOCKS_PER_RING); | ||
7642 | rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; | ||
7643 | } | ||
7644 | |||
7645 | return SUCCESS; | ||
7646 | } | ||
7647 | |||
7648 | /** | ||
7649 | * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS | ||
7650 | * or Traffic class respectively. | ||
7651 | * @nic: device private variable | ||
7652 | * Description: The function configures the receive steering to | ||
7653 | * desired receive ring. | ||
7654 | * Return Value: SUCCESS on success and | ||
7655 | * '-1' on failure (endian settings incorrect). | ||
7656 | */ | ||
7657 | static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) | ||
7658 | { | ||
7659 | struct XENA_dev_config __iomem *bar0 = nic->bar0; | ||
7660 | register u64 val64 = 0; | ||
7661 | |||
7662 | if (ds_codepoint > 63) | ||
7663 | return FAILURE; | ||
7664 | |||
7665 | val64 = RTS_DS_MEM_DATA(ring); | ||
7666 | writeq(val64, &bar0->rts_ds_mem_data); | ||
7667 | |||
7668 | val64 = RTS_DS_MEM_CTRL_WE | | ||
7669 | RTS_DS_MEM_CTRL_STROBE_NEW_CMD | | ||
7670 | RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); | ||
7671 | |||
7672 | writeq(val64, &bar0->rts_ds_mem_ctrl); | ||
7673 | |||
7674 | return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, | ||
7675 | RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, | ||
7676 | S2IO_BIT_RESET); | ||
7677 | } | ||
7678 | |||
7679 | static const struct net_device_ops s2io_netdev_ops = { | ||
7680 | .ndo_open = s2io_open, | ||
7681 | .ndo_stop = s2io_close, | ||
7682 | .ndo_get_stats = s2io_get_stats, | ||
7683 | .ndo_start_xmit = s2io_xmit, | ||
7684 | .ndo_validate_addr = eth_validate_addr, | ||
7685 | .ndo_set_multicast_list = s2io_set_multicast, | ||
7686 | .ndo_do_ioctl = s2io_ioctl, | ||
7687 | .ndo_set_mac_address = s2io_set_mac_addr, | ||
7688 | .ndo_change_mtu = s2io_change_mtu, | ||
7689 | .ndo_set_features = s2io_set_features, | ||
7690 | .ndo_tx_timeout = s2io_tx_watchdog, | ||
7691 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
7692 | .ndo_poll_controller = s2io_netpoll, | ||
7693 | #endif | ||
7694 | }; | ||
7695 | |||
7696 | /** | ||
7697 | * s2io_init_nic - Initialization of the adapter . | ||
7698 | * @pdev : structure containing the PCI related information of the device. | ||
7699 | * @pre: List of PCI devices supported by the driver listed in s2io_tbl. | ||
7700 | * Description: | ||
7701 | * The function initializes an adapter identified by the pci_dec structure. | ||
7702 | * All OS related initialization including memory and device structure and | ||
7703 | * initlaization of the device private variable is done. Also the swapper | ||
7704 | * control register is initialized to enable read and write into the I/O | ||
7705 | * registers of the device. | ||
7706 | * Return value: | ||
7707 | * returns 0 on success and negative on failure. | ||
7708 | */ | ||
7709 | |||
7710 | static int __devinit | ||
7711 | s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) | ||
7712 | { | ||
7713 | struct s2io_nic *sp; | ||
7714 | struct net_device *dev; | ||
7715 | int i, j, ret; | ||
7716 | int dma_flag = false; | ||
7717 | u32 mac_up, mac_down; | ||
7718 | u64 val64 = 0, tmp64 = 0; | ||
7719 | struct XENA_dev_config __iomem *bar0 = NULL; | ||
7720 | u16 subid; | ||
7721 | struct config_param *config; | ||
7722 | struct mac_info *mac_control; | ||
7723 | int mode; | ||
7724 | u8 dev_intr_type = intr_type; | ||
7725 | u8 dev_multiq = 0; | ||
7726 | |||
7727 | ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); | ||
7728 | if (ret) | ||
7729 | return ret; | ||
7730 | |||
7731 | ret = pci_enable_device(pdev); | ||
7732 | if (ret) { | ||
7733 | DBG_PRINT(ERR_DBG, | ||
7734 | "%s: pci_enable_device failed\n", __func__); | ||
7735 | return ret; | ||
7736 | } | ||
7737 | |||
7738 | if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { | ||
7739 | DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); | ||
7740 | dma_flag = true; | ||
7741 | if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { | ||
7742 | DBG_PRINT(ERR_DBG, | ||
7743 | "Unable to obtain 64bit DMA " | ||
7744 | "for consistent allocations\n"); | ||
7745 | pci_disable_device(pdev); | ||
7746 | return -ENOMEM; | ||
7747 | } | ||
7748 | } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { | ||
7749 | DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__); | ||
7750 | } else { | ||
7751 | pci_disable_device(pdev); | ||
7752 | return -ENOMEM; | ||
7753 | } | ||
7754 | ret = pci_request_regions(pdev, s2io_driver_name); | ||
7755 | if (ret) { | ||
7756 | DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", | ||
7757 | __func__, ret); | ||
7758 | pci_disable_device(pdev); | ||
7759 | return -ENODEV; | ||
7760 | } | ||
7761 | if (dev_multiq) | ||
7762 | dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); | ||
