aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/bna
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/bna')
-rw-r--r--drivers/net/bna/Makefile11
-rw-r--r--drivers/net/bna/bfa_cee.c291
-rw-r--r--drivers/net/bna/bfa_cee.h64
-rw-r--r--drivers/net/bna/bfa_defs.h245
-rw-r--r--drivers/net/bna/bfa_defs_cna.h223
-rw-r--r--drivers/net/bna/bfa_defs_mfg_comm.h222
-rw-r--r--drivers/net/bna/bfa_defs_status.h216
-rw-r--r--drivers/net/bna/bfa_ioc.c2285
-rw-r--r--drivers/net/bna/bfa_ioc.h292
-rw-r--r--drivers/net/bna/bfa_ioc_ct.c516
-rw-r--r--drivers/net/bna/bfa_sm.h88
-rw-r--r--drivers/net/bna/bfa_wc.h69
-rw-r--r--drivers/net/bna/bfi.h394
-rw-r--r--drivers/net/bna/bfi_cna.h199
-rw-r--r--drivers/net/bna/bfi_ctreg.h646
-rw-r--r--drivers/net/bna/bfi_ll.h438
-rw-r--r--drivers/net/bna/bna.h548
-rw-r--r--drivers/net/bna/bna_ctrl.c3077
-rw-r--r--drivers/net/bna/bna_hw.h1490
-rw-r--r--drivers/net/bna/bna_txrx.c4185
-rw-r--r--drivers/net/bna/bna_types.h1127
-rw-r--r--drivers/net/bna/bnad.c3288
-rw-r--r--drivers/net/bna/bnad.h337
-rw-r--r--drivers/net/bna/bnad_ethtool.c1214
-rw-r--r--drivers/net/bna/cna.h81
-rw-r--r--drivers/net/bna/cna_fwimg.c64
26 files changed, 21610 insertions, 0 deletions
diff --git a/drivers/net/bna/Makefile b/drivers/net/bna/Makefile
new file mode 100644
index 000000000000..a5d604de7fea
--- /dev/null
+++ b/drivers/net/bna/Makefile
@@ -0,0 +1,11 @@
1#
2# Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
3# All rights reserved.
4#
5
6obj-$(CONFIG_BNA) += bna.o
7
8bna-objs := bnad.o bnad_ethtool.o bna_ctrl.o bna_txrx.o
9bna-objs += bfa_ioc.o bfa_ioc_ct.o bfa_cee.o cna_fwimg.o
10
11EXTRA_CFLAGS := -Idrivers/net/bna
diff --git a/drivers/net/bna/bfa_cee.c b/drivers/net/bna/bfa_cee.c
new file mode 100644
index 000000000000..f7b789a3b217
--- /dev/null
+++ b/drivers/net/bna/bfa_cee.c
@@ -0,0 +1,291 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#include "bfa_defs_cna.h"
20#include "cna.h"
21#include "bfa_cee.h"
22#include "bfi_cna.h"
23#include "bfa_ioc.h"
24
25#define bfa_ioc_portid(__ioc) ((__ioc)->port_id)
26#define bfa_lpuid(__arg) bfa_ioc_portid(&(__arg)->ioc)
27
28static void bfa_cee_format_lldp_cfg(struct bfa_cee_lldp_cfg *lldp_cfg);
29static void bfa_cee_format_cee_cfg(void *buffer);
30
31static void
32bfa_cee_format_cee_cfg(void *buffer)
33{
34 struct bfa_cee_attr *cee_cfg = buffer;
35 bfa_cee_format_lldp_cfg(&cee_cfg->lldp_remote);
36}
37
38static void
39bfa_cee_stats_swap(struct bfa_cee_stats *stats)
40{
41 u32 *buffer = (u32 *)stats;
42 int i;
43
44 for (i = 0; i < (sizeof(struct bfa_cee_stats) / sizeof(u32));
45 i++) {
46 buffer[i] = ntohl(buffer[i]);
47 }
48}
49
50static void
51bfa_cee_format_lldp_cfg(struct bfa_cee_lldp_cfg *lldp_cfg)
52{
53 lldp_cfg->time_to_live =
54 ntohs(lldp_cfg->time_to_live);
55 lldp_cfg->enabled_system_cap =
56 ntohs(lldp_cfg->enabled_system_cap);
57}
58
59/**
60 * bfa_cee_attr_meminfo()
61 *
62 * @brief Returns the size of the DMA memory needed by CEE attributes
63 *
64 * @param[in] void
65 *
66 * @return Size of DMA region
67 */
68static u32
69bfa_cee_attr_meminfo(void)
70{
71 return roundup(sizeof(struct bfa_cee_attr), BFA_DMA_ALIGN_SZ);
72}
73/**
74 * bfa_cee_stats_meminfo()
75 *
76 * @brief Returns the size of the DMA memory needed by CEE stats
77 *
78 * @param[in] void
79 *
80 * @return Size of DMA region
81 */
82static u32
83bfa_cee_stats_meminfo(void)
84{
85 return roundup(sizeof(struct bfa_cee_stats), BFA_DMA_ALIGN_SZ);
86}
87
88/**
89 * bfa_cee_get_attr_isr()
90 *
91 * @brief CEE ISR for get-attributes responses from f/w
92 *
93 * @param[in] cee - Pointer to the CEE module
94 * status - Return status from the f/w
95 *
96 * @return void
97 */
98static void
99bfa_cee_get_attr_isr(struct bfa_cee *cee, enum bfa_status status)
100{
101 cee->get_attr_status = status;
102 if (status == BFA_STATUS_OK) {
103 memcpy(cee->attr, cee->attr_dma.kva,
104 sizeof(struct bfa_cee_attr));
105 bfa_cee_format_cee_cfg(cee->attr);
106 }
107 cee->get_attr_pending = false;
108 if (cee->cbfn.get_attr_cbfn)
109 cee->cbfn.get_attr_cbfn(cee->cbfn.get_attr_cbarg, status);
110}
111
112/**
113 * bfa_cee_get_attr_isr()
114 *
115 * @brief CEE ISR for get-stats responses from f/w
116 *
117 * @param[in] cee - Pointer to the CEE module
118 * status - Return status from the f/w
119 *
120 * @return void
121 */
122static void
123bfa_cee_get_stats_isr(struct bfa_cee *cee, enum bfa_status status)
124{
125 cee->get_stats_status = status;
126 if (status == BFA_STATUS_OK) {
127 memcpy(cee->stats, cee->stats_dma.kva,
128 sizeof(struct bfa_cee_stats));
129 bfa_cee_stats_swap(cee->stats);
130 }
131 cee->get_stats_pending = false;
132 if (cee->cbfn.get_stats_cbfn)
133 cee->cbfn.get_stats_cbfn(cee->cbfn.get_stats_cbarg, status);
134}
135
136/**
137 * bfa_cee_get_attr_isr()
138 *
139 * @brief CEE ISR for reset-stats responses from f/w
140 *
141 * @param[in] cee - Pointer to the CEE module
142 * status - Return status from the f/w
143 *
144 * @return void
145 */
146static void
147bfa_cee_reset_stats_isr(struct bfa_cee *cee, enum bfa_status status)
148{
149 cee->reset_stats_status = status;
150 cee->reset_stats_pending = false;
151 if (cee->cbfn.reset_stats_cbfn)
152 cee->cbfn.reset_stats_cbfn(cee->cbfn.reset_stats_cbarg, status);
153}
154/**
155 * bfa_nw_cee_meminfo()
156 *
157 * @brief Returns the size of the DMA memory needed by CEE module
158 *
159 * @param[in] void
160 *
161 * @return Size of DMA region
162 */
163u32
164bfa_nw_cee_meminfo(void)
165{
166 return bfa_cee_attr_meminfo() + bfa_cee_stats_meminfo();
167}
168
169/**
170 * bfa_nw_cee_mem_claim()
171 *
172 * @brief Initialized CEE DMA Memory
173 *
174 * @param[in] cee CEE module pointer
175 * dma_kva Kernel Virtual Address of CEE DMA Memory
176 * dma_pa Physical Address of CEE DMA Memory
177 *
178 * @return void
179 */
180void
181bfa_nw_cee_mem_claim(struct bfa_cee *cee, u8 *dma_kva, u64 dma_pa)
182{
183 cee->attr_dma.kva = dma_kva;
184 cee->attr_dma.pa = dma_pa;
185 cee->stats_dma.kva = dma_kva + bfa_cee_attr_meminfo();
186 cee->stats_dma.pa = dma_pa + bfa_cee_attr_meminfo();
187 cee->attr = (struct bfa_cee_attr *) dma_kva;
188 cee->stats = (struct bfa_cee_stats *)
189 (dma_kva + bfa_cee_attr_meminfo());
190}
191
192/**
193 * bfa_cee_isrs()
194 *
195 * @brief Handles Mail-box interrupts for CEE module.
196 *
197 * @param[in] Pointer to the CEE module data structure.
198 *
199 * @return void
200 */
201
202static void
203bfa_cee_isr(void *cbarg, struct bfi_mbmsg *m)
204{
205 union bfi_cee_i2h_msg_u *msg;
206 struct bfi_cee_get_rsp *get_rsp;
207 struct bfa_cee *cee = (struct bfa_cee *) cbarg;
208 msg = (union bfi_cee_i2h_msg_u *) m;
209 get_rsp = (struct bfi_cee_get_rsp *) m;
210 switch (msg->mh.msg_id) {
211 case BFI_CEE_I2H_GET_CFG_RSP:
212 bfa_cee_get_attr_isr(cee, get_rsp->cmd_status);
213 break;
214 case BFI_CEE_I2H_GET_STATS_RSP:
215 bfa_cee_get_stats_isr(cee, get_rsp->cmd_status);
216 break;
217 case BFI_CEE_I2H_RESET_STATS_RSP:
218 bfa_cee_reset_stats_isr(cee, get_rsp->cmd_status);
219 break;
220 default:
221 BUG_ON(1);
222 }
223}
224
225/**
226 * bfa_cee_hbfail()
227 *
228 * @brief CEE module heart-beat failure handler.
229 *
230 * @param[in] Pointer to the CEE module data structure.
231 *
232 * @return void
233 */
234
235static void
236bfa_cee_hbfail(void *arg)
237{
238 struct bfa_cee *cee;
239 cee = (struct bfa_cee *) arg;
240
241 if (cee->get_attr_pending == true) {
242 cee->get_attr_status = BFA_STATUS_FAILED;
243 cee->get_attr_pending = false;
244 if (cee->cbfn.get_attr_cbfn) {
245 cee->cbfn.get_attr_cbfn(cee->cbfn.get_attr_cbarg,
246 BFA_STATUS_FAILED);
247 }
248 }
249 if (cee->get_stats_pending == true) {
250 cee->get_stats_status = BFA_STATUS_FAILED;
251 cee->get_stats_pending = false;
252 if (cee->cbfn.get_stats_cbfn) {
253 cee->cbfn.get_stats_cbfn(cee->cbfn.get_stats_cbarg,
254 BFA_STATUS_FAILED);
255 }
256 }
257 if (cee->reset_stats_pending == true) {
258 cee->reset_stats_status = BFA_STATUS_FAILED;
259 cee->reset_stats_pending = false;
260 if (cee->cbfn.reset_stats_cbfn) {
261 cee->cbfn.reset_stats_cbfn(cee->cbfn.reset_stats_cbarg,
262 BFA_STATUS_FAILED);
263 }
264 }
265}
266
267/**
268 * bfa_nw_cee_attach()
269 *
270 * @brief CEE module-attach API
271 *
272 * @param[in] cee - Pointer to the CEE module data structure
273 * ioc - Pointer to the ioc module data structure
274 * dev - Pointer to the device driver module data structure
275 * The device driver specific mbox ISR functions have
276 * this pointer as one of the parameters.
277 *
278 * @return void
279 */
280void
281bfa_nw_cee_attach(struct bfa_cee *cee, struct bfa_ioc *ioc,
282 void *dev)
283{
284 BUG_ON(!(cee != NULL));
285 cee->dev = dev;
286 cee->ioc = ioc;
287
288 bfa_nw_ioc_mbox_regisr(cee->ioc, BFI_MC_CEE, bfa_cee_isr, cee);
289 bfa_ioc_hbfail_init(&cee->hbfail, bfa_cee_hbfail, cee);
290 bfa_nw_ioc_hbfail_register(cee->ioc, &cee->hbfail);
291}
diff --git a/drivers/net/bna/bfa_cee.h b/drivers/net/bna/bfa_cee.h
new file mode 100644
index 000000000000..20543d15b64f
--- /dev/null
+++ b/drivers/net/bna/bfa_cee.h
@@ -0,0 +1,64 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#ifndef __BFA_CEE_H__
20#define __BFA_CEE_H__
21
22#include "bfa_defs_cna.h"
23#include "bfa_ioc.h"
24
25typedef void (*bfa_cee_get_attr_cbfn_t) (void *dev, enum bfa_status status);
26typedef void (*bfa_cee_get_stats_cbfn_t) (void *dev, enum bfa_status status);
27typedef void (*bfa_cee_reset_stats_cbfn_t) (void *dev, enum bfa_status status);
28typedef void (*bfa_cee_hbfail_cbfn_t) (void *dev, enum bfa_status status);
29
30struct bfa_cee_cbfn {
31 bfa_cee_get_attr_cbfn_t get_attr_cbfn;
32 void *get_attr_cbarg;
33 bfa_cee_get_stats_cbfn_t get_stats_cbfn;
34 void *get_stats_cbarg;
35 bfa_cee_reset_stats_cbfn_t reset_stats_cbfn;
36 void *reset_stats_cbarg;
37};
38
39struct bfa_cee {
40 void *dev;
41 bool get_attr_pending;
42 bool get_stats_pending;
43 bool reset_stats_pending;
44 enum bfa_status get_attr_status;
45 enum bfa_status get_stats_status;
46 enum bfa_status reset_stats_status;
47 struct bfa_cee_cbfn cbfn;
48 struct bfa_ioc_hbfail_notify hbfail;
49 struct bfa_cee_attr *attr;
50 struct bfa_cee_stats *stats;
51 struct bfa_dma attr_dma;
52 struct bfa_dma stats_dma;
53 struct bfa_ioc *ioc;
54 struct bfa_mbox_cmd get_cfg_mb;
55 struct bfa_mbox_cmd get_stats_mb;
56 struct bfa_mbox_cmd reset_stats_mb;
57};
58
59u32 bfa_nw_cee_meminfo(void);
60void bfa_nw_cee_mem_claim(struct bfa_cee *cee, u8 *dma_kva,
61 u64 dma_pa);
62void bfa_nw_cee_attach(struct bfa_cee *cee, struct bfa_ioc *ioc, void *dev);
63
64#endif /* __BFA_CEE_H__ */
diff --git a/drivers/net/bna/bfa_defs.h b/drivers/net/bna/bfa_defs.h
new file mode 100644
index 000000000000..2ea0dfe1cedc
--- /dev/null
+++ b/drivers/net/bna/bfa_defs.h
@@ -0,0 +1,245 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#ifndef __BFA_DEFS_H__
20#define __BFA_DEFS_H__
21
22#include "cna.h"
23#include "bfa_defs_status.h"
24#include "bfa_defs_mfg_comm.h"
25
26#define BFA_STRING_32 32
27#define BFA_VERSION_LEN 64
28
29/**
30 * ---------------------- adapter definitions ------------
31 */
32
33/**
34 * BFA adapter level attributes.
35 */
36enum {
37 BFA_ADAPTER_SERIAL_NUM_LEN = STRSZ(BFA_MFG_SERIALNUM_SIZE),
38 /*
39 *!< adapter serial num length
40 */
41 BFA_ADAPTER_MODEL_NAME_LEN = 16, /*!< model name length */
42 BFA_ADAPTER_MODEL_DESCR_LEN = 128, /*!< model description length */
43 BFA_ADAPTER_MFG_NAME_LEN = 8, /*!< manufacturer name length */
44 BFA_ADAPTER_SYM_NAME_LEN = 64, /*!< adapter symbolic name length */
45 BFA_ADAPTER_OS_TYPE_LEN = 64, /*!< adapter os type length */
46};
47
48struct bfa_adapter_attr {
49 char manufacturer[BFA_ADAPTER_MFG_NAME_LEN];
50 char serial_num[BFA_ADAPTER_SERIAL_NUM_LEN];
51 u32 card_type;
52 char model[BFA_ADAPTER_MODEL_NAME_LEN];
53 char model_descr[BFA_ADAPTER_MODEL_DESCR_LEN];
54 u64 pwwn;
55 char node_symname[FC_SYMNAME_MAX];
56 char hw_ver[BFA_VERSION_LEN];
57 char fw_ver[BFA_VERSION_LEN];
58 char optrom_ver[BFA_VERSION_LEN];
59 char os_type[BFA_ADAPTER_OS_TYPE_LEN];
60 struct bfa_mfg_vpd vpd;
61 struct mac mac;
62
63 u8 nports;
64 u8 max_speed;
65 u8 prototype;
66 char asic_rev;
67
68 u8 pcie_gen;
69 u8 pcie_lanes_orig;
70 u8 pcie_lanes;
71 u8 cna_capable;
72
73 u8 is_mezz;
74 u8 trunk_capable;
75};
76
77/**
78 * ---------------------- IOC definitions ------------
79 */
80
81enum {
82 BFA_IOC_DRIVER_LEN = 16,
83 BFA_IOC_CHIP_REV_LEN = 8,
84};
85
86/**
87 * Driver and firmware versions.
88 */
89struct bfa_ioc_driver_attr {
90 char driver[BFA_IOC_DRIVER_LEN]; /*!< driver name */
91 char driver_ver[BFA_VERSION_LEN]; /*!< driver version */
92 char fw_ver[BFA_VERSION_LEN]; /*!< firmware version */
93 char bios_ver[BFA_VERSION_LEN]; /*!< bios version */
94 char efi_ver[BFA_VERSION_LEN]; /*!< EFI version */
95 char ob_ver[BFA_VERSION_LEN]; /*!< openboot version */
96};
97
98/**
99 * IOC PCI device attributes
100 */
101struct bfa_ioc_pci_attr {
102 u16 vendor_id; /*!< PCI vendor ID */
103 u16 device_id; /*!< PCI device ID */
104 u16 ssid; /*!< subsystem ID */
105 u16 ssvid; /*!< subsystem vendor ID */
106 u32 pcifn; /*!< PCI device function */
107 u32 rsvd; /* padding */
108 char chip_rev[BFA_IOC_CHIP_REV_LEN]; /*!< chip revision */
109};
110
111/**
112 * IOC states
113 */
114enum bfa_ioc_state {
115 BFA_IOC_UNINIT = 1, /*!< IOC is in uninit state */
116 BFA_IOC_RESET = 2, /*!< IOC is in reset state */
117 BFA_IOC_SEMWAIT = 3, /*!< Waiting for IOC h/w semaphore */
118 BFA_IOC_HWINIT = 4, /*!< IOC h/w is being initialized */
119 BFA_IOC_GETATTR = 5, /*!< IOC is being configured */
120 BFA_IOC_OPERATIONAL = 6, /*!< IOC is operational */
121 BFA_IOC_INITFAIL = 7, /*!< IOC hardware failure */
122 BFA_IOC_FAIL = 8, /*!< IOC heart-beat failure */
123 BFA_IOC_DISABLING = 9, /*!< IOC is being disabled */
124 BFA_IOC_DISABLED = 10, /*!< IOC is disabled */
125 BFA_IOC_FWMISMATCH = 11, /*!< IOC f/w different from drivers */
126 BFA_IOC_ENABLING = 12, /*!< IOC is being enabled */
127};
128
129/**
130 * IOC firmware stats
131 */
132struct bfa_fw_ioc_stats {
133 u32 enable_reqs;
134 u32 disable_reqs;
135 u32 get_attr_reqs;
136 u32 dbg_sync;
137 u32 dbg_dump;
138 u32 unknown_reqs;
139};
140
141/**
142 * IOC driver stats
143 */
144struct bfa_ioc_drv_stats {
145 u32 ioc_isrs;
146 u32 ioc_enables;
147 u32 ioc_disables;
148 u32 ioc_hbfails;
149 u32 ioc_boots;
150 u32 stats_tmos;
151 u32 hb_count;
152 u32 disable_reqs;
153 u32 enable_reqs;
154 u32 disable_replies;
155 u32 enable_replies;
156};
157
158/**
159 * IOC statistics
160 */
161struct bfa_ioc_stats {
162 struct bfa_ioc_drv_stats drv_stats; /*!< driver IOC stats */
163 struct bfa_fw_ioc_stats fw_stats; /*!< firmware IOC stats */
164};
165
166enum bfa_ioc_type {
167 BFA_IOC_TYPE_FC = 1,
168 BFA_IOC_TYPE_FCoE = 2,
169 BFA_IOC_TYPE_LL = 3,
170};
171
172/**
173 * IOC attributes returned in queries
174 */
175struct bfa_ioc_attr {
176 enum bfa_ioc_type ioc_type;
177 enum bfa_ioc_state state; /*!< IOC state */
178 struct bfa_adapter_attr adapter_attr; /*!< HBA attributes */
179 struct bfa_ioc_driver_attr driver_attr; /*!< driver attr */
180 struct bfa_ioc_pci_attr pci_attr;
181 u8 port_id; /*!< port number */
182 u8 rsvd[7]; /*!< 64bit align */
183};
184
185/**
186 * ---------------------- mfg definitions ------------
187 */
188
189/**
190 * Checksum size
191 */
192#define BFA_MFG_CHKSUM_SIZE 16
193
194#define BFA_MFG_PARTNUM_SIZE 14
195#define BFA_MFG_SUPPLIER_ID_SIZE 10
196#define BFA_MFG_SUPPLIER_PARTNUM_SIZE 20
197#define BFA_MFG_SUPPLIER_SERIALNUM_SIZE 20
198#define BFA_MFG_SUPPLIER_REVISION_SIZE 4
199
200#pragma pack(1)
201
202/**
203 * @brief BFA adapter manufacturing block definition.
204 *
205 * All numerical fields are in big-endian format.
206 */
207struct bfa_mfg_block {
208 u8 version; /*!< manufacturing block version */
209 u8 mfg_sig[3]; /*!< characters 'M', 'F', 'G' */
210 u16 mfgsize; /*!< mfg block size */
211 u16 u16_chksum; /*!< old u16 checksum */
212 char brcd_serialnum[STRSZ(BFA_MFG_SERIALNUM_SIZE)];
213 char brcd_partnum[STRSZ(BFA_MFG_PARTNUM_SIZE)];
214 u8 mfg_day; /*!< manufacturing day */
215 u8 mfg_month; /*!< manufacturing month */
216 u16 mfg_year; /*!< manufacturing year */
217 u64 mfg_wwn; /*!< wwn base for this adapter */
218 u8 num_wwn; /*!< number of wwns assigned */
219 u8 mfg_speeds; /*!< speeds allowed for this adapter */
220 u8 rsv[2];
221 char supplier_id[STRSZ(BFA_MFG_SUPPLIER_ID_SIZE)];
222 char supplier_partnum[STRSZ(BFA_MFG_SUPPLIER_PARTNUM_SIZE)];
223 char
224 supplier_serialnum[STRSZ(BFA_MFG_SUPPLIER_SERIALNUM_SIZE)];
225 char
226 supplier_revision[STRSZ(BFA_MFG_SUPPLIER_REVISION_SIZE)];
227 mac_t mfg_mac; /*!< mac address */
228 u8 num_mac; /*!< number of mac addresses */
229 u8 rsv2;
230 u32 mfg_type; /*!< card type */
231 u8 rsv3[108];
232 u8 md5_chksum[BFA_MFG_CHKSUM_SIZE]; /*!< md5 checksum */
233};
234
235#pragma pack()
236
237/**
238 * ---------------------- pci definitions ------------
239 */
240
241#define bfa_asic_id_ct(devid) \
242 ((devid) == PCI_DEVICE_ID_BROCADE_CT || \
243 (devid) == PCI_DEVICE_ID_BROCADE_CT_FC)
244
245#endif /* __BFA_DEFS_H__ */
diff --git a/drivers/net/bna/bfa_defs_cna.h b/drivers/net/bna/bfa_defs_cna.h
new file mode 100644
index 000000000000..7e0a9187bdd5
--- /dev/null
+++ b/drivers/net/bna/bfa_defs_cna.h
@@ -0,0 +1,223 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#ifndef __BFA_DEFS_CNA_H__
20#define __BFA_DEFS_CNA_H__
21
22#include "bfa_defs.h"
23
24/**
25 * @brief
26 * FC physical port statistics.
27 */
28struct bfa_port_fc_stats {
29 u64 secs_reset; /*!< Seconds since stats is reset */
30 u64 tx_frames; /*!< Tx frames */
31 u64 tx_words; /*!< Tx words */
32 u64 tx_lip; /*!< Tx LIP */
33 u64 tx_nos; /*!< Tx NOS */
34 u64 tx_ols; /*!< Tx OLS */
35 u64 tx_lr; /*!< Tx LR */
36 u64 tx_lrr; /*!< Tx LRR */
37 u64 rx_frames; /*!< Rx frames */
38 u64 rx_words; /*!< Rx words */
39 u64 lip_count; /*!< Rx LIP */
40 u64 nos_count; /*!< Rx NOS */
41 u64 ols_count; /*!< Rx OLS */
42 u64 lr_count; /*!< Rx LR */
43 u64 lrr_count; /*!< Rx LRR */
44 u64 invalid_crcs; /*!< Rx CRC err frames */
45 u64 invalid_crc_gd_eof; /*!< Rx CRC err good EOF frames */
46 u64 undersized_frm; /*!< Rx undersized frames */
47 u64 oversized_frm; /*!< Rx oversized frames */
48 u64 bad_eof_frm; /*!< Rx frames with bad EOF */
49 u64 error_frames; /*!< Errored frames */
50 u64 dropped_frames; /*!< Dropped frames */
51 u64 link_failures; /*!< Link Failure (LF) count */
52 u64 loss_of_syncs; /*!< Loss of sync count */
53 u64 loss_of_signals; /*!< Loss of signal count */
54 u64 primseq_errs; /*!< Primitive sequence protocol err. */
55 u64 bad_os_count; /*!< Invalid ordered sets */
56 u64 err_enc_out; /*!< Encoding err nonframe_8b10b */
57 u64 err_enc; /*!< Encoding err frame_8b10b */
58};
59
60/**
61 * @brief
62 * Eth Physical Port statistics.
63 */
64struct bfa_port_eth_stats {
65 u64 secs_reset; /*!< Seconds since stats is reset */
66 u64 frame_64; /*!< Frames 64 bytes */
67 u64 frame_65_127; /*!< Frames 65-127 bytes */
68 u64 frame_128_255; /*!< Frames 128-255 bytes */
69 u64 frame_256_511; /*!< Frames 256-511 bytes */
70 u64 frame_512_1023; /*!< Frames 512-1023 bytes */
71 u64 frame_1024_1518; /*!< Frames 1024-1518 bytes */
72 u64 frame_1519_1522; /*!< Frames 1519-1522 bytes */
73 u64 tx_bytes; /*!< Tx bytes */
74 u64 tx_packets; /*!< Tx packets */
75 u64 tx_mcast_packets; /*!< Tx multicast packets */
76 u64 tx_bcast_packets; /*!< Tx broadcast packets */
77 u64 tx_control_frame; /*!< Tx control frame */
78 u64 tx_drop; /*!< Tx drops */
79 u64 tx_jabber; /*!< Tx jabber */
80 u64 tx_fcs_error; /*!< Tx FCS errors */
81 u64 tx_fragments; /*!< Tx fragments */
82 u64 rx_bytes; /*!< Rx bytes */
83 u64 rx_packets; /*!< Rx packets */
84 u64 rx_mcast_packets; /*!< Rx multicast packets */
85 u64 rx_bcast_packets; /*!< Rx broadcast packets */
86 u64 rx_control_frames; /*!< Rx control frames */
87 u64 rx_unknown_opcode; /*!< Rx unknown opcode */
88 u64 rx_drop; /*!< Rx drops */
89 u64 rx_jabber; /*!< Rx jabber */
90 u64 rx_fcs_error; /*!< Rx FCS errors */
91 u64 rx_alignment_error; /*!< Rx alignment errors */
92 u64 rx_frame_length_error; /*!< Rx frame len errors */
93 u64 rx_code_error; /*!< Rx code errors */
94 u64 rx_fragments; /*!< Rx fragments */
95 u64 rx_pause; /*!< Rx pause */
96 u64 rx_zero_pause; /*!< Rx zero pause */
97 u64 tx_pause; /*!< Tx pause */
98 u64 tx_zero_pause; /*!< Tx zero pause */
99 u64 rx_fcoe_pause; /*!< Rx FCoE pause */
100 u64 rx_fcoe_zero_pause; /*!< Rx FCoE zero pause */
101 u64 tx_fcoe_pause; /*!< Tx FCoE pause */
102 u64 tx_fcoe_zero_pause; /*!< Tx FCoE zero pause */
103};
104
105/**
106 * @brief
107 * Port statistics.
108 */
109union bfa_port_stats_u {
110 struct bfa_port_fc_stats fc;
111 struct bfa_port_eth_stats eth;
112};
113
114#pragma pack(1)
115
116#define BFA_CEE_LLDP_MAX_STRING_LEN (128)
117#define BFA_CEE_DCBX_MAX_PRIORITY (8)
118#define BFA_CEE_DCBX_MAX_PGID (8)
119
120#define BFA_CEE_LLDP_SYS_CAP_OTHER 0x0001
121#define BFA_CEE_LLDP_SYS_CAP_REPEATER 0x0002
122#define BFA_CEE_LLDP_SYS_CAP_MAC_BRIDGE 0x0004
123#define BFA_CEE_LLDP_SYS_CAP_WLAN_AP 0x0008
124#define BFA_CEE_LLDP_SYS_CAP_ROUTER 0x0010
125#define BFA_CEE_LLDP_SYS_CAP_TELEPHONE 0x0020
126#define BFA_CEE_LLDP_SYS_CAP_DOCSIS_CD 0x0040
127#define BFA_CEE_LLDP_SYS_CAP_STATION 0x0080
128#define BFA_CEE_LLDP_SYS_CAP_CVLAN 0x0100
129#define BFA_CEE_LLDP_SYS_CAP_SVLAN 0x0200
130#define BFA_CEE_LLDP_SYS_CAP_TPMR 0x0400
131
132/* LLDP string type */
133struct bfa_cee_lldp_str {
134 u8 sub_type;
135 u8 len;
136 u8 rsvd[2];
137 u8 value[BFA_CEE_LLDP_MAX_STRING_LEN];
138};
139
140/* LLDP paramters */
141struct bfa_cee_lldp_cfg {
142 struct bfa_cee_lldp_str chassis_id;
143 struct bfa_cee_lldp_str port_id;
144 struct bfa_cee_lldp_str port_desc;
145 struct bfa_cee_lldp_str sys_name;
146 struct bfa_cee_lldp_str sys_desc;
147 struct bfa_cee_lldp_str mgmt_addr;
148 u16 time_to_live;
149 u16 enabled_system_cap;
150};
151
152enum bfa_cee_dcbx_version {
153 DCBX_PROTOCOL_PRECEE = 1,
154 DCBX_PROTOCOL_CEE = 2,
155};
156
157enum bfa_cee_lls {
158 /* LLS is down because the TLV not sent by the peer */
159 CEE_LLS_DOWN_NO_TLV = 0,
160 /* LLS is down as advertised by the peer */
161 CEE_LLS_DOWN = 1,
162 CEE_LLS_UP = 2,
163};
164
165/* CEE/DCBX parameters */
166struct bfa_cee_dcbx_cfg {
167 u8 pgid[BFA_CEE_DCBX_MAX_PRIORITY];
168 u8 pg_percentage[BFA_CEE_DCBX_MAX_PGID];
169 u8 pfc_primap; /* bitmap of priorties with PFC enabled */
170 u8 fcoe_primap; /* bitmap of priorities used for FcoE traffic */
171 u8 iscsi_primap; /* bitmap of priorities used for iSCSI traffic */
172 u8 dcbx_version; /* operating version:CEE or preCEE */
173 u8 lls_fcoe; /* FCoE Logical Link Status */
174 u8 lls_lan; /* LAN Logical Link Status */
175 u8 rsvd[2];
176};
177
178/* CEE status */
179/* Making this to tri-state for the benefit of port list command */
180enum bfa_cee_status {
181 CEE_UP = 0,
182 CEE_PHY_UP = 1,
183 CEE_LOOPBACK = 2,
184 CEE_PHY_DOWN = 3,
185};
186
187/* CEE Query */
188struct bfa_cee_attr {
189 u8 cee_status;
190 u8 error_reason;
191 struct bfa_cee_lldp_cfg lldp_remote;
192 struct bfa_cee_dcbx_cfg dcbx_remote;
193 mac_t src_mac;
194 u8 link_speed;
195 u8 nw_priority;
196 u8 filler[2];
197};
198
199/* LLDP/DCBX/CEE Statistics */
200struct bfa_cee_stats {
201 u32 lldp_tx_frames; /*!< LLDP Tx Frames */
202 u32 lldp_rx_frames; /*!< LLDP Rx Frames */
203 u32 lldp_rx_frames_invalid; /*!< LLDP Rx Frames invalid */
204 u32 lldp_rx_frames_new; /*!< LLDP Rx Frames new */
205 u32 lldp_tlvs_unrecognized; /*!< LLDP Rx unrecognized TLVs */
206 u32 lldp_rx_shutdown_tlvs; /*!< LLDP Rx shutdown TLVs */
207 u32 lldp_info_aged_out; /*!< LLDP remote info aged out */
208 u32 dcbx_phylink_ups; /*!< DCBX phy link ups */
209 u32 dcbx_phylink_downs; /*!< DCBX phy link downs */
210 u32 dcbx_rx_tlvs; /*!< DCBX Rx TLVs */
211 u32 dcbx_rx_tlvs_invalid; /*!< DCBX Rx TLVs invalid */
212 u32 dcbx_control_tlv_error; /*!< DCBX control TLV errors */
213 u32 dcbx_feature_tlv_error; /*!< DCBX feature TLV errors */
214 u32 dcbx_cee_cfg_new; /*!< DCBX new CEE cfg rcvd */
215 u32 cee_status_down; /*!< CEE status down */
216 u32 cee_status_up; /*!< CEE status up */
217 u32 cee_hw_cfg_changed; /*!< CEE hw cfg changed */
218 u32 cee_rx_invalid_cfg; /*!< CEE invalid cfg */
219};
220
221#pragma pack()
222
223#endif /* __BFA_DEFS_CNA_H__ */
diff --git a/drivers/net/bna/bfa_defs_mfg_comm.h b/drivers/net/bna/bfa_defs_mfg_comm.h
new file mode 100644
index 000000000000..fdd677618361
--- /dev/null
+++ b/drivers/net/bna/bfa_defs_mfg_comm.h
@@ -0,0 +1,222 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#ifndef __BFA_DEFS_MFG_COMM_H__
19#define __BFA_DEFS_MFG_COMM_H__
20
21#include "cna.h"
22
23/**
24 * Manufacturing block version
25 */
26#define BFA_MFG_VERSION 2
27#define BFA_MFG_VERSION_UNINIT 0xFF
28
29/**
30 * Manufacturing block encrypted version
31 */
32#define BFA_MFG_ENC_VER 2
33
34/**
35 * Manufacturing block version 1 length
36 */
37#define BFA_MFG_VER1_LEN 128
38
39/**
40 * Manufacturing block header length
41 */
42#define BFA_MFG_HDR_LEN 4
43
44#define BFA_MFG_SERIALNUM_SIZE 11
45#define STRSZ(_n) (((_n) + 4) & ~3)
46
47/**
48 * Manufacturing card type
49 */
50enum {
51 BFA_MFG_TYPE_CB_MAX = 825, /*!< Crossbow card type max */
52 BFA_MFG_TYPE_FC8P2 = 825, /*!< 8G 2port FC card */
53 BFA_MFG_TYPE_FC8P1 = 815, /*!< 8G 1port FC card */
54 BFA_MFG_TYPE_FC4P2 = 425, /*!< 4G 2port FC card */
55 BFA_MFG_TYPE_FC4P1 = 415, /*!< 4G 1port FC card */
56 BFA_MFG_TYPE_CNA10P2 = 1020, /*!< 10G 2port CNA card */
57 BFA_MFG_TYPE_CNA10P1 = 1010, /*!< 10G 1port CNA card */
58 BFA_MFG_TYPE_JAYHAWK = 804, /*!< Jayhawk mezz card */
59 BFA_MFG_TYPE_WANCHESE = 1007, /*!< Wanchese mezz card */
60 BFA_MFG_TYPE_ASTRA = 807, /*!< Astra mezz card */
61 BFA_MFG_TYPE_LIGHTNING_P0 = 902, /*!< Lightning mezz card - old */
62 BFA_MFG_TYPE_LIGHTNING = 1741, /*!< Lightning mezz card */
63 BFA_MFG_TYPE_INVALID = 0, /*!< Invalid card type */
64};
65
66#pragma pack(1)
67
68/**
69 * Check if 1-port card
70 */
71#define bfa_mfg_is_1port(type) (( \
72 (type) == BFA_MFG_TYPE_FC8P1 || \
73 (type) == BFA_MFG_TYPE_FC4P1 || \
74 (type) == BFA_MFG_TYPE_CNA10P1))
75
76/**
77 * Check if Mezz card
78 */
79#define bfa_mfg_is_mezz(type) (( \
80 (type) == BFA_MFG_TYPE_JAYHAWK || \
81 (type) == BFA_MFG_TYPE_WANCHESE || \
82 (type) == BFA_MFG_TYPE_ASTRA || \
83 (type) == BFA_MFG_TYPE_LIGHTNING_P0 || \
84 (type) == BFA_MFG_TYPE_LIGHTNING))
85
86/**
87 * Check if card type valid
88 */
89#define bfa_mfg_is_card_type_valid(type) (( \
90 (type) == BFA_MFG_TYPE_FC8P2 || \
91 (type) == BFA_MFG_TYPE_FC8P1 || \
92 (type) == BFA_MFG_TYPE_FC4P2 || \
93 (type) == BFA_MFG_TYPE_FC4P1 || \
94 (type) == BFA_MFG_TYPE_CNA10P2 || \
95 (type) == BFA_MFG_TYPE_CNA10P1 || \
96 bfa_mfg_is_mezz(type)))
97
98#define bfa_mfg_adapter_prop_init_flash(card_type, prop) \
99do { \
100 switch ((card_type)) { \
101 case BFA_MFG_TYPE_FC8P2: \
102 case BFA_MFG_TYPE_JAYHAWK: \
103 case BFA_MFG_TYPE_ASTRA: \
104 (prop) = BFI_ADAPTER_SETP(NPORTS, 2) | \
105 BFI_ADAPTER_SETP(SPEED, 8); \
106 break; \
107 case BFA_MFG_TYPE_FC8P1: \
108 (prop) = BFI_ADAPTER_SETP(NPORTS, 1) | \
109 BFI_ADAPTER_SETP(SPEED, 8); \
110 break; \
111 case BFA_MFG_TYPE_FC4P2: \
112 (prop) = BFI_ADAPTER_SETP(NPORTS, 2) | \
113 BFI_ADAPTER_SETP(SPEED, 4); \
114 break; \
115 case BFA_MFG_TYPE_FC4P1: \
116 (prop) = BFI_ADAPTER_SETP(NPORTS, 1) | \
117 BFI_ADAPTER_SETP(SPEED, 4); \
118 break; \
119 case BFA_MFG_TYPE_CNA10P2: \
120 case BFA_MFG_TYPE_WANCHESE: \
121 case BFA_MFG_TYPE_LIGHTNING_P0: \
122 case BFA_MFG_TYPE_LIGHTNING: \
123 (prop) = BFI_ADAPTER_SETP(NPORTS, 2); \
124 (prop) |= BFI_ADAPTER_SETP(SPEED, 10); \
125 break; \
126 case BFA_MFG_TYPE_CNA10P1: \
127 (prop) = BFI_ADAPTER_SETP(NPORTS, 1); \
128 (prop) |= BFI_ADAPTER_SETP(SPEED, 10); \
129 break; \
130 default: \
131 (prop) = BFI_ADAPTER_UNSUPP; \
132 } \
133} while (0)
134
135enum {
136 CB_GPIO_TTV = (1), /*!< TTV debug capable cards */
137 CB_GPIO_FC8P2 = (2), /*!< 8G 2port FC card */
138 CB_GPIO_FC8P1 = (3), /*!< 8G 1port FC card */
139 CB_GPIO_FC4P2 = (4), /*!< 4G 2port FC card */
140 CB_GPIO_FC4P1 = (5), /*!< 4G 1port FC card */
141 CB_GPIO_DFLY = (6), /*!< 8G 2port FC mezzanine card */
142 CB_GPIO_PROTO = (1 << 7) /*!< 8G 2port FC prototypes */
143};
144
145#define bfa_mfg_adapter_prop_init_gpio(gpio, card_type, prop) \
146do { \
147 if ((gpio) & CB_GPIO_PROTO) { \
148 (prop) |= BFI_ADAPTER_PROTO; \
149 (gpio) &= ~CB_GPIO_PROTO; \
150 } \
151 switch ((gpio)) { \
152 case CB_GPIO_TTV: \
153 (prop) |= BFI_ADAPTER_TTV; \
154 case CB_GPIO_DFLY: \
155 case CB_GPIO_FC8P2: \
156 (prop) |= BFI_ADAPTER_SETP(NPORTS, 2); \
157 (prop) |= BFI_ADAPTER_SETP(SPEED, 8); \
158 (card_type) = BFA_MFG_TYPE_FC8P2; \
159 break; \
160 case CB_GPIO_FC8P1: \
161 (prop) |= BFI_ADAPTER_SETP(NPORTS, 1); \
162 (prop) |= BFI_ADAPTER_SETP(SPEED, 8); \
163 (card_type) = BFA_MFG_TYPE_FC8P1; \
164 break; \
165 case CB_GPIO_FC4P2: \
166 (prop) |= BFI_ADAPTER_SETP(NPORTS, 2); \
167 (prop) |= BFI_ADAPTER_SETP(SPEED, 4); \
168 (card_type) = BFA_MFG_TYPE_FC4P2; \
169 break; \
170 case CB_GPIO_FC4P1: \
171 (prop) |= BFI_ADAPTER_SETP(NPORTS, 1); \
172 (prop) |= BFI_ADAPTER_SETP(SPEED, 4); \
173 (card_type) = BFA_MFG_TYPE_FC4P1; \
174 break; \
175 default: \
176 (prop) |= BFI_ADAPTER_UNSUPP; \
177 (card_type) = BFA_MFG_TYPE_INVALID; \
178 } \
179} while (0)
180
181/**
182 * VPD data length
183 */
184#define BFA_MFG_VPD_LEN 512
185#define BFA_MFG_VPD_LEN_INVALID 0
186
187#define BFA_MFG_VPD_PCI_HDR_OFF 137
188#define BFA_MFG_VPD_PCI_VER_MASK 0x07 /*!< version mask 3 bits */
189#define BFA_MFG_VPD_PCI_VDR_MASK 0xf8 /*!< vendor mask 5 bits */
190
191/**
192 * VPD vendor tag
193 */
194enum {
195 BFA_MFG_VPD_UNKNOWN = 0, /*!< vendor unknown */
196 BFA_MFG_VPD_IBM = 1, /*!< vendor IBM */
197 BFA_MFG_VPD_HP = 2, /*!< vendor HP */
198 BFA_MFG_VPD_DELL = 3, /*!< vendor DELL */
199 BFA_MFG_VPD_PCI_IBM = 0x08, /*!< PCI VPD IBM */
200 BFA_MFG_VPD_PCI_HP = 0x10, /*!< PCI VPD HP */
201 BFA_MFG_VPD_PCI_DELL = 0x20, /*!< PCI VPD DELL */
202 BFA_MFG_VPD_PCI_BRCD = 0xf8, /*!< PCI VPD Brocade */
203};
204
205/**
206 * @brief BFA adapter flash vpd data definition.
207 *
208 * All numerical fields are in big-endian format.
209 */
210struct bfa_mfg_vpd {
211 u8 version; /*!< vpd data version */
212 u8 vpd_sig[3]; /*!< characters 'V', 'P', 'D' */
213 u8 chksum; /*!< u8 checksum */
214 u8 vendor; /*!< vendor */
215 u8 len; /*!< vpd data length excluding header */
216 u8 rsv;
217 u8 data[BFA_MFG_VPD_LEN]; /*!< vpd data */
218};
219
220#pragma pack()
221
222#endif /* __BFA_DEFS_MFG_H__ */
diff --git a/drivers/net/bna/bfa_defs_status.h b/drivers/net/bna/bfa_defs_status.h
new file mode 100644
index 000000000000..af951126375c
--- /dev/null
+++ b/drivers/net/bna/bfa_defs_status.h
@@ -0,0 +1,216 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#ifndef __BFA_DEFS_STATUS_H__
19#define __BFA_DEFS_STATUS_H__
20
21/**
22 * API status return values
23 *
24 * NOTE: The error msgs are auto generated from the comments. Only singe line
25 * comments are supported
26 */
27enum bfa_status {
28 BFA_STATUS_OK = 0,
29 BFA_STATUS_FAILED = 1,
30 BFA_STATUS_EINVAL = 2,
31 BFA_STATUS_ENOMEM = 3,
32 BFA_STATUS_ENOSYS = 4,
33 BFA_STATUS_ETIMER = 5,
34 BFA_STATUS_EPROTOCOL = 6,
35 BFA_STATUS_ENOFCPORTS = 7,
36 BFA_STATUS_NOFLASH = 8,
37 BFA_STATUS_BADFLASH = 9,
38 BFA_STATUS_SFP_UNSUPP = 10,
39 BFA_STATUS_UNKNOWN_VFID = 11,
40 BFA_STATUS_DATACORRUPTED = 12,
41 BFA_STATUS_DEVBUSY = 13,
42 BFA_STATUS_ABORTED = 14,
43 BFA_STATUS_NODEV = 15,
44 BFA_STATUS_HDMA_FAILED = 16,
45 BFA_STATUS_FLASH_BAD_LEN = 17,
46 BFA_STATUS_UNKNOWN_LWWN = 18,
47 BFA_STATUS_UNKNOWN_RWWN = 19,
48 BFA_STATUS_FCPT_LS_RJT = 20,
49 BFA_STATUS_VPORT_EXISTS = 21,
50 BFA_STATUS_VPORT_MAX = 22,
51 BFA_STATUS_UNSUPP_SPEED = 23,
52 BFA_STATUS_INVLD_DFSZ = 24,
53 BFA_STATUS_CNFG_FAILED = 25,
54 BFA_STATUS_CMD_NOTSUPP = 26,
55 BFA_STATUS_NO_ADAPTER = 27,
56 BFA_STATUS_LINKDOWN = 28,
57 BFA_STATUS_FABRIC_RJT = 29,
58 BFA_STATUS_UNKNOWN_VWWN = 30,
59 BFA_STATUS_NSLOGIN_FAILED = 31,
60 BFA_STATUS_NO_RPORTS = 32,
61 BFA_STATUS_NSQUERY_FAILED = 33,
62 BFA_STATUS_PORT_OFFLINE = 34,
63 BFA_STATUS_RPORT_OFFLINE = 35,
64 BFA_STATUS_TGTOPEN_FAILED = 36,
65 BFA_STATUS_BAD_LUNS = 37,
66 BFA_STATUS_IO_FAILURE = 38,
67 BFA_STATUS_NO_FABRIC = 39,
68 BFA_STATUS_EBADF = 40,
69 BFA_STATUS_EINTR = 41,
70 BFA_STATUS_EIO = 42,
71 BFA_STATUS_ENOTTY = 43,
72 BFA_STATUS_ENXIO = 44,
73 BFA_STATUS_EFOPEN = 45,
74 BFA_STATUS_VPORT_WWN_BP = 46,
75 BFA_STATUS_PORT_NOT_DISABLED = 47,
76 BFA_STATUS_BADFRMHDR = 48,
77 BFA_STATUS_BADFRMSZ = 49,
78 BFA_STATUS_MISSINGFRM = 50,
79 BFA_STATUS_LINKTIMEOUT = 51,
80 BFA_STATUS_NO_FCPIM_NEXUS = 52,
81 BFA_STATUS_CHECKSUM_FAIL = 53,
82 BFA_STATUS_GZME_FAILED = 54,
83 BFA_STATUS_SCSISTART_REQD = 55,
84 BFA_STATUS_IOC_FAILURE = 56,
85 BFA_STATUS_INVALID_WWN = 57,
86 BFA_STATUS_MISMATCH = 58,
87 BFA_STATUS_IOC_ENABLED = 59,
88 BFA_STATUS_ADAPTER_ENABLED = 60,
89 BFA_STATUS_IOC_NON_OP = 61,
90 BFA_STATUS_ADDR_MAP_FAILURE = 62,
91 BFA_STATUS_SAME_NAME = 63,
92 BFA_STATUS_PENDING = 64,
93 BFA_STATUS_8G_SPD = 65,
94 BFA_STATUS_4G_SPD = 66,
95 BFA_STATUS_AD_IS_ENABLE = 67,
96 BFA_STATUS_EINVAL_TOV = 68,
97 BFA_STATUS_EINVAL_QDEPTH = 69,
98 BFA_STATUS_VERSION_FAIL = 70,
99 BFA_STATUS_DIAG_BUSY = 71,
100 BFA_STATUS_BEACON_ON = 72,
101 BFA_STATUS_BEACON_OFF = 73,
102 BFA_STATUS_LBEACON_ON = 74,
103 BFA_STATUS_LBEACON_OFF = 75,
104 BFA_STATUS_PORT_NOT_INITED = 76,
105 BFA_STATUS_RPSC_ENABLED = 77,
106 BFA_STATUS_ENOFSAVE = 78,
107 BFA_STATUS_BAD_FILE = 79,
108 BFA_STATUS_RLIM_EN = 80,
109 BFA_STATUS_RLIM_DIS = 81,
110 BFA_STATUS_IOC_DISABLED = 82,
111 BFA_STATUS_ADAPTER_DISABLED = 83,
112 BFA_STATUS_BIOS_DISABLED = 84,
113 BFA_STATUS_AUTH_ENABLED = 85,
114 BFA_STATUS_AUTH_DISABLED = 86,
115 BFA_STATUS_ERROR_TRL_ENABLED = 87,
116 BFA_STATUS_ERROR_QOS_ENABLED = 88,
117 BFA_STATUS_NO_SFP_DEV = 89,
118 BFA_STATUS_MEMTEST_FAILED = 90,
119 BFA_STATUS_INVALID_DEVID = 91,
120 BFA_STATUS_QOS_ENABLED = 92,
121 BFA_STATUS_QOS_DISABLED = 93,
122 BFA_STATUS_INCORRECT_DRV_CONFIG = 94,
123 BFA_STATUS_REG_FAIL = 95,
124 BFA_STATUS_IM_INV_CODE = 96,
125 BFA_STATUS_IM_INV_VLAN = 97,
126 BFA_STATUS_IM_INV_ADAPT_NAME = 98,
127 BFA_STATUS_IM_LOW_RESOURCES = 99,
128 BFA_STATUS_IM_VLANID_IS_PVID = 100,
129 BFA_STATUS_IM_VLANID_EXISTS = 101,
130 BFA_STATUS_IM_FW_UPDATE_FAIL = 102,
131 BFA_STATUS_PORTLOG_ENABLED = 103,
132 BFA_STATUS_PORTLOG_DISABLED = 104,
133 BFA_STATUS_FILE_NOT_FOUND = 105,
134 BFA_STATUS_QOS_FC_ONLY = 106,
135 BFA_STATUS_RLIM_FC_ONLY = 107,
136 BFA_STATUS_CT_SPD = 108,
137 BFA_STATUS_LEDTEST_OP = 109,
138 BFA_STATUS_CEE_NOT_DN = 110,
139 BFA_STATUS_10G_SPD = 111,
140 BFA_STATUS_IM_INV_TEAM_NAME = 112,
141 BFA_STATUS_IM_DUP_TEAM_NAME = 113,
142 BFA_STATUS_IM_ADAPT_ALREADY_IN_TEAM = 114,
143 BFA_STATUS_IM_ADAPT_HAS_VLANS = 115,
144 BFA_STATUS_IM_PVID_MISMATCH = 116,
145 BFA_STATUS_IM_LINK_SPEED_MISMATCH = 117,
146 BFA_STATUS_IM_MTU_MISMATCH = 118,
147 BFA_STATUS_IM_RSS_MISMATCH = 119,
148 BFA_STATUS_IM_HDS_MISMATCH = 120,
149 BFA_STATUS_IM_OFFLOAD_MISMATCH = 121,
150 BFA_STATUS_IM_PORT_PARAMS = 122,
151 BFA_STATUS_IM_PORT_NOT_IN_TEAM = 123,
152 BFA_STATUS_IM_CANNOT_REM_PRI = 124,
153 BFA_STATUS_IM_MAX_PORTS_REACHED = 125,
154 BFA_STATUS_IM_LAST_PORT_DELETE = 126,
155 BFA_STATUS_IM_NO_DRIVER = 127,
156 BFA_STATUS_IM_MAX_VLANS_REACHED = 128,
157 BFA_STATUS_TOMCAT_SPD_NOT_ALLOWED = 129,
158 BFA_STATUS_NO_MINPORT_DRIVER = 130,
159 BFA_STATUS_CARD_TYPE_MISMATCH = 131,
160 BFA_STATUS_BAD_ASICBLK = 132,
161 BFA_STATUS_NO_DRIVER = 133,
162 BFA_STATUS_INVALID_MAC = 134,
163 BFA_STATUS_IM_NO_VLAN = 135,
164 BFA_STATUS_IM_ETH_LB_FAILED = 136,
165 BFA_STATUS_IM_PVID_REMOVE = 137,
166 BFA_STATUS_IM_PVID_EDIT = 138,
167 BFA_STATUS_CNA_NO_BOOT = 139,
168 BFA_STATUS_IM_PVID_NON_ZERO = 140,
169 BFA_STATUS_IM_INETCFG_LOCK_FAILED = 141,
170 BFA_STATUS_IM_GET_INETCFG_FAILED = 142,
171 BFA_STATUS_IM_NOT_BOUND = 143,
172 BFA_STATUS_INSUFFICIENT_PERMS = 144,
173 BFA_STATUS_IM_INV_VLAN_NAME = 145,
174 BFA_STATUS_CMD_NOTSUPP_CNA = 146,
175 BFA_STATUS_IM_PASSTHRU_EDIT = 147,
176 BFA_STATUS_IM_BIND_FAILED = 148,
177 BFA_STATUS_IM_UNBIND_FAILED = 149,
178 BFA_STATUS_IM_PORT_IN_TEAM = 150,
179 BFA_STATUS_IM_VLAN_NOT_FOUND = 151,
180 BFA_STATUS_IM_TEAM_NOT_FOUND = 152,
181 BFA_STATUS_IM_TEAM_CFG_NOT_ALLOWED = 153,
182 BFA_STATUS_PBC = 154,
183 BFA_STATUS_DEVID_MISSING = 155,
184 BFA_STATUS_BAD_FWCFG = 156,
185 BFA_STATUS_CREATE_FILE = 157,
186 BFA_STATUS_INVALID_VENDOR = 158,
187 BFA_STATUS_SFP_NOT_READY = 159,
188 BFA_STATUS_FLASH_UNINIT = 160,
189 BFA_STATUS_FLASH_EMPTY = 161,
190 BFA_STATUS_FLASH_CKFAIL = 162,
191 BFA_STATUS_TRUNK_UNSUPP = 163,
192 BFA_STATUS_TRUNK_ENABLED = 164,
193 BFA_STATUS_TRUNK_DISABLED = 165,
194 BFA_STATUS_TRUNK_ERROR_TRL_ENABLED = 166,
195 BFA_STATUS_BOOT_CODE_UPDATED = 167,
196 BFA_STATUS_BOOT_VERSION = 168,
197 BFA_STATUS_CARDTYPE_MISSING = 169,
198 BFA_STATUS_INVALID_CARDTYPE = 170,
199 BFA_STATUS_NO_TOPOLOGY_FOR_CNA = 171,
200 BFA_STATUS_IM_VLAN_OVER_TEAM_DELETE_FAILED = 172,
201 BFA_STATUS_ETHBOOT_ENABLED = 173,
202 BFA_STATUS_ETHBOOT_DISABLED = 174,
203 BFA_STATUS_IOPROFILE_OFF = 175,
204 BFA_STATUS_NO_PORT_INSTANCE = 176,
205 BFA_STATUS_BOOT_CODE_TIMEDOUT = 177,
206 BFA_STATUS_NO_VPORT_LOCK = 178,
207 BFA_STATUS_VPORT_NO_CNFG = 179,
208 BFA_STATUS_MAX_VAL
209};
210
211enum bfa_eproto_status {
212 BFA_EPROTO_BAD_ACCEPT = 0,
213 BFA_EPROTO_UNKNOWN_RSP = 1
214};
215
216#endif /* __BFA_DEFS_STATUS_H__ */
diff --git a/drivers/net/bna/bfa_ioc.c b/drivers/net/bna/bfa_ioc.c
new file mode 100644
index 000000000000..fcb9bb3169e0
--- /dev/null
+++ b/drivers/net/bna/bfa_ioc.c
@@ -0,0 +1,2285 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#include "bfa_ioc.h"
20#include "cna.h"
21#include "bfi.h"
22#include "bfi_ctreg.h"
23#include "bfa_defs.h"
24
25/**
26 * IOC local definitions
27 */
28
29/**
30 * Asic specific macros : see bfa_hw_cb.c and bfa_hw_ct.c for details.
31 */
32
33#define bfa_ioc_firmware_lock(__ioc) \
34 ((__ioc)->ioc_hwif->ioc_firmware_lock(__ioc))
35#define bfa_ioc_firmware_unlock(__ioc) \
36 ((__ioc)->ioc_hwif->ioc_firmware_unlock(__ioc))
37#define bfa_ioc_reg_init(__ioc) ((__ioc)->ioc_hwif->ioc_reg_init(__ioc))
38#define bfa_ioc_map_port(__ioc) ((__ioc)->ioc_hwif->ioc_map_port(__ioc))
39#define bfa_ioc_notify_fail(__ioc) \
40 ((__ioc)->ioc_hwif->ioc_notify_fail(__ioc))
41#define bfa_ioc_sync_start(__ioc) \
42 ((__ioc)->ioc_hwif->ioc_sync_start(__ioc))
43#define bfa_ioc_sync_join(__ioc) \
44 ((__ioc)->ioc_hwif->ioc_sync_join(__ioc))
45#define bfa_ioc_sync_leave(__ioc) \
46 ((__ioc)->ioc_hwif->ioc_sync_leave(__ioc))
47#define bfa_ioc_sync_ack(__ioc) \
48 ((__ioc)->ioc_hwif->ioc_sync_ack(__ioc))
49#define bfa_ioc_sync_complete(__ioc) \
50 ((__ioc)->ioc_hwif->ioc_sync_complete(__ioc))
51
52#define bfa_ioc_mbox_cmd_pending(__ioc) \
53 (!list_empty(&((__ioc)->mbox_mod.cmd_q)) || \
54 readl((__ioc)->ioc_regs.hfn_mbox_cmd))
55
56static bool bfa_nw_auto_recover = true;
57
58/*
59 * forward declarations
60 */
61static void bfa_ioc_hw_sem_get(struct bfa_ioc *ioc);
62static void bfa_ioc_hw_sem_get_cancel(struct bfa_ioc *ioc);
63static void bfa_ioc_hwinit(struct bfa_ioc *ioc, bool force);
64static void bfa_ioc_send_enable(struct bfa_ioc *ioc);
65static void bfa_ioc_send_disable(struct bfa_ioc *ioc);
66static void bfa_ioc_send_getattr(struct bfa_ioc *ioc);
67static void bfa_ioc_hb_monitor(struct bfa_ioc *ioc);
68static void bfa_ioc_hb_stop(struct bfa_ioc *ioc);
69static void bfa_ioc_reset(struct bfa_ioc *ioc, bool force);
70static void bfa_ioc_mbox_poll(struct bfa_ioc *ioc);
71static void bfa_ioc_mbox_hbfail(struct bfa_ioc *ioc);
72static void bfa_ioc_recover(struct bfa_ioc *ioc);
73static void bfa_ioc_check_attr_wwns(struct bfa_ioc *ioc);
74static void bfa_ioc_disable_comp(struct bfa_ioc *ioc);
75static void bfa_ioc_lpu_stop(struct bfa_ioc *ioc);
76static void bfa_ioc_fail_notify(struct bfa_ioc *ioc);
77static void bfa_ioc_pf_enabled(struct bfa_ioc *ioc);
78static void bfa_ioc_pf_disabled(struct bfa_ioc *ioc);
79static void bfa_ioc_pf_initfailed(struct bfa_ioc *ioc);
80static void bfa_ioc_pf_failed(struct bfa_ioc *ioc);
81static void bfa_ioc_pf_fwmismatch(struct bfa_ioc *ioc);
82static void bfa_ioc_boot(struct bfa_ioc *ioc, u32 boot_type,
83 u32 boot_param);
84static u32 bfa_ioc_smem_pgnum(struct bfa_ioc *ioc, u32 fmaddr);
85static void bfa_ioc_get_adapter_serial_num(struct bfa_ioc *ioc,
86 char *serial_num);
87static void bfa_ioc_get_adapter_fw_ver(struct bfa_ioc *ioc,
88 char *fw_ver);
89static void bfa_ioc_get_pci_chip_rev(struct bfa_ioc *ioc,
90 char *chip_rev);
91static void bfa_ioc_get_adapter_optrom_ver(struct bfa_ioc *ioc,
92 char *optrom_ver);
93static void bfa_ioc_get_adapter_manufacturer(struct bfa_ioc *ioc,
94 char *manufacturer);
95static void bfa_ioc_get_adapter_model(struct bfa_ioc *ioc, char *model);
96static u64 bfa_ioc_get_pwwn(struct bfa_ioc *ioc);
97
98/**
99 * IOC state machine definitions/declarations
100 */
101enum ioc_event {
102 IOC_E_RESET = 1, /*!< IOC reset request */
103 IOC_E_ENABLE = 2, /*!< IOC enable request */
104 IOC_E_DISABLE = 3, /*!< IOC disable request */
105 IOC_E_DETACH = 4, /*!< driver detach cleanup */
106 IOC_E_ENABLED = 5, /*!< f/w enabled */
107 IOC_E_FWRSP_GETATTR = 6, /*!< IOC get attribute response */
108 IOC_E_DISABLED = 7, /*!< f/w disabled */
109 IOC_E_INITFAILED = 8, /*!< failure notice by iocpf sm */
110 IOC_E_PFAILED = 9, /*!< failure notice by iocpf sm */
111 IOC_E_HBFAIL = 10, /*!< heartbeat failure */
112 IOC_E_HWERROR = 11, /*!< hardware error interrupt */
113 IOC_E_TIMEOUT = 12, /*!< timeout */
114};
115
116bfa_fsm_state_decl(bfa_ioc, uninit, struct bfa_ioc, enum ioc_event);
117bfa_fsm_state_decl(bfa_ioc, reset, struct bfa_ioc, enum ioc_event);
118bfa_fsm_state_decl(bfa_ioc, enabling, struct bfa_ioc, enum ioc_event);
119bfa_fsm_state_decl(bfa_ioc, getattr, struct bfa_ioc, enum ioc_event);
120bfa_fsm_state_decl(bfa_ioc, op, struct bfa_ioc, enum ioc_event);
121bfa_fsm_state_decl(bfa_ioc, fail_retry, struct bfa_ioc, enum ioc_event);
122bfa_fsm_state_decl(bfa_ioc, fail, struct bfa_ioc, enum ioc_event);
123bfa_fsm_state_decl(bfa_ioc, disabling, struct bfa_ioc, enum ioc_event);
124bfa_fsm_state_decl(bfa_ioc, disabled, struct bfa_ioc, enum ioc_event);
125
126static struct bfa_sm_table ioc_sm_table[] = {
127 {BFA_SM(bfa_ioc_sm_uninit), BFA_IOC_UNINIT},
128 {BFA_SM(bfa_ioc_sm_reset), BFA_IOC_RESET},
129 {BFA_SM(bfa_ioc_sm_enabling), BFA_IOC_ENABLING},
130 {BFA_SM(bfa_ioc_sm_getattr), BFA_IOC_GETATTR},
131 {BFA_SM(bfa_ioc_sm_op), BFA_IOC_OPERATIONAL},
132 {BFA_SM(bfa_ioc_sm_fail_retry), BFA_IOC_INITFAIL},
133 {BFA_SM(bfa_ioc_sm_fail), BFA_IOC_FAIL},
134 {BFA_SM(bfa_ioc_sm_disabling), BFA_IOC_DISABLING},
135 {BFA_SM(bfa_ioc_sm_disabled), BFA_IOC_DISABLED},
136};
137
138/**
139 * IOCPF state machine definitions/declarations
140 */
141
142/*
143 * Forward declareations for iocpf state machine
144 */
145static void bfa_iocpf_enable(struct bfa_ioc *ioc);
146static void bfa_iocpf_disable(struct bfa_ioc *ioc);
147static void bfa_iocpf_fail(struct bfa_ioc *ioc);
148static void bfa_iocpf_initfail(struct bfa_ioc *ioc);
149static void bfa_iocpf_getattrfail(struct bfa_ioc *ioc);
150static void bfa_iocpf_stop(struct bfa_ioc *ioc);
151
152/**
153 * IOCPF state machine events
154 */
155enum iocpf_event {
156 IOCPF_E_ENABLE = 1, /*!< IOCPF enable request */
157 IOCPF_E_DISABLE = 2, /*!< IOCPF disable request */
158 IOCPF_E_STOP = 3, /*!< stop on driver detach */
159 IOCPF_E_FWREADY = 4, /*!< f/w initialization done */
160 IOCPF_E_FWRSP_ENABLE = 5, /*!< enable f/w response */
161 IOCPF_E_FWRSP_DISABLE = 6, /*!< disable f/w response */
162 IOCPF_E_FAIL = 7, /*!< failure notice by ioc sm */
163 IOCPF_E_INITFAIL = 8, /*!< init fail notice by ioc sm */
164 IOCPF_E_GETATTRFAIL = 9, /*!< init fail notice by ioc sm */
165 IOCPF_E_SEMLOCKED = 10, /*!< h/w semaphore is locked */
166 IOCPF_E_TIMEOUT = 11, /*!< f/w response timeout */
167};
168
169/**
170 * IOCPF states
171 */
172enum bfa_iocpf_state {
173 BFA_IOCPF_RESET = 1, /*!< IOC is in reset state */
174 BFA_IOCPF_SEMWAIT = 2, /*!< Waiting for IOC h/w semaphore */
175 BFA_IOCPF_HWINIT = 3, /*!< IOC h/w is being initialized */
176 BFA_IOCPF_READY = 4, /*!< IOCPF is initialized */
177 BFA_IOCPF_INITFAIL = 5, /*!< IOCPF failed */
178 BFA_IOCPF_FAIL = 6, /*!< IOCPF failed */
179 BFA_IOCPF_DISABLING = 7, /*!< IOCPF is being disabled */
180 BFA_IOCPF_DISABLED = 8, /*!< IOCPF is disabled */
181 BFA_IOCPF_FWMISMATCH = 9, /*!< IOC f/w different from drivers */
182};
183
184bfa_fsm_state_decl(bfa_iocpf, reset, struct bfa_iocpf, enum iocpf_event);
185bfa_fsm_state_decl(bfa_iocpf, fwcheck, struct bfa_iocpf, enum iocpf_event);
186bfa_fsm_state_decl(bfa_iocpf, mismatch, struct bfa_iocpf, enum iocpf_event);
187bfa_fsm_state_decl(bfa_iocpf, semwait, struct bfa_iocpf, enum iocpf_event);
188bfa_fsm_state_decl(bfa_iocpf, hwinit, struct bfa_iocpf, enum iocpf_event);
189bfa_fsm_state_decl(bfa_iocpf, enabling, struct bfa_iocpf, enum iocpf_event);
190bfa_fsm_state_decl(bfa_iocpf, ready, struct bfa_iocpf, enum iocpf_event);
191bfa_fsm_state_decl(bfa_iocpf, initfail_sync, struct bfa_iocpf,
192 enum iocpf_event);
193bfa_fsm_state_decl(bfa_iocpf, initfail, struct bfa_iocpf, enum iocpf_event);
194bfa_fsm_state_decl(bfa_iocpf, fail_sync, struct bfa_iocpf, enum iocpf_event);
195bfa_fsm_state_decl(bfa_iocpf, fail, struct bfa_iocpf, enum iocpf_event);
196bfa_fsm_state_decl(bfa_iocpf, disabling, struct bfa_iocpf, enum iocpf_event);
197bfa_fsm_state_decl(bfa_iocpf, disabling_sync, struct bfa_iocpf,
198 enum iocpf_event);
199bfa_fsm_state_decl(bfa_iocpf, disabled, struct bfa_iocpf, enum iocpf_event);
200
201static struct bfa_sm_table iocpf_sm_table[] = {
202 {BFA_SM(bfa_iocpf_sm_reset), BFA_IOCPF_RESET},
203 {BFA_SM(bfa_iocpf_sm_fwcheck), BFA_IOCPF_FWMISMATCH},
204 {BFA_SM(bfa_iocpf_sm_mismatch), BFA_IOCPF_FWMISMATCH},
205 {BFA_SM(bfa_iocpf_sm_semwait), BFA_IOCPF_SEMWAIT},
206 {BFA_SM(bfa_iocpf_sm_hwinit), BFA_IOCPF_HWINIT},
207 {BFA_SM(bfa_iocpf_sm_enabling), BFA_IOCPF_HWINIT},
208 {BFA_SM(bfa_iocpf_sm_ready), BFA_IOCPF_READY},
209 {BFA_SM(bfa_iocpf_sm_initfail_sync), BFA_IOCPF_INITFAIL},
210 {BFA_SM(bfa_iocpf_sm_initfail), BFA_IOCPF_INITFAIL},
211 {BFA_SM(bfa_iocpf_sm_fail_sync), BFA_IOCPF_FAIL},
212 {BFA_SM(bfa_iocpf_sm_fail), BFA_IOCPF_FAIL},
213 {BFA_SM(bfa_iocpf_sm_disabling), BFA_IOCPF_DISABLING},
214 {BFA_SM(bfa_iocpf_sm_disabling_sync), BFA_IOCPF_DISABLING},
215 {BFA_SM(bfa_iocpf_sm_disabled), BFA_IOCPF_DISABLED},
216};
217
218/**
219 * IOC State Machine
220 */
221
222/**
223 * Beginning state. IOC uninit state.
224 */
225static void
226bfa_ioc_sm_uninit_entry(struct bfa_ioc *ioc)
227{
228}
229
230/**
231 * IOC is in uninit state.
232 */
233static void
234bfa_ioc_sm_uninit(struct bfa_ioc *ioc, enum ioc_event event)
235{
236 switch (event) {
237 case IOC_E_RESET:
238 bfa_fsm_set_state(ioc, bfa_ioc_sm_reset);
239 break;
240
241 default:
242 bfa_sm_fault(ioc, event);
243 }
244}
245
246/**
247 * Reset entry actions -- initialize state machine
248 */
249static void
250bfa_ioc_sm_reset_entry(struct bfa_ioc *ioc)
251{
252 bfa_fsm_set_state(&ioc->iocpf, bfa_iocpf_sm_reset);
253}
254
255/**
256 * IOC is in reset state.
257 */
258static void
259bfa_ioc_sm_reset(struct bfa_ioc *ioc, enum ioc_event event)
260{
261 switch (event) {
262 case IOC_E_ENABLE:
263 bfa_fsm_set_state(ioc, bfa_ioc_sm_enabling);
264 break;
265
266 case IOC_E_DISABLE:
267 bfa_ioc_disable_comp(ioc);
268 break;
269
270 case IOC_E_DETACH:
271 bfa_fsm_set_state(ioc, bfa_ioc_sm_uninit);
272 break;
273
274 default:
275 bfa_sm_fault(ioc, event);
276 }
277}
278
279static void
280bfa_ioc_sm_enabling_entry(struct bfa_ioc *ioc)
281{
282 bfa_iocpf_enable(ioc);
283}
284
285/**
286 * Host IOC function is being enabled, awaiting response from firmware.
287 * Semaphore is acquired.
288 */
289static void
290bfa_ioc_sm_enabling(struct bfa_ioc *ioc, enum ioc_event event)
291{
292 switch (event) {
293 case IOC_E_ENABLED:
294 bfa_fsm_set_state(ioc, bfa_ioc_sm_getattr);
295 break;
296
297 case IOC_E_PFAILED:
298 /* !!! fall through !!! */
299 case IOC_E_HWERROR:
300 ioc->cbfn->enable_cbfn(ioc->bfa, BFA_STATUS_IOC_FAILURE);
301 bfa_fsm_set_state(ioc, bfa_ioc_sm_fail_retry);
302 if (event != IOC_E_PFAILED)
303 bfa_iocpf_initfail(ioc);
304 break;
305
306 case IOC_E_DISABLE:
307 bfa_fsm_set_state(ioc, bfa_ioc_sm_disabling);
308 break;
309
310 case IOC_E_DETACH:
311 bfa_fsm_set_state(ioc, bfa_ioc_sm_uninit);
312 bfa_iocpf_stop(ioc);
313 break;
314
315 case IOC_E_ENABLE:
316 break;
317
318 default:
319 bfa_sm_fault(ioc, event);
320 }
321}
322
323/**
324 * Semaphore should be acquired for version check.
325 */
326static void
327bfa_ioc_sm_getattr_entry(struct bfa_ioc *ioc)
328{
329 mod_timer(&ioc->ioc_timer, jiffies +
330 msecs_to_jiffies(BFA_IOC_TOV));
331 bfa_ioc_send_getattr(ioc);
332}
333
334/**
335 * IOC configuration in progress. Timer is active.
336 */
337static void
338bfa_ioc_sm_getattr(struct bfa_ioc *ioc, enum ioc_event event)
339{
340 switch (event) {
341 case IOC_E_FWRSP_GETATTR:
342 del_timer(&ioc->ioc_timer);
343 bfa_ioc_check_attr_wwns(ioc);
344 bfa_fsm_set_state(ioc, bfa_ioc_sm_op);
345 break;
346
347 case IOC_E_PFAILED:
348 case IOC_E_HWERROR:
349 del_timer(&ioc->ioc_timer);
350 /* fall through */
351 case IOC_E_TIMEOUT:
352 ioc->cbfn->enable_cbfn(ioc->bfa, BFA_STATUS_IOC_FAILURE);
353 bfa_fsm_set_state(ioc, bfa_ioc_sm_fail_retry);
354 if (event != IOC_E_PFAILED)
355 bfa_iocpf_getattrfail(ioc);
356 break;
357
358 case IOC_E_DISABLE:
359 del_timer(&ioc->ioc_timer);
360 bfa_fsm_set_state(ioc, bfa_ioc_sm_disabling);
361 break;
362
363 case IOC_E_ENABLE:
364 break;
365
366 default:
367 bfa_sm_fault(ioc, event);
368 }
369}
370
371static void
372bfa_ioc_sm_op_entry(struct bfa_ioc *ioc)
373{
374 ioc->cbfn->enable_cbfn(ioc->bfa, BFA_STATUS_OK);
375 bfa_ioc_hb_monitor(ioc);
376}
377
378static void
379bfa_ioc_sm_op(struct bfa_ioc *ioc, enum ioc_event event)
380{
381 switch (event) {
382 case IOC_E_ENABLE:
383 break;
384
385 case IOC_E_DISABLE:
386 bfa_ioc_hb_stop(ioc);
387 bfa_fsm_set_state(ioc, bfa_ioc_sm_disabling);
388 break;
389
390 case IOC_E_PFAILED:
391 case IOC_E_HWERROR:
392 bfa_ioc_hb_stop(ioc);
393 /* !!! fall through !!! */
394 case IOC_E_HBFAIL:
395 bfa_ioc_fail_notify(ioc);
396 if (ioc->iocpf.auto_recover)
397 bfa_fsm_set_state(ioc, bfa_ioc_sm_fail_retry);
398 else
399 bfa_fsm_set_state(ioc, bfa_ioc_sm_fail);
400
401 if (event != IOC_E_PFAILED)
402 bfa_iocpf_fail(ioc);
403 break;
404
405 default:
406 bfa_sm_fault(ioc, event);
407 }
408}
409
410static void
411bfa_ioc_sm_disabling_entry(struct bfa_ioc *ioc)
412{
413 bfa_iocpf_disable(ioc);
414}
415
416/**
417 * IOC is being desabled
418 */
419static void
420bfa_ioc_sm_disabling(struct bfa_ioc *ioc, enum ioc_event event)
421{
422 switch (event) {
423 case IOC_E_DISABLED:
424 bfa_fsm_set_state(ioc, bfa_ioc_sm_disabled);
425 break;
426
427 case IOC_E_HWERROR:
428 /*
429 * No state change. Will move to disabled state
430 * after iocpf sm completes failure processing and
431 * moves to disabled state.
432 */
433 bfa_iocpf_fail(ioc);
434 break;
435
436 default:
437 bfa_sm_fault(ioc, event);
438 }
439}
440
441/**
442 * IOC desable completion entry.
443 */
444static void
445bfa_ioc_sm_disabled_entry(struct bfa_ioc *ioc)
446{
447 bfa_ioc_disable_comp(ioc);
448}
449
450static void
451bfa_ioc_sm_disabled(struct bfa_ioc *ioc, enum ioc_event event)
452{
453 switch (event) {
454 case IOC_E_ENABLE:
455 bfa_fsm_set_state(ioc, bfa_ioc_sm_enabling);
456 break;
457
458 case IOC_E_DISABLE:
459 ioc->cbfn->disable_cbfn(ioc->bfa);
460 break;
461
462 case IOC_E_DETACH:
463 bfa_fsm_set_state(ioc, bfa_ioc_sm_uninit);
464 bfa_iocpf_stop(ioc);
465 break;
466
467 default:
468 bfa_sm_fault(ioc, event);
469 }
470}
471
472static void
473bfa_ioc_sm_fail_retry_entry(struct bfa_ioc *ioc)
474{
475}
476
477/**
478 * Hardware initialization retry.
479 */
480static void
481bfa_ioc_sm_fail_retry(struct bfa_ioc *ioc, enum ioc_event event)
482{
483 switch (event) {
484 case IOC_E_ENABLED:
485 bfa_fsm_set_state(ioc, bfa_ioc_sm_getattr);
486 break;
487
488 case IOC_E_PFAILED:
489 case IOC_E_HWERROR:
490 /**
491 * Initialization retry failed.
492 */
493 ioc->cbfn->enable_cbfn(ioc->bfa, BFA_STATUS_IOC_FAILURE);
494 if (event != IOC_E_PFAILED)
495 bfa_iocpf_initfail(ioc);
496 break;
497
498 case IOC_E_INITFAILED:
499 bfa_fsm_set_state(ioc, bfa_ioc_sm_fail);
500 break;
501
502 case IOC_E_ENABLE:
503 break;
504
505 case IOC_E_DISABLE:
506 bfa_fsm_set_state(ioc, bfa_ioc_sm_disabling);
507 break;
508
509 case IOC_E_DETACH:
510 bfa_fsm_set_state(ioc, bfa_ioc_sm_uninit);
511 bfa_iocpf_stop(ioc);
512 break;
513
514 default:
515 bfa_sm_fault(ioc, event);
516 }
517}
518
519static void
520bfa_ioc_sm_fail_entry(struct bfa_ioc *ioc)
521{
522}
523
524/**
525 * IOC failure.
526 */
527static void
528bfa_ioc_sm_fail(struct bfa_ioc *ioc, enum ioc_event event)
529{
530 switch (event) {
531 case IOC_E_ENABLE:
532 ioc->cbfn->enable_cbfn(ioc->bfa, BFA_STATUS_IOC_FAILURE);
533 break;
534
535 case IOC_E_DISABLE:
536 bfa_fsm_set_state(ioc, bfa_ioc_sm_disabling);
537 break;
538
539 case IOC_E_DETACH:
540 bfa_fsm_set_state(ioc, bfa_ioc_sm_uninit);
541 bfa_iocpf_stop(ioc);
542 break;
543
544 case IOC_E_HWERROR:
545 /* HB failure notification, ignore. */
546 break;
547
548 default:
549 bfa_sm_fault(ioc, event);
550 }
551}
552
553/**
554 * IOCPF State Machine
555 */
556
557/**
558 * Reset entry actions -- initialize state machine
559 */
560static void
561bfa_iocpf_sm_reset_entry(struct bfa_iocpf *iocpf)
562{
563 iocpf->retry_count = 0;
564 iocpf->auto_recover = bfa_nw_auto_recover;
565}
566
567/**
568 * Beginning state. IOC is in reset state.
569 */
570static void
571bfa_iocpf_sm_reset(struct bfa_iocpf *iocpf, enum iocpf_event event)
572{
573 switch (event) {
574 case IOCPF_E_ENABLE:
575 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_fwcheck);
576 break;
577
578 case IOCPF_E_STOP:
579 break;
580
581 default:
582 bfa_sm_fault(iocpf->ioc, event);
583 }
584}
585
586/**
587 * Semaphore should be acquired for version check.
588 */
589static void
590bfa_iocpf_sm_fwcheck_entry(struct bfa_iocpf *iocpf)
591{
592 bfa_ioc_hw_sem_get(iocpf->ioc);
593}
594
595/**
596 * Awaiting h/w semaphore to continue with version check.
597 */
598static void
599bfa_iocpf_sm_fwcheck(struct bfa_iocpf *iocpf, enum iocpf_event event)
600{
601 struct bfa_ioc *ioc = iocpf->ioc;
602
603 switch (event) {
604 case IOCPF_E_SEMLOCKED:
605 if (bfa_ioc_firmware_lock(ioc)) {
606 if (bfa_ioc_sync_start(ioc)) {
607 iocpf->retry_count = 0;
608 bfa_ioc_sync_join(ioc);
609 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_hwinit);
610 } else {
611 bfa_ioc_firmware_unlock(ioc);
612 bfa_nw_ioc_hw_sem_release(ioc);
613 mod_timer(&ioc->sem_timer, jiffies +
614 msecs_to_jiffies(BFA_IOC_HWSEM_TOV));
615 }
616 } else {
617 bfa_nw_ioc_hw_sem_release(ioc);
618 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_mismatch);
619 }
620 break;
621
622 case IOCPF_E_DISABLE:
623 bfa_ioc_hw_sem_get_cancel(ioc);
624 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_reset);
625 bfa_ioc_pf_disabled(ioc);
626 break;
627
628 case IOCPF_E_STOP:
629 bfa_ioc_hw_sem_get_cancel(ioc);
630 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_reset);
631 break;
632
633 default:
634 bfa_sm_fault(ioc, event);
635 }
636}
637
638/**
639 * Notify enable completion callback
640 */
641static void
642bfa_iocpf_sm_mismatch_entry(struct bfa_iocpf *iocpf)
643{
644 /* Call only the first time sm enters fwmismatch state. */
645 if (iocpf->retry_count == 0)
646 bfa_ioc_pf_fwmismatch(iocpf->ioc);
647
648 iocpf->retry_count++;
649 mod_timer(&(iocpf->ioc)->iocpf_timer, jiffies +
650 msecs_to_jiffies(BFA_IOC_TOV));
651}
652
653/**
654 * Awaiting firmware version match.
655 */
656static void
657bfa_iocpf_sm_mismatch(struct bfa_iocpf *iocpf, enum iocpf_event event)
658{
659 struct bfa_ioc *ioc = iocpf->ioc;
660
661 switch (event) {
662 case IOCPF_E_TIMEOUT:
663 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_fwcheck);
664 break;
665
666 case IOCPF_E_DISABLE:
667 del_timer(&ioc->iocpf_timer);
668 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_reset);
669 bfa_ioc_pf_disabled(ioc);
670 break;
671
672 case IOCPF_E_STOP:
673 del_timer(&ioc->iocpf_timer);
674 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_reset);
675 break;
676
677 default:
678 bfa_sm_fault(ioc, event);
679 }
680}
681
682/**
683 * Request for semaphore.
684 */
685static void
686bfa_iocpf_sm_semwait_entry(struct bfa_iocpf *iocpf)
687{
688 bfa_ioc_hw_sem_get(iocpf->ioc);
689}
690
691/**
692 * Awaiting semaphore for h/w initialzation.
693 */
694static void
695bfa_iocpf_sm_semwait(struct bfa_iocpf *iocpf, enum iocpf_event event)
696{
697 struct bfa_ioc *ioc = iocpf->ioc;
698
699 switch (event) {
700 case IOCPF_E_SEMLOCKED:
701 if (bfa_ioc_sync_complete(ioc)) {
702 bfa_ioc_sync_join(ioc);
703 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_hwinit);
704 } else {
705 bfa_nw_ioc_hw_sem_release(ioc);
706 mod_timer(&ioc->sem_timer, jiffies +
707 msecs_to_jiffies(BFA_IOC_HWSEM_TOV));
708 }
709 break;
710
711 case IOCPF_E_DISABLE:
712 bfa_ioc_hw_sem_get_cancel(ioc);
713 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabling_sync);
714 break;
715
716 default:
717 bfa_sm_fault(ioc, event);
718 }
719}
720
721static void
722bfa_iocpf_sm_hwinit_entry(struct bfa_iocpf *iocpf)
723{
724 mod_timer(&(iocpf->ioc)->iocpf_timer, jiffies +
725 msecs_to_jiffies(BFA_IOC_TOV));
726 bfa_ioc_reset(iocpf->ioc, 0);
727}
728
729/**
730 * Hardware is being initialized. Interrupts are enabled.
731 * Holding hardware semaphore lock.
732 */
733static void
734bfa_iocpf_sm_hwinit(struct bfa_iocpf *iocpf, enum iocpf_event event)
735{
736 struct bfa_ioc *ioc = iocpf->ioc;
737
738 switch (event) {
739 case IOCPF_E_FWREADY:
740 del_timer(&ioc->iocpf_timer);
741 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_enabling);
742 break;
743
744 case IOCPF_E_INITFAIL:
745 del_timer(&ioc->iocpf_timer);
746 /*
747 * !!! fall through !!!
748 */
749
750 case IOCPF_E_TIMEOUT:
751 bfa_nw_ioc_hw_sem_release(ioc);
752 if (event == IOCPF_E_TIMEOUT)
753 bfa_ioc_pf_failed(ioc);
754 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_initfail_sync);
755 break;
756
757 case IOCPF_E_DISABLE:
758 del_timer(&ioc->iocpf_timer);
759 bfa_ioc_sync_leave(ioc);
760 bfa_nw_ioc_hw_sem_release(ioc);
761 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabled);
762 break;
763
764 default:
765 bfa_sm_fault(ioc, event);
766 }
767}
768
769static void
770bfa_iocpf_sm_enabling_entry(struct bfa_iocpf *iocpf)
771{
772 mod_timer(&(iocpf->ioc)->iocpf_timer, jiffies +
773 msecs_to_jiffies(BFA_IOC_TOV));
774 bfa_ioc_send_enable(iocpf->ioc);
775}
776
777/**
778 * Host IOC function is being enabled, awaiting response from firmware.
779 * Semaphore is acquired.
780 */
781static void
782bfa_iocpf_sm_enabling(struct bfa_iocpf *iocpf, enum iocpf_event event)
783{
784 struct bfa_ioc *ioc = iocpf->ioc;
785
786 switch (event) {
787 case IOCPF_E_FWRSP_ENABLE:
788 del_timer(&ioc->iocpf_timer);
789 bfa_nw_ioc_hw_sem_release(ioc);
790 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_ready);
791 break;
792
793 case IOCPF_E_INITFAIL:
794 del_timer(&ioc->iocpf_timer);
795 /*
796 * !!! fall through !!!
797 */
798 case IOCPF_E_TIMEOUT:
799 bfa_nw_ioc_hw_sem_release(ioc);
800 if (event == IOCPF_E_TIMEOUT)
801 bfa_ioc_pf_failed(ioc);
802 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_initfail_sync);
803 break;
804
805 case IOCPF_E_DISABLE:
806 del_timer(&ioc->iocpf_timer);
807 bfa_nw_ioc_hw_sem_release(ioc);
808 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabling);
809 break;
810
811 case IOCPF_E_FWREADY:
812 bfa_ioc_send_enable(ioc);
813 break;
814
815 default:
816 bfa_sm_fault(ioc, event);
817 }
818}
819
820static bool
821bfa_nw_ioc_is_operational(struct bfa_ioc *ioc)
822{
823 return bfa_fsm_cmp_state(ioc, bfa_ioc_sm_op);
824}
825
826static void
827bfa_iocpf_sm_ready_entry(struct bfa_iocpf *iocpf)
828{
829 bfa_ioc_pf_enabled(iocpf->ioc);
830}
831
832static void
833bfa_iocpf_sm_ready(struct bfa_iocpf *iocpf, enum iocpf_event event)
834{
835 struct bfa_ioc *ioc = iocpf->ioc;
836
837 switch (event) {
838 case IOCPF_E_DISABLE:
839 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabling);
840 break;
841
842 case IOCPF_E_GETATTRFAIL:
843 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_initfail_sync);
844 break;
845
846 case IOCPF_E_FAIL:
847 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_fail_sync);
848 break;
849
850 case IOCPF_E_FWREADY:
851 bfa_ioc_pf_failed(ioc);
852 if (bfa_nw_ioc_is_operational(ioc))
853 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_fail_sync);
854 else
855 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_initfail_sync);
856 break;
857
858 default:
859 bfa_sm_fault(ioc, event);
860 }
861}
862
863static void
864bfa_iocpf_sm_disabling_entry(struct bfa_iocpf *iocpf)
865{
866 mod_timer(&(iocpf->ioc)->iocpf_timer, jiffies +
867 msecs_to_jiffies(BFA_IOC_TOV));
868 bfa_ioc_send_disable(iocpf->ioc);
869}
870
871/**
872 * IOC is being disabled
873 */
874static void
875bfa_iocpf_sm_disabling(struct bfa_iocpf *iocpf, enum iocpf_event event)
876{
877 struct bfa_ioc *ioc = iocpf->ioc;
878
879 switch (event) {
880 case IOCPF_E_FWRSP_DISABLE:
881 case IOCPF_E_FWREADY:
882 del_timer(&ioc->iocpf_timer);
883 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabling_sync);
884 break;
885
886 case IOCPF_E_FAIL:
887 del_timer(&ioc->iocpf_timer);
888 /*
889 * !!! fall through !!!
890 */
891
892 case IOCPF_E_TIMEOUT:
893 writel(BFI_IOC_FAIL, ioc->ioc_regs.ioc_fwstate);
894 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabling_sync);
895 break;
896
897 case IOCPF_E_FWRSP_ENABLE:
898 break;
899
900 default:
901 bfa_sm_fault(ioc, event);
902 }
903}
904
905static void
906bfa_iocpf_sm_disabling_sync_entry(struct bfa_iocpf *iocpf)
907{
908 bfa_ioc_hw_sem_get(iocpf->ioc);
909}
910
911/**
912 * IOC hb ack request is being removed.
913 */
914static void
915bfa_iocpf_sm_disabling_sync(struct bfa_iocpf *iocpf, enum iocpf_event event)
916{
917 struct bfa_ioc *ioc = iocpf->ioc;
918
919 switch (event) {
920 case IOCPF_E_SEMLOCKED:
921 bfa_ioc_sync_leave(ioc);
922 bfa_nw_ioc_hw_sem_release(ioc);
923 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabled);
924 break;
925
926 case IOCPF_E_FAIL:
927 break;
928
929 default:
930 bfa_sm_fault(ioc, event);
931 }
932}
933
934/**
935 * IOC disable completion entry.
936 */
937static void
938bfa_iocpf_sm_disabled_entry(struct bfa_iocpf *iocpf)
939{
940 bfa_ioc_pf_disabled(iocpf->ioc);
941}
942
943static void
944bfa_iocpf_sm_disabled(struct bfa_iocpf *iocpf, enum iocpf_event event)
945{
946 struct bfa_ioc *ioc = iocpf->ioc;
947
948 switch (event) {
949 case IOCPF_E_ENABLE:
950 iocpf->retry_count = 0;
951 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_semwait);
952 break;
953
954 case IOCPF_E_STOP:
955 bfa_ioc_firmware_unlock(ioc);
956 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_reset);
957 break;
958
959 default:
960 bfa_sm_fault(ioc, event);
961 }
962}
963
964static void
965bfa_iocpf_sm_initfail_sync_entry(struct bfa_iocpf *iocpf)
966{
967 bfa_ioc_hw_sem_get(iocpf->ioc);
968}
969
970/**
971 * Hardware initialization failed.
972 */
973static void
974bfa_iocpf_sm_initfail_sync(struct bfa_iocpf *iocpf, enum iocpf_event event)
975{
976 struct bfa_ioc *ioc = iocpf->ioc;
977
978 switch (event) {
979 case IOCPF_E_SEMLOCKED:
980 bfa_ioc_notify_fail(ioc);
981 bfa_ioc_sync_ack(ioc);
982 iocpf->retry_count++;
983 if (iocpf->retry_count >= BFA_IOC_HWINIT_MAX) {
984 bfa_ioc_sync_leave(ioc);
985 bfa_nw_ioc_hw_sem_release(ioc);
986 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_initfail);
987 } else {
988 if (bfa_ioc_sync_complete(ioc))
989 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_hwinit);
990 else {
991 bfa_nw_ioc_hw_sem_release(ioc);
992 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_semwait);
993 }
994 }
995 break;
996
997 case IOCPF_E_DISABLE:
998 bfa_ioc_hw_sem_get_cancel(ioc);
999 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabling_sync);
1000 break;
1001
1002 case IOCPF_E_STOP:
1003 bfa_ioc_hw_sem_get_cancel(ioc);
1004 bfa_ioc_firmware_unlock(ioc);
1005 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_reset);
1006 break;
1007
1008 case IOCPF_E_FAIL:
1009 break;
1010
1011 default:
1012 bfa_sm_fault(ioc, event);
1013 }
1014}
1015
1016static void
1017bfa_iocpf_sm_initfail_entry(struct bfa_iocpf *iocpf)
1018{
1019 bfa_ioc_pf_initfailed(iocpf->ioc);
1020}
1021
1022/**
1023 * Hardware initialization failed.
1024 */
1025static void
1026bfa_iocpf_sm_initfail(struct bfa_iocpf *iocpf, enum iocpf_event event)
1027{
1028 struct bfa_ioc *ioc = iocpf->ioc;
1029
1030 switch (event) {
1031 case IOCPF_E_DISABLE:
1032 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabled);
1033 break;
1034
1035 case IOCPF_E_STOP:
1036 bfa_ioc_firmware_unlock(ioc);
1037 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_reset);
1038 break;
1039
1040 default:
1041 bfa_sm_fault(ioc, event);
1042 }
1043}
1044
1045static void
1046bfa_iocpf_sm_fail_sync_entry(struct bfa_iocpf *iocpf)
1047{
1048 /**
1049 * Mark IOC as failed in hardware and stop firmware.
1050 */
1051 bfa_ioc_lpu_stop(iocpf->ioc);
1052
1053 /**
1054 * Flush any queued up mailbox requests.
1055 */
1056 bfa_ioc_mbox_hbfail(iocpf->ioc);
1057 bfa_ioc_hw_sem_get(iocpf->ioc);
1058}
1059
1060/**
1061 * IOC is in failed state.
1062 */
1063static void
1064bfa_iocpf_sm_fail_sync(struct bfa_iocpf *iocpf, enum iocpf_event event)
1065{
1066 struct bfa_ioc *ioc = iocpf->ioc;
1067
1068 switch (event) {
1069 case IOCPF_E_SEMLOCKED:
1070 iocpf->retry_count = 0;
1071 bfa_ioc_sync_ack(ioc);
1072 bfa_ioc_notify_fail(ioc);
1073 if (!iocpf->auto_recover) {
1074 bfa_ioc_sync_leave(ioc);
1075 bfa_nw_ioc_hw_sem_release(ioc);
1076 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_fail);
1077 } else {
1078 if (bfa_ioc_sync_complete(ioc))
1079 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_hwinit);
1080 else {
1081 bfa_nw_ioc_hw_sem_release(ioc);
1082 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_semwait);
1083 }
1084 }
1085 break;
1086
1087 case IOCPF_E_DISABLE:
1088 bfa_ioc_hw_sem_get_cancel(ioc);
1089 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabling_sync);
1090 break;
1091
1092 case IOCPF_E_FAIL:
1093 break;
1094
1095 default:
1096 bfa_sm_fault(ioc, event);
1097 }
1098}
1099
1100static void
1101bfa_iocpf_sm_fail_entry(struct bfa_iocpf *iocpf)
1102{
1103}
1104
1105/**
1106 * @brief
1107 * IOC is in failed state.
1108 */
1109static void
1110bfa_iocpf_sm_fail(struct bfa_iocpf *iocpf, enum iocpf_event event)
1111{
1112 switch (event) {
1113 case IOCPF_E_DISABLE:
1114 bfa_fsm_set_state(iocpf, bfa_iocpf_sm_disabled);
1115 break;
1116
1117 default:
1118 bfa_sm_fault(iocpf->ioc, event);
1119 }
1120}
1121
1122/**
1123 * BFA IOC private functions
1124 */
1125
1126static void
1127bfa_ioc_disable_comp(struct bfa_ioc *ioc)
1128{
1129 struct list_head *qe;
1130 struct bfa_ioc_hbfail_notify *notify;
1131
1132 ioc->cbfn->disable_cbfn(ioc->bfa);
1133
1134 /**
1135 * Notify common modules registered for notification.