7763 | else | ||
7764 | dev = alloc_etherdev(sizeof(struct s2io_nic)); | ||
7765 | if (dev == NULL) { | ||
7766 | DBG_PRINT(ERR_DBG, "Device allocation failed\n"); | ||
7767 | pci_disable_device(pdev); | ||
7768 | pci_release_regions(pdev); | ||
7769 | return -ENODEV; | ||
7770 | } | ||
7771 | |||
7772 | pci_set_master(pdev); | ||
7773 | pci_set_drvdata(pdev, dev); | ||
7774 | SET_NETDEV_DEV(dev, &pdev->dev); | ||
7775 | |||
7776 | /* Private member variable initialized to s2io NIC structure */ | ||
7777 | sp = netdev_priv(dev); | ||
7778 | sp->dev = dev; | ||
7779 | sp->pdev = pdev; | ||
7780 | sp->high_dma_flag = dma_flag; | ||
7781 | sp->device_enabled_once = false; | ||
7782 | if (rx_ring_mode == 1) | ||
7783 | sp->rxd_mode = RXD_MODE_1; | ||
7784 | if (rx_ring_mode == 2) | ||
7785 | sp->rxd_mode = RXD_MODE_3B; | ||
7786 | |||
7787 | sp->config.intr_type = dev_intr_type; | ||
7788 | |||
7789 | if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || | ||
7790 | (pdev->device == PCI_DEVICE_ID_HERC_UNI)) | ||
7791 | sp->device_type = XFRAME_II_DEVICE; | ||
7792 | else | ||
7793 | sp->device_type = XFRAME_I_DEVICE; | ||
7794 | |||
7795 | |||
7796 | /* Initialize some PCI/PCI-X fields of the NIC. */ | ||
7797 | s2io_init_pci(sp); | ||
7798 | |||
7799 | /* | ||
7800 | * Setting the device configuration parameters. | ||
7801 | * Most of these parameters can be specified by the user during | ||
7802 | * module insertion as they are module loadable parameters. If | ||
7803 | * these parameters are not not specified during load time, they | ||
7804 | * are initialized with default values. | ||
7805 | */ | ||
7806 | config = &sp->config; | ||
7807 | mac_control = &sp->mac_control; | ||
7808 | |||
7809 | config->napi = napi; | ||
7810 | config->tx_steering_type = tx_steering_type; | ||
7811 | |||
7812 | /* Tx side parameters. */ | ||
7813 | if (config->tx_steering_type == TX_PRIORITY_STEERING) | ||
7814 | config->tx_fifo_num = MAX_TX_FIFOS; | ||
7815 | else | ||
7816 | config->tx_fifo_num = tx_fifo_num; | ||
7817 | |||
7818 | /* Initialize the fifos used for tx steering */ | ||
7819 | if (config->tx_fifo_num < 5) { | ||
7820 | if (config->tx_fifo_num == 1) | ||
7821 | sp->total_tcp_fifos = 1; | ||
7822 | else | ||
7823 | sp->total_tcp_fifos = config->tx_fifo_num - 1; | ||
7824 | sp->udp_fifo_idx = config->tx_fifo_num - 1; | ||
7825 | sp->total_udp_fifos = 1; | ||
7826 | sp->other_fifo_idx = sp->total_tcp_fifos - 1; | ||
7827 | } else { | ||
7828 | sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - | ||
7829 | FIFO_OTHER_MAX_NUM); | ||
7830 | sp->udp_fifo_idx = sp->total_tcp_fifos; | ||
7831 | sp->total_udp_fifos = FIFO_UDP_MAX_NUM; | ||
7832 | sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; | ||
7833 | } | ||
7834 | |||
7835 | config->multiq = dev_multiq; | ||
7836 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
7837 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
7838 | |||
7839 | tx_cfg->fifo_len = tx_fifo_len[i]; | ||
7840 | tx_cfg->fifo_priority = i; | ||
7841 | } | ||
7842 | |||
7843 | /* mapping the QoS priority to the configured fifos */ | ||
7844 | for (i = 0; i < MAX_TX_FIFOS; i++) | ||
7845 | config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; | ||
7846 | |||
7847 | /* map the hashing selector table to the configured fifos */ | ||
7848 | for (i = 0; i < config->tx_fifo_num; i++) | ||
7849 | sp->fifo_selector[i] = fifo_selector[i]; | ||
7850 | |||
7851 | |||
7852 | config->tx_intr_type = TXD_INT_TYPE_UTILZ; | ||
7853 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
7854 | struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; | ||
7855 | |||
7856 | tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); | ||
7857 | if (tx_cfg->fifo_len < 65) { | ||
7858 | config->tx_intr_type = TXD_INT_TYPE_PER_LIST; | ||
7859 | break; | ||
7860 | } | ||
7861 | } | ||
7862 | /* + 2 because one Txd for skb->data and one Txd for UFO */ | ||
7863 | config->max_txds = MAX_SKB_FRAGS + 2; | ||
7864 | |||
7865 | /* Rx side parameters. */ | ||
7866 | config->rx_ring_num = rx_ring_num; | ||
7867 | for (i = 0; i < config->rx_ring_num; i++) { | ||
7868 | struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; | ||
7869 | struct ring_info *ring = &mac_control->rings[i]; | ||
7870 | |||
7871 | rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); | ||
7872 | rx_cfg->ring_priority = i; | ||
7873 | ring->rx_bufs_left = 0; | ||
7874 | ring->rxd_mode = sp->rxd_mode; | ||
7875 | ring->rxd_count = rxd_count[sp->rxd_mode]; | ||
7876 | ring->pdev = sp->pdev; | ||
7877 | ring->dev = sp->dev; | ||
7878 | } | ||
7879 | |||
7880 | for (i = 0; i < rx_ring_num; i++) { | ||
7881 | struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; | ||
7882 | |||
7883 | rx_cfg->ring_org = RING_ORG_BUFF1; | ||