1136 */
1137 list_for_each(qe, &ioc->hb_notify_q) {
1138 notify = (struct bfa_ioc_hbfail_notify *) qe;
1139 notify->cbfn(notify->cbarg);
1140 }
1141}
1142
1143bool
1144bfa_nw_ioc_sem_get(void __iomem *sem_reg)
1145{
1146 u32 r32;
1147 int cnt = 0;
1148#define BFA_SEM_SPINCNT 3000
1149
1150 r32 = readl(sem_reg);
1151
1152 while (r32 && (cnt < BFA_SEM_SPINCNT)) {
1153 cnt++;
1154 udelay(2);
1155 r32 = readl(sem_reg);
1156 }
1157
1158 if (r32 == 0)
1159 return true;
1160
1161 BUG_ON(!(cnt < BFA_SEM_SPINCNT));
1162 return false;
1163}
1164
1165void
1166bfa_nw_ioc_sem_release(void __iomem *sem_reg)
1167{
1168 writel(1, sem_reg);
1169}
1170
1171static void
1172bfa_ioc_hw_sem_get(struct bfa_ioc *ioc)
1173{
1174 u32 r32;
1175
1176 /**
1177 * First read to the semaphore register will return 0, subsequent reads
1178 * will return 1. Semaphore is released by writing 1 to the register
1179 */
1180 r32 = readl(ioc->ioc_regs.ioc_sem_reg);
1181 if (r32 == 0) {
1182 bfa_fsm_send_event(&ioc->iocpf, IOCPF_E_SEMLOCKED);
1183 return;
1184 }
1185
1186 mod_timer(&ioc->sem_timer, jiffies +
1187 msecs_to_jiffies(BFA_IOC_HWSEM_TOV));
1188}
1189
1190void
1191bfa_nw_ioc_hw_sem_release(struct bfa_ioc *ioc)
1192{
1193 writel(1, ioc->ioc_regs.ioc_sem_reg);
1194}
1195
1196static void
1197bfa_ioc_hw_sem_get_cancel(struct bfa_ioc *ioc)
1198{
1199 del_timer(&ioc->sem_timer);
1200}
1201
1202/**
1203 * @brief
1204 * Initialize LPU local memory (aka secondary memory / SRAM)
1205 */
1206static void
1207bfa_ioc_lmem_init(struct bfa_ioc *ioc)
1208{
1209 u32 pss_ctl;
1210 int i;
1211#define PSS_LMEM_INIT_TIME 10000
1212
1213 pss_ctl = readl(ioc->ioc_regs.pss_ctl_reg);
1214 pss_ctl &= ~__PSS_LMEM_RESET;
1215 pss_ctl |= __PSS_LMEM_INIT_EN;
1216
1217 /*
1218 * i2c workaround 12.5khz clock
1219 */
1220 pss_ctl |= __PSS_I2C_CLK_DIV(3UL);
1221 writel(pss_ctl, ioc->ioc_regs.pss_ctl_reg);
1222
1223 /**
1224 * wait for memory initialization to be complete
1225 */
1226 i = 0;
1227 do {
1228 pss_ctl = readl(ioc->ioc_regs.pss_ctl_reg);
1229 i++;
1230 } while (!(pss_ctl & __PSS_LMEM_INIT_DONE) && (i < PSS_LMEM_INIT_TIME));
1231
1232 /**
1233 * If memory initialization is not successful, IOC timeout will catch
1234 * such failures.
1235 */
1236 BUG_ON(!(pss_ctl & __PSS_LMEM_INIT_DONE));
1237
1238 pss_ctl &= ~(__PSS_LMEM_INIT_DONE | __PSS_LMEM_INIT_EN);
1239 writel(pss_ctl, ioc->ioc_regs.pss_ctl_reg);
1240}
1241
1242static void
1243bfa_ioc_lpu_start(struct bfa_ioc *ioc)
1244{
1245 u32 pss_ctl;
1246
1247 /**
1248 * Take processor out of reset.
1249 */
1250 pss_ctl = readl(ioc->ioc_regs.pss_ctl_reg);
1251 pss_ctl &= ~__PSS_LPU0_RESET;
1252
1253 writel(pss_ctl, ioc->ioc_regs.pss_ctl_reg);
1254}
1255
1256static void
1257bfa_ioc_lpu_stop(struct bfa_ioc *ioc)
1258{
1259 u32 pss_ctl;
1260
1261 /**
1262 * Put processors in reset.
1263 */
1264 pss_ctl = readl(ioc->ioc_regs.pss_ctl_reg);
1265 pss_ctl |= (__PSS_LPU0_RESET | __PSS_LPU1_RESET);
1266
1267 writel(pss_ctl, ioc->ioc_regs.pss_ctl_reg);
1268}
1269
1270/**
1271 * Get driver and firmware versions.
1272 */
1273void
1274bfa_nw_ioc_fwver_get(struct bfa_ioc *ioc, struct bfi_ioc_image_hdr *fwhdr)
1275{
1276 u32 pgnum;
1277 u32 loff = 0;
1278 int i;
1279 u32 *fwsig = (u32 *) fwhdr;
1280
1281 pgnum = bfa_ioc_smem_pgnum(ioc, loff);
1282 writel(pgnum, ioc->ioc_regs.host_page_num_fn);
1283
1284 for (i = 0; i < (sizeof(struct bfi_ioc_image_hdr) / sizeof(u32));
1285 i++) {
1286 fwsig[i] =
1287 swab32(readl((loff) + (ioc->ioc_regs.smem_page_start)));
1288 loff += sizeof(u32);
1289 }
1290}
1291
1292/**
1293 * Returns TRUE if same.
1294 */
1295bool
1296bfa_nw_ioc_fwver_cmp(struct bfa_ioc *ioc, struct bfi_ioc_image_hdr *fwhdr)
1297{
1298 struct bfi_ioc_image_hdr *drv_fwhdr;
1299 int i;
1300
1301 drv_fwhdr = (struct bfi_ioc_image_hdr *)
1302 bfa_cb_image_get_chunk(BFA_IOC_FWIMG_TYPE(ioc), 0);
1303
1304 for (i = 0; i < BFI_IOC_MD5SUM_SZ; i++) {
1305 if (fwhdr->md5sum[i] != drv_fwhdr->md5sum[i])
1306 return false;
1307 }
1308
1309 return true;
1310}
1311
1312/**
1313 * Return true if current running version is valid. Firmware signature and
1314 * execution context (driver/bios) must match.
1315 */
1316static bool
1317bfa_ioc_fwver_valid(struct bfa_ioc *ioc, u32 boot_env)
1318{
1319 struct bfi_ioc_image_hdr fwhdr, *drv_fwhdr;
1320
1321 bfa_nw_ioc_fwver_get(ioc, &fwhdr);
1322 drv_fwhdr = (struct bfi_ioc_image_hdr *)
1323 bfa_cb_image_get_chunk(BFA_IOC_FWIMG_TYPE(ioc), 0);
1324
1325 if (fwhdr.signature != drv_fwhdr->signature)
1326 return false;
1327
1328 if (swab32(fwhdr.param) != boot_env)
1329 return false;
1330
1331 return bfa_nw_ioc_fwver_cmp(ioc, &fwhdr);
1332}
1333
1334/**
1335 * Conditionally flush any pending message from firmware at start.
1336 */
1337static void
1338bfa_ioc_msgflush(struct bfa_ioc *ioc)
1339{
1340 u32 r32;
1341
1342 r32 = readl(ioc->ioc_regs.lpu_mbox_cmd);
1343 if (r32)
1344 writel(1, ioc->ioc_regs.lpu_mbox_cmd);
1345}
1346
1347/**
1348 * @img ioc_init_logic.jpg
1349 */
1350static void
1351bfa_ioc_hwinit(struct bfa_ioc *ioc, bool force)
1352{
1353 enum bfi_ioc_state ioc_fwstate;
1354 bool fwvalid;
1355 u32 boot_env;
1356
1357 ioc_fwstate = readl(ioc->ioc_regs.ioc_fwstate);
1358
1359 boot_env = BFI_BOOT_LOADER_OS;
1360
1361 if (force)
1362 ioc_fwstate = BFI_IOC_UNINIT;
1363
1364 /**
1365 * check if firmware is valid
1366 */
1367 fwvalid = (ioc_fwstate == BFI_IOC_UNINIT) ?
1368 false : bfa_ioc_fwver_valid(ioc, boot_env);
1369
1370 if (!fwvalid) {
1371 bfa_ioc_boot(ioc, BFI_BOOT_TYPE_NORMAL, boot_env);
1372 return;
1373 }
1374
1375 /**
1376 * If hardware initialization is in progress (initialized by other IOC),
1377 * just wait for an initialization completion interrupt.
1378 */
1379 if (ioc_fwstate == BFI_IOC_INITING) {
1380 ioc->cbfn->reset_cbfn(ioc->bfa);
1381 return;
1382 }
1383
1384 /**
1385 * If IOC function is disabled and firmware version is same,
1386 * just re-enable IOC.
1387 */
1388 if (ioc_fwstate == BFI_IOC_DISABLED || ioc_fwstate == BFI_IOC_OP) {
1389 /**
1390 * When using MSI-X any pending firmware ready event should
1391 * be flushed. Otherwise MSI-X interrupts are not delivered.
1392 */
1393 bfa_ioc_msgflush(ioc);
1394 ioc->cbfn->reset_cbfn(ioc->bfa);
1395 bfa_fsm_send_event(&ioc->iocpf, IOCPF_E_FWREADY);
1396 return;
1397 }
1398
1399 /**
1400 * Initialize the h/w for any other states.
1401 */
1402 bfa_ioc_boot(ioc, BFI_BOOT_TYPE_NORMAL, boot_env);
1403}
1404
1405void
1406bfa_nw_ioc_timeout(void *ioc_arg)
1407{
1408 struct bfa_ioc *ioc = (struct bfa_ioc *) ioc_arg;
1409
1410 bfa_fsm_send_event(ioc, IOC_E_TIMEOUT);
1411}
1412
1413static void
1414bfa_ioc_mbox_send(struct bfa_ioc *ioc, void *ioc_msg, int len)
1415{
1416 u32 *msgp = (u32 *) ioc_msg;
1417 u32 i;
1418
1419 BUG_ON(!(len <= BFI_IOC_MSGLEN_MAX));
1420
1421 /*
1422 * first write msg to mailbox registers
1423 */
1424 for (i = 0; i < len / sizeof(u32); i++)
1425 writel(cpu_to_le32(msgp[i]),
1426 ioc->ioc_regs.hfn_mbox + i * sizeof(u32));
1427
1428 for (; i < BFI_IOC_MSGLEN_MAX / sizeof(u32); i++)
1429 writel(0, ioc->ioc_regs.hfn_mbox + i * sizeof(u32));
1430
1431 /*
1432 * write 1 to mailbox CMD to trigger LPU event
1433 */
1434 writel(1, ioc->ioc_regs.hfn_mbox_cmd);
1435 (void) readl(ioc->ioc_regs.hfn_mbox_cmd);
1436}
1437
1438static void
1439bfa_ioc_send_enable(struct bfa_ioc *ioc)
1440{
1441 struct bfi_ioc_ctrl_req enable_req;
1442 struct timeval tv;
1443
1444 bfi_h2i_set(enable_req.mh, BFI_MC_IOC, BFI_IOC_H2I_ENABLE_REQ,
1445 bfa_ioc_portid(ioc));
1446 enable_req.ioc_class = ioc->ioc_mc;
1447 do_gettimeofday(&tv);
1448 enable_req.tv_sec = ntohl(tv.tv_sec);
1449 bfa_ioc_mbox_send(ioc, &enable_req, sizeof(struct bfi_ioc_ctrl_req));
1450}
1451
1452static void
1453bfa_ioc_send_disable(struct bfa_ioc *ioc)
1454{
1455 struct bfi_ioc_ctrl_req disable_req;
1456
1457 bfi_h2i_set(disable_req.mh, BFI_MC_IOC, BFI_IOC_H2I_DISABLE_REQ,
1458 bfa_ioc_portid(ioc));
1459 bfa_ioc_mbox_send(ioc, &disable_req, sizeof(struct bfi_ioc_ctrl_req));
1460}
1461
1462static void
1463bfa_ioc_send_getattr(struct bfa_ioc *ioc)
1464{
1465 struct bfi_ioc_getattr_req attr_req;
1466
1467 bfi_h2i_set(attr_req.mh, BFI_MC_IOC, BFI_IOC_H2I_GETATTR_REQ,
1468 bfa_ioc_portid(ioc));
1469 bfa_dma_be_addr_set(attr_req.attr_addr, ioc->attr_dma.pa);
1470 bfa_ioc_mbox_send(ioc, &attr_req, sizeof(attr_req));
1471}
1472
1473void
1474bfa_nw_ioc_hb_check(void *cbarg)
1475{
1476 struct bfa_ioc *ioc = cbarg;
1477 u32 hb_count;
1478
1479 hb_count = readl(ioc->ioc_regs.heartbeat);
1480 if (ioc->hb_count == hb_count) {
1481 bfa_ioc_recover(ioc);
1482 return;
1483 } else {
1484 ioc->hb_count = hb_count;
1485 }
1486
1487 bfa_ioc_mbox_poll(ioc);
1488 mod_timer(&ioc->hb_timer, jiffies +
1489 msecs_to_jiffies(BFA_IOC_HB_TOV));
1490}
1491
1492static void
1493bfa_ioc_hb_monitor(struct bfa_ioc *ioc)
1494{
1495 ioc->hb_count = readl(ioc->ioc_regs.heartbeat);
1496 mod_timer(&ioc->hb_timer, jiffies +
1497 msecs_to_jiffies(BFA_IOC_HB_TOV));
1498}
1499
1500static void
1501bfa_ioc_hb_stop(struct bfa_ioc *ioc)
1502{
1503 del_timer(&ioc->hb_timer);
1504}
1505
1506/**
1507 * @brief
1508 * Initiate a full firmware download.
1509 */
1510static void
1511bfa_ioc_download_fw(struct bfa_ioc *ioc, u32 boot_type,
1512 u32 boot_env)
1513{
1514 u32 *fwimg;
1515 u32 pgnum;
1516 u32 loff = 0;
1517 u32 chunkno = 0;
1518 u32 i;
1519
1520 /**
1521 * Initialize LMEM first before code download
1522 */
1523 bfa_ioc_lmem_init(ioc);
1524
1525 fwimg = bfa_cb_image_get_chunk(BFA_IOC_FWIMG_TYPE(ioc), chunkno);
1526
1527 pgnum = bfa_ioc_smem_pgnum(ioc, loff);
1528
1529 writel(pgnum, ioc->ioc_regs.host_page_num_fn);
1530
1531 for (i = 0; i < bfa_cb_image_get_size(BFA_IOC_FWIMG_TYPE(ioc)); i++) {
1532 if (BFA_IOC_FLASH_CHUNK_NO(i) != chunkno) {
1533 chunkno = BFA_IOC_FLASH_CHUNK_NO(i);
1534 fwimg = bfa_cb_image_get_chunk(BFA_IOC_FWIMG_TYPE(ioc),
1535 BFA_IOC_FLASH_CHUNK_ADDR(chunkno));
1536 }
1537
1538 /**
1539 * write smem
1540 */
1541 writel((swab32(fwimg[BFA_IOC_FLASH_OFFSET_IN_CHUNK(i)])),
1542 ((ioc->ioc_regs.smem_page_start) + (loff)));
1543
1544 loff += sizeof(u32);
1545
1546 /**
1547 * handle page offset wrap around
1548 */
1549 loff = PSS_SMEM_PGOFF(loff);
1550 if (loff == 0) {
1551 pgnum++;
1552 writel(pgnum,
1553 ioc->ioc_regs.host_page_num_fn);
1554 }
1555 }
1556
1557 writel(bfa_ioc_smem_pgnum(ioc, 0),
1558 ioc->ioc_regs.host_page_num_fn);
1559
1560 /*
1561 * Set boot type and boot param at the end.
1562 */
1563 writel(boot_type, ((ioc->ioc_regs.smem_page_start)
1564 + (BFI_BOOT_TYPE_OFF)));
1565 writel(boot_env, ((ioc->ioc_regs.smem_page_start)
1566 + (BFI_BOOT_LOADER_OFF)));
1567}
1568
1569static void
1570bfa_ioc_reset(struct bfa_ioc *ioc, bool force)
1571{
1572 bfa_ioc_hwinit(ioc, force);
1573}
1574
1575/**
1576 * @brief
1577 * Update BFA configuration from firmware configuration.
1578 */
1579static void
1580bfa_ioc_getattr_reply(struct bfa_ioc *ioc)
1581{
1582 struct bfi_ioc_attr *attr = ioc->attr;
1583
1584 attr->adapter_prop = ntohl(attr->adapter_prop);
1585 attr->card_type = ntohl(attr->card_type);
1586 attr->maxfrsize = ntohs(attr->maxfrsize);
1587
1588 bfa_fsm_send_event(ioc, IOC_E_FWRSP_GETATTR);
1589}
1590
1591/**
1592 * Attach time initialization of mbox logic.
1593 */
1594static void
1595bfa_ioc_mbox_attach(struct bfa_ioc *ioc)
1596{
1597 struct bfa_ioc_mbox_mod *mod = &ioc->mbox_mod;
1598 int mc;
1599
1600 INIT_LIST_HEAD(&mod->cmd_q);
1601 for (mc = 0; mc < BFI_MC_MAX; mc++) {
1602 mod->mbhdlr[mc].cbfn = NULL;
1603 mod->mbhdlr[mc].cbarg = ioc->bfa;
1604 }
1605}
1606
1607/**
1608 * Mbox poll timer -- restarts any pending mailbox requests.
1609 */
1610static void
1611bfa_ioc_mbox_poll(struct bfa_ioc *ioc)
1612{
1613 struct bfa_ioc_mbox_mod *mod = &ioc->mbox_mod;
1614 struct bfa_mbox_cmd *cmd;
1615 u32 stat;
1616
1617 /**
1618 * If no command pending, do nothing
1619 */
1620 if (list_empty(&mod->cmd_q))
1621 return;
1622
1623 /**
1624 * If previous command is not yet fetched by firmware, do nothing
1625 */
1626 stat = readl(ioc->ioc_regs.hfn_mbox_cmd);
1627 if (stat)
1628 return;
1629
1630 /**
1631 * Enqueue command to firmware.
1632 */
1633 bfa_q_deq(&mod->cmd_q, &cmd);
1634 bfa_ioc_mbox_send(ioc, cmd->msg, sizeof(cmd->msg));
1635}
1636
1637/**
1638 * Cleanup any pending requests.
1639 */
1640static void
1641bfa_ioc_mbox_hbfail(struct bfa_ioc *ioc)
1642{
1643 struct bfa_ioc_mbox_mod *mod = &ioc->mbox_mod;
1644 struct bfa_mbox_cmd *cmd;
1645
1646 while (!list_empty(&mod->cmd_q))
1647 bfa_q_deq(&mod->cmd_q, &cmd);
1648}
1649
1650static void
1651bfa_ioc_fail_notify(struct bfa_ioc *ioc)
1652{
1653 struct list_head *qe;
1654 struct bfa_ioc_hbfail_notify *notify;
1655
1656 /**
1657 * Notify driver and common modules registered for notification.
1658 */
1659 ioc->cbfn->hbfail_cbfn(ioc->bfa);
1660 list_for_each(qe, &ioc->hb_notify_q) {
1661 notify = (struct bfa_ioc_hbfail_notify *) qe;
1662 notify->cbfn(notify->cbarg);
1663 }
1664}
1665
1666static void
1667bfa_ioc_pf_enabled(struct bfa_ioc *ioc)
1668{
1669 bfa_fsm_send_event(ioc, IOC_E_ENABLED);
1670}
1671
1672static void
1673bfa_ioc_pf_disabled(struct bfa_ioc *ioc)
1674{
1675 bfa_fsm_send_event(ioc, IOC_E_DISABLED);
1676}
1677
1678static void
1679bfa_ioc_pf_initfailed(struct bfa_ioc *ioc)
1680{
1681 bfa_fsm_send_event(ioc, IOC_E_INITFAILED);
1682}
1683
1684static void
1685bfa_ioc_pf_failed(struct bfa_ioc *ioc)
1686{
1687 bfa_fsm_send_event(ioc, IOC_E_PFAILED);
1688}
1689
1690static void
1691bfa_ioc_pf_fwmismatch(struct bfa_ioc *ioc)
1692{
1693 /**
1694 * Provide enable completion callback and AEN notification.
1695 */
1696 ioc->cbfn->enable_cbfn(ioc->bfa, BFA_STATUS_IOC_FAILURE);
1697}
1698
1699/**
1700 * IOC public
1701 */
1702static enum bfa_status
1703bfa_ioc_pll_init(struct bfa_ioc *ioc)
1704{
1705 /*
1706 * Hold semaphore so that nobody can access the chip during init.
1707 */
1708 bfa_nw_ioc_sem_get(ioc->ioc_regs.ioc_init_sem_reg);
1709
1710 bfa_ioc_pll_init_asic(ioc);
1711
1712 ioc->pllinit = true;
1713 /*
1714 * release semaphore.
1715 */
1716 bfa_nw_ioc_sem_release(ioc->ioc_regs.ioc_init_sem_reg);
1717
1718 return BFA_STATUS_OK;
1719}
1720
1721/**
1722 * Interface used by diag module to do firmware boot with memory test
1723 * as the entry vector.
1724 */
1725static void
1726bfa_ioc_boot(struct bfa_ioc *ioc, u32 boot_type, u32 boot_env)
1727{
1728 void __iomem *rb;
1729
1730 bfa_ioc_stats(ioc, ioc_boots);
1731
1732 if (bfa_ioc_pll_init(ioc) != BFA_STATUS_OK)
1733 return;
1734
1735 /**
1736 * Initialize IOC state of all functions on a chip reset.
1737 */
1738 rb = ioc->pcidev.pci_bar_kva;
1739 if (boot_type == BFI_BOOT_TYPE_MEMTEST) {
1740 writel(BFI_IOC_MEMTEST, (rb + BFA_IOC0_STATE_REG));
1741 writel(BFI_IOC_MEMTEST, (rb + BFA_IOC1_STATE_REG));
1742 } else {
1743 writel(BFI_IOC_INITING, (rb + BFA_IOC0_STATE_REG));
1744 writel(BFI_IOC_INITING, (rb + BFA_IOC1_STATE_REG));
1745 }
1746
1747 bfa_ioc_msgflush(ioc);
1748 bfa_ioc_download_fw(ioc, boot_type, boot_env);
1749
1750 /**
1751 * Enable interrupts just before starting LPU
1752 */
1753 ioc->cbfn->reset_cbfn(ioc->bfa);
1754 bfa_ioc_lpu_start(ioc);
1755}
1756
1757/**
1758 * Enable/disable IOC failure auto recovery.
1759 */
1760void
1761bfa_nw_ioc_auto_recover(bool auto_recover)
1762{
1763 bfa_nw_auto_recover = auto_recover;
1764}
1765
1766static void
1767bfa_ioc_msgget(struct bfa_ioc *ioc, void *mbmsg)
1768{
1769 u32 *msgp = mbmsg;
1770 u32 r32;
1771 int i;
1772
1773 /**
1774 * read the MBOX msg
1775 */
1776 for (i = 0; i < (sizeof(union bfi_ioc_i2h_msg_u) / sizeof(u32));
1777 i++) {
1778 r32 = readl(ioc->ioc_regs.lpu_mbox +
1779 i * sizeof(u32));
1780 msgp[i] = htonl(r32);
1781 }
1782
1783 /**
1784 * turn off mailbox interrupt by clearing mailbox status
1785 */
1786 writel(1, ioc->ioc_regs.lpu_mbox_cmd);
1787 readl(ioc->ioc_regs.lpu_mbox_cmd);
1788}
1789
1790static void
1791bfa_ioc_isr(struct bfa_ioc *ioc, struct bfi_mbmsg *m)
1792{
1793 union bfi_ioc_i2h_msg_u *msg;
1794 struct bfa_iocpf *iocpf = &ioc->iocpf;
1795
1796 msg = (union bfi_ioc_i2h_msg_u *) m;
1797
1798 bfa_ioc_stats(ioc, ioc_isrs);
1799
1800 switch (msg->mh.msg_id) {
1801 case BFI_IOC_I2H_HBEAT:
1802 break;
1803
1804 case BFI_IOC_I2H_READY_EVENT:
1805 bfa_fsm_send_event(iocpf, IOCPF_E_FWREADY);
1806 break;
1807
1808 case BFI_IOC_I2H_ENABLE_REPLY:
1809 bfa_fsm_send_event(iocpf, IOCPF_E_FWRSP_ENABLE);
1810 break;
1811
1812 case BFI_IOC_I2H_DISABLE_REPLY:
1813 bfa_fsm_send_event(iocpf, IOCPF_E_FWRSP_DISABLE);
1814 break;
1815
1816 case BFI_IOC_I2H_GETATTR_REPLY:
1817 bfa_ioc_getattr_reply(ioc);
1818 break;
1819
1820 default:
1821 BUG_ON(1);
1822 }
1823}
1824
1825/**
1826 * IOC attach time initialization and setup.
1827 *
1828 * @param[in] ioc memory for IOC
1829 * @param[in] bfa driver instance structure
1830 */
1831void
1832bfa_nw_ioc_attach(struct bfa_ioc *ioc, void *bfa, struct bfa_ioc_cbfn *cbfn)
1833{
1834 ioc->bfa = bfa;
1835 ioc->cbfn = cbfn;
1836 ioc->fcmode = false;
1837 ioc->pllinit = false;
1838 ioc->dbg_fwsave_once = true;
1839 ioc->iocpf.ioc = ioc;
1840
1841 bfa_ioc_mbox_attach(ioc);
1842 INIT_LIST_HEAD(&ioc->hb_notify_q);
1843
1844 bfa_fsm_set_state(ioc, bfa_ioc_sm_uninit);
1845 bfa_fsm_send_event(ioc, IOC_E_RESET);
1846}
1847
1848/**
1849 * Driver detach time IOC cleanup.
1850 */
1851void
1852bfa_nw_ioc_detach(struct bfa_ioc *ioc)
1853{
1854 bfa_fsm_send_event(ioc, IOC_E_DETACH);
1855}
1856
1857/**
1858 * Setup IOC PCI properties.
1859 *
1860 * @param[in] pcidev PCI device information for this IOC
1861 */
1862void
1863bfa_nw_ioc_pci_init(struct bfa_ioc *ioc, struct bfa_pcidev *pcidev,
1864 enum bfi_mclass mc)
1865{
1866 ioc->ioc_mc = mc;
1867 ioc->pcidev = *pcidev;
1868 ioc->ctdev = bfa_asic_id_ct(ioc->pcidev.device_id);
1869 ioc->cna = ioc->ctdev && !ioc->fcmode;
1870
1871 bfa_nw_ioc_set_ct_hwif(ioc);
1872
1873 bfa_ioc_map_port(ioc);
1874 bfa_ioc_reg_init(ioc);
1875}
1876
1877/**
1878 * Initialize IOC dma memory
1879 *
1880 * @param[in] dm_kva kernel virtual address of IOC dma memory
1881 * @param[in] dm_pa physical address of IOC dma memory
1882 */
1883void
1884bfa_nw_ioc_mem_claim(struct bfa_ioc *ioc, u8 *dm_kva, u64 dm_pa)
1885{
1886 /**
1887 * dma memory for firmware attribute
1888 */
1889 ioc->attr_dma.kva = dm_kva;
1890 ioc->attr_dma.pa = dm_pa;
1891 ioc->attr = (struct bfi_ioc_attr *) dm_kva;
1892}
1893
1894/**
1895 * Return size of dma memory required.
1896 */
1897u32
1898bfa_nw_ioc_meminfo(void)
1899{
1900 return roundup(sizeof(struct bfi_ioc_attr), BFA_DMA_ALIGN_SZ);
1901}
1902
1903void
1904bfa_nw_ioc_enable(struct bfa_ioc *ioc)
1905{
1906 bfa_ioc_stats(ioc, ioc_enables);
1907 ioc->dbg_fwsave_once = true;
1908
1909 bfa_fsm_send_event(ioc, IOC_E_ENABLE);
1910}
1911
1912void
1913bfa_nw_ioc_disable(struct bfa_ioc *ioc)
1914{
1915 bfa_ioc_stats(ioc, ioc_disables);
1916 bfa_fsm_send_event(ioc, IOC_E_DISABLE);
1917}
1918
1919static u32
1920bfa_ioc_smem_pgnum(struct bfa_ioc *ioc, u32 fmaddr)
1921{
1922 return PSS_SMEM_PGNUM(ioc->ioc_regs.smem_pg0, fmaddr);
1923}
1924
1925/**
1926 * Register mailbox message handler function, to be called by common modules
1927 */
1928void
1929bfa_nw_ioc_mbox_regisr(struct bfa_ioc *ioc, enum bfi_mclass mc,
1930 bfa_ioc_mbox_mcfunc_t cbfn, void *cbarg)
1931{
1932 struct bfa_ioc_mbox_mod *mod = &ioc->mbox_mod;
1933
1934 mod->mbhdlr[mc].cbfn = cbfn;
1935 mod->mbhdlr[mc].cbarg = cbarg;
1936}
1937
1938/**
1939 * Queue a mailbox command request to firmware. Waits if mailbox is busy.
1940 * Responsibility of caller to serialize
1941 *
1942 * @param[in] ioc IOC instance
1943 * @param[i] cmd Mailbox command
1944 */
1945void
1946bfa_nw_ioc_mbox_queue(struct bfa_ioc *ioc, struct bfa_mbox_cmd *cmd)
1947{
1948 struct bfa_ioc_mbox_mod *mod = &ioc->mbox_mod;
1949 u32 stat;
1950
1951 /**
1952 * If a previous command is pending, queue new command
1953 */
1954 if (!list_empty(&mod->cmd_q)) {
1955 list_add_tail(&cmd->qe, &mod->cmd_q);
1956 return;
1957 }
1958
1959 /**
1960 * If mailbox is busy, queue command for poll timer
1961 */
1962 stat = readl(ioc->ioc_regs.hfn_mbox_cmd);
1963 if (stat) {
1964 list_add_tail(&cmd->qe, &mod->cmd_q);
1965 return;
1966 }
1967
1968 /**
1969 * mailbox is free -- queue command to firmware
1970 */
1971 bfa_ioc_mbox_send(ioc, cmd->msg, sizeof(cmd->msg));
1972}
1973
1974/**
1975 * Handle mailbox interrupts
1976 */
1977void
1978bfa_nw_ioc_mbox_isr(struct bfa_ioc *ioc)
1979{
1980 struct bfa_ioc_mbox_mod *mod = &ioc->mbox_mod;
1981 struct bfi_mbmsg m;
1982 int mc;
1983
1984 bfa_ioc_msgget(ioc, &m);
1985
1986 /**
1987 * Treat IOC message class as special.
1988 */
1989 mc = m.mh.msg_class;
1990 if (mc == BFI_MC_IOC) {
1991 bfa_ioc_isr(ioc, &m);
1992 return;
1993 }
1994
1995 if ((mc >= BFI_MC_MAX) || (mod->mbhdlr[mc].cbfn == NULL))
1996 return;
1997
1998 mod->mbhdlr[mc].cbfn(mod->mbhdlr[mc].cbarg, &m);
1999}
2000
2001void
2002bfa_nw_ioc_error_isr(struct bfa_ioc *ioc)
2003{
2004 bfa_fsm_send_event(ioc, IOC_E_HWERROR);
2005}
2006
2007/**
2008 * Add to IOC heartbeat failure notification queue. To be used by common
2009 * modules such as cee, port, diag.
2010 */
2011void
2012bfa_nw_ioc_hbfail_register(struct bfa_ioc *ioc,
2013 struct bfa_ioc_hbfail_notify *notify)
2014{
2015 list_add_tail(&notify->qe, &ioc->hb_notify_q);
2016}
2017
2018#define BFA_MFG_NAME "Brocade"
2019static void
2020bfa_ioc_get_adapter_attr(struct bfa_ioc *ioc,
2021 struct bfa_adapter_attr *ad_attr)
2022{
2023 struct bfi_ioc_attr *ioc_attr;
2024
2025 ioc_attr = ioc->attr;
2026
2027 bfa_ioc_get_adapter_serial_num(ioc, ad_attr->serial_num);
2028 bfa_ioc_get_adapter_fw_ver(ioc, ad_attr->fw_ver);
2029 bfa_ioc_get_adapter_optrom_ver(ioc, ad_attr->optrom_ver);
2030 bfa_ioc_get_adapter_manufacturer(ioc, ad_attr->manufacturer);
2031 memcpy(&ad_attr->vpd, &ioc_attr->vpd,
2032 sizeof(struct bfa_mfg_vpd));
2033
2034 ad_attr->nports = bfa_ioc_get_nports(ioc);
2035 ad_attr->max_speed = bfa_ioc_speed_sup(ioc);
2036
2037 bfa_ioc_get_adapter_model(ioc, ad_attr->model);
2038 /* For now, model descr uses same model string */
2039 bfa_ioc_get_adapter_model(ioc, ad_attr->model_descr);
2040
2041 ad_attr->card_type = ioc_attr->card_type;
2042 ad_attr->is_mezz = bfa_mfg_is_mezz(ioc_attr->card_type);
2043
2044 if (BFI_ADAPTER_IS_SPECIAL(ioc_attr->adapter_prop))
2045 ad_attr->prototype = 1;
2046 else
2047 ad_attr->prototype = 0;
2048
2049 ad_attr->pwwn = bfa_ioc_get_pwwn(ioc);
2050 ad_attr->mac = bfa_nw_ioc_get_mac(ioc);
2051
2052 ad_attr->pcie_gen = ioc_attr->pcie_gen;
2053 ad_attr->pcie_lanes = ioc_attr->pcie_lanes;
2054 ad_attr->pcie_lanes_orig = ioc_attr->pcie_lanes_orig;
2055 ad_attr->asic_rev = ioc_attr->asic_rev;
2056
2057 bfa_ioc_get_pci_chip_rev(ioc, ad_attr->hw_ver);
2058
2059 ad_attr->cna_capable = ioc->cna;
2060 ad_attr->trunk_capable = (ad_attr->nports > 1) && !ioc->cna;
2061}
2062
2063static enum bfa_ioc_type
2064bfa_ioc_get_type(struct bfa_ioc *ioc)
2065{
2066 if (!ioc->ctdev || ioc->fcmode)
2067 return BFA_IOC_TYPE_FC;
2068 else if (ioc->ioc_mc == BFI_MC_IOCFC)
2069 return BFA_IOC_TYPE_FCoE;
2070 else if (ioc->ioc_mc == BFI_MC_LL)
2071 return BFA_IOC_TYPE_LL;
2072 else {
2073 BUG_ON(!(ioc->ioc_mc == BFI_MC_LL));
2074 return BFA_IOC_TYPE_LL;
2075 }
2076}
2077
2078static void
2079bfa_ioc_get_adapter_serial_num(struct bfa_ioc *ioc, char *serial_num)
2080{
2081 memset(serial_num, 0, BFA_ADAPTER_SERIAL_NUM_LEN);
2082 memcpy(serial_num,
2083 (void *)ioc->attr->brcd_serialnum,
2084 BFA_ADAPTER_SERIAL_NUM_LEN);
2085}
2086
2087static void
2088bfa_ioc_get_adapter_fw_ver(struct bfa_ioc *ioc, char *fw_ver)
2089{
2090 memset(fw_ver, 0, BFA_VERSION_LEN);
2091 memcpy(fw_ver, ioc->attr->fw_version, BFA_VERSION_LEN);
2092}
2093
2094static void
2095bfa_ioc_get_pci_chip_rev(struct bfa_ioc *ioc, char *chip_rev)
2096{
2097 BUG_ON(!(chip_rev));
2098
2099 memset(chip_rev, 0, BFA_IOC_CHIP_REV_LEN);
2100
2101 chip_rev[0] = 'R';
2102 chip_rev[1] = 'e';
2103 chip_rev[2] = 'v';
2104 chip_rev[3] = '-';
2105 chip_rev[4] = ioc->attr->asic_rev;
2106 chip_rev[5] = '\0';
2107}
2108
2109static void
2110bfa_ioc_get_adapter_optrom_ver(struct bfa_ioc *ioc, char *optrom_ver)
2111{
2112 memset(optrom_ver, 0, BFA_VERSION_LEN);
2113 memcpy(optrom_ver, ioc->attr->optrom_version,
2114 BFA_VERSION_LEN);
2115}
2116
2117static void
2118bfa_ioc_get_adapter_manufacturer(struct bfa_ioc *ioc, char *manufacturer)
2119{
2120 memset(manufacturer, 0, BFA_ADAPTER_MFG_NAME_LEN);
2121 memcpy(manufacturer, BFA_MFG_NAME, BFA_ADAPTER_MFG_NAME_LEN);
2122}
2123
2124static void
2125bfa_ioc_get_adapter_model(struct bfa_ioc *ioc, char *model)
2126{
2127 struct bfi_ioc_attr *ioc_attr;
2128
2129 BUG_ON(!(model));
2130 memset(model, 0, BFA_ADAPTER_MODEL_NAME_LEN);
2131
2132 ioc_attr = ioc->attr;
2133
2134 /**
2135 * model name
2136 */
2137 snprintf(model, BFA_ADAPTER_MODEL_NAME_LEN, "%s-%u",
2138 BFA_MFG_NAME, ioc_attr->card_type);
2139}
2140
2141static enum bfa_ioc_state
2142bfa_ioc_get_state(struct bfa_ioc *ioc)
2143{
2144 enum bfa_iocpf_state iocpf_st;
2145 enum bfa_ioc_state ioc_st = bfa_sm_to_state(ioc_sm_table, ioc->fsm);
2146
2147 if (ioc_st == BFA_IOC_ENABLING ||
2148 ioc_st == BFA_IOC_FAIL || ioc_st == BFA_IOC_INITFAIL) {
2149
2150 iocpf_st = bfa_sm_to_state(iocpf_sm_table, ioc->iocpf.fsm);
2151
2152 switch (iocpf_st) {
2153 case BFA_IOCPF_SEMWAIT:
2154 ioc_st = BFA_IOC_SEMWAIT;
2155 break;
2156
2157 case BFA_IOCPF_HWINIT:
2158 ioc_st = BFA_IOC_HWINIT;
2159 break;
2160
2161 case BFA_IOCPF_FWMISMATCH:
2162 ioc_st = BFA_IOC_FWMISMATCH;
2163 break;
2164
2165 case BFA_IOCPF_FAIL:
2166 ioc_st = BFA_IOC_FAIL;
2167 break;
2168
2169 case BFA_IOCPF_INITFAIL:
2170 ioc_st = BFA_IOC_INITFAIL;
2171 break;
2172
2173 default:
2174 break;
2175 }
2176 }
2177 return ioc_st;
2178}
2179
2180void
2181bfa_nw_ioc_get_attr(struct bfa_ioc *ioc, struct bfa_ioc_attr *ioc_attr)
2182{
2183 memset((void *)ioc_attr, 0, sizeof(struct bfa_ioc_attr));
2184
2185 ioc_attr->state = bfa_ioc_get_state(ioc);
2186 ioc_attr->port_id = ioc->port_id;
2187
2188 ioc_attr->ioc_type = bfa_ioc_get_type(ioc);
2189
2190 bfa_ioc_get_adapter_attr(ioc, &ioc_attr->adapter_attr);
2191
2192 ioc_attr->pci_attr.device_id = ioc->pcidev.device_id;
2193 ioc_attr->pci_attr.pcifn = ioc->pcidev.pci_func;
2194 bfa_ioc_get_pci_chip_rev(ioc, ioc_attr->pci_attr.chip_rev);
2195}
2196
2197/**
2198 * WWN public
2199 */
2200static u64
2201bfa_ioc_get_pwwn(struct bfa_ioc *ioc)
2202{
2203 return ioc->attr->pwwn;
2204}
2205
2206mac_t
2207bfa_nw_ioc_get_mac(struct bfa_ioc *ioc)
2208{
2209 return ioc->attr->mac;
2210}
2211
2212/**
2213 * Firmware failure detected. Start recovery actions.
2214 */
2215static void
2216bfa_ioc_recover(struct bfa_ioc *ioc)
2217{
2218 pr_crit("Heart Beat of IOC has failed\n");
2219 bfa_ioc_stats(ioc, ioc_hbfails);
2220 bfa_fsm_send_event(ioc, IOC_E_HBFAIL);
2221}
2222
2223static void
2224bfa_ioc_check_attr_wwns(struct bfa_ioc *ioc)
2225{
2226 if (bfa_ioc_get_type(ioc) == BFA_IOC_TYPE_LL)
2227 return;
2228}
2229
2230/**
2231 * @dg hal_iocpf_pvt BFA IOC PF private functions
2232 * @{
2233 */
2234
2235static void
2236bfa_iocpf_enable(struct bfa_ioc *ioc)
2237{
2238 bfa_fsm_send_event(&ioc->iocpf, IOCPF_E_ENABLE);
2239}
2240
2241static void
2242bfa_iocpf_disable(struct bfa_ioc *ioc)
2243{
2244 bfa_fsm_send_event(&ioc->iocpf, IOCPF_E_DISABLE);
2245}
2246
2247static void
2248bfa_iocpf_fail(struct bfa_ioc *ioc)
2249{
2250 bfa_fsm_send_event(&ioc->iocpf, IOCPF_E_FAIL);
2251}
2252
2253static void
2254bfa_iocpf_initfail(struct bfa_ioc *ioc)
2255{
2256 bfa_fsm_send_event(&ioc->iocpf, IOCPF_E_INITFAIL);
2257}
2258
2259static void
2260bfa_iocpf_getattrfail(struct bfa_ioc *ioc)
2261{
2262 bfa_fsm_send_event(&ioc->iocpf, IOCPF_E_GETATTRFAIL);
2263}
2264
2265static void
2266bfa_iocpf_stop(struct bfa_ioc *ioc)
2267{
2268 bfa_fsm_send_event(&ioc->iocpf, IOCPF_E_STOP);
2269}
2270
2271void
2272bfa_nw_iocpf_timeout(void *ioc_arg)
2273{
2274 struct bfa_ioc *ioc = (struct bfa_ioc *) ioc_arg;
2275
2276 bfa_fsm_send_event(&ioc->iocpf, IOCPF_E_TIMEOUT);
2277}
2278
2279void
2280bfa_nw_iocpf_sem_timeout(void *ioc_arg)
2281{
2282 struct bfa_ioc *ioc = (struct bfa_ioc *) ioc_arg;
2283
2284 bfa_ioc_hw_sem_get(ioc);
2285}
diff --git a/drivers/net/bna/bfa_ioc.h b/drivers/net/bna/bfa_ioc.h
new file mode 100644
index 000000000000..bd48abee781f
--- /dev/null
+++ b/drivers/net/bna/bfa_ioc.h
@@ -0,0 +1,292 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#ifndef __BFA_IOC_H__
20#define __BFA_IOC_H__
21
22#include "bfa_sm.h"
23#include "bfi.h"
24#include "cna.h"
25
26#define BFA_IOC_TOV 3000 /* msecs */
27#define BFA_IOC_HWSEM_TOV 500 /* msecs */
28#define BFA_IOC_HB_TOV 500 /* msecs */
29#define BFA_IOC_HWINIT_MAX 5
30
31/**
32 * PCI device information required by IOC
33 */
34struct bfa_pcidev {
35 int pci_slot;
36 u8 pci_func;
37 u16 device_id;
38 void __iomem *pci_bar_kva;
39};
40
41/**
42 * Structure used to remember the DMA-able memory block's KVA and Physical
43 * Address
44 */
45struct bfa_dma {
46 void *kva; /* ! Kernel virtual address */
47 u64 pa; /* ! Physical address */
48};
49
50#define BFA_DMA_ALIGN_SZ 256
51
52/**
53 * smem size for Crossbow and Catapult
54 */
55#define BFI_SMEM_CB_SIZE 0x200000U /* ! 2MB for crossbow */
56#define BFI_SMEM_CT_SIZE 0x280000U /* ! 2.5MB for catapult */
57
58/**
59 * @brief BFA dma address assignment macro. (big endian format)
60 */
61#define bfa_dma_be_addr_set(dma_addr, pa) \
62 __bfa_dma_be_addr_set(&dma_addr, (u64)pa)
63static inline void
64__bfa_dma_be_addr_set(union bfi_addr_u *dma_addr, u64 pa)
65{
66 dma_addr->a32.addr_lo = (u32) htonl(pa);
67 dma_addr->a32.addr_hi = (u32) htonl(upper_32_bits(pa));
68}
69
70struct bfa_ioc_regs {
71 void __iomem *hfn_mbox_cmd;
72 void __iomem *hfn_mbox;
73 void __iomem *lpu_mbox_cmd;
74 void __iomem *lpu_mbox;
75 void __iomem *pss_ctl_reg;
76 void __iomem *pss_err_status_reg;
77 void __iomem *app_pll_fast_ctl_reg;
78 void __iomem *app_pll_slow_ctl_reg;
79 void __iomem *ioc_sem_reg;
80 void __iomem *ioc_usage_sem_reg;
81 void __iomem *ioc_init_sem_reg;
82 void __iomem *ioc_usage_reg;
83 void __iomem *host_page_num_fn;
84 void __iomem *heartbeat;
85 void __iomem *ioc_fwstate;
86 void __iomem *alt_ioc_fwstate;
87 void __iomem *ll_halt;
88 void __iomem *alt_ll_halt;
89 void __iomem *err_set;
90 void __iomem *ioc_fail_sync;
91 void __iomem *shirq_isr_next;
92 void __iomem *shirq_msk_next;
93 void __iomem *smem_page_start;
94 u32 smem_pg0;
95};
96
97/**
98 * IOC Mailbox structures
99 */
100struct bfa_mbox_cmd {
101 struct list_head qe;
102 u32 msg[BFI_IOC_MSGSZ];
103};
104
105/**
106 * IOC mailbox module
107 */
108typedef void (*bfa_ioc_mbox_mcfunc_t)(void *cbarg, struct bfi_mbmsg *m);
109struct bfa_ioc_mbox_mod {
110 struct list_head cmd_q; /*!< pending mbox queue */
111 int nmclass; /*!< number of handlers */
112 struct {
113 bfa_ioc_mbox_mcfunc_t cbfn; /*!< message handlers */
114 void *cbarg;
115 } mbhdlr[BFI_MC_MAX];
116};
117
118/**
119 * IOC callback function interfaces
120 */
121typedef void (*bfa_ioc_enable_cbfn_t)(void *bfa, enum bfa_status status);
122typedef void (*bfa_ioc_disable_cbfn_t)(void *bfa);
123typedef void (*bfa_ioc_hbfail_cbfn_t)(void *bfa);
124typedef void (*bfa_ioc_reset_cbfn_t)(void *bfa);
125struct bfa_ioc_cbfn {
126 bfa_ioc_enable_cbfn_t enable_cbfn;
127 bfa_ioc_disable_cbfn_t disable_cbfn;
128 bfa_ioc_hbfail_cbfn_t hbfail_cbfn;
129 bfa_ioc_reset_cbfn_t reset_cbfn;
130};
131
132/**
133 * Heartbeat failure notification queue element.
134 */
135struct bfa_ioc_hbfail_notify {
136 struct list_head qe;
137 bfa_ioc_hbfail_cbfn_t cbfn;
138 void *cbarg;
139};
140
141/**
142 * Initialize a heartbeat failure notification structure
143 */
144#define bfa_ioc_hbfail_init(__notify, __cbfn, __cbarg) do { \
145 (__notify)->cbfn = (__cbfn); \
146 (__notify)->cbarg = (__cbarg); \
147} while (0)
148
149struct bfa_iocpf {
150 bfa_fsm_t fsm;
151 struct bfa_ioc *ioc;
152 u32 retry_count;
153 bool auto_recover;
154};
155
156struct bfa_ioc {
157 bfa_fsm_t fsm;
158 struct bfa *bfa;
159 struct bfa_pcidev pcidev;
160 struct timer_list ioc_timer;
161 struct timer_list iocpf_timer;
162 struct timer_list sem_timer;
163 struct timer_list hb_timer;
164 u32 hb_count;
165 struct list_head hb_notify_q;
166 void *dbg_fwsave;
167 int dbg_fwsave_len;
168 bool dbg_fwsave_once;
169 enum bfi_mclass ioc_mc;
170 struct bfa_ioc_regs ioc_regs;
171 struct bfa_ioc_drv_stats stats;
172 bool fcmode;
173 bool ctdev;
174 bool cna;
175 bool pllinit;
176 bool stats_busy; /*!< outstanding stats */
177 u8 port_id;
178
179 struct bfa_dma attr_dma;
180 struct bfi_ioc_attr *attr;
181 struct bfa_ioc_cbfn *cbfn;
182 struct bfa_ioc_mbox_mod mbox_mod;
183 struct bfa_ioc_hwif *ioc_hwif;
184 struct bfa_iocpf iocpf;
185};
186
187struct bfa_ioc_hwif {
188 enum bfa_status (*ioc_pll_init) (void __iomem *rb, bool fcmode);
189 bool (*ioc_firmware_lock) (struct bfa_ioc *ioc);
190 void (*ioc_firmware_unlock) (struct bfa_ioc *ioc);
191 void (*ioc_reg_init) (struct bfa_ioc *ioc);
192 void (*ioc_map_port) (struct bfa_ioc *ioc);
193 void (*ioc_isr_mode_set) (struct bfa_ioc *ioc,
194 bool msix);
195 void (*ioc_notify_fail) (struct bfa_ioc *ioc);
196 void (*ioc_ownership_reset) (struct bfa_ioc *ioc);
197 bool (*ioc_sync_start) (struct bfa_ioc *ioc);
198 void (*ioc_sync_join) (struct bfa_ioc *ioc);
199 void (*ioc_sync_leave) (struct bfa_ioc *ioc);
200 void (*ioc_sync_ack) (struct bfa_ioc *ioc);
201 bool (*ioc_sync_complete) (struct bfa_ioc *ioc);
202};
203
204#define bfa_ioc_pcifn(__ioc) ((__ioc)->pcidev.pci_func)
205#define bfa_ioc_devid(__ioc) ((__ioc)->pcidev.device_id)
206#define bfa_ioc_bar0(__ioc) ((__ioc)->pcidev.pci_bar_kva)
207#define bfa_ioc_portid(__ioc) ((__ioc)->port_id)
208#define bfa_ioc_fetch_stats(__ioc, __stats) \
209 (((__stats)->drv_stats) = (__ioc)->stats)
210#define bfa_ioc_clr_stats(__ioc) \
211 memset(&(__ioc)->stats, 0, sizeof((__ioc)->stats))
212#define bfa_ioc_maxfrsize(__ioc) ((__ioc)->attr->maxfrsize)
213#define bfa_ioc_rx_bbcredit(__ioc) ((__ioc)->attr->rx_bbcredit)
214#define bfa_ioc_speed_sup(__ioc) \
215 BFI_ADAPTER_GETP(SPEED, (__ioc)->attr->adapter_prop)
216#define bfa_ioc_get_nports(__ioc) \
217 BFI_ADAPTER_GETP(NPORTS, (__ioc)->attr->adapter_prop)
218
219#define bfa_ioc_stats(_ioc, _stats) ((_ioc)->stats._stats++)
220#define BFA_IOC_FWIMG_MINSZ (16 * 1024)
221#define BFA_IOC_FWIMG_TYPE(__ioc) \
222 (((__ioc)->ctdev) ? \
223 (((__ioc)->fcmode) ? BFI_IMAGE_CT_FC : BFI_IMAGE_CT_CNA) : \
224 BFI_IMAGE_CB_FC)
225#define BFA_IOC_FW_SMEM_SIZE(__ioc) \
226 (((__ioc)->ctdev) ? BFI_SMEM_CT_SIZE : BFI_SMEM_CB_SIZE)
227#define BFA_IOC_FLASH_CHUNK_NO(off) (off / BFI_FLASH_CHUNK_SZ_WORDS)
228#define BFA_IOC_FLASH_OFFSET_IN_CHUNK(off) (off % BFI_FLASH_CHUNK_SZ_WORDS)
229#define BFA_IOC_FLASH_CHUNK_ADDR(chunkno) (chunkno * BFI_FLASH_CHUNK_SZ_WORDS)
230
231/**
232 * IOC mailbox interface
233 */
234void bfa_nw_ioc_mbox_queue(struct bfa_ioc *ioc, struct bfa_mbox_cmd *cmd);
235void bfa_nw_ioc_mbox_isr(struct bfa_ioc *ioc);
236void bfa_nw_ioc_mbox_regisr(struct bfa_ioc *ioc, enum bfi_mclass mc,
237 bfa_ioc_mbox_mcfunc_t cbfn, void *cbarg);
238
239/**
240 * IOC interfaces
241 */
242
243#define bfa_ioc_pll_init_asic(__ioc) \
244 ((__ioc)->ioc_hwif->ioc_pll_init((__ioc)->pcidev.pci_bar_kva, \
245 (__ioc)->fcmode))
246
247#define bfa_ioc_isr_mode_set(__ioc, __msix) \
248 ((__ioc)->ioc_hwif->ioc_isr_mode_set(__ioc, __msix))
249#define bfa_ioc_ownership_reset(__ioc) \
250 ((__ioc)->ioc_hwif->ioc_ownership_reset(__ioc))
251
252void bfa_nw_ioc_set_ct_hwif(struct bfa_ioc *ioc);
253
254void bfa_nw_ioc_attach(struct bfa_ioc *ioc, void *bfa,
255 struct bfa_ioc_cbfn *cbfn);
256void bfa_nw_ioc_auto_recover(bool auto_recover);
257void bfa_nw_ioc_detach(struct bfa_ioc *ioc);
258void bfa_nw_ioc_pci_init(struct bfa_ioc *ioc, struct bfa_pcidev *pcidev,
259 enum bfi_mclass mc);
260u32 bfa_nw_ioc_meminfo(void);
261void bfa_nw_ioc_mem_claim(struct bfa_ioc *ioc, u8 *dm_kva, u64 dm_pa);
262void bfa_nw_ioc_enable(struct bfa_ioc *ioc);
263void bfa_nw_ioc_disable(struct bfa_ioc *ioc);
264
265void bfa_nw_ioc_error_isr(struct bfa_ioc *ioc);
266void bfa_nw_ioc_get_attr(struct bfa_ioc *ioc, struct bfa_ioc_attr *ioc_attr);
267void bfa_nw_ioc_hbfail_register(struct bfa_ioc *ioc,
268 struct bfa_ioc_hbfail_notify *notify);
269bool bfa_nw_ioc_sem_get(void __iomem *sem_reg);
270void bfa_nw_ioc_sem_release(void __iomem *sem_reg);
271void bfa_nw_ioc_hw_sem_release(struct bfa_ioc *ioc);
272void bfa_nw_ioc_fwver_get(struct bfa_ioc *ioc,
273 struct bfi_ioc_image_hdr *fwhdr);
274bool bfa_nw_ioc_fwver_cmp(struct bfa_ioc *ioc,
275 struct bfi_ioc_image_hdr *fwhdr);
276mac_t bfa_nw_ioc_get_mac(struct bfa_ioc *ioc);
277
278/*
279 * Timeout APIs
280 */
281void bfa_nw_ioc_timeout(void *ioc);
282void bfa_nw_ioc_hb_check(void *ioc);
283void bfa_nw_iocpf_timeout(void *ioc);
284void bfa_nw_iocpf_sem_timeout(void *ioc);
285
286/*
287 * F/W Image Size & Chunk
288 */
289u32 *bfa_cb_image_get_chunk(int type, u32 off);
290u32 bfa_cb_image_get_size(int type);
291
292#endif /* __BFA_IOC_H__ */
diff --git a/drivers/net/bna/bfa_ioc_ct.c b/drivers/net/bna/bfa_ioc_ct.c
new file mode 100644
index 000000000000..87aecdf22cf9
--- /dev/null
+++ b/drivers/net/bna/bfa_ioc_ct.c
@@ -0,0 +1,516 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#include "bfa_ioc.h"
20#include "cna.h"
21#include "bfi.h"
22#include "bfi_ctreg.h"
23#include "bfa_defs.h"
24
25#define bfa_ioc_ct_sync_pos(__ioc) \
26 ((u32) (1 << bfa_ioc_pcifn(__ioc)))
27#define BFA_IOC_SYNC_REQD_SH 16
28#define bfa_ioc_ct_get_sync_ackd(__val) (__val & 0x0000ffff)
29#define bfa_ioc_ct_clear_sync_ackd(__val) (__val & 0xffff0000)
30#define bfa_ioc_ct_get_sync_reqd(__val) (__val >> BFA_IOC_SYNC_REQD_SH)
31#define bfa_ioc_ct_sync_reqd_pos(__ioc) \
32 (bfa_ioc_ct_sync_pos(__ioc) << BFA_IOC_SYNC_REQD_SH)
33
34/*
35 * forward declarations
36 */
37static bool bfa_ioc_ct_firmware_lock(struct bfa_ioc *ioc);
38static void bfa_ioc_ct_firmware_unlock(struct bfa_ioc *ioc);
39static void bfa_ioc_ct_reg_init(struct bfa_ioc *ioc);
40static void bfa_ioc_ct_map_port(struct bfa_ioc *ioc);
41static void bfa_ioc_ct_isr_mode_set(struct bfa_ioc *ioc, bool msix);
42static void bfa_ioc_ct_notify_fail(struct bfa_ioc *ioc);
43static void bfa_ioc_ct_ownership_reset(struct bfa_ioc *ioc);
44static bool bfa_ioc_ct_sync_start(struct bfa_ioc *ioc);
45static void bfa_ioc_ct_sync_join(struct bfa_ioc *ioc);
46static void bfa_ioc_ct_sync_leave(struct bfa_ioc *ioc);
47static void bfa_ioc_ct_sync_ack(struct bfa_ioc *ioc);
48static bool bfa_ioc_ct_sync_complete(struct bfa_ioc *ioc);
49static enum bfa_status bfa_ioc_ct_pll_init(void __iomem *rb, bool fcmode);
50
51static struct bfa_ioc_hwif nw_hwif_ct;
52
53/**
54 * Called from bfa_ioc_attach() to map asic specific calls.
55 */
56void
57bfa_nw_ioc_set_ct_hwif(struct bfa_ioc *ioc)
58{
59 nw_hwif_ct.ioc_pll_init = bfa_ioc_ct_pll_init;
60 nw_hwif_ct.ioc_firmware_lock = bfa_ioc_ct_firmware_lock;
61 nw_hwif_ct.ioc_firmware_unlock = bfa_ioc_ct_firmware_unlock;
62 nw_hwif_ct.ioc_reg_init = bfa_ioc_ct_reg_init;
63 nw_hwif_ct.ioc_map_port = bfa_ioc_ct_map_port;
64 nw_hwif_ct.ioc_isr_mode_set = bfa_ioc_ct_isr_mode_set;
65 nw_hwif_ct.ioc_notify_fail = bfa_ioc_ct_notify_fail;
66 nw_hwif_ct.ioc_ownership_reset = bfa_ioc_ct_ownership_reset;
67 nw_hwif_ct.ioc_sync_start = bfa_ioc_ct_sync_start;
68 nw_hwif_ct.ioc_sync_join = bfa_ioc_ct_sync_join;
69 nw_hwif_ct.ioc_sync_leave = bfa_ioc_ct_sync_leave;
70 nw_hwif_ct.ioc_sync_ack = bfa_ioc_ct_sync_ack;
71 nw_hwif_ct.ioc_sync_complete = bfa_ioc_ct_sync_complete;
72
73 ioc->ioc_hwif = &nw_hwif_ct;
74}
75
76/**
77 * Return true if firmware of current driver matches the running firmware.
78 */
79static bool
80bfa_ioc_ct_firmware_lock(struct bfa_ioc *ioc)
81{
82 enum bfi_ioc_state ioc_fwstate;
83 u32 usecnt;
84 struct bfi_ioc_image_hdr fwhdr;
85
86 /**
87 * Firmware match check is relevant only for CNA.
88 */
89 if (!ioc->cna)
90 return true;
91
92 /**
93 * If bios boot (flash based) -- do not increment usage count
94 */
95 if (bfa_cb_image_get_size(BFA_IOC_FWIMG_TYPE(ioc)) <
96 BFA_IOC_FWIMG_MINSZ)
97 return true;
98
99 bfa_nw_ioc_sem_get(ioc->ioc_regs.ioc_usage_sem_reg);
100 usecnt = readl(ioc->ioc_regs.ioc_usage_reg);
101
102 /**
103 * If usage count is 0, always return TRUE.
104 */
105 if (usecnt == 0) {
106 writel(1, ioc->ioc_regs.ioc_usage_reg);
107 bfa_nw_ioc_sem_release(ioc->ioc_regs.ioc_usage_sem_reg);
108 writel(0, ioc->ioc_regs.ioc_fail_sync);
109 return true;
110 }
111
112 ioc_fwstate = readl(ioc->ioc_regs.ioc_fwstate);
113
114 /**
115 * Use count cannot be non-zero and chip in uninitialized state.
116 */
117 BUG_ON(!(ioc_fwstate != BFI_IOC_UNINIT));
118
119 /**
120 * Check if another driver with a different firmware is active
121 */
122 bfa_nw_ioc_fwver_get(ioc, &fwhdr);
123 if (!bfa_nw_ioc_fwver_cmp(ioc, &fwhdr)) {
124 bfa_nw_ioc_sem_release(ioc->ioc_regs.ioc_usage_sem_reg);
125 return false;
126 }
127
128 /**
129 * Same firmware version. Increment the reference count.
130 */
131 usecnt++;
132 writel(usecnt, ioc->ioc_regs.ioc_usage_reg);
133 bfa_nw_ioc_sem_release(ioc->ioc_regs.ioc_usage_sem_reg);
134 return true;
135}
136
137static void
138bfa_ioc_ct_firmware_unlock(struct bfa_ioc *ioc)
139{
140 u32 usecnt;
141
142 /**
143 * Firmware lock is relevant only for CNA.
144 */
145 if (!ioc->cna)
146 return;
147
148 /**
149 * If bios boot (flash based) -- do not decrement usage count
150 */
151 if (bfa_cb_image_get_size(BFA_IOC_FWIMG_TYPE(ioc)) <
152 BFA_IOC_FWIMG_MINSZ)
153 return;
154
155 /**
156 * decrement usage count
157 */
158 bfa_nw_ioc_sem_get(ioc->ioc_regs.ioc_usage_sem_reg);
159 usecnt = readl(ioc->ioc_regs.ioc_usage_reg);
160 BUG_ON(!(usecnt > 0));
161
162 usecnt--;
163 writel(usecnt, ioc->ioc_regs.ioc_usage_reg);
164
165 bfa_nw_ioc_sem_release(ioc->ioc_regs.ioc_usage_sem_reg);
166}
167
168/**
169 * Notify other functions on HB failure.
170 */
171static void
172bfa_ioc_ct_notify_fail(struct bfa_ioc *ioc)
173{
174 if (ioc->cna) {
175 writel(__FW_INIT_HALT_P, ioc->ioc_regs.ll_halt);
176 writel(__FW_INIT_HALT_P, ioc->ioc_regs.alt_ll_halt);
177 /* Wait for halt to take effect */
178 readl(ioc->ioc_regs.ll_halt);
179 readl(ioc->ioc_regs.alt_ll_halt);
180 } else {
181 writel(__PSS_ERR_STATUS_SET, ioc->ioc_regs.err_set);
182 readl(ioc->ioc_regs.err_set);
183 }
184}
185
186/**
187 * Host to LPU mailbox message addresses
188 */
189static struct { u32 hfn_mbox, lpu_mbox, hfn_pgn; } iocreg_fnreg[] = {
190 { HOSTFN0_LPU_MBOX0_0, LPU_HOSTFN0_MBOX0_0, HOST_PAGE_NUM_FN0 },
191 { HOSTFN1_LPU_MBOX0_8, LPU_HOSTFN1_MBOX0_8, HOST_PAGE_NUM_FN1 },
192 { HOSTFN2_LPU_MBOX0_0, LPU_HOSTFN2_MBOX0_0, HOST_PAGE_NUM_FN2 },
193 { HOSTFN3_LPU_MBOX0_8, LPU_HOSTFN3_MBOX0_8, HOST_PAGE_NUM_FN3 }
194};
195
196/**
197 * Host <-> LPU mailbox command/status registers - port 0
198 */
199static struct { u32 hfn, lpu; } iocreg_mbcmd_p0[] = {
200 { HOSTFN0_LPU0_MBOX0_CMD_STAT, LPU0_HOSTFN0_MBOX0_CMD_STAT },
201 { HOSTFN1_LPU0_MBOX0_CMD_STAT, LPU0_HOSTFN1_MBOX0_CMD_STAT },
202 { HOSTFN2_LPU0_MBOX0_CMD_STAT, LPU0_HOSTFN2_MBOX0_CMD_STAT },
203 { HOSTFN3_LPU0_MBOX0_CMD_STAT, LPU0_HOSTFN3_MBOX0_CMD_STAT }
204};
205
206/**
207 * Host <-> LPU mailbox command/status registers - port 1
208 */
209static struct { u32 hfn, lpu; } iocreg_mbcmd_p1[] = {
210 { HOSTFN0_LPU1_MBOX0_CMD_STAT, LPU1_HOSTFN0_MBOX0_CMD_STAT },
211 { HOSTFN1_LPU1_MBOX0_CMD_STAT, LPU1_HOSTFN1_MBOX0_CMD_STAT },
212 { HOSTFN2_LPU1_MBOX0_CMD_STAT, LPU1_HOSTFN2_MBOX0_CMD_STAT },
213 { HOSTFN3_LPU1_MBOX0_CMD_STAT, LPU1_HOSTFN3_MBOX0_CMD_STAT }
214};
215
216static void
217bfa_ioc_ct_reg_init(struct bfa_ioc *ioc)
218{
219 void __iomem *rb;
220 int pcifn = bfa_ioc_pcifn(ioc);
221
222 rb = bfa_ioc_bar0(ioc);
223
224 ioc->ioc_regs.hfn_mbox = rb + iocreg_fnreg[pcifn].hfn_mbox;
225 ioc->ioc_regs.lpu_mbox = rb + iocreg_fnreg[pcifn].lpu_mbox;
226 ioc->ioc_regs.host_page_num_fn = rb + iocreg_fnreg[pcifn].hfn_pgn;
227
228 if (ioc->port_id == 0) {
229 ioc->ioc_regs.heartbeat = rb + BFA_IOC0_HBEAT_REG;
230 ioc->ioc_regs.ioc_fwstate = rb + BFA_IOC0_STATE_REG;
231 ioc->ioc_regs.alt_ioc_fwstate = rb + BFA_IOC1_STATE_REG;
232 ioc->ioc_regs.hfn_mbox_cmd = rb + iocreg_mbcmd_p0[pcifn].hfn;
233 ioc->ioc_regs.lpu_mbox_cmd = rb + iocreg_mbcmd_p0[pcifn].lpu;
234 ioc->ioc_regs.ll_halt = rb + FW_INIT_HALT_P0;
235 ioc->ioc_regs.alt_ll_halt = rb + FW_INIT_HALT_P1;
236 } else {
237 ioc->ioc_regs.heartbeat = (rb + BFA_IOC1_HBEAT_REG);
238 ioc->ioc_regs.ioc_fwstate = (rb + BFA_IOC1_STATE_REG);
239 ioc->ioc_regs.alt_ioc_fwstate = rb + BFA_IOC0_STATE_REG;
240 ioc->ioc_regs.hfn_mbox_cmd = rb + iocreg_mbcmd_p1[pcifn].hfn;
241 ioc->ioc_regs.lpu_mbox_cmd = rb + iocreg_mbcmd_p1[pcifn].lpu;
242 ioc->ioc_regs.ll_halt = rb + FW_INIT_HALT_P1;
243 ioc->ioc_regs.alt_ll_halt = rb + FW_INIT_HALT_P0;
244 }
245
246 /*
247 * PSS control registers
248 */
249 ioc->ioc_regs.pss_ctl_reg = (rb + PSS_CTL_REG);
250 ioc->ioc_regs.pss_err_status_reg = (rb + PSS_ERR_STATUS_REG);
251 ioc->ioc_regs.app_pll_fast_ctl_reg = (rb + APP_PLL_425_CTL_REG);
252 ioc->ioc_regs.app_pll_slow_ctl_reg = (rb + APP_PLL_312_CTL_REG);
253
254 /*
255 * IOC semaphore registers and serialization
256 */
257 ioc->ioc_regs.ioc_sem_reg = (rb + HOST_SEM0_REG);
258 ioc->ioc_regs.ioc_usage_sem_reg = (rb + HOST_SEM1_REG);
259 ioc->ioc_regs.ioc_init_sem_reg = (rb + HOST_SEM2_REG);
260 ioc->ioc_regs.ioc_usage_reg = (rb + BFA_FW_USE_COUNT);
261 ioc->ioc_regs.ioc_fail_sync = (rb + BFA_IOC_FAIL_SYNC);
262
263 /**
264 * sram memory access
265 */
266 ioc->ioc_regs.smem_page_start = (rb + PSS_SMEM_PAGE_START);
267 ioc->ioc_regs.smem_pg0 = BFI_IOC_SMEM_PG0_CT;
268
269 /*
270 * err set reg : for notification of hb failure in fcmode
271 */
272 ioc->ioc_regs.err_set = (rb + ERR_SET_REG);
273}
274
275/**
276 * Initialize IOC to port mapping.
277 */
278
279#define FNC_PERS_FN_SHIFT(__fn) ((__fn) * 8)
280static void
281bfa_ioc_ct_map_port(struct bfa_ioc *ioc)
282{
283 void __iomem *rb = ioc->pcidev.pci_bar_kva;
284 u32 r32;
285
286 /**
287 * For catapult, base port id on personality register and IOC type
288 */
289 r32 = readl(rb + FNC_PERS_REG);
290 r32 >>= FNC_PERS_FN_SHIFT(bfa_ioc_pcifn(ioc));
291 ioc->port_id = (r32 & __F0_PORT_MAP_MK) >> __F0_PORT_MAP_SH;
292
293}
294
295/**
296 * Set interrupt mode for a function: INTX or MSIX
297 */
298static void
299bfa_ioc_ct_isr_mode_set(struct bfa_ioc *ioc, bool msix)
300{
301 void __iomem *rb = ioc->pcidev.pci_bar_kva;
302 u32 r32, mode;
303
304 r32 = readl(rb + FNC_PERS_REG);
305
306 mode = (r32 >> FNC_PERS_FN_SHIFT(bfa_ioc_pcifn(ioc))) &
307 __F0_INTX_STATUS;
308
309 /**
310 * If already in desired mode, do not change anything
311 */
312 if (!msix && mode)
313 return;
314
315 if (msix)
316 mode = __F0_INTX_STATUS_MSIX;
317 else
318 mode = __F0_INTX_STATUS_INTA;
319
320 r32 &= ~(__F0_INTX_STATUS << FNC_PERS_FN_SHIFT(bfa_ioc_pcifn(ioc)));
321 r32 |= (mode << FNC_PERS_FN_SHIFT(bfa_ioc_pcifn(ioc)));
322
323 writel(r32, rb + FNC_PERS_REG);
324}
325
326/**
327 * Cleanup hw semaphore and usecnt registers
328 */
329static void
330bfa_ioc_ct_ownership_reset(struct bfa_ioc *ioc)
331{
332 if (ioc->cna) {
333 bfa_nw_ioc_sem_get(ioc->ioc_regs.ioc_usage_sem_reg);
334 writel(0, ioc->ioc_regs.ioc_usage_reg);
335 bfa_nw_ioc_sem_release(ioc->ioc_regs.ioc_usage_sem_reg);
336 }
337
338 /*
339 * Read the hw sem reg to make sure that it is locked
340 * before we clear it. If it is not locked, writing 1
341 * will lock it instead of clearing it.
342 */
343 readl(ioc->ioc_regs.ioc_sem_reg);
344 bfa_nw_ioc_hw_sem_release(ioc);
345}
346
347/**
348 * Synchronized IOC failure processing routines
349 */
350static bool
351bfa_ioc_ct_sync_start(struct bfa_ioc *ioc)
352{
353 u32 r32 = readl(ioc->ioc_regs.ioc_fail_sync);
354 u32 sync_reqd = bfa_ioc_ct_get_sync_reqd(r32);
355
356 /*
357 * Driver load time. If the sync required bit for this PCI fn
358 * is set, it is due to an unclean exit by the driver for this
359 * PCI fn in the previous incarnation. Whoever comes here first
360 * should clean it up, no matter which PCI fn.
361 */
362
363 if (sync_reqd & bfa_ioc_ct_sync_pos(ioc)) {
364 writel(0, ioc->ioc_regs.ioc_fail_sync);
365 writel(1, ioc->ioc_regs.ioc_usage_reg);
366 writel(BFI_IOC_UNINIT, ioc->ioc_regs.ioc_fwstate);
367 writel(BFI_IOC_UNINIT, ioc->ioc_regs.alt_ioc_fwstate);
368 return true;
369 }
370
371 return bfa_ioc_ct_sync_complete(ioc);
372}
373/**
374 * Synchronized IOC failure processing routines
375 */
376static void
377bfa_ioc_ct_sync_join(struct bfa_ioc *ioc)
378{
379 u32 r32 = readl(ioc->ioc_regs.ioc_fail_sync);
380 u32 sync_pos = bfa_ioc_ct_sync_reqd_pos(ioc);
381
382 writel((r32 | sync_pos), ioc->ioc_regs.ioc_fail_sync);
383}
384
385static void
386bfa_ioc_ct_sync_leave(struct bfa_ioc *ioc)
387{
388 u32 r32 = readl(ioc->ioc_regs.ioc_fail_sync);
389 u32 sync_msk = bfa_ioc_ct_sync_reqd_pos(ioc) |
390 bfa_ioc_ct_sync_pos(ioc);
391
392 writel((r32 & ~sync_msk), ioc->ioc_regs.ioc_fail_sync);
393}
394
395static void
396bfa_ioc_ct_sync_ack(struct bfa_ioc *ioc)
397{
398 u32 r32 = readl(ioc->ioc_regs.ioc_fail_sync);
399
400 writel((r32 | bfa_ioc_ct_sync_pos(ioc)), ioc->ioc_regs.ioc_fail_sync);
401}
402
403static bool
404bfa_ioc_ct_sync_complete(struct bfa_ioc *ioc)
405{
406 u32 r32 = readl(ioc->ioc_regs.ioc_fail_sync);
407 u32 sync_reqd = bfa_ioc_ct_get_sync_reqd(r32);
408 u32 sync_ackd = bfa_ioc_ct_get_sync_ackd(r32);
409 u32 tmp_ackd;
410
411 if (sync_ackd == 0)
412 return true;
413
414 /**
415 * The check below is to see whether any other PCI fn
416 * has reinitialized the ASIC (reset sync_ackd bits)
417 * and failed again while this IOC was waiting for hw
418 * semaphore (in bfa_iocpf_sm_semwait()).
419 */
420 tmp_ackd = sync_ackd;
421 if ((sync_reqd & bfa_ioc_ct_sync_pos(ioc)) &&
422 !(sync_ackd & bfa_ioc_ct_sync_pos(ioc)))
423 sync_ackd |= bfa_ioc_ct_sync_pos(ioc);
424
425 if (sync_reqd == sync_ackd) {
426 writel(bfa_ioc_ct_clear_sync_ackd(r32),
427 ioc->ioc_regs.ioc_fail_sync);
428 writel(BFI_IOC_FAIL, ioc->ioc_regs.ioc_fwstate);
429 writel(BFI_IOC_FAIL, ioc->ioc_regs.alt_ioc_fwstate);
430 return true;
431 }
432
433 /**
434 * If another PCI fn reinitialized and failed again while
435 * this IOC was waiting for hw sem, the sync_ackd bit for
436 * this IOC need to be set again to allow reinitialization.
437 */
438 if (tmp_ackd != sync_ackd)
439 writel((r32 | sync_ackd), ioc->ioc_regs.ioc_fail_sync);
440
441 return false;
442}
443
444static enum bfa_status
445bfa_ioc_ct_pll_init(void __iomem *rb, bool fcmode)
446{
447 u32 pll_sclk, pll_fclk, r32;
448
449 pll_sclk = __APP_PLL_312_LRESETN | __APP_PLL_312_ENARST |
450 __APP_PLL_312_RSEL200500 | __APP_PLL_312_P0_1(3U) |
451 __APP_PLL_312_JITLMT0_1(3U) |
452 __APP_PLL_312_CNTLMT0_1(1U);
453 pll_fclk = __APP_PLL_425_LRESETN | __APP_PLL_425_ENARST |
454 __APP_PLL_425_RSEL200500 | __APP_PLL_425_P0_1(3U) |
455 __APP_PLL_425_JITLMT0_1(3U) |
456 __APP_PLL_425_CNTLMT0_1(1U);
457 if (fcmode) {
458 writel(0, (rb + OP_MODE));
459 writel(__APP_EMS_CMLCKSEL |
460 __APP_EMS_REFCKBUFEN2 |
461 __APP_EMS_CHANNEL_SEL,
462 (rb + ETH_MAC_SER_REG));
463 } else {
464 writel(__GLOBAL_FCOE_MODE, (rb + OP_MODE));
465 writel(__APP_EMS_REFCKBUFEN1,
466 (rb + ETH_MAC_SER_REG));
467 }
468 writel(BFI_IOC_UNINIT, (rb + BFA_IOC0_STATE_REG));
469 writel(BFI_IOC_UNINIT, (rb + BFA_IOC1_STATE_REG));
470 writel(0xffffffffU, (rb + HOSTFN0_INT_MSK));
471 writel(0xffffffffU, (rb + HOSTFN1_INT_MSK));
472 writel(0xffffffffU, (rb + HOSTFN0_INT_STATUS));
473 writel(0xffffffffU, (rb + HOSTFN1_INT_STATUS));
474 writel(0xffffffffU, (rb + HOSTFN0_INT_MSK));
475 writel(0xffffffffU, (rb + HOSTFN1_INT_MSK));
476 writel(pll_sclk |
477 __APP_PLL_312_LOGIC_SOFT_RESET,
478 rb + APP_PLL_312_CTL_REG);
479 writel(pll_fclk |
480 __APP_PLL_425_LOGIC_SOFT_RESET,
481 rb + APP_PLL_425_CTL_REG);
482 writel(pll_sclk |
483 __APP_PLL_312_LOGIC_SOFT_RESET | __APP_PLL_312_ENABLE,
484 rb + APP_PLL_312_CTL_REG);
485 writel(pll_fclk |
486 __APP_PLL_425_LOGIC_SOFT_RESET | __APP_PLL_425_ENABLE,
487 rb + APP_PLL_425_CTL_REG);
488 readl(rb + HOSTFN0_INT_MSK);
489 udelay(2000);
490 writel(0xffffffffU, (rb + HOSTFN0_INT_STATUS));
491 writel(0xffffffffU, (rb + HOSTFN1_INT_STATUS));
492 writel(pll_sclk |
493 __APP_PLL_312_ENABLE,
494 rb + APP_PLL_312_CTL_REG);
495 writel(pll_fclk |
496 __APP_PLL_425_ENABLE,
497 rb + APP_PLL_425_CTL_REG);
498 if (!fcmode) {
499 writel(__PMM_1T_RESET_P, (rb + PMM_1T_RESET_REG_P0));
500 writel(__PMM_1T_RESET_P, (rb + PMM_1T_RESET_REG_P1));
501 }
502 r32 = readl((rb + PSS_CTL_REG));
503 r32 &= ~__PSS_LMEM_RESET;
504 writel(r32, (rb + PSS_CTL_REG));
505 udelay(1000);
506 if (!fcmode) {
507 writel(0, (rb + PMM_1T_RESET_REG_P0));
508 writel(0, (rb + PMM_1T_RESET_REG_P1));
509 }
510
511 writel(__EDRAM_BISTR_START, (rb + MBIST_CTL_REG));
512 udelay(1000);
513 r32 = readl((rb + MBIST_STAT_REG));
514 writel(0, (rb + MBIST_CTL_REG));
515 return BFA_STATUS_OK;
516}
diff --git a/drivers/net/bna/bfa_sm.h b/drivers/net/bna/bfa_sm.h
new file mode 100644
index 000000000000..46462c49b6f9
--- /dev/null
+++ b/drivers/net/bna/bfa_sm.h
@@ -0,0 +1,88 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19/**
20 * @file bfasm.h State machine defines
21 */
22
23#ifndef __BFA_SM_H__
24#define __BFA_SM_H__
25
26#include "cna.h"
27
28typedef void (*bfa_sm_t)(void *sm, int event);
29
30/**
31 * oc - object class eg. bfa_ioc
32 * st - state, eg. reset
33 * otype - object type, eg. struct bfa_ioc
34 * etype - object type, eg. enum ioc_event
35 */
36#define bfa_sm_state_decl(oc, st, otype, etype) \
37 static void oc ## _sm_ ## st(otype * fsm, etype event)
38
39#define bfa_sm_set_state(_sm, _state) ((_sm)->sm = (bfa_sm_t)(_state))
40#define bfa_sm_send_event(_sm, _event) ((_sm)->sm((_sm), (_event)))
41#define bfa_sm_get_state(_sm) ((_sm)->sm)
42#define bfa_sm_cmp_state(_sm, _state) ((_sm)->sm == (bfa_sm_t)(_state))
43
44/**
45 * For converting from state machine function to state encoding.
46 */
47struct bfa_sm_table {
48 bfa_sm_t sm; /*!< state machine function */
49 int state; /*!< state machine encoding */
50 char *name; /*!< state name for display */
51};
52#define BFA_SM(_sm) ((bfa_sm_t)(_sm))
53
54/**
55 * State machine with entry actions.
56 */
57typedef void (*bfa_fsm_t)(void *fsm, int event);
58
59/**
60 * oc - object class eg. bfa_ioc
61 * st - state, eg. reset
62 * otype - object type, eg. struct bfa_ioc
63 * etype - object type, eg. enum ioc_event
64 */
65#define bfa_fsm_state_decl(oc, st, otype, etype) \
66 static void oc ## _sm_ ## st(otype * fsm, etype event); \
67 static void oc ## _sm_ ## st ## _entry(otype * fsm)
68
69#define bfa_fsm_set_state(_fsm, _state) do { \
70 (_fsm)->fsm = (bfa_fsm_t)(_state); \
71 _state ## _entry(_fsm); \
72} while (0)
73
74#define bfa_fsm_send_event(_fsm, _event) ((_fsm)->fsm((_fsm), (_event)))
75#define bfa_fsm_get_state(_fsm) ((_fsm)->fsm)
76#define bfa_fsm_cmp_state(_fsm, _state) \
77 ((_fsm)->fsm == (bfa_fsm_t)(_state))
78
79static inline int
80bfa_sm_to_state(const struct bfa_sm_table *smt, bfa_sm_t sm)
81{
82 int i = 0;
83
84 while (smt[i].sm && smt[i].sm != sm)
85 i++;
86 return smt[i].state;
87}
88#endif
diff --git a/drivers/net/bna/bfa_wc.h b/drivers/net/bna/bfa_wc.h
new file mode 100644
index 000000000000..d0e4caee67b0
--- /dev/null
+++ b/drivers/net/bna/bfa_wc.h
@@ -0,0 +1,69 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19/**
20 * @file bfa_wc.h Generic wait counter.
21 */
22
23#ifndef __BFA_WC_H__
24#define __BFA_WC_H__
25
26typedef void (*bfa_wc_resume_t) (void *cbarg);
27
28struct bfa_wc {
29 bfa_wc_resume_t wc_resume;
30 void *wc_cbarg;
31 int wc_count;
32};
33
34static inline void
35bfa_wc_up(struct bfa_wc *wc)
36{
37 wc->wc_count++;
38}
39
40static inline void
41bfa_wc_down(struct bfa_wc *wc)
42{
43 wc->wc_count--;
44 if (wc->wc_count == 0)
45 wc->wc_resume(wc->wc_cbarg);
46}
47
48/**
49 * Initialize a waiting counter.
50 */
51static inline void
52bfa_wc_init(struct bfa_wc *wc, bfa_wc_resume_t wc_resume, void *wc_cbarg)
53{
54 wc->wc_resume = wc_resume;
55 wc->wc_cbarg = wc_cbarg;
56 wc->wc_count = 0;
57 bfa_wc_up(wc);
58}
59
60/**
61 * Wait for counter to reach zero
62 */
63static inline void
64bfa_wc_wait(struct bfa_wc *wc)
65{
66 bfa_wc_down(wc);
67}
68
69#endif
diff --git a/drivers/net/bna/bfi.h b/drivers/net/bna/bfi.h
new file mode 100644
index 000000000000..6050379526f7
--- /dev/null
+++ b/drivers/net/bna/bfi.h
@@ -0,0 +1,394 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#ifndef __BFI_H__
20#define __BFI_H__
21
22#include "bfa_defs.h"
23
24#pragma pack(1)
25
26/**
27 * BFI FW image type
28 */
29#define BFI_FLASH_CHUNK_SZ 256 /*!< Flash chunk size */
30#define BFI_FLASH_CHUNK_SZ_WORDS (BFI_FLASH_CHUNK_SZ/sizeof(u32))
31enum {
32 BFI_IMAGE_CB_FC,
33 BFI_IMAGE_CT_FC,
34 BFI_IMAGE_CT_CNA,
35 BFI_IMAGE_MAX,
36};
37
38/**
39 * Msg header common to all msgs
40 */
41struct bfi_mhdr {
42 u8 msg_class; /*!< @ref enum bfi_mclass */
43 u8 msg_id; /*!< msg opcode with in the class */
44 union {
45 struct {
46 u8 rsvd;
47 u8 lpu_id; /*!< msg destination */
48 } h2i;
49 u16 i2htok; /*!< token in msgs to host */
50 } mtag;
51};
52
53#define bfi_h2i_set(_mh, _mc, _op, _lpuid) do { \
54 (_mh).msg_class = (_mc); \
55 (_mh).msg_id = (_op); \
56 (_mh).mtag.h2i.lpu_id = (_lpuid); \
57} while (0)
58
59#define bfi_i2h_set(_mh, _mc, _op, _i2htok) do { \
60 (_mh).msg_class = (_mc); \
61 (_mh).msg_id = (_op); \
62 (_mh).mtag.i2htok = (_i2htok); \
63} while (0)
64
65/*
66 * Message opcodes: 0-127 to firmware, 128-255 to host
67 */
68#define BFI_I2H_OPCODE_BASE 128
69#define BFA_I2HM(_x) ((_x) + BFI_I2H_OPCODE_BASE)
70
71/**
72 ****************************************************************************
73 *
74 * Scatter Gather Element and Page definition
75 *
76 ****************************************************************************
77 */
78
79#define BFI_SGE_INLINE 1
80#define BFI_SGE_INLINE_MAX (BFI_SGE_INLINE + 1)
81
82/**
83 * SG Flags
84 */
85enum {
86 BFI_SGE_DATA = 0, /*!< data address, not last */
87 BFI_SGE_DATA_CPL = 1, /*!< data addr, last in current page */
88 BFI_SGE_DATA_LAST = 3, /*!< data address, last */
89 BFI_SGE_LINK = 2, /*!< link address */
90 BFI_SGE_PGDLEN = 2, /*!< cumulative data length for page */
91};
92
93/**
94 * DMA addresses
95 */
96union bfi_addr_u {
97 struct {
98 u32 addr_lo;
99 u32 addr_hi;
100 } a32;
101};
102
103/**
104 * Scatter Gather Element
105 */
106struct bfi_sge {
107#ifdef __BIGENDIAN
108 u32 flags:2,
109 rsvd:2,
110 sg_len:28;
111#else
112 u32 sg_len:28,
113 rsvd:2,
114 flags:2;
115#endif
116 union bfi_addr_u sga;
117};
118
119/**
120 * Scatter Gather Page
121 */
122#define BFI_SGPG_DATA_SGES 7
123#define BFI_SGPG_SGES_MAX (BFI_SGPG_DATA_SGES + 1)
124#define BFI_SGPG_RSVD_WD_LEN 8
125struct bfi_sgpg {
126 struct bfi_sge sges[BFI_SGPG_SGES_MAX];
127 u32 rsvd[BFI_SGPG_RSVD_WD_LEN];
128};
129
130/*
131 * Large Message structure - 128 Bytes size Msgs
132 */
133#define BFI_LMSG_SZ 128
134#define BFI_LMSG_PL_WSZ \
135 ((BFI_LMSG_SZ - sizeof(struct bfi_mhdr)) / 4)
136
137struct bfi_msg {
138 struct bfi_mhdr mhdr;
139 u32 pl[BFI_LMSG_PL_WSZ];
140};
141
142/**
143 * Mailbox message structure
144 */
145#define BFI_MBMSG_SZ 7
146struct bfi_mbmsg {
147 struct bfi_mhdr mh;
148 u32 pl[BFI_MBMSG_SZ];
149};
150
151/**
152 * Message Classes
153 */
154enum bfi_mclass {
155 BFI_MC_IOC = 1, /*!< IO Controller (IOC) */
156 BFI_MC_DIAG = 2, /*!< Diagnostic Msgs */
157 BFI_MC_FLASH = 3, /*!< Flash message class */
158 BFI_MC_CEE = 4, /*!< CEE */
159 BFI_MC_FCPORT = 5, /*!< FC port */
160 BFI_MC_IOCFC = 6, /*!< FC - IO Controller (IOC) */
161 BFI_MC_LL = 7, /*!< Link Layer */
162 BFI_MC_UF = 8, /*!< Unsolicited frame receive */
163 BFI_MC_FCXP = 9, /*!< FC Transport */
164 BFI_MC_LPS = 10, /*!< lport fc login services */
165 BFI_MC_RPORT = 11, /*!< Remote port */
166 BFI_MC_ITNIM = 12, /*!< I-T nexus (Initiator mode) */
167 BFI_MC_IOIM_READ = 13, /*!< read IO (Initiator mode) */
168 BFI_MC_IOIM_WRITE = 14, /*!< write IO (Initiator mode) */
169 BFI_MC_IOIM_IO = 15, /*!< IO (Initiator mode) */
170 BFI_MC_IOIM = 16, /*!< IO (Initiator mode) */
171 BFI_MC_IOIM_IOCOM = 17, /*!< good IO completion */
172 BFI_MC_TSKIM = 18, /*!< Initiator Task management */
173 BFI_MC_SBOOT = 19, /*!< SAN boot services */
174 BFI_MC_IPFC = 20, /*!< IP over FC Msgs */
175 BFI_MC_PORT = 21, /*!< Physical port */
176 BFI_MC_SFP = 22, /*!< SFP module */
177 BFI_MC_MSGQ = 23, /*!< MSGQ */
178 BFI_MC_ENET = 24, /*!< ENET commands/responses */
179 BFI_MC_MAX = 32
180};
181
182#define BFI_IOC_MAX_CQS 4
183#define BFI_IOC_MAX_CQS_ASIC 8
184#define BFI_IOC_MSGLEN_MAX 32 /* 32 bytes */
185
186#define BFI_BOOT_TYPE_OFF 8
187#define BFI_BOOT_LOADER_OFF 12
188
189#define BFI_BOOT_TYPE_NORMAL 0
190#define BFI_BOOT_TYPE_FLASH 1
191#define BFI_BOOT_TYPE_MEMTEST 2
192
193#define BFI_BOOT_LOADER_OS 0
194
195#define BFI_BOOT_MEMTEST_RES_ADDR 0x900
196#define BFI_BOOT_MEMTEST_RES_SIG 0xA0A1A2A3
197
198/**
199 *----------------------------------------------------------------------
200 * IOC
201 *----------------------------------------------------------------------
202 */
203
204enum bfi_ioc_h2i_msgs {
205 BFI_IOC_H2I_ENABLE_REQ = 1,
206 BFI_IOC_H2I_DISABLE_REQ = 2,
207 BFI_IOC_H2I_GETATTR_REQ = 3,
208 BFI_IOC_H2I_DBG_SYNC = 4,
209 BFI_IOC_H2I_DBG_DUMP = 5,
210};
211
212enum bfi_ioc_i2h_msgs {
213 BFI_IOC_I2H_ENABLE_REPLY = BFA_I2HM(1),
214 BFI_IOC_I2H_DISABLE_REPLY = BFA_I2HM(2),
215 BFI_IOC_I2H_GETATTR_REPLY = BFA_I2HM(3),
216 BFI_IOC_I2H_READY_EVENT = BFA_I2HM(4),
217 BFI_IOC_I2H_HBEAT = BFA_I2HM(5),
218};
219
220/**
221 * BFI_IOC_H2I_GETATTR_REQ message
222 */
223struct bfi_ioc_getattr_req {
224 struct bfi_mhdr mh;
225 union bfi_addr_u attr_addr;
226};
227
228struct bfi_ioc_attr {
229 u64 mfg_pwwn; /*!< Mfg port wwn */
230 u64 mfg_nwwn; /*!< Mfg node wwn */
231 mac_t mfg_mac; /*!< Mfg mac */
232 u16 rsvd_a;
233 u64 pwwn;
234 u64 nwwn;
235 mac_t mac; /*!< PBC or Mfg mac */
236 u16 rsvd_b;
237 mac_t fcoe_mac;
238 u16 rsvd_c;
239 char brcd_serialnum[STRSZ(BFA_MFG_SERIALNUM_SIZE)];
240 u8 pcie_gen;
241 u8 pcie_lanes_orig;
242 u8 pcie_lanes;
243 u8 rx_bbcredit; /*!< receive buffer credits */
244 u32 adapter_prop; /*!< adapter properties */
245 u16 maxfrsize; /*!< max receive frame size */
246 char asic_rev;
247 u8 rsvd_d;
248 char fw_version[BFA_VERSION_LEN];
249 char optrom_version[BFA_VERSION_LEN];
250 struct bfa_mfg_vpd vpd;
251 u32 card_type; /*!< card type */
252};
253
254/**
255 * BFI_IOC_I2H_GETATTR_REPLY message
256 */
257struct bfi_ioc_getattr_reply {
258 struct bfi_mhdr mh; /*!< Common msg header */
259 u8 status; /*!< cfg reply status */
260 u8 rsvd[3];
261};
262
263/**
264 * Firmware memory page offsets
265 */
266#define BFI_IOC_SMEM_PG0_CB (0x40)
267#define BFI_IOC_SMEM_PG0_CT (0x180)
268
269/**
270 * Firmware statistic offset
271 */
272#define BFI_IOC_FWSTATS_OFF (0x6B40)
273#define BFI_IOC_FWSTATS_SZ (4096)
274
275/**
276 * Firmware trace offset
277 */
278#define BFI_IOC_TRC_OFF (0x4b00)
279#define BFI_IOC_TRC_ENTS 256
280
281#define BFI_IOC_FW_SIGNATURE (0xbfadbfad)
282#define BFI_IOC_MD5SUM_SZ 4
283struct bfi_ioc_image_hdr {
284 u32 signature; /*!< constant signature */
285 u32 rsvd_a;
286 u32 exec; /*!< exec vector */
287 u32 param; /*!< parameters */
288 u32 rsvd_b[4];
289 u32 md5sum[BFI_IOC_MD5SUM_SZ];
290};
291
292/**
293 * BFI_IOC_I2H_READY_EVENT message
294 */
295struct bfi_ioc_rdy_event {
296 struct bfi_mhdr mh; /*!< common msg header */
297 u8 init_status; /*!< init event status */
298 u8 rsvd[3];
299};
300
301struct bfi_ioc_hbeat {
302 struct bfi_mhdr mh; /*!< common msg header */
303 u32 hb_count; /*!< current heart beat count */
304};
305
306/**
307 * IOC hardware/firmware state
308 */
309enum bfi_ioc_state {
310 BFI_IOC_UNINIT = 0, /*!< not initialized */
311 BFI_IOC_INITING = 1, /*!< h/w is being initialized */
312 BFI_IOC_HWINIT = 2, /*!< h/w is initialized */
313 BFI_IOC_CFG = 3, /*!< IOC configuration in progress */
314 BFI_IOC_OP = 4, /*!< IOC is operational */
315 BFI_IOC_DISABLING = 5, /*!< IOC is being disabled */
316 BFI_IOC_DISABLED = 6, /*!< IOC is disabled */
317 BFI_IOC_CFG_DISABLED = 7, /*!< IOC is being disabled;transient */
318 BFI_IOC_FAIL = 8, /*!< IOC heart-beat failure */
319 BFI_IOC_MEMTEST = 9, /*!< IOC is doing memtest */
320};
321
322#define BFI_IOC_ENDIAN_SIG 0x12345678
323
324enum {
325 BFI_ADAPTER_TYPE_FC = 0x01, /*!< FC adapters */
326 BFI_ADAPTER_TYPE_MK = 0x0f0000, /*!< adapter type mask */
327 BFI_ADAPTER_TYPE_SH = 16, /*!< adapter type shift */
328 BFI_ADAPTER_NPORTS_MK = 0xff00, /*!< number of ports mask */
329 BFI_ADAPTER_NPORTS_SH = 8, /*!< number of ports shift */
330 BFI_ADAPTER_SPEED_MK = 0xff, /*!< adapter speed mask */
331 BFI_ADAPTER_SPEED_SH = 0, /*!< adapter speed shift */
332 BFI_ADAPTER_PROTO = 0x100000, /*!< prototype adapaters */
333 BFI_ADAPTER_TTV = 0x200000, /*!< TTV debug capable */
334 BFI_ADAPTER_UNSUPP = 0x400000, /*!< unknown adapter type */
335};
336
337#define BFI_ADAPTER_GETP(__prop, __adap_prop) \
338 (((__adap_prop) & BFI_ADAPTER_ ## __prop ## _MK) >> \
339 BFI_ADAPTER_ ## __prop ## _SH)
340#define BFI_ADAPTER_SETP(__prop, __val) \
341 ((__val) << BFI_ADAPTER_ ## __prop ## _SH)
342#define BFI_ADAPTER_IS_PROTO(__adap_type) \
343 ((__adap_type) & BFI_ADAPTER_PROTO)
344#define BFI_ADAPTER_IS_TTV(__adap_type) \
345 ((__adap_type) & BFI_ADAPTER_TTV)
346#define BFI_ADAPTER_IS_UNSUPP(__adap_type) \
347 ((__adap_type) & BFI_ADAPTER_UNSUPP)
348#define BFI_ADAPTER_IS_SPECIAL(__adap_type) \
349 ((__adap_type) & (BFI_ADAPTER_TTV | BFI_ADAPTER_PROTO | \
350 BFI_ADAPTER_UNSUPP))
351
352/**
353 * BFI_IOC_H2I_ENABLE_REQ & BFI_IOC_H2I_DISABLE_REQ messages
354 */
355struct bfi_ioc_ctrl_req {
356 struct bfi_mhdr mh;
357 u8 ioc_class;
358 u8 rsvd[3];
359 u32 tv_sec;
360};
361
362/**
363 * BFI_IOC_I2H_ENABLE_REPLY & BFI_IOC_I2H_DISABLE_REPLY messages
364 */
365struct bfi_ioc_ctrl_reply {
366 struct bfi_mhdr mh; /*!< Common msg header */
367 u8 status; /*!< enable/disable status */
368 u8 rsvd[3];
369};
370
371#define BFI_IOC_MSGSZ 8
372/**
373 * H2I Messages
374 */
375union bfi_ioc_h2i_msg_u {
376 struct bfi_mhdr mh;
377 struct bfi_ioc_ctrl_req enable_req;
378 struct bfi_ioc_ctrl_req disable_req;
379 struct bfi_ioc_getattr_req getattr_req;
380 u32 mboxmsg[BFI_IOC_MSGSZ];
381};
382
383/**
384 * I2H Messages
385 */
386union bfi_ioc_i2h_msg_u {
387 struct bfi_mhdr mh;
388 struct bfi_ioc_rdy_event rdy_event;
389 u32 mboxmsg[BFI_IOC_MSGSZ];
390};
391
392#pragma pack()
393
394#endif /* __BFI_H__ */
diff --git a/drivers/net/bna/bfi_cna.h b/drivers/net/bna/bfi_cna.h
new file mode 100644
index 000000000000..4eecabea397b
--- /dev/null
+++ b/drivers/net/bna/bfi_cna.h
@@ -0,0 +1,199 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#ifndef __BFI_CNA_H__
19#define __BFI_CNA_H__
20
21#include "bfi.h"
22#include "bfa_defs_cna.h"
23
24#pragma pack(1)
25
26enum bfi_port_h2i {
27 BFI_PORT_H2I_ENABLE_REQ = (1),
28 BFI_PORT_H2I_DISABLE_REQ = (2),
29 BFI_PORT_H2I_GET_STATS_REQ = (3),
30 BFI_PORT_H2I_CLEAR_STATS_REQ = (4),
31};
32
33enum bfi_port_i2h {
34 BFI_PORT_I2H_ENABLE_RSP = BFA_I2HM(1),
35 BFI_PORT_I2H_DISABLE_RSP = BFA_I2HM(2),
36 BFI_PORT_I2H_GET_STATS_RSP = BFA_I2HM(3),
37 BFI_PORT_I2H_CLEAR_STATS_RSP = BFA_I2HM(4),
38};
39
40/**
41 * Generic REQ type
42 */
43struct bfi_port_generic_req {
44 struct bfi_mhdr mh; /*!< msg header */
45 u32 msgtag; /*!< msgtag for reply */
46 u32 rsvd;
47};
48
49/**
50 * Generic RSP type
51 */
52struct bfi_port_generic_rsp {
53 struct bfi_mhdr mh; /*!< common msg header */
54 u8 status; /*!< port enable status */
55 u8 rsvd[3];
56 u32 msgtag; /*!< msgtag for reply */
57};
58
59/**
60 * @todo
61 * BFI_PORT_H2I_ENABLE_REQ
62 */
63
64/**
65 * @todo
66 * BFI_PORT_I2H_ENABLE_RSP
67 */
68
69/**
70 * BFI_PORT_H2I_DISABLE_REQ
71 */
72
73/**
74 * BFI_PORT_I2H_DISABLE_RSP
75 */
76
77/**
78 * BFI_PORT_H2I_GET_STATS_REQ
79 */
80struct bfi_port_get_stats_req {
81 struct bfi_mhdr mh; /*!< common msg header */
82 union bfi_addr_u dma_addr;
83};
84
85/**
86 * BFI_PORT_I2H_GET_STATS_RSP
87 */
88
89/**
90 * BFI_PORT_H2I_CLEAR_STATS_REQ
91 */
92
93/**
94 * BFI_PORT_I2H_CLEAR_STATS_RSP
95 */
96
97union bfi_port_h2i_msg_u {
98 struct bfi_mhdr mh;
99 struct bfi_port_generic_req enable_req;
100 struct bfi_port_generic_req disable_req;
101 struct bfi_port_get_stats_req getstats_req;
102 struct bfi_port_generic_req clearstats_req;
103};
104
105union bfi_port_i2h_msg_u {
106 struct bfi_mhdr mh;
107 struct bfi_port_generic_rsp enable_rsp;
108 struct bfi_port_generic_rsp disable_rsp;
109 struct bfi_port_generic_rsp getstats_rsp;
110 struct bfi_port_generic_rsp clearstats_rsp;
111};
112
113/* @brief Mailbox commands from host to (DCBX/LLDP) firmware */
114enum bfi_cee_h2i_msgs {
115 BFI_CEE_H2I_GET_CFG_REQ = 1,
116 BFI_CEE_H2I_RESET_STATS = 2,
117 BFI_CEE_H2I_GET_STATS_REQ = 3,
118};
119
120/* @brief Mailbox reply and AEN messages from DCBX/LLDP firmware to host */
121enum bfi_cee_i2h_msgs {
122 BFI_CEE_I2H_GET_CFG_RSP = BFA_I2HM(1),
123 BFI_CEE_I2H_RESET_STATS_RSP = BFA_I2HM(2),
124 BFI_CEE_I2H_GET_STATS_RSP = BFA_I2HM(3),
125};
126
127/* Data structures */
128
129/*
130 * @brief H2I command structure for resetting the stats.