7884 | rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); | ||
7885 | } | ||
7886 | |||
7887 | /* Setting Mac Control parameters */ | ||
7888 | mac_control->rmac_pause_time = rmac_pause_time; | ||
7889 | mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; | ||
7890 | mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; | ||
7891 | |||
7892 | |||
7893 | /* initialize the shared memory used by the NIC and the host */ | ||
7894 | if (init_shared_mem(sp)) { | ||
7895 | DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); | ||
7896 | ret = -ENOMEM; | ||
7897 | goto mem_alloc_failed; | ||
7898 | } | ||
7899 | |||
7900 | sp->bar0 = pci_ioremap_bar(pdev, 0); | ||
7901 | if (!sp->bar0) { | ||
7902 | DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", | ||
7903 | dev->name); | ||
7904 | ret = -ENOMEM; | ||
7905 | goto bar0_remap_failed; | ||
7906 | } | ||
7907 | |||
7908 | sp->bar1 = pci_ioremap_bar(pdev, 2); | ||
7909 | if (!sp->bar1) { | ||
7910 | DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", | ||
7911 | dev->name); | ||
7912 | ret = -ENOMEM; | ||
7913 | goto bar1_remap_failed; | ||
7914 | } | ||
7915 | |||
7916 | dev->irq = pdev->irq; | ||
7917 | dev->base_addr = (unsigned long)sp->bar0; | ||
7918 | |||
7919 | /* Initializing the BAR1 address as the start of the FIFO pointer. */ | ||
7920 | for (j = 0; j < MAX_TX_FIFOS; j++) { | ||
7921 | mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); | ||
7922 | } | ||
7923 | |||
7924 | /* Driver entry points */ | ||
7925 | dev->netdev_ops = &s2io_netdev_ops; | ||
7926 | SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); | ||
7927 | dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | | ||
7928 | NETIF_F_TSO | NETIF_F_TSO6 | | ||
7929 | NETIF_F_RXCSUM | NETIF_F_LRO; | ||
7930 | dev->features |= dev->hw_features | | ||
7931 | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | ||
7932 | if (sp->device_type & XFRAME_II_DEVICE) { | ||
7933 | dev->hw_features |= NETIF_F_UFO; | ||
7934 | if (ufo) | ||
7935 | dev->features |= NETIF_F_UFO; | ||
7936 | } | ||
7937 | if (sp->high_dma_flag == true) | ||
7938 | dev->features |= NETIF_F_HIGHDMA; | ||
7939 | dev->watchdog_timeo = WATCH_DOG_TIMEOUT; | ||
7940 | INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); | ||
7941 | INIT_WORK(&sp->set_link_task, s2io_set_link); | ||
7942 | |||
7943 | pci_save_state(sp->pdev); | ||
7944 | |||
7945 | /* Setting swapper control on the NIC, for proper reset operation */ | ||
7946 | if (s2io_set_swapper(sp)) { | ||
7947 | DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", | ||
7948 | dev->name); | ||
7949 | ret = -EAGAIN; | ||
7950 | goto set_swap_failed; | ||
7951 | } | ||
7952 | |||
7953 | /* Verify if the Herc works on the slot its placed into */ | ||
7954 | if (sp->device_type & XFRAME_II_DEVICE) { | ||
7955 | mode = s2io_verify_pci_mode(sp); | ||
7956 | if (mode < 0) { | ||
7957 | DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", | ||
7958 | __func__); | ||
7959 | ret = -EBADSLT; | ||
7960 | goto set_swap_failed; | ||
7961 | } | ||
7962 | } | ||
7963 | |||
7964 | if (sp->config.intr_type == MSI_X) { | ||
7965 | sp->num_entries = config->rx_ring_num + 1; | ||
7966 | ret = s2io_enable_msi_x(sp); | ||
7967 | |||
7968 | if (!ret) { | ||
7969 | ret = s2io_test_msi(sp); | ||
7970 | /* rollback MSI-X, will re-enable during add_isr() */ | ||
7971 | remove_msix_isr(sp); | ||
7972 | } | ||
7973 | if (ret) { | ||
7974 | |||
7975 | DBG_PRINT(ERR_DBG, | ||
7976 | "MSI-X requested but failed to enable\n"); | ||
7977 | sp->config.intr_type = INTA; | ||
7978 | } | ||
7979 | } | ||
7980 | |||
7981 | if (config->intr_type == MSI_X) { | ||
7982 | for (i = 0; i < config->rx_ring_num ; i++) { | ||
7983 | struct ring_info *ring = &mac_control->rings[i]; | ||
7984 | |||
7985 | netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64); | ||
7986 | } | ||
7987 | } else { | ||
7988 | netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64); | ||
7989 | } | ||
7990 | |||
7991 | /* Not needed for Herc */ | ||
7992 | if (sp->device_type & XFRAME_I_DEVICE) { | ||
7993 | /* | ||
7994 | * Fix for all "FFs" MAC address problems observed on | ||
7995 | * Alpha platforms | ||
7996 | */ | ||
7997 | fix_mac_address(sp); | ||
7998 | s2io_reset(sp); | ||
7999 | } | ||
8000 | |||
8001 | /* | ||
8002 | * MAC address initialization. | ||
8003 | * For now only one mac address will be read and used. | ||
8004 | */ | ||
8005 | bar0 = sp->bar0; | ||
8006 | val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
8007 | RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); | ||
8008 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
8009 | wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | ||
8010 | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | ||