131 * BFI_CEE_H2I_RESET_STATS
132 */
133struct bfi_lldp_reset_stats {
134 struct bfi_mhdr mh;
135};
136
137/*
138 * @brief H2I command structure for resetting the stats.
139 * BFI_CEE_H2I_RESET_STATS
140 */
141struct bfi_cee_reset_stats {
142 struct bfi_mhdr mh;
143};
144
145/*
146 * @brief get configuration command from host
147 * BFI_CEE_H2I_GET_CFG_REQ
148 */
149struct bfi_cee_get_req {
150 struct bfi_mhdr mh;
151 union bfi_addr_u dma_addr;
152};
153
154/*
155 * @brief reply message from firmware
156 * BFI_CEE_I2H_GET_CFG_RSP
157 */
158struct bfi_cee_get_rsp {
159 struct bfi_mhdr mh;
160 u8 cmd_status;
161 u8 rsvd[3];
162};
163
164/*
165 * @brief get configuration command from host
166 * BFI_CEE_H2I_GET_STATS_REQ
167 */
168struct bfi_cee_stats_req {
169 struct bfi_mhdr mh;
170 union bfi_addr_u dma_addr;
171};
172
173/*
174 * @brief reply message from firmware
175 * BFI_CEE_I2H_GET_STATS_RSP
176 */
177struct bfi_cee_stats_rsp {
178 struct bfi_mhdr mh;
179 u8 cmd_status;
180 u8 rsvd[3];
181};
182
183/* @brief mailbox command structures from host to firmware */
184union bfi_cee_h2i_msg_u {
185 struct bfi_mhdr mh;
186 struct bfi_cee_get_req get_req;
187 struct bfi_cee_stats_req stats_req;
188};
189
190/* @brief mailbox message structures from firmware to host */
191union bfi_cee_i2h_msg_u {
192 struct bfi_mhdr mh;
193 struct bfi_cee_get_rsp get_rsp;
194 struct bfi_cee_stats_rsp stats_rsp;
195};
196
197#pragma pack()
198
199#endif /* __BFI_CNA_H__ */
diff --git a/drivers/net/bna/bfi_ctreg.h b/drivers/net/bna/bfi_ctreg.h
new file mode 100644
index 000000000000..5130d7918660
--- /dev/null
+++ b/drivers/net/bna/bfi_ctreg.h
@@ -0,0 +1,646 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19/*
20 * bfi_ctreg.h catapult host block register definitions
21 *
22 * !!! Do not edit. Auto generated. !!!
23 */
24
25#ifndef __BFI_CTREG_H__
26#define __BFI_CTREG_H__
27
28#define HOSTFN0_LPU_MBOX0_0 0x00019200
29#define HOSTFN1_LPU_MBOX0_8 0x00019260
30#define LPU_HOSTFN0_MBOX0_0 0x00019280
31#define LPU_HOSTFN1_MBOX0_8 0x000192e0
32#define HOSTFN2_LPU_MBOX0_0 0x00019400
33#define HOSTFN3_LPU_MBOX0_8 0x00019460
34#define LPU_HOSTFN2_MBOX0_0 0x00019480
35#define LPU_HOSTFN3_MBOX0_8 0x000194e0
36#define HOSTFN0_INT_STATUS 0x00014000
37#define __HOSTFN0_HALT_OCCURRED 0x01000000
38#define __HOSTFN0_INT_STATUS_LVL_MK 0x00f00000
39#define __HOSTFN0_INT_STATUS_LVL_SH 20
40#define __HOSTFN0_INT_STATUS_LVL(_v) ((_v) << __HOSTFN0_INT_STATUS_LVL_SH)
41#define __HOSTFN0_INT_STATUS_P_MK 0x000f0000
42#define __HOSTFN0_INT_STATUS_P_SH 16
43#define __HOSTFN0_INT_STATUS_P(_v) ((_v) << __HOSTFN0_INT_STATUS_P_SH)
44#define __HOSTFN0_INT_STATUS_F 0x0000ffff
45#define HOSTFN0_INT_MSK 0x00014004
46#define HOST_PAGE_NUM_FN0 0x00014008
47#define __HOST_PAGE_NUM_FN 0x000001ff
48#define HOST_MSIX_ERR_INDEX_FN0 0x0001400c
49#define __MSIX_ERR_INDEX_FN 0x000001ff
50#define HOSTFN1_INT_STATUS 0x00014100
51#define __HOSTFN1_HALT_OCCURRED 0x01000000
52#define __HOSTFN1_INT_STATUS_LVL_MK 0x00f00000
53#define __HOSTFN1_INT_STATUS_LVL_SH 20
54#define __HOSTFN1_INT_STATUS_LVL(_v) ((_v) << __HOSTFN1_INT_STATUS_LVL_SH)
55#define __HOSTFN1_INT_STATUS_P_MK 0x000f0000
56#define __HOSTFN1_INT_STATUS_P_SH 16
57#define __HOSTFN1_INT_STATUS_P(_v) ((_v) << __HOSTFN1_INT_STATUS_P_SH)
58#define __HOSTFN1_INT_STATUS_F 0x0000ffff
59#define HOSTFN1_INT_MSK 0x00014104
60#define HOST_PAGE_NUM_FN1 0x00014108
61#define HOST_MSIX_ERR_INDEX_FN1 0x0001410c
62#define APP_PLL_425_CTL_REG 0x00014204
63#define __P_425_PLL_LOCK 0x80000000
64#define __APP_PLL_425_SRAM_USE_100MHZ 0x00100000
65#define __APP_PLL_425_RESET_TIMER_MK 0x000e0000
66#define __APP_PLL_425_RESET_TIMER_SH 17
67#define __APP_PLL_425_RESET_TIMER(_v) ((_v) << __APP_PLL_425_RESET_TIMER_SH)
68#define __APP_PLL_425_LOGIC_SOFT_RESET 0x00010000
69#define __APP_PLL_425_CNTLMT0_1_MK 0x0000c000
70#define __APP_PLL_425_CNTLMT0_1_SH 14
71#define __APP_PLL_425_CNTLMT0_1(_v) ((_v) << __APP_PLL_425_CNTLMT0_1_SH)
72#define __APP_PLL_425_JITLMT0_1_MK 0x00003000
73#define __APP_PLL_425_JITLMT0_1_SH 12
74#define __APP_PLL_425_JITLMT0_1(_v) ((_v) << __APP_PLL_425_JITLMT0_1_SH)
75#define __APP_PLL_425_HREF 0x00000800
76#define __APP_PLL_425_HDIV 0x00000400
77#define __APP_PLL_425_P0_1_MK 0x00000300
78#define __APP_PLL_425_P0_1_SH 8
79#define __APP_PLL_425_P0_1(_v) ((_v) << __APP_PLL_425_P0_1_SH)
80#define __APP_PLL_425_Z0_2_MK 0x000000e0
81#define __APP_PLL_425_Z0_2_SH 5
82#define __APP_PLL_425_Z0_2(_v) ((_v) << __APP_PLL_425_Z0_2_SH)
83#define __APP_PLL_425_RSEL200500 0x00000010
84#define __APP_PLL_425_ENARST 0x00000008
85#define __APP_PLL_425_BYPASS 0x00000004
86#define __APP_PLL_425_LRESETN 0x00000002
87#define __APP_PLL_425_ENABLE 0x00000001
88#define APP_PLL_312_CTL_REG 0x00014208
89#define __P_312_PLL_LOCK 0x80000000
90#define __ENABLE_MAC_AHB_1 0x00800000
91#define __ENABLE_MAC_AHB_0 0x00400000
92#define __ENABLE_MAC_1 0x00200000
93#define __ENABLE_MAC_0 0x00100000
94#define __APP_PLL_312_RESET_TIMER_MK 0x000e0000
95#define __APP_PLL_312_RESET_TIMER_SH 17
96#define __APP_PLL_312_RESET_TIMER(_v) ((_v) << __APP_PLL_312_RESET_TIMER_SH)
97#define __APP_PLL_312_LOGIC_SOFT_RESET 0x00010000
98#define __APP_PLL_312_CNTLMT0_1_MK 0x0000c000
99#define __APP_PLL_312_CNTLMT0_1_SH 14
100#define __APP_PLL_312_CNTLMT0_1(_v) ((_v) << __APP_PLL_312_CNTLMT0_1_SH)
101#define __APP_PLL_312_JITLMT0_1_MK 0x00003000
102#define __APP_PLL_312_JITLMT0_1_SH 12
103#define __APP_PLL_312_JITLMT0_1(_v) ((_v) << __APP_PLL_312_JITLMT0_1_SH)
104#define __APP_PLL_312_HREF 0x00000800
105#define __APP_PLL_312_HDIV 0x00000400
106#define __APP_PLL_312_P0_1_MK 0x00000300
107#define __APP_PLL_312_P0_1_SH 8
108#define __APP_PLL_312_P0_1(_v) ((_v) << __APP_PLL_312_P0_1_SH)
109#define __APP_PLL_312_Z0_2_MK 0x000000e0
110#define __APP_PLL_312_Z0_2_SH 5
111#define __APP_PLL_312_Z0_2(_v) ((_v) << __APP_PLL_312_Z0_2_SH)
112#define __APP_PLL_312_RSEL200500 0x00000010
113#define __APP_PLL_312_ENARST 0x00000008
114#define __APP_PLL_312_BYPASS 0x00000004
115#define __APP_PLL_312_LRESETN 0x00000002
116#define __APP_PLL_312_ENABLE 0x00000001
117#define MBIST_CTL_REG 0x00014220
118#define __EDRAM_BISTR_START 0x00000004
119#define __MBIST_RESET 0x00000002
120#define __MBIST_START 0x00000001
121#define MBIST_STAT_REG 0x00014224
122#define __EDRAM_BISTR_STATUS 0x00000008
123#define __EDRAM_BISTR_DONE 0x00000004
124#define __MEM_BIT_STATUS 0x00000002
125#define __MBIST_DONE 0x00000001
126#define HOST_SEM0_REG 0x00014230
127#define __HOST_SEMAPHORE 0x00000001
128#define HOST_SEM1_REG 0x00014234
129#define HOST_SEM2_REG 0x00014238
130#define HOST_SEM3_REG 0x0001423c
131#define HOST_SEM0_INFO_REG 0x00014240
132#define HOST_SEM1_INFO_REG 0x00014244
133#define HOST_SEM2_INFO_REG 0x00014248
134#define HOST_SEM3_INFO_REG 0x0001424c
135#define ETH_MAC_SER_REG 0x00014288
136#define __APP_EMS_CKBUFAMPIN 0x00000020
137#define __APP_EMS_REFCLKSEL 0x00000010
138#define __APP_EMS_CMLCKSEL 0x00000008
139#define __APP_EMS_REFCKBUFEN2 0x00000004
140#define __APP_EMS_REFCKBUFEN1 0x00000002
141#define __APP_EMS_CHANNEL_SEL 0x00000001
142#define HOSTFN2_INT_STATUS 0x00014300
143#define __HOSTFN2_HALT_OCCURRED 0x01000000
144#define __HOSTFN2_INT_STATUS_LVL_MK 0x00f00000
145#define __HOSTFN2_INT_STATUS_LVL_SH 20
146#define __HOSTFN2_INT_STATUS_LVL(_v) ((_v) << __HOSTFN2_INT_STATUS_LVL_SH)
147#define __HOSTFN2_INT_STATUS_P_MK 0x000f0000
148#define __HOSTFN2_INT_STATUS_P_SH 16
149#define __HOSTFN2_INT_STATUS_P(_v) ((_v) << __HOSTFN2_INT_STATUS_P_SH)
150#define __HOSTFN2_INT_STATUS_F 0x0000ffff
151#define HOSTFN2_INT_MSK 0x00014304
152#define HOST_PAGE_NUM_FN2 0x00014308
153#define HOST_MSIX_ERR_INDEX_FN2 0x0001430c
154#define HOSTFN3_INT_STATUS 0x00014400
155#define __HALT_OCCURRED 0x01000000
156#define __HOSTFN3_INT_STATUS_LVL_MK 0x00f00000
157#define __HOSTFN3_INT_STATUS_LVL_SH 20
158#define __HOSTFN3_INT_STATUS_LVL(_v) ((_v) << __HOSTFN3_INT_STATUS_LVL_SH)
159#define __HOSTFN3_INT_STATUS_P_MK 0x000f0000
160#define __HOSTFN3_INT_STATUS_P_SH 16
161#define __HOSTFN3_INT_STATUS_P(_v) ((_v) << __HOSTFN3_INT_STATUS_P_SH)
162#define __HOSTFN3_INT_STATUS_F 0x0000ffff
163#define HOSTFN3_INT_MSK 0x00014404
164#define HOST_PAGE_NUM_FN3 0x00014408
165#define HOST_MSIX_ERR_INDEX_FN3 0x0001440c
166#define FNC_ID_REG 0x00014600
167#define __FUNCTION_NUMBER 0x00000007
168#define FNC_PERS_REG 0x00014604
169#define __F3_FUNCTION_ACTIVE 0x80000000
170#define __F3_FUNCTION_MODE 0x40000000
171#define __F3_PORT_MAP_MK 0x30000000
172#define __F3_PORT_MAP_SH 28
173#define __F3_PORT_MAP(_v) ((_v) << __F3_PORT_MAP_SH)
174#define __F3_VM_MODE 0x08000000
175#define __F3_INTX_STATUS_MK 0x07000000
176#define __F3_INTX_STATUS_SH 24
177#define __F3_INTX_STATUS(_v) ((_v) << __F3_INTX_STATUS_SH)
178#define __F2_FUNCTION_ACTIVE 0x00800000
179#define __F2_FUNCTION_MODE 0x00400000
180#define __F2_PORT_MAP_MK 0x00300000
181#define __F2_PORT_MAP_SH 20
182#define __F2_PORT_MAP(_v) ((_v) << __F2_PORT_MAP_SH)
183#define __F2_VM_MODE 0x00080000
184#define __F2_INTX_STATUS_MK 0x00070000
185#define __F2_INTX_STATUS_SH 16
186#define __F2_INTX_STATUS(_v) ((_v) << __F2_INTX_STATUS_SH)
187#define __F1_FUNCTION_ACTIVE 0x00008000
188#define __F1_FUNCTION_MODE 0x00004000
189#define __F1_PORT_MAP_MK 0x00003000
190#define __F1_PORT_MAP_SH 12
191#define __F1_PORT_MAP(_v) ((_v) << __F1_PORT_MAP_SH)
192#define __F1_VM_MODE 0x00000800
193#define __F1_INTX_STATUS_MK 0x00000700
194#define __F1_INTX_STATUS_SH 8
195#define __F1_INTX_STATUS(_v) ((_v) << __F1_INTX_STATUS_SH)
196#define __F0_FUNCTION_ACTIVE 0x00000080
197#define __F0_FUNCTION_MODE 0x00000040
198#define __F0_PORT_MAP_MK 0x00000030
199#define __F0_PORT_MAP_SH 4
200#define __F0_PORT_MAP(_v) ((_v) << __F0_PORT_MAP_SH)
201#define __F0_VM_MODE 0x00000008
202#define __F0_INTX_STATUS 0x00000007
203enum {
204 __F0_INTX_STATUS_MSIX = 0x0,
205 __F0_INTX_STATUS_INTA = 0x1,
206 __F0_INTX_STATUS_INTB = 0x2,
207 __F0_INTX_STATUS_INTC = 0x3,
208 __F0_INTX_STATUS_INTD = 0x4,
209};
210#define OP_MODE 0x0001460c
211#define __APP_ETH_CLK_LOWSPEED 0x00000004
212#define __GLOBAL_CORECLK_HALFSPEED 0x00000002
213#define __GLOBAL_FCOE_MODE 0x00000001
214#define HOST_SEM4_REG 0x00014610
215#define HOST_SEM5_REG 0x00014614
216#define HOST_SEM6_REG 0x00014618
217#define HOST_SEM7_REG 0x0001461c
218#define HOST_SEM4_INFO_REG 0x00014620
219#define HOST_SEM5_INFO_REG 0x00014624
220#define HOST_SEM6_INFO_REG 0x00014628
221#define HOST_SEM7_INFO_REG 0x0001462c
222#define HOSTFN0_LPU0_MBOX0_CMD_STAT 0x00019000
223#define __HOSTFN0_LPU0_MBOX0_INFO_MK 0xfffffffe
224#define __HOSTFN0_LPU0_MBOX0_INFO_SH 1
225#define __HOSTFN0_LPU0_MBOX0_INFO(_v) ((_v) << __HOSTFN0_LPU0_MBOX0_INFO_SH)
226#define __HOSTFN0_LPU0_MBOX0_CMD_STATUS 0x00000001
227#define HOSTFN0_LPU1_MBOX0_CMD_STAT 0x00019004
228#define __HOSTFN0_LPU1_MBOX0_INFO_MK 0xfffffffe
229#define __HOSTFN0_LPU1_MBOX0_INFO_SH 1
230#define __HOSTFN0_LPU1_MBOX0_INFO(_v) ((_v) << __HOSTFN0_LPU1_MBOX0_INFO_SH)
231#define __HOSTFN0_LPU1_MBOX0_CMD_STATUS 0x00000001
232#define LPU0_HOSTFN0_MBOX0_CMD_STAT 0x00019008
233#define __LPU0_HOSTFN0_MBOX0_INFO_MK 0xfffffffe
234#define __LPU0_HOSTFN0_MBOX0_INFO_SH 1
235#define __LPU0_HOSTFN0_MBOX0_INFO(_v) ((_v) << __LPU0_HOSTFN0_MBOX0_INFO_SH)
236#define __LPU0_HOSTFN0_MBOX0_CMD_STATUS 0x00000001
237#define LPU1_HOSTFN0_MBOX0_CMD_STAT 0x0001900c
238#define __LPU1_HOSTFN0_MBOX0_INFO_MK 0xfffffffe
239#define __LPU1_HOSTFN0_MBOX0_INFO_SH 1
240#define __LPU1_HOSTFN0_MBOX0_INFO(_v) ((_v) << __LPU1_HOSTFN0_MBOX0_INFO_SH)
241#define __LPU1_HOSTFN0_MBOX0_CMD_STATUS 0x00000001
242#define HOSTFN1_LPU0_MBOX0_CMD_STAT 0x00019010
243#define __HOSTFN1_LPU0_MBOX0_INFO_MK 0xfffffffe
244#define __HOSTFN1_LPU0_MBOX0_INFO_SH 1
245#define __HOSTFN1_LPU0_MBOX0_INFO(_v) ((_v) << __HOSTFN1_LPU0_MBOX0_INFO_SH)
246#define __HOSTFN1_LPU0_MBOX0_CMD_STATUS 0x00000001
247#define HOSTFN1_LPU1_MBOX0_CMD_STAT 0x00019014
248#define __HOSTFN1_LPU1_MBOX0_INFO_MK 0xfffffffe
249#define __HOSTFN1_LPU1_MBOX0_INFO_SH 1
250#define __HOSTFN1_LPU1_MBOX0_INFO(_v) ((_v) << __HOSTFN1_LPU1_MBOX0_INFO_SH)
251#define __HOSTFN1_LPU1_MBOX0_CMD_STATUS 0x00000001
252#define LPU0_HOSTFN1_MBOX0_CMD_STAT 0x00019018
253#define __LPU0_HOSTFN1_MBOX0_INFO_MK 0xfffffffe
254#define __LPU0_HOSTFN1_MBOX0_INFO_SH 1
255#define __LPU0_HOSTFN1_MBOX0_INFO(_v) ((_v) << __LPU0_HOSTFN1_MBOX0_INFO_SH)
256#define __LPU0_HOSTFN1_MBOX0_CMD_STATUS 0x00000001
257#define LPU1_HOSTFN1_MBOX0_CMD_STAT 0x0001901c
258#define __LPU1_HOSTFN1_MBOX0_INFO_MK 0xfffffffe
259#define __LPU1_HOSTFN1_MBOX0_INFO_SH 1
260#define __LPU1_HOSTFN1_MBOX0_INFO(_v) ((_v) << __LPU1_HOSTFN1_MBOX0_INFO_SH)
261#define __LPU1_HOSTFN1_MBOX0_CMD_STATUS 0x00000001
262#define HOSTFN2_LPU0_MBOX0_CMD_STAT 0x00019150
263#define __HOSTFN2_LPU0_MBOX0_INFO_MK 0xfffffffe
264#define __HOSTFN2_LPU0_MBOX0_INFO_SH 1
265#define __HOSTFN2_LPU0_MBOX0_INFO(_v) ((_v) << __HOSTFN2_LPU0_MBOX0_INFO_SH)
266#define __HOSTFN2_LPU0_MBOX0_CMD_STATUS 0x00000001
267#define HOSTFN2_LPU1_MBOX0_CMD_STAT 0x00019154
268#define __HOSTFN2_LPU1_MBOX0_INFO_MK 0xfffffffe
269#define __HOSTFN2_LPU1_MBOX0_INFO_SH 1
270#define __HOSTFN2_LPU1_MBOX0_INFO(_v) ((_v) << __HOSTFN2_LPU1_MBOX0_INFO_SH)
271#define __HOSTFN2_LPU1_MBOX0BOX0_CMD_STATUS 0x00000001
272#define LPU0_HOSTFN2_MBOX0_CMD_STAT 0x00019158
273#define __LPU0_HOSTFN2_MBOX0_INFO_MK 0xfffffffe
274#define __LPU0_HOSTFN2_MBOX0_INFO_SH 1
275#define __LPU0_HOSTFN2_MBOX0_INFO(_v) ((_v) << __LPU0_HOSTFN2_MBOX0_INFO_SH)
276#define __LPU0_HOSTFN2_MBOX0_CMD_STATUS 0x00000001
277#define LPU1_HOSTFN2_MBOX0_CMD_STAT 0x0001915c
278#define __LPU1_HOSTFN2_MBOX0_INFO_MK 0xfffffffe
279#define __LPU1_HOSTFN2_MBOX0_INFO_SH 1
280#define __LPU1_HOSTFN2_MBOX0_INFO(_v) ((_v) << __LPU1_HOSTFN2_MBOX0_INFO_SH)
281#define __LPU1_HOSTFN2_MBOX0_CMD_STATUS 0x00000001
282#define HOSTFN3_LPU0_MBOX0_CMD_STAT 0x00019160
283#define __HOSTFN3_LPU0_MBOX0_INFO_MK 0xfffffffe
284#define __HOSTFN3_LPU0_MBOX0_INFO_SH 1
285#define __HOSTFN3_LPU0_MBOX0_INFO(_v) ((_v) << __HOSTFN3_LPU0_MBOX0_INFO_SH)
286#define __HOSTFN3_LPU0_MBOX0_CMD_STATUS 0x00000001
287#define HOSTFN3_LPU1_MBOX0_CMD_STAT 0x00019164
288#define __HOSTFN3_LPU1_MBOX0_INFO_MK 0xfffffffe
289#define __HOSTFN3_LPU1_MBOX0_INFO_SH 1
290#define __HOSTFN3_LPU1_MBOX0_INFO(_v) ((_v) << __HOSTFN3_LPU1_MBOX0_INFO_SH)
291#define __HOSTFN3_LPU1_MBOX0_CMD_STATUS 0x00000001
292#define LPU0_HOSTFN3_MBOX0_CMD_STAT 0x00019168
293#define __LPU0_HOSTFN3_MBOX0_INFO_MK 0xfffffffe
294#define __LPU0_HOSTFN3_MBOX0_INFO_SH 1
295#define __LPU0_HOSTFN3_MBOX0_INFO(_v) ((_v) << __LPU0_HOSTFN3_MBOX0_INFO_SH)
296#define __LPU0_HOSTFN3_MBOX0_CMD_STATUS 0x00000001
297#define LPU1_HOSTFN3_MBOX0_CMD_STAT 0x0001916c
298#define __LPU1_HOSTFN3_MBOX0_INFO_MK 0xfffffffe
299#define __LPU1_HOSTFN3_MBOX0_INFO_SH 1
300#define __LPU1_HOSTFN3_MBOX0_INFO(_v) ((_v) << __LPU1_HOSTFN3_MBOX0_INFO_SH)
301#define __LPU1_HOSTFN3_MBOX0_CMD_STATUS 0x00000001
302#define FW_INIT_HALT_P0 0x000191ac
303#define __FW_INIT_HALT_P 0x00000001
304#define FW_INIT_HALT_P1 0x000191bc
305#define CPE_PI_PTR_Q0 0x00038000
306#define __CPE_PI_UNUSED_MK 0xffff0000
307#define __CPE_PI_UNUSED_SH 16
308#define __CPE_PI_UNUSED(_v) ((_v) << __CPE_PI_UNUSED_SH)
309#define __CPE_PI_PTR 0x0000ffff
310#define CPE_PI_PTR_Q1 0x00038040
311#define CPE_CI_PTR_Q0 0x00038004
312#define __CPE_CI_UNUSED_MK 0xffff0000
313#define __CPE_CI_UNUSED_SH 16
314#define __CPE_CI_UNUSED(_v) ((_v) << __CPE_CI_UNUSED_SH)
315#define __CPE_CI_PTR 0x0000ffff
316#define CPE_CI_PTR_Q1 0x00038044
317#define CPE_DEPTH_Q0 0x00038008
318#define __CPE_DEPTH_UNUSED_MK 0xf8000000
319#define __CPE_DEPTH_UNUSED_SH 27
320#define __CPE_DEPTH_UNUSED(_v) ((_v) << __CPE_DEPTH_UNUSED_SH)
321#define __CPE_MSIX_VEC_INDEX_MK 0x07ff0000
322#define __CPE_MSIX_VEC_INDEX_SH 16
323#define __CPE_MSIX_VEC_INDEX(_v) ((_v) << __CPE_MSIX_VEC_INDEX_SH)
324#define __CPE_DEPTH 0x0000ffff
325#define CPE_DEPTH_Q1 0x00038048
326#define CPE_QCTRL_Q0 0x0003800c
327#define __CPE_CTRL_UNUSED30_MK 0xfc000000
328#define __CPE_CTRL_UNUSED30_SH 26
329#define __CPE_CTRL_UNUSED30(_v) ((_v) << __CPE_CTRL_UNUSED30_SH)
330#define __CPE_FUNC_INT_CTRL_MK 0x03000000
331#define __CPE_FUNC_INT_CTRL_SH 24
332#define __CPE_FUNC_INT_CTRL(_v) ((_v) << __CPE_FUNC_INT_CTRL_SH)
333enum {
334 __CPE_FUNC_INT_CTRL_DISABLE = 0x0,
335 __CPE_FUNC_INT_CTRL_F2NF = 0x1,
336 __CPE_FUNC_INT_CTRL_3QUART = 0x2,
337 __CPE_FUNC_INT_CTRL_HALF = 0x3,
338};
339#define __CPE_CTRL_UNUSED20_MK 0x00f00000
340#define __CPE_CTRL_UNUSED20_SH 20
341#define __CPE_CTRL_UNUSED20(_v) ((_v) << __CPE_CTRL_UNUSED20_SH)
342#define __CPE_SCI_TH_MK 0x000f0000
343#define __CPE_SCI_TH_SH 16
344#define __CPE_SCI_TH(_v) ((_v) << __CPE_SCI_TH_SH)
345#define __CPE_CTRL_UNUSED10_MK 0x0000c000
346#define __CPE_CTRL_UNUSED10_SH 14
347#define __CPE_CTRL_UNUSED10(_v) ((_v) << __CPE_CTRL_UNUSED10_SH)
348#define __CPE_ACK_PENDING 0x00002000
349#define __CPE_CTRL_UNUSED40_MK 0x00001c00
350#define __CPE_CTRL_UNUSED40_SH 10
351#define __CPE_CTRL_UNUSED40(_v) ((_v) << __CPE_CTRL_UNUSED40_SH)
352#define __CPE_PCIEID_MK 0x00000300
353#define __CPE_PCIEID_SH 8
354#define __CPE_PCIEID(_v) ((_v) << __CPE_PCIEID_SH)
355#define __CPE_CTRL_UNUSED00_MK 0x000000fe
356#define __CPE_CTRL_UNUSED00_SH 1
357#define __CPE_CTRL_UNUSED00(_v) ((_v) << __CPE_CTRL_UNUSED00_SH)
358#define __CPE_ESIZE 0x00000001
359#define CPE_QCTRL_Q1 0x0003804c
360#define __CPE_CTRL_UNUSED31_MK 0xfc000000
361#define __CPE_CTRL_UNUSED31_SH 26
362#define __CPE_CTRL_UNUSED31(_v) ((_v) << __CPE_CTRL_UNUSED31_SH)
363#define __CPE_CTRL_UNUSED21_MK 0x00f00000
364#define __CPE_CTRL_UNUSED21_SH 20
365#define __CPE_CTRL_UNUSED21(_v) ((_v) << __CPE_CTRL_UNUSED21_SH)
366#define __CPE_CTRL_UNUSED11_MK 0x0000c000
367#define __CPE_CTRL_UNUSED11_SH 14
368#define __CPE_CTRL_UNUSED11(_v) ((_v) << __CPE_CTRL_UNUSED11_SH)
369#define __CPE_CTRL_UNUSED41_MK 0x00001c00
370#define __CPE_CTRL_UNUSED41_SH 10
371#define __CPE_CTRL_UNUSED41(_v) ((_v) << __CPE_CTRL_UNUSED41_SH)
372#define __CPE_CTRL_UNUSED01_MK 0x000000fe
373#define __CPE_CTRL_UNUSED01_SH 1
374#define __CPE_CTRL_UNUSED01(_v) ((_v) << __CPE_CTRL_UNUSED01_SH)
375#define RME_PI_PTR_Q0 0x00038020
376#define __LATENCY_TIME_STAMP_MK 0xffff0000
377#define __LATENCY_TIME_STAMP_SH 16
378#define __LATENCY_TIME_STAMP(_v) ((_v) << __LATENCY_TIME_STAMP_SH)
379#define __RME_PI_PTR 0x0000ffff
380#define RME_PI_PTR_Q1 0x00038060
381#define RME_CI_PTR_Q0 0x00038024
382#define __DELAY_TIME_STAMP_MK 0xffff0000
383#define __DELAY_TIME_STAMP_SH 16
384#define __DELAY_TIME_STAMP(_v) ((_v) << __DELAY_TIME_STAMP_SH)
385#define __RME_CI_PTR 0x0000ffff
386#define RME_CI_PTR_Q1 0x00038064
387#define RME_DEPTH_Q0 0x00038028
388#define __RME_DEPTH_UNUSED_MK 0xf8000000
389#define __RME_DEPTH_UNUSED_SH 27
390#define __RME_DEPTH_UNUSED(_v) ((_v) << __RME_DEPTH_UNUSED_SH)
391#define __RME_MSIX_VEC_INDEX_MK 0x07ff0000
392#define __RME_MSIX_VEC_INDEX_SH 16
393#define __RME_MSIX_VEC_INDEX(_v) ((_v) << __RME_MSIX_VEC_INDEX_SH)
394#define __RME_DEPTH 0x0000ffff
395#define RME_DEPTH_Q1 0x00038068
396#define RME_QCTRL_Q0 0x0003802c
397#define __RME_INT_LATENCY_TIMER_MK 0xff000000
398#define __RME_INT_LATENCY_TIMER_SH 24
399#define __RME_INT_LATENCY_TIMER(_v) ((_v) << __RME_INT_LATENCY_TIMER_SH)
400#define __RME_INT_DELAY_TIMER_MK 0x00ff0000
401#define __RME_INT_DELAY_TIMER_SH 16
402#define __RME_INT_DELAY_TIMER(_v) ((_v) << __RME_INT_DELAY_TIMER_SH)
403#define __RME_INT_DELAY_DISABLE 0x00008000
404#define __RME_DLY_DELAY_DISABLE 0x00004000
405#define __RME_ACK_PENDING 0x00002000
406#define __RME_FULL_INTERRUPT_DISABLE 0x00001000
407#define __RME_CTRL_UNUSED10_MK 0x00000c00
408#define __RME_CTRL_UNUSED10_SH 10
409#define __RME_CTRL_UNUSED10(_v) ((_v) << __RME_CTRL_UNUSED10_SH)
410#define __RME_PCIEID_MK 0x00000300
411#define __RME_PCIEID_SH 8
412#define __RME_PCIEID(_v) ((_v) << __RME_PCIEID_SH)
413#define __RME_CTRL_UNUSED00_MK 0x000000fe
414#define __RME_CTRL_UNUSED00_SH 1
415#define __RME_CTRL_UNUSED00(_v) ((_v) << __RME_CTRL_UNUSED00_SH)
416#define __RME_ESIZE 0x00000001
417#define RME_QCTRL_Q1 0x0003806c
418#define __RME_CTRL_UNUSED11_MK 0x00000c00
419#define __RME_CTRL_UNUSED11_SH 10
420#define __RME_CTRL_UNUSED11(_v) ((_v) << __RME_CTRL_UNUSED11_SH)
421#define __RME_CTRL_UNUSED01_MK 0x000000fe
422#define __RME_CTRL_UNUSED01_SH 1
423#define __RME_CTRL_UNUSED01(_v) ((_v) << __RME_CTRL_UNUSED01_SH)
424#define PSS_CTL_REG 0x00018800
425#define __PSS_I2C_CLK_DIV_MK 0x007f0000
426#define __PSS_I2C_CLK_DIV_SH 16
427#define __PSS_I2C_CLK_DIV(_v) ((_v) << __PSS_I2C_CLK_DIV_SH)
428#define __PSS_LMEM_INIT_DONE 0x00001000
429#define __PSS_LMEM_RESET 0x00000200
430#define __PSS_LMEM_INIT_EN 0x00000100
431#define __PSS_LPU1_RESET 0x00000002
432#define __PSS_LPU0_RESET 0x00000001
433#define PSS_ERR_STATUS_REG 0x00018810
434#define __PSS_LPU1_TCM_READ_ERR 0x00200000
435#define __PSS_LPU0_TCM_READ_ERR 0x00100000
436#define __PSS_LMEM5_CORR_ERR 0x00080000
437#define __PSS_LMEM4_CORR_ERR 0x00040000
438#define __PSS_LMEM3_CORR_ERR 0x00020000
439#define __PSS_LMEM2_CORR_ERR 0x00010000
440#define __PSS_LMEM1_CORR_ERR 0x00008000
441#define __PSS_LMEM0_CORR_ERR 0x00004000
442#define __PSS_LMEM5_UNCORR_ERR 0x00002000
443#define __PSS_LMEM4_UNCORR_ERR 0x00001000
444#define __PSS_LMEM3_UNCORR_ERR 0x00000800
445#define __PSS_LMEM2_UNCORR_ERR 0x00000400
446#define __PSS_LMEM1_UNCORR_ERR 0x00000200
447#define __PSS_LMEM0_UNCORR_ERR 0x00000100
448#define __PSS_BAL_PERR 0x00000080
449#define __PSS_DIP_IF_ERR 0x00000040
450#define __PSS_IOH_IF_ERR 0x00000020
451#define __PSS_TDS_IF_ERR 0x00000010
452#define __PSS_RDS_IF_ERR 0x00000008
453#define __PSS_SGM_IF_ERR 0x00000004
454#define __PSS_LPU1_RAM_ERR 0x00000002
455#define __PSS_LPU0_RAM_ERR 0x00000001
456#define ERR_SET_REG 0x00018818
457#define __PSS_ERR_STATUS_SET 0x003fffff
458#define PMM_1T_RESET_REG_P0 0x0002381c
459#define __PMM_1T_RESET_P 0x00000001
460#define PMM_1T_RESET_REG_P1 0x00023c1c
461#define HQM_QSET0_RXQ_DRBL_P0 0x00038000
462#define __RXQ0_ADD_VECTORS_P 0x80000000
463#define __RXQ0_STOP_P 0x40000000
464#define __RXQ0_PRD_PTR_P 0x0000ffff
465#define HQM_QSET1_RXQ_DRBL_P0 0x00038080
466#define __RXQ1_ADD_VECTORS_P 0x80000000
467#define __RXQ1_STOP_P 0x40000000
468#define __RXQ1_PRD_PTR_P 0x0000ffff
469#define HQM_QSET0_RXQ_DRBL_P1 0x0003c000
470#define HQM_QSET1_RXQ_DRBL_P1 0x0003c080
471#define HQM_QSET0_TXQ_DRBL_P0 0x00038020
472#define __TXQ0_ADD_VECTORS_P 0x80000000
473#define __TXQ0_STOP_P 0x40000000
474#define __TXQ0_PRD_PTR_P 0x0000ffff
475#define HQM_QSET1_TXQ_DRBL_P0 0x000380a0
476#define __TXQ1_ADD_VECTORS_P 0x80000000
477#define __TXQ1_STOP_P 0x40000000
478#define __TXQ1_PRD_PTR_P 0x0000ffff
479#define HQM_QSET0_TXQ_DRBL_P1 0x0003c020
480#define HQM_QSET1_TXQ_DRBL_P1 0x0003c0a0
481#define HQM_QSET0_IB_DRBL_1_P0 0x00038040
482#define __IB1_0_ACK_P 0x80000000
483#define __IB1_0_DISABLE_P 0x40000000
484#define __IB1_0_COALESCING_CFG_P_MK 0x00ff0000
485#define __IB1_0_COALESCING_CFG_P_SH 16
486#define __IB1_0_COALESCING_CFG_P(_v) ((_v) << __IB1_0_COALESCING_CFG_P_SH)
487#define __IB1_0_NUM_OF_ACKED_EVENTS_P 0x0000ffff
488#define HQM_QSET1_IB_DRBL_1_P0 0x000380c0
489#define __IB1_1_ACK_P 0x80000000
490#define __IB1_1_DISABLE_P 0x40000000
491#define __IB1_1_COALESCING_CFG_P_MK 0x00ff0000
492#define __IB1_1_COALESCING_CFG_P_SH 16
493#define __IB1_1_COALESCING_CFG_P(_v) ((_v) << __IB1_1_COALESCING_CFG_P_SH)
494#define __IB1_1_NUM_OF_ACKED_EVENTS_P 0x0000ffff
495#define HQM_QSET0_IB_DRBL_1_P1 0x0003c040
496#define HQM_QSET1_IB_DRBL_1_P1 0x0003c0c0
497#define HQM_QSET0_IB_DRBL_2_P0 0x00038060
498#define __IB2_0_ACK_P 0x80000000
499#define __IB2_0_DISABLE_P 0x40000000
500#define __IB2_0_COALESCING_CFG_P_MK 0x00ff0000
501#define __IB2_0_COALESCING_CFG_P_SH 16
502#define __IB2_0_COALESCING_CFG_P(_v) ((_v) << __IB2_0_COALESCING_CFG_P_SH)
503#define __IB2_0_NUM_OF_ACKED_EVENTS_P 0x0000ffff
504#define HQM_QSET1_IB_DRBL_2_P0 0x000380e0
505#define __IB2_1_ACK_P 0x80000000
506#define __IB2_1_DISABLE_P 0x40000000
507#define __IB2_1_COALESCING_CFG_P_MK 0x00ff0000
508#define __IB2_1_COALESCING_CFG_P_SH 16
509#define __IB2_1_COALESCING_CFG_P(_v) ((_v) << __IB2_1_COALESCING_CFG_P_SH)
510#define __IB2_1_NUM_OF_ACKED_EVENTS_P 0x0000ffff
511#define HQM_QSET0_IB_DRBL_2_P1 0x0003c060
512#define HQM_QSET1_IB_DRBL_2_P1 0x0003c0e0
513
514/*
515 * These definitions are either in error/missing in spec. Its auto-generated
516 * from hard coded values in regparse.pl.
517 */
518#define __EMPHPOST_AT_4G_MK_FIX 0x0000001c
519#define __EMPHPOST_AT_4G_SH_FIX 0x00000002
520#define __EMPHPRE_AT_4G_FIX 0x00000003
521#define __SFP_TXRATE_EN_FIX 0x00000100
522#define __SFP_RXRATE_EN_FIX 0x00000080
523
524/*
525 * These register definitions are auto-generated from hard coded values
526 * in regparse.pl.
527 */
528
529/*
530 * These register mapping definitions are auto-generated from mapping tables
531 * in regparse.pl.
532 */
533#define BFA_IOC0_HBEAT_REG HOST_SEM0_INFO_REG
534#define BFA_IOC0_STATE_REG HOST_SEM1_INFO_REG
535#define BFA_IOC1_HBEAT_REG HOST_SEM2_INFO_REG
536#define BFA_IOC1_STATE_REG HOST_SEM3_INFO_REG
537#define BFA_FW_USE_COUNT HOST_SEM4_INFO_REG
538#define BFA_IOC_FAIL_SYNC HOST_SEM5_INFO_REG
539
540#define CPE_DEPTH_Q(__n) \
541 (CPE_DEPTH_Q0 + (__n) * (CPE_DEPTH_Q1 - CPE_DEPTH_Q0))
542#define CPE_QCTRL_Q(__n) \
543 (CPE_QCTRL_Q0 + (__n) * (CPE_QCTRL_Q1 - CPE_QCTRL_Q0))
544#define CPE_PI_PTR_Q(__n) \
545 (CPE_PI_PTR_Q0 + (__n) * (CPE_PI_PTR_Q1 - CPE_PI_PTR_Q0))
546#define CPE_CI_PTR_Q(__n) \
547 (CPE_CI_PTR_Q0 + (__n) * (CPE_CI_PTR_Q1 - CPE_CI_PTR_Q0))
548#define RME_DEPTH_Q(__n) \
549 (RME_DEPTH_Q0 + (__n) * (RME_DEPTH_Q1 - RME_DEPTH_Q0))
550#define RME_QCTRL_Q(__n) \
551 (RME_QCTRL_Q0 + (__n) * (RME_QCTRL_Q1 - RME_QCTRL_Q0))
552#define RME_PI_PTR_Q(__n) \
553 (RME_PI_PTR_Q0 + (__n) * (RME_PI_PTR_Q1 - RME_PI_PTR_Q0))
554#define RME_CI_PTR_Q(__n) \
555 (RME_CI_PTR_Q0 + (__n) * (RME_CI_PTR_Q1 - RME_CI_PTR_Q0))
556#define HQM_QSET_RXQ_DRBL_P0(__n) \
557 (HQM_QSET0_RXQ_DRBL_P0 + (__n) * \
558 (HQM_QSET1_RXQ_DRBL_P0 - HQM_QSET0_RXQ_DRBL_P0))
559#define HQM_QSET_TXQ_DRBL_P0(__n) \
560 (HQM_QSET0_TXQ_DRBL_P0 + (__n) * \
561 (HQM_QSET1_TXQ_DRBL_P0 - HQM_QSET0_TXQ_DRBL_P0))
562#define HQM_QSET_IB_DRBL_1_P0(__n) \
563 (HQM_QSET0_IB_DRBL_1_P0 + (__n) * \
564 (HQM_QSET1_IB_DRBL_1_P0 - HQM_QSET0_IB_DRBL_1_P0))
565#define HQM_QSET_IB_DRBL_2_P0(__n) \
566 (HQM_QSET0_IB_DRBL_2_P0 + (__n) * \
567 (HQM_QSET1_IB_DRBL_2_P0 - HQM_QSET0_IB_DRBL_2_P0))
568#define HQM_QSET_RXQ_DRBL_P1(__n) \
569 (HQM_QSET0_RXQ_DRBL_P1 + (__n) * \
570 (HQM_QSET1_RXQ_DRBL_P1 - HQM_QSET0_RXQ_DRBL_P1))
571#define HQM_QSET_TXQ_DRBL_P1(__n) \
572 (HQM_QSET0_TXQ_DRBL_P1 + (__n) * \
573 (HQM_QSET1_TXQ_DRBL_P1 - HQM_QSET0_TXQ_DRBL_P1))
574#define HQM_QSET_IB_DRBL_1_P1(__n) \
575 (HQM_QSET0_IB_DRBL_1_P1 + (__n) * \
576 (HQM_QSET1_IB_DRBL_1_P1 - HQM_QSET0_IB_DRBL_1_P1))
577#define HQM_QSET_IB_DRBL_2_P1(__n) \
578 (HQM_QSET0_IB_DRBL_2_P1 + (__n) * \
579 (HQM_QSET1_IB_DRBL_2_P1 - HQM_QSET0_IB_DRBL_2_P1))
580
581#define CPE_Q_NUM(__fn, __q) (((__fn) << 2) + (__q))
582#define RME_Q_NUM(__fn, __q) (((__fn) << 2) + (__q))
583#define CPE_Q_MASK(__q) ((__q) & 0x3)
584#define RME_Q_MASK(__q) ((__q) & 0x3)
585
586/*
587 * PCI MSI-X vector defines
588 */
589enum {
590 BFA_MSIX_CPE_Q0 = 0,
591 BFA_MSIX_CPE_Q1 = 1,
592 BFA_MSIX_CPE_Q2 = 2,
593 BFA_MSIX_CPE_Q3 = 3,
594 BFA_MSIX_RME_Q0 = 4,
595 BFA_MSIX_RME_Q1 = 5,
596 BFA_MSIX_RME_Q2 = 6,
597 BFA_MSIX_RME_Q3 = 7,
598 BFA_MSIX_LPU_ERR = 8,
599 BFA_MSIX_CT_MAX = 9,
600};
601
602/*
603 * And corresponding host interrupt status bit field defines
604 */
605#define __HFN_INT_CPE_Q0 0x00000001U
606#define __HFN_INT_CPE_Q1 0x00000002U
607#define __HFN_INT_CPE_Q2 0x00000004U
608#define __HFN_INT_CPE_Q3 0x00000008U
609#define __HFN_INT_CPE_Q4 0x00000010U
610#define __HFN_INT_CPE_Q5 0x00000020U
611#define __HFN_INT_CPE_Q6 0x00000040U
612#define __HFN_INT_CPE_Q7 0x00000080U
613#define __HFN_INT_RME_Q0 0x00000100U
614#define __HFN_INT_RME_Q1 0x00000200U
615#define __HFN_INT_RME_Q2 0x00000400U
616#define __HFN_INT_RME_Q3 0x00000800U
617#define __HFN_INT_RME_Q4 0x00001000U
618#define __HFN_INT_RME_Q5 0x00002000U
619#define __HFN_INT_RME_Q6 0x00004000U
620#define __HFN_INT_RME_Q7 0x00008000U
621#define __HFN_INT_ERR_EMC 0x00010000U
622#define __HFN_INT_ERR_LPU0 0x00020000U
623#define __HFN_INT_ERR_LPU1 0x00040000U
624#define __HFN_INT_ERR_PSS 0x00080000U
625#define __HFN_INT_MBOX_LPU0 0x00100000U
626#define __HFN_INT_MBOX_LPU1 0x00200000U
627#define __HFN_INT_MBOX1_LPU0 0x00400000U
628#define __HFN_INT_MBOX1_LPU1 0x00800000U
629#define __HFN_INT_LL_HALT 0x01000000U
630#define __HFN_INT_CPE_MASK 0x000000ffU
631#define __HFN_INT_RME_MASK 0x0000ff00U
632
633/*
634 * catapult memory map.
635 */
636#define LL_PGN_HQM0 0x0096
637#define LL_PGN_HQM1 0x0097
638#define PSS_SMEM_PAGE_START 0x8000
639#define PSS_SMEM_PGNUM(_pg0, _ma) ((_pg0) + ((_ma) >> 15))
640#define PSS_SMEM_PGOFF(_ma) ((_ma) & 0x7fff)
641
642/*
643 * End of catapult memory map
644 */
645
646#endif /* __BFI_CTREG_H__ */
diff --git a/drivers/net/bna/bfi_ll.h b/drivers/net/bna/bfi_ll.h
new file mode 100644
index 000000000000..bee4d054066a
--- /dev/null
+++ b/drivers/net/bna/bfi_ll.h
@@ -0,0 +1,438 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#ifndef __BFI_LL_H__
19#define __BFI_LL_H__
20
21#include "bfi.h"
22
23#pragma pack(1)
24
25/**
26 * @brief
27 * "enums" for all LL mailbox messages other than IOC
28 */
29enum {
30 BFI_LL_H2I_MAC_UCAST_SET_REQ = 1,
31 BFI_LL_H2I_MAC_UCAST_ADD_REQ = 2,
32 BFI_LL_H2I_MAC_UCAST_DEL_REQ = 3,
33
34 BFI_LL_H2I_MAC_MCAST_ADD_REQ = 4,
35 BFI_LL_H2I_MAC_MCAST_DEL_REQ = 5,
36 BFI_LL_H2I_MAC_MCAST_FILTER_REQ = 6,
37 BFI_LL_H2I_MAC_MCAST_DEL_ALL_REQ = 7,
38
39 BFI_LL_H2I_PORT_ADMIN_REQ = 8,
40 BFI_LL_H2I_STATS_GET_REQ = 9,
41 BFI_LL_H2I_STATS_CLEAR_REQ = 10,
42
43 BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ = 11,
44 BFI_LL_H2I_RXF_DEFAULT_SET_REQ = 12,
45
46 BFI_LL_H2I_TXQ_STOP_REQ = 13,
47 BFI_LL_H2I_RXQ_STOP_REQ = 14,
48
49 BFI_LL_H2I_DIAG_LOOPBACK_REQ = 15,
50
51 BFI_LL_H2I_SET_PAUSE_REQ = 16,
52 BFI_LL_H2I_MTU_INFO_REQ = 17,
53
54 BFI_LL_H2I_RX_REQ = 18,
55} ;
56
57enum {
58 BFI_LL_I2H_MAC_UCAST_SET_RSP = BFA_I2HM(1),
59 BFI_LL_I2H_MAC_UCAST_ADD_RSP = BFA_I2HM(2),
60 BFI_LL_I2H_MAC_UCAST_DEL_RSP = BFA_I2HM(3),
61
62 BFI_LL_I2H_MAC_MCAST_ADD_RSP = BFA_I2HM(4),
63 BFI_LL_I2H_MAC_MCAST_DEL_RSP = BFA_I2HM(5),
64 BFI_LL_I2H_MAC_MCAST_FILTER_RSP = BFA_I2HM(6),
65 BFI_LL_I2H_MAC_MCAST_DEL_ALL_RSP = BFA_I2HM(7),
66
67 BFI_LL_I2H_PORT_ADMIN_RSP = BFA_I2HM(8),
68 BFI_LL_I2H_STATS_GET_RSP = BFA_I2HM(9),
69 BFI_LL_I2H_STATS_CLEAR_RSP = BFA_I2HM(10),
70
71 BFI_LL_I2H_RXF_PROMISCUOUS_SET_RSP = BFA_I2HM(11),
72 BFI_LL_I2H_RXF_DEFAULT_SET_RSP = BFA_I2HM(12),
73
74 BFI_LL_I2H_TXQ_STOP_RSP = BFA_I2HM(13),
75 BFI_LL_I2H_RXQ_STOP_RSP = BFA_I2HM(14),
76
77 BFI_LL_I2H_DIAG_LOOPBACK_RSP = BFA_I2HM(15),
78
79 BFI_LL_I2H_SET_PAUSE_RSP = BFA_I2HM(16),
80
81 BFI_LL_I2H_MTU_INFO_RSP = BFA_I2HM(17),
82 BFI_LL_I2H_RX_RSP = BFA_I2HM(18),
83
84 BFI_LL_I2H_LINK_DOWN_AEN = BFA_I2HM(19),
85 BFI_LL_I2H_LINK_UP_AEN = BFA_I2HM(20),
86
87 BFI_LL_I2H_PORT_ENABLE_AEN = BFA_I2HM(21),
88 BFI_LL_I2H_PORT_DISABLE_AEN = BFA_I2HM(22),
89} ;
90
91/**
92 * @brief bfi_ll_mac_addr_req is used by:
93 * BFI_LL_H2I_MAC_UCAST_SET_REQ
94 * BFI_LL_H2I_MAC_UCAST_ADD_REQ
95 * BFI_LL_H2I_MAC_UCAST_DEL_REQ
96 * BFI_LL_H2I_MAC_MCAST_ADD_REQ
97 * BFI_LL_H2I_MAC_MCAST_DEL_REQ
98 */
99struct bfi_ll_mac_addr_req {
100 struct bfi_mhdr mh; /*!< common msg header */
101 u8 rxf_id;
102 u8 rsvd1[3];
103 mac_t mac_addr;
104 u8 rsvd2[2];
105};
106
107/**
108 * @brief bfi_ll_mcast_filter_req is used by:
109 * BFI_LL_H2I_MAC_MCAST_FILTER_REQ
110 */
111struct bfi_ll_mcast_filter_req {
112 struct bfi_mhdr mh; /*!< common msg header */
113 u8 rxf_id;
114 u8 enable;
115 u8 rsvd[2];
116};
117
118/**
119 * @brief bfi_ll_mcast_del_all is used by:
120 * BFI_LL_H2I_MAC_MCAST_DEL_ALL_REQ
121 */
122struct bfi_ll_mcast_del_all_req {
123 struct bfi_mhdr mh; /*!< common msg header */
124 u8 rxf_id;
125 u8 rsvd[3];
126};
127
128/**
129 * @brief bfi_ll_q_stop_req is used by:
130 * BFI_LL_H2I_TXQ_STOP_REQ
131 * BFI_LL_H2I_RXQ_STOP_REQ
132 */
133struct bfi_ll_q_stop_req {
134 struct bfi_mhdr mh; /*!< common msg header */
135 u32 q_id_mask[2]; /* !< bit-mask for queue ids */
136};
137
138/**
139 * @brief bfi_ll_stats_req is used by:
140 * BFI_LL_I2H_STATS_GET_REQ
141 * BFI_LL_I2H_STATS_CLEAR_REQ
142 */
143struct bfi_ll_stats_req {
144 struct bfi_mhdr mh; /*!< common msg header */
145 u16 stats_mask; /* !< bit-mask for non-function statistics */
146 u8 rsvd[2];
147 u32 rxf_id_mask[2]; /* !< bit-mask for RxF Statistics */
148 u32 txf_id_mask[2]; /* !< bit-mask for TxF Statistics */
149 union bfi_addr_u host_buffer; /* !< where statistics are returned */
150};
151
152/**
153 * @brief defines for "stats_mask" above.
154 */
155#define BFI_LL_STATS_MAC (1 << 0) /* !< MAC Statistics */
156#define BFI_LL_STATS_BPC (1 << 1) /* !< Pause Stats from BPC */
157#define BFI_LL_STATS_RAD (1 << 2) /* !< Rx Admission Statistics */
158#define BFI_LL_STATS_RX_FC (1 << 3) /* !< Rx FC Stats from RxA */
159#define BFI_LL_STATS_TX_FC (1 << 4) /* !< Tx FC Stats from TxA */
160
161#define BFI_LL_STATS_ALL 0x1f
162
163/**
164 * @brief bfi_ll_port_admin_req
165 */
166struct bfi_ll_port_admin_req {
167 struct bfi_mhdr mh; /*!< common msg header */
168 u8 up;
169 u8 rsvd[3];
170};
171
172/**
173 * @brief bfi_ll_rxf_req is used by:
174 * BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ
175 * BFI_LL_H2I_RXF_DEFAULT_SET_REQ
176 */
177struct bfi_ll_rxf_req {
178 struct bfi_mhdr mh; /*!< common msg header */
179 u8 rxf_id;
180 u8 enable;
181 u8 rsvd[2];
182};
183
184/**
185 * @brief bfi_ll_rxf_multi_req is used by:
186 * BFI_LL_H2I_RX_REQ
187 */
188struct bfi_ll_rxf_multi_req {
189 struct bfi_mhdr mh; /*!< common msg header */
190 u32 rxf_id_mask[2];
191 u8 enable;
192 u8 rsvd[3];
193};
194
195/**
196 * @brief enum for Loopback opmodes
197 */
198enum {
199 BFI_LL_DIAG_LB_OPMODE_EXT = 0,
200 BFI_LL_DIAG_LB_OPMODE_CBL = 1,
201};
202
203/**
204 * @brief bfi_ll_set_pause_req is used by:
205 * BFI_LL_H2I_SET_PAUSE_REQ
206 */
207struct bfi_ll_set_pause_req {
208 struct bfi_mhdr mh;
209 u8 tx_pause; /* 1 = enable, 0 = disable */
210 u8 rx_pause; /* 1 = enable, 0 = disable */
211 u8 rsvd[2];
212};
213
214/**
215 * @brief bfi_ll_mtu_info_req is used by:
216 * BFI_LL_H2I_MTU_INFO_REQ
217 */
218struct bfi_ll_mtu_info_req {
219 struct bfi_mhdr mh;
220 u16 mtu;
221 u8 rsvd[2];
222};
223
224/**
225 * @brief
226 * Response header format used by all responses
227 * For both responses and asynchronous notifications
228 */
229struct bfi_ll_rsp {
230 struct bfi_mhdr mh; /*!< common msg header */
231 u8 error;
232 u8 rsvd[3];
233};
234
235/**
236 * @brief bfi_ll_cee_aen is used by:
237 * BFI_LL_I2H_LINK_DOWN_AEN
238 * BFI_LL_I2H_LINK_UP_AEN
239 */
240struct bfi_ll_aen {
241 struct bfi_mhdr mh; /*!< common msg header */
242 u32 reason;
243 u8 cee_linkup;
244 u8 prio_map; /*!< LL priority bit-map */
245 u8 rsvd[2];
246};
247
248/**
249 * @brief
250 * The following error codes can be returned
251 * by the mbox commands
252 */
253enum {
254 BFI_LL_CMD_OK = 0,
255 BFI_LL_CMD_FAIL = 1,
256 BFI_LL_CMD_DUP_ENTRY = 2, /* !< Duplicate entry in CAM */
257 BFI_LL_CMD_CAM_FULL = 3, /* !< CAM is full */
258 BFI_LL_CMD_NOT_OWNER = 4, /* !< Not permitted, b'cos not owner */
259 BFI_LL_CMD_NOT_EXEC = 5, /* !< Was not sent to f/w at all */
260 BFI_LL_CMD_WAITING = 6, /* !< Waiting for completion (VMware) */
261 BFI_LL_CMD_PORT_DISABLED = 7, /* !< port in disabled state */
262} ;
263
264/* Statistics */
265#define BFI_LL_TXF_ID_MAX 64
266#define BFI_LL_RXF_ID_MAX 64
267
268/* TxF Frame Statistics */
269struct bfi_ll_stats_txf {
270 u64 ucast_octets;
271 u64 ucast;
272 u64 ucast_vlan;
273
274 u64 mcast_octets;
275 u64 mcast;
276 u64 mcast_vlan;
277
278 u64 bcast_octets;
279 u64 bcast;
280 u64 bcast_vlan;
281
282 u64 errors;
283 u64 filter_vlan; /* frames filtered due to VLAN */
284 u64 filter_mac_sa; /* frames filtered due to SA check */
285};
286
287/* RxF Frame Statistics */
288struct bfi_ll_stats_rxf {
289 u64 ucast_octets;
290 u64 ucast;
291 u64 ucast_vlan;
292
293 u64 mcast_octets;
294 u64 mcast;
295 u64 mcast_vlan;
296
297 u64 bcast_octets;
298 u64 bcast;
299 u64 bcast_vlan;
300 u64 frame_drops;
301};
302
303/* FC Tx Frame Statistics */
304struct bfi_ll_stats_fc_tx {
305 u64 txf_ucast_octets;
306 u64 txf_ucast;
307 u64 txf_ucast_vlan;
308
309 u64 txf_mcast_octets;
310 u64 txf_mcast;
311 u64 txf_mcast_vlan;
312
313 u64 txf_bcast_octets;
314 u64 txf_bcast;
315 u64 txf_bcast_vlan;
316
317 u64 txf_parity_errors;
318 u64 txf_timeout;
319 u64 txf_fid_parity_errors;
320};
321
322/* FC Rx Frame Statistics */
323struct bfi_ll_stats_fc_rx {
324 u64 rxf_ucast_octets;
325 u64 rxf_ucast;
326 u64 rxf_ucast_vlan;
327
328 u64 rxf_mcast_octets;
329 u64 rxf_mcast;
330 u64 rxf_mcast_vlan;
331
332 u64 rxf_bcast_octets;
333 u64 rxf_bcast;
334 u64 rxf_bcast_vlan;
335};
336
337/* RAD Frame Statistics */
338struct bfi_ll_stats_rad {
339 u64 rx_frames;
340 u64 rx_octets;
341 u64 rx_vlan_frames;
342
343 u64 rx_ucast;
344 u64 rx_ucast_octets;
345 u64 rx_ucast_vlan;
346
347 u64 rx_mcast;
348 u64 rx_mcast_octets;
349 u64 rx_mcast_vlan;
350
351 u64 rx_bcast;
352 u64 rx_bcast_octets;
353 u64 rx_bcast_vlan;
354
355 u64 rx_drops;
356};
357
358/* BPC Tx Registers */
359struct bfi_ll_stats_bpc {
360 /* transmit stats */
361 u64 tx_pause[8];
362 u64 tx_zero_pause[8]; /*!< Pause cancellation */
363 /*!<Pause initiation rather than retention */
364 u64 tx_first_pause[8];
365
366 /* receive stats */
367 u64 rx_pause[8];
368 u64 rx_zero_pause[8]; /*!< Pause cancellation */
369 /*!<Pause initiation rather than retention */
370 u64 rx_first_pause[8];
371};
372
373/* MAC Rx Statistics */
374struct bfi_ll_stats_mac {
375 u64 frame_64; /* both rx and tx counter */
376 u64 frame_65_127; /* both rx and tx counter */
377 u64 frame_128_255; /* both rx and tx counter */
378 u64 frame_256_511; /* both rx and tx counter */
379 u64 frame_512_1023; /* both rx and tx counter */
380 u64 frame_1024_1518; /* both rx and tx counter */
381 u64 frame_1519_1522; /* both rx and tx counter */
382
383 /* receive stats */
384 u64 rx_bytes;
385 u64 rx_packets;
386 u64 rx_fcs_error;
387 u64 rx_multicast;
388 u64 rx_broadcast;
389 u64 rx_control_frames;
390 u64 rx_pause;
391 u64 rx_unknown_opcode;
392 u64 rx_alignment_error;
393 u64 rx_frame_length_error;
394 u64 rx_code_error;
395 u64 rx_carrier_sense_error;
396 u64 rx_undersize;
397 u64 rx_oversize;
398 u64 rx_fragments;
399 u64 rx_jabber;
400 u64 rx_drop;
401
402 /* transmit stats */
403 u64 tx_bytes;
404 u64 tx_packets;
405 u64 tx_multicast;
406 u64 tx_broadcast;
407 u64 tx_pause;
408 u64 tx_deferral;
409 u64 tx_excessive_deferral;
410 u64 tx_single_collision;
411 u64 tx_muliple_collision;
412 u64 tx_late_collision;
413 u64 tx_excessive_collision;
414 u64 tx_total_collision;
415 u64 tx_pause_honored;
416 u64 tx_drop;
417 u64 tx_jabber;
418 u64 tx_fcs_error;
419 u64 tx_control_frame;
420 u64 tx_oversize;
421 u64 tx_undersize;
422 u64 tx_fragments;
423};
424
425/* Complete statistics */
426struct bfi_ll_stats {
427 struct bfi_ll_stats_mac mac_stats;
428 struct bfi_ll_stats_bpc bpc_stats;
429 struct bfi_ll_stats_rad rad_stats;
430 struct bfi_ll_stats_fc_rx fc_rx_stats;
431 struct bfi_ll_stats_fc_tx fc_tx_stats;
432 struct bfi_ll_stats_rxf rxf_stats[BFI_LL_RXF_ID_MAX];
433 struct bfi_ll_stats_txf txf_stats[BFI_LL_TXF_ID_MAX];
434};
435
436#pragma pack()
437
438#endif /* __BFI_LL_H__ */
diff --git a/drivers/net/bna/bna.h b/drivers/net/bna/bna.h
new file mode 100644
index 000000000000..a287f89b0289
--- /dev/null
+++ b/drivers/net/bna/bna.h
@@ -0,0 +1,548 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#ifndef __BNA_H__
14#define __BNA_H__
15
16#include "bfa_wc.h"
17#include "bfa_ioc.h"
18#include "cna.h"
19#include "bfi_ll.h"
20#include "bna_types.h"
21
22extern const u32 bna_napi_dim_vector[][BNA_BIAS_T_MAX];
23
24/**
25 *
26 * Macros and constants
27 *
28 */
29
30#define BNA_IOC_TIMER_FREQ 200
31
32/* Log string size */
33#define BNA_MESSAGE_SIZE 256
34
35/* MBOX API for PORT, TX, RX */
36#define bna_mbox_qe_fill(_qe, _cmd, _cmd_len, _cbfn, _cbarg) \
37do { \
38 memcpy(&((_qe)->cmd.msg[0]), (_cmd), (_cmd_len)); \
39 (_qe)->cbfn = (_cbfn); \
40 (_qe)->cbarg = (_cbarg); \
41} while (0)
42
43#define bna_is_small_rxq(rcb) ((rcb)->id == 1)
44
45#define BNA_MAC_IS_EQUAL(_mac1, _mac2) \
46 (!memcmp((_mac1), (_mac2), sizeof(mac_t)))
47
48#define BNA_POWER_OF_2(x) (((x) & ((x) - 1)) == 0)
49
50#define BNA_TO_POWER_OF_2(x) \
51do { \
52 int _shift = 0; \
53 while ((x) && (x) != 1) { \
54 (x) >>= 1; \
55 _shift++; \
56 } \
57 (x) <<= _shift; \
58} while (0)
59
60#define BNA_TO_POWER_OF_2_HIGH(x) \
61do { \
62 int n = 1; \
63 while (n < (x)) \
64 n <<= 1; \
65 (x) = n; \
66} while (0)
67
68/*
69 * input : _addr-> os dma addr in host endian format,
70 * output : _bna_dma_addr-> pointer to hw dma addr
71 */
72#define BNA_SET_DMA_ADDR(_addr, _bna_dma_addr) \
73do { \
74 u64 tmp_addr = \
75 cpu_to_be64((u64)(_addr)); \
76 (_bna_dma_addr)->msb = ((struct bna_dma_addr *)&tmp_addr)->msb; \
77 (_bna_dma_addr)->lsb = ((struct bna_dma_addr *)&tmp_addr)->lsb; \
78} while (0)
79
80/*
81 * input : _bna_dma_addr-> pointer to hw dma addr
82 * output : _addr-> os dma addr in host endian format
83 */
84#define BNA_GET_DMA_ADDR(_bna_dma_addr, _addr) \
85do { \
86 (_addr) = ((((u64)ntohl((_bna_dma_addr)->msb))) << 32) \
87 | ((ntohl((_bna_dma_addr)->lsb) & 0xffffffff)); \
88} while (0)
89
90#define containing_rec(addr, type, field) \
91 ((type *)((unsigned char *)(addr) - \
92 (unsigned char *)(&((type *)0)->field)))
93
94#define BNA_TXQ_WI_NEEDED(_vectors) (((_vectors) + 3) >> 2)
95
96/* TxQ element is 64 bytes */
97#define BNA_TXQ_PAGE_INDEX_MAX (PAGE_SIZE >> 6)
98#define BNA_TXQ_PAGE_INDEX_MAX_SHIFT (PAGE_SHIFT - 6)
99
100#define BNA_TXQ_QPGE_PTR_GET(_qe_idx, _qpt_ptr, _qe_ptr, _qe_ptr_range) \
101{ \
102 unsigned int page_index; /* index within a page */ \
103 void *page_addr; \
104 page_index = (_qe_idx) & (BNA_TXQ_PAGE_INDEX_MAX - 1); \
105 (_qe_ptr_range) = (BNA_TXQ_PAGE_INDEX_MAX - page_index); \
106 page_addr = (_qpt_ptr)[((_qe_idx) >> BNA_TXQ_PAGE_INDEX_MAX_SHIFT)];\
107 (_qe_ptr) = &((struct bna_txq_entry *)(page_addr))[page_index]; \
108}
109
110/* RxQ element is 8 bytes */
111#define BNA_RXQ_PAGE_INDEX_MAX (PAGE_SIZE >> 3)
112#define BNA_RXQ_PAGE_INDEX_MAX_SHIFT (PAGE_SHIFT - 3)
113
114#define BNA_RXQ_QPGE_PTR_GET(_qe_idx, _qpt_ptr, _qe_ptr, _qe_ptr_range) \
115{ \
116 unsigned int page_index; /* index within a page */ \
117 void *page_addr; \
118 page_index = (_qe_idx) & (BNA_RXQ_PAGE_INDEX_MAX - 1); \
119 (_qe_ptr_range) = (BNA_RXQ_PAGE_INDEX_MAX - page_index); \
120 page_addr = (_qpt_ptr)[((_qe_idx) >> \
121 BNA_RXQ_PAGE_INDEX_MAX_SHIFT)]; \
122 (_qe_ptr) = &((struct bna_rxq_entry *)(page_addr))[page_index]; \
123}
124
125/* CQ element is 16 bytes */
126#define BNA_CQ_PAGE_INDEX_MAX (PAGE_SIZE >> 4)
127#define BNA_CQ_PAGE_INDEX_MAX_SHIFT (PAGE_SHIFT - 4)
128
129#define BNA_CQ_QPGE_PTR_GET(_qe_idx, _qpt_ptr, _qe_ptr, _qe_ptr_range) \
130{ \
131 unsigned int page_index; /* index within a page */ \
132 void *page_addr; \
133 \
134 page_index = (_qe_idx) & (BNA_CQ_PAGE_INDEX_MAX - 1); \
135 (_qe_ptr_range) = (BNA_CQ_PAGE_INDEX_MAX - page_index); \
136 page_addr = (_qpt_ptr)[((_qe_idx) >> \
137 BNA_CQ_PAGE_INDEX_MAX_SHIFT)]; \
138 (_qe_ptr) = &((struct bna_cq_entry *)(page_addr))[page_index];\
139}
140
141#define BNA_QE_INDX_2_PTR(_cast, _qe_idx, _q_base) \
142 (&((_cast *)(_q_base))[(_qe_idx)])
143
144#define BNA_QE_INDX_RANGE(_qe_idx, _q_depth) ((_q_depth) - (_qe_idx))
145
146#define BNA_QE_INDX_ADD(_qe_idx, _qe_num, _q_depth) \
147 ((_qe_idx) = ((_qe_idx) + (_qe_num)) & ((_q_depth) - 1))
148
149#define BNA_Q_INDEX_CHANGE(_old_idx, _updated_idx, _q_depth) \
150 (((_updated_idx) - (_old_idx)) & ((_q_depth) - 1))
151
152#define BNA_QE_FREE_CNT(_q_ptr, _q_depth) \
153 (((_q_ptr)->consumer_index - (_q_ptr)->producer_index - 1) & \
154 ((_q_depth) - 1))
155
156#define BNA_QE_IN_USE_CNT(_q_ptr, _q_depth) \
157 ((((_q_ptr)->producer_index - (_q_ptr)->consumer_index)) & \
158 (_q_depth - 1))
159
160#define BNA_Q_GET_CI(_q_ptr) ((_q_ptr)->q.consumer_index)
161
162#define BNA_Q_GET_PI(_q_ptr) ((_q_ptr)->q.producer_index)
163
164#define BNA_Q_PI_ADD(_q_ptr, _num) \
165 (_q_ptr)->q.producer_index = \
166 (((_q_ptr)->q.producer_index + (_num)) & \
167 ((_q_ptr)->q.q_depth - 1))
168
169#define BNA_Q_CI_ADD(_q_ptr, _num) \
170 (_q_ptr)->q.consumer_index = \
171 (((_q_ptr)->q.consumer_index + (_num)) \
172 & ((_q_ptr)->q.q_depth - 1))
173
174#define BNA_Q_FREE_COUNT(_q_ptr) \
175 (BNA_QE_FREE_CNT(&((_q_ptr)->q), (_q_ptr)->q.q_depth))
176
177#define BNA_Q_IN_USE_COUNT(_q_ptr) \
178 (BNA_QE_IN_USE_CNT(&(_q_ptr)->q, (_q_ptr)->q.q_depth))
179
180/* These macros build the data portion of the TxQ/RxQ doorbell */
181#define BNA_DOORBELL_Q_PRD_IDX(_pi) (0x80000000 | (_pi))
182#define BNA_DOORBELL_Q_STOP (0x40000000)
183
184/* These macros build the data portion of the IB doorbell */
185#define BNA_DOORBELL_IB_INT_ACK(_timeout, _events) \
186 (0x80000000 | ((_timeout) << 16) | (_events))
187#define BNA_DOORBELL_IB_INT_DISABLE (0x40000000)
188
189/* Set the coalescing timer for the given ib */
190#define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer) \
191 ((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0));
192
193/* Acks 'events' # of events for a given ib */
194#define bna_ib_ack(_i_dbell, _events) \
195 (writel(((_i_dbell)->doorbell_ack | (_events)), \
196 (_i_dbell)->doorbell_addr));
197
198#define bna_txq_prod_indx_doorbell(_tcb) \
199 (writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \
200 (_tcb)->q_dbell));
201
202#define bna_rxq_prod_indx_doorbell(_rcb) \
203 (writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \
204 (_rcb)->q_dbell));
205
206#define BNA_LARGE_PKT_SIZE 1000
207
208#define BNA_UPDATE_PKT_CNT(_pkt, _len) \
209do { \
210 if ((_len) > BNA_LARGE_PKT_SIZE) { \
211 (_pkt)->large_pkt_cnt++; \
212 } else { \
213 (_pkt)->small_pkt_cnt++; \
214 } \
215} while (0)
216
217#define call_rxf_stop_cbfn(rxf, status) \
218 if ((rxf)->stop_cbfn) { \
219 (*(rxf)->stop_cbfn)((rxf)->stop_cbarg, (status)); \
220 (rxf)->stop_cbfn = NULL; \
221 (rxf)->stop_cbarg = NULL; \
222 }
223
224#define call_rxf_start_cbfn(rxf, status) \
225 if ((rxf)->start_cbfn) { \
226 (*(rxf)->start_cbfn)((rxf)->start_cbarg, (status)); \
227 (rxf)->start_cbfn = NULL; \
228 (rxf)->start_cbarg = NULL; \
229 }
230
231#define call_rxf_cam_fltr_cbfn(rxf, status) \
232 if ((rxf)->cam_fltr_cbfn) { \
233 (*(rxf)->cam_fltr_cbfn)((rxf)->cam_fltr_cbarg, rxf->rx, \
234 (status)); \
235 (rxf)->cam_fltr_cbfn = NULL; \
236 (rxf)->cam_fltr_cbarg = NULL; \
237 }
238
239#define call_rxf_pause_cbfn(rxf, status) \
240 if ((rxf)->oper_state_cbfn) { \
241 (*(rxf)->oper_state_cbfn)((rxf)->oper_state_cbarg, rxf->rx,\
242 (status)); \
243 (rxf)->rxf_flags &= ~BNA_RXF_FL_OPERSTATE_CHANGED; \
244 (rxf)->oper_state_cbfn = NULL; \
245 (rxf)->oper_state_cbarg = NULL; \
246 }
247
248#define call_rxf_resume_cbfn(rxf, status) call_rxf_pause_cbfn(rxf, status)
249
250#define is_xxx_enable(mode, bitmask, xxx) ((bitmask & xxx) && (mode & xxx))
251
252#define is_xxx_disable(mode, bitmask, xxx) ((bitmask & xxx) && !(mode & xxx))
253
254#define xxx_enable(mode, bitmask, xxx) \
255do { \
256 bitmask |= xxx; \
257 mode |= xxx; \
258} while (0)
259
260#define xxx_disable(mode, bitmask, xxx) \
261do { \
262 bitmask |= xxx; \
263 mode &= ~xxx; \
264} while (0)
265
266#define xxx_inactive(mode, bitmask, xxx) \
267do { \
268 bitmask &= ~xxx; \
269 mode &= ~xxx; \
270} while (0)
271
272#define is_promisc_enable(mode, bitmask) \
273 is_xxx_enable(mode, bitmask, BNA_RXMODE_PROMISC)
274
275#define is_promisc_disable(mode, bitmask) \
276 is_xxx_disable(mode, bitmask, BNA_RXMODE_PROMISC)
277
278#define promisc_enable(mode, bitmask) \
279 xxx_enable(mode, bitmask, BNA_RXMODE_PROMISC)
280
281#define promisc_disable(mode, bitmask) \
282 xxx_disable(mode, bitmask, BNA_RXMODE_PROMISC)
283
284#define promisc_inactive(mode, bitmask) \
285 xxx_inactive(mode, bitmask, BNA_RXMODE_PROMISC)
286
287#define is_default_enable(mode, bitmask) \
288 is_xxx_enable(mode, bitmask, BNA_RXMODE_DEFAULT)
289
290#define is_default_disable(mode, bitmask) \
291 is_xxx_disable(mode, bitmask, BNA_RXMODE_DEFAULT)
292
293#define default_enable(mode, bitmask) \
294 xxx_enable(mode, bitmask, BNA_RXMODE_DEFAULT)
295
296#define default_disable(mode, bitmask) \
297 xxx_disable(mode, bitmask, BNA_RXMODE_DEFAULT)
298
299#define default_inactive(mode, bitmask) \
300 xxx_inactive(mode, bitmask, BNA_RXMODE_DEFAULT)
301
302#define is_allmulti_enable(mode, bitmask) \
303 is_xxx_enable(mode, bitmask, BNA_RXMODE_ALLMULTI)
304
305#define is_allmulti_disable(mode, bitmask) \
306 is_xxx_disable(mode, bitmask, BNA_RXMODE_ALLMULTI)
307
308#define allmulti_enable(mode, bitmask) \
309 xxx_enable(mode, bitmask, BNA_RXMODE_ALLMULTI)
310
311#define allmulti_disable(mode, bitmask) \
312 xxx_disable(mode, bitmask, BNA_RXMODE_ALLMULTI)
313
314#define allmulti_inactive(mode, bitmask) \
315 xxx_inactive(mode, bitmask, BNA_RXMODE_ALLMULTI)
316
317#define GET_RXQS(rxp, q0, q1) do { \
318 switch ((rxp)->type) { \
319 case BNA_RXP_SINGLE: \
320 (q0) = rxp->rxq.single.only; \
321 (q1) = NULL; \
322 break; \
323 case BNA_RXP_SLR: \
324 (q0) = rxp->rxq.slr.large; \
325 (q1) = rxp->rxq.slr.small; \
326 break; \
327 case BNA_RXP_HDS: \
328 (q0) = rxp->rxq.hds.data; \
329 (q1) = rxp->rxq.hds.hdr; \
330 break; \
331 } \
332} while (0)
333
334/**
335 *
336 * Function prototypes
337 *
338 */
339
340/**
341 * BNA
342 */
343
344/* APIs for BNAD */
345void bna_res_req(struct bna_res_info *res_info);
346void bna_init(struct bna *bna, struct bnad *bnad,
347 struct bfa_pcidev *pcidev,
348 struct bna_res_info *res_info);
349void bna_uninit(struct bna *bna);
350void bna_stats_get(struct bna *bna);
351void bna_get_perm_mac(struct bna *bna, u8 *mac);
352
353/* APIs for Rx */
354int bna_rit_mod_can_satisfy(struct bna_rit_mod *rit_mod, int seg_size);
355
356/* APIs for RxF */
357struct bna_mac *bna_ucam_mod_mac_get(struct bna_ucam_mod *ucam_mod);
358void bna_ucam_mod_mac_put(struct bna_ucam_mod *ucam_mod,
359 struct bna_mac *mac);
360struct bna_mac *bna_mcam_mod_mac_get(struct bna_mcam_mod *mcam_mod);
361void bna_mcam_mod_mac_put(struct bna_mcam_mod *mcam_mod,
362 struct bna_mac *mac);
363struct bna_rit_segment *
364bna_rit_mod_seg_get(struct bna_rit_mod *rit_mod, int seg_size);
365void bna_rit_mod_seg_put(struct bna_rit_mod *rit_mod,
366 struct bna_rit_segment *seg);
367
368/**
369 * DEVICE
370 */
371
372/* APIs for BNAD */
373void bna_device_enable(struct bna_device *device);
374void bna_device_disable(struct bna_device *device,
375 enum bna_cleanup_type type);
376
377/**
378 * MBOX
379 */
380
381/* APIs for PORT, TX, RX */
382void bna_mbox_handler(struct bna *bna, u32 intr_status);
383void bna_mbox_send(struct bna *bna, struct bna_mbox_qe *mbox_qe);
384
385/**
386 * PORT
387 */
388
389/* API for RX */
390int bna_port_mtu_get(struct bna_port *port);
391void bna_llport_rx_started(struct bna_llport *llport);
392void bna_llport_rx_stopped(struct bna_llport *llport);
393
394/* API for BNAD */
395void bna_port_enable(struct bna_port *port);
396void bna_port_disable(struct bna_port *port, enum bna_cleanup_type type,
397 void (*cbfn)(void *, enum bna_cb_status));
398void bna_port_pause_config(struct bna_port *port,
399 struct bna_pause_config *pause_config,
400 void (*cbfn)(struct bnad *, enum bna_cb_status));
401void bna_port_mtu_set(struct bna_port *port, int mtu,
402 void (*cbfn)(struct bnad *, enum bna_cb_status));
403void bna_port_mac_get(struct bna_port *port, mac_t *mac);
404
405/* Callbacks for TX, RX */
406void bna_port_cb_tx_stopped(struct bna_port *port,
407 enum bna_cb_status status);
408void bna_port_cb_rx_stopped(struct bna_port *port,
409 enum bna_cb_status status);
410
411/**
412 * IB
413 */
414
415/* APIs for BNA */
416void bna_ib_mod_init(struct bna_ib_mod *ib_mod, struct bna *bna,
417 struct bna_res_info *res_info);
418void bna_ib_mod_uninit(struct bna_ib_mod *ib_mod);
419
420/**
421 * TX MODULE AND TX
422 */
423
424/* APIs for BNA */
425void bna_tx_mod_init(struct bna_tx_mod *tx_mod, struct bna *bna,
426 struct bna_res_info *res_info);
427void bna_tx_mod_uninit(struct bna_tx_mod *tx_mod);
428int bna_tx_state_get(struct bna_tx *tx);
429
430/* APIs for PORT */
431void bna_tx_mod_start(struct bna_tx_mod *tx_mod, enum bna_tx_type type);
432void bna_tx_mod_stop(struct bna_tx_mod *tx_mod, enum bna_tx_type type);
433void bna_tx_mod_fail(struct bna_tx_mod *tx_mod);
434void bna_tx_mod_prio_changed(struct bna_tx_mod *tx_mod, int prio);
435void bna_tx_mod_cee_link_status(struct bna_tx_mod *tx_mod, int cee_link);
436
437/* APIs for BNAD */
438void bna_tx_res_req(int num_txq, int txq_depth,
439 struct bna_res_info *res_info);
440struct bna_tx *bna_tx_create(struct bna *bna, struct bnad *bnad,
441 struct bna_tx_config *tx_cfg,
442 struct bna_tx_event_cbfn *tx_cbfn,
443 struct bna_res_info *res_info, void *priv);
444void bna_tx_destroy(struct bna_tx *tx);
445void bna_tx_enable(struct bna_tx *tx);
446void bna_tx_disable(struct bna_tx *tx, enum bna_cleanup_type type,
447 void (*cbfn)(void *, struct bna_tx *,
448 enum bna_cb_status));
449void bna_tx_coalescing_timeo_set(struct bna_tx *tx, int coalescing_timeo);
450
451/**
452 * RX MODULE, RX, RXF
453 */
454
455/* Internal APIs */
456void rxf_cb_cam_fltr_mbox_cmd(void *arg, int status);
457void rxf_cam_mbox_cmd(struct bna_rxf *rxf, u8 cmd,
458 const struct bna_mac *mac_addr);
459void __rxf_vlan_filter_set(struct bna_rxf *rxf, enum bna_status status);
460void bna_rxf_adv_init(struct bna_rxf *rxf,
461 struct bna_rx *rx,
462 struct bna_rx_config *q_config);
463int rxf_process_packet_filter_ucast(struct bna_rxf *rxf);
464int rxf_process_packet_filter_promisc(struct bna_rxf *rxf);
465int rxf_process_packet_filter_default(struct bna_rxf *rxf);
466int rxf_process_packet_filter_allmulti(struct bna_rxf *rxf);
467int rxf_clear_packet_filter_ucast(struct bna_rxf *rxf);
468int rxf_clear_packet_filter_promisc(struct bna_rxf *rxf);
469int rxf_clear_packet_filter_default(struct bna_rxf *rxf);
470int rxf_clear_packet_filter_allmulti(struct bna_rxf *rxf);
471void rxf_reset_packet_filter_ucast(struct bna_rxf *rxf);
472void rxf_reset_packet_filter_promisc(struct bna_rxf *rxf);
473void rxf_reset_packet_filter_default(struct bna_rxf *rxf);
474void rxf_reset_packet_filter_allmulti(struct bna_rxf *rxf);
475
476/* APIs for BNA */
477void bna_rx_mod_init(struct bna_rx_mod *rx_mod, struct bna *bna,
478 struct bna_res_info *res_info);
479void bna_rx_mod_uninit(struct bna_rx_mod *rx_mod);
480int bna_rx_state_get(struct bna_rx *rx);
481int bna_rxf_state_get(struct bna_rxf *rxf);
482
483/* APIs for PORT */
484void bna_rx_mod_start(struct bna_rx_mod *rx_mod, enum bna_rx_type type);
485void bna_rx_mod_stop(struct bna_rx_mod *rx_mod, enum bna_rx_type type);
486void bna_rx_mod_fail(struct bna_rx_mod *rx_mod);
487
488/* APIs for BNAD */
489void bna_rx_res_req(struct bna_rx_config *rx_config,
490 struct bna_res_info *res_info);
491struct bna_rx *bna_rx_create(struct bna *bna, struct bnad *bnad,
492 struct bna_rx_config *rx_cfg,
493 struct bna_rx_event_cbfn *rx_cbfn,
494 struct bna_res_info *res_info, void *priv);
495void bna_rx_destroy(struct bna_rx *rx);
496void bna_rx_enable(struct bna_rx *rx);
497void bna_rx_disable(struct bna_rx *rx, enum bna_cleanup_type type,
498 void (*cbfn)(void *, struct bna_rx *,
499 enum bna_cb_status));
500void bna_rx_coalescing_timeo_set(struct bna_rx *rx, int coalescing_timeo);
501void bna_rx_dim_reconfig(struct bna *bna, const u32 vector[][BNA_BIAS_T_MAX]);
502void bna_rx_dim_update(struct bna_ccb *ccb);
503enum bna_cb_status
504bna_rx_ucast_set(struct bna_rx *rx, u8 *ucmac,
505 void (*cbfn)(struct bnad *, struct bna_rx *,
506 enum bna_cb_status));
507enum bna_cb_status
508bna_rx_mcast_add(struct bna_rx *rx, u8 *mcmac,
509 void (*cbfn)(struct bnad *, struct bna_rx *,
510 enum bna_cb_status));
511enum bna_cb_status
512bna_rx_mcast_listset(struct bna_rx *rx, int count, u8 *mcmac,
513 void (*cbfn)(struct bnad *, struct bna_rx *,
514 enum bna_cb_status));
515enum bna_cb_status
516bna_rx_mode_set(struct bna_rx *rx, enum bna_rxmode rxmode,
517 enum bna_rxmode bitmask,
518 void (*cbfn)(struct bnad *, struct bna_rx *,
519 enum bna_cb_status));
520void bna_rx_vlan_add(struct bna_rx *rx, int vlan_id);
521void bna_rx_vlan_del(struct bna_rx *rx, int vlan_id);
522void bna_rx_vlanfilter_enable(struct bna_rx *rx);
523void bna_rx_hds_enable(struct bna_rx *rx, struct bna_rxf_hds *hds_config,
524 void (*cbfn)(struct bnad *, struct bna_rx *,
525 enum bna_cb_status));
526void bna_rx_hds_disable(struct bna_rx *rx,
527 void (*cbfn)(struct bnad *, struct bna_rx *,
528 enum bna_cb_status));
529
530/**
531 * BNAD
532 */
533
534/* Callbacks for BNA */
535void bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
536 struct bna_stats *stats);
537
538/* Callbacks for DEVICE */
539void bnad_cb_device_enabled(struct bnad *bnad, enum bna_cb_status status);
540void bnad_cb_device_disabled(struct bnad *bnad, enum bna_cb_status status);
541void bnad_cb_device_enable_mbox_intr(struct bnad *bnad);
542void bnad_cb_device_disable_mbox_intr(struct bnad *bnad);
543
544/* Callbacks for port */
545void bnad_cb_port_link_status(struct bnad *bnad,
546 enum bna_link_status status);
547
548#endif /* __BNA_H__ */
diff --git a/drivers/net/bna/bna_ctrl.c b/drivers/net/bna/bna_ctrl.c
new file mode 100644
index 000000000000..53b14169e363
--- /dev/null
+++ b/drivers/net/bna/bna_ctrl.c
@@ -0,0 +1,3077 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#include "bna.h"
19#include "bfa_sm.h"
20#include "bfa_wc.h"
21
22static void bna_device_cb_port_stopped(void *arg, enum bna_cb_status status);
23
24static void
25bna_port_cb_link_up(struct bna_port *port, struct bfi_ll_aen *aen,
26 int status)
27{
28 int i;
29 u8 prio_map;
30
31 port->llport.link_status = BNA_LINK_UP;
32 if (aen->cee_linkup)
33 port->llport.link_status = BNA_CEE_UP;
34
35 /* Compute the priority */
36 prio_map = aen->prio_map;
37 if (prio_map) {
38 for (i = 0; i < 8; i++) {
39 if ((prio_map >> i) & 0x1)
40 break;
41 }
42 port->priority = i;
43 } else
44 port->priority = 0;
45
46 /* Dispatch events */
47 bna_tx_mod_cee_link_status(&port->bna->tx_mod, aen->cee_linkup);
48 bna_tx_mod_prio_changed(&port->bna->tx_mod, port->priority);
49 port->link_cbfn(port->bna->bnad, port->llport.link_status);
50}
51
52static void
53bna_port_cb_link_down(struct bna_port *port, int status)
54{
55 port->llport.link_status = BNA_LINK_DOWN;
56
57 /* Dispatch events */
58 bna_tx_mod_cee_link_status(&port->bna->tx_mod, BNA_LINK_DOWN);
59 port->link_cbfn(port->bna->bnad, BNA_LINK_DOWN);
60}
61
62static inline int
63llport_can_be_up(struct bna_llport *llport)
64{
65 int ready = 0;
66 if (llport->type == BNA_PORT_T_REGULAR)
67 ready = ((llport->flags & BNA_LLPORT_F_ADMIN_UP) &&
68 (llport->flags & BNA_LLPORT_F_RX_STARTED) &&
69 (llport->flags & BNA_LLPORT_F_PORT_ENABLED));
70 else
71 ready = ((llport->flags & BNA_LLPORT_F_ADMIN_UP) &&
72 (llport->flags & BNA_LLPORT_F_RX_STARTED) &&
73 !(llport->flags & BNA_LLPORT_F_PORT_ENABLED));
74 return ready;
75}
76
77#define llport_is_up llport_can_be_up
78
79enum bna_llport_event {
80 LLPORT_E_START = 1,
81 LLPORT_E_STOP = 2,
82 LLPORT_E_FAIL = 3,
83 LLPORT_E_UP = 4,
84 LLPORT_E_DOWN = 5,
85 LLPORT_E_FWRESP_UP_OK = 6,
86 LLPORT_E_FWRESP_UP_FAIL = 7,
87 LLPORT_E_FWRESP_DOWN = 8
88};
89
90static void
91bna_llport_cb_port_enabled(struct bna_llport *llport)
92{
93 llport->flags |= BNA_LLPORT_F_PORT_ENABLED;
94
95 if (llport_can_be_up(llport))
96 bfa_fsm_send_event(llport, LLPORT_E_UP);
97}
98
99static void
100bna_llport_cb_port_disabled(struct bna_llport *llport)
101{
102 int llport_up = llport_is_up(llport);
103
104 llport->flags &= ~BNA_LLPORT_F_PORT_ENABLED;
105
106 if (llport_up)
107 bfa_fsm_send_event(llport, LLPORT_E_DOWN);
108}
109
110/**
111 * MBOX
112 */
113static int
114bna_is_aen(u8 msg_id)
115{
116 switch (msg_id) {
117 case BFI_LL_I2H_LINK_DOWN_AEN:
118 case BFI_LL_I2H_LINK_UP_AEN:
119 case BFI_LL_I2H_PORT_ENABLE_AEN:
120 case BFI_LL_I2H_PORT_DISABLE_AEN:
121 return 1;
122
123 default:
124 return 0;
125 }
126}
127
128static void
129bna_mbox_aen_callback(struct bna *bna, struct bfi_mbmsg *msg)
130{
131 struct bfi_ll_aen *aen = (struct bfi_ll_aen *)(msg);
132
133 switch (aen->mh.msg_id) {
134 case BFI_LL_I2H_LINK_UP_AEN:
135 bna_port_cb_link_up(&bna->port, aen, aen->reason);
136 break;
137 case BFI_LL_I2H_LINK_DOWN_AEN:
138 bna_port_cb_link_down(&bna->port, aen->reason);
139 break;
140 case BFI_LL_I2H_PORT_ENABLE_AEN:
141 bna_llport_cb_port_enabled(&bna->port.llport);
142 break;
143 case BFI_LL_I2H_PORT_DISABLE_AEN:
144 bna_llport_cb_port_disabled(&bna->port.llport);
145 break;
146 default:
147 break;
148 }
149}
150
151static void
152bna_ll_isr(void *llarg, struct bfi_mbmsg *msg)
153{
154 struct bna *bna = (struct bna *)(llarg);
155 struct bfi_ll_rsp *mb_rsp = (struct bfi_ll_rsp *)(msg);
156 struct bfi_mhdr *cmd_h, *rsp_h;
157 struct bna_mbox_qe *mb_qe = NULL;
158 int to_post = 0;
159 u8 aen = 0;
160 char message[BNA_MESSAGE_SIZE];
161
162 aen = bna_is_aen(mb_rsp->mh.msg_id);
163
164 if (!aen) {
165 mb_qe = bfa_q_first(&bna->mbox_mod.posted_q);
166 cmd_h = (struct bfi_mhdr *)(&mb_qe->cmd.msg[0]);
167 rsp_h = (struct bfi_mhdr *)(&mb_rsp->mh);
168
169 if ((BFA_I2HM(cmd_h->msg_id) == rsp_h->msg_id) &&
170 (cmd_h->mtag.i2htok == rsp_h->mtag.i2htok)) {
171 /* Remove the request from posted_q, update state */
172 list_del(&mb_qe->qe);
173 bna->mbox_mod.msg_pending--;
174 if (list_empty(&bna->mbox_mod.posted_q))
175 bna->mbox_mod.state = BNA_MBOX_FREE;
176 else
177 to_post = 1;
178
179 /* Dispatch the cbfn */
180 if (mb_qe->cbfn)
181 mb_qe->cbfn(mb_qe->cbarg, mb_rsp->error);
182
183 /* Post the next entry, if needed */
184 if (to_post) {
185 mb_qe = bfa_q_first(&bna->mbox_mod.posted_q);
186 bfa_nw_ioc_mbox_queue(&bna->device.ioc,
187 &mb_qe->cmd);
188 }
189 } else {
190 snprintf(message, BNA_MESSAGE_SIZE,
191 "No matching rsp for [%d:%d:%d]\n",
192 mb_rsp->mh.msg_class, mb_rsp->mh.msg_id,
193 mb_rsp->mh.mtag.i2htok);
194 pr_info("%s", message);
195 }
196
197 } else
198 bna_mbox_aen_callback(bna, msg);
199}
200
201static void
202bna_err_handler(struct bna *bna, u32 intr_status)
203{
204 u32 init_halt;
205
206 if (intr_status & __HALT_STATUS_BITS) {
207 init_halt = readl(bna->device.ioc.ioc_regs.ll_halt);
208 init_halt &= ~__FW_INIT_HALT_P;
209 writel(init_halt, bna->device.ioc.ioc_regs.ll_halt);
210 }
211
212 bfa_nw_ioc_error_isr(&bna->device.ioc);
213}
214
215void
216bna_mbox_handler(struct bna *bna, u32 intr_status)
217{
218 if (BNA_IS_ERR_INTR(intr_status)) {
219 bna_err_handler(bna, intr_status);
220 return;
221 }
222 if (BNA_IS_MBOX_INTR(intr_status))
223 bfa_nw_ioc_mbox_isr(&bna->device.ioc);
224}
225
226void
227bna_mbox_send(struct bna *bna, struct bna_mbox_qe *mbox_qe)
228{
229 struct bfi_mhdr *mh;
230
231 mh = (struct bfi_mhdr *)(&mbox_qe->cmd.msg[0]);
232
233 mh->mtag.i2htok = htons(bna->mbox_mod.msg_ctr);
234 bna->mbox_mod.msg_ctr++;
235 bna->mbox_mod.msg_pending++;
236 if (bna->mbox_mod.state == BNA_MBOX_FREE) {
237 list_add_tail(&mbox_qe->qe, &bna->mbox_mod.posted_q);
238 bfa_nw_ioc_mbox_queue(&bna->device.ioc, &mbox_qe->cmd);
239 bna->mbox_mod.state = BNA_MBOX_POSTED;
240 } else {
241 list_add_tail(&mbox_qe->qe, &bna->mbox_mod.posted_q);
242 }
243}
244
245static void
246bna_mbox_flush_q(struct bna *bna, struct list_head *q)
247{
248 struct bna_mbox_qe *mb_qe = NULL;
249 struct list_head *mb_q;
250 void (*cbfn)(void *arg, int status);
251 void *cbarg;
252
253 mb_q = &bna->mbox_mod.posted_q;
254
255 while (!list_empty(mb_q)) {
256 bfa_q_deq(mb_q, &mb_qe);
257 cbfn = mb_qe->cbfn;
258 cbarg = mb_qe->cbarg;
259 bfa_q_qe_init(mb_qe);
260 bna->mbox_mod.msg_pending--;
261
262 if (cbfn)
263 cbfn(cbarg, BNA_CB_NOT_EXEC);
264 }
265
266 bna->mbox_mod.state = BNA_MBOX_FREE;
267}
268
269static void
270bna_mbox_mod_start(struct bna_mbox_mod *mbox_mod)
271{
272}
273
274static void
275bna_mbox_mod_stop(struct bna_mbox_mod *mbox_mod)
276{
277 bna_mbox_flush_q(mbox_mod->bna, &mbox_mod->posted_q);
278}
279
280static void
281bna_mbox_mod_init(struct bna_mbox_mod *mbox_mod, struct bna *bna)
282{
283 bfa_nw_ioc_mbox_regisr(&bna->device.ioc, BFI_MC_LL, bna_ll_isr, bna);
284 mbox_mod->state = BNA_MBOX_FREE;
285 mbox_mod->msg_ctr = mbox_mod->msg_pending = 0;
286 INIT_LIST_HEAD(&mbox_mod->posted_q);
287 mbox_mod->bna = bna;
288}
289
290static void
291bna_mbox_mod_uninit(struct bna_mbox_mod *mbox_mod)
292{
293 mbox_mod->bna = NULL;
294}
295
296/**
297 * LLPORT
298 */
299#define call_llport_stop_cbfn(llport, status)\
300do {\
301 if ((llport)->stop_cbfn)\
302 (llport)->stop_cbfn(&(llport)->bna->port, status);\
303 (llport)->stop_cbfn = NULL;\
304} while (0)
305
306static void bna_fw_llport_up(struct bna_llport *llport);
307static void bna_fw_cb_llport_up(void *arg, int status);
308static void bna_fw_llport_down(struct bna_llport *llport);
309static void bna_fw_cb_llport_down(void *arg, int status);
310static void bna_llport_start(struct bna_llport *llport);
311static void bna_llport_stop(struct bna_llport *llport);
312static void bna_llport_fail(struct bna_llport *llport);
313
314enum bna_llport_state {
315 BNA_LLPORT_STOPPED = 1,
316 BNA_LLPORT_DOWN = 2,
317 BNA_LLPORT_UP_RESP_WAIT = 3,
318 BNA_LLPORT_DOWN_RESP_WAIT = 4,
319 BNA_LLPORT_UP = 5,
320 BNA_LLPORT_LAST_RESP_WAIT = 6
321};
322
323bfa_fsm_state_decl(bna_llport, stopped, struct bna_llport,
324 enum bna_llport_event);
325bfa_fsm_state_decl(bna_llport, down, struct bna_llport,
326 enum bna_llport_event);
327bfa_fsm_state_decl(bna_llport, up_resp_wait, struct bna_llport,
328 enum bna_llport_event);
329bfa_fsm_state_decl(bna_llport, down_resp_wait, struct bna_llport,
330 enum bna_llport_event);
331bfa_fsm_state_decl(bna_llport, up, struct bna_llport,
332 enum bna_llport_event);
333bfa_fsm_state_decl(bna_llport, last_resp_wait, struct bna_llport,
334 enum bna_llport_event);
335
336static struct bfa_sm_table llport_sm_table[] = {
337 {BFA_SM(bna_llport_sm_stopped), BNA_LLPORT_STOPPED},
338 {BFA_SM(bna_llport_sm_down), BNA_LLPORT_DOWN},
339 {BFA_SM(bna_llport_sm_up_resp_wait), BNA_LLPORT_UP_RESP_WAIT},
340 {BFA_SM(bna_llport_sm_down_resp_wait), BNA_LLPORT_DOWN_RESP_WAIT},
341 {BFA_SM(bna_llport_sm_up), BNA_LLPORT_UP},
342 {BFA_SM(bna_llport_sm_last_resp_wait), BNA_LLPORT_LAST_RESP_WAIT}
343};
344
345static void
346bna_llport_sm_stopped_entry(struct bna_llport *llport)
347{
348 llport->bna->port.link_cbfn((llport)->bna->bnad, BNA_LINK_DOWN);
349 call_llport_stop_cbfn(llport, BNA_CB_SUCCESS);
350}
351
352static void
353bna_llport_sm_stopped(struct bna_llport *llport,
354 enum bna_llport_event event)
355{
356 switch (event) {
357 case LLPORT_E_START:
358 bfa_fsm_set_state(llport, bna_llport_sm_down);
359 break;
360
361 case LLPORT_E_STOP:
362 call_llport_stop_cbfn(llport, BNA_CB_SUCCESS);
363 break;
364
365 case LLPORT_E_FAIL:
366 break;
367
368 case LLPORT_E_DOWN:
369 /* This event is received due to Rx objects failing */
370 /* No-op */
371 break;
372
373 case LLPORT_E_FWRESP_UP_OK:
374 case LLPORT_E_FWRESP_DOWN:
375 /**
376 * These events are received due to flushing of mbox when
377 * device fails
378 */
379 /* No-op */
380 break;
381
382 default:
383 bfa_sm_fault(llport->bna, event);
384 }
385}
386
387static void
388bna_llport_sm_down_entry(struct bna_llport *llport)
389{
390 bnad_cb_port_link_status((llport)->bna->bnad, BNA_LINK_DOWN);
391}
392
393static void
394bna_llport_sm_down(struct bna_llport *llport,
395 enum bna_llport_event event)
396{
397 switch (event) {
398 case LLPORT_E_STOP:
399 bfa_fsm_set_state(llport, bna_llport_sm_stopped);
400 break;
401
402 case LLPORT_E_FAIL:
403 bfa_fsm_set_state(llport, bna_llport_sm_stopped);
404 break;
405
406 case LLPORT_E_UP:
407 bfa_fsm_set_state(llport, bna_llport_sm_up_resp_wait);
408 bna_fw_llport_up(llport);
409 break;
410
411 default:
412 bfa_sm_fault(llport->bna, event);
413 }
414}
415
416static void
417bna_llport_sm_up_resp_wait_entry(struct bna_llport *llport)
418{
419 BUG_ON(!llport_can_be_up(llport));
420 /**
421 * NOTE: Do not call bna_fw_llport_up() here. That will over step
422 * mbox due to down_resp_wait -> up_resp_wait transition on event
423 * LLPORT_E_UP
424 */
425}
426
427static void
428bna_llport_sm_up_resp_wait(struct bna_llport *llport,
429 enum bna_llport_event event)
430{
431 switch (event) {
432 case LLPORT_E_STOP:
433 bfa_fsm_set_state(llport, bna_llport_sm_last_resp_wait);
434 break;
435
436 case LLPORT_E_FAIL:
437 bfa_fsm_set_state(llport, bna_llport_sm_stopped);
438 break;
439
440 case LLPORT_E_DOWN:
441 bfa_fsm_set_state(llport, bna_llport_sm_down_resp_wait);
442 break;
443
444 case LLPORT_E_FWRESP_UP_OK:
445 bfa_fsm_set_state(llport, bna_llport_sm_up);
446 break;
447
448 case LLPORT_E_FWRESP_UP_FAIL:
449 bfa_fsm_set_state(llport, bna_llport_sm_down);
450 break;
451
452 case LLPORT_E_FWRESP_DOWN:
453 /* down_resp_wait -> up_resp_wait transition on LLPORT_E_UP */
454 bna_fw_llport_up(llport);
455 break;
456
457 default:
458 bfa_sm_fault(llport->bna, event);
459 }
460}
461
462static void
463bna_llport_sm_down_resp_wait_entry(struct bna_llport *llport)
464{
465 /**
466 * NOTE: Do not call bna_fw_llport_down() here. That will over step
467 * mbox due to up_resp_wait -> down_resp_wait transition on event
468 * LLPORT_E_DOWN
469 */
470}
471
472static void
473bna_llport_sm_down_resp_wait(struct bna_llport *llport,
474 enum bna_llport_event event)
475{
476 switch (event) {
477 case LLPORT_E_STOP:
478 bfa_fsm_set_state(llport, bna_llport_sm_last_resp_wait);
479 break;
480
481 case LLPORT_E_FAIL:
482 bfa_fsm_set_state(llport, bna_llport_sm_stopped);
483 break;
484
485 case LLPORT_E_UP:
486 bfa_fsm_set_state(llport, bna_llport_sm_up_resp_wait);
487 break;
488
489 case LLPORT_E_FWRESP_UP_OK:
490 /* up_resp_wait->down_resp_wait transition on LLPORT_E_DOWN */
491 bna_fw_llport_down(llport);
492 break;
493
494 case LLPORT_E_FWRESP_UP_FAIL:
495 case LLPORT_E_FWRESP_DOWN:
496 bfa_fsm_set_state(llport, bna_llport_sm_down);
497 break;
498
499 default:
500 bfa_sm_fault(llport->bna, event);
501 }
502}
503
504static void
505bna_llport_sm_up_entry(struct bna_llport *llport)
506{
507}
508
509static void
510bna_llport_sm_up(struct bna_llport *llport,
511 enum bna_llport_event event)
512{
513 switch (event) {
514 case LLPORT_E_STOP:
515 bfa_fsm_set_state(llport, bna_llport_sm_last_resp_wait);
516 bna_fw_llport_down(llport);
517 break;
518
519 case LLPORT_E_FAIL:
520 bfa_fsm_set_state(llport, bna_llport_sm_stopped);
521 break;
522
523 case LLPORT_E_DOWN:
524 bfa_fsm_set_state(llport, bna_llport_sm_down_resp_wait);
525 bna_fw_llport_down(llport);
526 break;
527
528 default:
529 bfa_sm_fault(llport->bna, event);
530 }
531}
532
533static void
534bna_llport_sm_last_resp_wait_entry(struct bna_llport *llport)
535{
536}
537
538static void
539bna_llport_sm_last_resp_wait(struct bna_llport *llport,
540 enum bna_llport_event event)
541{
542 switch (event) {
543 case LLPORT_E_FAIL:
544 bfa_fsm_set_state(llport, bna_llport_sm_stopped);
545 break;
546
547 case LLPORT_E_DOWN:
548 /**
549 * This event is received due to Rx objects stopping in
550 * parallel to llport
551 */
552 /* No-op */
553 break;
554
555 case LLPORT_E_FWRESP_UP_OK:
556 /* up_resp_wait->last_resp_wait transition on LLPORT_T_STOP */
557 bna_fw_llport_down(llport);
558 break;
559
560 case LLPORT_E_FWRESP_UP_FAIL:
561 case LLPORT_E_FWRESP_DOWN:
562 bfa_fsm_set_state(llport, bna_llport_sm_stopped);
563 break;
564
565 default:
566 bfa_sm_fault(llport->bna, event);
567 }
568}
569
570static void
571bna_fw_llport_admin_up(struct bna_llport *llport)
572{
573 struct bfi_ll_port_admin_req ll_req;
574
575 memset(&ll_req, 0, sizeof(ll_req));
576 ll_req.mh.msg_class = BFI_MC_LL;
577 ll_req.mh.msg_id = BFI_LL_H2I_PORT_ADMIN_REQ;
578 ll_req.mh.mtag.h2i.lpu_id = 0;
579
580 ll_req.up = BNA_STATUS_T_ENABLED;
581
582 bna_mbox_qe_fill(&llport->mbox_qe, &ll_req, sizeof(ll_req),
583 bna_fw_cb_llport_up, llport);
584
585 bna_mbox_send(llport->bna, &llport->mbox_qe);
586}
587
588static void
589bna_fw_llport_up(struct bna_llport *llport)
590{
591 if (llport->type == BNA_PORT_T_REGULAR)
592 bna_fw_llport_admin_up(llport);
593}
594
595static void
596bna_fw_cb_llport_up(void *arg, int status)
597{
598 struct bna_llport *llport = (struct bna_llport *)arg;
599
600 bfa_q_qe_init(&llport->mbox_qe.qe);
601 if (status == BFI_LL_CMD_FAIL) {
602 if (llport->type == BNA_PORT_T_REGULAR)
603 llport->flags &= ~BNA_LLPORT_F_PORT_ENABLED;
604 else
605 llport->flags &= ~BNA_LLPORT_F_ADMIN_UP;
606 bfa_fsm_send_event(llport, LLPORT_E_FWRESP_UP_FAIL);
607 } else
608 bfa_fsm_send_event(llport, LLPORT_E_FWRESP_UP_OK);
609}
610
611static void
612bna_fw_llport_admin_down(struct bna_llport *llport)
613{
614 struct bfi_ll_port_admin_req ll_req;
615
616 memset(&ll_req, 0, sizeof(ll_req));
617 ll_req.mh.msg_class = BFI_MC_LL;
618 ll_req.mh.msg_id = BFI_LL_H2I_PORT_ADMIN_REQ;
619 ll_req.mh.mtag.h2i.lpu_id = 0;
620
621 ll_req.up = BNA_STATUS_T_DISABLED;
622
623 bna_mbox_qe_fill(&llport->mbox_qe, &ll_req, sizeof(ll_req),
624 bna_fw_cb_llport_down, llport);
625
626 bna_mbox_send(llport->bna, &llport->mbox_qe);
627}
628
629static void
630bna_fw_llport_down(struct bna_llport *llport)
631{
632 if (llport->type == BNA_PORT_T_REGULAR)
633 bna_fw_llport_admin_down(llport);
634}
635
636static void
637bna_fw_cb_llport_down(void *arg, int status)
638{
639 struct bna_llport *llport = (struct bna_llport *)arg;
640
641 bfa_q_qe_init(&llport->mbox_qe.qe);
642 bfa_fsm_send_event(llport, LLPORT_E_FWRESP_DOWN);
643}
644
645static void
646bna_port_cb_llport_stopped(struct bna_port *port,
647 enum bna_cb_status status)
648{
649 bfa_wc_down(&port->chld_stop_wc);
650}
651
652static void
653bna_llport_init(struct bna_llport *llport, struct bna *bna)
654{
655 llport->flags |= BNA_LLPORT_F_ADMIN_UP;
656 llport->flags |= BNA_LLPORT_F_PORT_ENABLED;
657 llport->type = BNA_PORT_T_REGULAR;
658 llport->bna = bna;
659
660 llport->link_status = BNA_LINK_DOWN;
661
662 llport->rx_started_count = 0;
663
664 llport->stop_cbfn = NULL;
665
666 bfa_q_qe_init(&llport->mbox_qe.qe);
667
668 bfa_fsm_set_state(llport, bna_llport_sm_stopped);
669}
670
671static void
672bna_llport_uninit(struct bna_llport *llport)
673{
674 llport->flags &= ~BNA_LLPORT_F_ADMIN_UP;
675 llport->flags &= ~BNA_LLPORT_F_PORT_ENABLED;
676
677 llport->bna = NULL;
678}
679
680static void
681bna_llport_start(struct bna_llport *llport)
682{
683 bfa_fsm_send_event(llport, LLPORT_E_START);
684}
685
686static void
687bna_llport_stop(struct bna_llport *llport)
688{
689 llport->stop_cbfn = bna_port_cb_llport_stopped;
690
691 bfa_fsm_send_event(llport, LLPORT_E_STOP);
692}
693
694static void
695bna_llport_fail(struct bna_llport *llport)
696{
697 /* Reset the physical port status to enabled */
698 llport->flags |= BNA_LLPORT_F_PORT_ENABLED;
699 bfa_fsm_send_event(llport, LLPORT_E_FAIL);
700}
701
702static int
703bna_llport_state_get(struct bna_llport *llport)
704{
705 return bfa_sm_to_state(llport_sm_table, llport->fsm);
706}
707
708void
709bna_llport_rx_started(struct bna_llport *llport)
710{
711 llport->rx_started_count++;
712
713 if (llport->rx_started_count == 1) {
714
715 llport->flags |= BNA_LLPORT_F_RX_STARTED;
716
717 if (llport_can_be_up(llport))
718 bfa_fsm_send_event(llport, LLPORT_E_UP);
719 }
720}
721
722void
723bna_llport_rx_stopped(struct bna_llport *llport)
724{
725 int llport_up = llport_is_up(llport);
726
727 llport->rx_started_count--;
728
729 if (llport->rx_started_count == 0) {
730
731 llport->flags &= ~BNA_LLPORT_F_RX_STARTED;
732
733 if (llport_up)
734 bfa_fsm_send_event(llport, LLPORT_E_DOWN);
735 }
736}
737
738/**
739 * PORT
740 */
741#define bna_port_chld_start(port)\
742do {\
743 enum bna_tx_type tx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
744 BNA_TX_T_REGULAR : BNA_TX_T_LOOPBACK;\
745 enum bna_rx_type rx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
746 BNA_RX_T_REGULAR : BNA_RX_T_LOOPBACK;\
747 bna_llport_start(&(port)->llport);\
748 bna_tx_mod_start(&(port)->bna->tx_mod, tx_type);\
749 bna_rx_mod_start(&(port)->bna->rx_mod, rx_type);\
750} while (0)
751
752#define bna_port_chld_stop(port)\
753do {\
754 enum bna_tx_type tx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
755 BNA_TX_T_REGULAR : BNA_TX_T_LOOPBACK;\
756 enum bna_rx_type rx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
757 BNA_RX_T_REGULAR : BNA_RX_T_LOOPBACK;\
758 bfa_wc_up(&(port)->chld_stop_wc);\
759 bfa_wc_up(&(port)->chld_stop_wc);\
760 bfa_wc_up(&(port)->chld_stop_wc);\
761 bna_llport_stop(&(port)->llport);\
762 bna_tx_mod_stop(&(port)->bna->tx_mod, tx_type);\
763 bna_rx_mod_stop(&(port)->bna->rx_mod, rx_type);\
764} while (0)
765
766#define bna_port_chld_fail(port)\
767do {\
768 bna_llport_fail(&(port)->llport);\
769 bna_tx_mod_fail(&(port)->bna->tx_mod);\
770 bna_rx_mod_fail(&(port)->bna->rx_mod);\
771} while (0)
772
773#define bna_port_rx_start(port)\
774do {\
775 enum bna_rx_type rx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
776 BNA_RX_T_REGULAR : BNA_RX_T_LOOPBACK;\
777 bna_rx_mod_start(&(port)->bna->rx_mod, rx_type);\
778} while (0)
779
780#define bna_port_rx_stop(port)\
781do {\
782 enum bna_rx_type rx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
783 BNA_RX_T_REGULAR : BNA_RX_T_LOOPBACK;\
784 bfa_wc_up(&(port)->chld_stop_wc);\
785 bna_rx_mod_stop(&(port)->bna->rx_mod, rx_type);\
786} while (0)
787
788#define call_port_stop_cbfn(port, status)\
789do {\
790 if ((port)->stop_cbfn)\
791 (port)->stop_cbfn((port)->stop_cbarg, status);\
792 (port)->stop_cbfn = NULL;\
793 (port)->stop_cbarg = NULL;\
794} while (0)
795
796#define call_port_pause_cbfn(port, status)\
797do {\
798 if ((port)->pause_cbfn)\
799 (port)->pause_cbfn((port)->bna->bnad, status);\
800 (port)->pause_cbfn = NULL;\
801} while (0)
802
803#define call_port_mtu_cbfn(port, status)\
804do {\
805 if ((port)->mtu_cbfn)\
806 (port)->mtu_cbfn((port)->bna->bnad, status);\
807 (port)->mtu_cbfn = NULL;\
808} while (0)
809
810static void bna_fw_pause_set(struct bna_port *port);
811static void bna_fw_cb_pause_set(void *arg, int status);
812static void bna_fw_mtu_set(struct bna_port *port);
813static void bna_fw_cb_mtu_set(void *arg, int status);
814
815enum bna_port_event {
816 PORT_E_START = 1,
817 PORT_E_STOP = 2,
818 PORT_E_FAIL = 3,
819 PORT_E_PAUSE_CFG = 4,
820 PORT_E_MTU_CFG = 5,
821 PORT_E_CHLD_STOPPED = 6,
822 PORT_E_FWRESP_PAUSE = 7,
823 PORT_E_FWRESP_MTU = 8
824};
825
826enum bna_port_state {
827 BNA_PORT_STOPPED = 1,
828 BNA_PORT_MTU_INIT_WAIT = 2,
829 BNA_PORT_PAUSE_INIT_WAIT = 3,
830 BNA_PORT_LAST_RESP_WAIT = 4,
831 BNA_PORT_STARTED = 5,
832 BNA_PORT_PAUSE_CFG_WAIT = 6,
833 BNA_PORT_RX_STOP_WAIT = 7,
834 BNA_PORT_MTU_CFG_WAIT = 8,
835 BNA_PORT_CHLD_STOP_WAIT = 9
836};
837
838bfa_fsm_state_decl(bna_port, stopped, struct bna_port,
839 enum bna_port_event);
840bfa_fsm_state_decl(bna_port, mtu_init_wait, struct bna_port,
841 enum bna_port_event);
842bfa_fsm_state_decl(bna_port, pause_init_wait, struct bna_port,
843 enum bna_port_event);
844bfa_fsm_state_decl(bna_port, last_resp_wait, struct bna_port,
845 enum bna_port_event);
846bfa_fsm_state_decl(bna_port, started, struct bna_port,
847 enum bna_port_event);
848bfa_fsm_state_decl(bna_port, pause_cfg_wait, struct bna_port,
849 enum bna_port_event);
850bfa_fsm_state_decl(bna_port, rx_stop_wait, struct bna_port,
851 enum bna_port_event);
852bfa_fsm_state_decl(bna_port, mtu_cfg_wait, struct bna_port,
853 enum bna_port_event);
854bfa_fsm_state_decl(bna_port, chld_stop_wait, struct bna_port,
855 enum bna_port_event);
856
857static struct bfa_sm_table port_sm_table[] = {
858 {BFA_SM(bna_port_sm_stopped), BNA_PORT_STOPPED},
859 {BFA_SM(bna_port_sm_mtu_init_wait), BNA_PORT_MTU_INIT_WAIT},
860 {BFA_SM(bna_port_sm_pause_init_wait), BNA_PORT_PAUSE_INIT_WAIT},
861 {BFA_SM(bna_port_sm_last_resp_wait), BNA_PORT_LAST_RESP_WAIT},
862 {BFA_SM(bna_port_sm_started), BNA_PORT_STARTED},
863 {BFA_SM(bna_port_sm_pause_cfg_wait), BNA_PORT_PAUSE_CFG_WAIT},
864 {BFA_SM(bna_port_sm_rx_stop_wait), BNA_PORT_RX_STOP_WAIT},
865 {BFA_SM(bna_port_sm_mtu_cfg_wait), BNA_PORT_MTU_CFG_WAIT},
866 {BFA_SM(bna_port_sm_chld_stop_wait), BNA_PORT_CHLD_STOP_WAIT}
867};
868
869static void
870bna_port_sm_stopped_entry(struct bna_port *port)
871{
872 call_port_pause_cbfn(port, BNA_CB_SUCCESS);
873 call_port_mtu_cbfn(port, BNA_CB_SUCCESS);
874 call_port_stop_cbfn(port, BNA_CB_SUCCESS);
875}
876
877static void
878bna_port_sm_stopped(struct bna_port *port, enum bna_port_event event)
879{
880 switch (event) {
881 case PORT_E_START:
882 bfa_fsm_set_state(port, bna_port_sm_mtu_init_wait);
883 break;
884
885 case PORT_E_STOP:
886 call_port_stop_cbfn(port, BNA_CB_SUCCESS);
887 break;
888
889 case PORT_E_FAIL:
890 /* No-op */
891 break;
892
893 case PORT_E_PAUSE_CFG:
894 call_port_pause_cbfn(port, BNA_CB_SUCCESS);
895 break;
896
897 case PORT_E_MTU_CFG:
898 call_port_mtu_cbfn(port, BNA_CB_SUCCESS);
899 break;
900
901 case PORT_E_CHLD_STOPPED:
902 /**
903 * This event is received due to LLPort, Tx and Rx objects
904 * failing
905 */
906 /* No-op */
907 break;
908
909 case PORT_E_FWRESP_PAUSE:
910 case PORT_E_FWRESP_MTU:
911 /**
912 * These events are received due to flushing of mbox when
913 * device fails
914 */
915 /* No-op */
916 break;
917
918 default:
919 bfa_sm_fault(port->bna, event);
920 }
921}
922
923static void
924bna_port_sm_mtu_init_wait_entry(struct bna_port *port)
925{
926 bna_fw_mtu_set(port);
927}
928
929static void
930bna_port_sm_mtu_init_wait(struct bna_port *port, enum bna_port_event event)
931{
932 switch (event) {
933 case PORT_E_STOP:
934 bfa_fsm_set_state(port, bna_port_sm_last_resp_wait);
935 break;
936
937 case PORT_E_FAIL:
938 bfa_fsm_set_state(port, bna_port_sm_stopped);
939 break;
940
941 case PORT_E_PAUSE_CFG:
942 /* No-op */
943 break;
944
945 case PORT_E_MTU_CFG:
946 port->flags |= BNA_PORT_F_MTU_CHANGED;
947 break;
948
949 case PORT_E_FWRESP_MTU:
950 if (port->flags & BNA_PORT_F_MTU_CHANGED) {
951 port->flags &= ~BNA_PORT_F_MTU_CHANGED;
952 bna_fw_mtu_set(port);
953 } else {
954 bfa_fsm_set_state(port, bna_port_sm_pause_init_wait);
955 }
956 break;
957
958 default:
959 bfa_sm_fault(port->bna, event);
960 }
961}
962
963static void
964bna_port_sm_pause_init_wait_entry(struct bna_port *port)
965{
966 bna_fw_pause_set(port);
967}
968
969static void
970bna_port_sm_pause_init_wait(struct bna_port *port,
971 enum bna_port_event event)
972{
973 switch (event) {
974 case PORT_E_STOP:
975 bfa_fsm_set_state(port, bna_port_sm_last_resp_wait);
976 break;
977
978 case PORT_E_FAIL:
979 bfa_fsm_set_state(port, bna_port_sm_stopped);
980 break;
981
982 case PORT_E_PAUSE_CFG:
983 port->flags |= BNA_PORT_F_PAUSE_CHANGED;
984 break;
985
986 case PORT_E_MTU_CFG:
987 port->flags |= BNA_PORT_F_MTU_CHANGED;
988 break;
989
990 case PORT_E_FWRESP_PAUSE:
991 if (port->flags & BNA_PORT_F_PAUSE_CHANGED) {
992 port->flags &= ~BNA_PORT_F_PAUSE_CHANGED;
993 bna_fw_pause_set(port);
994 } else if (port->flags & BNA_PORT_F_MTU_CHANGED) {
995 port->flags &= ~BNA_PORT_F_MTU_CHANGED;
996 bfa_fsm_set_state(port, bna_port_sm_mtu_init_wait);
997 } else {
998 bfa_fsm_set_state(port, bna_port_sm_started);
999 bna_port_chld_start(port);
1000 }
1001 break;
1002
1003 default:
1004 bfa_sm_fault(port->bna, event);
1005 }
1006}
1007
1008static void
1009bna_port_sm_last_resp_wait_entry(struct bna_port *port)
1010{
1011}
1012
1013static void
1014bna_port_sm_last_resp_wait(struct bna_port *port,
1015 enum bna_port_event event)
1016{
1017 switch (event) {
1018 case PORT_E_FAIL:
1019 case PORT_E_FWRESP_PAUSE:
1020 case PORT_E_FWRESP_MTU:
1021 bfa_fsm_set_state(port, bna_port_sm_stopped);
1022 break;
1023
1024 default:
1025 bfa_sm_fault(port->bna, event);
1026 }
1027}
1028
1029static void
1030bna_port_sm_started_entry(struct bna_port *port)
1031{
1032 /**
1033 * NOTE: Do not call bna_port_chld_start() here, since it will be
1034 * inadvertently called during pause_cfg_wait->started transition
1035 * as well
1036 */
1037 call_port_pause_cbfn(port, BNA_CB_SUCCESS);
1038 call_port_mtu_cbfn(port, BNA_CB_SUCCESS);
1039}
1040
1041static void
1042bna_port_sm_started(struct bna_port *port,
1043 enum bna_port_event event)
1044{
1045 switch (event) {
1046 case PORT_E_STOP:
1047 bfa_fsm_set_state(port, bna_port_sm_chld_stop_wait);
1048 break;
1049
1050 case PORT_E_FAIL:
1051 bfa_fsm_set_state(port, bna_port_sm_stopped);
1052 bna_port_chld_fail(port);
1053 break;
1054
1055 case PORT_E_PAUSE_CFG:
1056 bfa_fsm_set_state(port, bna_port_sm_pause_cfg_wait);
1057 break;
1058
1059 case PORT_E_MTU_CFG:
1060 bfa_fsm_set_state(port, bna_port_sm_rx_stop_wait);
1061 break;
1062
1063 default:
1064 bfa_sm_fault(port->bna, event);
1065 }
1066}
1067
1068static void
1069bna_port_sm_pause_cfg_wait_entry(struct bna_port *port)
1070{
1071 bna_fw_pause_set(port);
1072}
1073
1074static void
1075bna_port_sm_pause_cfg_wait(struct bna_port *port,
1076 enum bna_port_event event)
1077{
1078 switch (event) {
1079 case PORT_E_FAIL:
1080 bfa_fsm_set_state(port, bna_port_sm_stopped);
1081 bna_port_chld_fail(port);
1082 break;
1083
1084 case PORT_E_FWRESP_PAUSE:
1085 bfa_fsm_set_state(port, bna_port_sm_started);
1086 break;
1087
1088 default:
1089 bfa_sm_fault(port->bna, event);
1090 }
1091}
1092
1093static void
1094bna_port_sm_rx_stop_wait_entry(struct bna_port *port)
1095{
1096 bna_port_rx_stop(port);
1097}
1098
1099static void
1100bna_port_sm_rx_stop_wait(struct bna_port *port,
1101 enum bna_port_event event)
1102{
1103 switch (event) {
1104 case PORT_E_FAIL:
1105 bfa_fsm_set_state(port, bna_port_sm_stopped);
1106 bna_port_chld_fail(port);
1107 break;
1108
1109 case PORT_E_CHLD_STOPPED:
1110 bfa_fsm_set_state(port, bna_port_sm_mtu_cfg_wait);
1111 break;
1112
1113 default:
1114 bfa_sm_fault(port->bna, event);
1115 }
1116}
1117
1118static void
1119bna_port_sm_mtu_cfg_wait_entry(struct bna_port *port)
1120{
1121 bna_fw_mtu_set(port);
1122}
1123
1124static void
1125bna_port_sm_mtu_cfg_wait(struct bna_port *port, enum bna_port_event event)
1126{
1127 switch (event) {
1128 case PORT_E_FAIL:
1129 bfa_fsm_set_state(port, bna_port_sm_stopped);
1130 bna_port_chld_fail(port);
1131 break;
1132
1133 case PORT_E_FWRESP_MTU:
1134 bfa_fsm_set_state(port, bna_port_sm_started);
1135 bna_port_rx_start(port);
1136 break;
1137
1138 default:
1139 bfa_sm_fault(port->bna, event);
1140 }
1141}
1142
1143static void
1144bna_port_sm_chld_stop_wait_entry(struct bna_port *port)
1145{
1146 bna_port_chld_stop(port);
1147}
1148
1149static void
1150bna_port_sm_chld_stop_wait(struct bna_port *port,
1151 enum bna_port_event event)
1152{
1153 switch (event) {
1154 case PORT_E_FAIL:
1155 bfa_fsm_set_state(port, bna_port_sm_stopped);
1156 bna_port_chld_fail(port);
1157 break;
1158
1159 case PORT_E_CHLD_STOPPED:
1160 bfa_fsm_set_state(port, bna_port_sm_stopped);
1161 break;
1162
1163 default:
1164 bfa_sm_fault(port->bna, event);
1165 }
1166}
1167
1168static void
1169bna_fw_pause_set(struct bna_port *port)
1170{
1171 struct bfi_ll_set_pause_req ll_req;
1172
1173 memset(&ll_req, 0, sizeof(ll_req));
1174 ll_req.mh.msg_class = BFI_MC_LL;
1175 ll_req.mh.msg_id = BFI_LL_H2I_SET_PAUSE_REQ;
1176 ll_req.mh.mtag.h2i.lpu_id = 0;
1177
1178 ll_req.tx_pause = port->pause_config.tx_pause;
1179 ll_req.rx_pause = port->pause_config.rx_pause;
1180
1181 bna_mbox_qe_fill(&port->mbox_qe, &ll_req, sizeof(ll_req),
1182 bna_fw_cb_pause_set, port);
1183
1184 bna_mbox_send(port->bna, &port->mbox_qe);
1185}
1186
1187static void
1188bna_fw_cb_pause_set(void *arg, int status)
1189{
1190 struct bna_port *port = (struct bna_port *)arg;
1191
1192 bfa_q_qe_init(&port->mbox_qe.qe);
1193 bfa_fsm_send_event(port, PORT_E_FWRESP_PAUSE);
1194}
1195
1196void
1197bna_fw_mtu_set(struct bna_port *port)
1198{
1199 struct bfi_ll_mtu_info_req ll_req;
1200
1201 bfi_h2i_set(ll_req.mh, BFI_MC_LL, BFI_LL_H2I_MTU_INFO_REQ, 0);
1202 ll_req.mtu = htons((u16)port->mtu);
1203
1204 bna_mbox_qe_fill(&port->mbox_qe, &ll_req, sizeof(ll_req),
1205 bna_fw_cb_mtu_set, port);
1206 bna_mbox_send(port->bna, &port->mbox_qe);
1207}
1208
1209void
1210bna_fw_cb_mtu_set(void *arg, int status)
1211{
1212 struct bna_port *port = (struct bna_port *)arg;
1213
1214 bfa_q_qe_init(&port->mbox_qe.qe);
1215 bfa_fsm_send_event(port, PORT_E_FWRESP_MTU);
1216}
1217
1218static void
1219bna_port_cb_chld_stopped(void *arg)
1220{
1221 struct bna_port *port = (struct bna_port *)arg;
1222
1223 bfa_fsm_send_event(port, PORT_E_CHLD_STOPPED);
1224}
1225
1226static void
1227bna_port_init(struct bna_port *port, struct bna *bna)
1228{
1229 port->bna = bna;
1230 port->flags = 0;
1231 port->mtu = 0;
1232 port->type = BNA_PORT_T_REGULAR;
1233
1234 port->link_cbfn = bnad_cb_port_link_status;
1235
1236 port->chld_stop_wc.wc_resume = bna_port_cb_chld_stopped;
1237 port->chld_stop_wc.wc_cbarg = port;
1238 port->chld_stop_wc.wc_count = 0;
1239
1240 port->stop_cbfn = NULL;
1241 port->stop_cbarg = NULL;
1242
1243 port->pause_cbfn = NULL;
1244
1245 port->mtu_cbfn = NULL;
1246
1247 bfa_q_qe_init(&port->mbox_qe.qe);
1248
1249 bfa_fsm_set_state(port, bna_port_sm_stopped);
1250
1251 bna_llport_init(&port->llport, bna);
1252}
1253
1254static void
1255bna_port_uninit(struct bna_port *port)
1256{
1257 bna_llport_uninit(&port->llport);
1258
1259 port->flags = 0;
1260
1261 port->bna = NULL;
1262}
1263
1264static int
1265bna_port_state_get(struct bna_port *port)
1266{
1267 return bfa_sm_to_state(port_sm_table, port->fsm);
1268}
1269
1270static void
1271bna_port_start(struct bna_port *port)
1272{
1273 port->flags |= BNA_PORT_F_DEVICE_READY;
1274 if (port->flags & BNA_PORT_F_ENABLED)
1275 bfa_fsm_send_event(port, PORT_E_START);
1276}
1277
1278static void
1279bna_port_stop(struct bna_port *port)
1280{
1281 port->stop_cbfn = bna_device_cb_port_stopped;
1282 port->stop_cbarg = &port->bna->device;
1283
1284 port->flags &= ~BNA_PORT_F_DEVICE_READY;
1285 bfa_fsm_send_event(port, PORT_E_STOP);
1286}
1287
1288static void
1289bna_port_fail(struct bna_port *port)
1290{
1291 port->flags &= ~BNA_PORT_F_DEVICE_READY;
1292 bfa_fsm_send_event(port, PORT_E_FAIL);
1293}
1294
1295void
1296bna_port_cb_tx_stopped(struct bna_port *port, enum bna_cb_status status)
1297{
1298 bfa_wc_down(&port->chld_stop_wc);
1299}
1300
1301void
1302bna_port_cb_rx_stopped(struct bna_port *port, enum bna_cb_status status)
1303{
1304 bfa_wc_down(&port->chld_stop_wc);
1305}
1306
1307int
1308bna_port_mtu_get(struct bna_port *port)
1309{
1310 return port->mtu;
1311}
1312
1313void
1314bna_port_enable(struct bna_port *port)
1315{
1316 if (port->fsm != (bfa_sm_t)bna_port_sm_stopped)
1317 return;
1318
1319 port->flags |= BNA_PORT_F_ENABLED;
1320
1321 if (port->flags & BNA_PORT_F_DEVICE_READY)
1322 bfa_fsm_send_event(port, PORT_E_START);
1323}
1324
1325void
1326bna_port_disable(struct bna_port *port, enum bna_cleanup_type type,
1327 void (*cbfn)(void *, enum bna_cb_status))
1328{
1329 if (type == BNA_SOFT_CLEANUP) {
1330 (*cbfn)(port->bna->bnad, BNA_CB_SUCCESS);
1331 return;
1332 }
1333
1334 port->stop_cbfn = cbfn;
1335 port->stop_cbarg = port->bna->bnad;
1336
1337 port->flags &= ~BNA_PORT_F_ENABLED;
1338
1339 bfa_fsm_send_event(port, PORT_E_STOP);
1340}
1341
1342void
1343bna_port_pause_config(struct bna_port *port,
1344 struct bna_pause_config *pause_config,
1345 void (*cbfn)(struct bnad *, enum bna_cb_status))
1346{
1347 port->pause_config = *pause_config;
1348
1349 port->pause_cbfn = cbfn;
1350
1351 bfa_fsm_send_event(port, PORT_E_PAUSE_CFG);
1352}
1353
1354void
1355bna_port_mtu_set(struct bna_port *port, int mtu,
1356 void (*cbfn)(struct bnad *, enum bna_cb_status))
1357{
1358 port->mtu = mtu;
1359
1360 port->mtu_cbfn = cbfn;
1361
1362 bfa_fsm_send_event(port, PORT_E_MTU_CFG);
1363}
1364
1365void
1366bna_port_mac_get(struct bna_port *port, mac_t *mac)
1367{
1368 *mac = bfa_nw_ioc_get_mac(&port->bna->device.ioc);
1369}
1370
1371/**
1372 * DEVICE
1373 */
1374#define enable_mbox_intr(_device)\
1375do {\
1376 u32 intr_status;\
1377 bna_intr_status_get((_device)->bna, intr_status);\
1378 bnad_cb_device_enable_mbox_intr((_device)->bna->bnad);\
1379 bna_mbox_intr_enable((_device)->bna);\
1380} while (0)
1381
1382#define disable_mbox_intr(_device)\
1383do {\
1384 bna_mbox_intr_disable((_device)->bna);\
1385 bnad_cb_device_disable_mbox_intr((_device)->bna->bnad);\
1386} while (0)
1387
1388static const struct bna_chip_regs_offset reg_offset[] =
1389{{HOST_PAGE_NUM_FN0, HOSTFN0_INT_STATUS,
1390 HOSTFN0_INT_MASK, HOST_MSIX_ERR_INDEX_FN0},
1391{HOST_PAGE_NUM_FN1, HOSTFN1_INT_STATUS,
1392 HOSTFN1_INT_MASK, HOST_MSIX_ERR_INDEX_FN1},
1393{HOST_PAGE_NUM_FN2, HOSTFN2_INT_STATUS,
1394 HOSTFN2_INT_MASK, HOST_MSIX_ERR_INDEX_FN2},
1395{HOST_PAGE_NUM_FN3, HOSTFN3_INT_STATUS,
1396 HOSTFN3_INT_MASK, HOST_MSIX_ERR_INDEX_FN3},
1397};
1398
1399enum bna_device_event {
1400 DEVICE_E_ENABLE = 1,
1401 DEVICE_E_DISABLE = 2,
1402 DEVICE_E_IOC_READY = 3,
1403 DEVICE_E_IOC_FAILED = 4,
1404 DEVICE_E_IOC_DISABLED = 5,
1405 DEVICE_E_IOC_RESET = 6,
1406 DEVICE_E_PORT_STOPPED = 7,
1407};
1408
1409enum bna_device_state {
1410 BNA_DEVICE_STOPPED = 1,
1411 BNA_DEVICE_IOC_READY_WAIT = 2,
1412 BNA_DEVICE_READY = 3,
1413 BNA_DEVICE_PORT_STOP_WAIT = 4,
1414 BNA_DEVICE_IOC_DISABLE_WAIT = 5,
1415 BNA_DEVICE_FAILED = 6
1416};
1417
1418bfa_fsm_state_decl(bna_device, stopped, struct bna_device,
1419 enum bna_device_event);
1420bfa_fsm_state_decl(bna_device, ioc_ready_wait, struct bna_device,
1421 enum bna_device_event);
1422bfa_fsm_state_decl(bna_device, ready, struct bna_device,
1423 enum bna_device_event);
1424bfa_fsm_state_decl(bna_device, port_stop_wait, struct bna_device,
1425 enum bna_device_event);
1426bfa_fsm_state_decl(bna_device, ioc_disable_wait, struct bna_device,
1427 enum bna_device_event);
1428bfa_fsm_state_decl(bna_device, failed, struct bna_device,
1429 enum bna_device_event);
1430
1431static struct bfa_sm_table device_sm_table[] = {
1432 {BFA_SM(bna_device_sm_stopped), BNA_DEVICE_STOPPED},
1433 {BFA_SM(bna_device_sm_ioc_ready_wait), BNA_DEVICE_IOC_READY_WAIT},
1434 {BFA_SM(bna_device_sm_ready), BNA_DEVICE_READY},
1435 {BFA_SM(bna_device_sm_port_stop_wait), BNA_DEVICE_PORT_STOP_WAIT},
1436 {BFA_SM(bna_device_sm_ioc_disable_wait), BNA_DEVICE_IOC_DISABLE_WAIT},
1437 {BFA_SM(bna_device_sm_failed), BNA_DEVICE_FAILED},
1438};
1439
1440static void
1441bna_device_sm_stopped_entry(struct bna_device *device)
1442{
1443 if (device->stop_cbfn)
1444 device->stop_cbfn(device->stop_cbarg, BNA_CB_SUCCESS);
1445
1446 device->stop_cbfn = NULL;
1447 device->stop_cbarg = NULL;
1448}
1449
1450static void
1451bna_device_sm_stopped(struct bna_device *device,
1452 enum bna_device_event event)
1453{
1454 switch (event) {
1455 case DEVICE_E_ENABLE:
1456 if (device->intr_type == BNA_INTR_T_MSIX)
1457 bna_mbox_msix_idx_set(device);
1458 bfa_nw_ioc_enable(&device->ioc);
1459 bfa_fsm_set_state(device, bna_device_sm_ioc_ready_wait);
1460 break;
1461
1462 case DEVICE_E_DISABLE:
1463 bfa_fsm_set_state(device, bna_device_sm_stopped);
1464 break;
1465
1466 case DEVICE_E_IOC_RESET:
1467 enable_mbox_intr(device);
1468 break;
1469
1470 case DEVICE_E_IOC_FAILED:
1471 bfa_fsm_set_state(device, bna_device_sm_failed);
1472 break;
1473
1474 default:
1475 bfa_sm_fault(device->bna, event);
1476 }
1477}
1478
1479static void
1480bna_device_sm_ioc_ready_wait_entry(struct bna_device *device)
1481{
1482 /**
1483 * Do not call bfa_ioc_enable() here. It must be called in the
1484 * previous state due to failed -> ioc_ready_wait transition.
1485 */
1486}
1487
1488static void
1489bna_device_sm_ioc_ready_wait(struct bna_device *device,
1490 enum bna_device_event event)
1491{
1492 switch (event) {
1493 case DEVICE_E_DISABLE:
1494 if (device->ready_cbfn)
1495 device->ready_cbfn(device->ready_cbarg,
1496 BNA_CB_INTERRUPT);
1497 device->ready_cbfn = NULL;
1498 device->ready_cbarg = NULL;
1499 bfa_fsm_set_state(device, bna_device_sm_ioc_disable_wait);
1500 break;
1501
1502 case DEVICE_E_IOC_READY:
1503 bfa_fsm_set_state(device, bna_device_sm_ready);
1504 break;
1505
1506 case DEVICE_E_IOC_FAILED:
1507 bfa_fsm_set_state(device, bna_device_sm_failed);
1508 break;
1509
1510 case DEVICE_E_IOC_RESET:
1511 enable_mbox_intr(device);
1512 break;
1513
1514 default:
1515 bfa_sm_fault(device->bna, event);
1516 }
1517}
1518
1519static void
1520bna_device_sm_ready_entry(struct bna_device *device)
1521{
1522 bna_mbox_mod_start(&device->bna->mbox_mod);
1523 bna_port_start(&device->bna->port);
1524
1525 if (device->ready_cbfn)
1526 device->ready_cbfn(device->ready_cbarg,
1527 BNA_CB_SUCCESS);
1528 device->ready_cbfn = NULL;
1529 device->ready_cbarg = NULL;
1530}
1531
1532static void
1533bna_device_sm_ready(struct bna_device *device, enum bna_device_event event)
1534{
1535 switch (event) {
1536 case DEVICE_E_DISABLE:
1537 bfa_fsm_set_state(device, bna_device_sm_port_stop_wait);
1538 break;
1539
1540 case DEVICE_E_IOC_FAILED:
1541 bfa_fsm_set_state(device, bna_device_sm_failed);
1542 break;
1543
1544 default:
1545 bfa_sm_fault(device->bna, event);
1546 }
1547}
1548
1549static void
1550bna_device_sm_port_stop_wait_entry(struct bna_device *device)
1551{
1552 bna_port_stop(&device->bna->port);
1553}
1554
1555static void
1556bna_device_sm_port_stop_wait(struct bna_device *device,
1557 enum bna_device_event event)
1558{
1559 switch (event) {
1560 case DEVICE_E_PORT_STOPPED:
1561 bna_mbox_mod_stop(&device->bna->mbox_mod);
1562 bfa_fsm_set_state(device, bna_device_sm_ioc_disable_wait);
1563 break;
1564
1565 case DEVICE_E_IOC_FAILED:
1566 disable_mbox_intr(device);
1567 bna_port_fail(&device->bna->port);
1568 break;
1569
1570 default:
1571 bfa_sm_fault(device->bna, event);
1572 }
1573}
1574
1575static void
1576bna_device_sm_ioc_disable_wait_entry(struct bna_device *device)
1577{
1578 bfa_nw_ioc_disable(&device->ioc);
1579}
1580
1581static void
1582bna_device_sm_ioc_disable_wait(struct bna_device *device,
1583 enum bna_device_event event)
1584{
1585 switch (event) {
1586 case DEVICE_E_IOC_DISABLED:
1587 disable_mbox_intr(device);
1588 bfa_fsm_set_state(device, bna_device_sm_stopped);
1589 break;
1590
1591 default:
1592 bfa_sm_fault(device->bna, event);
1593 }
1594}
1595
1596static void
1597bna_device_sm_failed_entry(struct bna_device *device)
1598{
1599 disable_mbox_intr(device);
1600 bna_port_fail(&device->bna->port);
1601 bna_mbox_mod_stop(&device->bna->mbox_mod);
1602
1603 if (device->ready_cbfn)
1604 device->ready_cbfn(device->ready_cbarg,
1605 BNA_CB_FAIL);
1606 device->ready_cbfn = NULL;
1607 device->ready_cbarg = NULL;
1608}
1609
1610static void
1611bna_device_sm_failed(struct bna_device *device,
1612 enum bna_device_event event)
1613{
1614 switch (event) {
1615 case DEVICE_E_DISABLE:
1616 bfa_fsm_set_state(device, bna_device_sm_ioc_disable_wait);
1617 break;
1618
1619 case DEVICE_E_IOC_RESET:
1620 enable_mbox_intr(device);
1621 bfa_fsm_set_state(device, bna_device_sm_ioc_ready_wait);
1622 break;
1623
1624 default:
1625 bfa_sm_fault(device->bna, event);
1626 }
1627}
1628
1629/* IOC callback functions */
1630
1631static void
1632bna_device_cb_iocll_ready(void *dev, enum bfa_status error)
1633{
1634 struct bna_device *device = (struct bna_device *)dev;
1635
1636 if (error)
1637 bfa_fsm_send_event(device, DEVICE_E_IOC_FAILED);
1638 else
1639 bfa_fsm_send_event(device, DEVICE_E_IOC_READY);
1640}
1641
1642static void
1643bna_device_cb_iocll_disabled(void *dev)
1644{
1645 struct bna_device *device = (struct bna_device *)dev;
1646
1647 bfa_fsm_send_event(device, DEVICE_E_IOC_DISABLED);
1648}
1649
1650static void
1651bna_device_cb_iocll_failed(void *dev)
1652{
1653 struct bna_device *device = (struct bna_device *)dev;
1654
1655 bfa_fsm_send_event(device, DEVICE_E_IOC_FAILED);
1656}
1657
1658static void
1659bna_device_cb_iocll_reset(void *dev)
1660{
1661 struct bna_device *device = (struct bna_device *)dev;
1662
1663 bfa_fsm_send_event(device, DEVICE_E_IOC_RESET);
1664}
1665
1666static struct bfa_ioc_cbfn bfa_iocll_cbfn = {
1667 bna_device_cb_iocll_ready,
1668 bna_device_cb_iocll_disabled,
1669 bna_device_cb_iocll_failed,
1670 bna_device_cb_iocll_reset
1671};
1672
1673/* device */
1674static void
1675bna_adv_device_init(struct bna_device *device, struct bna *bna,
1676 struct bna_res_info *res_info)
1677{
1678 u8 *kva;
1679 u64 dma;
1680
1681 device->bna = bna;
1682
1683 kva = res_info[BNA_RES_MEM_T_FWTRC].res_u.mem_info.mdl[0].kva;
1684
1685 /**
1686 * Attach common modules (Diag, SFP, CEE, Port) and claim respective
1687 * DMA memory.
1688 */
1689 BNA_GET_DMA_ADDR(
1690 &res_info[BNA_RES_MEM_T_COM].res_u.mem_info.mdl[0].dma, dma);
1691 kva = res_info[BNA_RES_MEM_T_COM].res_u.mem_info.mdl[0].kva;
1692
1693 bfa_nw_cee_attach(&bna->cee, &device->ioc, bna);
1694 bfa_nw_cee_mem_claim(&bna->cee, kva, dma);
1695 kva += bfa_nw_cee_meminfo();
1696 dma += bfa_nw_cee_meminfo();
1697
1698}
1699
1700static void
1701bna_device_init(struct bna_device *device, struct bna *bna,
1702 struct bna_res_info *res_info)
1703{
1704 u64 dma;
1705
1706 device->bna = bna;
1707
1708 /**
1709 * Attach IOC and claim:
1710 * 1. DMA memory for IOC attributes
1711 * 2. Kernel memory for FW trace
1712 */
1713 bfa_nw_ioc_attach(&device->ioc, device, &bfa_iocll_cbfn);
1714 bfa_nw_ioc_pci_init(&device->ioc, &bna->pcidev, BFI_MC_LL);
1715
1716 BNA_GET_DMA_ADDR(
1717 &res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.mdl[0].dma, dma);
1718 bfa_nw_ioc_mem_claim(&device->ioc,
1719 res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.mdl[0].kva,
1720 dma);
1721
1722 bna_adv_device_init(device, bna, res_info);
1723 /*
1724 * Initialize mbox_mod only after IOC, so that mbox handler
1725 * registration goes through
1726 */
1727 device->intr_type =
1728 res_info[BNA_RES_INTR_T_MBOX].res_u.intr_info.intr_type;
1729 device->vector =
1730 res_info[BNA_RES_INTR_T_MBOX].res_u.intr_info.idl[0].vector;
1731 bna_mbox_mod_init(&bna->mbox_mod, bna);
1732
1733 device->ready_cbfn = device->stop_cbfn = NULL;
1734 device->ready_cbarg = device->stop_cbarg = NULL;
1735
1736 bfa_fsm_set_state(device, bna_device_sm_stopped);
1737}
1738
1739static void
1740bna_device_uninit(struct bna_device *device)
1741{
1742 bna_mbox_mod_uninit(&device->bna->mbox_mod);
1743
1744 bfa_nw_ioc_detach(&device->ioc);
1745
1746 device->bna = NULL;
1747}
1748
1749static void
1750bna_device_cb_port_stopped(void *arg, enum bna_cb_status status)
1751{
1752 struct bna_device *device = (struct bna_device *)arg;
1753
1754 bfa_fsm_send_event(device, DEVICE_E_PORT_STOPPED);
1755}
1756
1757static int
1758bna_device_status_get(struct bna_device *device)
1759{
1760 return device->fsm == (bfa_fsm_t)bna_device_sm_ready;
1761}
1762
1763void
1764bna_device_enable(struct bna_device *device)
1765{
1766 if (device->fsm != (bfa_fsm_t)bna_device_sm_stopped) {
1767 bnad_cb_device_enabled(device->bna->bnad, BNA_CB_BUSY);
1768 return;
1769 }
1770
1771 device->ready_cbfn = bnad_cb_device_enabled;
1772 device->ready_cbarg = device->bna->bnad;
1773
1774 bfa_fsm_send_event(device, DEVICE_E_ENABLE);
1775}
1776
1777void
1778bna_device_disable(struct bna_device *device, enum bna_cleanup_type type)
1779{
1780 if (type == BNA_SOFT_CLEANUP) {
1781 bnad_cb_device_disabled(device->bna->bnad, BNA_CB_SUCCESS);
1782 return;
1783 }
1784
1785 device->stop_cbfn = bnad_cb_device_disabled;
1786 device->stop_cbarg = device->bna->bnad;
1787
1788 bfa_fsm_send_event(device, DEVICE_E_DISABLE);
1789}
1790
1791static int
1792bna_device_state_get(struct bna_device *device)
1793{
1794 return bfa_sm_to_state(device_sm_table, device->fsm);
1795}
1796
1797const u32 bna_napi_dim_vector[BNA_LOAD_T_MAX][BNA_BIAS_T_MAX] = {
1798 {12, 12},
1799 {6, 10},
1800 {5, 10},
1801 {4, 8},
1802 {3, 6},
1803 {3, 6},
1804 {2, 4},
1805 {1, 2},
1806};
1807
1808/* utils */
1809
1810static void
1811bna_adv_res_req(struct bna_res_info *res_info)
1812{
1813 /* DMA memory for COMMON_MODULE */
1814 res_info[BNA_RES_MEM_T_COM].res_type = BNA_RES_T_MEM;
1815 res_info[BNA_RES_MEM_T_COM].res_u.mem_info.mem_type = BNA_MEM_T_DMA;
1816 res_info[BNA_RES_MEM_T_COM].res_u.mem_info.num = 1;
1817 res_info[BNA_RES_MEM_T_COM].res_u.mem_info.len = ALIGN(
1818 bfa_nw_cee_meminfo(), PAGE_SIZE);
1819
1820 /* Virtual memory for retreiving fw_trc */
1821 res_info[BNA_RES_MEM_T_FWTRC].res_type = BNA_RES_T_MEM;
1822 res_info[BNA_RES_MEM_T_FWTRC].res_u.mem_info.mem_type = BNA_MEM_T_KVA;
1823 res_info[BNA_RES_MEM_T_FWTRC].res_u.mem_info.num = 0;
1824 res_info[BNA_RES_MEM_T_FWTRC].res_u.mem_info.len = 0;
1825
1826 /* DMA memory for retreiving stats */
1827 res_info[BNA_RES_MEM_T_STATS].res_type = BNA_RES_T_MEM;
1828 res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.mem_type = BNA_MEM_T_DMA;
1829 res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.num = 1;
1830 res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.len =
1831 ALIGN(BFI_HW_STATS_SIZE, PAGE_SIZE);
1832
1833 /* Virtual memory for soft stats */
1834 res_info[BNA_RES_MEM_T_SWSTATS].res_type = BNA_RES_T_MEM;
1835 res_info[BNA_RES_MEM_T_SWSTATS].res_u.mem_info.mem_type = BNA_MEM_T_KVA;
1836 res_info[BNA_RES_MEM_T_SWSTATS].res_u.mem_info.num = 1;
1837 res_info[BNA_RES_MEM_T_SWSTATS].res_u.mem_info.len =
1838 sizeof(struct bna_sw_stats);
1839}
1840
1841static void
1842bna_sw_stats_get(struct bna *bna, struct bna_sw_stats *sw_stats)
1843{
1844 struct bna_tx *tx;
1845 struct bna_txq *txq;
1846 struct bna_rx *rx;
1847 struct bna_rxp *rxp;
1848 struct list_head *qe;
1849 struct list_head *txq_qe;
1850 struct list_head *rxp_qe;
1851 struct list_head *mac_qe;
1852 int i;
1853
1854 sw_stats->device_state = bna_device_state_get(&bna->device);
1855 sw_stats->port_state = bna_port_state_get(&bna->port);
1856 sw_stats->port_flags = bna->port.flags;
1857 sw_stats->llport_state = bna_llport_state_get(&bna->port.llport);
1858 sw_stats->priority = bna->port.priority;
1859
1860 i = 0;
1861 list_for_each(qe, &bna->tx_mod.tx_active_q) {
1862 tx = (struct bna_tx *)qe;
1863 sw_stats->tx_stats[i].tx_state = bna_tx_state_get(tx);
1864 sw_stats->tx_stats[i].tx_flags = tx->flags;
1865
1866 sw_stats->tx_stats[i].num_txqs = 0;
1867 sw_stats->tx_stats[i].txq_bmap[0] = 0;
1868 sw_stats->tx_stats[i].txq_bmap[1] = 0;
1869 list_for_each(txq_qe, &tx->txq_q) {
1870 txq = (struct bna_txq *)txq_qe;
1871 if (txq->txq_id < 32)
1872 sw_stats->tx_stats[i].txq_bmap[0] |=
1873 ((u32)1 << txq->txq_id);
1874 else
1875 sw_stats->tx_stats[i].txq_bmap[1] |=
1876 ((u32)
1877 1 << (txq->txq_id - 32));
1878 sw_stats->tx_stats[i].num_txqs++;
1879 }
1880
1881 sw_stats->tx_stats[i].txf_id = tx->txf.txf_id;
1882
1883 i++;
1884 }
1885 sw_stats->num_active_tx = i;
1886
1887 i = 0;
1888 list_for_each(qe, &bna->rx_mod.rx_active_q) {
1889 rx = (struct bna_rx *)qe;
1890 sw_stats->rx_stats[i].rx_state = bna_rx_state_get(rx);
1891 sw_stats->rx_stats[i].rx_flags = rx->rx_flags;
1892
1893 sw_stats->rx_stats[i].num_rxps = 0;
1894 sw_stats->rx_stats[i].num_rxqs = 0;
1895 sw_stats->rx_stats[i].rxq_bmap[0] = 0;
1896 sw_stats->rx_stats[i].rxq_bmap[1] = 0;
1897 sw_stats->rx_stats[i].cq_bmap[0] = 0;
1898 sw_stats->rx_stats[i].cq_bmap[1] = 0;
1899 list_for_each(rxp_qe, &rx->rxp_q) {
1900 rxp = (struct bna_rxp *)rxp_qe;
1901
1902 sw_stats->rx_stats[i].num_rxqs += 1;
1903
1904 if (rxp->type == BNA_RXP_SINGLE) {
1905 if (rxp->rxq.single.only->rxq_id < 32) {
1906 sw_stats->rx_stats[i].rxq_bmap[0] |=
1907 ((u32)1 <<
1908 rxp->rxq.single.only->rxq_id);
1909 } else {
1910 sw_stats->rx_stats[i].rxq_bmap[1] |=
1911 ((u32)1 <<
1912 (rxp->rxq.single.only->rxq_id - 32));
1913 }
1914 } else {
1915 if (rxp->rxq.slr.large->rxq_id < 32) {
1916 sw_stats->rx_stats[i].rxq_bmap[0] |=
1917 ((u32)1 <<
1918 rxp->rxq.slr.large->rxq_id);
1919 } else {
1920 sw_stats->rx_stats[i].rxq_bmap[1] |=
1921 ((u32)1 <<
1922 (rxp->rxq.slr.large->rxq_id - 32));
1923 }
1924
1925 if (rxp->rxq.slr.small->rxq_id < 32) {
1926 sw_stats->rx_stats[i].rxq_bmap[0] |=
1927 ((u32)1 <<
1928 rxp->rxq.slr.small->rxq_id);
1929 } else {
1930 sw_stats->rx_stats[i].rxq_bmap[1] |=
1931 ((u32)1 <<
1932 (rxp->rxq.slr.small->rxq_id - 32));
1933 }
1934 sw_stats->rx_stats[i].num_rxqs += 1;
1935 }
1936
1937 if (rxp->cq.cq_id < 32)
1938 sw_stats->rx_stats[i].cq_bmap[0] |=
1939 (1 << rxp->cq.cq_id);
1940 else
1941 sw_stats->rx_stats[i].cq_bmap[1] |=
1942 (1 << (rxp->cq.cq_id - 32));
1943
1944 sw_stats->rx_stats[i].num_rxps++;
1945 }
1946
1947 sw_stats->rx_stats[i].rxf_id = rx->rxf.rxf_id;
1948 sw_stats->rx_stats[i].rxf_state = bna_rxf_state_get(&rx->rxf);
1949 sw_stats->rx_stats[i].rxf_oper_state = rx->rxf.rxf_oper_state;
1950
1951 sw_stats->rx_stats[i].num_active_ucast = 0;
1952 if (rx->rxf.ucast_active_mac)
1953 sw_stats->rx_stats[i].num_active_ucast++;
1954 list_for_each(mac_qe, &rx->rxf.ucast_active_q)
1955 sw_stats->rx_stats[i].num_active_ucast++;
1956
1957 sw_stats->rx_stats[i].num_active_mcast = 0;
1958 list_for_each(mac_qe, &rx->rxf.mcast_active_q)
1959 sw_stats->rx_stats[i].num_active_mcast++;
1960
1961 sw_stats->rx_stats[i].rxmode_active = rx->rxf.rxmode_active;
1962 sw_stats->rx_stats[i].vlan_filter_status =
1963 rx->rxf.vlan_filter_status;
1964 memcpy(sw_stats->rx_stats[i].vlan_filter_table,
1965 rx->rxf.vlan_filter_table,
1966 sizeof(u32) * ((BFI_MAX_VLAN + 1) / 32));
1967
1968 sw_stats->rx_stats[i].rss_status = rx->rxf.rss_status;
1969 sw_stats->rx_stats[i].hds_status = rx->rxf.hds_status;
1970
1971 i++;
1972 }
1973 sw_stats->num_active_rx = i;
1974}
1975
1976static void
1977bna_fw_cb_stats_get(void *arg, int status)
1978{
1979 struct bna *bna = (struct bna *)arg;
1980 u64 *p_stats;
1981 int i, count;
1982 int rxf_count, txf_count;
1983 u64 rxf_bmap, txf_bmap;
1984
1985 bfa_q_qe_init(&bna->mbox_qe.qe);
1986
1987 if (status == 0) {
1988 p_stats = (u64 *)bna->stats.hw_stats;
1989 count = sizeof(struct bfi_ll_stats) / sizeof(u64);
1990 for (i = 0; i < count; i++)
1991 p_stats[i] = cpu_to_be64(p_stats[i]);
1992
1993 rxf_count = 0;
1994 rxf_bmap = (u64)bna->stats.rxf_bmap[0] |
1995 ((u64)bna->stats.rxf_bmap[1] << 32);
1996 for (i = 0; i < BFI_LL_RXF_ID_MAX; i++)
1997 if (rxf_bmap & ((u64)1 << i))
1998 rxf_count++;
1999
2000 txf_count = 0;
2001 txf_bmap = (u64)bna->stats.txf_bmap[0] |
2002 ((u64)bna->stats.txf_bmap[1] << 32);
2003 for (i = 0; i < BFI_LL_TXF_ID_MAX; i++)
2004 if (txf_bmap & ((u64)1 << i))
2005 txf_count++;
2006
2007 p_stats = (u64 *)&bna->stats.hw_stats->rxf_stats[0] +
2008 ((rxf_count * sizeof(struct bfi_ll_stats_rxf) +
2009 txf_count * sizeof(struct bfi_ll_stats_txf))/
2010 sizeof(u64));
2011
2012 /* Populate the TXF stats from the firmware DMAed copy */
2013 for (i = (BFI_LL_TXF_ID_MAX - 1); i >= 0; i--)
2014 if (txf_bmap & ((u64)1 << i)) {
2015 p_stats -= sizeof(struct bfi_ll_stats_txf)/
2016 sizeof(u64);
2017 memcpy(&bna->stats.hw_stats->txf_stats[i],
2018 p_stats,
2019 sizeof(struct bfi_ll_stats_txf));
2020 }
2021
2022 /* Populate the RXF stats from the firmware DMAed copy */
2023 for (i = (BFI_LL_RXF_ID_MAX - 1); i >= 0; i--)
2024 if (rxf_bmap & ((u64)1 << i)) {
2025 p_stats -= sizeof(struct bfi_ll_stats_rxf)/
2026 sizeof(u64);
2027 memcpy(&bna->stats.hw_stats->rxf_stats[i],
2028 p_stats,
2029 sizeof(struct bfi_ll_stats_rxf));
2030 }
2031
2032 bna_sw_stats_get(bna, bna->stats.sw_stats);
2033 bnad_cb_stats_get(bna->bnad, BNA_CB_SUCCESS, &bna->stats);
2034 } else
2035 bnad_cb_stats_get(bna->bnad, BNA_CB_FAIL, &bna->stats);
2036}
2037
2038static void
2039bna_fw_stats_get(struct bna *bna)
2040{
2041 struct bfi_ll_stats_req ll_req;
2042
2043 bfi_h2i_set(ll_req.mh, BFI_MC_LL, BFI_LL_H2I_STATS_GET_REQ, 0);
2044 ll_req.stats_mask = htons(BFI_LL_STATS_ALL);
2045
2046 ll_req.rxf_id_mask[0] = htonl(bna->rx_mod.rxf_bmap[0]);
2047 ll_req.rxf_id_mask[1] = htonl(bna->rx_mod.rxf_bmap[1]);
2048 ll_req.txf_id_mask[0] = htonl(bna->tx_mod.txf_bmap[0]);
2049 ll_req.txf_id_mask[1] = htonl(bna->tx_mod.txf_bmap[1]);
2050
2051 ll_req.host_buffer.a32.addr_hi = bna->hw_stats_dma.msb;
2052 ll_req.host_buffer.a32.addr_lo = bna->hw_stats_dma.lsb;
2053
2054 bna_mbox_qe_fill(&bna->mbox_qe, &ll_req, sizeof(ll_req),
2055 bna_fw_cb_stats_get, bna);
2056 bna_mbox_send(bna, &bna->mbox_qe);
2057
2058 bna->stats.rxf_bmap[0] = bna->rx_mod.rxf_bmap[0];
2059 bna->stats.rxf_bmap[1] = bna->rx_mod.rxf_bmap[1];
2060 bna->stats.txf_bmap[0] = bna->tx_mod.txf_bmap[0];
2061 bna->stats.txf_bmap[1] = bna->tx_mod.txf_bmap[1];
2062}
2063
2064void
2065bna_stats_get(struct bna *bna)
2066{
2067 if (bna_device_status_get(&bna->device))
2068 bna_fw_stats_get(bna);
2069 else
2070 bnad_cb_stats_get(bna->bnad, BNA_CB_FAIL, &bna->stats);
2071}
2072
2073/* IB */
2074static void
2075bna_ib_coalescing_timeo_set(struct bna_ib *ib, u8 coalescing_timeo)
2076{
2077 ib->ib_config.coalescing_timeo = coalescing_timeo;
2078
2079 if (ib->start_count)
2080 ib->door_bell.doorbell_ack = BNA_DOORBELL_IB_INT_ACK(
2081 (u32)ib->ib_config.coalescing_timeo, 0);
2082}
2083
2084/* RxF */
2085void
2086bna_rxf_adv_init(struct bna_rxf *rxf,
2087 struct bna_rx *rx,
2088 struct bna_rx_config *q_config)
2089{
2090 switch (q_config->rxp_type) {
2091 case BNA_RXP_SINGLE:
2092 /* No-op */
2093 break;
2094 case BNA_RXP_SLR:
2095 rxf->ctrl_flags |= BNA_RXF_CF_SM_LG_RXQ;
2096 break;
2097 case BNA_RXP_HDS:
2098 rxf->hds_cfg.hdr_type = q_config->hds_config.hdr_type;
2099 rxf->hds_cfg.header_size =
2100 q_config->hds_config.header_size;
2101 rxf->forced_offset = 0;
2102 break;
2103 default:
2104 break;
2105 }
2106
2107 if (q_config->rss_status == BNA_STATUS_T_ENABLED) {
2108 rxf->ctrl_flags |= BNA_RXF_CF_RSS_ENABLE;
2109 rxf->rss_cfg.hash_type = q_config->rss_config.hash_type;
2110 rxf->rss_cfg.hash_mask = q_config->rss_config.hash_mask;
2111 memcpy(&rxf->rss_cfg.toeplitz_hash_key[0],
2112 &q_config->rss_config.toeplitz_hash_key[0],
2113 sizeof(rxf->rss_cfg.toeplitz_hash_key));
2114 }
2115}
2116
2117static void
2118rxf_fltr_mbox_cmd(struct bna_rxf *rxf, u8 cmd, enum bna_status status)
2119{
2120 struct bfi_ll_rxf_req req;
2121
2122 bfi_h2i_set(req.mh, BFI_MC_LL, cmd, 0);
2123
2124 req.rxf_id = rxf->rxf_id;
2125 req.enable = status;
2126
2127 bna_mbox_qe_fill(&rxf->mbox_qe, &req, sizeof(req),
2128 rxf_cb_cam_fltr_mbox_cmd, rxf);
2129
2130 bna_mbox_send(rxf->rx->bna, &rxf->mbox_qe);
2131}
2132
2133int
2134rxf_process_packet_filter_ucast(struct bna_rxf *rxf)
2135{
2136 struct bna_mac *mac = NULL;
2137 struct list_head *qe;
2138
2139 /* Add additional MAC entries */
2140 if (!list_empty(&rxf->ucast_pending_add_q)) {
2141 bfa_q_deq(&rxf->ucast_pending_add_q, &qe);
2142 bfa_q_qe_init(qe);
2143 mac = (struct bna_mac *)qe;
2144 rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_UCAST_ADD_REQ, mac);
2145 list_add_tail(&mac->qe, &rxf->ucast_active_q);
2146 return 1;
2147 }
2148
2149 /* Delete MAC addresses previousely added */
2150 if (!list_empty(&rxf->ucast_pending_del_q)) {
2151 bfa_q_deq(&rxf->ucast_pending_del_q, &qe);
2152 bfa_q_qe_init(qe);
2153 mac = (struct bna_mac *)qe;
2154 rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_UCAST_DEL_REQ, mac);
2155 bna_ucam_mod_mac_put(&rxf->rx->bna->ucam_mod, mac);
2156 return 1;
2157 }
2158
2159 return 0;
2160}
2161
2162int
2163rxf_process_packet_filter_promisc(struct bna_rxf *rxf)
2164{
2165 struct bna *bna = rxf->rx->bna;
2166
2167 /* Enable/disable promiscuous mode */
2168 if (is_promisc_enable(rxf->rxmode_pending,
2169 rxf->rxmode_pending_bitmask)) {
2170 /* move promisc configuration from pending -> active */
2171 promisc_inactive(rxf->rxmode_pending,
2172 rxf->rxmode_pending_bitmask);
2173 rxf->rxmode_active |= BNA_RXMODE_PROMISC;
2174
2175 /* Disable VLAN filter to allow all VLANs */
2176 __rxf_vlan_filter_set(rxf, BNA_STATUS_T_DISABLED);
2177 rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ,
2178 BNA_STATUS_T_ENABLED);
2179 return 1;
2180 } else if (is_promisc_disable(rxf->rxmode_pending,
2181 rxf->rxmode_pending_bitmask)) {
2182 /* move promisc configuration from pending -> active */
2183 promisc_inactive(rxf->rxmode_pending,
2184 rxf->rxmode_pending_bitmask);
2185 rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
2186 bna->rxf_promisc_id = BFI_MAX_RXF;
2187
2188 /* Revert VLAN filter */
2189 __rxf_vlan_filter_set(rxf, rxf->vlan_filter_status);
2190 rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ,
2191 BNA_STATUS_T_DISABLED);
2192 return 1;
2193 }
2194
2195 return 0;
2196}
2197
2198int
2199rxf_process_packet_filter_allmulti(struct bna_rxf *rxf)
2200{
2201 /* Enable/disable allmulti mode */
2202 if (is_allmulti_enable(rxf->rxmode_pending,
2203 rxf->rxmode_pending_bitmask)) {
2204 /* move allmulti configuration from pending -> active */
2205 allmulti_inactive(rxf->rxmode_pending,
2206 rxf->rxmode_pending_bitmask);
2207 rxf->rxmode_active |= BNA_RXMODE_ALLMULTI;
2208
2209 rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_FILTER_REQ,
2210 BNA_STATUS_T_ENABLED);
2211 return 1;
2212 } else if (is_allmulti_disable(rxf->rxmode_pending,
2213 rxf->rxmode_pending_bitmask)) {
2214 /* move allmulti configuration from pending -> active */
2215 allmulti_inactive(rxf->rxmode_pending,
2216 rxf->rxmode_pending_bitmask);
2217 rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
2218
2219 rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_FILTER_REQ,
2220 BNA_STATUS_T_DISABLED);
2221 return 1;
2222 }
2223
2224 return 0;
2225}
2226
2227int
2228rxf_clear_packet_filter_ucast(struct bna_rxf *rxf)
2229{
2230 struct bna_mac *mac = NULL;
2231 struct list_head *qe;
2232
2233 /* 1. delete pending ucast entries */
2234 if (!list_empty(&rxf->ucast_pending_del_q)) {
2235 bfa_q_deq(&rxf->ucast_pending_del_q, &qe);
2236 bfa_q_qe_init(qe);
2237 mac = (struct bna_mac *)qe;
2238 rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_UCAST_DEL_REQ, mac);
2239 bna_ucam_mod_mac_put(&rxf->rx->bna->ucam_mod, mac);
2240 return 1;
2241 }
2242
2243 /* 2. clear active ucast entries; move them to pending_add_q */
2244 if (!list_empty(&rxf->ucast_active_q)) {
2245 bfa_q_deq(&rxf->ucast_active_q, &qe);
2246 bfa_q_qe_init(qe);
2247 mac = (struct bna_mac *)qe;
2248 rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_UCAST_DEL_REQ, mac);
2249 list_add_tail(&mac->qe, &rxf->ucast_pending_add_q);
2250 return 1;
2251 }
2252
2253 return 0;
2254}
2255
2256int
2257rxf_clear_packet_filter_promisc(struct bna_rxf *rxf)
2258{
2259 struct bna *bna = rxf->rx->bna;
2260
2261 /* 6. Execute pending promisc mode disable command */
2262 if (is_promisc_disable(rxf->rxmode_pending,
2263 rxf->rxmode_pending_bitmask)) {
2264 /* move promisc configuration from pending -> active */
2265 promisc_inactive(rxf->rxmode_pending,
2266 rxf->rxmode_pending_bitmask);
2267 rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
2268 bna->rxf_promisc_id = BFI_MAX_RXF;
2269
2270 /* Revert VLAN filter */
2271 __rxf_vlan_filter_set(rxf, rxf->vlan_filter_status);
2272 rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ,
2273 BNA_STATUS_T_DISABLED);
2274 return 1;
2275 }
2276
2277 /* 7. Clear active promisc mode; move it to pending enable */
2278 if (rxf->rxmode_active & BNA_RXMODE_PROMISC) {
2279 /* move promisc configuration from active -> pending */
2280 promisc_enable(rxf->rxmode_pending,
2281 rxf->rxmode_pending_bitmask);
2282 rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
2283
2284 /* Revert VLAN filter */
2285 __rxf_vlan_filter_set(rxf, rxf->vlan_filter_status);
2286 rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ,
2287 BNA_STATUS_T_DISABLED);
2288 return 1;
2289 }
2290
2291 return 0;
2292}
2293
2294int
2295rxf_clear_packet_filter_allmulti(struct bna_rxf *rxf)
2296{
2297 /* 10. Execute pending allmulti mode disable command */
2298 if (is_allmulti_disable(rxf->rxmode_pending,
2299 rxf->rxmode_pending_bitmask)) {
2300 /* move allmulti configuration from pending -> active */
2301 allmulti_inactive(rxf->rxmode_pending,
2302 rxf->rxmode_pending_bitmask);
2303 rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
2304 rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_FILTER_REQ,
2305 BNA_STATUS_T_DISABLED);
2306 return 1;
2307 }
2308
2309 /* 11. Clear active allmulti mode; move it to pending enable */
2310 if (rxf->rxmode_active & BNA_RXMODE_ALLMULTI) {
2311 /* move allmulti configuration from active -> pending */
2312 allmulti_enable(rxf->rxmode_pending,
2313 rxf->rxmode_pending_bitmask);
2314 rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
2315 rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_FILTER_REQ,
2316 BNA_STATUS_T_DISABLED);
2317 return 1;
2318 }
2319
2320 return 0;
2321}
2322
2323void
2324rxf_reset_packet_filter_ucast(struct bna_rxf *rxf)
2325{
2326 struct list_head *qe;
2327 struct bna_mac *mac;
2328
2329 /* 1. Move active ucast entries to pending_add_q */
2330 while (!list_empty(&rxf->ucast_active_q)) {
2331 bfa_q_deq(&rxf->ucast_active_q, &qe);
2332 bfa_q_qe_init(qe);
2333 list_add_tail(qe, &rxf->ucast_pending_add_q);
2334 }
2335
2336 /* 2. Throw away delete pending ucast entries */
2337 while (!list_empty(&rxf->ucast_pending_del_q)) {
2338 bfa_q_deq(&rxf->ucast_pending_del_q, &qe);
2339 bfa_q_qe_init(qe);
2340 mac = (struct bna_mac *)qe;
2341 bna_ucam_mod_mac_put(&rxf->rx->bna->ucam_mod, mac);
2342 }
2343}
2344
2345void
2346rxf_reset_packet_filter_promisc(struct bna_rxf *rxf)
2347{
2348 struct bna *bna = rxf->rx->bna;
2349
2350 /* 6. Clear pending promisc mode disable */
2351 if (is_promisc_disable(rxf->rxmode_pending,
2352 rxf->rxmode_pending_bitmask)) {
2353 promisc_inactive(rxf->rxmode_pending,
2354 rxf->rxmode_pending_bitmask);
2355 rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
2356 bna->rxf_promisc_id = BFI_MAX_RXF;
2357 }
2358
2359 /* 7. Move promisc mode config from active -> pending */
2360 if (rxf->rxmode_active & BNA_RXMODE_PROMISC) {
2361 promisc_enable(rxf->rxmode_pending,
2362 rxf->rxmode_pending_bitmask);
2363 rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
2364 }
2365
2366}
2367
2368void
2369rxf_reset_packet_filter_allmulti(struct bna_rxf *rxf)
2370{
2371 /* 10. Clear pending allmulti mode disable */
2372 if (is_allmulti_disable(rxf->rxmode_pending,
2373 rxf->rxmode_pending_bitmask)) {
2374 allmulti_inactive(rxf->rxmode_pending,
2375 rxf->rxmode_pending_bitmask);
2376 rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
2377 }
2378
2379 /* 11. Move allmulti mode config from active -> pending */
2380 if (rxf->rxmode_active & BNA_RXMODE_ALLMULTI) {
2381 allmulti_enable(rxf->rxmode_pending,
2382 rxf->rxmode_pending_bitmask);
2383 rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
2384 }
2385}
2386
2387/**
2388 * Should only be called by bna_rxf_mode_set.
2389 * Helps deciding if h/w configuration is needed or not.
2390 * Returns:
2391 * 0 = no h/w change
2392 * 1 = need h/w change
2393 */
2394static int
2395rxf_promisc_enable(struct bna_rxf *rxf)
2396{
2397 struct bna *bna = rxf->rx->bna;
2398 int ret = 0;
2399
2400 /* There can not be any pending disable command */
2401
2402 /* Do nothing if pending enable or already enabled */
2403 if (is_promisc_enable(rxf->rxmode_pending,
2404 rxf->rxmode_pending_bitmask) ||
2405 (rxf->rxmode_active & BNA_RXMODE_PROMISC)) {
2406 /* Schedule enable */
2407 } else {
2408 /* Promisc mode should not be active in the system */
2409 promisc_enable(rxf->rxmode_pending,
2410 rxf->rxmode_pending_bitmask);
2411 bna->rxf_promisc_id = rxf->rxf_id;
2412 ret = 1;
2413 }
2414
2415 return ret;
2416}
2417
2418/**
2419 * Should only be called by bna_rxf_mode_set.
2420 * Helps deciding if h/w configuration is needed or not.
2421 * Returns:
2422 * 0 = no h/w change
2423 * 1 = need h/w change
2424 */
2425static int
2426rxf_promisc_disable(struct bna_rxf *rxf)
2427{
2428 struct bna *bna = rxf->rx->bna;
2429 int ret = 0;
2430
2431 /* There can not be any pending disable */
2432
2433 /* Turn off pending enable command , if any */
2434 if (is_promisc_enable(rxf->rxmode_pending,
2435 rxf->rxmode_pending_bitmask)) {
2436 /* Promisc mode should not be active */
2437 /* system promisc state should be pending */
2438 promisc_inactive(rxf->rxmode_pending,
2439 rxf->rxmode_pending_bitmask);
2440 /* Remove the promisc state from the system */
2441 bna->rxf_promisc_id = BFI_MAX_RXF;
2442
2443 /* Schedule disable */
2444 } else if (rxf->rxmode_active & BNA_RXMODE_PROMISC) {
2445 /* Promisc mode should be active in the system */
2446 promisc_disable(rxf->rxmode_pending,
2447 rxf->rxmode_pending_bitmask);
2448 ret = 1;
2449
2450 /* Do nothing if already disabled */
2451 } else {
2452 }
2453
2454 return ret;
2455}
2456
2457/**
2458 * Should only be called by bna_rxf_mode_set.
2459 * Helps deciding if h/w configuration is needed or not.
2460 * Returns:
2461 * 0 = no h/w change
2462 * 1 = need h/w change
2463 */
2464static int
2465rxf_allmulti_enable(struct bna_rxf *rxf)
2466{
2467 int ret = 0;
2468
2469 /* There can not be any pending disable command */
2470
2471 /* Do nothing if pending enable or already enabled */
2472 if (is_allmulti_enable(rxf->rxmode_pending,
2473 rxf->rxmode_pending_bitmask) ||
2474 (rxf->rxmode_active & BNA_RXMODE_ALLMULTI)) {
2475 /* Schedule enable */
2476 } else {
2477 allmulti_enable(rxf->rxmode_pending,
2478 rxf->rxmode_pending_bitmask);
2479 ret = 1;
2480 }
2481
2482 return ret;
2483}
2484
2485/**
2486 * Should only be called by bna_rxf_mode_set.
2487 * Helps deciding if h/w configuration is needed or not.