8011 | S2IO_BIT_RESET); | ||
8012 | tmp64 = readq(&bar0->rmac_addr_data0_mem); | ||
8013 | mac_down = (u32)tmp64; | ||
8014 | mac_up = (u32) (tmp64 >> 32); | ||
8015 | |||
8016 | sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); | ||
8017 | sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); | ||
8018 | sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); | ||
8019 | sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); | ||
8020 | sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); | ||
8021 | sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); | ||
8022 | |||
8023 | /* Set the factory defined MAC address initially */ | ||
8024 | dev->addr_len = ETH_ALEN; | ||
8025 | memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); | ||
8026 | memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN); | ||
8027 | |||
8028 | /* initialize number of multicast & unicast MAC entries variables */ | ||
8029 | if (sp->device_type == XFRAME_I_DEVICE) { | ||
8030 | config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; | ||
8031 | config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; | ||
8032 | config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; | ||
8033 | } else if (sp->device_type == XFRAME_II_DEVICE) { | ||
8034 | config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; | ||
8035 | config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; | ||
8036 | config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; | ||
8037 | } | ||
8038 | |||
8039 | /* store mac addresses from CAM to s2io_nic structure */ | ||
8040 | do_s2io_store_unicast_mc(sp); | ||
8041 | |||
8042 | /* Configure MSIX vector for number of rings configured plus one */ | ||
8043 | if ((sp->device_type == XFRAME_II_DEVICE) && | ||
8044 | (config->intr_type == MSI_X)) | ||
8045 | sp->num_entries = config->rx_ring_num + 1; | ||
8046 | |||
8047 | /* Store the values of the MSIX table in the s2io_nic structure */ | ||
8048 | store_xmsi_data(sp); | ||
8049 | /* reset Nic and bring it to known state */ | ||
8050 | s2io_reset(sp); | ||
8051 | |||
8052 | /* | ||
8053 | * Initialize link state flags | ||
8054 | * and the card state parameter | ||
8055 | */ | ||
8056 | sp->state = 0; | ||
8057 | |||
8058 | /* Initialize spinlocks */ | ||
8059 | for (i = 0; i < sp->config.tx_fifo_num; i++) { | ||
8060 | struct fifo_info *fifo = &mac_control->fifos[i]; | ||
8061 | |||
8062 | spin_lock_init(&fifo->tx_lock); | ||
8063 | } | ||
8064 | |||
8065 | /* | ||
8066 | * SXE-002: Configure link and activity LED to init state | ||
8067 | * on driver load. | ||
8068 | */ | ||
8069 | subid = sp->pdev->subsystem_device; | ||
8070 | if ((subid & 0xFF) >= 0x07) { | ||
8071 | val64 = readq(&bar0->gpio_control); | ||
8072 | val64 |= 0x0000800000000000ULL; | ||
8073 | writeq(val64, &bar0->gpio_control); | ||
8074 | val64 = 0x0411040400000000ULL; | ||
8075 | writeq(val64, (void __iomem *)bar0 + 0x2700); | ||
8076 | val64 = readq(&bar0->gpio_control); | ||
8077 | } | ||
8078 | |||
8079 | sp->rx_csum = 1; /* Rx chksum verify enabled by default */ | ||
8080 | |||
8081 | if (register_netdev(dev)) { | ||
8082 | DBG_PRINT(ERR_DBG, "Device registration failed\n"); | ||
8083 | ret = -ENODEV; | ||
8084 | goto register_failed; | ||
8085 | } | ||
8086 | s2io_vpd_read(sp); | ||
8087 | DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); | ||
8088 | DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, | ||
8089 | sp->product_name, pdev->revision); | ||
8090 | DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, | ||
8091 | s2io_driver_version); | ||
8092 | DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); | ||
8093 | DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); | ||
8094 | if (sp->device_type & XFRAME_II_DEVICE) { | ||
8095 | mode = s2io_print_pci_mode(sp); | ||
8096 | if (mode < 0) { | ||
8097 | ret = -EBADSLT; | ||
8098 | unregister_netdev(dev); | ||
8099 | goto set_swap_failed; | ||
8100 | } | ||
8101 | } | ||
8102 | switch (sp->rxd_mode) { | ||
8103 | case RXD_MODE_1: | ||
8104 | DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", | ||
8105 | dev->name); | ||
8106 | break; | ||
8107 | case RXD_MODE_3B: | ||
8108 | DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", | ||
8109 | dev->name); | ||
8110 | break; | ||
8111 | } | ||
8112 | |||
8113 | switch (sp->config.napi) { | ||
8114 | case 0: | ||
8115 | DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); | ||
8116 | break; | ||
8117 | case 1: | ||
8118 | DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); | ||
8119 | break; | ||
8120 | } | ||
8121 | |||
8122 | DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, | ||
8123 | sp->config.tx_fifo_num); | ||
8124 | |||
8125 | DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, | ||