2488 * Returns:
2489 * 0 = no h/w change
2490 * 1 = need h/w change
2491 */
2492static int
2493rxf_allmulti_disable(struct bna_rxf *rxf)
2494{
2495 int ret = 0;
2496
2497 /* There can not be any pending disable */
2498
2499 /* Turn off pending enable command , if any */
2500 if (is_allmulti_enable(rxf->rxmode_pending,
2501 rxf->rxmode_pending_bitmask)) {
2502 /* Allmulti mode should not be active */
2503 allmulti_inactive(rxf->rxmode_pending,
2504 rxf->rxmode_pending_bitmask);
2505
2506 /* Schedule disable */
2507 } else if (rxf->rxmode_active & BNA_RXMODE_ALLMULTI) {
2508 allmulti_disable(rxf->rxmode_pending,
2509 rxf->rxmode_pending_bitmask);
2510 ret = 1;
2511 }
2512
2513 return ret;
2514}
2515
2516/* RxF <- bnad */
2517enum bna_cb_status
2518bna_rx_mode_set(struct bna_rx *rx, enum bna_rxmode new_mode,
2519 enum bna_rxmode bitmask,
2520 void (*cbfn)(struct bnad *, struct bna_rx *,
2521 enum bna_cb_status))
2522{
2523 struct bna_rxf *rxf = &rx->rxf;
2524 int need_hw_config = 0;
2525
2526 /* Process the commands */
2527
2528 if (is_promisc_enable(new_mode, bitmask)) {
2529 /* If promisc mode is already enabled elsewhere in the system */
2530 if ((rx->bna->rxf_promisc_id != BFI_MAX_RXF) &&
2531 (rx->bna->rxf_promisc_id != rxf->rxf_id))
2532 goto err_return;
2533 if (rxf_promisc_enable(rxf))
2534 need_hw_config = 1;
2535 } else if (is_promisc_disable(new_mode, bitmask)) {
2536 if (rxf_promisc_disable(rxf))
2537 need_hw_config = 1;
2538 }
2539
2540 if (is_allmulti_enable(new_mode, bitmask)) {
2541 if (rxf_allmulti_enable(rxf))
2542 need_hw_config = 1;
2543 } else if (is_allmulti_disable(new_mode, bitmask)) {
2544 if (rxf_allmulti_disable(rxf))
2545 need_hw_config = 1;
2546 }
2547
2548 /* Trigger h/w if needed */
2549
2550 if (need_hw_config) {
2551 rxf->cam_fltr_cbfn = cbfn;
2552 rxf->cam_fltr_cbarg = rx->bna->bnad;
2553 bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_MOD);
2554 } else if (cbfn)
2555 (*cbfn)(rx->bna->bnad, rx, BNA_CB_SUCCESS);
2556
2557 return BNA_CB_SUCCESS;
2558
2559err_return:
2560 return BNA_CB_FAIL;
2561}
2562
2563void
2564/* RxF <- bnad */
2565bna_rx_vlanfilter_enable(struct bna_rx *rx)
2566{
2567 struct bna_rxf *rxf = &rx->rxf;
2568
2569 if (rxf->vlan_filter_status == BNA_STATUS_T_DISABLED) {
2570 rxf->rxf_flags |= BNA_RXF_FL_VLAN_CONFIG_PENDING;
2571 rxf->vlan_filter_status = BNA_STATUS_T_ENABLED;
2572 bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_MOD);
2573 }
2574}
2575
2576/* Rx */
2577
2578/* Rx <- bnad */
2579void
2580bna_rx_coalescing_timeo_set(struct bna_rx *rx, int coalescing_timeo)
2581{
2582 struct bna_rxp *rxp;
2583 struct list_head *qe;
2584
2585 list_for_each(qe, &rx->rxp_q) {
2586 rxp = (struct bna_rxp *)qe;
2587 rxp->cq.ccb->rx_coalescing_timeo = coalescing_timeo;
2588 bna_ib_coalescing_timeo_set(rxp->cq.ib, coalescing_timeo);
2589 }
2590}
2591
2592/* Rx <- bnad */
2593void
2594bna_rx_dim_reconfig(struct bna *bna, const u32 vector[][BNA_BIAS_T_MAX])
2595{
2596 int i, j;
2597
2598 for (i = 0; i < BNA_LOAD_T_MAX; i++)
2599 for (j = 0; j < BNA_BIAS_T_MAX; j++)
2600 bna->rx_mod.dim_vector[i][j] = vector[i][j];
2601}
2602
2603/* Rx <- bnad */
2604void
2605bna_rx_dim_update(struct bna_ccb *ccb)
2606{
2607 struct bna *bna = ccb->cq->rx->bna;
2608 u32 load, bias;
2609 u32 pkt_rt, small_rt, large_rt;
2610 u8 coalescing_timeo;
2611
2612 if ((ccb->pkt_rate.small_pkt_cnt == 0) &&
2613 (ccb->pkt_rate.large_pkt_cnt == 0))
2614 return;
2615
2616 /* Arrive at preconfigured coalescing timeo value based on pkt rate */
2617
2618 small_rt = ccb->pkt_rate.small_pkt_cnt;
2619 large_rt = ccb->pkt_rate.large_pkt_cnt;
2620
2621 pkt_rt = small_rt + large_rt;
2622
2623 if (pkt_rt < BNA_PKT_RATE_10K)
2624 load = BNA_LOAD_T_LOW_4;
2625 else if (pkt_rt < BNA_PKT_RATE_20K)
2626 load = BNA_LOAD_T_LOW_3;
2627 else if (pkt_rt < BNA_PKT_RATE_30K)
2628 load = BNA_LOAD_T_LOW_2;
2629 else if (pkt_rt < BNA_PKT_RATE_40K)
2630 load = BNA_LOAD_T_LOW_1;
2631 else if (pkt_rt < BNA_PKT_RATE_50K)
2632 load = BNA_LOAD_T_HIGH_1;
2633 else if (pkt_rt < BNA_PKT_RATE_60K)
2634 load = BNA_LOAD_T_HIGH_2;
2635 else if (pkt_rt < BNA_PKT_RATE_80K)
2636 load = BNA_LOAD_T_HIGH_3;
2637 else
2638 load = BNA_LOAD_T_HIGH_4;
2639
2640 if (small_rt > (large_rt << 1))
2641 bias = 0;
2642 else
2643 bias = 1;
2644
2645 ccb->pkt_rate.small_pkt_cnt = 0;
2646 ccb->pkt_rate.large_pkt_cnt = 0;
2647
2648 coalescing_timeo = bna->rx_mod.dim_vector[load][bias];
2649 ccb->rx_coalescing_timeo = coalescing_timeo;
2650
2651 /* Set it to IB */
2652 bna_ib_coalescing_timeo_set(ccb->cq->ib, coalescing_timeo);
2653}
2654
2655/* Tx */
2656/* TX <- bnad */
2657void
2658bna_tx_coalescing_timeo_set(struct bna_tx *tx, int coalescing_timeo)
2659{
2660 struct bna_txq *txq;
2661 struct list_head *qe;
2662
2663 list_for_each(qe, &tx->txq_q) {
2664 txq = (struct bna_txq *)qe;
2665 bna_ib_coalescing_timeo_set(txq->ib, coalescing_timeo);
2666 }
2667}
2668
2669/*
2670 * Private data
2671 */
2672
2673struct bna_ritseg_pool_cfg {
2674 u32 pool_size;
2675 u32 pool_entry_size;
2676};
2677init_ritseg_pool(ritseg_pool_cfg);
2678
2679/*
2680 * Private functions
2681 */
2682static void
2683bna_ucam_mod_init(struct bna_ucam_mod *ucam_mod, struct bna *bna,
2684 struct bna_res_info *res_info)
2685{
2686 int i;
2687
2688 ucam_mod->ucmac = (struct bna_mac *)
2689 res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_u.mem_info.mdl[0].kva;
2690
2691 INIT_LIST_HEAD(&ucam_mod->free_q);
2692 for (i = 0; i < BFI_MAX_UCMAC; i++) {
2693 bfa_q_qe_init(&ucam_mod->ucmac[i].qe);
2694 list_add_tail(&ucam_mod->ucmac[i].qe, &ucam_mod->free_q);
2695 }
2696
2697 ucam_mod->bna = bna;
2698}
2699
2700static void
2701bna_ucam_mod_uninit(struct bna_ucam_mod *ucam_mod)
2702{
2703 struct list_head *qe;
2704 int i = 0;
2705
2706 list_for_each(qe, &ucam_mod->free_q)
2707 i++;
2708
2709 ucam_mod->bna = NULL;
2710}
2711
2712static void
2713bna_mcam_mod_init(struct bna_mcam_mod *mcam_mod, struct bna *bna,
2714 struct bna_res_info *res_info)
2715{
2716 int i;
2717
2718 mcam_mod->mcmac = (struct bna_mac *)
2719 res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_u.mem_info.mdl[0].kva;
2720
2721 INIT_LIST_HEAD(&mcam_mod->free_q);
2722 for (i = 0; i < BFI_MAX_MCMAC; i++) {
2723 bfa_q_qe_init(&mcam_mod->mcmac[i].qe);
2724 list_add_tail(&mcam_mod->mcmac[i].qe, &mcam_mod->free_q);
2725 }
2726
2727 mcam_mod->bna = bna;
2728}
2729
2730static void
2731bna_mcam_mod_uninit(struct bna_mcam_mod *mcam_mod)
2732{
2733 struct list_head *qe;
2734 int i = 0;
2735
2736 list_for_each(qe, &mcam_mod->free_q)
2737 i++;
2738
2739 mcam_mod->bna = NULL;
2740}
2741
2742static void
2743bna_rit_mod_init(struct bna_rit_mod *rit_mod,
2744 struct bna_res_info *res_info)
2745{
2746 int i;
2747 int j;
2748 int count;
2749 int offset;
2750
2751 rit_mod->rit = (struct bna_rit_entry *)
2752 res_info[BNA_RES_MEM_T_RIT_ENTRY].res_u.mem_info.mdl[0].kva;
2753 rit_mod->rit_segment = (struct bna_rit_segment *)
2754 res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_u.mem_info.mdl[0].kva;
2755
2756 count = 0;
2757 offset = 0;
2758 for (i = 0; i < BFI_RIT_SEG_TOTAL_POOLS; i++) {
2759 INIT_LIST_HEAD(&rit_mod->rit_seg_pool[i]);
2760 for (j = 0; j < ritseg_pool_cfg[i].pool_size; j++) {
2761 bfa_q_qe_init(&rit_mod->rit_segment[count].qe);
2762 rit_mod->rit_segment[count].max_rit_size =
2763 ritseg_pool_cfg[i].pool_entry_size;
2764 rit_mod->rit_segment[count].rit_offset = offset;
2765 rit_mod->rit_segment[count].rit =
2766 &rit_mod->rit[offset];
2767 list_add_tail(&rit_mod->rit_segment[count].qe,
2768 &rit_mod->rit_seg_pool[i]);
2769 count++;
2770 offset += ritseg_pool_cfg[i].pool_entry_size;
2771 }
2772 }
2773}
2774
2775/*
2776 * Public functions
2777 */
2778
2779/* Called during probe(), before calling bna_init() */
2780void
2781bna_res_req(struct bna_res_info *res_info)
2782{
2783 bna_adv_res_req(res_info);
2784
2785 /* DMA memory for retrieving IOC attributes */
2786 res_info[BNA_RES_MEM_T_ATTR].res_type = BNA_RES_T_MEM;
2787 res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.mem_type = BNA_MEM_T_DMA;
2788 res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.num = 1;
2789 res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.len =
2790 ALIGN(bfa_nw_ioc_meminfo(), PAGE_SIZE);
2791
2792 /* DMA memory for index segment of an IB */
2793 res_info[BNA_RES_MEM_T_IBIDX].res_type = BNA_RES_T_MEM;
2794 res_info[BNA_RES_MEM_T_IBIDX].res_u.mem_info.mem_type = BNA_MEM_T_DMA;
2795 res_info[BNA_RES_MEM_T_IBIDX].res_u.mem_info.len =
2796 BFI_IBIDX_SIZE * BFI_IBIDX_MAX_SEGSIZE;
2797 res_info[BNA_RES_MEM_T_IBIDX].res_u.mem_info.num = BFI_MAX_IB;
2798
2799 /* Virtual memory for IB objects - stored by IB module */
2800 res_info[BNA_RES_MEM_T_IB_ARRAY].res_type = BNA_RES_T_MEM;
2801 res_info[BNA_RES_MEM_T_IB_ARRAY].res_u.mem_info.mem_type =
2802 BNA_MEM_T_KVA;
2803 res_info[BNA_RES_MEM_T_IB_ARRAY].res_u.mem_info.num = 1;
2804 res_info[BNA_RES_MEM_T_IB_ARRAY].res_u.mem_info.len =
2805 BFI_MAX_IB * sizeof(struct bna_ib);
2806
2807 /* Virtual memory for intr objects - stored by IB module */
2808 res_info[BNA_RES_MEM_T_INTR_ARRAY].res_type = BNA_RES_T_MEM;
2809 res_info[BNA_RES_MEM_T_INTR_ARRAY].res_u.mem_info.mem_type =
2810 BNA_MEM_T_KVA;
2811 res_info[BNA_RES_MEM_T_INTR_ARRAY].res_u.mem_info.num = 1;
2812 res_info[BNA_RES_MEM_T_INTR_ARRAY].res_u.mem_info.len =
2813 BFI_MAX_IB * sizeof(struct bna_intr);
2814
2815 /* Virtual memory for idx_seg objects - stored by IB module */
2816 res_info[BNA_RES_MEM_T_IDXSEG_ARRAY].res_type = BNA_RES_T_MEM;
2817 res_info[BNA_RES_MEM_T_IDXSEG_ARRAY].res_u.mem_info.mem_type =
2818 BNA_MEM_T_KVA;
2819 res_info[BNA_RES_MEM_T_IDXSEG_ARRAY].res_u.mem_info.num = 1;
2820 res_info[BNA_RES_MEM_T_IDXSEG_ARRAY].res_u.mem_info.len =
2821 BFI_IBIDX_TOTAL_SEGS * sizeof(struct bna_ibidx_seg);
2822
2823 /* Virtual memory for Tx objects - stored by Tx module */
2824 res_info[BNA_RES_MEM_T_TX_ARRAY].res_type = BNA_RES_T_MEM;
2825 res_info[BNA_RES_MEM_T_TX_ARRAY].res_u.mem_info.mem_type =
2826 BNA_MEM_T_KVA;
2827 res_info[BNA_RES_MEM_T_TX_ARRAY].res_u.mem_info.num = 1;
2828 res_info[BNA_RES_MEM_T_TX_ARRAY].res_u.mem_info.len =
2829 BFI_MAX_TXQ * sizeof(struct bna_tx);
2830
2831 /* Virtual memory for TxQ - stored by Tx module */
2832 res_info[BNA_RES_MEM_T_TXQ_ARRAY].res_type = BNA_RES_T_MEM;
2833 res_info[BNA_RES_MEM_T_TXQ_ARRAY].res_u.mem_info.mem_type =
2834 BNA_MEM_T_KVA;
2835 res_info[BNA_RES_MEM_T_TXQ_ARRAY].res_u.mem_info.num = 1;
2836 res_info[BNA_RES_MEM_T_TXQ_ARRAY].res_u.mem_info.len =
2837 BFI_MAX_TXQ * sizeof(struct bna_txq);
2838
2839 /* Virtual memory for Rx objects - stored by Rx module */
2840 res_info[BNA_RES_MEM_T_RX_ARRAY].res_type = BNA_RES_T_MEM;
2841 res_info[BNA_RES_MEM_T_RX_ARRAY].res_u.mem_info.mem_type =
2842 BNA_MEM_T_KVA;
2843 res_info[BNA_RES_MEM_T_RX_ARRAY].res_u.mem_info.num = 1;
2844 res_info[BNA_RES_MEM_T_RX_ARRAY].res_u.mem_info.len =
2845 BFI_MAX_RXQ * sizeof(struct bna_rx);
2846
2847 /* Virtual memory for RxPath - stored by Rx module */
2848 res_info[BNA_RES_MEM_T_RXP_ARRAY].res_type = BNA_RES_T_MEM;
2849 res_info[BNA_RES_MEM_T_RXP_ARRAY].res_u.mem_info.mem_type =
2850 BNA_MEM_T_KVA;
2851 res_info[BNA_RES_MEM_T_RXP_ARRAY].res_u.mem_info.num = 1;
2852 res_info[BNA_RES_MEM_T_RXP_ARRAY].res_u.mem_info.len =
2853 BFI_MAX_RXQ * sizeof(struct bna_rxp);
2854
2855 /* Virtual memory for RxQ - stored by Rx module */
2856 res_info[BNA_RES_MEM_T_RXQ_ARRAY].res_type = BNA_RES_T_MEM;
2857 res_info[BNA_RES_MEM_T_RXQ_ARRAY].res_u.mem_info.mem_type =
2858 BNA_MEM_T_KVA;
2859 res_info[BNA_RES_MEM_T_RXQ_ARRAY].res_u.mem_info.num = 1;
2860 res_info[BNA_RES_MEM_T_RXQ_ARRAY].res_u.mem_info.len =
2861 BFI_MAX_RXQ * sizeof(struct bna_rxq);
2862
2863 /* Virtual memory for Unicast MAC address - stored by ucam module */
2864 res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_type = BNA_RES_T_MEM;
2865 res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_u.mem_info.mem_type =
2866 BNA_MEM_T_KVA;
2867 res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_u.mem_info.num = 1;
2868 res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_u.mem_info.len =
2869 BFI_MAX_UCMAC * sizeof(struct bna_mac);
2870
2871 /* Virtual memory for Multicast MAC address - stored by mcam module */
2872 res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_type = BNA_RES_T_MEM;
2873 res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_u.mem_info.mem_type =
2874 BNA_MEM_T_KVA;
2875 res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_u.mem_info.num = 1;
2876 res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_u.mem_info.len =
2877 BFI_MAX_MCMAC * sizeof(struct bna_mac);
2878
2879 /* Virtual memory for RIT entries */
2880 res_info[BNA_RES_MEM_T_RIT_ENTRY].res_type = BNA_RES_T_MEM;
2881 res_info[BNA_RES_MEM_T_RIT_ENTRY].res_u.mem_info.mem_type =
2882 BNA_MEM_T_KVA;
2883 res_info[BNA_RES_MEM_T_RIT_ENTRY].res_u.mem_info.num = 1;
2884 res_info[BNA_RES_MEM_T_RIT_ENTRY].res_u.mem_info.len =
2885 BFI_MAX_RIT_SIZE * sizeof(struct bna_rit_entry);
2886
2887 /* Virtual memory for RIT segment table */
2888 res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_type = BNA_RES_T_MEM;
2889 res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_u.mem_info.mem_type =
2890 BNA_MEM_T_KVA;
2891 res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_u.mem_info.num = 1;
2892 res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_u.mem_info.len =
2893 BFI_RIT_TOTAL_SEGS * sizeof(struct bna_rit_segment);
2894
2895 /* Interrupt resource for mailbox interrupt */
2896 res_info[BNA_RES_INTR_T_MBOX].res_type = BNA_RES_T_INTR;
2897 res_info[BNA_RES_INTR_T_MBOX].res_u.intr_info.intr_type =
2898 BNA_INTR_T_MSIX;
2899 res_info[BNA_RES_INTR_T_MBOX].res_u.intr_info.num = 1;
2900}
2901
2902/* Called during probe() */
2903void
2904bna_init(struct bna *bna, struct bnad *bnad, struct bfa_pcidev *pcidev,
2905 struct bna_res_info *res_info)
2906{
2907 bna->bnad = bnad;
2908 bna->pcidev = *pcidev;
2909
2910 bna->stats.hw_stats = (struct bfi_ll_stats *)
2911 res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.mdl[0].kva;
2912 bna->hw_stats_dma.msb =
2913 res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.mdl[0].dma.msb;
2914 bna->hw_stats_dma.lsb =
2915 res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.mdl[0].dma.lsb;
2916 bna->stats.sw_stats = (struct bna_sw_stats *)
2917 res_info[BNA_RES_MEM_T_SWSTATS].res_u.mem_info.mdl[0].kva;
2918
2919 bna->regs.page_addr = bna->pcidev.pci_bar_kva +
2920 reg_offset[bna->pcidev.pci_func].page_addr;
2921 bna->regs.fn_int_status = bna->pcidev.pci_bar_kva +
2922 reg_offset[bna->pcidev.pci_func].fn_int_status;
2923 bna->regs.fn_int_mask = bna->pcidev.pci_bar_kva +
2924 reg_offset[bna->pcidev.pci_func].fn_int_mask;
2925
2926 if (bna->pcidev.pci_func < 3)
2927 bna->port_num = 0;
2928 else
2929 bna->port_num = 1;
2930
2931 /* Also initializes diag, cee, sfp, phy_port and mbox_mod */
2932 bna_device_init(&bna->device, bna, res_info);
2933
2934 bna_port_init(&bna->port, bna);
2935
2936 bna_tx_mod_init(&bna->tx_mod, bna, res_info);
2937
2938 bna_rx_mod_init(&bna->rx_mod, bna, res_info);
2939
2940 bna_ib_mod_init(&bna->ib_mod, bna, res_info);
2941
2942 bna_rit_mod_init(&bna->rit_mod, res_info);
2943
2944 bna_ucam_mod_init(&bna->ucam_mod, bna, res_info);
2945
2946 bna_mcam_mod_init(&bna->mcam_mod, bna, res_info);
2947
2948 bna->rxf_promisc_id = BFI_MAX_RXF;
2949
2950 /* Mbox q element for posting stat request to f/w */
2951 bfa_q_qe_init(&bna->mbox_qe.qe);
2952}
2953
2954void
2955bna_uninit(struct bna *bna)
2956{
2957 bna_mcam_mod_uninit(&bna->mcam_mod);
2958
2959 bna_ucam_mod_uninit(&bna->ucam_mod);
2960
2961 bna_ib_mod_uninit(&bna->ib_mod);
2962
2963 bna_rx_mod_uninit(&bna->rx_mod);
2964
2965 bna_tx_mod_uninit(&bna->tx_mod);
2966
2967 bna_port_uninit(&bna->port);
2968
2969 bna_device_uninit(&bna->device);
2970
2971 bna->bnad = NULL;
2972}
2973
2974struct bna_mac *
2975bna_ucam_mod_mac_get(struct bna_ucam_mod *ucam_mod)
2976{
2977 struct list_head *qe;
2978
2979 if (list_empty(&ucam_mod->free_q))
2980 return NULL;
2981
2982 bfa_q_deq(&ucam_mod->free_q, &qe);
2983
2984 return (struct bna_mac *)qe;
2985}
2986
2987void
2988bna_ucam_mod_mac_put(struct bna_ucam_mod *ucam_mod, struct bna_mac *mac)
2989{
2990 list_add_tail(&mac->qe, &ucam_mod->free_q);
2991}
2992
2993struct bna_mac *
2994bna_mcam_mod_mac_get(struct bna_mcam_mod *mcam_mod)
2995{
2996 struct list_head *qe;
2997
2998 if (list_empty(&mcam_mod->free_q))
2999 return NULL;
3000
3001 bfa_q_deq(&mcam_mod->free_q, &qe);
3002
3003 return (struct bna_mac *)qe;
3004}
3005
3006void
3007bna_mcam_mod_mac_put(struct bna_mcam_mod *mcam_mod, struct bna_mac *mac)
3008{
3009 list_add_tail(&mac->qe, &mcam_mod->free_q);
3010}
3011
3012/**
3013 * Note: This should be called in the same locking context as the call to
3014 * bna_rit_mod_seg_get()
3015 */
3016int
3017bna_rit_mod_can_satisfy(struct bna_rit_mod *rit_mod, int seg_size)
3018{
3019 int i;
3020
3021 /* Select the pool for seg_size */
3022 for (i = 0; i < BFI_RIT_SEG_TOTAL_POOLS; i++) {
3023 if (seg_size <= ritseg_pool_cfg[i].pool_entry_size)
3024 break;
3025 }
3026
3027 if (i == BFI_RIT_SEG_TOTAL_POOLS)
3028 return 0;
3029
3030 if (list_empty(&rit_mod->rit_seg_pool[i]))
3031 return 0;
3032
3033 return 1;
3034}
3035
3036struct bna_rit_segment *
3037bna_rit_mod_seg_get(struct bna_rit_mod *rit_mod, int seg_size)
3038{
3039 struct bna_rit_segment *seg;
3040 struct list_head *qe;
3041 int i;
3042
3043 /* Select the pool for seg_size */
3044 for (i = 0; i < BFI_RIT_SEG_TOTAL_POOLS; i++) {
3045 if (seg_size <= ritseg_pool_cfg[i].pool_entry_size)
3046 break;
3047 }
3048
3049 if (i == BFI_RIT_SEG_TOTAL_POOLS)
3050 return NULL;
3051
3052 if (list_empty(&rit_mod->rit_seg_pool[i]))
3053 return NULL;
3054
3055 bfa_q_deq(&rit_mod->rit_seg_pool[i], &qe);
3056 seg = (struct bna_rit_segment *)qe;
3057 bfa_q_qe_init(&seg->qe);
3058 seg->rit_size = seg_size;
3059
3060 return seg;
3061}
3062
3063void
3064bna_rit_mod_seg_put(struct bna_rit_mod *rit_mod,
3065 struct bna_rit_segment *seg)
3066{
3067 int i;
3068
3069 /* Select the pool for seg->max_rit_size */
3070 for (i = 0; i < BFI_RIT_SEG_TOTAL_POOLS; i++) {
3071 if (seg->max_rit_size == ritseg_pool_cfg[i].pool_entry_size)
3072 break;
3073 }
3074
3075 seg->rit_size = 0;
3076 list_add_tail(&seg->qe, &rit_mod->rit_seg_pool[i]);
3077}
diff --git a/drivers/net/bna/bna_hw.h b/drivers/net/bna/bna_hw.h
new file mode 100644
index 000000000000..6cb89692f5c1
--- /dev/null
+++ b/drivers/net/bna/bna_hw.h
@@ -0,0 +1,1490 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 *
18 * File for interrupt macros and functions
19 */
20
21#ifndef __BNA_HW_H__
22#define __BNA_HW_H__
23
24#include "bfi_ctreg.h"
25
26/**
27 *
28 * SW imposed limits
29 *
30 */
31
32#ifndef BNA_BIOS_BUILD
33
34#define BFI_MAX_TXQ 64
35#define BFI_MAX_RXQ 64
36#define BFI_MAX_RXF 64
37#define BFI_MAX_IB 128
38#define BFI_MAX_RIT_SIZE 256
39#define BFI_RSS_RIT_SIZE 64
40#define BFI_NONRSS_RIT_SIZE 1
41#define BFI_MAX_UCMAC 256
42#define BFI_MAX_MCMAC 512
43#define BFI_IBIDX_SIZE 4
44#define BFI_MAX_VLAN 4095
45
46/**
47 * There are 2 free IB index pools:
48 * pool1: 120 segments of 1 index each
49 * pool8: 1 segment of 8 indexes
50 */
51#define BFI_IBIDX_POOL1_SIZE 116
52#define BFI_IBIDX_POOL1_ENTRY_SIZE 1
53#define BFI_IBIDX_POOL2_SIZE 2
54#define BFI_IBIDX_POOL2_ENTRY_SIZE 2
55#define BFI_IBIDX_POOL8_SIZE 1
56#define BFI_IBIDX_POOL8_ENTRY_SIZE 8
57#define BFI_IBIDX_TOTAL_POOLS 3
58#define BFI_IBIDX_TOTAL_SEGS 119 /* (POOL1 + POOL2 + POOL8)_SIZE */
59#define BFI_IBIDX_MAX_SEGSIZE 8
60#define init_ibidx_pool(name) \
61static struct bna_ibidx_pool name[BFI_IBIDX_TOTAL_POOLS] = \
62{ \
63 { BFI_IBIDX_POOL1_SIZE, BFI_IBIDX_POOL1_ENTRY_SIZE }, \
64 { BFI_IBIDX_POOL2_SIZE, BFI_IBIDX_POOL2_ENTRY_SIZE }, \
65 { BFI_IBIDX_POOL8_SIZE, BFI_IBIDX_POOL8_ENTRY_SIZE } \
66}
67
68/**
69 * There are 2 free RIT segment pools:
70 * Pool1: 192 segments of 1 RIT entry each
71 * Pool2: 1 segment of 64 RIT entry
72 */
73#define BFI_RIT_SEG_POOL1_SIZE 192
74#define BFI_RIT_SEG_POOL1_ENTRY_SIZE 1
75#define BFI_RIT_SEG_POOLRSS_SIZE 1
76#define BFI_RIT_SEG_POOLRSS_ENTRY_SIZE 64
77#define BFI_RIT_SEG_TOTAL_POOLS 2
78#define BFI_RIT_TOTAL_SEGS 193 /* POOL1_SIZE + POOLRSS_SIZE */
79#define init_ritseg_pool(name) \
80static struct bna_ritseg_pool_cfg name[BFI_RIT_SEG_TOTAL_POOLS] = \
81{ \
82 { BFI_RIT_SEG_POOL1_SIZE, BFI_RIT_SEG_POOL1_ENTRY_SIZE }, \
83 { BFI_RIT_SEG_POOLRSS_SIZE, BFI_RIT_SEG_POOLRSS_ENTRY_SIZE } \
84}
85
86#else /* BNA_BIOS_BUILD */
87
88#define BFI_MAX_TXQ 1
89#define BFI_MAX_RXQ 1
90#define BFI_MAX_RXF 1
91#define BFI_MAX_IB 2
92#define BFI_MAX_RIT_SIZE 2
93#define BFI_RSS_RIT_SIZE 64
94#define BFI_NONRSS_RIT_SIZE 1
95#define BFI_MAX_UCMAC 1
96#define BFI_MAX_MCMAC 8
97#define BFI_IBIDX_SIZE 4
98#define BFI_MAX_VLAN 4095
99/* There is one free pool: 2 segments of 1 index each */
100#define BFI_IBIDX_POOL1_SIZE 2
101#define BFI_IBIDX_POOL1_ENTRY_SIZE 1
102#define BFI_IBIDX_TOTAL_POOLS 1
103#define BFI_IBIDX_TOTAL_SEGS 2 /* POOL1_SIZE */
104#define BFI_IBIDX_MAX_SEGSIZE 1
105#define init_ibidx_pool(name) \
106static struct bna_ibidx_pool name[BFI_IBIDX_TOTAL_POOLS] = \
107{ \
108 { BFI_IBIDX_POOL1_SIZE, BFI_IBIDX_POOL1_ENTRY_SIZE } \
109}
110
111#define BFI_RIT_SEG_POOL1_SIZE 1
112#define BFI_RIT_SEG_POOL1_ENTRY_SIZE 1
113#define BFI_RIT_SEG_TOTAL_POOLS 1
114#define BFI_RIT_TOTAL_SEGS 1 /* POOL1_SIZE */
115#define init_ritseg_pool(name) \
116static struct bna_ritseg_pool_cfg name[BFI_RIT_SEG_TOTAL_POOLS] = \
117{ \
118 { BFI_RIT_SEG_POOL1_SIZE, BFI_RIT_SEG_POOL1_ENTRY_SIZE } \
119}
120
121#endif /* BNA_BIOS_BUILD */
122
123#define BFI_RSS_HASH_KEY_LEN 10
124
125#define BFI_COALESCING_TIMER_UNIT 5 /* 5us */
126#define BFI_MAX_COALESCING_TIMEO 0xFF /* in 5us units */
127#define BFI_MAX_INTERPKT_COUNT 0xFF
128#define BFI_MAX_INTERPKT_TIMEO 0xF /* in 0.5us units */
129#define BFI_TX_COALESCING_TIMEO 20 /* 20 * 5 = 100us */
130#define BFI_TX_INTERPKT_COUNT 32
131#define BFI_RX_COALESCING_TIMEO 12 /* 12 * 5 = 60us */
132#define BFI_RX_INTERPKT_COUNT 6 /* Pkt Cnt = 6 */
133#define BFI_RX_INTERPKT_TIMEO 3 /* 3 * 0.5 = 1.5us */
134
135#define BFI_TXQ_WI_SIZE 64 /* bytes */
136#define BFI_RXQ_WI_SIZE 8 /* bytes */
137#define BFI_CQ_WI_SIZE 16 /* bytes */
138#define BFI_TX_MAX_WRR_QUOTA 0xFFF
139
140#define BFI_TX_MAX_VECTORS_PER_WI 4
141#define BFI_TX_MAX_VECTORS_PER_PKT 0xFF
142#define BFI_TX_MAX_DATA_PER_VECTOR 0xFFFF
143#define BFI_TX_MAX_DATA_PER_PKT 0xFFFFFF
144
145/* Small Q buffer size */
146#define BFI_SMALL_RXBUF_SIZE 128
147
148/* Defined separately since BFA_FLASH_DMA_BUF_SZ is in bfa_flash.c */
149#define BFI_FLASH_DMA_BUF_SZ 0x010000 /* 64K DMA */
150#define BFI_HW_STATS_SIZE 0x4000 /* 16K DMA */
151
152/**
153 *
154 * HW register offsets, macros
155 *
156 */
157
158/* DMA Block Register Host Window Start Address */
159#define DMA_BLK_REG_ADDR 0x00013000
160
161/* DMA Block Internal Registers */
162#define DMA_CTRL_REG0 (DMA_BLK_REG_ADDR + 0x000)
163#define DMA_CTRL_REG1 (DMA_BLK_REG_ADDR + 0x004)
164#define DMA_ERR_INT_STATUS (DMA_BLK_REG_ADDR + 0x008)
165#define DMA_ERR_INT_ENABLE (DMA_BLK_REG_ADDR + 0x00c)
166#define DMA_ERR_INT_STATUS_SET (DMA_BLK_REG_ADDR + 0x010)
167
168/* APP Block Register Address Offset from BAR0 */
169#define APP_BLK_REG_ADDR 0x00014000
170
171/* Host Function Interrupt Mask Registers */
172#define HOSTFN0_INT_MASK (APP_BLK_REG_ADDR + 0x004)
173#define HOSTFN1_INT_MASK (APP_BLK_REG_ADDR + 0x104)
174#define HOSTFN2_INT_MASK (APP_BLK_REG_ADDR + 0x304)
175#define HOSTFN3_INT_MASK (APP_BLK_REG_ADDR + 0x404)
176
177/**
178 * Host Function PCIe Error Registers
179 * Duplicates "Correctable" & "Uncorrectable"
180 * registers in PCIe Config space.
181 */
182#define FN0_PCIE_ERR_REG (APP_BLK_REG_ADDR + 0x014)
183#define FN1_PCIE_ERR_REG (APP_BLK_REG_ADDR + 0x114)
184#define FN2_PCIE_ERR_REG (APP_BLK_REG_ADDR + 0x314)
185#define FN3_PCIE_ERR_REG (APP_BLK_REG_ADDR + 0x414)
186
187/* Host Function Error Type Status Registers */
188#define FN0_ERR_TYPE_STATUS_REG (APP_BLK_REG_ADDR + 0x018)
189#define FN1_ERR_TYPE_STATUS_REG (APP_BLK_REG_ADDR + 0x118)
190#define FN2_ERR_TYPE_STATUS_REG (APP_BLK_REG_ADDR + 0x318)
191#define FN3_ERR_TYPE_STATUS_REG (APP_BLK_REG_ADDR + 0x418)
192
193/* Host Function Error Type Mask Registers */
194#define FN0_ERR_TYPE_MSK_STATUS_REG (APP_BLK_REG_ADDR + 0x01c)
195#define FN1_ERR_TYPE_MSK_STATUS_REG (APP_BLK_REG_ADDR + 0x11c)
196#define FN2_ERR_TYPE_MSK_STATUS_REG (APP_BLK_REG_ADDR + 0x31c)
197#define FN3_ERR_TYPE_MSK_STATUS_REG (APP_BLK_REG_ADDR + 0x41c)
198
199/* Catapult Host Semaphore Status Registers (App block) */
200#define HOST_SEM_STS0_REG (APP_BLK_REG_ADDR + 0x630)
201#define HOST_SEM_STS1_REG (APP_BLK_REG_ADDR + 0x634)
202#define HOST_SEM_STS2_REG (APP_BLK_REG_ADDR + 0x638)
203#define HOST_SEM_STS3_REG (APP_BLK_REG_ADDR + 0x63c)
204#define HOST_SEM_STS4_REG (APP_BLK_REG_ADDR + 0x640)
205#define HOST_SEM_STS5_REG (APP_BLK_REG_ADDR + 0x644)
206#define HOST_SEM_STS6_REG (APP_BLK_REG_ADDR + 0x648)
207#define HOST_SEM_STS7_REG (APP_BLK_REG_ADDR + 0x64c)
208
209/* PCIe Misc Register */
210#define PCIE_MISC_REG (APP_BLK_REG_ADDR + 0x200)
211
212/* Temp Sensor Control Registers */
213#define TEMPSENSE_CNTL_REG (APP_BLK_REG_ADDR + 0x250)
214#define TEMPSENSE_STAT_REG (APP_BLK_REG_ADDR + 0x254)
215
216/* APP Block local error registers */
217#define APP_LOCAL_ERR_STAT (APP_BLK_REG_ADDR + 0x258)
218#define APP_LOCAL_ERR_MSK (APP_BLK_REG_ADDR + 0x25c)
219
220/* PCIe Link Error registers */
221#define PCIE_LNK_ERR_STAT (APP_BLK_REG_ADDR + 0x260)
222#define PCIE_LNK_ERR_MSK (APP_BLK_REG_ADDR + 0x264)
223
224/**
225 * FCoE/FIP Ethertype Register
226 * 31:16 -- Chip wide value for FIP type
227 * 15:0 -- Chip wide value for FCoE type
228 */
229#define FCOE_FIP_ETH_TYPE (APP_BLK_REG_ADDR + 0x280)
230
231/**
232 * Reserved Ethertype Register
233 * 31:16 -- Reserved
234 * 15:0 -- Other ethertype
235 */
236#define RESV_ETH_TYPE (APP_BLK_REG_ADDR + 0x284)
237
238/**
239 * Host Command Status Registers
240 * Each set consists of 3 registers :
241 * clear, set, cmd
242 * 16 such register sets in all
243 * See catapult_spec.pdf for detailed functionality
244 * Put each type in a single macro accessed by _num ?
245 */
246#define HOST_CMDSTS0_CLR_REG (APP_BLK_REG_ADDR + 0x500)
247#define HOST_CMDSTS0_SET_REG (APP_BLK_REG_ADDR + 0x504)
248#define HOST_CMDSTS0_REG (APP_BLK_REG_ADDR + 0x508)
249#define HOST_CMDSTS1_CLR_REG (APP_BLK_REG_ADDR + 0x510)
250#define HOST_CMDSTS1_SET_REG (APP_BLK_REG_ADDR + 0x514)
251#define HOST_CMDSTS1_REG (APP_BLK_REG_ADDR + 0x518)
252#define HOST_CMDSTS2_CLR_REG (APP_BLK_REG_ADDR + 0x520)
253#define HOST_CMDSTS2_SET_REG (APP_BLK_REG_ADDR + 0x524)
254#define HOST_CMDSTS2_REG (APP_BLK_REG_ADDR + 0x528)
255#define HOST_CMDSTS3_CLR_REG (APP_BLK_REG_ADDR + 0x530)
256#define HOST_CMDSTS3_SET_REG (APP_BLK_REG_ADDR + 0x534)
257#define HOST_CMDSTS3_REG (APP_BLK_REG_ADDR + 0x538)
258#define HOST_CMDSTS4_CLR_REG (APP_BLK_REG_ADDR + 0x540)
259#define HOST_CMDSTS4_SET_REG (APP_BLK_REG_ADDR + 0x544)
260#define HOST_CMDSTS4_REG (APP_BLK_REG_ADDR + 0x548)
261#define HOST_CMDSTS5_CLR_REG (APP_BLK_REG_ADDR + 0x550)
262#define HOST_CMDSTS5_SET_REG (APP_BLK_REG_ADDR + 0x554)
263#define HOST_CMDSTS5_REG (APP_BLK_REG_ADDR + 0x558)
264#define HOST_CMDSTS6_CLR_REG (APP_BLK_REG_ADDR + 0x560)
265#define HOST_CMDSTS6_SET_REG (APP_BLK_REG_ADDR + 0x564)
266#define HOST_CMDSTS6_REG (APP_BLK_REG_ADDR + 0x568)
267#define HOST_CMDSTS7_CLR_REG (APP_BLK_REG_ADDR + 0x570)
268#define HOST_CMDSTS7_SET_REG (APP_BLK_REG_ADDR + 0x574)
269#define HOST_CMDSTS7_REG (APP_BLK_REG_ADDR + 0x578)
270#define HOST_CMDSTS8_CLR_REG (APP_BLK_REG_ADDR + 0x580)
271#define HOST_CMDSTS8_SET_REG (APP_BLK_REG_ADDR + 0x584)
272#define HOST_CMDSTS8_REG (APP_BLK_REG_ADDR + 0x588)
273#define HOST_CMDSTS9_CLR_REG (APP_BLK_REG_ADDR + 0x590)
274#define HOST_CMDSTS9_SET_REG (APP_BLK_REG_ADDR + 0x594)
275#define HOST_CMDSTS9_REG (APP_BLK_REG_ADDR + 0x598)
276#define HOST_CMDSTS10_CLR_REG (APP_BLK_REG_ADDR + 0x5A0)
277#define HOST_CMDSTS10_SET_REG (APP_BLK_REG_ADDR + 0x5A4)
278#define HOST_CMDSTS10_REG (APP_BLK_REG_ADDR + 0x5A8)
279#define HOST_CMDSTS11_CLR_REG (APP_BLK_REG_ADDR + 0x5B0)
280#define HOST_CMDSTS11_SET_REG (APP_BLK_REG_ADDR + 0x5B4)
281#define HOST_CMDSTS11_REG (APP_BLK_REG_ADDR + 0x5B8)
282#define HOST_CMDSTS12_CLR_REG (APP_BLK_REG_ADDR + 0x5C0)
283#define HOST_CMDSTS12_SET_REG (APP_BLK_REG_ADDR + 0x5C4)
284#define HOST_CMDSTS12_REG (APP_BLK_REG_ADDR + 0x5C8)
285#define HOST_CMDSTS13_CLR_REG (APP_BLK_REG_ADDR + 0x5D0)
286#define HOST_CMDSTS13_SET_REG (APP_BLK_REG_ADDR + 0x5D4)
287#define HOST_CMDSTS13_REG (APP_BLK_REG_ADDR + 0x5D8)
288#define HOST_CMDSTS14_CLR_REG (APP_BLK_REG_ADDR + 0x5E0)
289#define HOST_CMDSTS14_SET_REG (APP_BLK_REG_ADDR + 0x5E4)
290#define HOST_CMDSTS14_REG (APP_BLK_REG_ADDR + 0x5E8)
291#define HOST_CMDSTS15_CLR_REG (APP_BLK_REG_ADDR + 0x5F0)
292#define HOST_CMDSTS15_SET_REG (APP_BLK_REG_ADDR + 0x5F4)
293#define HOST_CMDSTS15_REG (APP_BLK_REG_ADDR + 0x5F8)
294
295/**
296 * LPU0 Block Register Address Offset from BAR0
297 * Range 0x18000 - 0x18033
298 */
299#define LPU0_BLK_REG_ADDR 0x00018000
300
301/**
302 * LPU0 Registers
303 * Should they be directly used from host,
304 * except for diagnostics ?
305 * CTL_REG : Control register
306 * CMD_REG : Triggers exec. of cmd. in
307 * Mailbox memory
308 */
309#define LPU0_MBOX_CTL_REG (LPU0_BLK_REG_ADDR + 0x000)
310#define LPU0_MBOX_CMD_REG (LPU0_BLK_REG_ADDR + 0x004)
311#define LPU0_MBOX_LINK_0REG (LPU0_BLK_REG_ADDR + 0x008)
312#define LPU1_MBOX_LINK_0REG (LPU0_BLK_REG_ADDR + 0x00c)
313#define LPU0_MBOX_STATUS_0REG (LPU0_BLK_REG_ADDR + 0x010)
314#define LPU1_MBOX_STATUS_0REG (LPU0_BLK_REG_ADDR + 0x014)
315#define LPU0_ERR_STATUS_REG (LPU0_BLK_REG_ADDR + 0x018)
316#define LPU0_ERR_SET_REG (LPU0_BLK_REG_ADDR + 0x020)
317
318/**
319 * LPU1 Block Register Address Offset from BAR0
320 * Range 0x18400 - 0x18433
321 */
322#define LPU1_BLK_REG_ADDR 0x00018400
323
324/**
325 * LPU1 Registers
326 * Same as LPU0 registers above
327 */
328#define LPU1_MBOX_CTL_REG (LPU1_BLK_REG_ADDR + 0x000)
329#define LPU1_MBOX_CMD_REG (LPU1_BLK_REG_ADDR + 0x004)
330#define LPU0_MBOX_LINK_1REG (LPU1_BLK_REG_ADDR + 0x008)
331#define LPU1_MBOX_LINK_1REG (LPU1_BLK_REG_ADDR + 0x00c)
332#define LPU0_MBOX_STATUS_1REG (LPU1_BLK_REG_ADDR + 0x010)
333#define LPU1_MBOX_STATUS_1REG (LPU1_BLK_REG_ADDR + 0x014)
334#define LPU1_ERR_STATUS_REG (LPU1_BLK_REG_ADDR + 0x018)
335#define LPU1_ERR_SET_REG (LPU1_BLK_REG_ADDR + 0x020)
336
337/**
338 * PSS Block Register Address Offset from BAR0
339 * Range 0x18800 - 0x188DB
340 */
341#define PSS_BLK_REG_ADDR 0x00018800
342
343/**
344 * PSS Registers
345 * For details, see catapult_spec.pdf
346 * ERR_STATUS_REG : Indicates error in PSS module
347 * RAM_ERR_STATUS_REG : Indicates RAM module that detected error
348 */
349#define ERR_STATUS_SET (PSS_BLK_REG_ADDR + 0x018)
350#define PSS_RAM_ERR_STATUS_REG (PSS_BLK_REG_ADDR + 0x01C)
351
352/**
353 * PSS Semaphore Lock Registers, total 16
354 * First read when unlocked returns 0,
355 * and is set to 1, atomically.
356 * Subsequent reads returns 1.
357 * To clear set the value to 0.
358 * Range : 0x20 to 0x5c
359 */
360#define PSS_SEM_LOCK_REG(_num) \
361 (PSS_BLK_REG_ADDR + 0x020 + ((_num) << 2))
362
363/**
364 * PSS Semaphore Status Registers,
365 * corresponding to the lock registers above
366 */
367#define PSS_SEM_STATUS_REG(_num) \
368 (PSS_BLK_REG_ADDR + 0x060 + ((_num) << 2))
369
370/**
371 * Catapult CPQ Registers
372 * Defines for Mailbox Registers
373 * Used to send mailbox commands to firmware from
374 * host. The data part is written to the MBox
375 * memory, registers are used to indicate that
376 * a commnad is resident in memory.
377 *
378 * Note : LPU0<->LPU1 mailboxes are not listed here
379 */
380#define CPQ_BLK_REG_ADDR 0x00019000
381
382#define HOSTFN0_LPU0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x130)
383#define HOSTFN0_LPU1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x134)
384#define LPU0_HOSTFN0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x138)
385#define LPU1_HOSTFN0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x13C)
386
387#define HOSTFN1_LPU0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x140)
388#define HOSTFN1_LPU1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x144)
389#define LPU0_HOSTFN1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x148)
390#define LPU1_HOSTFN1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x14C)
391
392#define HOSTFN2_LPU0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x170)
393#define HOSTFN2_LPU1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x174)
394#define LPU0_HOSTFN2_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x178)
395#define LPU1_HOSTFN2_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x17C)
396
397#define HOSTFN3_LPU0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x180)
398#define HOSTFN3_LPU1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x184)
399#define LPU0_HOSTFN3_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x188)
400#define LPU1_HOSTFN3_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x18C)
401
402/* Host Function Force Parity Error Registers */
403#define HOSTFN0_LPU_FORCE_PERR (CPQ_BLK_REG_ADDR + 0x120)
404#define HOSTFN1_LPU_FORCE_PERR (CPQ_BLK_REG_ADDR + 0x124)
405#define HOSTFN2_LPU_FORCE_PERR (CPQ_BLK_REG_ADDR + 0x128)
406#define HOSTFN3_LPU_FORCE_PERR (CPQ_BLK_REG_ADDR + 0x12C)
407
408/* LL Port[0|1] Halt Mask Registers */
409#define LL_HALT_MSK_P0 (CPQ_BLK_REG_ADDR + 0x1A0)
410#define LL_HALT_MSK_P1 (CPQ_BLK_REG_ADDR + 0x1B0)
411
412/* LL Port[0|1] Error Mask Registers */
413#define LL_ERR_MSK_P0 (CPQ_BLK_REG_ADDR + 0x1D0)
414#define LL_ERR_MSK_P1 (CPQ_BLK_REG_ADDR + 0x1D4)
415
416/* EMC FLI (Flash Controller) Block Register Address Offset from BAR0 */
417#define FLI_BLK_REG_ADDR 0x0001D000
418
419/* EMC FLI Registers */
420#define FLI_CMD_REG (FLI_BLK_REG_ADDR + 0x000)
421#define FLI_ADDR_REG (FLI_BLK_REG_ADDR + 0x004)
422#define FLI_CTL_REG (FLI_BLK_REG_ADDR + 0x008)
423#define FLI_WRDATA_REG (FLI_BLK_REG_ADDR + 0x00C)
424#define FLI_RDDATA_REG (FLI_BLK_REG_ADDR + 0x010)
425#define FLI_DEV_STATUS_REG (FLI_BLK_REG_ADDR + 0x014)
426#define FLI_SIG_WD_REG (FLI_BLK_REG_ADDR + 0x018)
427
428/**
429 * RO register
430 * 31:16 -- Vendor Id
431 * 15:0 -- Device Id
432 */
433#define FLI_DEV_VENDOR_REG (FLI_BLK_REG_ADDR + 0x01C)
434#define FLI_ERR_STATUS_REG (FLI_BLK_REG_ADDR + 0x020)
435
436/**
437 * RAD (RxAdm) Block Register Address Offset from BAR0
438 * RAD0 Range : 0x20000 - 0x203FF
439 * RAD1 Range : 0x20400 - 0x207FF
440 */
441#define RAD0_BLK_REG_ADDR 0x00020000
442#define RAD1_BLK_REG_ADDR 0x00020400
443
444/* RAD0 Registers */
445#define RAD0_CTL_REG (RAD0_BLK_REG_ADDR + 0x000)
446#define RAD0_PE_PARM_REG (RAD0_BLK_REG_ADDR + 0x004)
447#define RAD0_BCN_REG (RAD0_BLK_REG_ADDR + 0x008)
448
449/* Default function ID register */
450#define RAD0_DEFAULT_REG (RAD0_BLK_REG_ADDR + 0x00C)
451
452/* Default promiscuous ID register */
453#define RAD0_PROMISC_REG (RAD0_BLK_REG_ADDR + 0x010)
454
455#define RAD0_BCNQ_REG (RAD0_BLK_REG_ADDR + 0x014)
456
457/*
458 * This register selects 1 of 8 PM Q's using
459 * VLAN pri, for non-BCN packets without a VLAN tag
460 */
461#define RAD0_DEFAULTQ_REG (RAD0_BLK_REG_ADDR + 0x018)
462
463#define RAD0_ERR_STS (RAD0_BLK_REG_ADDR + 0x01C)
464#define RAD0_SET_ERR_STS (RAD0_BLK_REG_ADDR + 0x020)
465#define RAD0_ERR_INT_EN (RAD0_BLK_REG_ADDR + 0x024)
466#define RAD0_FIRST_ERR (RAD0_BLK_REG_ADDR + 0x028)
467#define RAD0_FORCE_ERR (RAD0_BLK_REG_ADDR + 0x02C)
468
469#define RAD0_IF_RCVD (RAD0_BLK_REG_ADDR + 0x030)
470#define RAD0_IF_RCVD_OCTETS_HIGH (RAD0_BLK_REG_ADDR + 0x034)
471#define RAD0_IF_RCVD_OCTETS_LOW (RAD0_BLK_REG_ADDR + 0x038)
472#define RAD0_IF_RCVD_VLAN (RAD0_BLK_REG_ADDR + 0x03C)
473#define RAD0_IF_RCVD_UCAST (RAD0_BLK_REG_ADDR + 0x040)
474#define RAD0_IF_RCVD_UCAST_OCTETS_HIGH (RAD0_BLK_REG_ADDR + 0x044)
475#define RAD0_IF_RCVD_UCAST_OCTETS_LOW (RAD0_BLK_REG_ADDR + 0x048)
476#define RAD0_IF_RCVD_UCAST_VLAN (RAD0_BLK_REG_ADDR + 0x04C)
477#define RAD0_IF_RCVD_MCAST (RAD0_BLK_REG_ADDR + 0x050)
478#define RAD0_IF_RCVD_MCAST_OCTETS_HIGH (RAD0_BLK_REG_ADDR + 0x054)
479#define RAD0_IF_RCVD_MCAST_OCTETS_LOW (RAD0_BLK_REG_ADDR + 0x058)
480#define RAD0_IF_RCVD_MCAST_VLAN (RAD0_BLK_REG_ADDR + 0x05C)
481#define RAD0_IF_RCVD_BCAST (RAD0_BLK_REG_ADDR + 0x060)
482#define RAD0_IF_RCVD_BCAST_OCTETS_HIGH (RAD0_BLK_REG_ADDR + 0x064)
483#define RAD0_IF_RCVD_BCAST_OCTETS_LOW (RAD0_BLK_REG_ADDR + 0x068)
484#define RAD0_IF_RCVD_BCAST_VLAN (RAD0_BLK_REG_ADDR + 0x06C)
485#define RAD0_DROPPED_FRAMES (RAD0_BLK_REG_ADDR + 0x070)
486
487#define RAD0_MAC_MAN_1H (RAD0_BLK_REG_ADDR + 0x080)
488#define RAD0_MAC_MAN_1L (RAD0_BLK_REG_ADDR + 0x084)
489#define RAD0_MAC_MAN_2H (RAD0_BLK_REG_ADDR + 0x088)
490#define RAD0_MAC_MAN_2L (RAD0_BLK_REG_ADDR + 0x08C)
491#define RAD0_MAC_MAN_3H (RAD0_BLK_REG_ADDR + 0x090)
492#define RAD0_MAC_MAN_3L (RAD0_BLK_REG_ADDR + 0x094)
493#define RAD0_MAC_MAN_4H (RAD0_BLK_REG_ADDR + 0x098)
494#define RAD0_MAC_MAN_4L (RAD0_BLK_REG_ADDR + 0x09C)
495
496#define RAD0_LAST4_IP (RAD0_BLK_REG_ADDR + 0x100)
497
498/* RAD1 Registers */
499#define RAD1_CTL_REG (RAD1_BLK_REG_ADDR + 0x000)
500#define RAD1_PE_PARM_REG (RAD1_BLK_REG_ADDR + 0x004)
501#define RAD1_BCN_REG (RAD1_BLK_REG_ADDR + 0x008)
502
503/* Default function ID register */
504#define RAD1_DEFAULT_REG (RAD1_BLK_REG_ADDR + 0x00C)
505
506/* Promiscuous function ID register */
507#define RAD1_PROMISC_REG (RAD1_BLK_REG_ADDR + 0x010)
508
509#define RAD1_BCNQ_REG (RAD1_BLK_REG_ADDR + 0x014)
510
511/*
512 * This register selects 1 of 8 PM Q's using
513 * VLAN pri, for non-BCN packets without a VLAN tag
514 */
515#define RAD1_DEFAULTQ_REG (RAD1_BLK_REG_ADDR + 0x018)
516
517#define RAD1_ERR_STS (RAD1_BLK_REG_ADDR + 0x01C)
518#define RAD1_SET_ERR_STS (RAD1_BLK_REG_ADDR + 0x020)
519#define RAD1_ERR_INT_EN (RAD1_BLK_REG_ADDR + 0x024)
520
521/**
522 * TXA Block Register Address Offset from BAR0
523 * TXA0 Range : 0x21000 - 0x213FF
524 * TXA1 Range : 0x21400 - 0x217FF
525 */
526#define TXA0_BLK_REG_ADDR 0x00021000
527#define TXA1_BLK_REG_ADDR 0x00021400
528
529/* TXA Registers */
530#define TXA0_CTRL_REG (TXA0_BLK_REG_ADDR + 0x000)
531#define TXA1_CTRL_REG (TXA1_BLK_REG_ADDR + 0x000)
532
533/**
534 * TSO Sequence # Registers (RO)
535 * Total 8 (for 8 queues)
536 * Holds the last seq.# for TSO frames
537 * See catapult_spec.pdf for more details
538 */
539#define TXA0_TSO_TCP_SEQ_REG(_num) \
540 (TXA0_BLK_REG_ADDR + 0x020 + ((_num) << 2))
541
542#define TXA1_TSO_TCP_SEQ_REG(_num) \
543 (TXA1_BLK_REG_ADDR + 0x020 + ((_num) << 2))
544
545/**
546 * TSO IP ID # Registers (RO)
547 * Total 8 (for 8 queues)
548 * Holds the last IP ID for TSO frames
549 * See catapult_spec.pdf for more details
550 */
551#define TXA0_TSO_IP_INFO_REG(_num) \
552 (TXA0_BLK_REG_ADDR + 0x040 + ((_num) << 2))
553
554#define TXA1_TSO_IP_INFO_REG(_num) \
555 (TXA1_BLK_REG_ADDR + 0x040 + ((_num) << 2))
556
557/**
558 * RXA Block Register Address Offset from BAR0
559 * RXA0 Range : 0x21800 - 0x21BFF
560 * RXA1 Range : 0x21C00 - 0x21FFF
561 */
562#define RXA0_BLK_REG_ADDR 0x00021800
563#define RXA1_BLK_REG_ADDR 0x00021C00
564
565/* RXA Registers */
566#define RXA0_CTL_REG (RXA0_BLK_REG_ADDR + 0x040)
567#define RXA1_CTL_REG (RXA1_BLK_REG_ADDR + 0x040)
568
569/**
570 * PPLB Block Register Address Offset from BAR0
571 * PPLB0 Range : 0x22000 - 0x223FF
572 * PPLB1 Range : 0x22400 - 0x227FF
573 */
574#define PLB0_BLK_REG_ADDR 0x00022000
575#define PLB1_BLK_REG_ADDR 0x00022400
576
577/**
578 * PLB Registers
579 * Holds RL timer used time stamps in RLT tagged frames
580 */
581#define PLB0_ECM_TIMER_REG (PLB0_BLK_REG_ADDR + 0x05C)
582#define PLB1_ECM_TIMER_REG (PLB1_BLK_REG_ADDR + 0x05C)
583
584/* Controls the rate-limiter on each of the priority class */
585#define PLB0_RL_CTL (PLB0_BLK_REG_ADDR + 0x060)
586#define PLB1_RL_CTL (PLB1_BLK_REG_ADDR + 0x060)
587
588/**
589 * Max byte register, total 8, 0-7
590 * see catapult_spec.pdf for details
591 */
592#define PLB0_RL_MAX_BC(_num) \
593 (PLB0_BLK_REG_ADDR + 0x064 + ((_num) << 2))
594#define PLB1_RL_MAX_BC(_num) \
595 (PLB1_BLK_REG_ADDR + 0x064 + ((_num) << 2))
596
597/**
598 * RL Time Unit Register for priority 0-7
599 * 4 bits per priority
600 * (2^rl_unit)*1us is the actual time period
601 */
602#define PLB0_RL_TU_PRIO (PLB0_BLK_REG_ADDR + 0x084)
603#define PLB1_RL_TU_PRIO (PLB1_BLK_REG_ADDR + 0x084)
604
605/**
606 * RL byte count register,
607 * bytes transmitted in (rl_unit*1)us time period
608 * 1 per priority, 8 in all, 0-7.
609 */
610#define PLB0_RL_BYTE_CNT(_num) \
611 (PLB0_BLK_REG_ADDR + 0x088 + ((_num) << 2))
612#define PLB1_RL_BYTE_CNT(_num) \
613 (PLB1_BLK_REG_ADDR + 0x088 + ((_num) << 2))
614
615/**
616 * RL Min factor register
617 * 2 bits per priority,
618 * 4 factors possible: 1, 0.5, 0.25, 0
619 * 2'b00 - 0; 2'b01 - 0.25; 2'b10 - 0.5; 2'b11 - 1
620 */
621#define PLB0_RL_MIN_REG (PLB0_BLK_REG_ADDR + 0x0A8)
622#define PLB1_RL_MIN_REG (PLB1_BLK_REG_ADDR + 0x0A8)
623
624/**
625 * RL Max factor register
626 * 2 bits per priority,
627 * 4 factors possible: 1, 0.5, 0.25, 0
628 * 2'b00 - 0; 2'b01 - 0.25; 2'b10 - 0.5; 2'b11 - 1
629 */
630#define PLB0_RL_MAX_REG (PLB0_BLK_REG_ADDR + 0x0AC)
631#define PLB1_RL_MAX_REG (PLB1_BLK_REG_ADDR + 0x0AC)
632
633/* MAC SERDES Address Paging register */
634#define PLB0_EMS_ADD_REG (PLB0_BLK_REG_ADDR + 0xD0)
635#define PLB1_EMS_ADD_REG (PLB1_BLK_REG_ADDR + 0xD0)
636
637/* LL EMS Registers */
638#define LL_EMS0_BLK_REG_ADDR 0x00026800
639#define LL_EMS1_BLK_REG_ADDR 0x00026C00
640
641/**
642 * BPC Block Register Address Offset from BAR0
643 * BPC0 Range : 0x23000 - 0x233FF
644 * BPC1 Range : 0x23400 - 0x237FF
645 */
646#define BPC0_BLK_REG_ADDR 0x00023000
647#define BPC1_BLK_REG_ADDR 0x00023400
648
649/**
650 * PMM Block Register Address Offset from BAR0
651 * PMM0 Range : 0x23800 - 0x23BFF
652 * PMM1 Range : 0x23C00 - 0x23FFF
653 */
654#define PMM0_BLK_REG_ADDR 0x00023800
655#define PMM1_BLK_REG_ADDR 0x00023C00
656
657/**
658 * HQM Block Register Address Offset from BAR0
659 * HQM0 Range : 0x24000 - 0x243FF
660 * HQM1 Range : 0x24400 - 0x247FF
661 */
662#define HQM0_BLK_REG_ADDR 0x00024000
663#define HQM1_BLK_REG_ADDR 0x00024400
664
665/**
666 * HQM Control Register
667 * Controls some aspects of IB
668 * See catapult_spec.pdf for details
669 */
670#define HQM0_CTL_REG (HQM0_BLK_REG_ADDR + 0x000)
671#define HQM1_CTL_REG (HQM1_BLK_REG_ADDR + 0x000)
672
673/**
674 * HQM Stop Q Semaphore Registers.
675 * Only one Queue resource can be stopped at
676 * any given time. This register controls access
677 * to the single stop Q resource.
678 * See catapult_spec.pdf for details
679 */
680#define HQM0_RXQ_STOP_SEM (HQM0_BLK_REG_ADDR + 0x028)
681#define HQM0_TXQ_STOP_SEM (HQM0_BLK_REG_ADDR + 0x02C)
682#define HQM1_RXQ_STOP_SEM (HQM1_BLK_REG_ADDR + 0x028)
683#define HQM1_TXQ_STOP_SEM (HQM1_BLK_REG_ADDR + 0x02C)
684
685/**
686 * LUT Block Register Address Offset from BAR0
687 * LUT0 Range : 0x25800 - 0x25BFF
688 * LUT1 Range : 0x25C00 - 0x25FFF
689 */
690#define LUT0_BLK_REG_ADDR 0x00025800
691#define LUT1_BLK_REG_ADDR 0x00025C00
692
693/**
694 * LUT Registers
695 * See catapult_spec.pdf for details
696 */
697#define LUT0_ERR_STS (LUT0_BLK_REG_ADDR + 0x000)
698#define LUT1_ERR_STS (LUT1_BLK_REG_ADDR + 0x000)
699#define LUT0_SET_ERR_STS (LUT0_BLK_REG_ADDR + 0x004)
700#define LUT1_SET_ERR_STS (LUT1_BLK_REG_ADDR + 0x004)
701
702/**
703 * TRC (Debug/Trace) Register Offset from BAR0
704 * Range : 0x26000 -- 0x263FFF
705 */
706#define TRC_BLK_REG_ADDR 0x00026000
707
708/**
709 * TRC Registers
710 * See catapult_spec.pdf for details of each
711 */
712#define TRC_CTL_REG (TRC_BLK_REG_ADDR + 0x000)
713#define TRC_MODS_REG (TRC_BLK_REG_ADDR + 0x004)
714#define TRC_TRGC_REG (TRC_BLK_REG_ADDR + 0x008)
715#define TRC_CNT1_REG (TRC_BLK_REG_ADDR + 0x010)
716#define TRC_CNT2_REG (TRC_BLK_REG_ADDR + 0x014)
717#define TRC_NXTS_REG (TRC_BLK_REG_ADDR + 0x018)
718#define TRC_DIRR_REG (TRC_BLK_REG_ADDR + 0x01C)
719
720/**
721 * TRC Trigger match filters, total 10
722 * Determines the trigger condition
723 */
724#define TRC_TRGM_REG(_num) \
725 (TRC_BLK_REG_ADDR + 0x040 + ((_num) << 2))
726
727/**
728 * TRC Next State filters, total 10
729 * Determines the next state conditions
730 */
731#define TRC_NXTM_REG(_num) \
732 (TRC_BLK_REG_ADDR + 0x080 + ((_num) << 2))
733
734/**
735 * TRC Store Match filters, total 10
736 * Determines the store conditions
737 */
738#define TRC_STRM_REG(_num) \
739 (TRC_BLK_REG_ADDR + 0x0C0 + ((_num) << 2))
740
741/* DOORBELLS ACCESS */
742
743/**
744 * Catapult doorbells
745 * Each doorbell-queue set has
746 * 1 RxQ, 1 TxQ, 2 IBs in that order
747 * Size of each entry in 32 bytes, even though only 1 word
748 * is used. For Non-VM case each doorbell-q set is
749 * separated by 128 bytes, for VM case it is separated
750 * by 4K bytes
751 * Non VM case Range : 0x38000 - 0x39FFF
752 * VM case Range : 0x100000 - 0x11FFFF
753 * The range applies to both HQMs
754 */
755#define HQM_DOORBELL_BLK_BASE_ADDR 0x00038000
756#define HQM_DOORBELL_VM_BLK_BASE_ADDR 0x00100000
757
758/* MEMORY ACCESS */
759
760/**
761 * Catapult H/W Block Memory Access Address
762 * To the host a memory space of 32K (page) is visible
763 * at a time. The address range is from 0x08000 to 0x0FFFF
764 */
765#define HW_BLK_HOST_MEM_ADDR 0x08000
766
767/**
768 * Catapult LUT Memory Access Page Numbers
769 * Range : LUT0 0xa0-0xa1
770 * LUT1 0xa2-0xa3
771 */
772#define LUT0_MEM_BLK_BASE_PG_NUM 0x000000A0
773#define LUT1_MEM_BLK_BASE_PG_NUM 0x000000A2
774
775/**
776 * Catapult RxFn Database Memory Block Base Offset
777 *
778 * The Rx function database exists in LUT block.
779 * In PCIe space this is accessible as a 256x32
780 * bit block. Each entry in this database is 4
781 * (4 byte) words. Max. entries is 64.
782 * Address of an entry corresponding to a function
783 * = base_addr + (function_no. * 16)
784 */
785#define RX_FNDB_RAM_BASE_OFFSET 0x0000B400
786
787/**
788 * Catapult TxFn Database Memory Block Base Offset Address
789 *
790 * The Tx function database exists in LUT block.
791 * In PCIe space this is accessible as a 64x32
792 * bit block. Each entry in this database is 1
793 * (4 byte) word. Max. entries is 64.
794 * Address of an entry corresponding to a function
795 * = base_addr + (function_no. * 4)
796 */
797#define TX_FNDB_RAM_BASE_OFFSET 0x0000B800
798
799/**
800 * Catapult Unicast CAM Base Offset Address
801 *
802 * Exists in LUT memory space.
803 * Shared by both the LL & FCoE driver.
804 * Size is 256x48 bits; mapped to PCIe space
805 * 512x32 bit blocks. For each address, bits
806 * are written in the order : [47:32] and then
807 * [31:0].
808 */
809#define UCAST_CAM_BASE_OFFSET 0x0000A800
810
811/**
812 * Catapult Unicast RAM Base Offset Address
813 *
814 * Exists in LUT memory space.
815 * Shared by both the LL & FCoE driver.
816 * Size is 256x9 bits.
817 */
818#define UCAST_RAM_BASE_OFFSET 0x0000B000
819
820/**
821 * Catapult Mulicast CAM Base Offset Address
822 *
823 * Exists in LUT memory space.
824 * Shared by both the LL & FCoE driver.
825 * Size is 256x48 bits; mapped to PCIe space
826 * 512x32 bit blocks. For each address, bits
827 * are written in the order : [47:32] and then
828 * [31:0].
829 */
830#define MCAST_CAM_BASE_OFFSET 0x0000A000
831
832/**
833 * Catapult VLAN RAM Base Offset Address
834 *
835 * Exists in LUT memory space.
836 * Size is 4096x66 bits; mapped to PCIe space as
837 * 8192x32 bit blocks.
838 * All the 4K entries are within the address range
839 * 0x0000 to 0x8000, so in the first LUT page.
840 */
841#define VLAN_RAM_BASE_OFFSET 0x00000000
842
843/**
844 * Catapult Tx Stats RAM Base Offset Address
845 *
846 * Exists in LUT memory space.
847 * Size is 1024x33 bits;
848 * Each Tx function has 64 bytes of space
849 */
850#define TX_STATS_RAM_BASE_OFFSET 0x00009000
851
852/**
853 * Catapult Rx Stats RAM Base Offset Address
854 *
855 * Exists in LUT memory space.
856 * Size is 1024x33 bits;
857 * Each Rx function has 64 bytes of space
858 */
859#define RX_STATS_RAM_BASE_OFFSET 0x00008000
860
861/* Catapult RXA Memory Access Page Numbers */
862#define RXA0_MEM_BLK_BASE_PG_NUM 0x0000008C
863#define RXA1_MEM_BLK_BASE_PG_NUM 0x0000008D
864
865/**
866 * Catapult Multicast Vector Table Base Offset Address
867 *
868 * Exists in RxA memory space.
869 * Organized as 512x65 bit block.
870 * However for each entry 16 bytes allocated (power of 2)
871 * Total size 512*16 bytes.
872 * There are two logical divisions, 256 entries each :
873 * a) Entries 0x00 to 0xff (256) -- Approx. MVT
874 * Offset 0x000 to 0xFFF
875 * b) Entries 0x100 to 0x1ff (256) -- Exact MVT
876 * Offsets 0x1000 to 0x1FFF
877 */
878#define MCAST_APPROX_MVT_BASE_OFFSET 0x00000000
879#define MCAST_EXACT_MVT_BASE_OFFSET 0x00001000
880
881/**
882 * Catapult RxQ Translate Table (RIT) Base Offset Address
883 *
884 * Exists in RxA memory space
885 * Total no. of entries 64
886 * Each entry is 1 (4 byte) word.
887 * 31:12 -- Reserved
888 * 11:0 -- Two 6 bit RxQ Ids
889 */
890#define FUNCTION_TO_RXQ_TRANSLATE 0x00002000
891
892/* Catapult RxAdm (RAD) Memory Access Page Numbers */
893#define RAD0_MEM_BLK_BASE_PG_NUM 0x00000086
894#define RAD1_MEM_BLK_BASE_PG_NUM 0x00000087
895
896/**
897 * Catapult RSS Table Base Offset Address
898 *
899 * Exists in RAD memory space.
900 * Each entry is 352 bits, but aligned on
901 * 64 byte (512 bit) boundary. Accessed
902 * 4 byte words, the whole entry can be
903 * broken into 11 word accesses.
904 */
905#define RSS_TABLE_BASE_OFFSET 0x00000800
906
907/**
908 * Catapult CPQ Block Page Number
909 * This value is written to the page number registers
910 * to access the memory associated with the mailboxes.
911 */
912#define CPQ_BLK_PG_NUM 0x00000005
913
914/**
915 * Clarification :
916 * LL functions are 2 & 3; can HostFn0/HostFn1
917 * <-> LPU0/LPU1 memories be used ?
918 */
919/**
920 * Catapult HostFn0/HostFn1 to LPU0/LPU1 Mbox memory
921 * Per catapult_spec.pdf, the offset of the mbox
922 * memory is in the register space at an offset of 0x200
923 */
924#define CPQ_BLK_REG_MBOX_ADDR (CPQ_BLK_REG_ADDR + 0x200)
925
926#define HOSTFN_LPU_MBOX (CPQ_BLK_REG_MBOX_ADDR + 0x000)
927
928/* Catapult LPU0/LPU1 to HostFn0/HostFn1 Mbox memory */
929#define LPU_HOSTFN_MBOX (CPQ_BLK_REG_MBOX_ADDR + 0x080)
930
931/**
932 * Catapult HQM Block Page Number
933 * This is written to the page number register for
934 * the appropriate function to access the memory
935 * associated with HQM
936 */
937#define HQM0_BLK_PG_NUM 0x00000096
938#define HQM1_BLK_PG_NUM 0x00000097
939
940/**
941 * Note that TxQ and RxQ entries are interlaced
942 * the HQM memory, i.e RXQ0, TXQ0, RXQ1, TXQ1.. etc.
943 */
944
945#define HQM_RXTX_Q_RAM_BASE_OFFSET 0x00004000
946
947/**
948 * CQ Memory
949 * Exists in HQM Memory space
950 * Each entry is 16 (4 byte) words of which
951 * only 12 words are used for configuration
952 * Total 64 entries per HQM memory space
953 */
954#define HQM_CQ_RAM_BASE_OFFSET 0x00006000
955
956/**
957 * Interrupt Block (IB) Memory
958 * Exists in HQM Memory space
959 * Each entry is 8 (4 byte) words of which
960 * only 5 words are used for configuration
961 * Total 128 entries per HQM memory space
962 */
963#define HQM_IB_RAM_BASE_OFFSET 0x00001000
964
965/**
966 * Index Table (IT) Memory
967 * Exists in HQM Memory space
968 * Each entry is 1 (4 byte) word which
969 * is used for configuration
970 * Total 128 entries per HQM memory space
971 */
972#define HQM_INDX_TBL_RAM_BASE_OFFSET 0x00002000
973
974/**
975 * PSS Block Memory Page Number
976 * This is written to the appropriate page number
977 * register to access the CPU memory.
978 * Also known as the PSS secondary memory (SMEM).
979 * Range : 0x180 to 0x1CF
980 * See catapult_spec.pdf for details
981 */
982#define PSS_BLK_PG_NUM 0x00000180
983
984/**
985 * Offsets of different instances of PSS SMEM
986 * 2.5M of continuous 1T memory space : 2 blocks
987 * of 1M each (32 pages each, page=32KB) and 4 smaller
988 * blocks of 128K each (4 pages each, page=32KB)
989 * PSS_LMEM_INST0 is used for firmware download
990 */
991#define PSS_LMEM_INST0 0x00000000
992#define PSS_LMEM_INST1 0x00100000
993#define PSS_LMEM_INST2 0x00200000
994#define PSS_LMEM_INST3 0x00220000
995#define PSS_LMEM_INST4 0x00240000
996#define PSS_LMEM_INST5 0x00260000
997
998#define BNA_PCI_REG_CT_ADDRSZ (0x40000)
999
1000#define BNA_GET_PAGE_NUM(_base_page, _offset) \
1001 ((_base_page) + ((_offset) >> 15))
1002
1003#define BNA_GET_PAGE_OFFSET(_offset) \
1004 ((_offset) & 0x7fff)
1005
1006#define BNA_GET_MEM_BASE_ADDR(_bar0, _base_offset) \
1007 ((_bar0) + HW_BLK_HOST_MEM_ADDR \
1008 + BNA_GET_PAGE_OFFSET((_base_offset)))
1009
1010#define BNA_GET_VLAN_MEM_ENTRY_ADDR(_bar0, _fn_id, _vlan_id)\
1011 (_bar0 + (HW_BLK_HOST_MEM_ADDR) \
1012 + (BNA_GET_PAGE_OFFSET(VLAN_RAM_BASE_OFFSET)) \
1013 + (((_fn_id) & 0x3f) << 9) \
1014 + (((_vlan_id) & 0xfe0) >> 3))
1015
1016/**
1017 *
1018 * Interrupt related bits, flags and macros
1019 *
1020 */
1021
1022#define __LPU02HOST_MBOX0_STATUS_BITS 0x00100000
1023#define __LPU12HOST_MBOX0_STATUS_BITS 0x00200000
1024#define __LPU02HOST_MBOX1_STATUS_BITS 0x00400000
1025#define __LPU12HOST_MBOX1_STATUS_BITS 0x00800000
1026
1027#define __LPU02HOST_MBOX0_MASK_BITS 0x00100000
1028#define __LPU12HOST_MBOX0_MASK_BITS 0x00200000
1029#define __LPU02HOST_MBOX1_MASK_BITS 0x00400000
1030#define __LPU12HOST_MBOX1_MASK_BITS 0x00800000
1031
1032#define __LPU2HOST_MBOX_MASK_BITS \
1033 (__LPU02HOST_MBOX0_MASK_BITS | __LPU02HOST_MBOX1_MASK_BITS | \
1034 __LPU12HOST_MBOX0_MASK_BITS | __LPU12HOST_MBOX1_MASK_BITS)
1035
1036#define __LPU2HOST_IB_STATUS_BITS 0x0000ffff
1037
1038#define BNA_IS_LPU0_MBOX_INTR(_intr_status) \
1039 ((_intr_status) & (__LPU02HOST_MBOX0_STATUS_BITS | \
1040 __LPU02HOST_MBOX1_STATUS_BITS))
1041
1042#define BNA_IS_LPU1_MBOX_INTR(_intr_status) \
1043 ((_intr_status) & (__LPU12HOST_MBOX0_STATUS_BITS | \
1044 __LPU12HOST_MBOX1_STATUS_BITS))
1045
1046#define BNA_IS_MBOX_INTR(_intr_status) \
1047 ((_intr_status) & \
1048 (__LPU02HOST_MBOX0_STATUS_BITS | \
1049 __LPU02HOST_MBOX1_STATUS_BITS | \
1050 __LPU12HOST_MBOX0_STATUS_BITS | \
1051 __LPU12HOST_MBOX1_STATUS_BITS))
1052
1053#define __EMC_ERROR_STATUS_BITS 0x00010000
1054#define __LPU0_ERROR_STATUS_BITS 0x00020000
1055#define __LPU1_ERROR_STATUS_BITS 0x00040000
1056#define __PSS_ERROR_STATUS_BITS 0x00080000
1057
1058#define __HALT_STATUS_BITS 0x01000000
1059
1060#define __EMC_ERROR_MASK_BITS 0x00010000
1061#define __LPU0_ERROR_MASK_BITS 0x00020000
1062#define __LPU1_ERROR_MASK_BITS 0x00040000
1063#define __PSS_ERROR_MASK_BITS 0x00080000
1064
1065#define __HALT_MASK_BITS 0x01000000
1066
1067#define __ERROR_MASK_BITS \
1068 (__EMC_ERROR_MASK_BITS | __LPU0_ERROR_MASK_BITS | \
1069 __LPU1_ERROR_MASK_BITS | __PSS_ERROR_MASK_BITS | \
1070 __HALT_MASK_BITS)
1071
1072#define BNA_IS_ERR_INTR(_intr_status) \
1073 ((_intr_status) & \
1074 (__EMC_ERROR_STATUS_BITS | \
1075 __LPU0_ERROR_STATUS_BITS | \
1076 __LPU1_ERROR_STATUS_BITS | \
1077 __PSS_ERROR_STATUS_BITS | \
1078 __HALT_STATUS_BITS))
1079
1080#define BNA_IS_MBOX_ERR_INTR(_intr_status) \
1081 (BNA_IS_MBOX_INTR((_intr_status)) | \
1082 BNA_IS_ERR_INTR((_intr_status)))
1083
1084#define BNA_IS_INTX_DATA_INTR(_intr_status) \
1085 ((_intr_status) & __LPU2HOST_IB_STATUS_BITS)
1086
1087#define BNA_INTR_STATUS_MBOX_CLR(_intr_status) \
1088do { \
1089 (_intr_status) &= ~(__LPU02HOST_MBOX0_STATUS_BITS | \
1090 __LPU02HOST_MBOX1_STATUS_BITS | \
1091 __LPU12HOST_MBOX0_STATUS_BITS | \
1092 __LPU12HOST_MBOX1_STATUS_BITS); \
1093} while (0)
1094
1095#define BNA_INTR_STATUS_ERR_CLR(_intr_status) \
1096do { \
1097 (_intr_status) &= ~(__EMC_ERROR_STATUS_BITS | \
1098 __LPU0_ERROR_STATUS_BITS | \
1099 __LPU1_ERROR_STATUS_BITS | \
1100 __PSS_ERROR_STATUS_BITS | \
1101 __HALT_STATUS_BITS); \
1102} while (0)
1103
1104#define bna_intx_disable(_bna, _cur_mask) \
1105{ \
1106 (_cur_mask) = readl((_bna)->regs.fn_int_mask);\
1107 writel(0xffffffff, (_bna)->regs.fn_int_mask);\
1108}
1109
1110#define bna_intx_enable(bna, new_mask) \
1111 writel((new_mask), (bna)->regs.fn_int_mask)
1112
1113#define bna_mbox_intr_disable(bna) \
1114 writel((readl((bna)->regs.fn_int_mask) | \
1115 (__LPU2HOST_MBOX_MASK_BITS | __ERROR_MASK_BITS)), \
1116 (bna)->regs.fn_int_mask)
1117
1118#define bna_mbox_intr_enable(bna) \
1119 writel((readl((bna)->regs.fn_int_mask) & \
1120 ~(__LPU2HOST_MBOX_MASK_BITS | __ERROR_MASK_BITS)), \
1121 (bna)->regs.fn_int_mask)
1122
1123#define bna_intr_status_get(_bna, _status) \
1124{ \
1125 (_status) = readl((_bna)->regs.fn_int_status); \
1126 if ((_status)) { \
1127 writel((_status) & ~(__LPU02HOST_MBOX0_STATUS_BITS |\
1128 __LPU02HOST_MBOX1_STATUS_BITS |\
1129 __LPU12HOST_MBOX0_STATUS_BITS |\
1130 __LPU12HOST_MBOX1_STATUS_BITS), \
1131 (_bna)->regs.fn_int_status);\
1132 } \
1133}
1134
1135#define bna_intr_status_get_no_clr(_bna, _status) \
1136 (_status) = readl((_bna)->regs.fn_int_status)
1137
1138#define bna_intr_mask_get(bna, mask) \
1139 (*mask) = readl((bna)->regs.fn_int_mask)
1140
1141#define bna_intr_ack(bna, intr_bmap) \
1142 writel((intr_bmap), (bna)->regs.fn_int_status)
1143
1144#define bna_ib_intx_disable(bna, ib_id) \
1145 writel(readl((bna)->regs.fn_int_mask) | \
1146 (1 << (ib_id)), \
1147 (bna)->regs.fn_int_mask)
1148
1149#define bna_ib_intx_enable(bna, ib_id) \
1150 writel(readl((bna)->regs.fn_int_mask) & \
1151 ~(1 << (ib_id)), \
1152 (bna)->regs.fn_int_mask)
1153
1154#define bna_mbox_msix_idx_set(_device) \
1155do {\
1156 writel(((_device)->vector & 0x000001FF), \
1157 (_device)->bna->pcidev.pci_bar_kva + \
1158 reg_offset[(_device)->bna->pcidev.pci_func].msix_idx);\
1159} while (0)
1160
1161/**
1162 *
1163 * TxQ, RxQ, CQ related bits, offsets, macros
1164 *
1165 */
1166
1167#define BNA_Q_IDLE_STATE 0x00008001
1168
1169#define BNA_GET_DOORBELL_BASE_ADDR(_bar0) \
1170 ((_bar0) + HQM_DOORBELL_BLK_BASE_ADDR)
1171
1172#define BNA_GET_DOORBELL_ENTRY_OFFSET(_entry) \
1173 ((HQM_DOORBELL_BLK_BASE_ADDR) \
1174 + (_entry << 7))
1175
1176#define BNA_DOORBELL_IB_INT_ACK(_timeout, _events) \
1177 (0x80000000 | ((_timeout) << 16) | (_events))
1178
1179#define BNA_DOORBELL_IB_INT_DISABLE (0x40000000)
1180
1181/* TxQ Entry Opcodes */
1182#define BNA_TXQ_WI_SEND (0x402) /* Single Frame Transmission */
1183#define BNA_TXQ_WI_SEND_LSO (0x403) /* Multi-Frame Transmission */
1184#define BNA_TXQ_WI_EXTENSION (0x104) /* Extension WI */
1185
1186/* TxQ Entry Control Flags */
1187#define BNA_TXQ_WI_CF_FCOE_CRC (1 << 8)
1188#define BNA_TXQ_WI_CF_IPID_MODE (1 << 5)
1189#define BNA_TXQ_WI_CF_INS_PRIO (1 << 4)
1190#define BNA_TXQ_WI_CF_INS_VLAN (1 << 3)
1191#define BNA_TXQ_WI_CF_UDP_CKSUM (1 << 2)
1192#define BNA_TXQ_WI_CF_TCP_CKSUM (1 << 1)
1193#define BNA_TXQ_WI_CF_IP_CKSUM (1 << 0)
1194
1195#define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \
1196 (((_hdr_size) << 10) | ((_offset) & 0x3FF))
1197
1198/*
1199 * Completion Q defines
1200 */
1201/* CQ Entry Flags */
1202#define BNA_CQ_EF_MAC_ERROR (1 << 0)
1203#define BNA_CQ_EF_FCS_ERROR (1 << 1)
1204#define BNA_CQ_EF_TOO_LONG (1 << 2)
1205#define BNA_CQ_EF_FC_CRC_OK (1 << 3)
1206
1207#define BNA_CQ_EF_RSVD1 (1 << 4)
1208#define BNA_CQ_EF_L4_CKSUM_OK (1 << 5)
1209#define BNA_CQ_EF_L3_CKSUM_OK (1 << 6)
1210#define BNA_CQ_EF_HDS_HEADER (1 << 7)
1211
1212#define BNA_CQ_EF_UDP (1 << 8)
1213#define BNA_CQ_EF_TCP (1 << 9)
1214#define BNA_CQ_EF_IP_OPTIONS (1 << 10)
1215#define BNA_CQ_EF_IPV6 (1 << 11)
1216
1217#define BNA_CQ_EF_IPV4 (1 << 12)
1218#define BNA_CQ_EF_VLAN (1 << 13)
1219#define BNA_CQ_EF_RSS (1 << 14)
1220#define BNA_CQ_EF_RSVD2 (1 << 15)
1221
1222#define BNA_CQ_EF_MCAST_MATCH (1 << 16)
1223#define BNA_CQ_EF_MCAST (1 << 17)
1224#define BNA_CQ_EF_BCAST (1 << 18)
1225#define BNA_CQ_EF_REMOTE (1 << 19)
1226
1227#define BNA_CQ_EF_LOCAL (1 << 20)
1228
1229/**
1230 *
1231 * Data structures
1232 *
1233 */
1234
1235enum txf_flags {
1236 BFI_TXF_CF_ENABLE = 1 << 0,
1237 BFI_TXF_CF_VLAN_FILTER = 1 << 8,
1238 BFI_TXF_CF_VLAN_ADMIT = 1 << 9,
1239 BFI_TXF_CF_VLAN_INSERT = 1 << 10,
1240 BFI_TXF_CF_RSVD1 = 1 << 11,
1241 BFI_TXF_CF_MAC_SA_CHECK = 1 << 12,
1242 BFI_TXF_CF_VLAN_WI_BASED = 1 << 13,
1243 BFI_TXF_CF_VSWITCH_MCAST = 1 << 14,
1244 BFI_TXF_CF_VSWITCH_UCAST = 1 << 15,
1245 BFI_TXF_CF_RSVD2 = 0x7F << 1
1246};
1247
1248enum ib_flags {
1249 BFI_IB_CF_MASTER_ENABLE = (1 << 0),
1250 BFI_IB_CF_MSIX_MODE = (1 << 1),
1251 BFI_IB_CF_COALESCING_MODE = (1 << 2),
1252 BFI_IB_CF_INTER_PKT_ENABLE = (1 << 3),
1253 BFI_IB_CF_INT_ENABLE = (1 << 4),
1254 BFI_IB_CF_INTER_PKT_DMA = (1 << 5),
1255 BFI_IB_CF_ACK_PENDING = (1 << 6),
1256 BFI_IB_CF_RESERVED1 = (1 << 7)
1257};
1258
1259enum rss_hash_type {
1260 BFI_RSS_T_V4_TCP = (1 << 11),
1261 BFI_RSS_T_V4_IP = (1 << 10),
1262 BFI_RSS_T_V6_TCP = (1 << 9),
1263 BFI_RSS_T_V6_IP = (1 << 8)
1264};
1265enum hds_header_type {
1266 BNA_HDS_T_V4_TCP = (1 << 11),
1267 BNA_HDS_T_V4_UDP = (1 << 10),
1268 BNA_HDS_T_V6_TCP = (1 << 9),
1269 BNA_HDS_T_V6_UDP = (1 << 8),
1270 BNA_HDS_FORCED = (1 << 7),
1271};
1272enum rxf_flags {
1273 BNA_RXF_CF_SM_LG_RXQ = (1 << 15),
1274 BNA_RXF_CF_DEFAULT_VLAN = (1 << 14),
1275 BNA_RXF_CF_DEFAULT_FUNCTION_ENABLE = (1 << 13),
1276 BNA_RXF_CF_VLAN_STRIP = (1 << 12),
1277 BNA_RXF_CF_RSS_ENABLE = (1 << 8)
1278};
1279struct bna_chip_regs_offset {
1280 u32 page_addr;
1281 u32 fn_int_status;
1282 u32 fn_int_mask;
1283 u32 msix_idx;
1284};
1285
1286struct bna_chip_regs {
1287 void __iomem *page_addr;
1288 void __iomem *fn_int_status;
1289 void __iomem *fn_int_mask;
1290};
1291
1292struct bna_txq_mem {
1293 u32 pg_tbl_addr_lo;
1294 u32 pg_tbl_addr_hi;
1295 u32 cur_q_entry_lo;
1296 u32 cur_q_entry_hi;
1297 u32 reserved1;
1298 u32 reserved2;
1299 u32 pg_cnt_n_prd_ptr; /* 31:16->total page count */
1300 /* 15:0 ->producer pointer (index?) */
1301 u32 entry_n_pg_size; /* 31:16->entry size */
1302 /* 15:0 ->page size */
1303 u32 int_blk_n_cns_ptr; /* 31:24->Int Blk Id; */
1304 /* 23:16->Int Blk Offset */
1305 /* 15:0 ->consumer pointer(index?) */
1306 u32 cns_ptr2_n_q_state; /* 31:16->cons. ptr 2; 15:0-> Q state */
1307 u32 nxt_qid_n_fid_n_pri; /* 17:10->next */
1308 /* QId;9:3->FID;2:0->Priority */
1309 u32 wvc_n_cquota_n_rquota; /* 31:24->WI Vector Count; */
1310 /* 23:12->Cfg Quota; */
1311 /* 11:0 ->Run Quota */
1312 u32 reserved3[4];
1313};
1314
1315struct bna_rxq_mem {
1316 u32 pg_tbl_addr_lo;
1317 u32 pg_tbl_addr_hi;
1318 u32 cur_q_entry_lo;
1319 u32 cur_q_entry_hi;
1320 u32 reserved1;
1321 u32 reserved2;
1322 u32 pg_cnt_n_prd_ptr; /* 31:16->total page count */
1323 /* 15:0 ->producer pointer (index?) */
1324 u32 entry_n_pg_size; /* 31:16->entry size */
1325 /* 15:0 ->page size */
1326 u32 sg_n_cq_n_cns_ptr; /* 31:28->reserved; 27:24->sg count */
1327 /* 23:16->CQ; */
1328 /* 15:0->consumer pointer(index?) */
1329 u32 buf_sz_n_q_state; /* 31:16->buffer size; 15:0-> Q state */
1330 u32 next_qid; /* 17:10->next QId */
1331 u32 reserved3;
1332 u32 reserved4[4];
1333};
1334
1335struct bna_rxtx_q_mem {
1336 struct bna_rxq_mem rxq;
1337 struct bna_txq_mem txq;
1338};
1339
1340struct bna_cq_mem {
1341 u32 pg_tbl_addr_lo;
1342 u32 pg_tbl_addr_hi;
1343 u32 cur_q_entry_lo;
1344 u32 cur_q_entry_hi;
1345
1346 u32 reserved1;
1347 u32 reserved2;
1348 u32 pg_cnt_n_prd_ptr; /* 31:16->total page count */
1349 /* 15:0 ->producer pointer (index?) */
1350 u32 entry_n_pg_size; /* 31:16->entry size */
1351 /* 15:0 ->page size */
1352 u32 int_blk_n_cns_ptr; /* 31:24->Int Blk Id; */
1353 /* 23:16->Int Blk Offset */
1354 /* 15:0 ->consumer pointer(index?) */
1355 u32 q_state; /* 31:16->reserved; 15:0-> Q state */
1356 u32 reserved3[2];
1357 u32 reserved4[4];
1358};
1359
1360struct bna_ib_blk_mem {
1361 u32 host_addr_lo;
1362 u32 host_addr_hi;
1363 u32 clsc_n_ctrl_n_msix; /* 31:24->coalescing; */
1364 /* 23:16->coalescing cfg; */
1365 /* 15:8 ->control; */
1366 /* 7:0 ->msix; */
1367 u32 ipkt_n_ent_n_idxof;
1368 u32 ipkt_cnt_cfg_n_unacked;
1369
1370 u32 reserved[3];
1371};
1372
1373struct bna_idx_tbl_mem {
1374 u32 idx; /* !< 31:16->res;15:0->idx; */
1375};
1376
1377struct bna_doorbell_qset {
1378 u32 rxq[0x20 >> 2];
1379 u32 txq[0x20 >> 2];
1380 u32 ib0[0x20 >> 2];
1381 u32 ib1[0x20 >> 2];
1382};
1383
1384struct bna_rx_fndb_ram {
1385 u32 rss_prop;
1386 u32 size_routing_props;
1387 u32 rit_hds_mcastq;
1388 u32 control_flags;
1389};
1390
1391struct bna_tx_fndb_ram {
1392 u32 vlan_n_ctrl_flags;
1393};
1394
1395/**
1396 * @brief
1397 * Structure which maps to RxFn Indirection Table (RIT)
1398 * Size : 1 word
1399 * See catapult_spec.pdf, RxA for details
1400 */
1401struct bna_rit_mem {
1402 u32 rxq_ids; /* !< 31:12->res;11:0->two 6 bit RxQ Ids */
1403};
1404
1405/**
1406 * @brief
1407 * Structure which maps to RSS Table entry
1408 * Size : 16 words
1409 * See catapult_spec.pdf, RAD for details
1410 */
1411struct bna_rss_mem {
1412 /*
1413 * 31:12-> res
1414 * 11:8 -> protocol type
1415 * 7:0 -> hash index
1416 */
1417 u32 type_n_hash;
1418 u32 hash_key[10]; /* !< 40 byte Toeplitz hash key */
1419 u32 reserved[5];
1420};
1421
1422/* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */
1423struct bna_dma_addr {
1424 u32 msb;
1425 u32 lsb;
1426};
1427
1428struct bna_txq_wi_vector {
1429 u16 reserved;
1430 u16 length; /* Only 14 LSB are valid */
1431 struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */
1432};
1433
1434typedef u16 bna_txq_wi_opcode_t;
1435
1436typedef u16 bna_txq_wi_ctrl_flag_t;
1437
1438/**
1439 * TxQ Entry Structure
1440 *
1441 * BEWARE: Load values into this structure with correct endianess.
1442 */
1443struct bna_txq_entry {
1444 union {
1445 struct {
1446 u8 reserved;
1447 u8 num_vectors; /* number of vectors present */
1448 bna_txq_wi_opcode_t opcode; /* Either */
1449 /* BNA_TXQ_WI_SEND or */
1450 /* BNA_TXQ_WI_SEND_LSO */
1451 bna_txq_wi_ctrl_flag_t flags; /* OR of all the flags */
1452 u16 l4_hdr_size_n_offset;
1453 u16 vlan_tag;
1454 u16 lso_mss; /* Only 14 LSB are valid */
1455 u32 frame_length; /* Only 24 LSB are valid */
1456 } wi;
1457
1458 struct {
1459 u16 reserved;
1460 bna_txq_wi_opcode_t opcode; /* Must be */
1461 /* BNA_TXQ_WI_EXTENSION */
1462 u32 reserved2[3]; /* Place holder for */
1463 /* removed vector (12 bytes) */
1464 } wi_ext;
1465 } hdr;
1466 struct bna_txq_wi_vector vector[4];
1467};
1468#define wi_hdr hdr.wi
1469#define wi_ext_hdr hdr.wi_ext
1470
1471/* RxQ Entry Structure */
1472struct bna_rxq_entry { /* Rx-Buffer */
1473 struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */
1474};
1475
1476typedef u32 bna_cq_e_flag_t;
1477
1478/* CQ Entry Structure */
1479struct bna_cq_entry {
1480 bna_cq_e_flag_t flags;
1481 u16 vlan_tag;
1482 u16 length;
1483 u32 rss_hash;
1484 u8 valid;
1485 u8 reserved1;
1486 u8 reserved2;
1487 u8 rxq_id;
1488};
1489
1490#endif /* __BNA_HW_H__ */
diff --git a/drivers/net/bna/bna_txrx.c b/drivers/net/bna/bna_txrx.c
new file mode 100644
index 000000000000..380085cc3088
--- /dev/null
+++ b/drivers/net/bna/bna_txrx.c
@@ -0,0 +1,4185 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#include "bna.h"
19#include "bfa_sm.h"
20#include "bfi.h"
21
22/**
23 * IB
24 */
25#define bna_ib_find_free_ibidx(_mask, _pos)\
26do {\
27 (_pos) = 0;\
28 while (((_pos) < (BFI_IBIDX_MAX_SEGSIZE)) &&\
29 ((1 << (_pos)) & (_mask)))\
30 (_pos)++;\
31} while (0)
32
33#define bna_ib_count_ibidx(_mask, _count)\
34do {\
35 int pos = 0;\
36 (_count) = 0;\
37 while (pos < (BFI_IBIDX_MAX_SEGSIZE)) {\
38 if ((1 << pos) & (_mask))\
39 (_count) = pos + 1;\
40 pos++;\
41 } \
42} while (0)
43
44#define bna_ib_select_segpool(_count, _q_idx)\
45do {\
46 int i;\
47 (_q_idx) = -1;\
48 for (i = 0; i < BFI_IBIDX_TOTAL_POOLS; i++) {\
49 if ((_count <= ibidx_pool[i].pool_entry_size)) {\
50 (_q_idx) = i;\
51 break;\
52 } \
53 } \
54} while (0)
55
56struct bna_ibidx_pool {
57 int pool_size;
58 int pool_entry_size;
59};
60init_ibidx_pool(ibidx_pool);
61
62static struct bna_intr *
63bna_intr_get(struct bna_ib_mod *ib_mod, enum bna_intr_type intr_type,
64 int vector)
65{
66 struct bna_intr *intr;
67 struct list_head *qe;
68
69 list_for_each(qe, &ib_mod->intr_active_q) {
70 intr = (struct bna_intr *)qe;
71
72 if ((intr->intr_type == intr_type) &&
73 (intr->vector == vector)) {
74 intr->ref_count++;
75 return intr;
76 }
77 }
78
79 if (list_empty(&ib_mod->intr_free_q))
80 return NULL;
81
82 bfa_q_deq(&ib_mod->intr_free_q, &intr);
83 bfa_q_qe_init(&intr->qe);
84
85 intr->ref_count = 1;
86 intr->intr_type = intr_type;
87 intr->vector = vector;
88
89 list_add_tail(&intr->qe, &ib_mod->intr_active_q);
90
91 return intr;
92}
93
94static void
95bna_intr_put(struct bna_ib_mod *ib_mod,
96 struct bna_intr *intr)
97{
98 intr->ref_count--;
99
100 if (intr->ref_count == 0) {
101 intr->ib = NULL;
102 list_del(&intr->qe);
103 bfa_q_qe_init(&intr->qe);
104 list_add_tail(&intr->qe, &ib_mod->intr_free_q);
105 }
106}
107
108void
109bna_ib_mod_init(struct bna_ib_mod *ib_mod, struct bna *bna,
110 struct bna_res_info *res_info)
111{
112 int i;
113 int j;
114 int count;
115 u8 offset;
116 struct bna_doorbell_qset *qset;
117 unsigned long off;
118
119 ib_mod->bna = bna;
120
121 ib_mod->ib = (struct bna_ib *)
122 res_info[BNA_RES_MEM_T_IB_ARRAY].res_u.mem_info.mdl[0].kva;
123 ib_mod->intr = (struct bna_intr *)
124 res_info[BNA_RES_MEM_T_INTR_ARRAY].res_u.mem_info.mdl[0].kva;
125 ib_mod->idx_seg = (struct bna_ibidx_seg *)
126 res_info[BNA_RES_MEM_T_IDXSEG_ARRAY].res_u.mem_info.mdl[0].kva;
127
128 INIT_LIST_HEAD(&ib_mod->ib_free_q);
129 INIT_LIST_HEAD(&ib_mod->intr_free_q);
130 INIT_LIST_HEAD(&ib_mod->intr_active_q);
131
132 for (i = 0; i < BFI_IBIDX_TOTAL_POOLS; i++)
133 INIT_LIST_HEAD(&ib_mod->ibidx_seg_pool[i]);
134
135 for (i = 0; i < BFI_MAX_IB; i++) {
136 ib_mod->ib[i].ib_id = i;
137
138 ib_mod->ib[i].ib_seg_host_addr_kva =
139 res_info[BNA_RES_MEM_T_IBIDX].res_u.mem_info.mdl[i].kva;
140 ib_mod->ib[i].ib_seg_host_addr.lsb =
141 res_info[BNA_RES_MEM_T_IBIDX].res_u.mem_info.mdl[i].dma.lsb;
142 ib_mod->ib[i].ib_seg_host_addr.msb =
143 res_info[BNA_RES_MEM_T_IBIDX].res_u.mem_info.mdl[i].dma.msb;
144
145 qset = (struct bna_doorbell_qset *)0;
146 off = (unsigned long)(&qset[i >> 1].ib0[(i & 0x1)
147 * (0x20 >> 2)]);
148 ib_mod->ib[i].door_bell.doorbell_addr = off +
149 BNA_GET_DOORBELL_BASE_ADDR(bna->pcidev.pci_bar_kva);
150
151 bfa_q_qe_init(&ib_mod->ib[i].qe);
152 list_add_tail(&ib_mod->ib[i].qe, &ib_mod->ib_free_q);
153
154 bfa_q_qe_init(&ib_mod->intr[i].qe);
155 list_add_tail(&ib_mod->intr[i].qe, &ib_mod->intr_free_q);
156 }
157
158 count = 0;
159 offset = 0;
160 for (i = 0; i < BFI_IBIDX_TOTAL_POOLS; i++) {
161 for (j = 0; j < ibidx_pool[i].pool_size; j++) {
162 bfa_q_qe_init(&ib_mod->idx_seg[count]);
163 ib_mod->idx_seg[count].ib_seg_size =
164 ibidx_pool[i].pool_entry_size;
165 ib_mod->idx_seg[count].ib_idx_tbl_offset = offset;
166 list_add_tail(&ib_mod->idx_seg[count].qe,
167 &ib_mod->ibidx_seg_pool[i]);
168 count++;
169 offset += ibidx_pool[i].pool_entry_size;
170 }
171 }
172}
173
174void
175bna_ib_mod_uninit(struct bna_ib_mod *ib_mod)
176{
177 int i;
178 int j;
179 struct list_head *qe;
180
181 i = 0;
182 list_for_each(qe, &ib_mod->ib_free_q)
183 i++;
184
185 i = 0;
186 list_for_each(qe, &ib_mod->intr_free_q)
187 i++;
188
189 for (i = 0; i < BFI_IBIDX_TOTAL_POOLS; i++) {
190 j = 0;
191 list_for_each(qe, &ib_mod->ibidx_seg_pool[i])
192 j++;
193 }
194
195 ib_mod->bna = NULL;
196}
197
198static struct bna_ib *
199bna_ib_get(struct bna_ib_mod *ib_mod,
200 enum bna_intr_type intr_type,
201 int vector)
202{
203 struct bna_ib *ib;
204 struct bna_intr *intr;
205
206 if (intr_type == BNA_INTR_T_INTX)
207 vector = (1 << vector);
208
209 intr = bna_intr_get(ib_mod, intr_type, vector);
210 if (intr == NULL)
211 return NULL;
212
213 if (intr->ib) {
214 if (intr->ib->ref_count == BFI_IBIDX_MAX_SEGSIZE) {
215 bna_intr_put(ib_mod, intr);
216 return NULL;
217 }
218 intr->ib->ref_count++;
219 return intr->ib;
220 }
221
222 if (list_empty(&ib_mod->ib_free_q)) {
223 bna_intr_put(ib_mod, intr);
224 return NULL;
225 }
226
227 bfa_q_deq(&ib_mod->ib_free_q, &ib);
228 bfa_q_qe_init(&ib->qe);
229
230 ib->ref_count = 1;
231 ib->start_count = 0;
232 ib->idx_mask = 0;
233
234 ib->intr = intr;
235 ib->idx_seg = NULL;
236 intr->ib = ib;
237
238 ib->bna = ib_mod->bna;
239
240 return ib;
241}
242
243static void
244bna_ib_put(struct bna_ib_mod *ib_mod, struct bna_ib *ib)
245{
246 bna_intr_put(ib_mod, ib->intr);
247
248 ib->ref_count--;
249
250 if (ib->ref_count == 0) {
251 ib->intr = NULL;
252 ib->bna = NULL;
253 list_add_tail(&ib->qe, &ib_mod->ib_free_q);
254 }
255}
256
257/* Returns index offset - starting from 0 */
258static int
259bna_ib_reserve_idx(struct bna_ib *ib)
260{
261 struct bna_ib_mod *ib_mod = &ib->bna->ib_mod;
262 struct bna_ibidx_seg *idx_seg;
263 int idx;
264 int num_idx;
265 int q_idx;
266
267 /* Find the first free index position */
268 bna_ib_find_free_ibidx(ib->idx_mask, idx);
269 if (idx == BFI_IBIDX_MAX_SEGSIZE)
270 return -1;
271
272 /*
273 * Calculate the total number of indexes held by this IB,
274 * including the index newly reserved above.
275 */
276 bna_ib_count_ibidx((ib->idx_mask | (1 << idx)), num_idx);
277
278 /* See if there is a free space in the index segment held by this IB */
279 if (ib->idx_seg && (num_idx <= ib->idx_seg->ib_seg_size)) {
280 ib->idx_mask |= (1 << idx);
281 return idx;
282 }
283
284 if (ib->start_count)
285 return -1;
286
287 /* Allocate a new segment */
288 bna_ib_select_segpool(num_idx, q_idx);
289 while (1) {
290 if (q_idx == BFI_IBIDX_TOTAL_POOLS)
291 return -1;
292 if (!list_empty(&ib_mod->ibidx_seg_pool[q_idx]))
293 break;
294 q_idx++;
295 }
296 bfa_q_deq(&ib_mod->ibidx_seg_pool[q_idx], &idx_seg);
297 bfa_q_qe_init(&idx_seg->qe);
298
299 /* Free the old segment */
300 if (ib->idx_seg) {
301 bna_ib_select_segpool(ib->idx_seg->ib_seg_size, q_idx);
302 list_add_tail(&ib->idx_seg->qe, &ib_mod->ibidx_seg_pool[q_idx]);
303 }
304
305 ib->idx_seg = idx_seg;
306
307 ib->idx_mask |= (1 << idx);
308
309 return idx;
310}
311
312static void
313bna_ib_release_idx(struct bna_ib *ib, int idx)
314{
315 struct bna_ib_mod *ib_mod = &ib->bna->ib_mod;
316 struct bna_ibidx_seg *idx_seg;
317 int num_idx;
318 int cur_q_idx;
319 int new_q_idx;
320
321 ib->idx_mask &= ~(1 << idx);
322
323 if (ib->start_count)
324 return;
325
326 bna_ib_count_ibidx(ib->idx_mask, num_idx);
327
328 /*
329 * Free the segment, if there are no more indexes in the segment
330 * held by this IB
331 */
332 if (!num_idx) {
333 bna_ib_select_segpool(ib->idx_seg->ib_seg_size, cur_q_idx);
334 list_add_tail(&ib->idx_seg->qe,
335 &ib_mod->ibidx_seg_pool[cur_q_idx]);
336 ib->idx_seg = NULL;
337 return;
338 }
339
340 /* See if we can move to a smaller segment */
341 bna_ib_select_segpool(num_idx, new_q_idx);
342 bna_ib_select_segpool(ib->idx_seg->ib_seg_size, cur_q_idx);
343 while (new_q_idx < cur_q_idx) {
344 if (!list_empty(&ib_mod->ibidx_seg_pool[new_q_idx]))
345 break;
346 new_q_idx++;
347 }
348 if (new_q_idx < cur_q_idx) {
349 /* Select the new smaller segment */
350 bfa_q_deq(&ib_mod->ibidx_seg_pool[new_q_idx], &idx_seg);
351 bfa_q_qe_init(&idx_seg->qe);
352 /* Free the old segment */
353 list_add_tail(&ib->idx_seg->qe,
354 &ib_mod->ibidx_seg_pool[cur_q_idx]);
355 ib->idx_seg = idx_seg;
356 }
357}
358
359static int
360bna_ib_config(struct bna_ib *ib, struct bna_ib_config *ib_config)
361{
362 if (ib->start_count)
363 return -1;
364
365 ib->ib_config.coalescing_timeo = ib_config->coalescing_timeo;
366 ib->ib_config.interpkt_timeo = ib_config->interpkt_timeo;
367 ib->ib_config.interpkt_count = ib_config->interpkt_count;
368 ib->ib_config.ctrl_flags = ib_config->ctrl_flags;
369
370 ib->ib_config.ctrl_flags |= BFI_IB_CF_MASTER_ENABLE;
371 if (ib->intr->intr_type == BNA_INTR_T_MSIX)
372 ib->ib_config.ctrl_flags |= BFI_IB_CF_MSIX_MODE;
373
374 return 0;
375}
376
377static void
378bna_ib_start(struct bna_ib *ib)
379{
380 struct bna_ib_blk_mem ib_cfg;
381 struct bna_ib_blk_mem *ib_mem;
382 u32 pg_num;
383 u32 intx_mask;
384 int i;
385 void __iomem *base_addr;
386 unsigned long off;
387
388 ib->start_count++;
389
390 if (ib->start_count > 1)
391 return;
392
393 ib_cfg.host_addr_lo = (u32)(ib->ib_seg_host_addr.lsb);
394 ib_cfg.host_addr_hi = (u32)(ib->ib_seg_host_addr.msb);
395
396 ib_cfg.clsc_n_ctrl_n_msix = (((u32)
397 ib->ib_config.coalescing_timeo << 16) |
398 ((u32)ib->ib_config.ctrl_flags << 8) |
399 (ib->intr->vector));
400 ib_cfg.ipkt_n_ent_n_idxof =
401 ((u32)
402 (ib->ib_config.interpkt_timeo & 0xf) << 16) |
403 ((u32)ib->idx_seg->ib_seg_size << 8) |
404 (ib->idx_seg->ib_idx_tbl_offset);
405 ib_cfg.ipkt_cnt_cfg_n_unacked = ((u32)
406 ib->ib_config.interpkt_count << 24);
407
408 pg_num = BNA_GET_PAGE_NUM(HQM0_BLK_PG_NUM + ib->bna->port_num,
409 HQM_IB_RAM_BASE_OFFSET);
410 writel(pg_num, ib->bna->regs.page_addr);
411
412 base_addr = BNA_GET_MEM_BASE_ADDR(ib->bna->pcidev.pci_bar_kva,
413 HQM_IB_RAM_BASE_OFFSET);
414
415 ib_mem = (struct bna_ib_blk_mem *)0;
416 off = (unsigned long)&ib_mem[ib->ib_id].host_addr_lo;
417 writel(htonl(ib_cfg.host_addr_lo), base_addr + off);
418
419 off = (unsigned long)&ib_mem[ib->ib_id].host_addr_hi;
420 writel(htonl(ib_cfg.host_addr_hi), base_addr + off);
421
422 off = (unsigned long)&ib_mem[ib->ib_id].clsc_n_ctrl_n_msix;
423 writel(ib_cfg.clsc_n_ctrl_n_msix, base_addr + off);
424
425 off = (unsigned long)&ib_mem[ib->ib_id].ipkt_n_ent_n_idxof;
426 writel(ib_cfg.ipkt_n_ent_n_idxof, base_addr + off);
427
428 off = (unsigned long)&ib_mem[ib->ib_id].ipkt_cnt_cfg_n_unacked;
429 writel(ib_cfg.ipkt_cnt_cfg_n_unacked, base_addr + off);
430
431 ib->door_bell.doorbell_ack = BNA_DOORBELL_IB_INT_ACK(
432 (u32)ib->ib_config.coalescing_timeo, 0);
433
434 pg_num = BNA_GET_PAGE_NUM(HQM0_BLK_PG_NUM + ib->bna->port_num,
435 HQM_INDX_TBL_RAM_BASE_OFFSET);
436 writel(pg_num, ib->bna->regs.page_addr);
437
438 base_addr = BNA_GET_MEM_BASE_ADDR(ib->bna->pcidev.pci_bar_kva,
439 HQM_INDX_TBL_RAM_BASE_OFFSET);
440 for (i = 0; i < ib->idx_seg->ib_seg_size; i++) {
441 off = (unsigned long)
442 ((ib->idx_seg->ib_idx_tbl_offset + i) * BFI_IBIDX_SIZE);
443 writel(0, base_addr + off);
444 }
445
446 if (ib->intr->intr_type == BNA_INTR_T_INTX) {
447 bna_intx_disable(ib->bna, intx_mask);
448 intx_mask &= ~(ib->intr->vector);
449 bna_intx_enable(ib->bna, intx_mask);
450 }
451}
452
453static void
454bna_ib_stop(struct bna_ib *ib)
455{
456 u32 intx_mask;
457
458 ib->start_count--;
459
460 if (ib->start_count == 0) {
461 writel(BNA_DOORBELL_IB_INT_DISABLE,
462 ib->door_bell.doorbell_addr);
463 if (ib->intr->intr_type == BNA_INTR_T_INTX) {
464 bna_intx_disable(ib->bna, intx_mask);
465 intx_mask |= (ib->intr->vector);
466 bna_intx_enable(ib->bna, intx_mask);
467 }
468 }
469}
470
471static void
472bna_ib_fail(struct bna_ib *ib)
473{
474 ib->start_count = 0;
475}
476
477/**
478 * RXF
479 */
480static void rxf_enable(struct bna_rxf *rxf);
481static void rxf_disable(struct bna_rxf *rxf);
482static void __rxf_config_set(struct bna_rxf *rxf);
483static void __rxf_rit_set(struct bna_rxf *rxf);
484static void __bna_rxf_stat_clr(struct bna_rxf *rxf);
485static int rxf_process_packet_filter(struct bna_rxf *rxf);
486static int rxf_clear_packet_filter(struct bna_rxf *rxf);
487static void rxf_reset_packet_filter(struct bna_rxf *rxf);
488static void rxf_cb_enabled(void *arg, int status);
489static void rxf_cb_disabled(void *arg, int status);
490static void bna_rxf_cb_stats_cleared(void *arg, int status);
491static void __rxf_enable(struct bna_rxf *rxf);
492static void __rxf_disable(struct bna_rxf *rxf);
493
494bfa_fsm_state_decl(bna_rxf, stopped, struct bna_rxf,
495 enum bna_rxf_event);
496bfa_fsm_state_decl(bna_rxf, start_wait, struct bna_rxf,
497 enum bna_rxf_event);
498bfa_fsm_state_decl(bna_rxf, cam_fltr_mod_wait, struct bna_rxf,
499 enum bna_rxf_event);
500bfa_fsm_state_decl(bna_rxf, started, struct bna_rxf,
501 enum bna_rxf_event);
502bfa_fsm_state_decl(bna_rxf, cam_fltr_clr_wait, struct bna_rxf,
503 enum bna_rxf_event);
504bfa_fsm_state_decl(bna_rxf, stop_wait, struct bna_rxf,
505 enum bna_rxf_event);
506bfa_fsm_state_decl(bna_rxf, pause_wait, struct bna_rxf,
507 enum bna_rxf_event);
508bfa_fsm_state_decl(bna_rxf, resume_wait, struct bna_rxf,
509 enum bna_rxf_event);
510bfa_fsm_state_decl(bna_rxf, stat_clr_wait, struct bna_rxf,
511 enum bna_rxf_event);
512
513static struct bfa_sm_table rxf_sm_table[] = {
514 {BFA_SM(bna_rxf_sm_stopped), BNA_RXF_STOPPED},
515 {BFA_SM(bna_rxf_sm_start_wait), BNA_RXF_START_WAIT},
516 {BFA_SM(bna_rxf_sm_cam_fltr_mod_wait), BNA_RXF_CAM_FLTR_MOD_WAIT},
517 {BFA_SM(bna_rxf_sm_started), BNA_RXF_STARTED},
518 {BFA_SM(bna_rxf_sm_cam_fltr_clr_wait), BNA_RXF_CAM_FLTR_CLR_WAIT},
519 {BFA_SM(bna_rxf_sm_stop_wait), BNA_RXF_STOP_WAIT},
520 {BFA_SM(bna_rxf_sm_pause_wait), BNA_RXF_PAUSE_WAIT},
521 {BFA_SM(bna_rxf_sm_resume_wait), BNA_RXF_RESUME_WAIT},
522 {BFA_SM(bna_rxf_sm_stat_clr_wait), BNA_RXF_STAT_CLR_WAIT}
523};
524
525static void
526bna_rxf_sm_stopped_entry(struct bna_rxf *rxf)
527{
528 call_rxf_stop_cbfn(rxf, BNA_CB_SUCCESS);
529}
530
531static void
532bna_rxf_sm_stopped(struct bna_rxf *rxf, enum bna_rxf_event event)
533{
534 switch (event) {
535 case RXF_E_START:
536 bfa_fsm_set_state(rxf, bna_rxf_sm_start_wait);
537 break;
538
539 case RXF_E_STOP:
540 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
541 break;
542
543 case RXF_E_FAIL:
544 /* No-op */
545 break;
546
547 case RXF_E_CAM_FLTR_MOD:
548 call_rxf_cam_fltr_cbfn(rxf, BNA_CB_SUCCESS);
549 break;
550
551 case RXF_E_STARTED:
552 case RXF_E_STOPPED:
553 case RXF_E_CAM_FLTR_RESP:
554 /**
555 * These events are received due to flushing of mbox
556 * when device fails
557 */
558 /* No-op */
559 break;
560
561 case RXF_E_PAUSE:
562 rxf->rxf_oper_state = BNA_RXF_OPER_STATE_PAUSED;
563 call_rxf_pause_cbfn(rxf, BNA_CB_SUCCESS);
564 break;
565
566 case RXF_E_RESUME:
567 rxf->rxf_oper_state = BNA_RXF_OPER_STATE_RUNNING;
568 call_rxf_resume_cbfn(rxf, BNA_CB_SUCCESS);
569 break;
570
571 default:
572 bfa_sm_fault(rxf->rx->bna, event);
573 }
574}
575
576static void
577bna_rxf_sm_start_wait_entry(struct bna_rxf *rxf)
578{
579 __rxf_config_set(rxf);
580 __rxf_rit_set(rxf);
581 rxf_enable(rxf);
582}
583
584static void
585bna_rxf_sm_start_wait(struct bna_rxf *rxf, enum bna_rxf_event event)
586{
587 switch (event) {
588 case RXF_E_STOP:
589 /**
590 * STOP is originated from bnad. When this happens,
591 * it can not be waiting for filter update
592 */
593 call_rxf_start_cbfn(rxf, BNA_CB_INTERRUPT);
594 bfa_fsm_set_state(rxf, bna_rxf_sm_stop_wait);
595 break;
596
597 case RXF_E_FAIL:
598 call_rxf_cam_fltr_cbfn(rxf, BNA_CB_SUCCESS);
599 call_rxf_start_cbfn(rxf, BNA_CB_FAIL);
600 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
601 break;
602
603 case RXF_E_CAM_FLTR_MOD:
604 /* No-op */
605 break;
606
607 case RXF_E_STARTED:
608 /**
609 * Force rxf_process_filter() to go through initial
610 * config
611 */
612 if ((rxf->ucast_active_mac != NULL) &&
613 (rxf->ucast_pending_set == 0))
614 rxf->ucast_pending_set = 1;
615
616 if (rxf->rss_status == BNA_STATUS_T_ENABLED)
617 rxf->rxf_flags |= BNA_RXF_FL_RSS_CONFIG_PENDING;
618
619 rxf->rxf_flags |= BNA_RXF_FL_VLAN_CONFIG_PENDING;
620
621 bfa_fsm_set_state(rxf, bna_rxf_sm_cam_fltr_mod_wait);
622 break;
623
624 case RXF_E_PAUSE:
625 case RXF_E_RESUME:
626 rxf->rxf_flags |= BNA_RXF_FL_OPERSTATE_CHANGED;
627 break;
628
629 default:
630 bfa_sm_fault(rxf->rx->bna, event);
631 }
632}
633
634static void
635bna_rxf_sm_cam_fltr_mod_wait_entry(struct bna_rxf *rxf)
636{
637 if (!rxf_process_packet_filter(rxf)) {
638 /* No more pending CAM entries to update */
639 bfa_fsm_set_state(rxf, bna_rxf_sm_started);
640 }
641}
642
643static void
644bna_rxf_sm_cam_fltr_mod_wait(struct bna_rxf *rxf, enum bna_rxf_event event)
645{
646 switch (event) {
647 case RXF_E_STOP:
648 /**
649 * STOP is originated from bnad. When this happens,
650 * it can not be waiting for filter update
651 */
652 call_rxf_start_cbfn(rxf, BNA_CB_INTERRUPT);
653 bfa_fsm_set_state(rxf, bna_rxf_sm_cam_fltr_clr_wait);
654 break;
655
656 case RXF_E_FAIL:
657 rxf_reset_packet_filter(rxf);
658 call_rxf_cam_fltr_cbfn(rxf, BNA_CB_SUCCESS);
659 call_rxf_start_cbfn(rxf, BNA_CB_FAIL);
660 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
661 break;
662
663 case RXF_E_CAM_FLTR_MOD:
664 /* No-op */
665 break;
666
667 case RXF_E_CAM_FLTR_RESP:
668 if (!rxf_process_packet_filter(rxf)) {
669 /* No more pending CAM entries to update */
670 call_rxf_cam_fltr_cbfn(rxf, BNA_CB_SUCCESS);
671 bfa_fsm_set_state(rxf, bna_rxf_sm_started);
672 }
673 break;
674
675 case RXF_E_PAUSE:
676 case RXF_E_RESUME:
677 rxf->rxf_flags |= BNA_RXF_FL_OPERSTATE_CHANGED;
678 break;
679
680 default:
681 bfa_sm_fault(rxf->rx->bna, event);
682 }
683}
684
685static void
686bna_rxf_sm_started_entry(struct bna_rxf *rxf)
687{
688 call_rxf_start_cbfn(rxf, BNA_CB_SUCCESS);
689
690 if (rxf->rxf_flags & BNA_RXF_FL_OPERSTATE_CHANGED) {
691 if (rxf->rxf_oper_state == BNA_RXF_OPER_STATE_PAUSED)
692 bfa_fsm_send_event(rxf, RXF_E_PAUSE);
693 else
694 bfa_fsm_send_event(rxf, RXF_E_RESUME);
695 }
696
697}
698
699static void
700bna_rxf_sm_started(struct bna_rxf *rxf, enum bna_rxf_event event)
701{
702 switch (event) {
703 case RXF_E_STOP:
704 bfa_fsm_set_state(rxf, bna_rxf_sm_cam_fltr_clr_wait);
705 /* Hack to get FSM start clearing CAM entries */
706 bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_RESP);
707 break;
708
709 case RXF_E_FAIL:
710 rxf_reset_packet_filter(rxf);
711 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
712 break;
713
714 case RXF_E_CAM_FLTR_MOD:
715 bfa_fsm_set_state(rxf, bna_rxf_sm_cam_fltr_mod_wait);
716 break;
717
718 case RXF_E_PAUSE:
719 bfa_fsm_set_state(rxf, bna_rxf_sm_pause_wait);
720 break;
721
722 case RXF_E_RESUME:
723 bfa_fsm_set_state(rxf, bna_rxf_sm_resume_wait);
724 break;
725
726 default:
727 bfa_sm_fault(rxf->rx->bna, event);
728 }
729}
730
731static void
732bna_rxf_sm_cam_fltr_clr_wait_entry(struct bna_rxf *rxf)
733{
734 /**
735 * Note: Do not add rxf_clear_packet_filter here.
736 * It will overstep mbox when this transition happens:
737 * cam_fltr_mod_wait -> cam_fltr_clr_wait on RXF_E_STOP event
738 */
739}
740
741static void
742bna_rxf_sm_cam_fltr_clr_wait(struct bna_rxf *rxf, enum bna_rxf_event event)
743{
744 switch (event) {
745 case RXF_E_FAIL:
746 /**
747 * FSM was in the process of stopping, initiated by
748 * bnad. When this happens, no one can be waiting for
749 * start or filter update
750 */
751 rxf_reset_packet_filter(rxf);
752 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
753 break;
754
755 case RXF_E_CAM_FLTR_RESP:
756 if (!rxf_clear_packet_filter(rxf)) {
757 /* No more pending CAM entries to clear */
758 bfa_fsm_set_state(rxf, bna_rxf_sm_stop_wait);
759 rxf_disable(rxf);
760 }
761 break;
762
763 default:
764 bfa_sm_fault(rxf->rx->bna, event);
765 }
766}
767
768static void
769bna_rxf_sm_stop_wait_entry(struct bna_rxf *rxf)
770{
771 /**
772 * NOTE: Do not add rxf_disable here.
773 * It will overstep mbox when this transition happens:
774 * start_wait -> stop_wait on RXF_E_STOP event
775 */
776}
777
778static void
779bna_rxf_sm_stop_wait(struct bna_rxf *rxf, enum bna_rxf_event event)
780{
781 switch (event) {
782 case RXF_E_FAIL:
783 /**
784 * FSM was in the process of stopping, initiated by
785 * bnad. When this happens, no one can be waiting for
786 * start or filter update
787 */
788 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
789 break;
790
791 case RXF_E_STARTED:
792 /**
793 * This event is received due to abrupt transition from
794 * bna_rxf_sm_start_wait state on receiving
795 * RXF_E_STOP event
796 */
797 rxf_disable(rxf);
798 break;
799
800 case RXF_E_STOPPED:
801 /**
802 * FSM was in the process of stopping, initiated by
803 * bnad. When this happens, no one can be waiting for
804 * start or filter update
805 */
806 bfa_fsm_set_state(rxf, bna_rxf_sm_stat_clr_wait);
807 break;
808
809 case RXF_E_PAUSE:
810 rxf->rxf_oper_state = BNA_RXF_OPER_STATE_PAUSED;
811 break;
812
813 case RXF_E_RESUME:
814 rxf->rxf_oper_state = BNA_RXF_OPER_STATE_RUNNING;
815 break;
816
817 default:
818 bfa_sm_fault(rxf->rx->bna, event);
819 }
820}
821
822static void
823bna_rxf_sm_pause_wait_entry(struct bna_rxf *rxf)
824{
825 rxf->rxf_flags &=
826 ~(BNA_RXF_FL_OPERSTATE_CHANGED | BNA_RXF_FL_RXF_ENABLED);
827 __rxf_disable(rxf);
828}
829
830static void
831bna_rxf_sm_pause_wait(struct bna_rxf *rxf, enum bna_rxf_event event)
832{
833 switch (event) {
834 case RXF_E_FAIL:
835 /**
836 * FSM was in the process of disabling rxf, initiated by
837 * bnad.
838 */
839 call_rxf_pause_cbfn(rxf, BNA_CB_FAIL);
840 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
841 break;
842
843 case RXF_E_STOPPED:
844 rxf->rxf_oper_state = BNA_RXF_OPER_STATE_PAUSED;
845 call_rxf_pause_cbfn(rxf, BNA_CB_SUCCESS);
846 bfa_fsm_set_state(rxf, bna_rxf_sm_started);
847 break;
848
849 /*
850 * Since PAUSE/RESUME can only be sent by bnad, we don't expect
851 * any other event during these states
852 */
853 default:
854 bfa_sm_fault(rxf->rx->bna, event);
855 }
856}
857
858static void
859bna_rxf_sm_resume_wait_entry(struct bna_rxf *rxf)
860{
861 rxf->rxf_flags &= ~(BNA_RXF_FL_OPERSTATE_CHANGED);
862 rxf->rxf_flags |= BNA_RXF_FL_RXF_ENABLED;
863 __rxf_enable(rxf);
864}
865
866static void
867bna_rxf_sm_resume_wait(struct bna_rxf *rxf, enum bna_rxf_event event)
868{
869 switch (event) {
870 case RXF_E_FAIL:
871 /**
872 * FSM was in the process of disabling rxf, initiated by
873 * bnad.
874 */
875 call_rxf_resume_cbfn(rxf, BNA_CB_FAIL);
876 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
877 break;
878
879 case RXF_E_STARTED:
880 rxf->rxf_oper_state = BNA_RXF_OPER_STATE_RUNNING;
881 call_rxf_resume_cbfn(rxf, BNA_CB_SUCCESS);
882 bfa_fsm_set_state(rxf, bna_rxf_sm_started);
883 break;
884
885 /*
886 * Since PAUSE/RESUME can only be sent by bnad, we don't expect
887 * any other event during these states
888 */
889 default:
890 bfa_sm_fault(rxf->rx->bna, event);
891 }
892}
893
894static void
895bna_rxf_sm_stat_clr_wait_entry(struct bna_rxf *rxf)
896{
897 __bna_rxf_stat_clr(rxf);
898}
899
900static void
901bna_rxf_sm_stat_clr_wait(struct bna_rxf *rxf, enum bna_rxf_event event)
902{
903 switch (event) {
904 case RXF_E_FAIL:
905 case RXF_E_STAT_CLEARED:
906 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
907 break;
908
909 default:
910 bfa_sm_fault(rxf->rx->bna, event);
911 }
912}
913
914static void
915__rxf_enable(struct bna_rxf *rxf)
916{
917 struct bfi_ll_rxf_multi_req ll_req;
918 u32 bm[2] = {0, 0};
919
920 if (rxf->rxf_id < 32)
921 bm[0] = 1 << rxf->rxf_id;
922 else
923 bm[1] = 1 << (rxf->rxf_id - 32);
924
925 bfi_h2i_set(ll_req.mh, BFI_MC_LL, BFI_LL_H2I_RX_REQ, 0);
926 ll_req.rxf_id_mask[0] = htonl(bm[0]);
927 ll_req.rxf_id_mask[1] = htonl(bm[1]);
928 ll_req.enable = 1;
929
930 bna_mbox_qe_fill(&rxf->mbox_qe, &ll_req, sizeof(ll_req),
931 rxf_cb_enabled, rxf);
932
933 bna_mbox_send(rxf->rx->bna, &rxf->mbox_qe);
934}
935
936static void
937__rxf_disable(struct bna_rxf *rxf)
938{
939 struct bfi_ll_rxf_multi_req ll_req;
940 u32 bm[2] = {0, 0};
941
942 if (rxf->rxf_id < 32)
943 bm[0] = 1 << rxf->rxf_id;
944 else
945 bm[1] = 1 << (rxf->rxf_id - 32);
946
947 bfi_h2i_set(ll_req.mh, BFI_MC_LL, BFI_LL_H2I_RX_REQ, 0);
948 ll_req.rxf_id_mask[0] = htonl(bm[0]);
949 ll_req.rxf_id_mask[1] = htonl(bm[1]);
950 ll_req.enable = 0;
951
952 bna_mbox_qe_fill(&rxf->mbox_qe, &ll_req, sizeof(ll_req),
953 rxf_cb_disabled, rxf);
954
955 bna_mbox_send(rxf->rx->bna, &rxf->mbox_qe);
956}
957
958static void
959__rxf_config_set(struct bna_rxf *rxf)
960{
961 u32 i;
962 struct bna_rss_mem *rss_mem;
963 struct bna_rx_fndb_ram *rx_fndb_ram;
964 struct bna *bna = rxf->rx->bna;
965 void __iomem *base_addr;
966 unsigned long off;
967
968 base_addr = BNA_GET_MEM_BASE_ADDR(bna->pcidev.pci_bar_kva,
969 RSS_TABLE_BASE_OFFSET);
970
971 rss_mem = (struct bna_rss_mem *)0;
972
973 /* Configure RSS if required */
974 if (rxf->ctrl_flags & BNA_RXF_CF_RSS_ENABLE) {
975 /* configure RSS Table */
976 writel(BNA_GET_PAGE_NUM(RAD0_MEM_BLK_BASE_PG_NUM +
977 bna->port_num, RSS_TABLE_BASE_OFFSET),
978 bna->regs.page_addr);
979
980 /* temporarily disable RSS, while hash value is written */
981 off = (unsigned long)&rss_mem[0].type_n_hash;
982 writel(0, base_addr + off);
983
984 for (i = 0; i < BFI_RSS_HASH_KEY_LEN; i++) {
985 off = (unsigned long)
986 &rss_mem[0].hash_key[(BFI_RSS_HASH_KEY_LEN - 1) - i];
987 writel(htonl(rxf->rss_cfg.toeplitz_hash_key[i]),
988 base_addr + off);
989 }
990
991 off = (unsigned long)&rss_mem[0].type_n_hash;
992 writel(rxf->rss_cfg.hash_type | rxf->rss_cfg.hash_mask,
993 base_addr + off);
994 }
995
996 /* Configure RxF */
997 writel(BNA_GET_PAGE_NUM(
998 LUT0_MEM_BLK_BASE_PG_NUM + (bna->port_num * 2),
999 RX_FNDB_RAM_BASE_OFFSET),
1000 bna->regs.page_addr);
1001
1002 base_addr = BNA_GET_MEM_BASE_ADDR(bna->pcidev.pci_bar_kva,
1003 RX_FNDB_RAM_BASE_OFFSET);
1004
1005 rx_fndb_ram = (struct bna_rx_fndb_ram *)0;
1006
1007 /* We always use RSS table 0 */
1008 off = (unsigned long)&rx_fndb_ram[rxf->rxf_id].rss_prop;
1009 writel(rxf->ctrl_flags & BNA_RXF_CF_RSS_ENABLE,
1010 base_addr + off);
1011
1012 /* small large buffer enable/disable */
1013 off = (unsigned long)&rx_fndb_ram[rxf->rxf_id].size_routing_props;
1014 writel((rxf->ctrl_flags & BNA_RXF_CF_SM_LG_RXQ) | 0x80,
1015 base_addr + off);
1016
1017 /* RIT offset, HDS forced offset, multicast RxQ Id */
1018 off = (unsigned long)&rx_fndb_ram[rxf->rxf_id].rit_hds_mcastq;
1019 writel((rxf->rit_segment->rit_offset << 16) |
1020 (rxf->forced_offset << 8) |
1021 (rxf->hds_cfg.hdr_type & BNA_HDS_FORCED) | rxf->mcast_rxq_id,
1022 base_addr + off);
1023
1024 /*
1025 * default vlan tag, default function enable, strip vlan bytes,
1026 * HDS type, header size
1027 */
1028
1029 off = (unsigned long)&rx_fndb_ram[rxf->rxf_id].control_flags;
1030 writel(((u32)rxf->default_vlan_tag << 16) |
1031 (rxf->ctrl_flags &
1032 (BNA_RXF_CF_DEFAULT_VLAN |
1033 BNA_RXF_CF_DEFAULT_FUNCTION_ENABLE |
1034 BNA_RXF_CF_VLAN_STRIP)) |
1035 (rxf->hds_cfg.hdr_type & ~BNA_HDS_FORCED) |
1036 rxf->hds_cfg.header_size,
1037 base_addr + off);
1038}
1039
1040void
1041__rxf_vlan_filter_set(struct bna_rxf *rxf, enum bna_status status)
1042{
1043 struct bna *bna = rxf->rx->bna;
1044 int i;
1045
1046 writel(BNA_GET_PAGE_NUM(LUT0_MEM_BLK_BASE_PG_NUM +
1047 (bna->port_num * 2), VLAN_RAM_BASE_OFFSET),
1048 bna->regs.page_addr);
1049
1050 if (status == BNA_STATUS_T_ENABLED) {
1051 /* enable VLAN filtering on this function */
1052 for (i = 0; i <= BFI_MAX_VLAN / 32; i++) {
1053 writel(rxf->vlan_filter_table[i],
1054 BNA_GET_VLAN_MEM_ENTRY_ADDR
1055 (bna->pcidev.pci_bar_kva, rxf->rxf_id,
1056 i * 32));
1057 }
1058 } else {
1059 /* disable VLAN filtering on this function */
1060 for (i = 0; i <= BFI_MAX_VLAN / 32; i++) {
1061 writel(0xffffffff,
1062 BNA_GET_VLAN_MEM_ENTRY_ADDR
1063 (bna->pcidev.pci_bar_kva, rxf->rxf_id,
1064 i * 32));
1065 }
1066 }
1067}
1068
1069static void
1070__rxf_rit_set(struct bna_rxf *rxf)
1071{
1072 struct bna *bna = rxf->rx->bna;
1073 struct bna_rit_mem *rit_mem;
1074 int i;
1075 void __iomem *base_addr;
1076 unsigned long off;
1077
1078 base_addr = BNA_GET_MEM_BASE_ADDR(bna->pcidev.pci_bar_kva,
1079 FUNCTION_TO_RXQ_TRANSLATE);
1080
1081 rit_mem = (struct bna_rit_mem *)0;
1082
1083 writel(BNA_GET_PAGE_NUM(RXA0_MEM_BLK_BASE_PG_NUM + bna->port_num,
1084 FUNCTION_TO_RXQ_TRANSLATE),
1085 bna->regs.page_addr);
1086
1087 for (i = 0; i < rxf->rit_segment->rit_size; i++) {
1088 off = (unsigned long)&rit_mem[i + rxf->rit_segment->rit_offset];
1089 writel(rxf->rit_segment->rit[i].large_rxq_id << 6 |
1090 rxf->rit_segment->rit[i].small_rxq_id,
1091 base_addr + off);
1092 }
1093}
1094
1095static void
1096__bna_rxf_stat_clr(struct bna_rxf *rxf)
1097{
1098 struct bfi_ll_stats_req ll_req;
1099 u32 bm[2] = {0, 0};
1100
1101 if (rxf->rxf_id < 32)
1102 bm[0] = 1 << rxf->rxf_id;
1103 else
1104 bm[1] = 1 << (rxf->rxf_id - 32);
1105
1106 bfi_h2i_set(ll_req.mh, BFI_MC_LL, BFI_LL_H2I_STATS_CLEAR_REQ, 0);
1107 ll_req.stats_mask = 0;
1108 ll_req.txf_id_mask[0] = 0;
1109 ll_req.txf_id_mask[1] = 0;
1110
1111 ll_req.rxf_id_mask[0] = htonl(bm[0]);
1112 ll_req.rxf_id_mask[1] = htonl(bm[1]);
1113
1114 bna_mbox_qe_fill(&rxf->mbox_qe, &ll_req, sizeof(ll_req),
1115 bna_rxf_cb_stats_cleared, rxf);
1116 bna_mbox_send(rxf->rx->bna, &rxf->mbox_qe);
1117}
1118
1119static void
1120rxf_enable(struct bna_rxf *rxf)
1121{
1122 if (rxf->rxf_oper_state == BNA_RXF_OPER_STATE_PAUSED)
1123 bfa_fsm_send_event(rxf, RXF_E_STARTED);
1124 else {
1125 rxf->rxf_flags |= BNA_RXF_FL_RXF_ENABLED;
1126 __rxf_enable(rxf);
1127 }
1128}
1129
1130static void
1131rxf_cb_enabled(void *arg, int status)
1132{
1133 struct bna_rxf *rxf = (struct bna_rxf *)arg;
1134
1135 bfa_q_qe_init(&rxf->mbox_qe.qe);
1136 bfa_fsm_send_event(rxf, RXF_E_STARTED);
1137}
1138
1139static void
1140rxf_disable(struct bna_rxf *rxf)
1141{
1142 if (rxf->rxf_oper_state == BNA_RXF_OPER_STATE_PAUSED)
1143 bfa_fsm_send_event(rxf, RXF_E_STOPPED);
1144 else
1145 rxf->rxf_flags &= ~BNA_RXF_FL_RXF_ENABLED;
1146 __rxf_disable(rxf);
1147}
1148
1149static void
1150rxf_cb_disabled(void *arg, int status)
1151{
1152 struct bna_rxf *rxf = (struct bna_rxf *)arg;
1153
1154 bfa_q_qe_init(&rxf->mbox_qe.qe);
1155 bfa_fsm_send_event(rxf, RXF_E_STOPPED);
1156}
1157
1158void
1159rxf_cb_cam_fltr_mbox_cmd(void *arg, int status)
1160{
1161 struct bna_rxf *rxf = (struct bna_rxf *)arg;
1162
1163 bfa_q_qe_init(&rxf->mbox_qe.qe);
1164
1165 bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_RESP);
1166}
1167
1168static void
1169bna_rxf_cb_stats_cleared(void *arg, int status)
1170{
1171 struct bna_rxf *rxf = (struct bna_rxf *)arg;
1172
1173 bfa_q_qe_init(&rxf->mbox_qe.qe);
1174 bfa_fsm_send_event(rxf, RXF_E_STAT_CLEARED);
1175}
1176
1177void
1178rxf_cam_mbox_cmd(struct bna_rxf *rxf, u8 cmd,
1179 const struct bna_mac *mac_addr)
1180{
1181 struct bfi_ll_mac_addr_req req;
1182
1183 bfi_h2i_set(req.mh, BFI_MC_LL, cmd, 0);
1184
1185 req.rxf_id = rxf->rxf_id;
1186 memcpy(&req.mac_addr, (void *)&mac_addr->addr, ETH_ALEN);
1187
1188 bna_mbox_qe_fill(&rxf->mbox_qe, &req, sizeof(req),
1189 rxf_cb_cam_fltr_mbox_cmd, rxf);
1190
1191 bna_mbox_send(rxf->rx->bna, &rxf->mbox_qe);
1192}
1193
1194static int
1195rxf_process_packet_filter_mcast(struct bna_rxf *rxf)
1196{
1197 struct bna_mac *mac = NULL;
1198 struct list_head *qe;
1199
1200 /* Add multicast entries */
1201 if (!list_empty(&rxf->mcast_pending_add_q)) {
1202 bfa_q_deq(&rxf->mcast_pending_add_q, &qe);
1203 bfa_q_qe_init(qe);
1204 mac = (struct bna_mac *)qe;
1205 rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_ADD_REQ, mac);
1206 list_add_tail(&mac->qe, &rxf->mcast_active_q);
1207 return 1;
1208 }
1209
1210 /* Delete multicast entries previousely added */
1211 if (!list_empty(&rxf->mcast_pending_del_q)) {
1212 bfa_q_deq(&rxf->mcast_pending_del_q, &qe);
1213 bfa_q_qe_init(qe);
1214 mac = (struct bna_mac *)qe;
1215 rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_DEL_REQ, mac);
1216 bna_mcam_mod_mac_put(&rxf->rx->bna->mcam_mod, mac);
1217 return 1;
1218 }
1219
1220 return 0;
1221}
1222
1223static int
1224rxf_process_packet_filter_vlan(struct bna_rxf *rxf)
1225{
1226 /* Apply the VLAN filter */
1227 if (rxf->rxf_flags & BNA_RXF_FL_VLAN_CONFIG_PENDING) {
1228 rxf->rxf_flags &= ~BNA_RXF_FL_VLAN_CONFIG_PENDING;
1229 if (!(rxf->rxmode_active & BNA_RXMODE_PROMISC))
1230 __rxf_vlan_filter_set(rxf, rxf->vlan_filter_status);
1231 }
1232
1233 /* Apply RSS configuration */
1234 if (rxf->rxf_flags & BNA_RXF_FL_RSS_CONFIG_PENDING) {
1235 rxf->rxf_flags &= ~BNA_RXF_FL_RSS_CONFIG_PENDING;
1236 if (rxf->rss_status == BNA_STATUS_T_DISABLED) {
1237 /* RSS is being disabled */
1238 rxf->ctrl_flags &= ~BNA_RXF_CF_RSS_ENABLE;
1239 __rxf_rit_set(rxf);
1240 __rxf_config_set(rxf);
1241 } else {
1242 /* RSS is being enabled or reconfigured */
1243 rxf->ctrl_flags |= BNA_RXF_CF_RSS_ENABLE;
1244 __rxf_rit_set(rxf);
1245 __rxf_config_set(rxf);
1246 }
1247 }
1248
1249 return 0;
1250}
1251
1252/**
1253 * Processes pending ucast, mcast entry addition/deletion and issues mailbox
1254 * command. Also processes pending filter configuration - promiscuous mode,
1255 * default mode, allmutli mode and issues mailbox command or directly applies
1256 * to h/w
1257 */
1258static int
1259rxf_process_packet_filter(struct bna_rxf *rxf)
1260{
1261 /* Set the default MAC first */
1262 if (rxf->ucast_pending_set > 0) {
1263 rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_UCAST_SET_REQ,
1264 rxf->ucast_active_mac);
1265 rxf->ucast_pending_set--;
1266 return 1;
1267 }
1268
1269 if (rxf_process_packet_filter_ucast(rxf))
1270 return 1;
1271
1272 if (rxf_process_packet_filter_mcast(rxf))
1273 return 1;
1274
1275 if (rxf_process_packet_filter_promisc(rxf))
1276 return 1;
1277
1278 if (rxf_process_packet_filter_allmulti(rxf))
1279 return 1;
1280
1281 if (rxf_process_packet_filter_vlan(rxf))
1282 return 1;
1283
1284 return 0;
1285}
1286
1287static int
1288rxf_clear_packet_filter_mcast(struct bna_rxf *rxf)
1289{
1290 struct bna_mac *mac = NULL;
1291 struct list_head *qe;
1292
1293 /* 3. delete pending mcast entries */
1294 if (!list_empty(&rxf->mcast_pending_del_q)) {
1295 bfa_q_deq(&rxf->mcast_pending_del_q, &qe);
1296 bfa_q_qe_init(qe);
1297 mac = (struct bna_mac *)qe;
1298 rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_DEL_REQ, mac);
1299 bna_mcam_mod_mac_put(&rxf->rx->bna->mcam_mod, mac);
1300 return 1;
1301 }
1302
1303 /* 4. clear active mcast entries; move them to pending_add_q */
1304 if (!list_empty(&rxf->mcast_active_q)) {
1305 bfa_q_deq(&rxf->mcast_active_q, &qe);
1306 bfa_q_qe_init(qe);
1307 mac = (struct bna_mac *)qe;
1308 rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_DEL_REQ, mac);
1309 list_add_tail(&mac->qe, &rxf->mcast_pending_add_q);
1310 return 1;
1311 }
1312
1313 return 0;
1314}
1315
1316/**
1317 * In the rxf stop path, processes pending ucast/mcast delete queue and issues
1318 * the mailbox command. Moves the active ucast/mcast entries to pending add q,
1319 * so that they are added to CAM again in the rxf start path. Moves the current
1320 * filter settings - promiscuous, default, allmutli - to pending filter
1321 * configuration
1322 */
1323static int
1324rxf_clear_packet_filter(struct bna_rxf *rxf)
1325{
1326 if (rxf_clear_packet_filter_ucast(rxf))
1327 return 1;
1328
1329 if (rxf_clear_packet_filter_mcast(rxf))
1330 return 1;
1331
1332 /* 5. clear active default MAC in the CAM */
1333 if (rxf->ucast_pending_set > 0)
1334 rxf->ucast_pending_set = 0;
1335
1336 if (rxf_clear_packet_filter_promisc(rxf))
1337 return 1;
1338
1339 if (rxf_clear_packet_filter_allmulti(rxf))
1340 return 1;
1341
1342 return 0;
1343}
1344
1345static void
1346rxf_reset_packet_filter_mcast(struct bna_rxf *rxf)
1347{
1348 struct list_head *qe;
1349 struct bna_mac *mac;
1350
1351 /* 3. Move active mcast entries to pending_add_q */
1352 while (!list_empty(&rxf->mcast_active_q)) {
1353 bfa_q_deq(&rxf->mcast_active_q, &qe);
1354 bfa_q_qe_init(qe);
1355 list_add_tail(qe, &rxf->mcast_pending_add_q);
1356 }
1357
1358 /* 4. Throw away delete pending mcast entries */
1359 while (!list_empty(&rxf->mcast_pending_del_q)) {
1360 bfa_q_deq(&rxf->mcast_pending_del_q, &qe);
1361 bfa_q_qe_init(qe);
1362 mac = (struct bna_mac *)qe;
1363 bna_mcam_mod_mac_put(&rxf->rx->bna->mcam_mod, mac);
1364 }
1365}
1366
1367/**
1368 * In the rxf fail path, throws away the ucast/mcast entries pending for
1369 * deletion, moves all active ucast/mcast entries to pending queue so that
1370 * they are added back to CAM in the rxf start path. Also moves the current
1371 * filter configuration to pending filter configuration.
1372 */
1373static void
1374rxf_reset_packet_filter(struct bna_rxf *rxf)
1375{
1376 rxf_reset_packet_filter_ucast(rxf);
1377
1378 rxf_reset_packet_filter_mcast(rxf);
1379
1380 /* 5. Turn off ucast set flag */
1381 rxf->ucast_pending_set = 0;
1382
1383 rxf_reset_packet_filter_promisc(rxf);
1384
1385 rxf_reset_packet_filter_allmulti(rxf);
1386}
1387
1388static void
1389bna_rxf_init(struct bna_rxf *rxf,
1390 struct bna_rx *rx,
1391 struct bna_rx_config *q_config)
1392{
1393 struct list_head *qe;
1394 struct bna_rxp *rxp;
1395
1396 /* rxf_id is initialized during rx_mod init */
1397 rxf->rx = rx;
1398
1399 INIT_LIST_HEAD(&rxf->ucast_pending_add_q);
1400 INIT_LIST_HEAD(&rxf->ucast_pending_del_q);
1401 rxf->ucast_pending_set = 0;
1402 INIT_LIST_HEAD(&rxf->ucast_active_q);
1403 rxf->ucast_active_mac = NULL;
1404
1405 INIT_LIST_HEAD(&rxf->mcast_pending_add_q);
1406 INIT_LIST_HEAD(&rxf->mcast_pending_del_q);
1407 INIT_LIST_HEAD(&rxf->mcast_active_q);
1408
1409 bfa_q_qe_init(&rxf->mbox_qe.qe);
1410
1411 if (q_config->vlan_strip_status == BNA_STATUS_T_ENABLED)
1412 rxf->ctrl_flags |= BNA_RXF_CF_VLAN_STRIP;
1413
1414 rxf->rxf_oper_state = (q_config->paused) ?
1415 BNA_RXF_OPER_STATE_PAUSED : BNA_RXF_OPER_STATE_RUNNING;
1416
1417 bna_rxf_adv_init(rxf, rx, q_config);
1418
1419 rxf->rit_segment = bna_rit_mod_seg_get(&rxf->rx->bna->rit_mod,
1420 q_config->num_paths);
1421
1422 list_for_each(qe, &rx->rxp_q) {
1423 rxp = (struct bna_rxp *)qe;
1424 if (q_config->rxp_type == BNA_RXP_SINGLE)
1425 rxf->mcast_rxq_id = rxp->rxq.single.only->rxq_id;
1426 else
1427 rxf->mcast_rxq_id = rxp->rxq.slr.large->rxq_id;
1428 break;
1429 }
1430
1431 rxf->vlan_filter_status = BNA_STATUS_T_DISABLED;
1432 memset(rxf->vlan_filter_table, 0,
1433 (sizeof(u32) * ((BFI_MAX_VLAN + 1) / 32)));
1434
1435 /* Set up VLAN 0 for pure priority tagged packets */
1436 rxf->vlan_filter_table[0] |= 1;
1437
1438 bfa_fsm_set_state(rxf, bna_rxf_sm_stopped);
1439}
1440
1441static void
1442bna_rxf_uninit(struct bna_rxf *rxf)
1443{
1444 struct bna *bna = rxf->rx->bna;
1445 struct bna_mac *mac;
1446
1447 bna_rit_mod_seg_put(&rxf->rx->bna->rit_mod, rxf->rit_segment);
1448 rxf->rit_segment = NULL;
1449
1450 rxf->ucast_pending_set = 0;
1451
1452 while (!list_empty(&rxf->ucast_pending_add_q)) {
1453 bfa_q_deq(&rxf->ucast_pending_add_q, &mac);
1454 bfa_q_qe_init(&mac->qe);
1455 bna_ucam_mod_mac_put(&rxf->rx->bna->ucam_mod, mac);
1456 }
1457
1458 if (rxf->ucast_active_mac) {
1459 bfa_q_qe_init(&rxf->ucast_active_mac->qe);
1460 bna_ucam_mod_mac_put(&rxf->rx->bna->ucam_mod,
1461 rxf->ucast_active_mac);
1462 rxf->ucast_active_mac = NULL;
1463 }
1464
1465 while (!list_empty(&rxf->mcast_pending_add_q)) {
1466 bfa_q_deq(&rxf->mcast_pending_add_q, &mac);
1467 bfa_q_qe_init(&mac->qe);
1468 bna_mcam_mod_mac_put(&rxf->rx->bna->mcam_mod, mac);
1469 }
1470
1471 /* Turn off pending promisc mode */
1472 if (is_promisc_enable(rxf->rxmode_pending,
1473 rxf->rxmode_pending_bitmask)) {
1474 /* system promisc state should be pending */
1475 BUG_ON(!(bna->rxf_promisc_id == rxf->rxf_id));
1476 promisc_inactive(rxf->rxmode_pending,
1477 rxf->rxmode_pending_bitmask);
1478 bna->rxf_promisc_id = BFI_MAX_RXF;
1479 }
1480 /* Promisc mode should not be active */
1481 BUG_ON(rxf->rxmode_active & BNA_RXMODE_PROMISC);
1482
1483 /* Turn off pending all-multi mode */
1484 if (is_allmulti_enable(rxf->rxmode_pending,
1485 rxf->rxmode_pending_bitmask)) {
1486 allmulti_inactive(rxf->rxmode_pending,
1487 rxf->rxmode_pending_bitmask);
1488 }
1489 /* Allmulti mode should not be active */
1490 BUG_ON(rxf->rxmode_active & BNA_RXMODE_ALLMULTI);
1491
1492 rxf->rx = NULL;
1493}
1494
1495static void
1496bna_rx_cb_rxf_started(struct bna_rx *rx, enum bna_cb_status status)
1497{
1498 bfa_fsm_send_event(rx, RX_E_RXF_STARTED);
1499 if (rx->rxf.rxf_id < 32)
1500 rx->bna->rx_mod.rxf_bmap[0] |= ((u32)1 << rx->rxf.rxf_id);
1501 else
1502 rx->bna->rx_mod.rxf_bmap[1] |= ((u32)
1503 1 << (rx->rxf.rxf_id - 32));
1504}
1505
1506static void
1507bna_rxf_start(struct bna_rxf *rxf)
1508{
1509 rxf->start_cbfn = bna_rx_cb_rxf_started;
1510 rxf->start_cbarg = rxf->rx;
1511 rxf->rxf_flags &= ~BNA_RXF_FL_FAILED;
1512 bfa_fsm_send_event(rxf, RXF_E_START);
1513}
1514
1515static void
1516bna_rx_cb_rxf_stopped(struct bna_rx *rx, enum bna_cb_status status)
1517{
1518 bfa_fsm_send_event(rx, RX_E_RXF_STOPPED);
1519 if (rx->rxf.rxf_id < 32)
1520 rx->bna->rx_mod.rxf_bmap[0] &= ~(u32)1 << rx->rxf.rxf_id;
1521 else
1522 rx->bna->rx_mod.rxf_bmap[1] &= ~(u32)
1523 1 << (rx->rxf.rxf_id - 32);
1524}
1525
1526static void
1527bna_rxf_stop(struct bna_rxf *rxf)
1528{
1529 rxf->stop_cbfn = bna_rx_cb_rxf_stopped;
1530 rxf->stop_cbarg = rxf->rx;
1531 bfa_fsm_send_event(rxf, RXF_E_STOP);
1532}
1533
1534static void
1535bna_rxf_fail(struct bna_rxf *rxf)
1536{
1537 rxf->rxf_flags |= BNA_RXF_FL_FAILED;
1538 bfa_fsm_send_event(rxf, RXF_E_FAIL);
1539}
1540
1541int
1542bna_rxf_state_get(struct bna_rxf *rxf)
1543{
1544 return bfa_sm_to_state(rxf_sm_table, rxf->fsm);
1545}
1546
1547enum bna_cb_status
1548bna_rx_ucast_set(struct bna_rx *rx, u8 *ucmac,
1549 void (*cbfn)(struct bnad *, struct bna_rx *,
1550 enum bna_cb_status))
1551{
1552 struct bna_rxf *rxf = &rx->rxf;
1553
1554 if (rxf->ucast_active_mac == NULL) {
1555 rxf->ucast_active_mac =
1556 bna_ucam_mod_mac_get(&rxf->rx->bna->ucam_mod);
1557 if (rxf->ucast_active_mac == NULL)
1558 return BNA_CB_UCAST_CAM_FULL;
1559 bfa_q_qe_init(&rxf->ucast_active_mac->qe);
1560 }
1561
1562 memcpy(rxf->ucast_active_mac->addr, ucmac, ETH_ALEN);
1563 rxf->ucast_pending_set++;
1564 rxf->cam_fltr_cbfn = cbfn;
1565 rxf->cam_fltr_cbarg = rx->bna->bnad;
1566
1567 bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_MOD);
1568
1569 return BNA_CB_SUCCESS;
1570}
1571
1572enum bna_cb_status
1573bna_rx_mcast_add(struct bna_rx *rx, u8 *addr,
1574 void (*cbfn)(struct bnad *, struct bna_rx *,
1575 enum bna_cb_status))
1576{
1577 struct bna_rxf *rxf = &rx->rxf;
1578 struct list_head *qe;
1579 struct bna_mac *mac;
1580
1581 /* Check if already added */
1582 list_for_each(qe, &rxf->mcast_active_q) {
1583 mac = (struct bna_mac *)qe;
1584 if (BNA_MAC_IS_EQUAL(mac->addr, addr)) {
1585 if (cbfn)
1586 (*cbfn)(rx->bna->bnad, rx, BNA_CB_SUCCESS);
1587 return BNA_CB_SUCCESS;
1588 }
1589 }
1590
1591 /* Check if pending addition */
1592 list_for_each(qe, &rxf->mcast_pending_add_q) {
1593 mac = (struct bna_mac *)qe;
1594 if (BNA_MAC_IS_EQUAL(mac->addr, addr)) {
1595 if (cbfn)
1596 (*cbfn)(rx->bna->bnad, rx, BNA_CB_SUCCESS);
1597 return BNA_CB_SUCCESS;
1598 }
1599 }
1600
1601 mac = bna_mcam_mod_mac_get(&rxf->rx->bna->mcam_mod);
1602 if (mac == NULL)
1603 return BNA_CB_MCAST_LIST_FULL;
1604 bfa_q_qe_init(&mac->qe);
1605 memcpy(mac->addr, addr, ETH_ALEN);
1606 list_add_tail(&mac->qe, &rxf->mcast_pending_add_q);
1607
1608 rxf->cam_fltr_cbfn = cbfn;
1609 rxf->cam_fltr_cbarg = rx->bna->bnad;
1610
1611 bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_MOD);
1612
1613 return BNA_CB_SUCCESS;
1614}
1615
1616enum bna_cb_status
1617bna_rx_mcast_listset(struct bna_rx *rx, int count, u8 *mclist,
1618 void (*cbfn)(struct bnad *, struct bna_rx *,
1619 enum bna_cb_status))
1620{
1621 struct bna_rxf *rxf = &rx->rxf;
1622 struct list_head list_head;
1623 struct list_head *qe;
1624 u8 *mcaddr;
1625 struct bna_mac *mac;
1626 struct bna_mac *mac1;
1627 int skip;
1628 int delete;
1629 int need_hw_config = 0;
1630 int i;
1631
1632 /* Allocate nodes */
1633 INIT_LIST_HEAD(&list_head);
1634 for (i = 0, mcaddr = mclist; i < count; i++) {
1635 mac = bna_mcam_mod_mac_get(&rxf->rx->bna->mcam_mod);
1636 if (mac == NULL)
1637 goto err_return;
1638 bfa_q_qe_init(&mac->qe);
1639 memcpy(mac->addr, mcaddr, ETH_ALEN);
1640 list_add_tail(&mac->qe, &list_head);
1641
1642 mcaddr += ETH_ALEN;
1643 }
1644
1645 /* Schedule for addition */
1646 while (!list_empty(&list_head)) {
1647 bfa_q_deq(&list_head, &qe);
1648 mac = (struct bna_mac *)qe;
1649 bfa_q_qe_init(&mac->qe);
1650
1651 skip = 0;
1652
1653 /* Skip if already added */
1654 list_for_each(qe, &rxf->mcast_active_q) {
1655 mac1 = (struct bna_mac *)qe;
1656 if (BNA_MAC_IS_EQUAL(mac1->addr, mac->addr)) {
1657 bna_mcam_mod_mac_put(&rxf->rx->bna->mcam_mod,
1658 mac);
1659 skip = 1;
1660 break;
1661 }
1662 }
1663
1664 if (skip)
1665 continue;
1666
1667 /* Skip if pending addition */
1668 list_for_each(qe, &rxf->mcast_pending_add_q) {
1669 mac1 = (struct bna_mac *)qe;
1670 if (BNA_MAC_IS_EQUAL(mac1->addr, mac->addr)) {
1671 bna_mcam_mod_mac_put(&rxf->rx->bna->mcam_mod,
1672 mac);
1673 skip = 1;
1674 break;
1675 }
1676 }
1677
1678 if (skip)
1679 continue;
1680
1681 need_hw_config = 1;
1682 list_add_tail(&mac->qe, &rxf->mcast_pending_add_q);
1683 }
1684
1685 /**
1686 * Delete the entries that are in the pending_add_q but not
1687 * in the new list
1688 */
1689 while (!list_empty(&rxf->mcast_pending_add_q)) {
1690 bfa_q_deq(&rxf->mcast_pending_add_q, &qe);
1691 mac = (struct bna_mac *)qe;
1692 bfa_q_qe_init(&mac->qe);
1693 for (i = 0, mcaddr = mclist, delete = 1; i < count; i++) {
1694 if (BNA_MAC_IS_EQUAL(mcaddr, mac->addr)) {
1695 delete = 0;
1696 break;
1697 }
1698 mcaddr += ETH_ALEN;
1699 }
1700 if (delete)
1701 bna_mcam_mod_mac_put(&rxf->rx->bna->mcam_mod, mac);
1702 else
1703 list_add_tail(&mac->qe, &list_head);
1704 }
1705 while (!list_empty(&list_head)) {
1706 bfa_q_deq(&list_head, &qe);
1707 mac = (struct bna_mac *)qe;
1708 bfa_q_qe_init(&mac->qe);
1709 list_add_tail(&mac->qe, &rxf->mcast_pending_add_q);
1710 }
1711
1712 /**
1713 * Schedule entries for deletion that are in the active_q but not
1714 * in the new list
1715 */
1716 while (!list_empty(&rxf->mcast_active_q)) {
1717 bfa_q_deq(&rxf->mcast_active_q, &qe);
1718 mac = (struct bna_mac *)qe;
1719 bfa_q_qe_init(&mac->qe);
1720 for (i = 0, mcaddr = mclist, delete = 1; i < count; i++) {
1721 if (BNA_MAC_IS_EQUAL(mcaddr, mac->addr)) {
1722 delete = 0;
1723 break;
1724 }
1725 mcaddr += ETH_ALEN;
1726 }
1727 if (delete) {
1728 list_add_tail(&mac->qe, &rxf->mcast_pending_del_q);
1729 need_hw_config = 1;
1730 } else {
1731 list_add_tail(&mac->qe, &list_head);
1732 }
1733 }
1734 while (!list_empty(&list_head)) {
1735 bfa_q_deq(&list_head, &qe);
1736 mac = (struct bna_mac *)qe;
1737 bfa_q_qe_init(&mac->qe);
1738 list_add_tail(&mac->qe, &rxf->mcast_active_q);
1739 }
1740
1741 if (need_hw_config) {
1742 rxf->cam_fltr_cbfn = cbfn;
1743 rxf->cam_fltr_cbarg = rx->bna->bnad;
1744 bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_MOD);
1745 } else if (cbfn)
1746 (*cbfn)(rx->bna->bnad, rx, BNA_CB_SUCCESS);
1747
1748 return BNA_CB_SUCCESS;
1749
1750err_return:
1751 while (!list_empty(&list_head)) {
1752 bfa_q_deq(&list_head, &qe);
1753 mac = (struct bna_mac *)qe;
1754 bfa_q_qe_init(&mac->qe);
1755 bna_mcam_mod_mac_put(&rxf->rx->bna->mcam_mod, mac);
1756 }
1757
1758 return BNA_CB_MCAST_LIST_FULL;
1759}
1760
1761void
1762bna_rx_vlan_add(struct bna_rx *rx, int vlan_id)
1763{
1764 struct bna_rxf *rxf = &rx->rxf;
1765 int index = (vlan_id >> 5);
1766 int bit = (1 << (vlan_id & 0x1F));
1767
1768 rxf->vlan_filter_table[index] |= bit;
1769 if (rxf->vlan_filter_status == BNA_STATUS_T_ENABLED) {
1770 rxf->rxf_flags |= BNA_RXF_FL_VLAN_CONFIG_PENDING;
1771 bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_MOD);
1772 }
1773}
1774
1775void
1776bna_rx_vlan_del(struct bna_rx *rx, int vlan_id)
1777{
1778 struct bna_rxf *rxf = &rx->rxf;
1779 int index = (vlan_id >> 5);
1780 int bit = (1 << (vlan_id & 0x1F));
1781
1782 rxf->vlan_filter_table[index] &= ~bit;
1783 if (rxf->vlan_filter_status == BNA_STATUS_T_ENABLED) {
1784 rxf->rxf_flags |= BNA_RXF_FL_VLAN_CONFIG_PENDING;
1785 bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_MOD);
1786 }
1787}
1788
1789/**
1790 * RX
1791 */
1792#define RXQ_RCB_INIT(q, rxp, qdepth, bna, _id, unmapq_mem) do { \
1793 struct bna_doorbell_qset *_qset; \
1794 unsigned long off; \
1795 (q)->rcb->producer_index = (q)->rcb->consumer_index = 0; \
1796 (q)->rcb->q_depth = (qdepth); \
1797 (q)->rcb->unmap_q = unmapq_mem; \
1798 (q)->rcb->rxq = (q); \
1799 (q)->rcb->cq = &(rxp)->cq; \
1800 (q)->rcb->bnad = (bna)->bnad; \
1801 _qset = (struct bna_doorbell_qset *)0; \
1802 off = (unsigned long)&_qset[(q)->rxq_id].rxq[0]; \
1803 (q)->rcb->q_dbell = off + \
1804 BNA_GET_DOORBELL_BASE_ADDR((bna)->pcidev.pci_bar_kva); \
1805 (q)->rcb->id = _id; \
1806} while (0)
1807
1808#define BNA_GET_RXQS(qcfg) (((qcfg)->rxp_type == BNA_RXP_SINGLE) ? \
1809 (qcfg)->num_paths : ((qcfg)->num_paths * 2))
1810
1811#define SIZE_TO_PAGES(size) (((size) >> PAGE_SHIFT) + ((((size) &\
1812 (PAGE_SIZE - 1)) + (PAGE_SIZE - 1)) >> PAGE_SHIFT))
1813
1814#define call_rx_stop_callback(rx, status) \
1815 if ((rx)->stop_cbfn) { \
1816 (*(rx)->stop_cbfn)((rx)->stop_cbarg, rx, (status)); \
1817 (rx)->stop_cbfn = NULL; \
1818 (rx)->stop_cbarg = NULL; \
1819 }
1820
1821/*
1822 * Since rx_enable is synchronous callback, there is no start_cbfn required.
1823 * Instead, we'll call bnad_rx_post(rxp) so that bnad can post the buffers
1824 * for each rxpath.
1825 */
1826
1827#define call_rx_disable_cbfn(rx, status) \
1828 if ((rx)->disable_cbfn) { \
1829 (*(rx)->disable_cbfn)((rx)->disable_cbarg, \
1830 status); \
1831 (rx)->disable_cbfn = NULL; \
1832 (rx)->disable_cbarg = NULL; \
1833 } \
1834
1835#define rxqs_reqd(type, num_rxqs) \
1836 (((type) == BNA_RXP_SINGLE) ? (num_rxqs) : ((num_rxqs) * 2))
1837
1838#define rx_ib_fail(rx) \
1839do { \
1840 struct bna_rxp *rxp; \
1841 struct list_head *qe; \
1842 list_for_each(qe, &(rx)->rxp_q) { \
1843 rxp = (struct bna_rxp *)qe; \
1844 bna_ib_fail(rxp->cq.ib); \
1845 } \
1846} while (0)
1847
1848static void __bna_multi_rxq_stop(struct bna_rxp *, u32 *);
1849static void __bna_rxq_start(struct bna_rxq *rxq);
1850static void __bna_cq_start(struct bna_cq *cq);
1851static void bna_rit_create(struct bna_rx *rx);
1852static void bna_rx_cb_multi_rxq_stopped(void *arg, int status);
1853static void bna_rx_cb_rxq_stopped_all(void *arg);
1854
1855bfa_fsm_state_decl(bna_rx, stopped,
1856 struct bna_rx, enum bna_rx_event);
1857bfa_fsm_state_decl(bna_rx, rxf_start_wait,
1858 struct bna_rx, enum bna_rx_event);
1859bfa_fsm_state_decl(bna_rx, started,
1860 struct bna_rx, enum bna_rx_event);
1861bfa_fsm_state_decl(bna_rx, rxf_stop_wait,
1862 struct bna_rx, enum bna_rx_event);
1863bfa_fsm_state_decl(bna_rx, rxq_stop_wait,
1864 struct bna_rx, enum bna_rx_event);
1865
1866static const struct bfa_sm_table rx_sm_table[] = {
1867 {BFA_SM(bna_rx_sm_stopped), BNA_RX_STOPPED},
1868 {BFA_SM(bna_rx_sm_rxf_start_wait), BNA_RX_RXF_START_WAIT},
1869 {BFA_SM(bna_rx_sm_started), BNA_RX_STARTED},
1870 {BFA_SM(bna_rx_sm_rxf_stop_wait), BNA_RX_RXF_STOP_WAIT},
1871 {BFA_SM(bna_rx_sm_rxq_stop_wait), BNA_RX_RXQ_STOP_WAIT},
1872};
1873
1874static void bna_rx_sm_stopped_entry(struct bna_rx *rx)
1875{
1876 struct bna_rxp *rxp;
1877 struct list_head *qe_rxp;
1878
1879 list_for_each(qe_rxp, &rx->rxp_q) {
1880 rxp = (struct bna_rxp *)qe_rxp;
1881 rx->rx_cleanup_cbfn(rx->bna->bnad, rxp->cq.ccb);
1882 }
1883
1884 call_rx_stop_callback(rx, BNA_CB_SUCCESS);
1885}
1886
1887static void bna_rx_sm_stopped(struct bna_rx *rx,
1888 enum bna_rx_event event)
1889{
1890 switch (event) {
1891 case RX_E_START:
1892 bfa_fsm_set_state(rx, bna_rx_sm_rxf_start_wait);
1893 break;
1894 case RX_E_STOP:
1895 call_rx_stop_callback(rx, BNA_CB_SUCCESS);
1896 break;
1897 case RX_E_FAIL:
1898 /* no-op */
1899 break;
1900 default:
1901 bfa_sm_fault(rx->bna, event);
1902 break;
1903 }
1904
1905}
1906
1907static void bna_rx_sm_rxf_start_wait_entry(struct bna_rx *rx)
1908{
1909 struct bna_rxp *rxp;
1910 struct list_head *qe_rxp;
1911 struct bna_rxq *q0 = NULL, *q1 = NULL;
1912
1913 /* Setup the RIT */
1914 bna_rit_create(rx);
1915
1916 list_for_each(qe_rxp, &rx->rxp_q) {
1917 rxp = (struct bna_rxp *)qe_rxp;
1918 bna_ib_start(rxp->cq.ib);
1919 GET_RXQS(rxp, q0, q1);
1920 q0->buffer_size = bna_port_mtu_get(&rx->bna->port);
1921 __bna_rxq_start(q0);
1922 rx->rx_post_cbfn(rx->bna->bnad, q0->rcb);
1923 if (q1) {
1924 __bna_rxq_start(q1);
1925 rx->rx_post_cbfn(rx->bna->bnad, q1->rcb);
1926 }
1927 __bna_cq_start(&rxp->cq);
1928 }
1929
1930 bna_rxf_start(&rx->rxf);
1931}
1932
1933static void bna_rx_sm_rxf_start_wait(struct bna_rx *rx,
1934 enum bna_rx_event event)
1935{
1936 switch (event) {
1937 case RX_E_STOP:
1938 bfa_fsm_set_state(rx, bna_rx_sm_rxf_stop_wait);
1939 break;
1940 case RX_E_FAIL:
1941 bfa_fsm_set_state(rx, bna_rx_sm_stopped);
1942 rx_ib_fail(rx);
1943 bna_rxf_fail(&rx->rxf);
1944 break;
1945 case RX_E_RXF_STARTED:
1946 bfa_fsm_set_state(rx, bna_rx_sm_started);
1947 break;
1948 default:
1949 bfa_sm_fault(rx->bna, event);
1950 break;
1951 }
1952}
1953
1954void
1955bna_rx_sm_started_entry(struct bna_rx *rx)
1956{
1957 struct bna_rxp *rxp;
1958 struct list_head *qe_rxp;
1959
1960 /* Start IB */
1961 list_for_each(qe_rxp, &rx->rxp_q) {
1962 rxp = (struct bna_rxp *)qe_rxp;
1963 bna_ib_ack(&rxp->cq.ib->door_bell, 0);
1964 }
1965
1966 bna_llport_rx_started(&rx->bna->port.llport);
1967}
1968
1969void
1970bna_rx_sm_started(struct bna_rx *rx, enum bna_rx_event event)
1971{
1972 switch (event) {
1973 case RX_E_FAIL:
1974 bna_llport_rx_stopped(&rx->bna->port.llport);
1975 bfa_fsm_set_state(rx, bna_rx_sm_stopped);
1976 rx_ib_fail(rx);
1977 bna_rxf_fail(&rx->rxf);
1978 break;
1979 case RX_E_STOP:
1980 bna_llport_rx_stopped(&rx->bna->port.llport);
1981 bfa_fsm_set_state(rx, bna_rx_sm_rxf_stop_wait);
1982 break;
1983 default:
1984 bfa_sm_fault(rx->bna, event);
1985 break;
1986 }
1987}
1988
1989void
1990bna_rx_sm_rxf_stop_wait_entry(struct bna_rx *rx)
1991{
1992 bna_rxf_stop(&rx->rxf);
1993}
1994
1995void
1996bna_rx_sm_rxf_stop_wait(struct bna_rx *rx, enum bna_rx_event event)
1997{
1998 switch (event) {
1999 case RX_E_RXF_STOPPED:
2000 bfa_fsm_set_state(rx, bna_rx_sm_rxq_stop_wait);
2001 break;
2002 case RX_E_RXF_STARTED:
2003 /**
2004 * RxF was in the process of starting up when
2005 * RXF_E_STOP was issued. Ignore this event
2006 */
2007 break;
2008 case RX_E_FAIL:
2009 bfa_fsm_set_state(rx, bna_rx_sm_stopped);
2010 rx_ib_fail(rx);
2011 bna_rxf_fail(&rx->rxf);
2012 break;
2013 default:
2014 bfa_sm_fault(rx->bna, event);
2015 break;
2016 }
2017
2018}
2019
2020void
2021bna_rx_sm_rxq_stop_wait_entry(struct bna_rx *rx)
2022{
2023 struct bna_rxp *rxp = NULL;
2024 struct bna_rxq *q0 = NULL;
2025 struct bna_rxq *q1 = NULL;
2026 struct list_head *qe;
2027 u32 rxq_mask[2] = {0, 0};
2028
2029 /* Only one call to multi-rxq-stop for all RXPs in this RX */
2030 bfa_wc_up(&rx->rxq_stop_wc);
2031 list_for_each(qe, &rx->rxp_q) {
2032 rxp = (struct bna_rxp *)qe;
2033 GET_RXQS(rxp, q0, q1);
2034 if (q0->rxq_id < 32)
2035 rxq_mask[0] |= ((u32)1 << q0->rxq_id);
2036 else
2037 rxq_mask[1] |= ((u32)1 << (q0->rxq_id - 32));
2038 if (q1) {
2039 if (q1->rxq_id < 32)
2040 rxq_mask[0] |= ((u32)1 << q1->rxq_id);
2041 else
2042 rxq_mask[1] |= ((u32)
2043 1 << (q1->rxq_id - 32));
2044 }
2045 }
2046
2047 __bna_multi_rxq_stop(rxp, rxq_mask);
2048}
2049
2050void
2051bna_rx_sm_rxq_stop_wait(struct bna_rx *rx, enum bna_rx_event event)
2052{
2053 struct bna_rxp *rxp = NULL;
2054 struct list_head *qe;
2055
2056 switch (event) {
2057 case RX_E_RXQ_STOPPED:
2058 list_for_each(qe, &rx->rxp_q) {
2059 rxp = (struct bna_rxp *)qe;
2060 bna_ib_stop(rxp->cq.ib);
2061 }
2062 /* Fall through */
2063 case RX_E_FAIL:
2064 bfa_fsm_set_state(rx, bna_rx_sm_stopped);
2065 break;
2066 default:
2067 bfa_sm_fault(rx->bna, event);
2068 break;
2069 }
2070}
2071
2072void
2073__bna_multi_rxq_stop(struct bna_rxp *rxp, u32 * rxq_id_mask)
2074{
2075 struct bfi_ll_q_stop_req ll_req;
2076
2077 bfi_h2i_set(ll_req.mh, BFI_MC_LL, BFI_LL_H2I_RXQ_STOP_REQ, 0);
2078 ll_req.q_id_mask[0] = htonl(rxq_id_mask[0]);
2079 ll_req.q_id_mask[1] = htonl(rxq_id_mask[1]);
2080 bna_mbox_qe_fill(&rxp->mbox_qe, &ll_req, sizeof(ll_req),
2081 bna_rx_cb_multi_rxq_stopped, rxp);
2082 bna_mbox_send(rxp->rx->bna, &rxp->mbox_qe);
2083}
2084
2085void
2086__bna_rxq_start(struct bna_rxq *rxq)
2087{
2088 struct bna_rxtx_q_mem *q_mem;
2089 struct bna_rxq_mem rxq_cfg, *rxq_mem;
2090 struct bna_dma_addr cur_q_addr;
2091 /* struct bna_doorbell_qset *qset; */
2092 struct bna_qpt *qpt;
2093 u32 pg_num;
2094 struct bna *bna = rxq->rx->bna;
2095 void __iomem *base_addr;
2096 unsigned long off;
2097
2098 qpt = &rxq->qpt;
2099 cur_q_addr = *((struct bna_dma_addr *)(qpt->kv_qpt_ptr));
2100
2101 rxq_cfg.pg_tbl_addr_lo = qpt->hw_qpt_ptr.lsb;
2102 rxq_cfg.pg_tbl_addr_hi = qpt->hw_qpt_ptr.msb;
2103 rxq_cfg.cur_q_entry_lo = cur_q_addr.lsb;
2104 rxq_cfg.cur_q_entry_hi = cur_q_addr.msb;
2105
2106 rxq_cfg.pg_cnt_n_prd_ptr = ((u32)qpt->page_count << 16) | 0x0;
2107 rxq_cfg.entry_n_pg_size = ((u32)(BFI_RXQ_WI_SIZE >> 2) << 16) |
2108 (qpt->page_size >> 2);
2109 rxq_cfg.sg_n_cq_n_cns_ptr =
2110 ((u32)(rxq->rxp->cq.cq_id & 0xff) << 16) | 0x0;
2111 rxq_cfg.buf_sz_n_q_state = ((u32)rxq->buffer_size << 16) |
2112 BNA_Q_IDLE_STATE;
2113 rxq_cfg.next_qid = 0x0 | (0x3 << 8);
2114
2115 /* Write the page number register */
2116 pg_num = BNA_GET_PAGE_NUM(HQM0_BLK_PG_NUM + bna->port_num,
2117 HQM_RXTX_Q_RAM_BASE_OFFSET);
2118 writel(pg_num, bna->regs.page_addr);
2119
2120 /* Write to h/w */
2121 base_addr = BNA_GET_MEM_BASE_ADDR(bna->pcidev.pci_bar_kva,
2122 HQM_RXTX_Q_RAM_BASE_OFFSET);
2123
2124 q_mem = (struct bna_rxtx_q_mem *)0;
2125 rxq_mem = &q_mem[rxq->rxq_id].rxq;
2126
2127 off = (unsigned long)&rxq_mem->pg_tbl_addr_lo;
2128 writel(htonl(rxq_cfg.pg_tbl_addr_lo), base_addr + off);
2129
2130 off = (unsigned long)&rxq_mem->pg_tbl_addr_hi;
2131 writel(htonl(rxq_cfg.pg_tbl_addr_hi), base_addr + off);
2132
2133 off = (unsigned long)&rxq_mem->cur_q_entry_lo;
2134 writel(htonl(rxq_cfg.cur_q_entry_lo), base_addr + off);
2135
2136 off = (unsigned long)&rxq_mem->cur_q_entry_hi;
2137 writel(htonl(rxq_cfg.cur_q_entry_hi), base_addr + off);
2138
2139 off = (unsigned long)&rxq_mem->pg_cnt_n_prd_ptr;
2140 writel(rxq_cfg.pg_cnt_n_prd_ptr, base_addr + off);
2141
2142 off = (unsigned long)&rxq_mem->entry_n_pg_size;
2143 writel(rxq_cfg.entry_n_pg_size, base_addr + off);
2144
2145 off = (unsigned long)&rxq_mem->sg_n_cq_n_cns_ptr;
2146 writel(rxq_cfg.sg_n_cq_n_cns_ptr, base_addr + off);
2147
2148 off = (unsigned long)&rxq_mem->buf_sz_n_q_state;
2149 writel(rxq_cfg.buf_sz_n_q_state, base_addr + off);
2150
2151 off = (unsigned long)&rxq_mem->next_qid;
2152 writel(rxq_cfg.next_qid, base_addr + off);
2153
2154 rxq->rcb->producer_index = 0;
2155 rxq->rcb->consumer_index = 0;
2156}
2157
2158void
2159__bna_cq_start(struct bna_cq *cq)
2160{
2161 struct bna_cq_mem cq_cfg, *cq_mem;
2162 const struct bna_qpt *qpt;
2163 struct bna_dma_addr cur_q_addr;
2164 u32 pg_num;
2165 struct bna *bna = cq->rx->bna;
2166 void __iomem *base_addr;
2167 unsigned long off;
2168
2169 qpt = &cq->qpt;
2170 cur_q_addr = *((struct bna_dma_addr *)(qpt->kv_qpt_ptr));
2171
2172 /*
2173 * Fill out structure, to be subsequently written
2174 * to hardware
2175 */
2176 cq_cfg.pg_tbl_addr_lo = qpt->hw_qpt_ptr.lsb;
2177 cq_cfg.pg_tbl_addr_hi = qpt->hw_qpt_ptr.msb;
2178 cq_cfg.cur_q_entry_lo = cur_q_addr.lsb;
2179 cq_cfg.cur_q_entry_hi = cur_q_addr.msb;
2180
2181 cq_cfg.pg_cnt_n_prd_ptr = (qpt->page_count << 16) | 0x0;
2182 cq_cfg.entry_n_pg_size =
2183 ((u32)(BFI_CQ_WI_SIZE >> 2) << 16) | (qpt->page_size >> 2);
2184 cq_cfg.int_blk_n_cns_ptr = ((((u32)cq->ib_seg_offset) << 24) |
2185 ((u32)(cq->ib->ib_id & 0xff) << 16) | 0x0);
2186 cq_cfg.q_state = BNA_Q_IDLE_STATE;
2187
2188 /* Write the page number register */
2189 pg_num = BNA_GET_PAGE_NUM(HQM0_BLK_PG_NUM + bna->port_num,
2190 HQM_CQ_RAM_BASE_OFFSET);
2191
2192 writel(pg_num, bna->regs.page_addr);
2193
2194 /* H/W write */
2195 base_addr = BNA_GET_MEM_BASE_ADDR(bna->pcidev.pci_bar_kva,
2196 HQM_CQ_RAM_BASE_OFFSET);
2197
2198 cq_mem = (struct bna_cq_mem *)0;
2199
2200 off = (unsigned long)&cq_mem[cq->cq_id].pg_tbl_addr_lo;
2201 writel(htonl(cq_cfg.pg_tbl_addr_lo), base_addr + off);
2202
2203 off = (unsigned long)&cq_mem[cq->cq_id].pg_tbl_addr_hi;
2204 writel(htonl(cq_cfg.pg_tbl_addr_hi), base_addr + off);
2205
2206 off = (unsigned long)&cq_mem[cq->cq_id].cur_q_entry_lo;
2207 writel(htonl(cq_cfg.cur_q_entry_lo), base_addr + off);
2208
2209 off = (unsigned long)&cq_mem[cq->cq_id].cur_q_entry_hi;
2210 writel(htonl(cq_cfg.cur_q_entry_hi), base_addr + off);
2211
2212 off = (unsigned long)&cq_mem[cq->cq_id].pg_cnt_n_prd_ptr;
2213 writel(cq_cfg.pg_cnt_n_prd_ptr, base_addr + off);
2214
2215 off = (unsigned long)&cq_mem[cq->cq_id].entry_n_pg_size;
2216 writel(cq_cfg.entry_n_pg_size, base_addr + off);
2217
2218 off = (unsigned long)&cq_mem[cq->cq_id].int_blk_n_cns_ptr;
2219 writel(cq_cfg.int_blk_n_cns_ptr, base_addr + off);
2220
2221 off = (unsigned long)&cq_mem[cq->cq_id].q_state;
2222 writel(cq_cfg.q_state, base_addr + off);
2223
2224 cq->ccb->producer_index = 0;
2225 *(cq->ccb->hw_producer_index) = 0;
2226}
2227
2228void
2229bna_rit_create(struct bna_rx *rx)
2230{
2231 struct list_head *qe_rxp;
2232 struct bna_rxp *rxp;
2233 struct bna_rxq *q0 = NULL;
2234 struct bna_rxq *q1 = NULL;
2235 int offset;
2236
2237 offset = 0;
2238 list_for_each(qe_rxp, &rx->rxp_q) {
2239 rxp = (struct bna_rxp *)qe_rxp;
2240 GET_RXQS(rxp, q0, q1);
2241 rx->rxf.rit_segment->rit[offset].large_rxq_id = q0->rxq_id;
2242 rx->rxf.rit_segment->rit[offset].small_rxq_id =
2243 (q1 ? q1->rxq_id : 0);
2244 offset++;
2245 }
2246}
2247
2248static int
2249_rx_can_satisfy(struct bna_rx_mod *rx_mod,
2250 struct bna_rx_config *rx_cfg)
2251{
2252 if ((rx_mod->rx_free_count == 0) ||
2253 (rx_mod->rxp_free_count == 0) ||
2254 (rx_mod->rxq_free_count == 0))
2255 return 0;
2256
2257 if (rx_cfg->rxp_type == BNA_RXP_SINGLE) {
2258 if ((rx_mod->rxp_free_count < rx_cfg->num_paths) ||
2259 (rx_mod->rxq_free_count < rx_cfg->num_paths))
2260 return 0;
2261 } else {
2262 if ((rx_mod->rxp_free_count < rx_cfg->num_paths) ||
2263 (rx_mod->rxq_free_count < (2 * rx_cfg->num_paths)))
2264 return 0;
2265 }
2266
2267 if (!bna_rit_mod_can_satisfy(&rx_mod->bna->rit_mod, rx_cfg->num_paths))
2268 return 0;
2269
2270 return 1;
2271}
2272
2273static struct bna_rxq *
2274_get_free_rxq(struct bna_rx_mod *rx_mod)
2275{
2276 struct bna_rxq *rxq = NULL;
2277 struct list_head *qe = NULL;
2278
2279 bfa_q_deq(&rx_mod->rxq_free_q, &qe);
2280 if (qe) {
2281 rx_mod->rxq_free_count--;
2282 rxq = (struct bna_rxq *)qe;
2283 }
2284 return rxq;
2285}
2286
2287static void
2288_put_free_rxq(struct bna_rx_mod *rx_mod, struct bna_rxq *rxq)
2289{
2290 bfa_q_qe_init(&rxq->qe);
2291 list_add_tail(&rxq->qe, &rx_mod->rxq_free_q);
2292 rx_mod->rxq_free_count++;
2293}
2294
2295static struct bna_rxp *
2296_get_free_rxp(struct bna_rx_mod *rx_mod)
2297{
2298 struct list_head *qe = NULL;
2299 struct bna_rxp *rxp = NULL;
2300
2301 bfa_q_deq(&rx_mod->rxp_free_q, &qe);
2302 if (qe) {
2303 rx_mod->rxp_free_count--;
2304
2305 rxp = (struct bna_rxp *)qe;
2306 }
2307
2308 return rxp;
2309}
2310
2311static void
2312_put_free_rxp(struct bna_rx_mod *rx_mod, struct bna_rxp *rxp)
2313{
2314 bfa_q_qe_init(&rxp->qe);
2315 list_add_tail(&rxp->qe, &rx_mod->rxp_free_q);
2316 rx_mod->rxp_free_count++;
2317}
2318
2319static struct bna_rx *
2320_get_free_rx(struct bna_rx_mod *rx_mod)
2321{
2322 struct list_head *qe = NULL;
2323 struct bna_rx *rx = NULL;
2324
2325 bfa_q_deq(&rx_mod->rx_free_q, &qe);
2326 if (qe) {
2327 rx_mod->rx_free_count--;
2328
2329 rx = (struct bna_rx *)qe;
2330 bfa_q_qe_init(qe);
2331 list_add_tail(&rx->qe, &rx_mod->rx_active_q);
2332 }
2333
2334 return rx;
2335}
2336
2337static void
2338_put_free_rx(struct bna_rx_mod *rx_mod, struct bna_rx *rx)
2339{
2340 bfa_q_qe_init(&rx->qe);
2341 list_add_tail(&rx->qe, &rx_mod->rx_free_q);
2342 rx_mod->rx_free_count++;
2343}
2344
2345static void
2346_rx_init(struct bna_rx *rx, struct bna *bna)
2347{
2348 rx->bna = bna;
2349 rx->rx_flags = 0;
2350
2351 INIT_LIST_HEAD(&rx->rxp_q);
2352
2353 rx->rxq_stop_wc.wc_resume = bna_rx_cb_rxq_stopped_all;
2354 rx->rxq_stop_wc.wc_cbarg = rx;
2355 rx->rxq_stop_wc.wc_count = 0;
2356
2357 rx->stop_cbfn = NULL;
2358 rx->stop_cbarg = NULL;
2359}
2360
2361static void
2362_rxp_add_rxqs(struct bna_rxp *rxp,
2363 struct bna_rxq *q0,
2364 struct bna_rxq *q1)
2365{
2366 switch (rxp->type) {
2367 case BNA_RXP_SINGLE:
2368 rxp->rxq.single.only = q0;
2369 rxp->rxq.single.reserved = NULL;
2370 break;
2371 case BNA_RXP_SLR:
2372 rxp->rxq.slr.large = q0;
2373 rxp->rxq.slr.small = q1;
2374 break;
2375 case BNA_RXP_HDS:
2376 rxp->rxq.hds.data = q0;
2377 rxp->rxq.hds.hdr = q1;
2378 break;
2379 default:
2380 break;
2381 }
2382}
2383
2384static void
2385_rxq_qpt_init(struct bna_rxq *rxq,
2386 struct bna_rxp *rxp,
2387 u32 page_count,
2388 u32 page_size,
2389 struct bna_mem_descr *qpt_mem,
2390 struct bna_mem_descr *swqpt_mem,
2391 struct bna_mem_descr *page_mem)
2392{
2393 int i;
2394
2395 rxq->qpt.hw_qpt_ptr.lsb = qpt_mem->dma.lsb;
2396 rxq->qpt.hw_qpt_ptr.msb = qpt_mem->dma.msb;
2397 rxq->qpt.kv_qpt_ptr = qpt_mem->kva;
2398 rxq->qpt.page_count = page_count;
2399 rxq->qpt.page_size = page_size;
2400
2401 rxq->rcb->sw_qpt = (void **) swqpt_mem->kva;
2402
2403 for (i = 0; i < rxq->qpt.page_count; i++) {
2404 rxq->rcb->sw_qpt[i] = page_mem[i].kva;
2405 ((struct bna_dma_addr *)rxq->qpt.kv_qpt_ptr)[i].lsb =
2406 page_mem[i].dma.lsb;
2407 ((struct bna_dma_addr *)rxq->qpt.kv_qpt_ptr)[i].msb =
2408 page_mem[i].dma.msb;
2409
2410 }
2411}
2412
2413static void
2414_rxp_cqpt_setup(struct bna_rxp *rxp,
2415 u32 page_count,
2416 u32 page_size,
2417 struct bna_mem_descr *qpt_mem,
2418 struct bna_mem_descr *swqpt_mem,
2419 struct bna_mem_descr *page_mem)
2420{
2421 int i;
2422
2423 rxp->cq.qpt.hw_qpt_ptr.lsb = qpt_mem->dma.lsb;
2424 rxp->cq.qpt.hw_qpt_ptr.msb = qpt_mem->dma.msb;
2425 rxp->cq.qpt.kv_qpt_ptr = qpt_mem->kva;
2426 rxp->cq.qpt.page_count = page_count;
2427 rxp->cq.qpt.page_size = page_size;
2428
2429 rxp->cq.ccb->sw_qpt = (void **) swqpt_mem->kva;
2430
2431 for (i = 0; i < rxp->cq.qpt.page_count; i++) {
2432 rxp->cq.ccb->sw_qpt[i] = page_mem[i].kva;
2433
2434 ((struct bna_dma_addr *)rxp->cq.qpt.kv_qpt_ptr)[i].lsb =
2435 page_mem[i].dma.lsb;
2436 ((struct bna_dma_addr *)rxp->cq.qpt.kv_qpt_ptr)[i].msb =
2437 page_mem[i].dma.msb;
2438
2439 }
2440}
2441
2442static void
2443_rx_add_rxp(struct bna_rx *rx, struct bna_rxp *rxp)
2444{
2445 list_add_tail(&rxp->qe, &rx->rxp_q);
2446}
2447
2448static void
2449_init_rxmod_queues(struct bna_rx_mod *rx_mod)
2450{
2451 INIT_LIST_HEAD(&rx_mod->rx_free_q);
2452 INIT_LIST_HEAD(&rx_mod->rxq_free_q);
2453 INIT_LIST_HEAD(&rx_mod->rxp_free_q);
2454 INIT_LIST_HEAD(&rx_mod->rx_active_q);
2455
2456 rx_mod->rx_free_count = 0;
2457 rx_mod->rxq_free_count = 0;
2458 rx_mod->rxp_free_count = 0;
2459}
2460
2461static void
2462_rx_ctor(struct bna_rx *rx, int id)
2463{
2464 bfa_q_qe_init(&rx->qe);
2465 INIT_LIST_HEAD(&rx->rxp_q);
2466 rx->bna = NULL;
2467
2468 rx->rxf.rxf_id = id;
2469
2470 /* FIXME: mbox_qe ctor()?? */
2471 bfa_q_qe_init(&rx->mbox_qe.qe);
2472
2473 rx->stop_cbfn = NULL;
2474 rx->stop_cbarg = NULL;
2475}
2476
2477void
2478bna_rx_cb_multi_rxq_stopped(void *arg, int status)
2479{
2480 struct bna_rxp *rxp = (struct bna_rxp *)arg;
2481
2482 bfa_wc_down(&rxp->rx->rxq_stop_wc);
2483}
2484
2485void
2486bna_rx_cb_rxq_stopped_all(void *arg)
2487{
2488 struct bna_rx *rx = (struct bna_rx *)arg;
2489
2490 bfa_fsm_send_event(rx, RX_E_RXQ_STOPPED);
2491}
2492
2493static void
2494bna_rx_mod_cb_rx_stopped(void *arg, struct bna_rx *rx,
2495 enum bna_cb_status status)
2496{
2497 struct bna_rx_mod *rx_mod = (struct bna_rx_mod *)arg;
2498
2499 bfa_wc_down(&rx_mod->rx_stop_wc);
2500}
2501
2502static void
2503bna_rx_mod_cb_rx_stopped_all(void *arg)
2504{
2505 struct bna_rx_mod *rx_mod = (struct bna_rx_mod *)arg;
2506
2507 if (rx_mod->stop_cbfn)
2508 rx_mod->stop_cbfn(&rx_mod->bna->port, BNA_CB_SUCCESS);
2509 rx_mod->stop_cbfn = NULL;
2510}
2511
2512static void
2513bna_rx_start(struct bna_rx *rx)
2514{
2515 rx->rx_flags |= BNA_RX_F_PORT_ENABLED;
2516 if (rx->rx_flags & BNA_RX_F_ENABLE)
2517 bfa_fsm_send_event(rx, RX_E_START);
2518}
2519
2520static void
2521bna_rx_stop(struct bna_rx *rx)
2522{
2523 rx->rx_flags &= ~BNA_RX_F_PORT_ENABLED;
2524 if (rx->fsm == (bfa_fsm_t) bna_rx_sm_stopped)
2525 bna_rx_mod_cb_rx_stopped(&rx->bna->rx_mod, rx, BNA_CB_SUCCESS);
2526 else {
2527 rx->stop_cbfn = bna_rx_mod_cb_rx_stopped;
2528 rx->stop_cbarg = &rx->bna->rx_mod;
2529 bfa_fsm_send_event(rx, RX_E_STOP);
2530 }
2531}
2532
2533static void
2534bna_rx_fail(struct bna_rx *rx)
2535{
2536 /* Indicate port is not enabled, and failed */
2537 rx->rx_flags &= ~BNA_RX_F_PORT_ENABLED;
2538 rx->rx_flags |= BNA_RX_F_PORT_FAILED;
2539 bfa_fsm_send_event(rx, RX_E_FAIL);
2540}
2541
2542void
2543bna_rx_mod_start(struct bna_rx_mod *rx_mod, enum bna_rx_type type)
2544{
2545 struct bna_rx *rx;
2546 struct list_head *qe;
2547
2548 rx_mod->flags |= BNA_RX_MOD_F_PORT_STARTED;
2549 if (type == BNA_RX_T_LOOPBACK)
2550 rx_mod->flags |= BNA_RX_MOD_F_PORT_LOOPBACK;
2551
2552 list_for_each(qe, &rx_mod->rx_active_q) {
2553 rx = (struct bna_rx *)qe;
2554 if (rx->type == type)
2555 bna_rx_start(rx);
2556 }
2557}
2558
2559void
2560bna_rx_mod_stop(struct bna_rx_mod *rx_mod, enum bna_rx_type type)
2561{
2562 struct bna_rx *rx;
2563 struct list_head *qe;
2564
2565 rx_mod->flags &= ~BNA_RX_MOD_F_PORT_STARTED;
2566 rx_mod->flags &= ~BNA_RX_MOD_F_PORT_LOOPBACK;
2567
2568 rx_mod->stop_cbfn = bna_port_cb_rx_stopped;
2569
2570 /**
2571 * Before calling bna_rx_stop(), increment rx_stop_wc as many times
2572 * as we are going to call bna_rx_stop
2573 */
2574 list_for_each(qe, &rx_mod->rx_active_q) {
2575 rx = (struct bna_rx *)qe;
2576 if (rx->type == type)
2577 bfa_wc_up(&rx_mod->rx_stop_wc);
2578 }
2579
2580 if (rx_mod->rx_stop_wc.wc_count == 0) {
2581 rx_mod->stop_cbfn(&rx_mod->bna->port, BNA_CB_SUCCESS);
2582 rx_mod->stop_cbfn = NULL;
2583 return;
2584 }
2585
2586 list_for_each(qe, &rx_mod->rx_active_q) {
2587 rx = (struct bna_rx *)qe;
2588 if (rx->type == type)
2589 bna_rx_stop(rx);
2590 }
2591}
2592
2593void
2594bna_rx_mod_fail(struct bna_rx_mod *rx_mod)
2595{
2596 struct bna_rx *rx;
2597 struct list_head *qe;
2598
2599 rx_mod->flags &= ~BNA_RX_MOD_F_PORT_STARTED;
2600 rx_mod->flags &= ~BNA_RX_MOD_F_PORT_LOOPBACK;
2601
2602 list_for_each(qe, &rx_mod->rx_active_q) {
2603 rx = (struct bna_rx *)qe;
2604 bna_rx_fail(rx);
2605 }
2606}
2607
2608void bna_rx_mod_init(struct bna_rx_mod *rx_mod, struct bna *bna,
2609 struct bna_res_info *res_info)
2610{
2611 int index;
2612 struct bna_rx *rx_ptr;
2613 struct bna_rxp *rxp_ptr;
2614 struct bna_rxq *rxq_ptr;
2615
2616 rx_mod->bna = bna;
2617 rx_mod->flags = 0;
2618
2619 rx_mod->rx = (struct bna_rx *)
2620 res_info[BNA_RES_MEM_T_RX_ARRAY].res_u.mem_info.mdl[0].kva;
2621 rx_mod->rxp = (struct bna_rxp *)
2622 res_info[BNA_RES_MEM_T_RXP_ARRAY].res_u.mem_info.mdl[0].kva;
2623 rx_mod->rxq = (struct bna_rxq *)
2624 res_info[BNA_RES_MEM_T_RXQ_ARRAY].res_u.mem_info.mdl[0].kva;
2625
2626 /* Initialize the queues */
2627 _init_rxmod_queues(rx_mod);
2628
2629 /* Build RX queues */
2630 for (index = 0; index < BFI_MAX_RXQ; index++) {
2631 rx_ptr = &rx_mod->rx[index];
2632 _rx_ctor(rx_ptr, index);
2633 list_add_tail(&rx_ptr->qe, &rx_mod->rx_free_q);
2634 rx_mod->rx_free_count++;
2635 }
2636
2637 /* build RX-path queue */
2638 for (index = 0; index < BFI_MAX_RXQ; index++) {
2639 rxp_ptr = &rx_mod->rxp[index];
2640 rxp_ptr->cq.cq_id = index;
2641 bfa_q_qe_init(&rxp_ptr->qe);
2642 list_add_tail(&rxp_ptr->qe, &rx_mod->rxp_free_q);
2643 rx_mod->rxp_free_count++;
2644 }
2645
2646 /* build RXQ queue */
2647 for (index = 0; index < BFI_MAX_RXQ; index++) {
2648 rxq_ptr = &rx_mod->rxq[index];
2649 rxq_ptr->rxq_id = index;
2650
2651 bfa_q_qe_init(&rxq_ptr->qe);
2652 list_add_tail(&rxq_ptr->qe, &rx_mod->rxq_free_q);
2653 rx_mod->rxq_free_count++;
2654 }
2655
2656 rx_mod->rx_stop_wc.wc_resume = bna_rx_mod_cb_rx_stopped_all;
2657 rx_mod->rx_stop_wc.wc_cbarg = rx_mod;
2658 rx_mod->rx_stop_wc.wc_count = 0;
2659}
2660
2661void
2662bna_rx_mod_uninit(struct bna_rx_mod *rx_mod)
2663{
2664 struct list_head *qe;
2665 int i;
2666
2667 i = 0;
2668 list_for_each(qe, &rx_mod->rx_free_q)
2669 i++;
2670
2671 i = 0;
2672 list_for_each(qe, &rx_mod->rxp_free_q)
2673 i++;
2674
2675 i = 0;
2676 list_for_each(qe, &rx_mod->rxq_free_q)
2677 i++;
2678
2679 rx_mod->bna = NULL;
2680}
2681
2682int
2683bna_rx_state_get(struct bna_rx *rx)
2684{
2685 return bfa_sm_to_state(rx_sm_table, rx->fsm);
2686}
2687
2688void
2689bna_rx_res_req(struct bna_rx_config *q_cfg, struct bna_res_info *res_info)
2690{
2691 u32 cq_size, hq_size, dq_size;
2692 u32 cpage_count, hpage_count, dpage_count;
2693 struct bna_mem_info *mem_info;
2694 u32 cq_depth;
2695 u32 hq_depth;
2696 u32 dq_depth;
2697
2698 dq_depth = q_cfg->q_depth;
2699 hq_depth = ((q_cfg->rxp_type == BNA_RXP_SINGLE) ? 0 : q_cfg->q_depth);
2700 cq_depth = dq_depth + hq_depth;
2701
2702 BNA_TO_POWER_OF_2_HIGH(cq_depth);
2703 cq_size = cq_depth * BFI_CQ_WI_SIZE;
2704 cq_size = ALIGN(cq_size, PAGE_SIZE);
2705 cpage_count = SIZE_TO_PAGES(cq_size);
2706
2707 BNA_TO_POWER_OF_2_HIGH(dq_depth);
2708 dq_size = dq_depth * BFI_RXQ_WI_SIZE;
2709 dq_size = ALIGN(dq_size, PAGE_SIZE);
2710 dpage_count = SIZE_TO_PAGES(dq_size);
2711
2712 if (BNA_RXP_SINGLE != q_cfg->rxp_type) {
2713 BNA_TO_POWER_OF_2_HIGH(hq_depth);
2714 hq_size = hq_depth * BFI_RXQ_WI_SIZE;
2715 hq_size = ALIGN(hq_size, PAGE_SIZE);
2716 hpage_count = SIZE_TO_PAGES(hq_size);
2717 } else {
2718 hpage_count = 0;
2719 }
2720
2721 /* CCB structures */
2722 res_info[BNA_RX_RES_MEM_T_CCB].res_type = BNA_RES_T_MEM;
2723 mem_info = &res_info[BNA_RX_RES_MEM_T_CCB].res_u.mem_info;
2724 mem_info->mem_type = BNA_MEM_T_KVA;
2725 mem_info->len = sizeof(struct bna_ccb);
2726 mem_info->num = q_cfg->num_paths;
2727
2728 /* RCB structures */
2729 res_info[BNA_RX_RES_MEM_T_RCB].res_type = BNA_RES_T_MEM;
2730 mem_info = &res_info[BNA_RX_RES_MEM_T_RCB].res_u.mem_info;
2731 mem_info->mem_type = BNA_MEM_T_KVA;
2732 mem_info->len = sizeof(struct bna_rcb);
2733 mem_info->num = BNA_GET_RXQS(q_cfg);
2734
2735 /* Completion QPT */
2736 res_info[BNA_RX_RES_MEM_T_CQPT].res_type = BNA_RES_T_MEM;
2737 mem_info = &res_info[BNA_RX_RES_MEM_T_CQPT].res_u.mem_info;
2738 mem_info->mem_type = BNA_MEM_T_DMA;
2739 mem_info->len = cpage_count * sizeof(struct bna_dma_addr);
2740 mem_info->num = q_cfg->num_paths;
2741
2742 /* Completion s/w QPT */
2743 res_info[BNA_RX_RES_MEM_T_CSWQPT].res_type = BNA_RES_T_MEM;
2744 mem_info = &res_info[BNA_RX_RES_MEM_T_CSWQPT].res_u.mem_info;
2745 mem_info->mem_type = BNA_MEM_T_KVA;
2746 mem_info->len = cpage_count * sizeof(void *);
2747 mem_info->num = q_cfg->num_paths;
2748
2749 /* Completion QPT pages */
2750 res_info[BNA_RX_RES_MEM_T_CQPT_PAGE].res_type = BNA_RES_T_MEM;
2751 mem_info = &res_info[BNA_RX_RES_MEM_T_CQPT_PAGE].res_u.mem_info;
2752 mem_info->mem_type = BNA_MEM_T_DMA;
2753 mem_info->len = PAGE_SIZE;
2754 mem_info->num = cpage_count * q_cfg->num_paths;
2755
2756 /* Data QPTs */
2757 res_info[BNA_RX_RES_MEM_T_DQPT].res_type = BNA_RES_T_MEM;
2758 mem_info = &res_info[BNA_RX_RES_MEM_T_DQPT].res_u.mem_info;
2759 mem_info->mem_type = BNA_MEM_T_DMA;
2760 mem_info->len = dpage_count * sizeof(struct bna_dma_addr);
2761 mem_info->num = q_cfg->num_paths;
2762
2763 /* Data s/w QPTs */
2764 res_info[BNA_RX_RES_MEM_T_DSWQPT].res_type = BNA_RES_T_MEM;
2765 mem_info = &res_info[BNA_RX_RES_MEM_T_DSWQPT].res_u.mem_info;
2766 mem_info->mem_type = BNA_MEM_T_KVA;
2767 mem_info->len = dpage_count * sizeof(void *);
2768 mem_info->num = q_cfg->num_paths;
2769
2770 /* Data QPT pages */
2771 res_info[BNA_RX_RES_MEM_T_DPAGE].res_type = BNA_RES_T_MEM;
2772 mem_info = &res_info[BNA_RX_RES_MEM_T_DPAGE].res_u.mem_info;
2773 mem_info->mem_type = BNA_MEM_T_DMA;
2774 mem_info->len = PAGE_SIZE;
2775 mem_info->num = dpage_count * q_cfg->num_paths;
2776
2777 /* Hdr QPTs */
2778 res_info[BNA_RX_RES_MEM_T_HQPT].res_type = BNA_RES_T_MEM;
2779 mem_info = &res_info[BNA_RX_RES_MEM_T_HQPT].res_u.mem_info;
2780 mem_info->mem_type = BNA_MEM_T_DMA;
2781 mem_info->len = hpage_count * sizeof(struct bna_dma_addr);
2782 mem_info->num = (hpage_count ? q_cfg->num_paths : 0);
2783
2784 /* Hdr s/w QPTs */
2785 res_info[BNA_RX_RES_MEM_T_HSWQPT].res_type = BNA_RES_T_MEM;
2786 mem_info = &res_info[BNA_RX_RES_MEM_T_HSWQPT].res_u.mem_info;
2787 mem_info->mem_type = BNA_MEM_T_KVA;
2788 mem_info->len = hpage_count * sizeof(void *);
2789 mem_info->num = (hpage_count ? q_cfg->num_paths : 0);
2790
2791 /* Hdr QPT pages */
2792 res_info[BNA_RX_RES_MEM_T_HPAGE].res_type = BNA_RES_T_MEM;
2793 mem_info = &res_info[BNA_RX_RES_MEM_T_HPAGE].res_u.mem_info;
2794 mem_info->mem_type = BNA_MEM_T_DMA;
2795 mem_info->len = (hpage_count ? PAGE_SIZE : 0);
2796 mem_info->num = (hpage_count ? (hpage_count * q_cfg->num_paths) : 0);
2797
2798 /* RX Interrupts */
2799 res_info[BNA_RX_RES_T_INTR].res_type = BNA_RES_T_INTR;
2800 res_info[BNA_RX_RES_T_INTR].res_u.intr_info.intr_type = BNA_INTR_T_MSIX;
2801 res_info[BNA_RX_RES_T_INTR].res_u.intr_info.num = q_cfg->num_paths;
2802}
2803
2804struct bna_rx *
2805bna_rx_create(struct bna *bna, struct bnad *bnad,
2806 struct bna_rx_config *rx_cfg,
2807 struct bna_rx_event_cbfn *rx_cbfn,
2808 struct bna_res_info *res_info,
2809 void *priv)
2810{
2811 struct bna_rx_mod *rx_mod = &bna->rx_mod;
2812 struct bna_rx *rx;
2813 struct bna_rxp *rxp;
2814 struct bna_rxq *q0;
2815 struct bna_rxq *q1;
2816 struct bna_intr_info *intr_info;
2817 u32 page_count;
2818 struct bna_mem_descr *ccb_mem;
2819 struct bna_mem_descr *rcb_mem;
2820 struct bna_mem_descr *unmapq_mem;
2821 struct bna_mem_descr *cqpt_mem;
2822 struct bna_mem_descr *cswqpt_mem;
2823 struct bna_mem_descr *cpage_mem;
2824 struct bna_mem_descr *hqpt_mem; /* Header/Small Q qpt */
2825 struct bna_mem_descr *dqpt_mem; /* Data/Large Q qpt */
2826 struct bna_mem_descr *hsqpt_mem; /* s/w qpt for hdr */
2827 struct bna_mem_descr *dsqpt_mem; /* s/w qpt for data */
2828 struct bna_mem_descr *hpage_mem; /* hdr page mem */
2829 struct bna_mem_descr *dpage_mem; /* data page mem */
2830 int i, cpage_idx = 0, dpage_idx = 0, hpage_idx = 0;
2831 int dpage_count, hpage_count, rcb_idx;
2832 struct bna_ib_config ibcfg;
2833 /* Fail if we don't have enough RXPs, RXQs */
2834 if (!_rx_can_satisfy(rx_mod, rx_cfg))
2835 return NULL;
2836
2837 /* Initialize resource pointers */
2838 intr_info = &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2839 ccb_mem = &res_info[BNA_RX_RES_MEM_T_CCB].res_u.mem_info.mdl[0];
2840 rcb_mem = &res_info[BNA_RX_RES_MEM_T_RCB].res_u.mem_info.mdl[0];
2841 unmapq_mem = &res_info[BNA_RX_RES_MEM_T_UNMAPQ].res_u.mem_info.mdl[0];
2842 cqpt_mem = &res_info[BNA_RX_RES_MEM_T_CQPT].res_u.mem_info.mdl[0];
2843 cswqpt_mem = &res_info[BNA_RX_RES_MEM_T_CSWQPT].res_u.mem_info.mdl[0];
2844 cpage_mem = &res_info[BNA_RX_RES_MEM_T_CQPT_PAGE].res_u.mem_info.mdl[0];
2845 hqpt_mem = &res_info[BNA_RX_RES_MEM_T_HQPT].res_u.mem_info.mdl[0];
2846 dqpt_mem = &res_info[BNA_RX_RES_MEM_T_DQPT].res_u.mem_info.mdl[0];
2847 hsqpt_mem = &res_info[BNA_RX_RES_MEM_T_HSWQPT].res_u.mem_info.mdl[0];
2848 dsqpt_mem = &res_info[BNA_RX_RES_MEM_T_DSWQPT].res_u.mem_info.mdl[0];
2849 hpage_mem = &res_info[BNA_RX_RES_MEM_T_HPAGE].res_u.mem_info.mdl[0];
2850 dpage_mem = &res_info[BNA_RX_RES_MEM_T_DPAGE].res_u.mem_info.mdl[0];
2851
2852 /* Compute q depth & page count */
2853 page_count = res_info[BNA_RX_RES_MEM_T_CQPT_PAGE].res_u.mem_info.num /
2854 rx_cfg->num_paths;
2855
2856 dpage_count = res_info[BNA_RX_RES_MEM_T_DPAGE].res_u.mem_info.num /
2857 rx_cfg->num_paths;
2858
2859 hpage_count = res_info[BNA_RX_RES_MEM_T_HPAGE].res_u.mem_info.num /
2860 rx_cfg->num_paths;
2861 /* Get RX pointer */
2862 rx = _get_free_rx(rx_mod);
2863 _rx_init(rx, bna);
2864 rx->priv = priv;
2865 rx->type = rx_cfg->rx_type;
2866
2867 rx->rcb_setup_cbfn = rx_cbfn->rcb_setup_cbfn;
2868 rx->rcb_destroy_cbfn = rx_cbfn->rcb_destroy_cbfn;
2869 rx->ccb_setup_cbfn = rx_cbfn->ccb_setup_cbfn;
2870 rx->ccb_destroy_cbfn = rx_cbfn->ccb_destroy_cbfn;
2871 /* Following callbacks are mandatory */
2872 rx->rx_cleanup_cbfn = rx_cbfn->rx_cleanup_cbfn;
2873 rx->rx_post_cbfn = rx_cbfn->rx_post_cbfn;
2874
2875 if (rx->bna->rx_mod.flags & BNA_RX_MOD_F_PORT_STARTED) {
2876 switch (rx->type) {
2877 case BNA_RX_T_REGULAR:
2878 if (!(rx->bna->rx_mod.flags &
2879 BNA_RX_MOD_F_PORT_LOOPBACK))
2880 rx->rx_flags |= BNA_RX_F_PORT_ENABLED;
2881 break;
2882 case BNA_RX_T_LOOPBACK:
2883 if (rx->bna->rx_mod.flags & BNA_RX_MOD_F_PORT_LOOPBACK)
2884 rx->rx_flags |= BNA_RX_F_PORT_ENABLED;
2885 break;
2886 }
2887 }
2888
2889 for (i = 0, rcb_idx = 0; i < rx_cfg->num_paths; i++) {
2890 rxp = _get_free_rxp(rx_mod);
2891 rxp->type = rx_cfg->rxp_type;
2892 rxp->rx = rx;
2893 rxp->cq.rx = rx;
2894
2895 /* Get required RXQs, and queue them to rx-path */
2896 q0 = _get_free_rxq(rx_mod);
2897 if (BNA_RXP_SINGLE == rx_cfg->rxp_type)
2898 q1 = NULL;
2899 else
2900 q1 = _get_free_rxq(rx_mod);
2901
2902 /* Initialize IB */
2903 if (1 == intr_info->num) {
2904 rxp->cq.ib = bna_ib_get(&bna->ib_mod,
2905 intr_info->intr_type,
2906 intr_info->idl[0].vector);
2907 rxp->vector = intr_info->idl[0].vector;
2908 } else {
2909 rxp->cq.ib = bna_ib_get(&bna->ib_mod,
2910 intr_info->intr_type,
2911 intr_info->idl[i].vector);
2912
2913 /* Map the MSI-x vector used for this RXP */
2914 rxp->vector = intr_info->idl[i].vector;
2915 }
2916
2917 rxp->cq.ib_seg_offset = bna_ib_reserve_idx(rxp->cq.ib);
2918
2919 ibcfg.coalescing_timeo = BFI_RX_COALESCING_TIMEO;
2920 ibcfg.interpkt_count = BFI_RX_INTERPKT_COUNT;
2921 ibcfg.interpkt_timeo = BFI_RX_INTERPKT_TIMEO;
2922 ibcfg.ctrl_flags = BFI_IB_CF_INT_ENABLE;
2923
2924 bna_ib_config(rxp->cq.ib, &ibcfg);
2925
2926 /* Link rxqs to rxp */
2927 _rxp_add_rxqs(rxp, q0, q1);
2928
2929 /* Link rxp to rx */
2930 _rx_add_rxp(rx, rxp);
2931
2932 q0->rx = rx;
2933 q0->rxp = rxp;
2934
2935 /* Initialize RCB for the large / data q */
2936 q0->rcb = (struct bna_rcb *) rcb_mem[rcb_idx].kva;
2937 RXQ_RCB_INIT(q0, rxp, rx_cfg->q_depth, bna, 0,
2938 (void *)unmapq_mem[rcb_idx].kva);
2939 rcb_idx++;
2940 (q0)->rx_packets = (q0)->rx_bytes = 0;
2941 (q0)->rx_packets_with_error = (q0)->rxbuf_alloc_failed = 0;
2942
2943 /* Initialize RXQs */
2944 _rxq_qpt_init(q0, rxp, dpage_count, PAGE_SIZE,
2945 &dqpt_mem[i], &dsqpt_mem[i], &dpage_mem[dpage_idx]);
2946 q0->rcb->page_idx = dpage_idx;
2947 q0->rcb->page_count = dpage_count;
2948 dpage_idx += dpage_count;
2949
2950 /* Call bnad to complete rcb setup */
2951 if (rx->rcb_setup_cbfn)
2952 rx->rcb_setup_cbfn(bnad, q0->rcb);
2953
2954 if (q1) {
2955 q1->rx = rx;
2956 q1->rxp = rxp;
2957
2958 q1->rcb = (struct bna_rcb *) rcb_mem[rcb_idx].kva;
2959 RXQ_RCB_INIT(q1, rxp, rx_cfg->q_depth, bna, 1,
2960 (void *)unmapq_mem[rcb_idx].kva);
2961 rcb_idx++;
2962 (q1)->buffer_size = (rx_cfg)->small_buff_size;
2963 (q1)->rx_packets = (q1)->rx_bytes = 0;
2964 (q1)->rx_packets_with_error =
2965 (q1)->rxbuf_alloc_failed = 0;
2966
2967 _rxq_qpt_init(q1, rxp, hpage_count, PAGE_SIZE,
2968 &hqpt_mem[i], &hsqpt_mem[i],
2969 &hpage_mem[hpage_idx]);
2970 q1->rcb->page_idx = hpage_idx;
2971 q1->rcb->page_count = hpage_count;
2972 hpage_idx += hpage_count;
2973
2974 /* Call bnad to complete rcb setup */
2975 if (rx->rcb_setup_cbfn)
2976 rx->rcb_setup_cbfn(bnad, q1->rcb);
2977 }
2978 /* Setup RXP::CQ */
2979 rxp->cq.ccb = (struct bna_ccb *) ccb_mem[i].kva;
2980 _rxp_cqpt_setup(rxp, page_count, PAGE_SIZE,
2981 &cqpt_mem[i], &cswqpt_mem[i], &cpage_mem[cpage_idx]);
2982 rxp->cq.ccb->page_idx = cpage_idx;
2983 rxp->cq.ccb->page_count = page_count;
2984 cpage_idx += page_count;
2985
2986 rxp->cq.ccb->pkt_rate.small_pkt_cnt = 0;
2987 rxp->cq.ccb->pkt_rate.large_pkt_cnt = 0;
2988
2989 rxp->cq.ccb->producer_index = 0;
2990 rxp->cq.ccb->q_depth = rx_cfg->q_depth +
2991 ((rx_cfg->rxp_type == BNA_RXP_SINGLE) ?