8126 | sp->config.rx_ring_num); | ||
8127 | |||
8128 | switch (sp->config.intr_type) { | ||
8129 | case INTA: | ||
8130 | DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); | ||
8131 | break; | ||
8132 | case MSI_X: | ||
8133 | DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); | ||
8134 | break; | ||
8135 | } | ||
8136 | if (sp->config.multiq) { | ||
8137 | for (i = 0; i < sp->config.tx_fifo_num; i++) { | ||
8138 | struct fifo_info *fifo = &mac_control->fifos[i]; | ||
8139 | |||
8140 | fifo->multiq = config->multiq; | ||
8141 | } | ||
8142 | DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", | ||
8143 | dev->name); | ||
8144 | } else | ||
8145 | DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", | ||
8146 | dev->name); | ||
8147 | |||
8148 | switch (sp->config.tx_steering_type) { | ||
8149 | case NO_STEERING: | ||
8150 | DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", | ||
8151 | dev->name); | ||
8152 | break; | ||
8153 | case TX_PRIORITY_STEERING: | ||
8154 | DBG_PRINT(ERR_DBG, | ||
8155 | "%s: Priority steering enabled for transmit\n", | ||
8156 | dev->name); | ||
8157 | break; | ||
8158 | case TX_DEFAULT_STEERING: | ||
8159 | DBG_PRINT(ERR_DBG, | ||
8160 | "%s: Default steering enabled for transmit\n", | ||
8161 | dev->name); | ||
8162 | } | ||
8163 | |||
8164 | DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", | ||
8165 | dev->name); | ||
8166 | if (ufo) | ||
8167 | DBG_PRINT(ERR_DBG, | ||
8168 | "%s: UDP Fragmentation Offload(UFO) enabled\n", | ||
8169 | dev->name); | ||
8170 | /* Initialize device name */ | ||
8171 | sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name); | ||
8172 | |||
8173 | if (vlan_tag_strip) | ||
8174 | sp->vlan_strip_flag = 1; | ||
8175 | else | ||
8176 | sp->vlan_strip_flag = 0; | ||
8177 | |||
8178 | /* | ||
8179 | * Make Link state as off at this point, when the Link change | ||
8180 | * interrupt comes the state will be automatically changed to | ||
8181 | * the right state. | ||
8182 | */ | ||
8183 | netif_carrier_off(dev); | ||
8184 | |||
8185 | return 0; | ||
8186 | |||
8187 | register_failed: | ||
8188 | set_swap_failed: | ||
8189 | iounmap(sp->bar1); | ||
8190 | bar1_remap_failed: | ||
8191 | iounmap(sp->bar0); | ||
8192 | bar0_remap_failed: | ||
8193 | mem_alloc_failed: | ||
8194 | free_shared_mem(sp); | ||
8195 | pci_disable_device(pdev); | ||
8196 | pci_release_regions(pdev); | ||
8197 | pci_set_drvdata(pdev, NULL); | ||
8198 | free_netdev(dev); | ||
8199 | |||
8200 | return ret; | ||
8201 | } | ||
8202 | |||
8203 | /** | ||
8204 | * s2io_rem_nic - Free the PCI device | ||
8205 | * @pdev: structure containing the PCI related information of the device. | ||
8206 | * Description: This function is called by the Pci subsystem to release a | ||
8207 | * PCI device and free up all resource held up by the device. This could | ||
8208 | * be in response to a Hot plug event or when the driver is to be removed | ||
8209 | * from memory. | ||
8210 | */ | ||
8211 | |||
8212 | static void __devexit s2io_rem_nic(struct pci_dev *pdev) | ||
8213 | { | ||
8214 | struct net_device *dev = pci_get_drvdata(pdev); | ||
8215 | struct s2io_nic *sp; | ||
8216 | |||
8217 | if (dev == NULL) { | ||
8218 | DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); | ||
8219 | return; | ||
8220 | } | ||
8221 | |||
8222 | sp = netdev_priv(dev); | ||
8223 | |||
8224 | cancel_work_sync(&sp->rst_timer_task); | ||
8225 | cancel_work_sync(&sp->set_link_task); | ||
8226 | |||
8227 | unregister_netdev(dev); | ||
8228 | |||
8229 | free_shared_mem(sp); | ||
8230 | iounmap(sp->bar0); | ||
8231 | iounmap(sp->bar1); | ||
8232 | pci_release_regions(pdev); | ||
8233 | pci_set_drvdata(pdev, NULL); | ||
8234 | free_netdev(dev); | ||
8235 | pci_disable_device(pdev); | ||
8236 | } | ||
8237 | |||
8238 | /** | ||
8239 | * s2io_starter - Entry point for the driver | ||
8240 | * Description: This function is the entry point for the driver. It verifies | ||
8241 | * the module loadable parameters and initializes PCI configuration space. | ||
8242 | */ | ||
8243 | |||
8244 | static int __init s2io_starter(void) | ||
8245 | { | ||
8246 | return pci_register_driver(&s2io_driver); | ||
8247 | } | ||
8248 | |||
8249 | /** | ||
8250 | * s2io_closer - Cleanup routine for the driver | ||
8251 | * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. | ||
8252 | */ | ||
8253 | |||
8254 | static __exit void s2io_closer(void) | ||
8255 | { | ||
8256 | pci_unregister_driver(&s2io_driver); | ||
8257 | DBG_PRINT(INIT_DBG, "cleanup done\n"); | ||
8258 | } | ||
8259 | |||
8260 | module_init(s2io_starter); | ||
8261 | module_exit(s2io_closer); | ||
8262 | |||
8263 | static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, | ||
8264 | struct tcphdr **tcp, struct RxD_t *rxdp, | ||
8265 | struct s2io_nic *sp) | ||
8266 | { | ||
8267 | int ip_off; | ||
8268 | u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; | ||
8269 | |||
8270 | if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { | ||
8271 | DBG_PRINT(INIT_DBG, | ||
8272 | "%s: Non-TCP frames not supported for LRO\n", | ||
8273 | __func__); | ||
8274 | return -1; | ||
8275 | } | ||
8276 | |||
8277 | /* Checking for DIX type or DIX type with VLAN */ | ||
8278 | if ((l2_type == 0) || (l2_type == 4)) { | ||
8279 | ip_off = HEADER_ETHERNET_II_802_3_SIZE; | ||
8280 | /* | ||
8281 | * If vlan stripping is disabled and the frame is VLAN tagged, | ||
8282 | * shift the offset by the VLAN header size bytes. | ||
8283 | */ | ||
8284 | if ((!sp->vlan_strip_flag) && | ||
8285 | (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) | ||
8286 | ip_off += HEADER_VLAN_SIZE; | ||
8287 | } else { | ||
8288 | /* LLC, SNAP etc are considered non-mergeable */ | ||
8289 | return -1; | ||
8290 | } | ||
8291 | |||
8292 | *ip = (struct iphdr *)((u8 *)buffer + ip_off); | ||
8293 | ip_len = (u8)((*ip)->ihl); | ||
8294 | ip_len <<= 2; | ||
8295 | *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); | ||
8296 | |||
8297 | return 0; | ||
8298 | } | ||
8299 | |||
8300 | static int check_for_socket_match(struct lro *lro, struct iphdr *ip, | ||
8301 | struct tcphdr *tcp) | ||
8302 | { | ||
8303 | DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); | ||
8304 | if ((lro->iph->saddr != ip->saddr) || | ||
8305 | (lro->iph->daddr != ip->daddr) || | ||
8306 | (lro->tcph->source != tcp->source) || | ||
8307 | (lro->tcph->dest != tcp->dest)) | ||
8308 | return -1; | ||
8309 | return 0; | ||
8310 | } | ||
8311 | |||
8312 | static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) | ||
8313 | { | ||
8314 | return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); | ||
8315 | } | ||
8316 | |||
8317 | static void initiate_new_session(struct lro *lro, u8 *l2h, | ||
8318 | struct iphdr *ip, struct tcphdr *tcp, | ||
8319 | u32 tcp_pyld_len, u16 vlan_tag) | ||
8320 | { | ||
8321 | DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); | ||
8322 | lro->l2h = l2h; | ||
8323 | lro->iph = ip; | ||
8324 | lro->tcph = tcp; | ||
8325 | lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); | ||
8326 | lro->tcp_ack = tcp->ack_seq; | ||
8327 | lro->sg_num = 1; | ||
8328 | lro->total_len = ntohs(ip->tot_len); | ||
8329 | lro->frags_len = 0; | ||
8330 | lro->vlan_tag = vlan_tag; | ||
8331 | /* | ||
8332 | * Check if we saw TCP timestamp. | ||
8333 | * Other consistency checks have already been done. | ||
8334 | */ | ||
8335 | if (tcp->doff == 8) { | ||
8336 | __be32 *ptr; | ||
8337 | ptr = (__be32 *)(tcp+1); | ||
8338 | lro->saw_ts = 1; | ||
8339 | lro->cur_tsval = ntohl(*(ptr+1)); | ||
8340 | lro->cur_tsecr = *(ptr+2); | ||
8341 | } | ||
8342 | lro->in_use = 1; | ||
8343 | } | ||
8344 | |||
8345 | static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) | ||
8346 | { | ||
8347 | struct iphdr *ip = lro->iph; | ||
8348 | struct tcphdr *tcp = lro->tcph; | ||
8349 | __sum16 nchk; | ||
8350 | struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; | ||
8351 | |||
8352 | DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); | ||
8353 | |||
8354 | /* Update L3 header */ | ||
8355 | ip->tot_len = htons(lro->total_len); | ||
8356 | ip->check = 0; | ||
8357 | nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl); | ||
8358 | ip->check = nchk; | ||
8359 | |||
8360 | /* Update L4 header */ | ||
8361 | tcp->ack_seq = lro->tcp_ack; | ||
8362 | tcp->window = lro->window; | ||
8363 | |||
8364 | /* Update tsecr field if this session has timestamps enabled */ | ||
8365 | if (lro->saw_ts) { | ||
8366 | __be32 *ptr = (__be32 *)(tcp + 1); | ||
8367 | *(ptr+2) = lro->cur_tsecr; | ||
8368 | } | ||
8369 | |||
8370 | /* Update counters required for calculation of | ||
8371 | * average no. of packets aggregated. | ||
8372 | */ | ||
8373 | swstats->sum_avg_pkts_aggregated += lro->sg_num; | ||
8374 | swstats->num_aggregations++; | ||
8375 | } | ||
8376 | |||
8377 | static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, | ||
8378 | struct tcphdr *tcp, u32 l4_pyld) | ||
8379 | { | ||
8380 | DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); | ||
8381 | lro->total_len += l4_pyld; | ||
8382 | lro->frags_len += l4_pyld; | ||
8383 | lro->tcp_next_seq += l4_pyld; | ||
8384 | lro->sg_num++; | ||
8385 | |||
8386 | /* Update ack seq no. and window ad(from this pkt) in LRO object */ | ||
8387 | lro->tcp_ack = tcp->ack_seq; | ||
8388 | lro->window = tcp->window; | ||
8389 | |||
8390 | if (lro->saw_ts) { | ||
8391 | __be32 *ptr; | ||
8392 | /* Update tsecr and tsval from this packet */ | ||
8393 | ptr = (__be32 *)(tcp+1); | ||
8394 | lro->cur_tsval = ntohl(*(ptr+1)); | ||
8395 | lro->cur_tsecr = *(ptr + 2); | ||