2992 0 : rx_cfg->q_depth);
2993 rxp->cq.ccb->i_dbell = &rxp->cq.ib->door_bell;
2994 rxp->cq.ccb->rcb[0] = q0->rcb;
2995 if (q1)
2996 rxp->cq.ccb->rcb[1] = q1->rcb;
2997 rxp->cq.ccb->cq = &rxp->cq;
2998 rxp->cq.ccb->bnad = bna->bnad;
2999 rxp->cq.ccb->hw_producer_index =
3000 ((volatile u32 *)rxp->cq.ib->ib_seg_host_addr_kva +
3001 (rxp->cq.ib_seg_offset * BFI_IBIDX_SIZE));
3002 *(rxp->cq.ccb->hw_producer_index) = 0;
3003 rxp->cq.ccb->intr_type = intr_info->intr_type;
3004 rxp->cq.ccb->intr_vector = (intr_info->num == 1) ?
3005 intr_info->idl[0].vector :
3006 intr_info->idl[i].vector;
3007 rxp->cq.ccb->rx_coalescing_timeo =
3008 rxp->cq.ib->ib_config.coalescing_timeo;
3009 rxp->cq.ccb->id = i;
3010
3011 /* Call bnad to complete CCB setup */
3012 if (rx->ccb_setup_cbfn)
3013 rx->ccb_setup_cbfn(bnad, rxp->cq.ccb);
3014
3015 } /* for each rx-path */
3016
3017 bna_rxf_init(&rx->rxf, rx, rx_cfg);
3018
3019 bfa_fsm_set_state(rx, bna_rx_sm_stopped);
3020
3021 return rx;
3022}
3023
3024void
3025bna_rx_destroy(struct bna_rx *rx)
3026{
3027 struct bna_rx_mod *rx_mod = &rx->bna->rx_mod;
3028 struct bna_ib_mod *ib_mod = &rx->bna->ib_mod;
3029 struct bna_rxq *q0 = NULL;
3030 struct bna_rxq *q1 = NULL;
3031 struct bna_rxp *rxp;
3032 struct list_head *qe;
3033
3034 bna_rxf_uninit(&rx->rxf);
3035
3036 while (!list_empty(&rx->rxp_q)) {
3037 bfa_q_deq(&rx->rxp_q, &rxp);
3038 GET_RXQS(rxp, q0, q1);
3039 /* Callback to bnad for destroying RCB */
3040 if (rx->rcb_destroy_cbfn)
3041 rx->rcb_destroy_cbfn(rx->bna->bnad, q0->rcb);
3042 q0->rcb = NULL;
3043 q0->rxp = NULL;
3044 q0->rx = NULL;
3045 _put_free_rxq(rx_mod, q0);
3046 if (q1) {
3047 /* Callback to bnad for destroying RCB */
3048 if (rx->rcb_destroy_cbfn)
3049 rx->rcb_destroy_cbfn(rx->bna->bnad, q1->rcb);
3050 q1->rcb = NULL;
3051 q1->rxp = NULL;
3052 q1->rx = NULL;
3053 _put_free_rxq(rx_mod, q1);
3054 }
3055 rxp->rxq.slr.large = NULL;
3056 rxp->rxq.slr.small = NULL;
3057 if (rxp->cq.ib) {
3058 if (rxp->cq.ib_seg_offset != 0xff)
3059 bna_ib_release_idx(rxp->cq.ib,
3060 rxp->cq.ib_seg_offset);
3061 bna_ib_put(ib_mod, rxp->cq.ib);
3062 rxp->cq.ib = NULL;
3063 }
3064 /* Callback to bnad for destroying CCB */
3065 if (rx->ccb_destroy_cbfn)
3066 rx->ccb_destroy_cbfn(rx->bna->bnad, rxp->cq.ccb);
3067 rxp->cq.ccb = NULL;
3068 rxp->rx = NULL;
3069 _put_free_rxp(rx_mod, rxp);
3070 }
3071
3072 list_for_each(qe, &rx_mod->rx_active_q) {
3073 if (qe == &rx->qe) {
3074 list_del(&rx->qe);
3075 bfa_q_qe_init(&rx->qe);
3076 break;
3077 }
3078 }
3079
3080 rx->bna = NULL;
3081 rx->priv = NULL;
3082 _put_free_rx(rx_mod, rx);
3083}
3084
3085void
3086bna_rx_enable(struct bna_rx *rx)
3087{
3088 if (rx->fsm != (bfa_sm_t)bna_rx_sm_stopped)
3089 return;
3090
3091 rx->rx_flags |= BNA_RX_F_ENABLE;
3092 if (rx->rx_flags & BNA_RX_F_PORT_ENABLED)
3093 bfa_fsm_send_event(rx, RX_E_START);
3094}
3095
3096void
3097bna_rx_disable(struct bna_rx *rx, enum bna_cleanup_type type,
3098 void (*cbfn)(void *, struct bna_rx *,
3099 enum bna_cb_status))
3100{
3101 if (type == BNA_SOFT_CLEANUP) {
3102 /* h/w should not be accessed. Treat we're stopped */
3103 (*cbfn)(rx->bna->bnad, rx, BNA_CB_SUCCESS);
3104 } else {
3105 rx->stop_cbfn = cbfn;
3106 rx->stop_cbarg = rx->bna->bnad;
3107
3108 rx->rx_flags &= ~BNA_RX_F_ENABLE;
3109
3110 bfa_fsm_send_event(rx, RX_E_STOP);
3111 }
3112}
3113
3114/**
3115 * TX
3116 */
3117#define call_tx_stop_cbfn(tx, status)\
3118do {\
3119 if ((tx)->stop_cbfn)\
3120 (tx)->stop_cbfn((tx)->stop_cbarg, (tx), status);\
3121 (tx)->stop_cbfn = NULL;\
3122 (tx)->stop_cbarg = NULL;\
3123} while (0)
3124
3125#define call_tx_prio_change_cbfn(tx, status)\
3126do {\
3127 if ((tx)->prio_change_cbfn)\
3128 (tx)->prio_change_cbfn((tx)->bna->bnad, (tx), status);\
3129 (tx)->prio_change_cbfn = NULL;\
3130} while (0)
3131
3132static void bna_tx_mod_cb_tx_stopped(void *tx_mod, struct bna_tx *tx,
3133 enum bna_cb_status status);
3134static void bna_tx_cb_txq_stopped(void *arg, int status);
3135static void bna_tx_cb_stats_cleared(void *arg, int status);
3136static void __bna_tx_stop(struct bna_tx *tx);
3137static void __bna_tx_start(struct bna_tx *tx);
3138static void __bna_txf_stat_clr(struct bna_tx *tx);
3139
3140enum bna_tx_event {
3141 TX_E_START = 1,
3142 TX_E_STOP = 2,
3143 TX_E_FAIL = 3,
3144 TX_E_TXQ_STOPPED = 4,
3145 TX_E_PRIO_CHANGE = 5,
3146 TX_E_STAT_CLEARED = 6,
3147};
3148
3149enum bna_tx_state {
3150 BNA_TX_STOPPED = 1,
3151 BNA_TX_STARTED = 2,
3152 BNA_TX_TXQ_STOP_WAIT = 3,
3153 BNA_TX_PRIO_STOP_WAIT = 4,
3154 BNA_TX_STAT_CLR_WAIT = 5,
3155};
3156
3157bfa_fsm_state_decl(bna_tx, stopped, struct bna_tx,
3158 enum bna_tx_event);
3159bfa_fsm_state_decl(bna_tx, started, struct bna_tx,
3160 enum bna_tx_event);
3161bfa_fsm_state_decl(bna_tx, txq_stop_wait, struct bna_tx,
3162 enum bna_tx_event);
3163bfa_fsm_state_decl(bna_tx, prio_stop_wait, struct bna_tx,
3164 enum bna_tx_event);
3165bfa_fsm_state_decl(bna_tx, stat_clr_wait, struct bna_tx,
3166 enum bna_tx_event);
3167
3168static struct bfa_sm_table tx_sm_table[] = {
3169 {BFA_SM(bna_tx_sm_stopped), BNA_TX_STOPPED},
3170 {BFA_SM(bna_tx_sm_started), BNA_TX_STARTED},
3171 {BFA_SM(bna_tx_sm_txq_stop_wait), BNA_TX_TXQ_STOP_WAIT},
3172 {BFA_SM(bna_tx_sm_prio_stop_wait), BNA_TX_PRIO_STOP_WAIT},
3173 {BFA_SM(bna_tx_sm_stat_clr_wait), BNA_TX_STAT_CLR_WAIT},
3174};
3175
3176static void
3177bna_tx_sm_stopped_entry(struct bna_tx *tx)
3178{
3179 struct bna_txq *txq;
3180 struct list_head *qe;
3181
3182 list_for_each(qe, &tx->txq_q) {
3183 txq = (struct bna_txq *)qe;
3184 (tx->tx_cleanup_cbfn)(tx->bna->bnad, txq->tcb);
3185 }
3186
3187 call_tx_stop_cbfn(tx, BNA_CB_SUCCESS);
3188}
3189
3190static void
3191bna_tx_sm_stopped(struct bna_tx *tx, enum bna_tx_event event)
3192{
3193 switch (event) {
3194 case TX_E_START:
3195 bfa_fsm_set_state(tx, bna_tx_sm_started);
3196 break;
3197
3198 case TX_E_STOP:
3199 bfa_fsm_set_state(tx, bna_tx_sm_stopped);
3200 break;
3201
3202 case TX_E_FAIL:
3203 /* No-op */
3204 break;
3205
3206 case TX_E_PRIO_CHANGE:
3207 call_tx_prio_change_cbfn(tx, BNA_CB_SUCCESS);
3208 break;
3209
3210 case TX_E_TXQ_STOPPED:
3211 /**
3212 * This event is received due to flushing of mbox when
3213 * device fails
3214 */
3215 /* No-op */
3216 break;
3217
3218 default:
3219 bfa_sm_fault(tx->bna, event);
3220 }
3221}
3222
3223static void
3224bna_tx_sm_started_entry(struct bna_tx *tx)
3225{
3226 struct bna_txq *txq;
3227 struct list_head *qe;
3228
3229 __bna_tx_start(tx);
3230
3231 /* Start IB */
3232 list_for_each(qe, &tx->txq_q) {
3233 txq = (struct bna_txq *)qe;
3234 bna_ib_ack(&txq->ib->door_bell, 0);
3235 }
3236}
3237
3238static void
3239bna_tx_sm_started(struct bna_tx *tx, enum bna_tx_event event)
3240{
3241 struct bna_txq *txq;
3242 struct list_head *qe;
3243
3244 switch (event) {
3245 case TX_E_STOP:
3246 bfa_fsm_set_state(tx, bna_tx_sm_txq_stop_wait);
3247 __bna_tx_stop(tx);
3248 break;
3249
3250 case TX_E_FAIL:
3251 list_for_each(qe, &tx->txq_q) {
3252 txq = (struct bna_txq *)qe;
3253 bna_ib_fail(txq->ib);
3254 (tx->tx_stall_cbfn)(tx->bna->bnad, txq->tcb);
3255 }
3256 bfa_fsm_set_state(tx, bna_tx_sm_stopped);
3257 break;
3258
3259 case TX_E_PRIO_CHANGE:
3260 bfa_fsm_set_state(tx, bna_tx_sm_prio_stop_wait);
3261 break;
3262
3263 default:
3264 bfa_sm_fault(tx->bna, event);
3265 }
3266}
3267
3268static void
3269bna_tx_sm_txq_stop_wait_entry(struct bna_tx *tx)
3270{
3271}
3272
3273static void
3274bna_tx_sm_txq_stop_wait(struct bna_tx *tx, enum bna_tx_event event)
3275{
3276 struct bna_txq *txq;
3277 struct list_head *qe;
3278
3279 switch (event) {
3280 case TX_E_FAIL:
3281 bfa_fsm_set_state(tx, bna_tx_sm_stopped);
3282 break;
3283
3284 case TX_E_TXQ_STOPPED:
3285 list_for_each(qe, &tx->txq_q) {
3286 txq = (struct bna_txq *)qe;
3287 bna_ib_stop(txq->ib);
3288 }
3289 bfa_fsm_set_state(tx, bna_tx_sm_stat_clr_wait);
3290 break;
3291
3292 case TX_E_PRIO_CHANGE:
3293 /* No-op */
3294 break;
3295
3296 default:
3297 bfa_sm_fault(tx->bna, event);
3298 }
3299}
3300
3301static void
3302bna_tx_sm_prio_stop_wait_entry(struct bna_tx *tx)
3303{
3304 __bna_tx_stop(tx);
3305}
3306
3307static void
3308bna_tx_sm_prio_stop_wait(struct bna_tx *tx, enum bna_tx_event event)
3309{
3310 struct bna_txq *txq;
3311 struct list_head *qe;
3312
3313 switch (event) {
3314 case TX_E_STOP:
3315 bfa_fsm_set_state(tx, bna_tx_sm_txq_stop_wait);
3316 break;
3317
3318 case TX_E_FAIL:
3319 call_tx_prio_change_cbfn(tx, BNA_CB_FAIL);
3320 bfa_fsm_set_state(tx, bna_tx_sm_stopped);
3321 break;
3322
3323 case TX_E_TXQ_STOPPED:
3324 list_for_each(qe, &tx->txq_q) {
3325 txq = (struct bna_txq *)qe;
3326 bna_ib_stop(txq->ib);
3327 (tx->tx_cleanup_cbfn)(tx->bna->bnad, txq->tcb);
3328 }
3329 call_tx_prio_change_cbfn(tx, BNA_CB_SUCCESS);
3330 bfa_fsm_set_state(tx, bna_tx_sm_started);
3331 break;
3332
3333 case TX_E_PRIO_CHANGE:
3334 /* No-op */
3335 break;
3336
3337 default:
3338 bfa_sm_fault(tx->bna, event);
3339 }
3340}
3341
3342static void
3343bna_tx_sm_stat_clr_wait_entry(struct bna_tx *tx)
3344{
3345 __bna_txf_stat_clr(tx);
3346}
3347
3348static void
3349bna_tx_sm_stat_clr_wait(struct bna_tx *tx, enum bna_tx_event event)
3350{
3351 switch (event) {
3352 case TX_E_FAIL:
3353 case TX_E_STAT_CLEARED:
3354 bfa_fsm_set_state(tx, bna_tx_sm_stopped);
3355 break;
3356
3357 default:
3358 bfa_sm_fault(tx->bna, event);
3359 }
3360}
3361
3362static void
3363__bna_txq_start(struct bna_tx *tx, struct bna_txq *txq)
3364{
3365 struct bna_rxtx_q_mem *q_mem;
3366 struct bna_txq_mem txq_cfg;
3367 struct bna_txq_mem *txq_mem;
3368 struct bna_dma_addr cur_q_addr;
3369 u32 pg_num;
3370 void __iomem *base_addr;
3371 unsigned long off;
3372
3373 /* Fill out structure, to be subsequently written to hardware */
3374 txq_cfg.pg_tbl_addr_lo = txq->qpt.hw_qpt_ptr.lsb;
3375 txq_cfg.pg_tbl_addr_hi = txq->qpt.hw_qpt_ptr.msb;
3376 cur_q_addr = *((struct bna_dma_addr *)(txq->qpt.kv_qpt_ptr));
3377 txq_cfg.cur_q_entry_lo = cur_q_addr.lsb;
3378 txq_cfg.cur_q_entry_hi = cur_q_addr.msb;
3379
3380 txq_cfg.pg_cnt_n_prd_ptr = (txq->qpt.page_count << 16) | 0x0;
3381
3382 txq_cfg.entry_n_pg_size = ((u32)(BFI_TXQ_WI_SIZE >> 2) << 16) |
3383 (txq->qpt.page_size >> 2);
3384 txq_cfg.int_blk_n_cns_ptr = ((((u32)txq->ib_seg_offset) << 24) |
3385 ((u32)(txq->ib->ib_id & 0xff) << 16) | 0x0);
3386
3387 txq_cfg.cns_ptr2_n_q_state = BNA_Q_IDLE_STATE;
3388 txq_cfg.nxt_qid_n_fid_n_pri = (((tx->txf.txf_id & 0x3f) << 3) |
3389 (txq->priority & 0x7));
3390 txq_cfg.wvc_n_cquota_n_rquota =
3391 ((((u32)BFI_TX_MAX_WRR_QUOTA & 0xfff) << 12) |
3392 (BFI_TX_MAX_WRR_QUOTA & 0xfff));
3393
3394 /* Setup the page and write to H/W */
3395
3396 pg_num = BNA_GET_PAGE_NUM(HQM0_BLK_PG_NUM + tx->bna->port_num,
3397 HQM_RXTX_Q_RAM_BASE_OFFSET);
3398 writel(pg_num, tx->bna->regs.page_addr);
3399
3400 base_addr = BNA_GET_MEM_BASE_ADDR(tx->bna->pcidev.pci_bar_kva,
3401 HQM_RXTX_Q_RAM_BASE_OFFSET);
3402 q_mem = (struct bna_rxtx_q_mem *)0;
3403 txq_mem = &q_mem[txq->txq_id].txq;
3404
3405 /*
3406 * The following 4 lines, is a hack b'cos the H/W needs to read
3407 * these DMA addresses as little endian
3408 */
3409
3410 off = (unsigned long)&txq_mem->pg_tbl_addr_lo;
3411 writel(htonl(txq_cfg.pg_tbl_addr_lo), base_addr + off);
3412
3413 off = (unsigned long)&txq_mem->pg_tbl_addr_hi;
3414 writel(htonl(txq_cfg.pg_tbl_addr_hi), base_addr + off);
3415
3416 off = (unsigned long)&txq_mem->cur_q_entry_lo;
3417 writel(htonl(txq_cfg.cur_q_entry_lo), base_addr + off);
3418
3419 off = (unsigned long)&txq_mem->cur_q_entry_hi;
3420 writel(htonl(txq_cfg.cur_q_entry_hi), base_addr + off);
3421
3422 off = (unsigned long)&txq_mem->pg_cnt_n_prd_ptr;
3423 writel(txq_cfg.pg_cnt_n_prd_ptr, base_addr + off);
3424
3425 off = (unsigned long)&txq_mem->entry_n_pg_size;
3426 writel(txq_cfg.entry_n_pg_size, base_addr + off);
3427
3428 off = (unsigned long)&txq_mem->int_blk_n_cns_ptr;
3429 writel(txq_cfg.int_blk_n_cns_ptr, base_addr + off);
3430
3431 off = (unsigned long)&txq_mem->cns_ptr2_n_q_state;
3432 writel(txq_cfg.cns_ptr2_n_q_state, base_addr + off);
3433
3434 off = (unsigned long)&txq_mem->nxt_qid_n_fid_n_pri;
3435 writel(txq_cfg.nxt_qid_n_fid_n_pri, base_addr + off);
3436
3437 off = (unsigned long)&txq_mem->wvc_n_cquota_n_rquota;
3438 writel(txq_cfg.wvc_n_cquota_n_rquota, base_addr + off);
3439
3440 txq->tcb->producer_index = 0;
3441 txq->tcb->consumer_index = 0;
3442 *(txq->tcb->hw_consumer_index) = 0;
3443
3444}
3445
3446static void
3447__bna_txq_stop(struct bna_tx *tx, struct bna_txq *txq)
3448{
3449 struct bfi_ll_q_stop_req ll_req;
3450 u32 bit_mask[2] = {0, 0};
3451 if (txq->txq_id < 32)
3452 bit_mask[0] = (u32)1 << txq->txq_id;
3453 else
3454 bit_mask[1] = (u32)1 << (txq->txq_id - 32);
3455
3456 memset(&ll_req, 0, sizeof(ll_req));
3457 ll_req.mh.msg_class = BFI_MC_LL;
3458 ll_req.mh.msg_id = BFI_LL_H2I_TXQ_STOP_REQ;
3459 ll_req.mh.mtag.h2i.lpu_id = 0;
3460 ll_req.q_id_mask[0] = htonl(bit_mask[0]);
3461 ll_req.q_id_mask[1] = htonl(bit_mask[1]);
3462
3463 bna_mbox_qe_fill(&tx->mbox_qe, &ll_req, sizeof(ll_req),
3464 bna_tx_cb_txq_stopped, tx);
3465
3466 bna_mbox_send(tx->bna, &tx->mbox_qe);
3467}
3468
3469static void
3470__bna_txf_start(struct bna_tx *tx)
3471{
3472 struct bna_tx_fndb_ram *tx_fndb;
3473 struct bna_txf *txf = &tx->txf;
3474 void __iomem *base_addr;
3475 unsigned long off;
3476
3477 writel(BNA_GET_PAGE_NUM(LUT0_MEM_BLK_BASE_PG_NUM +
3478 (tx->bna->port_num * 2), TX_FNDB_RAM_BASE_OFFSET),
3479 tx->bna->regs.page_addr);
3480
3481 base_addr = BNA_GET_MEM_BASE_ADDR(tx->bna->pcidev.pci_bar_kva,
3482 TX_FNDB_RAM_BASE_OFFSET);
3483
3484 tx_fndb = (struct bna_tx_fndb_ram *)0;
3485 off = (unsigned long)&tx_fndb[txf->txf_id].vlan_n_ctrl_flags;
3486
3487 writel(((u32)txf->vlan << 16) | txf->ctrl_flags,
3488 base_addr + off);
3489
3490 if (tx->txf.txf_id < 32)
3491 tx->bna->tx_mod.txf_bmap[0] |= ((u32)1 << tx->txf.txf_id);
3492 else
3493 tx->bna->tx_mod.txf_bmap[1] |= ((u32)
3494 1 << (tx->txf.txf_id - 32));
3495}
3496
3497static void
3498__bna_txf_stop(struct bna_tx *tx)
3499{
3500 struct bna_tx_fndb_ram *tx_fndb;
3501 u32 page_num;
3502 u32 ctl_flags;
3503 struct bna_txf *txf = &tx->txf;
3504 void __iomem *base_addr;
3505 unsigned long off;
3506
3507 /* retrieve the running txf_flags & turn off enable bit */
3508 page_num = BNA_GET_PAGE_NUM(LUT0_MEM_BLK_BASE_PG_NUM +
3509 (tx->bna->port_num * 2), TX_FNDB_RAM_BASE_OFFSET);
3510 writel(page_num, tx->bna->regs.page_addr);
3511
3512 base_addr = BNA_GET_MEM_BASE_ADDR(tx->bna->pcidev.pci_bar_kva,
3513 TX_FNDB_RAM_BASE_OFFSET);
3514 tx_fndb = (struct bna_tx_fndb_ram *)0;
3515 off = (unsigned long)&tx_fndb[txf->txf_id].vlan_n_ctrl_flags;
3516
3517 ctl_flags = readl(base_addr + off);
3518 ctl_flags &= ~BFI_TXF_CF_ENABLE;
3519
3520 writel(ctl_flags, base_addr + off);
3521
3522 if (tx->txf.txf_id < 32)
3523 tx->bna->tx_mod.txf_bmap[0] &= ~((u32)1 << tx->txf.txf_id);
3524 else
3525 tx->bna->tx_mod.txf_bmap[0] &= ~((u32)
3526 1 << (tx->txf.txf_id - 32));
3527}
3528
3529static void
3530__bna_txf_stat_clr(struct bna_tx *tx)
3531{
3532 struct bfi_ll_stats_req ll_req;
3533 u32 txf_bmap[2] = {0, 0};
3534 if (tx->txf.txf_id < 32)
3535 txf_bmap[0] = ((u32)1 << tx->txf.txf_id);
3536 else
3537 txf_bmap[1] = ((u32)1 << (tx->txf.txf_id - 32));
3538 bfi_h2i_set(ll_req.mh, BFI_MC_LL, BFI_LL_H2I_STATS_CLEAR_REQ, 0);
3539 ll_req.stats_mask = 0;
3540 ll_req.rxf_id_mask[0] = 0;
3541 ll_req.rxf_id_mask[1] = 0;
3542 ll_req.txf_id_mask[0] = htonl(txf_bmap[0]);
3543 ll_req.txf_id_mask[1] = htonl(txf_bmap[1]);
3544
3545 bna_mbox_qe_fill(&tx->mbox_qe, &ll_req, sizeof(ll_req),
3546 bna_tx_cb_stats_cleared, tx);
3547 bna_mbox_send(tx->bna, &tx->mbox_qe);
3548}
3549
3550static void
3551__bna_tx_start(struct bna_tx *tx)
3552{
3553 struct bna_txq *txq;
3554 struct list_head *qe;
3555
3556 list_for_each(qe, &tx->txq_q) {
3557 txq = (struct bna_txq *)qe;
3558 bna_ib_start(txq->ib);
3559 __bna_txq_start(tx, txq);
3560 }
3561
3562 __bna_txf_start(tx);
3563
3564 list_for_each(qe, &tx->txq_q) {
3565 txq = (struct bna_txq *)qe;
3566 txq->tcb->priority = txq->priority;
3567 (tx->tx_resume_cbfn)(tx->bna->bnad, txq->tcb);
3568 }
3569}
3570
3571static void
3572__bna_tx_stop(struct bna_tx *tx)
3573{
3574 struct bna_txq *txq;
3575 struct list_head *qe;
3576
3577 list_for_each(qe, &tx->txq_q) {
3578 txq = (struct bna_txq *)qe;
3579 (tx->tx_stall_cbfn)(tx->bna->bnad, txq->tcb);
3580 }
3581
3582 __bna_txf_stop(tx);
3583
3584 list_for_each(qe, &tx->txq_q) {
3585 txq = (struct bna_txq *)qe;
3586 bfa_wc_up(&tx->txq_stop_wc);
3587 }
3588
3589 list_for_each(qe, &tx->txq_q) {
3590 txq = (struct bna_txq *)qe;
3591 __bna_txq_stop(tx, txq);
3592 }
3593}
3594
3595static void
3596bna_txq_qpt_setup(struct bna_txq *txq, int page_count, int page_size,
3597 struct bna_mem_descr *qpt_mem,
3598 struct bna_mem_descr *swqpt_mem,
3599 struct bna_mem_descr *page_mem)
3600{
3601 int i;
3602
3603 txq->qpt.hw_qpt_ptr.lsb = qpt_mem->dma.lsb;
3604 txq->qpt.hw_qpt_ptr.msb = qpt_mem->dma.msb;
3605 txq->qpt.kv_qpt_ptr = qpt_mem->kva;
3606 txq->qpt.page_count = page_count;
3607 txq->qpt.page_size = page_size;
3608
3609 txq->tcb->sw_qpt = (void **) swqpt_mem->kva;
3610
3611 for (i = 0; i < page_count; i++) {
3612 txq->tcb->sw_qpt[i] = page_mem[i].kva;
3613
3614 ((struct bna_dma_addr *)txq->qpt.kv_qpt_ptr)[i].lsb =
3615 page_mem[i].dma.lsb;
3616 ((struct bna_dma_addr *)txq->qpt.kv_qpt_ptr)[i].msb =
3617 page_mem[i].dma.msb;
3618
3619 }
3620}
3621
3622static void
3623bna_tx_free(struct bna_tx *tx)
3624{
3625 struct bna_tx_mod *tx_mod = &tx->bna->tx_mod;
3626 struct bna_txq *txq;
3627 struct bna_ib_mod *ib_mod = &tx->bna->ib_mod;
3628 struct list_head *qe;
3629
3630 while (!list_empty(&tx->txq_q)) {
3631 bfa_q_deq(&tx->txq_q, &txq);
3632 bfa_q_qe_init(&txq->qe);
3633 if (txq->ib) {
3634 if (txq->ib_seg_offset != -1)
3635 bna_ib_release_idx(txq->ib,
3636 txq->ib_seg_offset);
3637 bna_ib_put(ib_mod, txq->ib);
3638 txq->ib = NULL;
3639 }
3640 txq->tcb = NULL;
3641 txq->tx = NULL;
3642 list_add_tail(&txq->qe, &tx_mod->txq_free_q);
3643 }
3644
3645 list_for_each(qe, &tx_mod->tx_active_q) {
3646 if (qe == &tx->qe) {
3647 list_del(&tx->qe);
3648 bfa_q_qe_init(&tx->qe);
3649 break;
3650 }
3651 }
3652
3653 tx->bna = NULL;
3654 tx->priv = NULL;
3655 list_add_tail(&tx->qe, &tx_mod->tx_free_q);
3656}
3657
3658static void
3659bna_tx_cb_txq_stopped(void *arg, int status)
3660{
3661 struct bna_tx *tx = (struct bna_tx *)arg;
3662
3663 bfa_q_qe_init(&tx->mbox_qe.qe);
3664 bfa_wc_down(&tx->txq_stop_wc);
3665}
3666
3667static void
3668bna_tx_cb_txq_stopped_all(void *arg)
3669{
3670 struct bna_tx *tx = (struct bna_tx *)arg;
3671
3672 bfa_fsm_send_event(tx, TX_E_TXQ_STOPPED);
3673}
3674
3675static void
3676bna_tx_cb_stats_cleared(void *arg, int status)
3677{
3678 struct bna_tx *tx = (struct bna_tx *)arg;
3679
3680 bfa_q_qe_init(&tx->mbox_qe.qe);
3681
3682 bfa_fsm_send_event(tx, TX_E_STAT_CLEARED);
3683}
3684
3685static void
3686bna_tx_start(struct bna_tx *tx)
3687{
3688 tx->flags |= BNA_TX_F_PORT_STARTED;
3689 if (tx->flags & BNA_TX_F_ENABLED)
3690 bfa_fsm_send_event(tx, TX_E_START);
3691}
3692
3693static void
3694bna_tx_stop(struct bna_tx *tx)
3695{
3696 tx->stop_cbfn = bna_tx_mod_cb_tx_stopped;
3697 tx->stop_cbarg = &tx->bna->tx_mod;
3698
3699 tx->flags &= ~BNA_TX_F_PORT_STARTED;
3700 bfa_fsm_send_event(tx, TX_E_STOP);
3701}
3702
3703static void
3704bna_tx_fail(struct bna_tx *tx)
3705{
3706 tx->flags &= ~BNA_TX_F_PORT_STARTED;
3707 bfa_fsm_send_event(tx, TX_E_FAIL);
3708}
3709
3710static void
3711bna_tx_prio_changed(struct bna_tx *tx, int prio)
3712{
3713 struct bna_txq *txq;
3714 struct list_head *qe;
3715
3716 list_for_each(qe, &tx->txq_q) {
3717 txq = (struct bna_txq *)qe;
3718 txq->priority = prio;
3719 }
3720
3721 bfa_fsm_send_event(tx, TX_E_PRIO_CHANGE);
3722}
3723
3724static void
3725bna_tx_cee_link_status(struct bna_tx *tx, int cee_link)
3726{
3727 if (cee_link)
3728 tx->flags |= BNA_TX_F_PRIO_LOCK;
3729 else
3730 tx->flags &= ~BNA_TX_F_PRIO_LOCK;
3731}
3732
3733static void
3734bna_tx_mod_cb_tx_stopped(void *arg, struct bna_tx *tx,
3735 enum bna_cb_status status)
3736{
3737 struct bna_tx_mod *tx_mod = (struct bna_tx_mod *)arg;
3738
3739 bfa_wc_down(&tx_mod->tx_stop_wc);
3740}
3741
3742static void
3743bna_tx_mod_cb_tx_stopped_all(void *arg)
3744{
3745 struct bna_tx_mod *tx_mod = (struct bna_tx_mod *)arg;
3746
3747 if (tx_mod->stop_cbfn)
3748 tx_mod->stop_cbfn(&tx_mod->bna->port, BNA_CB_SUCCESS);
3749 tx_mod->stop_cbfn = NULL;
3750}
3751
3752void
3753bna_tx_res_req(int num_txq, int txq_depth, struct bna_res_info *res_info)
3754{
3755 u32 q_size;
3756 u32 page_count;
3757 struct bna_mem_info *mem_info;
3758
3759 res_info[BNA_TX_RES_MEM_T_TCB].res_type = BNA_RES_T_MEM;
3760 mem_info = &res_info[BNA_TX_RES_MEM_T_TCB].res_u.mem_info;
3761 mem_info->mem_type = BNA_MEM_T_KVA;
3762 mem_info->len = sizeof(struct bna_tcb);
3763 mem_info->num = num_txq;
3764
3765 q_size = txq_depth * BFI_TXQ_WI_SIZE;
3766 q_size = ALIGN(q_size, PAGE_SIZE);
3767 page_count = q_size >> PAGE_SHIFT;
3768
3769 res_info[BNA_TX_RES_MEM_T_QPT].res_type = BNA_RES_T_MEM;
3770 mem_info = &res_info[BNA_TX_RES_MEM_T_QPT].res_u.mem_info;
3771 mem_info->mem_type = BNA_MEM_T_DMA;
3772 mem_info->len = page_count * sizeof(struct bna_dma_addr);
3773 mem_info->num = num_txq;
3774
3775 res_info[BNA_TX_RES_MEM_T_SWQPT].res_type = BNA_RES_T_MEM;
3776 mem_info = &res_info[BNA_TX_RES_MEM_T_SWQPT].res_u.mem_info;
3777 mem_info->mem_type = BNA_MEM_T_KVA;
3778 mem_info->len = page_count * sizeof(void *);
3779 mem_info->num = num_txq;
3780
3781 res_info[BNA_TX_RES_MEM_T_PAGE].res_type = BNA_RES_T_MEM;
3782 mem_info = &res_info[BNA_TX_RES_MEM_T_PAGE].res_u.mem_info;
3783 mem_info->mem_type = BNA_MEM_T_DMA;
3784 mem_info->len = PAGE_SIZE;
3785 mem_info->num = num_txq * page_count;
3786
3787 res_info[BNA_TX_RES_INTR_T_TXCMPL].res_type = BNA_RES_T_INTR;
3788 res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info.intr_type =
3789 BNA_INTR_T_MSIX;
3790 res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info.num = num_txq;
3791}
3792
3793struct bna_tx *
3794bna_tx_create(struct bna *bna, struct bnad *bnad,
3795 struct bna_tx_config *tx_cfg,
3796 struct bna_tx_event_cbfn *tx_cbfn,
3797 struct bna_res_info *res_info, void *priv)
3798{
3799 struct bna_intr_info *intr_info;
3800 struct bna_tx_mod *tx_mod = &bna->tx_mod;
3801 struct bna_tx *tx;
3802 struct bna_txq *txq;
3803 struct list_head *qe;
3804 struct bna_ib_mod *ib_mod = &bna->ib_mod;
3805 struct bna_doorbell_qset *qset;
3806 struct bna_ib_config ib_config;
3807 int page_count;
3808 int page_size;
3809 int page_idx;
3810 int i;
3811 unsigned long off;
3812
3813 intr_info = &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
3814 page_count = (res_info[BNA_TX_RES_MEM_T_PAGE].res_u.mem_info.num) /
3815 tx_cfg->num_txq;
3816 page_size = res_info[BNA_TX_RES_MEM_T_PAGE].res_u.mem_info.len;
3817
3818 /**
3819 * Get resources
3820 */
3821
3822 if ((intr_info->num != 1) && (intr_info->num != tx_cfg->num_txq))
3823 return NULL;
3824
3825 /* Tx */
3826
3827 if (list_empty(&tx_mod->tx_free_q))
3828 return NULL;
3829 bfa_q_deq(&tx_mod->tx_free_q, &tx);
3830 bfa_q_qe_init(&tx->qe);
3831
3832 /* TxQs */
3833
3834 INIT_LIST_HEAD(&tx->txq_q);
3835 for (i = 0; i < tx_cfg->num_txq; i++) {
3836 if (list_empty(&tx_mod->txq_free_q))
3837 goto err_return;
3838
3839 bfa_q_deq(&tx_mod->txq_free_q, &txq);
3840 bfa_q_qe_init(&txq->qe);
3841 list_add_tail(&txq->qe, &tx->txq_q);
3842 txq->ib = NULL;
3843 txq->ib_seg_offset = -1;
3844 txq->tx = tx;
3845 }
3846
3847 /* IBs */
3848 i = 0;
3849 list_for_each(qe, &tx->txq_q) {
3850 txq = (struct bna_txq *)qe;
3851
3852 if (intr_info->num == 1)
3853 txq->ib = bna_ib_get(ib_mod, intr_info->intr_type,
3854 intr_info->idl[0].vector);
3855 else
3856 txq->ib = bna_ib_get(ib_mod, intr_info->intr_type,
3857 intr_info->idl[i].vector);
3858
3859 if (txq->ib == NULL)
3860 goto err_return;
3861
3862 txq->ib_seg_offset = bna_ib_reserve_idx(txq->ib);
3863 if (txq->ib_seg_offset == -1)
3864 goto err_return;
3865
3866 i++;
3867 }
3868
3869 /*
3870 * Initialize
3871 */
3872
3873 /* Tx */
3874
3875 tx->tcb_setup_cbfn = tx_cbfn->tcb_setup_cbfn;
3876 tx->tcb_destroy_cbfn = tx_cbfn->tcb_destroy_cbfn;
3877 /* Following callbacks are mandatory */
3878 tx->tx_stall_cbfn = tx_cbfn->tx_stall_cbfn;
3879 tx->tx_resume_cbfn = tx_cbfn->tx_resume_cbfn;
3880 tx->tx_cleanup_cbfn = tx_cbfn->tx_cleanup_cbfn;
3881
3882 list_add_tail(&tx->qe, &tx_mod->tx_active_q);
3883 tx->bna = bna;
3884 tx->priv = priv;
3885 tx->txq_stop_wc.wc_resume = bna_tx_cb_txq_stopped_all;
3886 tx->txq_stop_wc.wc_cbarg = tx;
3887 tx->txq_stop_wc.wc_count = 0;
3888
3889 tx->type = tx_cfg->tx_type;
3890
3891 tx->flags = 0;
3892 if (tx->bna->tx_mod.flags & BNA_TX_MOD_F_PORT_STARTED) {
3893 switch (tx->type) {
3894 case BNA_TX_T_REGULAR:
3895 if (!(tx->bna->tx_mod.flags &
3896 BNA_TX_MOD_F_PORT_LOOPBACK))
3897 tx->flags |= BNA_TX_F_PORT_STARTED;
3898 break;
3899 case BNA_TX_T_LOOPBACK:
3900 if (tx->bna->tx_mod.flags & BNA_TX_MOD_F_PORT_LOOPBACK)
3901 tx->flags |= BNA_TX_F_PORT_STARTED;
3902 break;
3903 }
3904 }
3905 if (tx->bna->tx_mod.cee_link)
3906 tx->flags |= BNA_TX_F_PRIO_LOCK;
3907
3908 /* TxQ */
3909
3910 i = 0;
3911 page_idx = 0;
3912 list_for_each(qe, &tx->txq_q) {
3913 txq = (struct bna_txq *)qe;
3914 txq->priority = tx_mod->priority;
3915 txq->tcb = (struct bna_tcb *)
3916 res_info[BNA_TX_RES_MEM_T_TCB].res_u.mem_info.mdl[i].kva;
3917 txq->tx_packets = 0;
3918 txq->tx_bytes = 0;
3919
3920 /* IB */
3921
3922 ib_config.coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3923 ib_config.interpkt_timeo = 0; /* Not used */
3924 ib_config.interpkt_count = BFI_TX_INTERPKT_COUNT;
3925 ib_config.ctrl_flags = (BFI_IB_CF_INTER_PKT_DMA |
3926 BFI_IB_CF_INT_ENABLE |
3927 BFI_IB_CF_COALESCING_MODE);
3928 bna_ib_config(txq->ib, &ib_config);
3929
3930 /* TCB */
3931
3932 txq->tcb->producer_index = 0;
3933 txq->tcb->consumer_index = 0;
3934 txq->tcb->hw_consumer_index = (volatile u32 *)
3935 ((volatile u8 *)txq->ib->ib_seg_host_addr_kva +
3936 (txq->ib_seg_offset * BFI_IBIDX_SIZE));
3937 *(txq->tcb->hw_consumer_index) = 0;
3938 txq->tcb->q_depth = tx_cfg->txq_depth;
3939 txq->tcb->unmap_q = (void *)
3940 res_info[BNA_TX_RES_MEM_T_UNMAPQ].res_u.mem_info.mdl[i].kva;
3941 qset = (struct bna_doorbell_qset *)0;
3942 off = (unsigned long)&qset[txq->txq_id].txq[0];
3943 txq->tcb->q_dbell = off +
3944 BNA_GET_DOORBELL_BASE_ADDR(bna->pcidev.pci_bar_kva);
3945 txq->tcb->i_dbell = &txq->ib->door_bell;
3946 txq->tcb->intr_type = intr_info->intr_type;
3947 txq->tcb->intr_vector = (intr_info->num == 1) ?
3948 intr_info->idl[0].vector :
3949 intr_info->idl[i].vector;
3950 txq->tcb->txq = txq;
3951 txq->tcb->bnad = bnad;
3952 txq->tcb->id = i;
3953
3954 /* QPT, SWQPT, Pages */
3955 bna_txq_qpt_setup(txq, page_count, page_size,
3956 &res_info[BNA_TX_RES_MEM_T_QPT].res_u.mem_info.mdl[i],
3957 &res_info[BNA_TX_RES_MEM_T_SWQPT].res_u.mem_info.mdl[i],
3958 &res_info[BNA_TX_RES_MEM_T_PAGE].
3959 res_u.mem_info.mdl[page_idx]);
3960 txq->tcb->page_idx = page_idx;
3961 txq->tcb->page_count = page_count;
3962 page_idx += page_count;
3963
3964 /* Callback to bnad for setting up TCB */
3965 if (tx->tcb_setup_cbfn)
3966 (tx->tcb_setup_cbfn)(bna->bnad, txq->tcb);
3967
3968 i++;
3969 }
3970
3971 /* TxF */
3972
3973 tx->txf.ctrl_flags = BFI_TXF_CF_ENABLE | BFI_TXF_CF_VLAN_WI_BASED;
3974 tx->txf.vlan = 0;
3975
3976 /* Mbox element */
3977 bfa_q_qe_init(&tx->mbox_qe.qe);
3978
3979 bfa_fsm_set_state(tx, bna_tx_sm_stopped);
3980
3981 return tx;
3982
3983err_return:
3984 bna_tx_free(tx);
3985 return NULL;
3986}
3987
3988void
3989bna_tx_destroy(struct bna_tx *tx)
3990{
3991 /* Callback to bnad for destroying TCB */
3992 if (tx->tcb_destroy_cbfn) {
3993 struct bna_txq *txq;
3994 struct list_head *qe;
3995
3996 list_for_each(qe, &tx->txq_q) {
3997 txq = (struct bna_txq *)qe;
3998 (tx->tcb_destroy_cbfn)(tx->bna->bnad, txq->tcb);
3999 }
4000 }
4001
4002 bna_tx_free(tx);
4003}
4004
4005void
4006bna_tx_enable(struct bna_tx *tx)
4007{
4008 if (tx->fsm != (bfa_sm_t)bna_tx_sm_stopped)
4009 return;
4010
4011 tx->flags |= BNA_TX_F_ENABLED;
4012
4013 if (tx->flags & BNA_TX_F_PORT_STARTED)
4014 bfa_fsm_send_event(tx, TX_E_START);
4015}
4016
4017void
4018bna_tx_disable(struct bna_tx *tx, enum bna_cleanup_type type,
4019 void (*cbfn)(void *, struct bna_tx *, enum bna_cb_status))
4020{
4021 if (type == BNA_SOFT_CLEANUP) {
4022 (*cbfn)(tx->bna->bnad, tx, BNA_CB_SUCCESS);
4023 return;
4024 }
4025
4026 tx->stop_cbfn = cbfn;
4027 tx->stop_cbarg = tx->bna->bnad;
4028
4029 tx->flags &= ~BNA_TX_F_ENABLED;
4030
4031 bfa_fsm_send_event(tx, TX_E_STOP);
4032}
4033
4034int
4035bna_tx_state_get(struct bna_tx *tx)
4036{
4037 return bfa_sm_to_state(tx_sm_table, tx->fsm);
4038}
4039
4040void
4041bna_tx_mod_init(struct bna_tx_mod *tx_mod, struct bna *bna,
4042 struct bna_res_info *res_info)
4043{
4044 int i;
4045
4046 tx_mod->bna = bna;
4047 tx_mod->flags = 0;
4048
4049 tx_mod->tx = (struct bna_tx *)
4050 res_info[BNA_RES_MEM_T_TX_ARRAY].res_u.mem_info.mdl[0].kva;
4051 tx_mod->txq = (struct bna_txq *)
4052 res_info[BNA_RES_MEM_T_TXQ_ARRAY].res_u.mem_info.mdl[0].kva;
4053
4054 INIT_LIST_HEAD(&tx_mod->tx_free_q);
4055 INIT_LIST_HEAD(&tx_mod->tx_active_q);
4056
4057 INIT_LIST_HEAD(&tx_mod->txq_free_q);
4058
4059 for (i = 0; i < BFI_MAX_TXQ; i++) {
4060 tx_mod->tx[i].txf.txf_id = i;
4061 bfa_q_qe_init(&tx_mod->tx[i].qe);
4062 list_add_tail(&tx_mod->tx[i].qe, &tx_mod->tx_free_q);
4063
4064 tx_mod->txq[i].txq_id = i;
4065 bfa_q_qe_init(&tx_mod->txq[i].qe);
4066 list_add_tail(&tx_mod->txq[i].qe, &tx_mod->txq_free_q);
4067 }
4068
4069 tx_mod->tx_stop_wc.wc_resume = bna_tx_mod_cb_tx_stopped_all;
4070 tx_mod->tx_stop_wc.wc_cbarg = tx_mod;
4071 tx_mod->tx_stop_wc.wc_count = 0;
4072}
4073
4074void
4075bna_tx_mod_uninit(struct bna_tx_mod *tx_mod)
4076{
4077 struct list_head *qe;
4078 int i;
4079
4080 i = 0;
4081 list_for_each(qe, &tx_mod->tx_free_q)
4082 i++;
4083
4084 i = 0;
4085 list_for_each(qe, &tx_mod->txq_free_q)
4086 i++;
4087
4088 tx_mod->bna = NULL;
4089}
4090
4091void
4092bna_tx_mod_start(struct bna_tx_mod *tx_mod, enum bna_tx_type type)
4093{
4094 struct bna_tx *tx;
4095 struct list_head *qe;
4096
4097 tx_mod->flags |= BNA_TX_MOD_F_PORT_STARTED;
4098 if (type == BNA_TX_T_LOOPBACK)
4099 tx_mod->flags |= BNA_TX_MOD_F_PORT_LOOPBACK;
4100
4101 list_for_each(qe, &tx_mod->tx_active_q) {
4102 tx = (struct bna_tx *)qe;
4103 if (tx->type == type)
4104 bna_tx_start(tx);
4105 }
4106}
4107
4108void
4109bna_tx_mod_stop(struct bna_tx_mod *tx_mod, enum bna_tx_type type)
4110{
4111 struct bna_tx *tx;
4112 struct list_head *qe;
4113
4114 tx_mod->flags &= ~BNA_TX_MOD_F_PORT_STARTED;
4115 tx_mod->flags &= ~BNA_TX_MOD_F_PORT_LOOPBACK;
4116
4117 tx_mod->stop_cbfn = bna_port_cb_tx_stopped;
4118
4119 /**
4120 * Before calling bna_tx_stop(), increment tx_stop_wc as many times
4121 * as we are going to call bna_tx_stop
4122 */
4123 list_for_each(qe, &tx_mod->tx_active_q) {
4124 tx = (struct bna_tx *)qe;
4125 if (tx->type == type)
4126 bfa_wc_up(&tx_mod->tx_stop_wc);
4127 }
4128
4129 if (tx_mod->tx_stop_wc.wc_count == 0) {
4130 tx_mod->stop_cbfn(&tx_mod->bna->port, BNA_CB_SUCCESS);
4131 tx_mod->stop_cbfn = NULL;
4132 return;
4133 }
4134
4135 list_for_each(qe, &tx_mod->tx_active_q) {
4136 tx = (struct bna_tx *)qe;
4137 if (tx->type == type)
4138 bna_tx_stop(tx);
4139 }
4140}
4141
4142void
4143bna_tx_mod_fail(struct bna_tx_mod *tx_mod)
4144{
4145 struct bna_tx *tx;
4146 struct list_head *qe;
4147
4148 tx_mod->flags &= ~BNA_TX_MOD_F_PORT_STARTED;
4149 tx_mod->flags &= ~BNA_TX_MOD_F_PORT_LOOPBACK;
4150
4151 list_for_each(qe, &tx_mod->tx_active_q) {
4152 tx = (struct bna_tx *)qe;
4153 bna_tx_fail(tx);
4154 }
4155}
4156
4157void
4158bna_tx_mod_prio_changed(struct bna_tx_mod *tx_mod, int prio)
4159{
4160 struct bna_tx *tx;
4161 struct list_head *qe;
4162
4163 if (prio != tx_mod->priority) {
4164 tx_mod->priority = prio;
4165
4166 list_for_each(qe, &tx_mod->tx_active_q) {
4167 tx = (struct bna_tx *)qe;
4168 bna_tx_prio_changed(tx, prio);
4169 }
4170 }
4171}
4172
4173void
4174bna_tx_mod_cee_link_status(struct bna_tx_mod *tx_mod, int cee_link)
4175{
4176 struct bna_tx *tx;
4177 struct list_head *qe;
4178
4179 tx_mod->cee_link = cee_link;
4180
4181 list_for_each(qe, &tx_mod->tx_active_q) {
4182 tx = (struct bna_tx *)qe;
4183 bna_tx_cee_link_status(tx, cee_link);
4184 }
4185}
diff --git a/drivers/net/bna/bna_types.h b/drivers/net/bna/bna_types.h
new file mode 100644
index 000000000000..b9c134f7ad31
--- /dev/null
+++ b/drivers/net/bna/bna_types.h
@@ -0,0 +1,1127 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#ifndef __BNA_TYPES_H__
19#define __BNA_TYPES_H__
20
21#include "cna.h"
22#include "bna_hw.h"
23#include "bfa_cee.h"
24
25/**
26 *
27 * Forward declarations
28 *
29 */
30
31struct bna_txq;
32struct bna_tx;
33struct bna_rxq;
34struct bna_cq;
35struct bna_rx;
36struct bna_rxf;
37struct bna_port;
38struct bna;
39struct bnad;
40
41/**
42 *
43 * Enums, primitive data types
44 *
45 */
46
47enum bna_status {
48 BNA_STATUS_T_DISABLED = 0,
49 BNA_STATUS_T_ENABLED = 1
50};
51
52enum bna_cleanup_type {
53 BNA_HARD_CLEANUP = 0,
54 BNA_SOFT_CLEANUP = 1
55};
56
57enum bna_cb_status {
58 BNA_CB_SUCCESS = 0,
59 BNA_CB_FAIL = 1,
60 BNA_CB_INTERRUPT = 2,
61 BNA_CB_BUSY = 3,
62 BNA_CB_INVALID_MAC = 4,
63 BNA_CB_MCAST_LIST_FULL = 5,
64 BNA_CB_UCAST_CAM_FULL = 6,
65 BNA_CB_WAITING = 7,
66 BNA_CB_NOT_EXEC = 8
67};
68
69enum bna_res_type {
70 BNA_RES_T_MEM = 1,
71 BNA_RES_T_INTR = 2
72};
73
74enum bna_mem_type {
75 BNA_MEM_T_KVA = 1,
76 BNA_MEM_T_DMA = 2
77};
78
79enum bna_intr_type {
80 BNA_INTR_T_INTX = 1,
81 BNA_INTR_T_MSIX = 2
82};
83
84enum bna_res_req_type {
85 BNA_RES_MEM_T_COM = 0,
86 BNA_RES_MEM_T_ATTR = 1,
87 BNA_RES_MEM_T_FWTRC = 2,
88 BNA_RES_MEM_T_STATS = 3,
89 BNA_RES_MEM_T_SWSTATS = 4,
90 BNA_RES_MEM_T_IBIDX = 5,
91 BNA_RES_MEM_T_IB_ARRAY = 6,
92 BNA_RES_MEM_T_INTR_ARRAY = 7,
93 BNA_RES_MEM_T_IDXSEG_ARRAY = 8,
94 BNA_RES_MEM_T_TX_ARRAY = 9,
95 BNA_RES_MEM_T_TXQ_ARRAY = 10,
96 BNA_RES_MEM_T_RX_ARRAY = 11,
97 BNA_RES_MEM_T_RXP_ARRAY = 12,
98 BNA_RES_MEM_T_RXQ_ARRAY = 13,
99 BNA_RES_MEM_T_UCMAC_ARRAY = 14,
100 BNA_RES_MEM_T_MCMAC_ARRAY = 15,
101 BNA_RES_MEM_T_RIT_ENTRY = 16,
102 BNA_RES_MEM_T_RIT_SEGMENT = 17,
103 BNA_RES_INTR_T_MBOX = 18,
104 BNA_RES_T_MAX
105};
106
107enum bna_tx_res_req_type {
108 BNA_TX_RES_MEM_T_TCB = 0,
109 BNA_TX_RES_MEM_T_UNMAPQ = 1,
110 BNA_TX_RES_MEM_T_QPT = 2,
111 BNA_TX_RES_MEM_T_SWQPT = 3,
112 BNA_TX_RES_MEM_T_PAGE = 4,
113 BNA_TX_RES_INTR_T_TXCMPL = 5,
114 BNA_TX_RES_T_MAX,
115};
116
117enum bna_rx_mem_type {
118 BNA_RX_RES_MEM_T_CCB = 0, /* CQ context */
119 BNA_RX_RES_MEM_T_RCB = 1, /* CQ context */
120 BNA_RX_RES_MEM_T_UNMAPQ = 2, /* UnmapQ for RxQs */
121 BNA_RX_RES_MEM_T_CQPT = 3, /* CQ QPT */
122 BNA_RX_RES_MEM_T_CSWQPT = 4, /* S/W QPT */
123 BNA_RX_RES_MEM_T_CQPT_PAGE = 5, /* CQPT page */
124 BNA_RX_RES_MEM_T_HQPT = 6, /* RX QPT */
125 BNA_RX_RES_MEM_T_DQPT = 7, /* RX QPT */
126 BNA_RX_RES_MEM_T_HSWQPT = 8, /* RX s/w QPT */
127 BNA_RX_RES_MEM_T_DSWQPT = 9, /* RX s/w QPT */
128 BNA_RX_RES_MEM_T_DPAGE = 10, /* RX s/w QPT */
129 BNA_RX_RES_MEM_T_HPAGE = 11, /* RX s/w QPT */
130 BNA_RX_RES_T_INTR = 12, /* Rx interrupts */
131 BNA_RX_RES_T_MAX = 13
132};
133
134enum bna_mbox_state {
135 BNA_MBOX_FREE = 0,
136 BNA_MBOX_POSTED = 1
137};
138
139enum bna_tx_type {
140 BNA_TX_T_REGULAR = 0,
141 BNA_TX_T_LOOPBACK = 1,
142};
143
144enum bna_tx_flags {
145 BNA_TX_F_PORT_STARTED = 1,
146 BNA_TX_F_ENABLED = 2,
147 BNA_TX_F_PRIO_LOCK = 4,
148};
149
150enum bna_tx_mod_flags {
151 BNA_TX_MOD_F_PORT_STARTED = 1,
152 BNA_TX_MOD_F_PORT_LOOPBACK = 2,
153};
154
155enum bna_rx_type {
156 BNA_RX_T_REGULAR = 0,
157 BNA_RX_T_LOOPBACK = 1,
158};
159
160enum bna_rxp_type {
161 BNA_RXP_SINGLE = 1,
162 BNA_RXP_SLR = 2,
163 BNA_RXP_HDS = 3
164};
165
166enum bna_rxmode {
167 BNA_RXMODE_PROMISC = 1,
168 BNA_RXMODE_ALLMULTI = 2
169};
170
171enum bna_rx_event {
172 RX_E_START = 1,
173 RX_E_STOP = 2,
174 RX_E_FAIL = 3,
175 RX_E_RXF_STARTED = 4,
176 RX_E_RXF_STOPPED = 5,
177 RX_E_RXQ_STOPPED = 6,
178};
179
180enum bna_rx_state {
181 BNA_RX_STOPPED = 1,
182 BNA_RX_RXF_START_WAIT = 2,
183 BNA_RX_STARTED = 3,
184 BNA_RX_RXF_STOP_WAIT = 4,
185 BNA_RX_RXQ_STOP_WAIT = 5,
186};
187
188enum bna_rx_flags {
189 BNA_RX_F_ENABLE = 0x01, /* bnad enabled rxf */
190 BNA_RX_F_PORT_ENABLED = 0x02, /* Port object is enabled */
191 BNA_RX_F_PORT_FAILED = 0x04, /* Port in failed state */
192};
193
194enum bna_rx_mod_flags {
195 BNA_RX_MOD_F_PORT_STARTED = 1,
196 BNA_RX_MOD_F_PORT_LOOPBACK = 2,
197};
198
199enum bna_rxf_oper_state {
200 BNA_RXF_OPER_STATE_RUNNING = 0x01, /* rxf operational */
201 BNA_RXF_OPER_STATE_PAUSED = 0x02, /* rxf in PAUSED state */
202};
203
204enum bna_rxf_flags {
205 BNA_RXF_FL_STOP_PENDING = 0x01,
206 BNA_RXF_FL_FAILED = 0x02,
207 BNA_RXF_FL_RSS_CONFIG_PENDING = 0x04,
208 BNA_RXF_FL_OPERSTATE_CHANGED = 0x08,
209 BNA_RXF_FL_RXF_ENABLED = 0x10,
210 BNA_RXF_FL_VLAN_CONFIG_PENDING = 0x20,
211};
212
213enum bna_rxf_event {
214 RXF_E_START = 1,
215 RXF_E_STOP = 2,
216 RXF_E_FAIL = 3,
217 RXF_E_CAM_FLTR_MOD = 4,
218 RXF_E_STARTED = 5,
219 RXF_E_STOPPED = 6,
220 RXF_E_CAM_FLTR_RESP = 7,
221 RXF_E_PAUSE = 8,
222 RXF_E_RESUME = 9,
223 RXF_E_STAT_CLEARED = 10,
224};
225
226enum bna_rxf_state {
227 BNA_RXF_STOPPED = 1,
228 BNA_RXF_START_WAIT = 2,
229 BNA_RXF_CAM_FLTR_MOD_WAIT = 3,
230 BNA_RXF_STARTED = 4,
231 BNA_RXF_CAM_FLTR_CLR_WAIT = 5,
232 BNA_RXF_STOP_WAIT = 6,
233 BNA_RXF_PAUSE_WAIT = 7,
234 BNA_RXF_RESUME_WAIT = 8,
235 BNA_RXF_STAT_CLR_WAIT = 9,
236};
237
238enum bna_port_type {
239 BNA_PORT_T_REGULAR = 0,
240 BNA_PORT_T_LOOPBACK_INTERNAL = 1,
241 BNA_PORT_T_LOOPBACK_EXTERNAL = 2,
242};
243
244enum bna_link_status {
245 BNA_LINK_DOWN = 0,
246 BNA_LINK_UP = 1,
247 BNA_CEE_UP = 2
248};
249
250enum bna_llport_flags {
251 BNA_LLPORT_F_ADMIN_UP = 1,
252 BNA_LLPORT_F_PORT_ENABLED = 2,
253 BNA_LLPORT_F_RX_STARTED = 4
254};
255
256enum bna_port_flags {
257 BNA_PORT_F_DEVICE_READY = 1,
258 BNA_PORT_F_ENABLED = 2,
259 BNA_PORT_F_PAUSE_CHANGED = 4,
260 BNA_PORT_F_MTU_CHANGED = 8
261};
262
263enum bna_pkt_rates {
264 BNA_PKT_RATE_10K = 10000,
265 BNA_PKT_RATE_20K = 20000,
266 BNA_PKT_RATE_30K = 30000,
267 BNA_PKT_RATE_40K = 40000,
268 BNA_PKT_RATE_50K = 50000,
269 BNA_PKT_RATE_60K = 60000,
270 BNA_PKT_RATE_70K = 70000,
271 BNA_PKT_RATE_80K = 80000,
272};
273
274enum bna_dim_load_types {
275 BNA_LOAD_T_HIGH_4 = 0, /* 80K <= r */
276 BNA_LOAD_T_HIGH_3 = 1, /* 60K <= r < 80K */
277 BNA_LOAD_T_HIGH_2 = 2, /* 50K <= r < 60K */
278 BNA_LOAD_T_HIGH_1 = 3, /* 40K <= r < 50K */
279 BNA_LOAD_T_LOW_1 = 4, /* 30K <= r < 40K */
280 BNA_LOAD_T_LOW_2 = 5, /* 20K <= r < 30K */
281 BNA_LOAD_T_LOW_3 = 6, /* 10K <= r < 20K */
282 BNA_LOAD_T_LOW_4 = 7, /* r < 10K */
283 BNA_LOAD_T_MAX = 8
284};
285
286enum bna_dim_bias_types {
287 BNA_BIAS_T_SMALL = 0, /* small pkts > (large pkts * 2) */
288 BNA_BIAS_T_LARGE = 1, /* Not BNA_BIAS_T_SMALL */
289 BNA_BIAS_T_MAX = 2
290};
291
292struct bna_mac {
293 /* This should be the first one */
294 struct list_head qe;
295 u8 addr[ETH_ALEN];
296};
297
298struct bna_mem_descr {
299 u32 len;
300 void *kva;
301 struct bna_dma_addr dma;
302};
303
304struct bna_mem_info {
305 enum bna_mem_type mem_type;
306 u32 len;
307 u32 num;
308 u32 align_sz; /* 0/1 = no alignment */
309 struct bna_mem_descr *mdl;
310 void *cookie; /* For bnad to unmap dma later */
311};
312
313struct bna_intr_descr {
314 int vector;
315};
316
317struct bna_intr_info {
318 enum bna_intr_type intr_type;
319 int num;
320 struct bna_intr_descr *idl;
321};
322
323union bna_res_u {
324 struct bna_mem_info mem_info;
325 struct bna_intr_info intr_info;
326};
327
328struct bna_res_info {
329 enum bna_res_type res_type;
330 union bna_res_u res_u;
331};
332
333/* HW QPT */
334struct bna_qpt {
335 struct bna_dma_addr hw_qpt_ptr;
336 void *kv_qpt_ptr;
337 u32 page_count;
338 u32 page_size;
339};
340
341/**
342 *
343 * Device
344 *
345 */
346
347struct bna_device {
348 bfa_fsm_t fsm;
349 struct bfa_ioc ioc;
350
351 enum bna_intr_type intr_type;
352 int vector;
353
354 void (*ready_cbfn)(struct bnad *bnad, enum bna_cb_status status);
355 struct bnad *ready_cbarg;
356
357 void (*stop_cbfn)(struct bnad *bnad, enum bna_cb_status status);
358 struct bnad *stop_cbarg;
359
360 struct bna *bna;
361};
362
363/**
364 *
365 * Mail box
366 *
367 */
368
369struct bna_mbox_qe {
370 /* This should be the first one */
371 struct list_head qe;
372
373 struct bfa_mbox_cmd cmd;
374 u32 cmd_len;
375 /* Callback for port, tx, rx, rxf */
376 void (*cbfn)(void *arg, int status);
377 void *cbarg;
378};
379
380struct bna_mbox_mod {
381 enum bna_mbox_state state;
382 struct list_head posted_q;
383 u32 msg_pending;
384 u32 msg_ctr;
385 struct bna *bna;
386};
387
388/**
389 *
390 * Port
391 *
392 */
393
394/* Pause configuration */
395struct bna_pause_config {
396 enum bna_status tx_pause;
397 enum bna_status rx_pause;
398};
399
400struct bna_llport {
401 bfa_fsm_t fsm;
402 enum bna_llport_flags flags;
403
404 enum bna_port_type type;
405
406 enum bna_link_status link_status;
407
408 int rx_started_count;
409
410 void (*stop_cbfn)(struct bna_port *, enum bna_cb_status);
411
412 struct bna_mbox_qe mbox_qe;
413
414 struct bna *bna;
415};
416
417struct bna_port {
418 bfa_fsm_t fsm;
419 enum bna_port_flags flags;
420
421 enum bna_port_type type;
422
423 struct bna_llport llport;
424
425 struct bna_pause_config pause_config;
426 u8 priority;
427 int mtu;
428
429 /* Callback for bna_port_disable(), port_stop() */
430 void (*stop_cbfn)(void *, enum bna_cb_status);
431 void *stop_cbarg;
432
433 /* Callback for bna_port_pause_config() */
434 void (*pause_cbfn)(struct bnad *, enum bna_cb_status);
435
436 /* Callback for bna_port_mtu_set() */
437 void (*mtu_cbfn)(struct bnad *, enum bna_cb_status);
438
439 void (*link_cbfn)(struct bnad *, enum bna_link_status);
440
441 struct bfa_wc chld_stop_wc;
442
443 struct bna_mbox_qe mbox_qe;
444
445 struct bna *bna;
446};
447
448/**
449 *
450 * Interrupt Block
451 *
452 */
453
454/* IB index segment structure */
455struct bna_ibidx_seg {
456 /* This should be the first one */
457 struct list_head qe;
458
459 u8 ib_seg_size;
460 u8 ib_idx_tbl_offset;
461};
462
463/* Interrupt structure */
464struct bna_intr {
465 /* This should be the first one */
466 struct list_head qe;
467 int ref_count;
468
469 enum bna_intr_type intr_type;
470 int vector;
471
472 struct bna_ib *ib;
473};
474
475/* Doorbell structure */
476struct bna_ib_dbell {
477 void *__iomem doorbell_addr;
478 u32 doorbell_ack;
479};
480
481/* Interrupt timer configuration */
482struct bna_ib_config {
483 u8 coalescing_timeo; /* Unit is 5usec. */
484
485 int interpkt_count;
486 int interpkt_timeo;
487
488 enum ib_flags ctrl_flags;
489};
490
491/* IB structure */
492struct bna_ib {
493 /* This should be the first one */
494 struct list_head qe;
495
496 int ib_id;
497
498 int ref_count;
499 int start_count;
500
501 struct bna_dma_addr ib_seg_host_addr;
502 void *ib_seg_host_addr_kva;
503 u32 idx_mask; /* Size >= BNA_IBIDX_MAX_SEGSIZE */
504
505 struct bna_ibidx_seg *idx_seg;
506
507 struct bna_ib_dbell door_bell;
508
509 struct bna_intr *intr;
510
511 struct bna_ib_config ib_config;
512
513 struct bna *bna;
514};
515
516/* IB module - keeps track of IBs and interrupts */
517struct bna_ib_mod {
518 struct bna_ib *ib; /* BFI_MAX_IB entries */
519 struct bna_intr *intr; /* BFI_MAX_IB entries */
520 struct bna_ibidx_seg *idx_seg; /* BNA_IBIDX_TOTAL_SEGS */
521
522 struct list_head ib_free_q;
523
524 struct list_head ibidx_seg_pool[BFI_IBIDX_TOTAL_POOLS];
525
526 struct list_head intr_free_q;
527 struct list_head intr_active_q;
528
529 struct bna *bna;
530};
531
532/**
533 *
534 * Tx object
535 *
536 */
537
538/* Tx datapath control structure */
539#define BNA_Q_NAME_SIZE 16
540struct bna_tcb {
541 /* Fast path */
542 void **sw_qpt;
543 void *unmap_q;
544 u32 producer_index;
545 u32 consumer_index;
546 volatile u32 *hw_consumer_index;
547 u32 q_depth;
548 void *__iomem q_dbell;
549 struct bna_ib_dbell *i_dbell;
550 int page_idx;
551 int page_count;
552 /* Control path */
553 struct bna_txq *txq;
554 struct bnad *bnad;
555 enum bna_intr_type intr_type;
556 int intr_vector;
557 u8 priority; /* Current priority */
558 unsigned long flags; /* Used by bnad as required */
559 int id;
560 char name[BNA_Q_NAME_SIZE];
561};
562
563/* TxQ QPT and configuration */
564struct bna_txq {
565 /* This should be the first one */
566 struct list_head qe;
567
568 int txq_id;
569
570 u8 priority;
571
572 struct bna_qpt qpt;
573 struct bna_tcb *tcb;
574 struct bna_ib *ib;
575 int ib_seg_offset;
576
577 struct bna_tx *tx;
578
579 u64 tx_packets;
580 u64 tx_bytes;
581};
582
583/* TxF structure (hardware Tx Function) */
584struct bna_txf {
585 int txf_id;
586 enum txf_flags ctrl_flags;
587 u16 vlan;
588};
589
590/* Tx object */
591struct bna_tx {
592 /* This should be the first one */
593 struct list_head qe;
594
595 bfa_fsm_t fsm;
596 enum bna_tx_flags flags;
597
598 enum bna_tx_type type;
599
600 struct list_head txq_q;
601 struct bna_txf txf;
602
603 /* Tx event handlers */
604 void (*tcb_setup_cbfn)(struct bnad *, struct bna_tcb *);
605 void (*tcb_destroy_cbfn)(struct bnad *, struct bna_tcb *);
606 void (*tx_stall_cbfn)(struct bnad *, struct bna_tcb *);
607 void (*tx_resume_cbfn)(struct bnad *, struct bna_tcb *);
608 void (*tx_cleanup_cbfn)(struct bnad *, struct bna_tcb *);
609
610 /* callback for bna_tx_disable(), bna_tx_stop() */
611 void (*stop_cbfn)(void *arg, struct bna_tx *tx,
612 enum bna_cb_status status);
613 void *stop_cbarg;
614
615 /* callback for bna_tx_prio_set() */
616 void (*prio_change_cbfn)(struct bnad *bnad, struct bna_tx *tx,
617 enum bna_cb_status status);
618
619 struct bfa_wc txq_stop_wc;
620
621 struct bna_mbox_qe mbox_qe;
622
623 struct bna *bna;
624 void *priv; /* bnad's cookie */
625};
626
627struct bna_tx_config {
628 int num_txq;
629 int txq_depth;
630 enum bna_tx_type tx_type;
631};
632
633struct bna_tx_event_cbfn {
634 /* Optional */
635 void (*tcb_setup_cbfn)(struct bnad *, struct bna_tcb *);
636 void (*tcb_destroy_cbfn)(struct bnad *, struct bna_tcb *);
637 /* Mandatory */
638 void (*tx_stall_cbfn)(struct bnad *, struct bna_tcb *);
639 void (*tx_resume_cbfn)(struct bnad *, struct bna_tcb *);
640 void (*tx_cleanup_cbfn)(struct bnad *, struct bna_tcb *);
641};
642
643/* Tx module - keeps track of free, active tx objects */
644struct bna_tx_mod {
645 struct bna_tx *tx; /* BFI_MAX_TXQ entries */
646 struct bna_txq *txq; /* BFI_MAX_TXQ entries */
647
648 struct list_head tx_free_q;
649 struct list_head tx_active_q;
650
651 struct list_head txq_free_q;
652
653 /* callback for bna_tx_mod_stop() */
654 void (*stop_cbfn)(struct bna_port *port,
655 enum bna_cb_status status);
656
657 struct bfa_wc tx_stop_wc;
658
659 enum bna_tx_mod_flags flags;
660
661 int priority;
662 int cee_link;
663
664 u32 txf_bmap[2];
665
666 struct bna *bna;
667};
668
669/**
670 *
671 * Receive Indirection Table
672 *
673 */
674
675/* One row of RIT table */
676struct bna_rit_entry {
677 u8 large_rxq_id; /* used for either large or data buffers */
678 u8 small_rxq_id; /* used for either small or header buffers */
679};
680
681/* RIT segment */
682struct bna_rit_segment {
683 struct list_head qe;
684
685 u32 rit_offset;
686 u32 rit_size;
687 /**
688 * max_rit_size: Varies per RIT segment depending on how RIT is
689 * partitioned
690 */
691 u32 max_rit_size;
692
693 struct bna_rit_entry *rit;
694};
695
696struct bna_rit_mod {
697 struct bna_rit_entry *rit;
698 struct bna_rit_segment *rit_segment;
699
700 struct list_head rit_seg_pool[BFI_RIT_SEG_TOTAL_POOLS];
701};
702
703/**
704 *
705 * Rx object
706 *
707 */
708
709/* Rx datapath control structure */
710struct bna_rcb {
711 /* Fast path */
712 void **sw_qpt;
713 void *unmap_q;
714 u32 producer_index;
715 u32 consumer_index;
716 u32 q_depth;
717 void *__iomem q_dbell;
718 int page_idx;
719 int page_count;
720 /* Control path */
721 struct bna_rxq *rxq;
722 struct bna_cq *cq;
723 struct bnad *bnad;
724 unsigned long flags;
725 int id;
726};
727
728/* RxQ structure - QPT, configuration */
729struct bna_rxq {
730 struct list_head qe;
731 int rxq_id;
732
733 int buffer_size;
734 int q_depth;
735
736 struct bna_qpt qpt;
737 struct bna_rcb *rcb;
738
739 struct bna_rxp *rxp;
740 struct bna_rx *rx;
741
742 u64 rx_packets;
743 u64 rx_bytes;
744 u64 rx_packets_with_error;
745 u64 rxbuf_alloc_failed;
746};
747
748/* RxQ pair */
749union bna_rxq_u {
750 struct {
751 struct bna_rxq *hdr;
752 struct bna_rxq *data;
753 } hds;
754 struct {
755 struct bna_rxq *small;
756 struct bna_rxq *large;
757 } slr;
758 struct {
759 struct bna_rxq *only;
760 struct bna_rxq *reserved;
761 } single;
762};
763
764/* Packet rate for Dynamic Interrupt Moderation */
765struct bna_pkt_rate {
766 u32 small_pkt_cnt;
767 u32 large_pkt_cnt;
768};
769
770/* Completion control structure */
771struct bna_ccb {
772 /* Fast path */
773 void **sw_qpt;
774 u32 producer_index;
775 volatile u32 *hw_producer_index;
776 u32 q_depth;
777 struct bna_ib_dbell *i_dbell;
778 struct bna_rcb *rcb[2];
779 void *ctrl; /* For bnad */
780 struct bna_pkt_rate pkt_rate;
781 int page_idx;
782 int page_count;
783
784 /* Control path */
785 struct bna_cq *cq;
786 struct bnad *bnad;
787 enum bna_intr_type intr_type;
788 int intr_vector;
789 u8 rx_coalescing_timeo; /* For NAPI */
790 int id;
791 char name[BNA_Q_NAME_SIZE];
792};
793
794/* CQ QPT, configuration */
795struct bna_cq {
796 int cq_id;
797
798 struct bna_qpt qpt;
799 struct bna_ccb *ccb;
800
801 struct bna_ib *ib;
802 u8 ib_seg_offset;
803
804 struct bna_rx *rx;
805};
806
807struct bna_rss_config {
808 enum rss_hash_type hash_type;
809 u8 hash_mask;
810 u32 toeplitz_hash_key[BFI_RSS_HASH_KEY_LEN];
811};
812
813struct bna_hds_config {
814 enum hds_header_type hdr_type;
815 int header_size;
816};
817
818/* This structure is used during RX creation */
819struct bna_rx_config {
820 enum bna_rx_type rx_type;
821 int num_paths;
822 enum bna_rxp_type rxp_type;
823 int paused;
824 int q_depth;
825 /*
826 * Small/Large (or Header/Data) buffer size to be configured
827 * for SLR and HDS queue type. Large buffer size comes from
828 * port->mtu.
829 */
830 int small_buff_size;
831
832 enum bna_status rss_status;
833 struct bna_rss_config rss_config;
834
835 enum bna_status hds_status;
836 struct bna_hds_config hds_config;
837
838 enum bna_status vlan_strip_status;
839};
840
841/* Rx Path structure - one per MSIX vector/CPU */
842struct bna_rxp {
843 /* This should be the first one */
844 struct list_head qe;
845
846 enum bna_rxp_type type;
847 union bna_rxq_u rxq;
848 struct bna_cq cq;
849
850 struct bna_rx *rx;
851
852 /* MSI-x vector number for configuring RSS */
853 int vector;
854
855 struct bna_mbox_qe mbox_qe;
856};
857
858/* HDS configuration structure */
859struct bna_rxf_hds {
860 enum hds_header_type hdr_type;
861 int header_size;
862};
863
864/* RSS configuration structure */
865struct bna_rxf_rss {
866 enum rss_hash_type hash_type;
867 u8 hash_mask;
868 u32 toeplitz_hash_key[BFI_RSS_HASH_KEY_LEN];
869};
870
871/* RxF structure (hardware Rx Function) */
872struct bna_rxf {
873 bfa_fsm_t fsm;
874 int rxf_id;
875 enum rxf_flags ctrl_flags;
876 u16 default_vlan_tag;
877 enum bna_rxf_oper_state rxf_oper_state;
878 enum bna_status hds_status;
879 struct bna_rxf_hds hds_cfg;
880 enum bna_status rss_status;
881 struct bna_rxf_rss rss_cfg;
882 struct bna_rit_segment *rit_segment;
883 struct bna_rx *rx;
884 u32 forced_offset;
885 struct bna_mbox_qe mbox_qe;
886 int mcast_rxq_id;
887
888 /* callback for bna_rxf_start() */
889 void (*start_cbfn) (struct bna_rx *rx, enum bna_cb_status status);
890 struct bna_rx *start_cbarg;
891
892 /* callback for bna_rxf_stop() */
893 void (*stop_cbfn) (struct bna_rx *rx, enum bna_cb_status status);
894 struct bna_rx *stop_cbarg;
895
896 /* callback for bna_rxf_receive_enable() / bna_rxf_receive_disable() */
897 void (*oper_state_cbfn) (struct bnad *bnad, struct bna_rx *rx,
898 enum bna_cb_status status);
899 struct bnad *oper_state_cbarg;
900
901 /**
902 * callback for:
903 * bna_rxf_ucast_set()
904 * bna_rxf_{ucast/mcast}_add(),
905 * bna_rxf_{ucast/mcast}_del(),
906 * bna_rxf_mode_set()
907 */
908 void (*cam_fltr_cbfn)(struct bnad *bnad, struct bna_rx *rx,
909 enum bna_cb_status status);
910 struct bnad *cam_fltr_cbarg;
911
912 enum bna_rxf_flags rxf_flags;
913
914 /* List of unicast addresses yet to be applied to h/w */
915 struct list_head ucast_pending_add_q;
916 struct list_head ucast_pending_del_q;
917 int ucast_pending_set;
918 /* ucast addresses applied to the h/w */
919 struct list_head ucast_active_q;
920 struct bna_mac *ucast_active_mac;
921
922 /* List of multicast addresses yet to be applied to h/w */
923 struct list_head mcast_pending_add_q;
924 struct list_head mcast_pending_del_q;
925 /* multicast addresses applied to the h/w */
926 struct list_head mcast_active_q;
927
928 /* Rx modes yet to be applied to h/w */
929 enum bna_rxmode rxmode_pending;
930 enum bna_rxmode rxmode_pending_bitmask;
931 /* Rx modes applied to h/w */
932 enum bna_rxmode rxmode_active;
933
934 enum bna_status vlan_filter_status;
935 u32 vlan_filter_table[(BFI_MAX_VLAN + 1) / 32];
936};
937
938/* Rx object */
939struct bna_rx {
940 /* This should be the first one */
941 struct list_head qe;
942
943 bfa_fsm_t fsm;
944
945 enum bna_rx_type type;
946
947 /* list-head for RX path objects */
948 struct list_head rxp_q;
949
950 struct bna_rxf rxf;
951
952 enum bna_rx_flags rx_flags;
953
954 struct bna_mbox_qe mbox_qe;
955
956 struct bfa_wc rxq_stop_wc;
957
958 /* Rx event handlers */
959 void (*rcb_setup_cbfn)(struct bnad *, struct bna_rcb *);
960 void (*rcb_destroy_cbfn)(struct bnad *, struct bna_rcb *);
961 void (*ccb_setup_cbfn)(struct bnad *, struct bna_ccb *);
962 void (*ccb_destroy_cbfn)(struct bnad *, struct bna_ccb *);
963 void (*rx_cleanup_cbfn)(struct bnad *, struct bna_ccb *);
964 void (*rx_post_cbfn)(struct bnad *, struct bna_rcb *);
965
966 /* callback for bna_rx_disable(), bna_rx_stop() */
967 void (*stop_cbfn)(void *arg, struct bna_rx *rx,
968 enum bna_cb_status status);
969 void *stop_cbarg;
970
971 struct bna *bna;
972 void *priv; /* bnad's cookie */
973};
974
975struct bna_rx_event_cbfn {
976 /* Optional */
977 void (*rcb_setup_cbfn)(struct bnad *, struct bna_rcb *);
978 void (*rcb_destroy_cbfn)(struct bnad *, struct bna_rcb *);
979 void (*ccb_setup_cbfn)(struct bnad *, struct bna_ccb *);
980 void (*ccb_destroy_cbfn)(struct bnad *, struct bna_ccb *);
981 /* Mandatory */
982 void (*rx_cleanup_cbfn)(struct bnad *, struct bna_ccb *);
983 void (*rx_post_cbfn)(struct bnad *, struct bna_rcb *);
984};
985
986/* Rx module - keeps track of free, active rx objects */
987struct bna_rx_mod {
988 struct bna *bna; /* back pointer to parent */
989 struct bna_rx *rx; /* BFI_MAX_RXQ entries */
990 struct bna_rxp *rxp; /* BFI_MAX_RXQ entries */
991 struct bna_rxq *rxq; /* BFI_MAX_RXQ entries */
992
993 struct list_head rx_free_q;
994 struct list_head rx_active_q;
995 int rx_free_count;
996
997 struct list_head rxp_free_q;
998 int rxp_free_count;
999
1000 struct list_head rxq_free_q;
1001 int rxq_free_count;
1002
1003 enum bna_rx_mod_flags flags;
1004
1005 /* callback for bna_rx_mod_stop() */
1006 void (*stop_cbfn)(struct bna_port *port,
1007 enum bna_cb_status status);
1008
1009 struct bfa_wc rx_stop_wc;
1010 u32 dim_vector[BNA_LOAD_T_MAX][BNA_BIAS_T_MAX];
1011 u32 rxf_bmap[2];
1012};
1013
1014/**
1015 *
1016 * CAM
1017 *
1018 */
1019
1020struct bna_ucam_mod {
1021 struct bna_mac *ucmac; /* BFI_MAX_UCMAC entries */
1022 struct list_head free_q;
1023
1024 struct bna *bna;
1025};
1026
1027struct bna_mcam_mod {
1028 struct bna_mac *mcmac; /* BFI_MAX_MCMAC entries */
1029 struct list_head free_q;
1030
1031 struct bna *bna;
1032};
1033
1034/**
1035 *
1036 * Statistics
1037 *
1038 */
1039
1040struct bna_tx_stats {
1041 int tx_state;
1042 int tx_flags;
1043 int num_txqs;
1044 u32 txq_bmap[2];
1045 int txf_id;
1046};
1047
1048struct bna_rx_stats {
1049 int rx_state;
1050 int rx_flags;
1051 int num_rxps;
1052 int num_rxqs;
1053 u32 rxq_bmap[2];
1054 u32 cq_bmap[2];
1055 int rxf_id;
1056 int rxf_state;
1057 int rxf_oper_state;
1058 int num_active_ucast;
1059 int num_active_mcast;
1060 int rxmode_active;
1061 int vlan_filter_status;
1062 u32 vlan_filter_table[(BFI_MAX_VLAN + 1) / 32];
1063 int rss_status;
1064 int hds_status;
1065};
1066
1067struct bna_sw_stats {
1068 int device_state;
1069 int port_state;
1070 int port_flags;
1071 int llport_state;
1072 int priority;
1073 int num_active_tx;
1074 int num_active_rx;
1075 struct bna_tx_stats tx_stats[BFI_MAX_TXQ];
1076 struct bna_rx_stats rx_stats[BFI_MAX_RXQ];
1077};
1078
1079struct bna_stats {
1080 u32 txf_bmap[2];
1081 u32 rxf_bmap[2];
1082 struct bfi_ll_stats *hw_stats;
1083 struct bna_sw_stats *sw_stats;
1084};
1085
1086/**
1087 *
1088 * BNA
1089 *
1090 */
1091
1092struct bna {
1093 struct bfa_pcidev pcidev;
1094
1095 int port_num;
1096
1097 struct bna_chip_regs regs;
1098
1099 struct bna_dma_addr hw_stats_dma;
1100 struct bna_stats stats;
1101
1102 struct bna_device device;
1103 struct bfa_cee cee;
1104
1105 struct bna_mbox_mod mbox_mod;
1106
1107 struct bna_port port;
1108
1109 struct bna_tx_mod tx_mod;
1110
1111 struct bna_rx_mod rx_mod;
1112
1113 struct bna_ib_mod ib_mod;
1114
1115 struct bna_ucam_mod ucam_mod;
1116 struct bna_mcam_mod mcam_mod;
1117
1118 struct bna_rit_mod rit_mod;
1119
1120 int rxf_promisc_id;
1121
1122 struct bna_mbox_qe mbox_qe;
1123
1124 struct bnad *bnad;
1125};
1126
1127#endif /* __BNA_TYPES_H__ */
diff --git a/drivers/net/bna/bnad.c b/drivers/net/bna/bnad.c
new file mode 100644
index 000000000000..44e219c910da
--- /dev/null
+++ b/drivers/net/bna/bnad.c
@@ -0,0 +1,3288 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#include <linux/netdevice.h>
19#include <linux/skbuff.h>
20#include <linux/etherdevice.h>
21#include <linux/in.h>
22#include <linux/ethtool.h>
23#include <linux/if_vlan.h>
24#include <linux/if_ether.h>
25#include <linux/ip.h>
26#include <linux/prefetch.h>
27
28#include "bnad.h"
29#include "bna.h"
30#include "cna.h"
31
32static DEFINE_MUTEX(bnad_fwimg_mutex);
33
34/*
35 * Module params
36 */
37static uint bnad_msix_disable;
38module_param(bnad_msix_disable, uint, 0444);
39MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
40
41static uint bnad_ioc_auto_recover = 1;
42module_param(bnad_ioc_auto_recover, uint, 0444);
43MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
44
45/*
46 * Global variables
47 */
48u32 bnad_rxqs_per_cq = 2;
49
50static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
51
52/*
53 * Local MACROS
54 */
55#define BNAD_TX_UNMAPQ_DEPTH (bnad->txq_depth * 2)
56
57#define BNAD_RX_UNMAPQ_DEPTH (bnad->rxq_depth)
58
59#define BNAD_GET_MBOX_IRQ(_bnad) \
60 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
61 ((_bnad)->msix_table[(_bnad)->msix_num - 1].vector) : \
62 ((_bnad)->pcidev->irq))
63
64#define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _depth) \
65do { \
66 (_res_info)->res_type = BNA_RES_T_MEM; \
67 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
68 (_res_info)->res_u.mem_info.num = (_num); \
69 (_res_info)->res_u.mem_info.len = \
70 sizeof(struct bnad_unmap_q) + \
71 (sizeof(struct bnad_skb_unmap) * ((_depth) - 1)); \
72} while (0)
73
74#define BNAD_TXRX_SYNC_MDELAY 250 /* 250 msecs */
75
76/*
77 * Reinitialize completions in CQ, once Rx is taken down
78 */
79static void
80bnad_cq_cmpl_init(struct bnad *bnad, struct bna_ccb *ccb)
81{
82 struct bna_cq_entry *cmpl, *next_cmpl;
83 unsigned int wi_range, wis = 0, ccb_prod = 0;
84 int i;
85
86 BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt, cmpl,
87 wi_range);
88
89 for (i = 0; i < ccb->q_depth; i++) {
90 wis++;
91 if (likely(--wi_range))
92 next_cmpl = cmpl + 1;
93 else {
94 BNA_QE_INDX_ADD(ccb_prod, wis, ccb->q_depth);
95 wis = 0;
96 BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt,
97 next_cmpl, wi_range);
98 }
99 cmpl->valid = 0;
100 cmpl = next_cmpl;
101 }
102}
103
104/*
105 * Frees all pending Tx Bufs
106 * At this point no activity is expected on the Q,
107 * so DMA unmap & freeing is fine.