8396 | } | ||
8397 | } | ||
8398 | |||
8399 | static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, | ||
8400 | struct tcphdr *tcp, u32 tcp_pyld_len) | ||
8401 | { | ||
8402 | u8 *ptr; | ||
8403 | |||
8404 | DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); | ||
8405 | |||
8406 | if (!tcp_pyld_len) { | ||
8407 | /* Runt frame or a pure ack */ | ||
8408 | return -1; | ||
8409 | } | ||
8410 | |||
8411 | if (ip->ihl != 5) /* IP has options */ | ||
8412 | return -1; | ||
8413 | |||
8414 | /* If we see CE codepoint in IP header, packet is not mergeable */ | ||
8415 | if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) | ||
8416 | return -1; | ||
8417 | |||
8418 | /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ | ||
8419 | if (tcp->urg || tcp->psh || tcp->rst || | ||
8420 | tcp->syn || tcp->fin || | ||
8421 | tcp->ece || tcp->cwr || !tcp->ack) { | ||
8422 | /* | ||
8423 | * Currently recognize only the ack control word and | ||
8424 | * any other control field being set would result in | ||
8425 | * flushing the LRO session | ||
8426 | */ | ||
8427 | return -1; | ||
8428 | } | ||
8429 | |||
8430 | /* | ||
8431 | * Allow only one TCP timestamp option. Don't aggregate if | ||
8432 | * any other options are detected. | ||
8433 | */ | ||
8434 | if (tcp->doff != 5 && tcp->doff != 8) | ||
8435 | return -1; | ||
8436 | |||
8437 | if (tcp->doff == 8) { | ||
8438 | ptr = (u8 *)(tcp + 1); | ||
8439 | while (*ptr == TCPOPT_NOP) | ||
8440 | ptr++; | ||
8441 | if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) | ||
8442 | return -1; | ||
8443 | |||
8444 | /* Ensure timestamp value increases monotonically */ | ||
8445 | if (l_lro) | ||
8446 | if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) | ||
8447 | return -1; | ||
8448 | |||
8449 | /* timestamp echo reply should be non-zero */ | ||
8450 | if (*((__be32 *)(ptr+6)) == 0) | ||
8451 | return -1; | ||
8452 | } | ||
8453 | |||
8454 | return 0; | ||
8455 | } | ||
8456 | |||
8457 | static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, | ||
8458 | u8 **tcp, u32 *tcp_len, struct lro **lro, | ||
8459 | struct RxD_t *rxdp, struct s2io_nic *sp) | ||
8460 | { | ||
8461 | struct iphdr *ip; | ||
8462 | struct tcphdr *tcph; | ||
8463 | int ret = 0, i; | ||
8464 | u16 vlan_tag = 0; | ||
8465 | struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; | ||
8466 | |||
8467 | ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, | ||
8468 | rxdp, sp); | ||
8469 | if (ret) | ||
8470 | return ret; | ||
8471 | |||
8472 | DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); | ||
8473 | |||
8474 | vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); | ||
8475 | tcph = (struct tcphdr *)*tcp; | ||
8476 | *tcp_len = get_l4_pyld_length(ip, tcph); | ||
8477 | for (i = 0; i < MAX_LRO_SESSIONS; i++) { | ||
8478 | struct lro *l_lro = &ring_data->lro0_n[i]; | ||
8479 | if (l_lro->in_use) { | ||
8480 | if (check_for_socket_match(l_lro, ip, tcph)) | ||
8481 | continue; | ||
8482 | /* Sock pair matched */ | ||
8483 | *lro = l_lro; | ||
8484 | |||
8485 | if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { | ||
8486 | DBG_PRINT(INFO_DBG, "%s: Out of sequence. " | ||
8487 | "expected 0x%x, actual 0x%x\n", | ||
8488 | __func__, | ||
8489 | (*lro)->tcp_next_seq, | ||
8490 | ntohl(tcph->seq)); | ||
8491 | |||
8492 | swstats->outof_sequence_pkts++; | ||
8493 | ret = 2; | ||
8494 | break; | ||
8495 | } | ||
8496 | |||
8497 | if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, | ||
8498 | *tcp_len)) | ||
8499 | ret = 1; /* Aggregate */ | ||
8500 | else | ||
8501 | ret = 2; /* Flush both */ | ||
8502 | break; | ||
8503 | } | ||
8504 | } | ||
8505 | |||
8506 | if (ret == 0) { | ||
8507 | /* Before searching for available LRO objects, | ||
8508 | * check if the pkt is L3/L4 aggregatable. If not | ||
8509 | * don't create new LRO session. Just send this | ||
8510 | * packet up. | ||
8511 | */ | ||
8512 | if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) | ||
8513 | return 5; | ||
8514 | |||
8515 | for (i = 0; i < MAX_LRO_SESSIONS; i++) { | ||
8516 | struct lro *l_lro = &ring_data->lro0_n[i]; | ||
8517 | if (!(l_lro->in_use)) { | ||
8518 | *lro = l_lro; | ||
8519 | ret = 3; /* Begin anew */ | ||
8520 | break; | ||
8521 | } | ||
8522 | } | ||
8523 | } | ||
8524 | |||
8525 | if (ret == 0) { /* sessions exceeded */ | ||
8526 | DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", | ||
8527 | __func__); | ||
8528 | *lro = NULL; | ||
8529 | return ret; | ||
8530 | } | ||
8531 | |||
8532 | switch (ret) { | ||
8533 | case 3: | ||
8534 | initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, | ||
8535 | vlan_tag); | ||
8536 | break; | ||
8537 | case 2: | ||
8538 | update_L3L4_header(sp, *lro); | ||
8539 | break; | ||
8540 | case 1: | ||
8541 | aggregate_new_rx(*lro, ip, tcph, *tcp_len); | ||
8542 | if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { | ||
8543 | update_L3L4_header(sp, *lro); | ||
8544 | ret = 4; /* Flush the LRO */ | ||
8545 | } | ||
8546 | break; | ||
8547 | default: | ||
8548 | DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); | ||
8549 | break; | ||
8550 | } | ||
8551 | |||
8552 | return ret; | ||
8553 | } | ||
8554 | |||
8555 | static void clear_lro_session(struct lro *lro) | ||
8556 | { | ||
8557 | static u16 lro_struct_size = sizeof(struct lro); | ||
8558 | |||
8559 | memset(lro, 0, lro_struct_size); | ||
8560 | } | ||
8561 | |||
8562 | static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) | ||
8563 | { | ||
8564 | struct net_device *dev = skb->dev; | ||
8565 | struct s2io_nic *sp = netdev_priv(dev); | ||
8566 | |||
8567 | skb->protocol = eth_type_trans(skb, dev); | ||
8568 | if (vlan_tag && sp->vlan_strip_flag) | ||
8569 | __vlan_hwaccel_put_tag(skb, vlan_tag); | ||
8570 | if (sp->config.napi) | ||
8571 | netif_receive_skb(skb); | ||
8572 | else | ||
8573 | netif_rx(skb); | ||
8574 | } | ||
8575 | |||
8576 | static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, | ||
8577 | struct sk_buff *skb, u32 tcp_len) | ||
8578 | { | ||
8579 | struct sk_buff *first = lro->parent; | ||
8580 | struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; | ||
8581 | |||
8582 | first->len += tcp_len; | ||
8583 | first->data_len = lro->frags_len; | ||
8584 | skb_pull(skb, (skb->len - tcp_len)); | ||
8585 | if (skb_shinfo(first)->frag_list) | ||
8586 | lro->last_frag->next = skb; | ||
8587 | else | ||
8588 | skb_shinfo(first)->frag_list = skb; | ||
8589 | first->truesize += skb->truesize; | ||
8590 | lro->last_frag = skb; | ||
8591 | swstats->clubbed_frms_cnt++; | ||
8592 | } | ||
8593 | |||
8594 | /** | ||
8595 | * s2io_io_error_detected - called when PCI error is detected | ||
8596 | * @pdev: Pointer to PCI device | ||
8597 | * @state: The current pci connection state | ||
8598 | * | ||
8599 | * This function is called after a PCI bus error affecting | ||
8600 | * this device has been detected. | ||
8601 | */ | ||
8602 | static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, | ||
8603 | pci_channel_state_t state) | ||
8604 | { | ||
8605 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
8606 | struct s2io_nic *sp = netdev_priv(netdev); | ||
8607 | |||
8608 | netif_device_detach(netdev); | ||
8609 | |||
8610 | if (state == pci_channel_io_perm_failure) | ||
8611 | return PCI_ERS_RESULT_DISCONNECT; | ||
8612 | |||
8613 | if (netif_running(netdev)) { | ||
8614 | /* Bring down the card, while avoiding PCI I/O */ | ||
8615 | do_s2io_card_down(sp, 0); | ||
8616 | } | ||
8617 | pci_disable_device(pdev); | ||
8618 | |||
8619 | return PCI_ERS_RESULT_NEED_RESET; | ||
8620 | } | ||
8621 | |||
8622 | /** | ||
8623 | * s2io_io_slot_reset - called after the pci bus has been reset. | ||
8624 | * @pdev: Pointer to PCI device | ||
8625 | * | ||
8626 | * Restart the card from scratch, as if from a cold-boot. | ||
8627 | * At this point, the card has exprienced a hard reset, | ||
8628 | * followed by fixups by BIOS, and has its config space | ||
8629 | * set up identically to what it was at cold boot. | ||
8630 | */ | ||
8631 | static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) | ||
8632 | { | ||
8633 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
8634 | struct s2io_nic *sp = netdev_priv(netdev); | ||
8635 | |||
8636 | if (pci_enable_device(pdev)) { | ||
8637 | pr_err("Cannot re-enable PCI device after reset.\n"); | ||
8638 | return PCI_ERS_RESULT_DISCONNECT; | ||
8639 | } | ||
8640 | |||
8641 | pci_set_master(pdev); | ||
8642 | s2io_reset(sp); | ||
8643 | |||
8644 | return PCI_ERS_RESULT_RECOVERED; | ||
8645 | } | ||
8646 | |||
8647 | /** | ||
8648 | * s2io_io_resume - called when traffic can start flowing again. | ||
8649 | * @pdev: Pointer to PCI device | ||
8650 | * | ||
8651 | * This callback is called when the error recovery driver tells | ||
8652 | * us that its OK to resume normal operation. | ||
8653 | */ | ||
8654 | static void s2io_io_resume(struct pci_dev *pdev) | ||
8655 | { | ||
8656 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
8657 | struct s2io_nic *sp = netdev_priv(netdev); | ||
8658 | |||
8659 | if (netif_running(netdev)) { | ||
8660 | if (s2io_card_up(sp)) { | ||
8661 | pr_err("Can't bring device back up after reset.\n"); | ||
8662 | return; | ||
8663 | } | ||
8664 | |||
8665 | if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) { | ||
8666 | s2io_card_down(sp); | ||
8667 | pr_err("Can't restore mac addr after reset.\n"); | ||
8668 | return; | ||
8669 | } | ||
8670 | } | ||
8671 | |||
8672 | netif_device_attach(netdev); | ||
8673 | netif_tx_wake_all_queues(netdev); | ||
8674 | } | ||