108 */
109static void
110bnad_free_all_txbufs(struct bnad *bnad,
111 struct bna_tcb *tcb)
112{
113 u32 unmap_cons;
114 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
115 struct bnad_skb_unmap *unmap_array;
116 struct sk_buff *skb = NULL;
117 int i;
118
119 unmap_array = unmap_q->unmap_array;
120
121 unmap_cons = 0;
122 while (unmap_cons < unmap_q->q_depth) {
123 skb = unmap_array[unmap_cons].skb;
124 if (!skb) {
125 unmap_cons++;
126 continue;
127 }
128 unmap_array[unmap_cons].skb = NULL;
129
130 dma_unmap_single(&bnad->pcidev->dev,
131 dma_unmap_addr(&unmap_array[unmap_cons],
132 dma_addr), skb_headlen(skb),
133 DMA_TO_DEVICE);
134
135 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
136 if (++unmap_cons >= unmap_q->q_depth)
137 break;
138
139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
140 dma_unmap_page(&bnad->pcidev->dev,
141 dma_unmap_addr(&unmap_array[unmap_cons],
142 dma_addr),
143 skb_shinfo(skb)->frags[i].size,
144 DMA_TO_DEVICE);
145 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
146 0);
147 if (++unmap_cons >= unmap_q->q_depth)
148 break;
149 }
150 dev_kfree_skb_any(skb);
151 }
152}
153
154/* Data Path Handlers */
155
156/*
157 * bnad_free_txbufs : Frees the Tx bufs on Tx completion
158 * Can be called in a) Interrupt context
159 * b) Sending context
160 * c) Tasklet context
161 */
162static u32
163bnad_free_txbufs(struct bnad *bnad,
164 struct bna_tcb *tcb)
165{
166 u32 sent_packets = 0, sent_bytes = 0;
167 u16 wis, unmap_cons, updated_hw_cons;
168 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
169 struct bnad_skb_unmap *unmap_array;
170 struct sk_buff *skb;
171 int i;
172
173 /*
174 * Just return if TX is stopped. This check is useful
175 * when bnad_free_txbufs() runs out of a tasklet scheduled
176 * before bnad_cb_tx_cleanup() cleared BNAD_TXQ_TX_STARTED bit
177 * but this routine runs actually after the cleanup has been
178 * executed.
179 */
180 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
181 return 0;
182
183 updated_hw_cons = *(tcb->hw_consumer_index);
184
185 wis = BNA_Q_INDEX_CHANGE(tcb->consumer_index,
186 updated_hw_cons, tcb->q_depth);
187
188 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
189
190 unmap_array = unmap_q->unmap_array;
191 unmap_cons = unmap_q->consumer_index;
192
193 prefetch(&unmap_array[unmap_cons + 1]);
194 while (wis) {
195 skb = unmap_array[unmap_cons].skb;
196
197 unmap_array[unmap_cons].skb = NULL;
198
199 sent_packets++;
200 sent_bytes += skb->len;
201 wis -= BNA_TXQ_WI_NEEDED(1 + skb_shinfo(skb)->nr_frags);
202
203 dma_unmap_single(&bnad->pcidev->dev,
204 dma_unmap_addr(&unmap_array[unmap_cons],
205 dma_addr), skb_headlen(skb),
206 DMA_TO_DEVICE);
207 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
208 BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
209
210 prefetch(&unmap_array[unmap_cons + 1]);
211 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
212 prefetch(&unmap_array[unmap_cons + 1]);
213
214 dma_unmap_page(&bnad->pcidev->dev,
215 dma_unmap_addr(&unmap_array[unmap_cons],
216 dma_addr),
217 skb_shinfo(skb)->frags[i].size,
218 DMA_TO_DEVICE);
219 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
220 0);
221 BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
222 }
223 dev_kfree_skb_any(skb);
224 }
225
226 /* Update consumer pointers. */
227 tcb->consumer_index = updated_hw_cons;
228 unmap_q->consumer_index = unmap_cons;
229
230 tcb->txq->tx_packets += sent_packets;
231 tcb->txq->tx_bytes += sent_bytes;
232
233 return sent_packets;
234}
235
236/* Tx Free Tasklet function */
237/* Frees for all the tcb's in all the Tx's */
238/*
239 * Scheduled from sending context, so that
240 * the fat Tx lock is not held for too long
241 * in the sending context.
242 */
243static void
244bnad_tx_free_tasklet(unsigned long bnad_ptr)
245{
246 struct bnad *bnad = (struct bnad *)bnad_ptr;
247 struct bna_tcb *tcb;
248 u32 acked = 0;
249 int i, j;
250
251 for (i = 0; i < bnad->num_tx; i++) {
252 for (j = 0; j < bnad->num_txq_per_tx; j++) {
253 tcb = bnad->tx_info[i].tcb[j];
254 if (!tcb)
255 continue;
256 if (((u16) (*tcb->hw_consumer_index) !=
257 tcb->consumer_index) &&
258 (!test_and_set_bit(BNAD_TXQ_FREE_SENT,
259 &tcb->flags))) {
260 acked = bnad_free_txbufs(bnad, tcb);
261 if (likely(test_bit(BNAD_TXQ_TX_STARTED,
262 &tcb->flags)))
263 bna_ib_ack(tcb->i_dbell, acked);
264 smp_mb__before_clear_bit();
265 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
266 }
267 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED,
268 &tcb->flags)))
269 continue;
270 if (netif_queue_stopped(bnad->netdev)) {
271 if (acked && netif_carrier_ok(bnad->netdev) &&
272 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
273 BNAD_NETIF_WAKE_THRESHOLD) {
274 netif_wake_queue(bnad->netdev);
275 /* TODO */
276 /* Counters for individual TxQs? */
277 BNAD_UPDATE_CTR(bnad,
278 netif_queue_wakeup);
279 }
280 }
281 }
282 }
283}
284
285static u32
286bnad_tx(struct bnad *bnad, struct bna_tcb *tcb)
287{
288 struct net_device *netdev = bnad->netdev;
289 u32 sent = 0;
290
291 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
292 return 0;
293
294 sent = bnad_free_txbufs(bnad, tcb);
295 if (sent) {
296 if (netif_queue_stopped(netdev) &&
297 netif_carrier_ok(netdev) &&
298 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
299 BNAD_NETIF_WAKE_THRESHOLD) {
300 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
301 netif_wake_queue(netdev);
302 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
303 }
304 }
305 }
306
307 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
308 bna_ib_ack(tcb->i_dbell, sent);
309
310 smp_mb__before_clear_bit();
311 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
312
313 return sent;
314}
315
316/* MSIX Tx Completion Handler */
317static irqreturn_t
318bnad_msix_tx(int irq, void *data)
319{
320 struct bna_tcb *tcb = (struct bna_tcb *)data;
321 struct bnad *bnad = tcb->bnad;
322
323 bnad_tx(bnad, tcb);
324
325 return IRQ_HANDLED;
326}
327
328static void
329bnad_reset_rcb(struct bnad *bnad, struct bna_rcb *rcb)
330{
331 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
332
333 rcb->producer_index = 0;
334 rcb->consumer_index = 0;
335
336 unmap_q->producer_index = 0;
337 unmap_q->consumer_index = 0;
338}
339
340static void
341bnad_free_all_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
342{
343 struct bnad_unmap_q *unmap_q;
344 struct bnad_skb_unmap *unmap_array;
345 struct sk_buff *skb;
346 int unmap_cons;
347
348 unmap_q = rcb->unmap_q;
349 unmap_array = unmap_q->unmap_array;
350 for (unmap_cons = 0; unmap_cons < unmap_q->q_depth; unmap_cons++) {
351 skb = unmap_array[unmap_cons].skb;
352 if (!skb)
353 continue;
354 unmap_array[unmap_cons].skb = NULL;
355 dma_unmap_single(&bnad->pcidev->dev,
356 dma_unmap_addr(&unmap_array[unmap_cons],
357 dma_addr),
358 rcb->rxq->buffer_size,
359 DMA_FROM_DEVICE);
360 dev_kfree_skb(skb);
361 }
362 bnad_reset_rcb(bnad, rcb);
363}
364
365static void
366bnad_alloc_n_post_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
367{
368 u16 to_alloc, alloced, unmap_prod, wi_range;
369 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
370 struct bnad_skb_unmap *unmap_array;
371 struct bna_rxq_entry *rxent;
372 struct sk_buff *skb;
373 dma_addr_t dma_addr;
374
375 alloced = 0;
376 to_alloc =
377 BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth);
378
379 unmap_array = unmap_q->unmap_array;
380 unmap_prod = unmap_q->producer_index;
381
382 BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent, wi_range);
383
384 while (to_alloc--) {
385 if (!wi_range) {
386 BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent,
387 wi_range);
388 }
389 skb = alloc_skb(rcb->rxq->buffer_size + NET_IP_ALIGN,
390 GFP_ATOMIC);
391 if (unlikely(!skb)) {
392 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
393 goto finishing;
394 }
395 skb->dev = bnad->netdev;
396 skb_reserve(skb, NET_IP_ALIGN);
397 unmap_array[unmap_prod].skb = skb;
398 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
399 rcb->rxq->buffer_size,
400 DMA_FROM_DEVICE);
401 dma_unmap_addr_set(&unmap_array[unmap_prod], dma_addr,
402 dma_addr);
403 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
404 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
405
406 rxent++;
407 wi_range--;
408 alloced++;
409 }
410
411finishing:
412 if (likely(alloced)) {
413 unmap_q->producer_index = unmap_prod;
414 rcb->producer_index = unmap_prod;
415 smp_mb();
416 if (likely(test_bit(BNAD_RXQ_STARTED, &rcb->flags)))
417 bna_rxq_prod_indx_doorbell(rcb);
418 }
419}
420
421static inline void
422bnad_refill_rxq(struct bnad *bnad, struct bna_rcb *rcb)
423{
424 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
425
426 if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
427 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
428 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
429 bnad_alloc_n_post_rxbufs(bnad, rcb);
430 smp_mb__before_clear_bit();
431 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
432 }
433}
434
435static u32
436bnad_poll_cq(struct bnad *bnad, struct bna_ccb *ccb, int budget)
437{
438 struct bna_cq_entry *cmpl, *next_cmpl;
439 struct bna_rcb *rcb = NULL;
440 unsigned int wi_range, packets = 0, wis = 0;
441 struct bnad_unmap_q *unmap_q;
442 struct bnad_skb_unmap *unmap_array;
443 struct sk_buff *skb;
444 u32 flags, unmap_cons;
445 u32 qid0 = ccb->rcb[0]->rxq->rxq_id;
446 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
447
448 if (!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags))
449 return 0;
450
451 prefetch(bnad->netdev);
452 BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt, cmpl,
453 wi_range);
454 BUG_ON(!(wi_range <= ccb->q_depth));
455 while (cmpl->valid && packets < budget) {
456 packets++;
457 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
458
459 if (qid0 == cmpl->rxq_id)
460 rcb = ccb->rcb[0];
461 else
462 rcb = ccb->rcb[1];
463
464 unmap_q = rcb->unmap_q;
465 unmap_array = unmap_q->unmap_array;
466 unmap_cons = unmap_q->consumer_index;
467
468 skb = unmap_array[unmap_cons].skb;
469 BUG_ON(!(skb));
470 unmap_array[unmap_cons].skb = NULL;
471 dma_unmap_single(&bnad->pcidev->dev,
472 dma_unmap_addr(&unmap_array[unmap_cons],
473 dma_addr),
474 rcb->rxq->buffer_size,
475 DMA_FROM_DEVICE);
476 BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
477
478 /* Should be more efficient ? Performance ? */
479 BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
480
481 wis++;
482 if (likely(--wi_range))
483 next_cmpl = cmpl + 1;
484 else {
485 BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
486 wis = 0;
487 BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt,
488 next_cmpl, wi_range);
489 BUG_ON(!(wi_range <= ccb->q_depth));
490 }
491 prefetch(next_cmpl);
492
493 flags = ntohl(cmpl->flags);
494 if (unlikely
495 (flags &
496 (BNA_CQ_EF_MAC_ERROR | BNA_CQ_EF_FCS_ERROR |
497 BNA_CQ_EF_TOO_LONG))) {
498 dev_kfree_skb_any(skb);
499 rcb->rxq->rx_packets_with_error++;
500 goto next;
501 }
502
503 skb_put(skb, ntohs(cmpl->length));
504 if (likely
505 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
506 (((flags & BNA_CQ_EF_IPV4) &&
507 (flags & BNA_CQ_EF_L3_CKSUM_OK)) ||
508 (flags & BNA_CQ_EF_IPV6)) &&
509 (flags & (BNA_CQ_EF_TCP | BNA_CQ_EF_UDP)) &&
510 (flags & BNA_CQ_EF_L4_CKSUM_OK)))
511 skb->ip_summed = CHECKSUM_UNNECESSARY;
512 else
513 skb_checksum_none_assert(skb);
514
515 rcb->rxq->rx_packets++;
516 rcb->rxq->rx_bytes += skb->len;
517 skb->protocol = eth_type_trans(skb, bnad->netdev);
518
519 if (bnad->vlan_grp && (flags & BNA_CQ_EF_VLAN)) {
520 struct bnad_rx_ctrl *rx_ctrl =
521 (struct bnad_rx_ctrl *)ccb->ctrl;
522 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
523 vlan_gro_receive(&rx_ctrl->napi, bnad->vlan_grp,
524 ntohs(cmpl->vlan_tag), skb);
525 else
526 vlan_hwaccel_receive_skb(skb,
527 bnad->vlan_grp,
528 ntohs(cmpl->vlan_tag));
529
530 } else { /* Not VLAN tagged/stripped */
531 struct bnad_rx_ctrl *rx_ctrl =
532 (struct bnad_rx_ctrl *)ccb->ctrl;
533 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
534 napi_gro_receive(&rx_ctrl->napi, skb);
535 else
536 netif_receive_skb(skb);
537 }
538
539next:
540 cmpl->valid = 0;
541 cmpl = next_cmpl;
542 }
543
544 BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
545
546 if (likely(ccb)) {
547 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
548 bna_ib_ack(ccb->i_dbell, packets);
549 bnad_refill_rxq(bnad, ccb->rcb[0]);
550 if (ccb->rcb[1])
551 bnad_refill_rxq(bnad, ccb->rcb[1]);
552 } else {
553 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
554 bna_ib_ack(ccb->i_dbell, 0);
555 }
556
557 return packets;
558}
559
560static void
561bnad_disable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
562{
563 if (unlikely(!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
564 return;
565
566 bna_ib_coalescing_timer_set(ccb->i_dbell, 0);
567 bna_ib_ack(ccb->i_dbell, 0);
568}
569
570static void
571bnad_enable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
572{
573 unsigned long flags;
574
575 /* Because of polling context */
576 spin_lock_irqsave(&bnad->bna_lock, flags);
577 bnad_enable_rx_irq_unsafe(ccb);
578 spin_unlock_irqrestore(&bnad->bna_lock, flags);
579}
580
581static void
582bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
583{
584 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
585 struct napi_struct *napi = &rx_ctrl->napi;
586
587 if (likely(napi_schedule_prep(napi))) {
588 bnad_disable_rx_irq(bnad, ccb);
589 __napi_schedule(napi);
590 }
591 BNAD_UPDATE_CTR(bnad, netif_rx_schedule);
592}
593
594/* MSIX Rx Path Handler */
595static irqreturn_t
596bnad_msix_rx(int irq, void *data)
597{
598 struct bna_ccb *ccb = (struct bna_ccb *)data;
599 struct bnad *bnad = ccb->bnad;
600
601 bnad_netif_rx_schedule_poll(bnad, ccb);
602
603 return IRQ_HANDLED;
604}
605
606/* Interrupt handlers */
607
608/* Mbox Interrupt Handlers */
609static irqreturn_t
610bnad_msix_mbox_handler(int irq, void *data)
611{
612 u32 intr_status;
613 unsigned long flags;
614 struct bnad *bnad = (struct bnad *)data;
615
616 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
617 return IRQ_HANDLED;
618
619 spin_lock_irqsave(&bnad->bna_lock, flags);
620
621 bna_intr_status_get(&bnad->bna, intr_status);
622
623 if (BNA_IS_MBOX_ERR_INTR(intr_status))
624 bna_mbox_handler(&bnad->bna, intr_status);
625
626 spin_unlock_irqrestore(&bnad->bna_lock, flags);
627
628 return IRQ_HANDLED;
629}
630
631static irqreturn_t
632bnad_isr(int irq, void *data)
633{
634 int i, j;
635 u32 intr_status;
636 unsigned long flags;
637 struct bnad *bnad = (struct bnad *)data;
638 struct bnad_rx_info *rx_info;
639 struct bnad_rx_ctrl *rx_ctrl;
640
641 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
642 return IRQ_NONE;
643
644 bna_intr_status_get(&bnad->bna, intr_status);
645
646 if (unlikely(!intr_status))
647 return IRQ_NONE;
648
649 spin_lock_irqsave(&bnad->bna_lock, flags);
650
651 if (BNA_IS_MBOX_ERR_INTR(intr_status))
652 bna_mbox_handler(&bnad->bna, intr_status);
653
654 spin_unlock_irqrestore(&bnad->bna_lock, flags);
655
656 if (!BNA_IS_INTX_DATA_INTR(intr_status))
657 return IRQ_HANDLED;
658
659 /* Process data interrupts */
660 /* Tx processing */
661 for (i = 0; i < bnad->num_tx; i++) {
662 for (j = 0; j < bnad->num_txq_per_tx; j++)
663 bnad_tx(bnad, bnad->tx_info[i].tcb[j]);
664 }
665 /* Rx processing */
666 for (i = 0; i < bnad->num_rx; i++) {
667 rx_info = &bnad->rx_info[i];
668 if (!rx_info->rx)
669 continue;
670 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
671 rx_ctrl = &rx_info->rx_ctrl[j];
672 if (rx_ctrl->ccb)
673 bnad_netif_rx_schedule_poll(bnad,
674 rx_ctrl->ccb);
675 }
676 }
677 return IRQ_HANDLED;
678}
679
680/*
681 * Called in interrupt / callback context
682 * with bna_lock held, so cfg_flags access is OK
683 */
684static void
685bnad_enable_mbox_irq(struct bnad *bnad)
686{
687 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
688
689 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
690}
691
692/*
693 * Called with bnad->bna_lock held b'cos of
694 * bnad->cfg_flags access.
695 */
696static void
697bnad_disable_mbox_irq(struct bnad *bnad)
698{
699 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
700
701 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
702}
703
704static void
705bnad_set_netdev_perm_addr(struct bnad *bnad)
706{
707 struct net_device *netdev = bnad->netdev;
708
709 memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
710 if (is_zero_ether_addr(netdev->dev_addr))
711 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
712}
713
714/* Control Path Handlers */
715
716/* Callbacks */
717void
718bnad_cb_device_enable_mbox_intr(struct bnad *bnad)
719{
720 bnad_enable_mbox_irq(bnad);
721}
722
723void
724bnad_cb_device_disable_mbox_intr(struct bnad *bnad)
725{
726 bnad_disable_mbox_irq(bnad);
727}
728
729void
730bnad_cb_device_enabled(struct bnad *bnad, enum bna_cb_status status)
731{
732 complete(&bnad->bnad_completions.ioc_comp);
733 bnad->bnad_completions.ioc_comp_status = status;
734}
735
736void
737bnad_cb_device_disabled(struct bnad *bnad, enum bna_cb_status status)
738{
739 complete(&bnad->bnad_completions.ioc_comp);
740 bnad->bnad_completions.ioc_comp_status = status;
741}
742
743static void
744bnad_cb_port_disabled(void *arg, enum bna_cb_status status)
745{
746 struct bnad *bnad = (struct bnad *)arg;
747
748 complete(&bnad->bnad_completions.port_comp);
749
750 netif_carrier_off(bnad->netdev);
751}
752
753void
754bnad_cb_port_link_status(struct bnad *bnad,
755 enum bna_link_status link_status)
756{
757 bool link_up = 0;
758
759 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
760
761 if (link_status == BNA_CEE_UP) {
762 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
763 BNAD_UPDATE_CTR(bnad, cee_up);
764 } else
765 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
766
767 if (link_up) {
768 if (!netif_carrier_ok(bnad->netdev)) {
769 struct bna_tcb *tcb = bnad->tx_info[0].tcb[0];
770 if (!tcb)
771 return;
772 pr_warn("bna: %s link up\n",
773 bnad->netdev->name);
774 netif_carrier_on(bnad->netdev);
775 BNAD_UPDATE_CTR(bnad, link_toggle);
776 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
777 /* Force an immediate Transmit Schedule */
778 pr_info("bna: %s TX_STARTED\n",
779 bnad->netdev->name);
780 netif_wake_queue(bnad->netdev);
781 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
782 } else {
783 netif_stop_queue(bnad->netdev);
784 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
785 }
786 }
787 } else {
788 if (netif_carrier_ok(bnad->netdev)) {
789 pr_warn("bna: %s link down\n",
790 bnad->netdev->name);
791 netif_carrier_off(bnad->netdev);
792 BNAD_UPDATE_CTR(bnad, link_toggle);
793 }
794 }
795}
796
797static void
798bnad_cb_tx_disabled(void *arg, struct bna_tx *tx,
799 enum bna_cb_status status)
800{
801 struct bnad *bnad = (struct bnad *)arg;
802
803 complete(&bnad->bnad_completions.tx_comp);
804}
805
806static void
807bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
808{
809 struct bnad_tx_info *tx_info =
810 (struct bnad_tx_info *)tcb->txq->tx->priv;
811 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
812
813 tx_info->tcb[tcb->id] = tcb;
814 unmap_q->producer_index = 0;
815 unmap_q->consumer_index = 0;
816 unmap_q->q_depth = BNAD_TX_UNMAPQ_DEPTH;
817}
818
819static void
820bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
821{
822 struct bnad_tx_info *tx_info =
823 (struct bnad_tx_info *)tcb->txq->tx->priv;
824 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
825
826 while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
827 cpu_relax();
828
829 bnad_free_all_txbufs(bnad, tcb);
830
831 unmap_q->producer_index = 0;
832 unmap_q->consumer_index = 0;
833
834 smp_mb__before_clear_bit();
835 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
836
837 tx_info->tcb[tcb->id] = NULL;
838}
839
840static void
841bnad_cb_rcb_setup(struct bnad *bnad, struct bna_rcb *rcb)
842{
843 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
844
845 unmap_q->producer_index = 0;
846 unmap_q->consumer_index = 0;
847 unmap_q->q_depth = BNAD_RX_UNMAPQ_DEPTH;
848}
849
850static void
851bnad_cb_rcb_destroy(struct bnad *bnad, struct bna_rcb *rcb)
852{
853 bnad_free_all_rxbufs(bnad, rcb);
854}
855
856static void
857bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
858{
859 struct bnad_rx_info *rx_info =
860 (struct bnad_rx_info *)ccb->cq->rx->priv;
861
862 rx_info->rx_ctrl[ccb->id].ccb = ccb;
863 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
864}
865
866static void
867bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
868{
869 struct bnad_rx_info *rx_info =
870 (struct bnad_rx_info *)ccb->cq->rx->priv;
871
872 rx_info->rx_ctrl[ccb->id].ccb = NULL;
873}
874
875static void
876bnad_cb_tx_stall(struct bnad *bnad, struct bna_tcb *tcb)
877{
878 struct bnad_tx_info *tx_info =
879 (struct bnad_tx_info *)tcb->txq->tx->priv;
880
881 if (tx_info != &bnad->tx_info[0])
882 return;
883
884 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
885 netif_stop_queue(bnad->netdev);
886 pr_info("bna: %s TX_STOPPED\n", bnad->netdev->name);
887}
888
889static void
890bnad_cb_tx_resume(struct bnad *bnad, struct bna_tcb *tcb)
891{
892 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
893
894 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
895 return;
896
897 clear_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags);
898
899 while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
900 cpu_relax();
901
902 bnad_free_all_txbufs(bnad, tcb);
903
904 unmap_q->producer_index = 0;
905 unmap_q->consumer_index = 0;
906
907 smp_mb__before_clear_bit();
908 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
909
910 /*
911 * Workaround for first device enable failure & we
912 * get a 0 MAC address. We try to get the MAC address
913 * again here.
914 */
915 if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
916 bna_port_mac_get(&bnad->bna.port, &bnad->perm_addr);
917 bnad_set_netdev_perm_addr(bnad);
918 }
919
920 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
921
922 if (netif_carrier_ok(bnad->netdev)) {
923 pr_info("bna: %s TX_STARTED\n", bnad->netdev->name);
924 netif_wake_queue(bnad->netdev);
925 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
926 }
927}
928
929static void
930bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
931{
932 /* Delay only once for the whole Tx Path Shutdown */
933 if (!test_and_set_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags))
934 mdelay(BNAD_TXRX_SYNC_MDELAY);
935}
936
937static void
938bnad_cb_rx_cleanup(struct bnad *bnad,
939 struct bna_ccb *ccb)
940{
941 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
942
943 if (ccb->rcb[1])
944 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
945
946 if (!test_and_set_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags))
947 mdelay(BNAD_TXRX_SYNC_MDELAY);
948}
949
950static void
951bnad_cb_rx_post(struct bnad *bnad, struct bna_rcb *rcb)
952{
953 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
954
955 clear_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags);
956
957 if (rcb == rcb->cq->ccb->rcb[0])
958 bnad_cq_cmpl_init(bnad, rcb->cq->ccb);
959
960 bnad_free_all_rxbufs(bnad, rcb);
961
962 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
963
964 /* Now allocate & post buffers for this RCB */
965 /* !!Allocation in callback context */
966 if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
967 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
968 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
969 bnad_alloc_n_post_rxbufs(bnad, rcb);
970 smp_mb__before_clear_bit();
971 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
972 }
973}
974
975static void
976bnad_cb_rx_disabled(void *arg, struct bna_rx *rx,
977 enum bna_cb_status status)
978{
979 struct bnad *bnad = (struct bnad *)arg;
980
981 complete(&bnad->bnad_completions.rx_comp);
982}
983
984static void
985bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx,
986 enum bna_cb_status status)
987{
988 bnad->bnad_completions.mcast_comp_status = status;
989 complete(&bnad->bnad_completions.mcast_comp);
990}
991
992void
993bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
994 struct bna_stats *stats)
995{
996 if (status == BNA_CB_SUCCESS)
997 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
998
999 if (!netif_running(bnad->netdev) ||
1000 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1001 return;
1002
1003 mod_timer(&bnad->stats_timer,
1004 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1005}
1006
1007/* Resource allocation, free functions */
1008
1009static void
1010bnad_mem_free(struct bnad *bnad,
1011 struct bna_mem_info *mem_info)
1012{
1013 int i;
1014 dma_addr_t dma_pa;
1015
1016 if (mem_info->mdl == NULL)
1017 return;
1018
1019 for (i = 0; i < mem_info->num; i++) {
1020 if (mem_info->mdl[i].kva != NULL) {
1021 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1022 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1023 dma_pa);
1024 dma_free_coherent(&bnad->pcidev->dev,
1025 mem_info->mdl[i].len,
1026 mem_info->mdl[i].kva, dma_pa);
1027 } else
1028 kfree(mem_info->mdl[i].kva);
1029 }
1030 }
1031 kfree(mem_info->mdl);
1032 mem_info->mdl = NULL;
1033}
1034
1035static int
1036bnad_mem_alloc(struct bnad *bnad,
1037 struct bna_mem_info *mem_info)
1038{
1039 int i;
1040 dma_addr_t dma_pa;
1041
1042 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1043 mem_info->mdl = NULL;
1044 return 0;
1045 }
1046
1047 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1048 GFP_KERNEL);
1049 if (mem_info->mdl == NULL)
1050 return -ENOMEM;
1051
1052 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1053 for (i = 0; i < mem_info->num; i++) {
1054 mem_info->mdl[i].len = mem_info->len;
1055 mem_info->mdl[i].kva =
1056 dma_alloc_coherent(&bnad->pcidev->dev,
1057 mem_info->len, &dma_pa,
1058 GFP_KERNEL);
1059
1060 if (mem_info->mdl[i].kva == NULL)
1061 goto err_return;
1062
1063 BNA_SET_DMA_ADDR(dma_pa,
1064 &(mem_info->mdl[i].dma));
1065 }
1066 } else {
1067 for (i = 0; i < mem_info->num; i++) {
1068 mem_info->mdl[i].len = mem_info->len;
1069 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1070 GFP_KERNEL);
1071 if (mem_info->mdl[i].kva == NULL)
1072 goto err_return;
1073 }
1074 }
1075
1076 return 0;
1077
1078err_return:
1079 bnad_mem_free(bnad, mem_info);
1080 return -ENOMEM;
1081}
1082
1083/* Free IRQ for Mailbox */
1084static void
1085bnad_mbox_irq_free(struct bnad *bnad,
1086 struct bna_intr_info *intr_info)
1087{
1088 int irq;
1089 unsigned long flags;
1090
1091 if (intr_info->idl == NULL)
1092 return;
1093
1094 spin_lock_irqsave(&bnad->bna_lock, flags);
1095 bnad_disable_mbox_irq(bnad);
1096 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1097
1098 irq = BNAD_GET_MBOX_IRQ(bnad);
1099 free_irq(irq, bnad);
1100
1101 kfree(intr_info->idl);
1102}
1103
1104/*
1105 * Allocates IRQ for Mailbox, but keep it disabled
1106 * This will be enabled once we get the mbox enable callback
1107 * from bna
1108 */
1109static int
1110bnad_mbox_irq_alloc(struct bnad *bnad,
1111 struct bna_intr_info *intr_info)
1112{
1113 int err = 0;
1114 unsigned long irq_flags = 0, flags;
1115 u32 irq;
1116 irq_handler_t irq_handler;
1117
1118 /* Mbox should use only 1 vector */
1119
1120 intr_info->idl = kzalloc(sizeof(*(intr_info->idl)), GFP_KERNEL);
1121 if (!intr_info->idl)
1122 return -ENOMEM;
1123
1124 spin_lock_irqsave(&bnad->bna_lock, flags);
1125 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1126 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1127 irq = bnad->msix_table[bnad->msix_num - 1].vector;
1128 intr_info->intr_type = BNA_INTR_T_MSIX;
1129 intr_info->idl[0].vector = bnad->msix_num - 1;
1130 } else {
1131 irq_handler = (irq_handler_t)bnad_isr;
1132 irq = bnad->pcidev->irq;
1133 irq_flags = IRQF_SHARED;
1134 intr_info->intr_type = BNA_INTR_T_INTX;
1135 /* intr_info->idl.vector = 0 ? */
1136 }
1137 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1138 flags = irq_flags;
1139 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1140
1141 /*
1142 * Set the Mbox IRQ disable flag, so that the IRQ handler
1143 * called from request_irq() for SHARED IRQs do not execute
1144 */
1145 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1146
1147 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1148
1149 err = request_irq(irq, irq_handler, flags,
1150 bnad->mbox_irq_name, bnad);
1151
1152 if (err) {
1153 kfree(intr_info->idl);
1154 intr_info->idl = NULL;
1155 }
1156
1157 return err;
1158}
1159
1160static void
1161bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1162{
1163 kfree(intr_info->idl);
1164 intr_info->idl = NULL;
1165}
1166
1167/* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1168static int
1169bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1170 uint txrx_id, struct bna_intr_info *intr_info)
1171{
1172 int i, vector_start = 0;
1173 u32 cfg_flags;
1174 unsigned long flags;
1175
1176 spin_lock_irqsave(&bnad->bna_lock, flags);
1177 cfg_flags = bnad->cfg_flags;
1178 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1179
1180 if (cfg_flags & BNAD_CF_MSIX) {
1181 intr_info->intr_type = BNA_INTR_T_MSIX;
1182 intr_info->idl = kcalloc(intr_info->num,
1183 sizeof(struct bna_intr_descr),
1184 GFP_KERNEL);
1185 if (!intr_info->idl)
1186 return -ENOMEM;
1187
1188 switch (src) {
1189 case BNAD_INTR_TX:
1190 vector_start = txrx_id;
1191 break;
1192
1193 case BNAD_INTR_RX:
1194 vector_start = bnad->num_tx * bnad->num_txq_per_tx +
1195 txrx_id;
1196 break;
1197
1198 default:
1199 BUG();
1200 }
1201
1202 for (i = 0; i < intr_info->num; i++)
1203 intr_info->idl[i].vector = vector_start + i;
1204 } else {
1205 intr_info->intr_type = BNA_INTR_T_INTX;
1206 intr_info->num = 1;
1207 intr_info->idl = kcalloc(intr_info->num,
1208 sizeof(struct bna_intr_descr),
1209 GFP_KERNEL);
1210 if (!intr_info->idl)
1211 return -ENOMEM;
1212
1213 switch (src) {
1214 case BNAD_INTR_TX:
1215 intr_info->idl[0].vector = 0x1; /* Bit mask : Tx IB */
1216 break;
1217
1218 case BNAD_INTR_RX:
1219 intr_info->idl[0].vector = 0x2; /* Bit mask : Rx IB */
1220 break;
1221 }
1222 }
1223 return 0;
1224}
1225
1226/**
1227 * NOTE: Should be called for MSIX only
1228 * Unregisters Tx MSIX vector(s) from the kernel
1229 */
1230static void
1231bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1232 int num_txqs)
1233{
1234 int i;
1235 int vector_num;
1236
1237 for (i = 0; i < num_txqs; i++) {
1238 if (tx_info->tcb[i] == NULL)
1239 continue;
1240
1241 vector_num = tx_info->tcb[i]->intr_vector;
1242 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1243 }
1244}
1245
1246/**
1247 * NOTE: Should be called for MSIX only
1248 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1249 */
1250static int
1251bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1252 uint tx_id, int num_txqs)
1253{
1254 int i;
1255 int err;
1256 int vector_num;
1257
1258 for (i = 0; i < num_txqs; i++) {
1259 vector_num = tx_info->tcb[i]->intr_vector;
1260 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1261 tx_id + tx_info->tcb[i]->id);
1262 err = request_irq(bnad->msix_table[vector_num].vector,
1263 (irq_handler_t)bnad_msix_tx, 0,
1264 tx_info->tcb[i]->name,
1265 tx_info->tcb[i]);
1266 if (err)
1267 goto err_return;
1268 }
1269
1270 return 0;
1271
1272err_return:
1273 if (i > 0)
1274 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1275 return -1;
1276}
1277
1278/**
1279 * NOTE: Should be called for MSIX only
1280 * Unregisters Rx MSIX vector(s) from the kernel
1281 */
1282static void
1283bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1284 int num_rxps)
1285{
1286 int i;
1287 int vector_num;
1288
1289 for (i = 0; i < num_rxps; i++) {
1290 if (rx_info->rx_ctrl[i].ccb == NULL)
1291 continue;
1292
1293 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1294 free_irq(bnad->msix_table[vector_num].vector,
1295 rx_info->rx_ctrl[i].ccb);
1296 }
1297}
1298
1299/**
1300 * NOTE: Should be called for MSIX only
1301 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1302 */
1303static int
1304bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1305 uint rx_id, int num_rxps)
1306{
1307 int i;
1308 int err;
1309 int vector_num;
1310
1311 for (i = 0; i < num_rxps; i++) {
1312 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1313 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1314 bnad->netdev->name,
1315 rx_id + rx_info->rx_ctrl[i].ccb->id);
1316 err = request_irq(bnad->msix_table[vector_num].vector,
1317 (irq_handler_t)bnad_msix_rx, 0,
1318 rx_info->rx_ctrl[i].ccb->name,
1319 rx_info->rx_ctrl[i].ccb);
1320 if (err)
1321 goto err_return;
1322 }
1323
1324 return 0;
1325
1326err_return:
1327 if (i > 0)
1328 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1329 return -1;
1330}
1331
1332/* Free Tx object Resources */
1333static void
1334bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1335{
1336 int i;
1337
1338 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1339 if (res_info[i].res_type == BNA_RES_T_MEM)
1340 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1341 else if (res_info[i].res_type == BNA_RES_T_INTR)
1342 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1343 }
1344}
1345
1346/* Allocates memory and interrupt resources for Tx object */
1347static int
1348bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1349 uint tx_id)
1350{
1351 int i, err = 0;
1352
1353 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1354 if (res_info[i].res_type == BNA_RES_T_MEM)
1355 err = bnad_mem_alloc(bnad,
1356 &res_info[i].res_u.mem_info);
1357 else if (res_info[i].res_type == BNA_RES_T_INTR)
1358 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1359 &res_info[i].res_u.intr_info);
1360 if (err)
1361 goto err_return;
1362 }
1363 return 0;
1364
1365err_return:
1366 bnad_tx_res_free(bnad, res_info);
1367 return err;
1368}
1369
1370/* Free Rx object Resources */
1371static void
1372bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1373{
1374 int i;
1375
1376 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1377 if (res_info[i].res_type == BNA_RES_T_MEM)
1378 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1379 else if (res_info[i].res_type == BNA_RES_T_INTR)
1380 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1381 }
1382}
1383
1384/* Allocates memory and interrupt resources for Rx object */
1385static int
1386bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1387 uint rx_id)
1388{
1389 int i, err = 0;
1390
1391 /* All memory needs to be allocated before setup_ccbs */
1392 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1393 if (res_info[i].res_type == BNA_RES_T_MEM)
1394 err = bnad_mem_alloc(bnad,
1395 &res_info[i].res_u.mem_info);
1396 else if (res_info[i].res_type == BNA_RES_T_INTR)
1397 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1398 &res_info[i].res_u.intr_info);
1399 if (err)
1400 goto err_return;
1401 }
1402 return 0;
1403
1404err_return:
1405 bnad_rx_res_free(bnad, res_info);
1406 return err;
1407}
1408
1409/* Timer callbacks */
1410/* a) IOC timer */
1411static void
1412bnad_ioc_timeout(unsigned long data)
1413{
1414 struct bnad *bnad = (struct bnad *)data;
1415 unsigned long flags;
1416
1417 spin_lock_irqsave(&bnad->bna_lock, flags);
1418 bfa_nw_ioc_timeout((void *) &bnad->bna.device.ioc);
1419 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1420}
1421
1422static void
1423bnad_ioc_hb_check(unsigned long data)
1424{
1425 struct bnad *bnad = (struct bnad *)data;
1426 unsigned long flags;
1427
1428 spin_lock_irqsave(&bnad->bna_lock, flags);
1429 bfa_nw_ioc_hb_check((void *) &bnad->bna.device.ioc);
1430 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1431}
1432
1433static void
1434bnad_iocpf_timeout(unsigned long data)
1435{
1436 struct bnad *bnad = (struct bnad *)data;
1437 unsigned long flags;
1438
1439 spin_lock_irqsave(&bnad->bna_lock, flags);
1440 bfa_nw_iocpf_timeout((void *) &bnad->bna.device.ioc);
1441 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1442}
1443
1444static void
1445bnad_iocpf_sem_timeout(unsigned long data)
1446{
1447 struct bnad *bnad = (struct bnad *)data;
1448 unsigned long flags;
1449
1450 spin_lock_irqsave(&bnad->bna_lock, flags);
1451 bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.device.ioc);
1452 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1453}
1454
1455/*
1456 * All timer routines use bnad->bna_lock to protect against
1457 * the following race, which may occur in case of no locking:
1458 * Time CPU m CPU n
1459 * 0 1 = test_bit
1460 * 1 clear_bit
1461 * 2 del_timer_sync
1462 * 3 mod_timer
1463 */
1464
1465/* b) Dynamic Interrupt Moderation Timer */
1466static void
1467bnad_dim_timeout(unsigned long data)
1468{
1469 struct bnad *bnad = (struct bnad *)data;
1470 struct bnad_rx_info *rx_info;
1471 struct bnad_rx_ctrl *rx_ctrl;
1472 int i, j;
1473 unsigned long flags;
1474
1475 if (!netif_carrier_ok(bnad->netdev))
1476 return;
1477
1478 spin_lock_irqsave(&bnad->bna_lock, flags);
1479 for (i = 0; i < bnad->num_rx; i++) {
1480 rx_info = &bnad->rx_info[i];
1481 if (!rx_info->rx)
1482 continue;
1483 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1484 rx_ctrl = &rx_info->rx_ctrl[j];
1485 if (!rx_ctrl->ccb)
1486 continue;
1487 bna_rx_dim_update(rx_ctrl->ccb);
1488 }
1489 }
1490
1491 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1492 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1493 mod_timer(&bnad->dim_timer,
1494 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1495 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1496}
1497
1498/* c) Statistics Timer */
1499static void
1500bnad_stats_timeout(unsigned long data)
1501{
1502 struct bnad *bnad = (struct bnad *)data;
1503 unsigned long flags;
1504
1505 if (!netif_running(bnad->netdev) ||
1506 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1507 return;
1508
1509 spin_lock_irqsave(&bnad->bna_lock, flags);
1510 bna_stats_get(&bnad->bna);
1511 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1512}
1513
1514/*
1515 * Set up timer for DIM
1516 * Called with bnad->bna_lock held
1517 */
1518void
1519bnad_dim_timer_start(struct bnad *bnad)
1520{
1521 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1522 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1523 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1524 (unsigned long)bnad);
1525 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1526 mod_timer(&bnad->dim_timer,
1527 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1528 }
1529}
1530
1531/*
1532 * Set up timer for statistics
1533 * Called with mutex_lock(&bnad->conf_mutex) held
1534 */
1535static void
1536bnad_stats_timer_start(struct bnad *bnad)
1537{
1538 unsigned long flags;
1539
1540 spin_lock_irqsave(&bnad->bna_lock, flags);
1541 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1542 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1543 (unsigned long)bnad);
1544 mod_timer(&bnad->stats_timer,
1545 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1546 }
1547 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1548}
1549
1550/*
1551 * Stops the stats timer
1552 * Called with mutex_lock(&bnad->conf_mutex) held
1553 */
1554static void
1555bnad_stats_timer_stop(struct bnad *bnad)
1556{
1557 int to_del = 0;
1558 unsigned long flags;
1559
1560 spin_lock_irqsave(&bnad->bna_lock, flags);
1561 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1562 to_del = 1;
1563 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1564 if (to_del)
1565 del_timer_sync(&bnad->stats_timer);
1566}
1567
1568/* Utilities */
1569
1570static void
1571bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1572{
1573 int i = 1; /* Index 0 has broadcast address */
1574 struct netdev_hw_addr *mc_addr;
1575
1576 netdev_for_each_mc_addr(mc_addr, netdev) {
1577 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1578 ETH_ALEN);
1579 i++;
1580 }
1581}
1582
1583static int
1584bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1585{
1586 struct bnad_rx_ctrl *rx_ctrl =
1587 container_of(napi, struct bnad_rx_ctrl, napi);
1588 struct bna_ccb *ccb;
1589 struct bnad *bnad;
1590 int rcvd = 0;
1591
1592 ccb = rx_ctrl->ccb;
1593
1594 bnad = ccb->bnad;
1595
1596 if (!netif_carrier_ok(bnad->netdev))
1597 goto poll_exit;
1598
1599 rcvd = bnad_poll_cq(bnad, ccb, budget);
1600 if (rcvd == budget)
1601 return rcvd;
1602
1603poll_exit:
1604 napi_complete((napi));
1605
1606 BNAD_UPDATE_CTR(bnad, netif_rx_complete);
1607
1608 bnad_enable_rx_irq(bnad, ccb);
1609 return rcvd;
1610}
1611
1612static void
1613bnad_napi_enable(struct bnad *bnad, u32 rx_id)
1614{
1615 struct bnad_rx_ctrl *rx_ctrl;
1616 int i;
1617
1618 /* Initialize & enable NAPI */
1619 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1620 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1621
1622 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1623 bnad_napi_poll_rx, 64);
1624
1625 napi_enable(&rx_ctrl->napi);
1626 }
1627}
1628
1629static void
1630bnad_napi_disable(struct bnad *bnad, u32 rx_id)
1631{
1632 int i;
1633
1634 /* First disable and then clean up */
1635 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1636 napi_disable(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1637 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1638 }
1639}
1640
1641/* Should be held with conf_lock held */
1642void
1643bnad_cleanup_tx(struct bnad *bnad, uint tx_id)
1644{
1645 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1646 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1647 unsigned long flags;
1648
1649 if (!tx_info->tx)
1650 return;
1651
1652 init_completion(&bnad->bnad_completions.tx_comp);
1653 spin_lock_irqsave(&bnad->bna_lock, flags);
1654 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1655 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1656 wait_for_completion(&bnad->bnad_completions.tx_comp);
1657
1658 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1659 bnad_tx_msix_unregister(bnad, tx_info,
1660 bnad->num_txq_per_tx);
1661
1662 spin_lock_irqsave(&bnad->bna_lock, flags);
1663 bna_tx_destroy(tx_info->tx);
1664 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1665
1666 tx_info->tx = NULL;
1667
1668 if (0 == tx_id)
1669 tasklet_kill(&bnad->tx_free_tasklet);
1670
1671 bnad_tx_res_free(bnad, res_info);
1672}
1673
1674/* Should be held with conf_lock held */
1675int
1676bnad_setup_tx(struct bnad *bnad, uint tx_id)
1677{
1678 int err;
1679 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1680 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1681 struct bna_intr_info *intr_info =
1682 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1683 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1684 struct bna_tx_event_cbfn tx_cbfn;
1685 struct bna_tx *tx;
1686 unsigned long flags;
1687
1688 /* Initialize the Tx object configuration */
1689 tx_config->num_txq = bnad->num_txq_per_tx;
1690 tx_config->txq_depth = bnad->txq_depth;
1691 tx_config->tx_type = BNA_TX_T_REGULAR;
1692
1693 /* Initialize the tx event handlers */
1694 tx_cbfn.tcb_setup_cbfn = bnad_cb_tcb_setup;
1695 tx_cbfn.tcb_destroy_cbfn = bnad_cb_tcb_destroy;
1696 tx_cbfn.tx_stall_cbfn = bnad_cb_tx_stall;
1697 tx_cbfn.tx_resume_cbfn = bnad_cb_tx_resume;
1698 tx_cbfn.tx_cleanup_cbfn = bnad_cb_tx_cleanup;
1699
1700 /* Get BNA's resource requirement for one tx object */
1701 spin_lock_irqsave(&bnad->bna_lock, flags);
1702 bna_tx_res_req(bnad->num_txq_per_tx,
1703 bnad->txq_depth, res_info);
1704 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1705
1706 /* Fill Unmap Q memory requirements */
1707 BNAD_FILL_UNMAPQ_MEM_REQ(
1708 &res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1709 bnad->num_txq_per_tx,
1710 BNAD_TX_UNMAPQ_DEPTH);
1711
1712 /* Allocate resources */
1713 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1714 if (err)
1715 return err;
1716
1717 /* Ask BNA to create one Tx object, supplying required resources */
1718 spin_lock_irqsave(&bnad->bna_lock, flags);
1719 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1720 tx_info);
1721 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1722 if (!tx)
1723 goto err_return;
1724 tx_info->tx = tx;
1725
1726 /* Register ISR for the Tx object */
1727 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1728 err = bnad_tx_msix_register(bnad, tx_info,
1729 tx_id, bnad->num_txq_per_tx);
1730 if (err)
1731 goto err_return;
1732 }
1733
1734 spin_lock_irqsave(&bnad->bna_lock, flags);
1735 bna_tx_enable(tx);
1736 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1737
1738 return 0;
1739
1740err_return:
1741 bnad_tx_res_free(bnad, res_info);
1742 return err;
1743}
1744
1745/* Setup the rx config for bna_rx_create */
1746/* bnad decides the configuration */
1747static void
1748bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1749{
1750 rx_config->rx_type = BNA_RX_T_REGULAR;
1751 rx_config->num_paths = bnad->num_rxp_per_rx;
1752
1753 if (bnad->num_rxp_per_rx > 1) {
1754 rx_config->rss_status = BNA_STATUS_T_ENABLED;
1755 rx_config->rss_config.hash_type =
1756 (BFI_RSS_T_V4_TCP |
1757 BFI_RSS_T_V6_TCP |
1758 BFI_RSS_T_V4_IP |
1759 BFI_RSS_T_V6_IP);
1760 rx_config->rss_config.hash_mask =
1761 bnad->num_rxp_per_rx - 1;
1762 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1763 sizeof(rx_config->rss_config.toeplitz_hash_key));
1764 } else {
1765 rx_config->rss_status = BNA_STATUS_T_DISABLED;
1766 memset(&rx_config->rss_config, 0,
1767 sizeof(rx_config->rss_config));
1768 }
1769 rx_config->rxp_type = BNA_RXP_SLR;
1770 rx_config->q_depth = bnad->rxq_depth;
1771
1772 rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1773
1774 rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1775}
1776
1777/* Called with mutex_lock(&bnad->conf_mutex) held */
1778void
1779bnad_cleanup_rx(struct bnad *bnad, uint rx_id)
1780{
1781 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1782 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1783 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1784 unsigned long flags;
1785 int dim_timer_del = 0;
1786
1787 if (!rx_info->rx)
1788 return;
1789
1790 if (0 == rx_id) {
1791 spin_lock_irqsave(&bnad->bna_lock, flags);
1792 dim_timer_del = bnad_dim_timer_running(bnad);
1793 if (dim_timer_del)
1794 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1795 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1796 if (dim_timer_del)
1797 del_timer_sync(&bnad->dim_timer);
1798 }
1799
1800 bnad_napi_disable(bnad, rx_id);
1801
1802 init_completion(&bnad->bnad_completions.rx_comp);
1803 spin_lock_irqsave(&bnad->bna_lock, flags);
1804 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1805 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1806 wait_for_completion(&bnad->bnad_completions.rx_comp);
1807
1808 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
1809 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
1810
1811 spin_lock_irqsave(&bnad->bna_lock, flags);
1812 bna_rx_destroy(rx_info->rx);
1813 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1814
1815 rx_info->rx = NULL;
1816
1817 bnad_rx_res_free(bnad, res_info);
1818}
1819
1820/* Called with mutex_lock(&bnad->conf_mutex) held */
1821int
1822bnad_setup_rx(struct bnad *bnad, uint rx_id)
1823{
1824 int err;
1825 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1826 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1827 struct bna_intr_info *intr_info =
1828 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
1829 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1830 struct bna_rx_event_cbfn rx_cbfn;
1831 struct bna_rx *rx;
1832 unsigned long flags;
1833
1834 /* Initialize the Rx object configuration */
1835 bnad_init_rx_config(bnad, rx_config);
1836
1837 /* Initialize the Rx event handlers */
1838 rx_cbfn.rcb_setup_cbfn = bnad_cb_rcb_setup;
1839 rx_cbfn.rcb_destroy_cbfn = bnad_cb_rcb_destroy;
1840 rx_cbfn.ccb_setup_cbfn = bnad_cb_ccb_setup;
1841 rx_cbfn.ccb_destroy_cbfn = bnad_cb_ccb_destroy;
1842 rx_cbfn.rx_cleanup_cbfn = bnad_cb_rx_cleanup;
1843 rx_cbfn.rx_post_cbfn = bnad_cb_rx_post;
1844
1845 /* Get BNA's resource requirement for one Rx object */
1846 spin_lock_irqsave(&bnad->bna_lock, flags);
1847 bna_rx_res_req(rx_config, res_info);
1848 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1849
1850 /* Fill Unmap Q memory requirements */
1851 BNAD_FILL_UNMAPQ_MEM_REQ(
1852 &res_info[BNA_RX_RES_MEM_T_UNMAPQ],
1853 rx_config->num_paths +
1854 ((rx_config->rxp_type == BNA_RXP_SINGLE) ? 0 :
1855 rx_config->num_paths), BNAD_RX_UNMAPQ_DEPTH);
1856
1857 /* Allocate resource */
1858 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
1859 if (err)
1860 return err;
1861
1862 /* Ask BNA to create one Rx object, supplying required resources */
1863 spin_lock_irqsave(&bnad->bna_lock, flags);
1864 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
1865 rx_info);
1866 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1867 if (!rx)
1868 goto err_return;
1869 rx_info->rx = rx;
1870
1871 /* Register ISR for the Rx object */
1872 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1873 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
1874 rx_config->num_paths);
1875 if (err)
1876 goto err_return;
1877 }
1878
1879 /* Enable NAPI */
1880 bnad_napi_enable(bnad, rx_id);
1881
1882 spin_lock_irqsave(&bnad->bna_lock, flags);
1883 if (0 == rx_id) {
1884 /* Set up Dynamic Interrupt Moderation Vector */
1885 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
1886 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
1887
1888 /* Enable VLAN filtering only on the default Rx */
1889 bna_rx_vlanfilter_enable(rx);
1890
1891 /* Start the DIM timer */
1892 bnad_dim_timer_start(bnad);
1893 }
1894
1895 bna_rx_enable(rx);
1896 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1897
1898 return 0;
1899
1900err_return:
1901 bnad_cleanup_rx(bnad, rx_id);
1902 return err;
1903}
1904
1905/* Called with conf_lock & bnad->bna_lock held */
1906void
1907bnad_tx_coalescing_timeo_set(struct bnad *bnad)
1908{
1909 struct bnad_tx_info *tx_info;
1910
1911 tx_info = &bnad->tx_info[0];
1912 if (!tx_info->tx)
1913 return;
1914
1915 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
1916}
1917
1918/* Called with conf_lock & bnad->bna_lock held */
1919void
1920bnad_rx_coalescing_timeo_set(struct bnad *bnad)
1921{
1922 struct bnad_rx_info *rx_info;
1923 int i;
1924
1925 for (i = 0; i < bnad->num_rx; i++) {
1926 rx_info = &bnad->rx_info[i];
1927 if (!rx_info->rx)
1928 continue;
1929 bna_rx_coalescing_timeo_set(rx_info->rx,
1930 bnad->rx_coalescing_timeo);
1931 }
1932}
1933
1934/*
1935 * Called with bnad->bna_lock held
1936 */
1937static int
1938bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
1939{
1940 int ret;
1941
1942 if (!is_valid_ether_addr(mac_addr))
1943 return -EADDRNOTAVAIL;
1944
1945 /* If datapath is down, pretend everything went through */
1946 if (!bnad->rx_info[0].rx)
1947 return 0;
1948
1949 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
1950 if (ret != BNA_CB_SUCCESS)
1951 return -EADDRNOTAVAIL;
1952
1953 return 0;
1954}
1955
1956/* Should be called with conf_lock held */
1957static int
1958bnad_enable_default_bcast(struct bnad *bnad)
1959{
1960 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
1961 int ret;
1962 unsigned long flags;
1963
1964 init_completion(&bnad->bnad_completions.mcast_comp);
1965
1966 spin_lock_irqsave(&bnad->bna_lock, flags);
1967 ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
1968 bnad_cb_rx_mcast_add);
1969 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1970
1971 if (ret == BNA_CB_SUCCESS)
1972 wait_for_completion(&bnad->bnad_completions.mcast_comp);
1973 else
1974 return -ENODEV;
1975
1976 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
1977 return -ENODEV;
1978
1979 return 0;
1980}
1981
1982/* Called with bnad_conf_lock() held */
1983static void
1984bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
1985{
1986 u16 vlan_id;
1987 unsigned long flags;
1988
1989 if (!bnad->vlan_grp)
1990 return;
1991
1992 BUG_ON(!(VLAN_N_VID == (BFI_MAX_VLAN + 1)));
1993
1994 for (vlan_id = 0; vlan_id < VLAN_N_VID; vlan_id++) {
1995 if (!vlan_group_get_device(bnad->vlan_grp, vlan_id))
1996 continue;
1997 spin_lock_irqsave(&bnad->bna_lock, flags);
1998 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vlan_id);
1999 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000 }
2001}
2002
2003/* Statistics utilities */
2004void
2005bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2006{
2007 int i, j;
2008
2009 for (i = 0; i < bnad->num_rx; i++) {
2010 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2011 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2012 stats->rx_packets += bnad->rx_info[i].
2013 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2014 stats->rx_bytes += bnad->rx_info[i].
2015 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2016 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2017 bnad->rx_info[i].rx_ctrl[j].ccb->
2018 rcb[1]->rxq) {
2019 stats->rx_packets +=
2020 bnad->rx_info[i].rx_ctrl[j].
2021 ccb->rcb[1]->rxq->rx_packets;
2022 stats->rx_bytes +=
2023 bnad->rx_info[i].rx_ctrl[j].
2024 ccb->rcb[1]->rxq->rx_bytes;
2025 }
2026 }
2027 }
2028 }
2029 for (i = 0; i < bnad->num_tx; i++) {
2030 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2031 if (bnad->tx_info[i].tcb[j]) {
2032 stats->tx_packets +=
2033 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2034 stats->tx_bytes +=
2035 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2036 }
2037 }
2038 }
2039}
2040
2041/*
2042 * Must be called with the bna_lock held.
2043 */
2044void
2045bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2046{
2047 struct bfi_ll_stats_mac *mac_stats;
2048 u64 bmap;
2049 int i;
2050
2051 mac_stats = &bnad->stats.bna_stats->hw_stats->mac_stats;
2052 stats->rx_errors =
2053 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2054 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2055 mac_stats->rx_undersize;
2056 stats->tx_errors = mac_stats->tx_fcs_error +
2057 mac_stats->tx_undersize;
2058 stats->rx_dropped = mac_stats->rx_drop;
2059 stats->tx_dropped = mac_stats->tx_drop;
2060 stats->multicast = mac_stats->rx_multicast;
2061 stats->collisions = mac_stats->tx_total_collision;
2062
2063 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2064
2065 /* receive ring buffer overflow ?? */
2066
2067 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2068 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2069 /* recv'r fifo overrun */
2070 bmap = (u64)bnad->stats.bna_stats->rxf_bmap[0] |
2071 ((u64)bnad->stats.bna_stats->rxf_bmap[1] << 32);
2072 for (i = 0; bmap && (i < BFI_LL_RXF_ID_MAX); i++) {
2073 if (bmap & 1) {
2074 stats->rx_fifo_errors +=
2075 bnad->stats.bna_stats->
2076 hw_stats->rxf_stats[i].frame_drops;
2077 break;
2078 }
2079 bmap >>= 1;
2080 }
2081}
2082
2083static void
2084bnad_mbox_irq_sync(struct bnad *bnad)
2085{
2086 u32 irq;
2087 unsigned long flags;
2088
2089 spin_lock_irqsave(&bnad->bna_lock, flags);
2090 if (bnad->cfg_flags & BNAD_CF_MSIX)
2091 irq = bnad->msix_table[bnad->msix_num - 1].vector;
2092 else
2093 irq = bnad->pcidev->irq;
2094 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2095
2096 synchronize_irq(irq);
2097}
2098
2099/* Utility used by bnad_start_xmit, for doing TSO */
2100static int
2101bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2102{
2103 int err;
2104
2105 /* SKB_GSO_TCPV4 and SKB_GSO_TCPV6 is defined since 2.6.18. */
2106 BUG_ON(!(skb_shinfo(skb)->gso_type == SKB_GSO_TCPV4 ||
2107 skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6));
2108 if (skb_header_cloned(skb)) {
2109 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2110 if (err) {
2111 BNAD_UPDATE_CTR(bnad, tso_err);
2112 return err;
2113 }
2114 }
2115
2116 /*
2117 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2118 * excluding the length field.
2119 */
2120 if (skb->protocol == htons(ETH_P_IP)) {
2121 struct iphdr *iph = ip_hdr(skb);
2122
2123 /* Do we really need these? */
2124 iph->tot_len = 0;
2125 iph->check = 0;
2126
2127 tcp_hdr(skb)->check =
2128 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2129 IPPROTO_TCP, 0);
2130 BNAD_UPDATE_CTR(bnad, tso4);
2131 } else {
2132 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2133
2134 BUG_ON(!(skb->protocol == htons(ETH_P_IPV6)));
2135 ipv6h->payload_len = 0;
2136 tcp_hdr(skb)->check =
2137 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2138 IPPROTO_TCP, 0);
2139 BNAD_UPDATE_CTR(bnad, tso6);
2140 }
2141
2142 return 0;
2143}
2144
2145/*
2146 * Initialize Q numbers depending on Rx Paths
2147 * Called with bnad->bna_lock held, because of cfg_flags
2148 * access.
2149 */
2150static void
2151bnad_q_num_init(struct bnad *bnad)
2152{
2153 int rxps;
2154
2155 rxps = min((uint)num_online_cpus(),
2156 (uint)(BNAD_MAX_RXS * BNAD_MAX_RXPS_PER_RX));
2157
2158 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2159 rxps = 1; /* INTx */
2160
2161 bnad->num_rx = 1;
2162 bnad->num_tx = 1;
2163 bnad->num_rxp_per_rx = rxps;
2164 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2165}
2166
2167/*
2168 * Adjusts the Q numbers, given a number of msix vectors
2169 * Give preference to RSS as opposed to Tx priority Queues,
2170 * in such a case, just use 1 Tx Q
2171 * Called with bnad->bna_lock held b'cos of cfg_flags access
2172 */
2173static void
2174bnad_q_num_adjust(struct bnad *bnad, int msix_vectors)
2175{
2176 bnad->num_txq_per_tx = 1;
2177 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2178 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2179 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2180 bnad->num_rxp_per_rx = msix_vectors -
2181 (bnad->num_tx * bnad->num_txq_per_tx) -
2182 BNAD_MAILBOX_MSIX_VECTORS;
2183 } else
2184 bnad->num_rxp_per_rx = 1;
2185}
2186
2187/* Enable / disable device */
2188static void
2189bnad_device_disable(struct bnad *bnad)
2190{
2191 unsigned long flags;
2192
2193 init_completion(&bnad->bnad_completions.ioc_comp);
2194
2195 spin_lock_irqsave(&bnad->bna_lock, flags);
2196 bna_device_disable(&bnad->bna.device, BNA_HARD_CLEANUP);
2197 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2198
2199 wait_for_completion(&bnad->bnad_completions.ioc_comp);
2200}
2201
2202static int
2203bnad_device_enable(struct bnad *bnad)
2204{
2205 int err = 0;
2206 unsigned long flags;
2207
2208 init_completion(&bnad->bnad_completions.ioc_comp);
2209
2210 spin_lock_irqsave(&bnad->bna_lock, flags);
2211 bna_device_enable(&bnad->bna.device);
2212 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2213
2214 wait_for_completion(&bnad->bnad_completions.ioc_comp);
2215
2216 if (bnad->bnad_completions.ioc_comp_status)
2217 err = bnad->bnad_completions.ioc_comp_status;
2218
2219 return err;
2220}
2221
2222/* Free BNA resources */
2223static void
2224bnad_res_free(struct bnad *bnad)
2225{
2226 int i;
2227 struct bna_res_info *res_info = &bnad->res_info[0];
2228
2229 for (i = 0; i < BNA_RES_T_MAX; i++) {
2230 if (res_info[i].res_type == BNA_RES_T_MEM)
2231 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2232 else
2233 bnad_mbox_irq_free(bnad, &res_info[i].res_u.intr_info);
2234 }
2235}
2236
2237/* Allocates memory and interrupt resources for BNA */
2238static int
2239bnad_res_alloc(struct bnad *bnad)
2240{
2241 int i, err;
2242 struct bna_res_info *res_info = &bnad->res_info[0];
2243
2244 for (i = 0; i < BNA_RES_T_MAX; i++) {
2245 if (res_info[i].res_type == BNA_RES_T_MEM)
2246 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2247 else
2248 err = bnad_mbox_irq_alloc(bnad,
2249 &res_info[i].res_u.intr_info);
2250 if (err)
2251 goto err_return;
2252 }
2253 return 0;
2254
2255err_return:
2256 bnad_res_free(bnad);
2257 return err;
2258}
2259
2260/* Interrupt enable / disable */
2261static void
2262bnad_enable_msix(struct bnad *bnad)
2263{
2264 int i, ret;
2265 unsigned long flags;
2266
2267 spin_lock_irqsave(&bnad->bna_lock, flags);
2268 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2269 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2270 return;
2271 }
2272 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2273
2274 if (bnad->msix_table)
2275 return;
2276
2277 bnad->msix_table =
2278 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2279
2280 if (!bnad->msix_table)
2281 goto intx_mode;
2282
2283 for (i = 0; i < bnad->msix_num; i++)
2284 bnad->msix_table[i].entry = i;
2285
2286 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2287 if (ret > 0) {
2288 /* Not enough MSI-X vectors. */
2289
2290 spin_lock_irqsave(&bnad->bna_lock, flags);
2291 /* ret = #of vectors that we got */
2292 bnad_q_num_adjust(bnad, ret);
2293 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2294
2295 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx)
2296 + (bnad->num_rx
2297 * bnad->num_rxp_per_rx) +
2298 BNAD_MAILBOX_MSIX_VECTORS;
2299
2300 /* Try once more with adjusted numbers */
2301 /* If this fails, fall back to INTx */
2302 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2303 bnad->msix_num);
2304 if (ret)
2305 goto intx_mode;
2306
2307 } else if (ret < 0)
2308 goto intx_mode;
2309 return;
2310
2311intx_mode:
2312
2313 kfree(bnad->msix_table);
2314 bnad->msix_table = NULL;
2315 bnad->msix_num = 0;
2316 spin_lock_irqsave(&bnad->bna_lock, flags);
2317 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2318 bnad_q_num_init(bnad);
2319 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2320}
2321
2322static void
2323bnad_disable_msix(struct bnad *bnad)
2324{
2325 u32 cfg_flags;
2326 unsigned long flags;
2327
2328 spin_lock_irqsave(&bnad->bna_lock, flags);
2329 cfg_flags = bnad->cfg_flags;
2330 if (bnad->cfg_flags & BNAD_CF_MSIX)
2331 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2332 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2333
2334 if (cfg_flags & BNAD_CF_MSIX) {
2335 pci_disable_msix(bnad->pcidev);
2336 kfree(bnad->msix_table);
2337 bnad->msix_table = NULL;
2338 }
2339}
2340
2341/* Netdev entry points */
2342static int
2343bnad_open(struct net_device *netdev)
2344{
2345 int err;
2346 struct bnad *bnad = netdev_priv(netdev);
2347 struct bna_pause_config pause_config;
2348 int mtu;
2349 unsigned long flags;
2350
2351 mutex_lock(&bnad->conf_mutex);
2352
2353 /* Tx */
2354 err = bnad_setup_tx(bnad, 0);
2355 if (err)
2356 goto err_return;
2357
2358 /* Rx */
2359 err = bnad_setup_rx(bnad, 0);
2360 if (err)
2361 goto cleanup_tx;
2362
2363 /* Port */
2364 pause_config.tx_pause = 0;
2365 pause_config.rx_pause = 0;
2366
2367 mtu = ETH_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2368
2369 spin_lock_irqsave(&bnad->bna_lock, flags);
2370 bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2371 bna_port_pause_config(&bnad->bna.port, &pause_config, NULL);
2372 bna_port_enable(&bnad->bna.port);
2373 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2374
2375 /* Enable broadcast */
2376 bnad_enable_default_bcast(bnad);
2377
2378 /* Restore VLANs, if any */
2379 bnad_restore_vlans(bnad, 0);
2380
2381 /* Set the UCAST address */
2382 spin_lock_irqsave(&bnad->bna_lock, flags);
2383 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2384 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2385
2386 /* Start the stats timer */
2387 bnad_stats_timer_start(bnad);
2388
2389 mutex_unlock(&bnad->conf_mutex);
2390
2391 return 0;
2392
2393cleanup_tx:
2394 bnad_cleanup_tx(bnad, 0);
2395
2396err_return:
2397 mutex_unlock(&bnad->conf_mutex);
2398 return err;
2399}
2400
2401static int
2402bnad_stop(struct net_device *netdev)
2403{
2404 struct bnad *bnad = netdev_priv(netdev);
2405 unsigned long flags;
2406
2407 mutex_lock(&bnad->conf_mutex);
2408
2409 /* Stop the stats timer */
2410 bnad_stats_timer_stop(bnad);
2411
2412 init_completion(&bnad->bnad_completions.port_comp);
2413
2414 spin_lock_irqsave(&bnad->bna_lock, flags);
2415 bna_port_disable(&bnad->bna.port, BNA_HARD_CLEANUP,
2416 bnad_cb_port_disabled);
2417 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2418
2419 wait_for_completion(&bnad->bnad_completions.port_comp);
2420
2421 bnad_cleanup_tx(bnad, 0);
2422 bnad_cleanup_rx(bnad, 0);
2423
2424 /* Synchronize mailbox IRQ */
2425 bnad_mbox_irq_sync(bnad);
2426
2427 mutex_unlock(&bnad->conf_mutex);
2428
2429 return 0;
2430}
2431
2432/* TX */
2433/*
2434 * bnad_start_xmit : Netdev entry point for Transmit
2435 * Called under lock held by net_device
2436 */
2437static netdev_tx_t
2438bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2439{
2440 struct bnad *bnad = netdev_priv(netdev);
2441
2442 u16 txq_prod, vlan_tag = 0;
2443 u32 unmap_prod, wis, wis_used, wi_range;
2444 u32 vectors, vect_id, i, acked;
2445 u32 tx_id;
2446 int err;
2447
2448 struct bnad_tx_info *tx_info;
2449 struct bna_tcb *tcb;
2450 struct bnad_unmap_q *unmap_q;
2451 dma_addr_t dma_addr;
2452 struct bna_txq_entry *txqent;
2453 bna_txq_wi_ctrl_flag_t flags;
2454
2455 if (unlikely
2456 (skb->len <= ETH_HLEN || skb->len > BFI_TX_MAX_DATA_PER_PKT)) {
2457 dev_kfree_skb(skb);
2458 return NETDEV_TX_OK;
2459 }
2460
2461 tx_id = 0;
2462
2463 tx_info = &bnad->tx_info[tx_id];
2464 tcb = tx_info->tcb[tx_id];
2465 unmap_q = tcb->unmap_q;
2466
2467 /*
2468 * Takes care of the Tx that is scheduled between clearing the flag
2469 * and the netif_stop_queue() call.
2470 */
2471 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2472 dev_kfree_skb(skb);
2473 return NETDEV_TX_OK;
2474 }
2475
2476 vectors = 1 + skb_shinfo(skb)->nr_frags;
2477 if (vectors > BFI_TX_MAX_VECTORS_PER_PKT) {
2478 dev_kfree_skb(skb);
2479 return NETDEV_TX_OK;
2480 }
2481 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2482 acked = 0;
2483 if (unlikely
2484 (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2485 vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2486 if ((u16) (*tcb->hw_consumer_index) !=
2487 tcb->consumer_index &&
2488 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2489 acked = bnad_free_txbufs(bnad, tcb);
2490 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2491 bna_ib_ack(tcb->i_dbell, acked);
2492 smp_mb__before_clear_bit();
2493 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2494 } else {
2495 netif_stop_queue(netdev);
2496 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2497 }
2498
2499 smp_mb();
2500 /*
2501 * Check again to deal with race condition between
2502 * netif_stop_queue here, and netif_wake_queue in
2503 * interrupt handler which is not inside netif tx lock.
2504 */
2505 if (likely
2506 (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2507 vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2508 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2509 return NETDEV_TX_BUSY;
2510 } else {
2511 netif_wake_queue(netdev);
2512 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2513 }
2514 }
2515
2516 unmap_prod = unmap_q->producer_index;
2517 wis_used = 1;
2518 vect_id = 0;
2519 flags = 0;
2520
2521 txq_prod = tcb->producer_index;
2522 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt, txqent, wi_range);
2523 BUG_ON(!(wi_range <= tcb->q_depth));
2524 txqent->hdr.wi.reserved = 0;
2525 txqent->hdr.wi.num_vectors = vectors;
2526 txqent->hdr.wi.opcode =
2527 htons((skb_is_gso(skb) ? BNA_TXQ_WI_SEND_LSO :
2528 BNA_TXQ_WI_SEND));
2529
2530 if (vlan_tx_tag_present(skb)) {
2531 vlan_tag = (u16) vlan_tx_tag_get(skb);
2532 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2533 }
2534 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2535 vlan_tag =
2536 (tcb->priority & 0x7) << 13 | (vlan_tag & 0x1fff);
2537 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2538 }
2539
2540 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2541
2542 if (skb_is_gso(skb)) {
2543 err = bnad_tso_prepare(bnad, skb);
2544 if (err) {
2545 dev_kfree_skb(skb);
2546 return NETDEV_TX_OK;
2547 }
2548 txqent->hdr.wi.lso_mss = htons(skb_is_gso(skb));
2549 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2550 txqent->hdr.wi.l4_hdr_size_n_offset =
2551 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2552 (tcp_hdrlen(skb) >> 2,
2553 skb_transport_offset(skb)));
2554 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2555 u8 proto = 0;
2556
2557 txqent->hdr.wi.lso_mss = 0;
2558
2559 if (skb->protocol == htons(ETH_P_IP))
2560 proto = ip_hdr(skb)->protocol;
2561 else if (skb->protocol == htons(ETH_P_IPV6)) {
2562 /* nexthdr may not be TCP immediately. */
2563 proto = ipv6_hdr(skb)->nexthdr;
2564 }
2565 if (proto == IPPROTO_TCP) {
2566 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2567 txqent->hdr.wi.l4_hdr_size_n_offset =
2568 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2569 (0, skb_transport_offset(skb)));
2570
2571 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2572
2573 BUG_ON(!(skb_headlen(skb) >=
2574 skb_transport_offset(skb) + tcp_hdrlen(skb)));
2575
2576 } else if (proto == IPPROTO_UDP) {
2577 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2578 txqent->hdr.wi.l4_hdr_size_n_offset =
2579 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2580 (0, skb_transport_offset(skb)));
2581
2582 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2583
2584 BUG_ON(!(skb_headlen(skb) >=
2585 skb_transport_offset(skb) +
2586 sizeof(struct udphdr)));
2587 } else {
2588 err = skb_checksum_help(skb);
2589 BNAD_UPDATE_CTR(bnad, csum_help);
2590 if (err) {
2591 dev_kfree_skb(skb);
2592 BNAD_UPDATE_CTR(bnad, csum_help_err);
2593 return NETDEV_TX_OK;
2594 }
2595 }
2596 } else {
2597 txqent->hdr.wi.lso_mss = 0;
2598 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2599 }
2600
2601 txqent->hdr.wi.flags = htons(flags);
2602
2603 txqent->hdr.wi.frame_length = htonl(skb->len);
2604
2605 unmap_q->unmap_array[unmap_prod].skb = skb;
2606 BUG_ON(!(skb_headlen(skb) <= BFI_TX_MAX_DATA_PER_VECTOR));
2607 txqent->vector[vect_id].length = htons(skb_headlen(skb));
2608 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2609 skb_headlen(skb), DMA_TO_DEVICE);
2610 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2611 dma_addr);
2612
2613 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2614 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2615
2616 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2617 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2618 u32 size = frag->size;
2619
2620 if (++vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2621 vect_id = 0;
2622 if (--wi_range)
2623 txqent++;
2624 else {
2625 BNA_QE_INDX_ADD(txq_prod, wis_used,
2626 tcb->q_depth);
2627 wis_used = 0;
2628 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt,
2629 txqent, wi_range);
2630 BUG_ON(!(wi_range <= tcb->q_depth));
2631 }
2632 wis_used++;
2633 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
2634 }
2635
2636 BUG_ON(!(size <= BFI_TX_MAX_DATA_PER_VECTOR));
2637 txqent->vector[vect_id].length = htons(size);
2638 dma_addr = dma_map_page(&bnad->pcidev->dev, frag->page,
2639 frag->page_offset, size, DMA_TO_DEVICE);
2640 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2641 dma_addr);
2642 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2643 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2644 }
2645
2646 unmap_q->producer_index = unmap_prod;
2647 BNA_QE_INDX_ADD(txq_prod, wis_used, tcb->q_depth);
2648 tcb->producer_index = txq_prod;
2649
2650 smp_mb();
2651
2652 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2653 return NETDEV_TX_OK;
2654
2655 bna_txq_prod_indx_doorbell(tcb);
2656
2657 if ((u16) (*tcb->hw_consumer_index) != tcb->consumer_index)
2658 tasklet_schedule(&bnad->tx_free_tasklet);
2659
2660 return NETDEV_TX_OK;
2661}
2662
2663/*
2664 * Used spin_lock to synchronize reading of stats structures, which
2665 * is written by BNA under the same lock.
2666 */
2667static struct rtnl_link_stats64 *
2668bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2669{
2670 struct bnad *bnad = netdev_priv(netdev);
2671 unsigned long flags;
2672
2673 spin_lock_irqsave(&bnad->bna_lock, flags);
2674
2675 bnad_netdev_qstats_fill(bnad, stats);
2676 bnad_netdev_hwstats_fill(bnad, stats);
2677
2678 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2679
2680 return stats;
2681}
2682
2683static void
2684bnad_set_rx_mode(struct net_device *netdev)
2685{
2686 struct bnad *bnad = netdev_priv(netdev);
2687 u32 new_mask, valid_mask;
2688 unsigned long flags;
2689
2690 spin_lock_irqsave(&bnad->bna_lock, flags);
2691
2692 new_mask = valid_mask = 0;
2693
2694 if (netdev->flags & IFF_PROMISC) {
2695 if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2696 new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2697 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2698 bnad->cfg_flags |= BNAD_CF_PROMISC;
2699 }
2700 } else {
2701 if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2702 new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2703 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2704 bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2705 }
2706 }
2707
2708 if (netdev->flags & IFF_ALLMULTI) {
2709 if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2710 new_mask |= BNA_RXMODE_ALLMULTI;
2711 valid_mask |= BNA_RXMODE_ALLMULTI;
2712 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2713 }
2714 } else {
2715 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2716 new_mask &= ~BNA_RXMODE_ALLMULTI;
2717 valid_mask |= BNA_RXMODE_ALLMULTI;
2718 bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2719 }
2720 }
2721
2722 bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2723
2724 if (!netdev_mc_empty(netdev)) {
2725 u8 *mcaddr_list;
2726 int mc_count = netdev_mc_count(netdev);
2727
2728 /* Index 0 holds the broadcast address */
2729 mcaddr_list =
2730 kzalloc((mc_count + 1) * ETH_ALEN,
2731 GFP_ATOMIC);
2732 if (!mcaddr_list)
2733 goto unlock;
2734
2735 memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2736
2737 /* Copy rest of the MC addresses */
2738 bnad_netdev_mc_list_get(netdev, mcaddr_list);
2739
2740 bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2741 mcaddr_list, NULL);
2742
2743 /* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
2744 kfree(mcaddr_list);
2745 }
2746unlock:
2747 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2748}
2749
2750/*
2751 * bna_lock is used to sync writes to netdev->addr
2752 * conf_lock cannot be used since this call may be made
2753 * in a non-blocking context.
2754 */
2755static int
2756bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
2757{
2758 int err;
2759 struct bnad *bnad = netdev_priv(netdev);
2760 struct sockaddr *sa = (struct sockaddr *)mac_addr;
2761 unsigned long flags;
2762
2763 spin_lock_irqsave(&bnad->bna_lock, flags);
2764
2765 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
2766
2767 if (!err)
2768 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
2769
2770 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2771
2772 return err;
2773}
2774
2775static int
2776bnad_change_mtu(struct net_device *netdev, int new_mtu)
2777{
2778 int mtu, err = 0;
2779 unsigned long flags;
2780
2781 struct bnad *bnad = netdev_priv(netdev);
2782
2783 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
2784 return -EINVAL;
2785
2786 mutex_lock(&bnad->conf_mutex);
2787
2788 netdev->mtu = new_mtu;
2789
2790 mtu = ETH_HLEN + new_mtu + ETH_FCS_LEN;
2791
2792 spin_lock_irqsave(&bnad->bna_lock, flags);
2793 bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2794 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2795
2796 mutex_unlock(&bnad->conf_mutex);
2797 return err;
2798}
2799
2800static void
2801bnad_vlan_rx_register(struct net_device *netdev,
2802 struct vlan_group *vlan_grp)
2803{
2804 struct bnad *bnad = netdev_priv(netdev);
2805
2806 mutex_lock(&bnad->conf_mutex);
2807 bnad->vlan_grp = vlan_grp;
2808 mutex_unlock(&bnad->conf_mutex);
2809}
2810
2811static void
2812bnad_vlan_rx_add_vid(struct net_device *netdev,
2813 unsigned short vid)
2814{
2815 struct bnad *bnad = netdev_priv(netdev);
2816 unsigned long flags;
2817
2818 if (!bnad->rx_info[0].rx)
2819 return;
2820
2821 mutex_lock(&bnad->conf_mutex);
2822
2823 spin_lock_irqsave(&bnad->bna_lock, flags);
2824 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
2825 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2826
2827 mutex_unlock(&bnad->conf_mutex);
2828}
2829
2830static void
2831bnad_vlan_rx_kill_vid(struct net_device *netdev,
2832 unsigned short vid)
2833{
2834 struct bnad *bnad = netdev_priv(netdev);
2835 unsigned long flags;
2836
2837 if (!bnad->rx_info[0].rx)
2838 return;
2839
2840 mutex_lock(&bnad->conf_mutex);
2841
2842 spin_lock_irqsave(&bnad->bna_lock, flags);
2843 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
2844 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2845
2846 mutex_unlock(&bnad->conf_mutex);
2847}
2848
2849#ifdef CONFIG_NET_POLL_CONTROLLER
2850static void
2851bnad_netpoll(struct net_device *netdev)
2852{
2853 struct bnad *bnad = netdev_priv(netdev);
2854 struct bnad_rx_info *rx_info;
2855 struct bnad_rx_ctrl *rx_ctrl;
2856 u32 curr_mask;
2857 int i, j;
2858
2859 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2860 bna_intx_disable(&bnad->bna, curr_mask);
2861 bnad_isr(bnad->pcidev->irq, netdev);
2862 bna_intx_enable(&bnad->bna, curr_mask);
2863 } else {
2864 for (i = 0; i < bnad->num_rx; i++) {
2865 rx_info = &bnad->rx_info[i];
2866 if (!rx_info->rx)
2867 continue;
2868 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2869 rx_ctrl = &rx_info->rx_ctrl[j];
2870 if (rx_ctrl->ccb) {
2871 bnad_disable_rx_irq(bnad,
2872 rx_ctrl->ccb);
2873 bnad_netif_rx_schedule_poll(bnad,
2874 rx_ctrl->ccb);
2875 }
2876 }
2877 }
2878 }
2879}
2880#endif
2881
2882static const struct net_device_ops bnad_netdev_ops = {
2883 .ndo_open = bnad_open,
2884 .ndo_stop = bnad_stop,
2885 .ndo_start_xmit = bnad_start_xmit,
2886 .ndo_get_stats64 = bnad_get_stats64,
2887 .ndo_set_rx_mode = bnad_set_rx_mode,
2888 .ndo_set_multicast_list = bnad_set_rx_mode,
2889 .ndo_validate_addr = eth_validate_addr,
2890 .ndo_set_mac_address = bnad_set_mac_address,
2891 .ndo_change_mtu = bnad_change_mtu,
2892 .ndo_vlan_rx_register = bnad_vlan_rx_register,
2893 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
2894 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
2895#ifdef CONFIG_NET_POLL_CONTROLLER
2896 .ndo_poll_controller = bnad_netpoll
2897#endif
2898};
2899
2900static void
2901bnad_netdev_init(struct bnad *bnad, bool using_dac)
2902{
2903 struct net_device *netdev = bnad->netdev;
2904
2905 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
2906 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2907 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_TX;
2908
2909 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
2910 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2911 NETIF_F_TSO | NETIF_F_TSO6;
2912
2913 netdev->features |= netdev->hw_features |
2914 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
2915
2916 if (using_dac)
2917 netdev->features |= NETIF_F_HIGHDMA;
2918
2919 netdev->mem_start = bnad->mmio_start;
2920 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
2921
2922 netdev->netdev_ops = &bnad_netdev_ops;
2923 bnad_set_ethtool_ops(netdev);
2924}
2925
2926/*
2927 * 1. Initialize the bnad structure
2928 * 2. Setup netdev pointer in pci_dev
2929 * 3. Initialze Tx free tasklet
2930 * 4. Initialize no. of TxQ & CQs & MSIX vectors
2931 */
2932static int
2933bnad_init(struct bnad *bnad,
2934 struct pci_dev *pdev, struct net_device *netdev)
2935{
2936 unsigned long flags;
2937
2938 SET_NETDEV_DEV(netdev, &pdev->dev);
2939 pci_set_drvdata(pdev, netdev);
2940
2941 bnad->netdev = netdev;
2942 bnad->pcidev = pdev;
2943 bnad->mmio_start = pci_resource_start(pdev, 0);
2944 bnad->mmio_len = pci_resource_len(pdev, 0);
2945 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
2946 if (!bnad->bar0) {
2947 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
2948 pci_set_drvdata(pdev, NULL);
2949 return -ENOMEM;
2950 }
2951 pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
2952 (unsigned long long) bnad->mmio_len);
2953
2954 spin_lock_irqsave(&bnad->bna_lock, flags);
2955 if (!bnad_msix_disable)
2956 bnad->cfg_flags = BNAD_CF_MSIX;
2957
2958 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
2959
2960 bnad_q_num_init(bnad);
2961 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2962
2963 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
2964 (bnad->num_rx * bnad->num_rxp_per_rx) +
2965 BNAD_MAILBOX_MSIX_VECTORS;
2966
2967 bnad->txq_depth = BNAD_TXQ_DEPTH;
2968 bnad->rxq_depth = BNAD_RXQ_DEPTH;
2969
2970 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
2971 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
2972
2973 tasklet_init(&bnad->tx_free_tasklet, bnad_tx_free_tasklet,
2974 (unsigned long)bnad);
2975
2976 return 0;
2977}
2978
2979/*
2980 * Must be called after bnad_pci_uninit()
2981 * so that iounmap() and pci_set_drvdata(NULL)
2982 * happens only after PCI uninitialization.
2983 */
2984static void
2985bnad_uninit(struct bnad *bnad)
2986{
2987 if (bnad->bar0)
2988 iounmap(bnad->bar0);
2989 pci_set_drvdata(bnad->pcidev, NULL);
2990}
2991
2992/*
2993 * Initialize locks
2994 a) Per device mutes used for serializing configuration
2995 changes from OS interface
2996 b) spin lock used to protect bna state machine
2997 */
2998static void
2999bnad_lock_init(struct bnad *bnad)
3000{
3001 spin_lock_init(&bnad->bna_lock);
3002 mutex_init(&bnad->conf_mutex);
3003}
3004
3005static void
3006bnad_lock_uninit(struct bnad *bnad)
3007{
3008 mutex_destroy(&bnad->conf_mutex);
3009}
3010
3011/* PCI Initialization */
3012static int
3013bnad_pci_init(struct bnad *bnad,
3014 struct pci_dev *pdev, bool *using_dac)
3015{
3016 int err;
3017
3018 err = pci_enable_device(pdev);
3019 if (err)
3020 return err;
3021 err = pci_request_regions(pdev, BNAD_NAME);
3022 if (err)
3023 goto disable_device;
3024 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3025 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3026 *using_dac = 1;
3027 } else {
3028 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3029 if (err) {
3030 err = dma_set_coherent_mask(&pdev->dev,
3031 DMA_BIT_MASK(32));
3032 if (err)
3033 goto release_regions;
3034 }
3035 *using_dac = 0;
3036 }
3037 pci_set_master(pdev);
3038 return 0;
3039
3040release_regions:
3041 pci_release_regions(pdev);
3042disable_device:
3043 pci_disable_device(pdev);
3044
3045 return err;
3046}
3047
3048static void
3049bnad_pci_uninit(struct pci_dev *pdev)
3050{
3051 pci_release_regions(pdev);
3052 pci_disable_device(pdev);
3053}
3054
3055static int __devinit
3056bnad_pci_probe(struct pci_dev *pdev,
3057 const struct pci_device_id *pcidev_id)
3058{
3059 bool using_dac = false;
3060 int err;
3061 struct bnad *bnad;
3062 struct bna *bna;
3063 struct net_device *netdev;
3064 struct bfa_pcidev pcidev_info;
3065 unsigned long flags;
3066
3067 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3068 pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3069
3070 mutex_lock(&bnad_fwimg_mutex);
3071 if (!cna_get_firmware_buf(pdev)) {
3072 mutex_unlock(&bnad_fwimg_mutex);
3073 pr_warn("Failed to load Firmware Image!\n");
3074 return -ENODEV;
3075 }
3076 mutex_unlock(&bnad_fwimg_mutex);
3077
3078 /*
3079 * Allocates sizeof(struct net_device + struct bnad)
3080 * bnad = netdev->priv
3081 */
3082 netdev = alloc_etherdev(sizeof(struct bnad));
3083 if (!netdev) {
3084 dev_err(&pdev->dev, "alloc_etherdev failed\n");
3085 err = -ENOMEM;
3086 return err;
3087 }
3088 bnad = netdev_priv(netdev);
3089
3090 /*
3091 * PCI initialization
3092 * Output : using_dac = 1 for 64 bit DMA
3093 * = 0 for 32 bit DMA
3094 */
3095 err = bnad_pci_init(bnad, pdev, &using_dac);
3096 if (err)
3097 goto free_netdev;
3098
3099 bnad_lock_init(bnad);
3100 /*
3101 * Initialize bnad structure
3102 * Setup relation between pci_dev & netdev
3103 * Init Tx free tasklet
3104 */
3105 err = bnad_init(bnad, pdev, netdev);
3106 if (err)
3107 goto pci_uninit;
3108 /* Initialize netdev structure, set up ethtool ops */
3109 bnad_netdev_init(bnad, using_dac);
3110
3111 /* Set link to down state */
3112 netif_carrier_off(netdev);
3113
3114 bnad_enable_msix(bnad);
3115
3116 /* Get resource requirement form bna */
3117 bna_res_req(&bnad->res_info[0]);
3118
3119 /* Allocate resources from bna */
3120 err = bnad_res_alloc(bnad);
3121 if (err)
3122 goto free_netdev;
3123
3124 bna = &bnad->bna;
3125
3126 /* Setup pcidev_info for bna_init() */
3127 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3128 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3129 pcidev_info.device_id = bnad->pcidev->device;
3130 pcidev_info.pci_bar_kva = bnad->bar0;
3131
3132 mutex_lock(&bnad->conf_mutex);
3133
3134 spin_lock_irqsave(&bnad->bna_lock, flags);
3135 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3136 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3137
3138 bnad->stats.bna_stats = &bna->stats;
3139
3140 /* Set up timers */
3141 setup_timer(&bnad->bna.device.ioc.ioc_timer, bnad_ioc_timeout,
3142 ((unsigned long)bnad));
3143 setup_timer(&bnad->bna.device.ioc.hb_timer, bnad_ioc_hb_check,
3144 ((unsigned long)bnad));
3145 setup_timer(&bnad->bna.device.ioc.iocpf_timer, bnad_iocpf_timeout,
3146 ((unsigned long)bnad));
3147 setup_timer(&bnad->bna.device.ioc.sem_timer, bnad_iocpf_sem_timeout,
3148 ((unsigned long)bnad));
3149
3150 /* Now start the timer before calling IOC */
3151 mod_timer(&bnad->bna.device.ioc.iocpf_timer,
3152 jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3153
3154 /*
3155 * Start the chip
3156 * Don't care even if err != 0, bna state machine will
3157 * deal with it
3158 */
3159 err = bnad_device_enable(bnad);
3160
3161 /* Get the burnt-in mac */
3162 spin_lock_irqsave(&bnad->bna_lock, flags);
3163 bna_port_mac_get(&bna->port, &bnad->perm_addr);
3164 bnad_set_netdev_perm_addr(bnad);
3165 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3166
3167 mutex_unlock(&bnad->conf_mutex);
3168
3169 /* Finally, reguister with net_device layer */
3170 err = register_netdev(netdev);
3171 if (err) {
3172 pr_err("BNA : Registering with netdev failed\n");
3173 goto disable_device;
3174 }
3175
3176 return 0;
3177
3178disable_device:
3179 mutex_lock(&bnad->conf_mutex);
3180 bnad_device_disable(bnad);
3181 del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3182 del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3183 del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3184 spin_lock_irqsave(&bnad->bna_lock, flags);
3185 bna_uninit(bna);
3186 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3187 mutex_unlock(&bnad->conf_mutex);
3188
3189 bnad_res_free(bnad);
3190 bnad_disable_msix(bnad);
3191pci_uninit:
3192 bnad_pci_uninit(pdev);
3193 bnad_lock_uninit(bnad);
3194 bnad_uninit(bnad);
3195free_netdev:
3196 free_netdev(netdev);
3197 return err;
3198}
3199
3200static void __devexit
3201bnad_pci_remove(struct pci_dev *pdev)
3202{
3203 struct net_device *netdev = pci_get_drvdata(pdev);
3204 struct bnad *bnad;
3205 struct bna *bna;
3206 unsigned long flags;
3207
3208 if (!netdev)
3209 return;
3210
3211 pr_info("%s bnad_pci_remove\n", netdev->name);
3212 bnad = netdev_priv(netdev);
3213 bna = &bnad->bna;
3214
3215 unregister_netdev(netdev);
3216
3217 mutex_lock(&bnad->conf_mutex);
3218 bnad_device_disable(bnad);
3219 del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3220 del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3221 del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3222 spin_lock_irqsave(&bnad->bna_lock, flags);
3223 bna_uninit(bna);
3224 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3225 mutex_unlock(&bnad->conf_mutex);
3226
3227 bnad_res_free(bnad);
3228 bnad_disable_msix(bnad);
3229 bnad_pci_uninit(pdev);
3230 bnad_lock_uninit(bnad);
3231 bnad_uninit(bnad);
3232 free_netdev(netdev);
3233}
3234
3235static const struct pci_device_id bnad_pci_id_table[] = {
3236 {
3237 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3238 PCI_DEVICE_ID_BROCADE_CT),
3239 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3240 .class_mask = 0xffff00
3241 }, {0, }
3242};
3243
3244MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3245
3246static struct pci_driver bnad_pci_driver = {
3247 .name = BNAD_NAME,
3248 .id_table = bnad_pci_id_table,
3249 .probe = bnad_pci_probe,
3250 .remove = __devexit_p(bnad_pci_remove),
3251};
3252
3253static int __init
3254bnad_module_init(void)
3255{
3256 int err;
3257
3258 pr_info("Brocade 10G Ethernet driver\n");
3259
3260 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3261
3262 err = pci_register_driver(&bnad_pci_driver);
3263 if (err < 0) {
3264 pr_err("bna : PCI registration failed in module init "
3265 "(%d)\n", err);
3266 return err;
3267 }
3268
3269 return 0;
3270}
3271
3272static void __exit
3273bnad_module_exit(void)
3274{
3275 pci_unregister_driver(&bnad_pci_driver);
3276
3277 if (bfi_fw)
3278 release_firmware(bfi_fw);
3279}
3280
3281module_init(bnad_module_init);
3282module_exit(bnad_module_exit);
3283
3284MODULE_AUTHOR("Brocade");
3285MODULE_LICENSE("GPL");
3286MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3287MODULE_VERSION(BNAD_VERSION);
3288MODULE_FIRMWARE(CNA_FW_FILE_CT);
diff --git a/drivers/net/bna/bnad.h b/drivers/net/bna/bnad.h
new file mode 100644
index 000000000000..ccdabad0a40c
--- /dev/null
+++ b/drivers/net/bna/bnad.h
@@ -0,0 +1,337 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#ifndef __BNAD_H__
19#define __BNAD_H__
20
21#include <linux/rtnetlink.h>
22#include <linux/workqueue.h>
23#include <linux/ipv6.h>
24#include <linux/etherdevice.h>
25#include <linux/mutex.h>
26#include <linux/firmware.h>
27
28/* Fix for IA64 */
29#include <asm/checksum.h>
30#include <net/ip6_checksum.h>
31
32#include <net/ip.h>
33#include <net/tcp.h>
34
35#include "bna.h"
36
37#define BNAD_TXQ_DEPTH 2048
38#define BNAD_RXQ_DEPTH 2048
39
40#define BNAD_MAX_TXS 1
41#define BNAD_MAX_TXQ_PER_TX 8 /* 8 priority queues */
42#define BNAD_TXQ_NUM 1
43
44#define BNAD_MAX_RXS 1
45#define BNAD_MAX_RXPS_PER_RX 16
46
47/*
48 * Control structure pointed to ccb->ctrl, which
49 * determines the NAPI / LRO behavior CCB
50 * There is 1:1 corres. between ccb & ctrl
51 */
52struct bnad_rx_ctrl {
53 struct bna_ccb *ccb;
54 unsigned long flags;
55 struct napi_struct napi;
56};
57
58#define BNAD_RXMODE_PROMISC_DEFAULT BNA_RXMODE_PROMISC
59
60#define BNAD_GET_TX_ID(_skb) (0)
61
62/*
63 * GLOBAL #defines (CONSTANTS)
64 */
65#define BNAD_NAME "bna"
66#define BNAD_NAME_LEN 64
67
68#define BNAD_VERSION "2.3.2.3"
69
70#define BNAD_MAILBOX_MSIX_VECTORS 1
71
72#define BNAD_STATS_TIMER_FREQ 1000 /* in msecs */
73#define BNAD_DIM_TIMER_FREQ 1000 /* in msecs */
74
75#define BNAD_MAX_Q_DEPTH 0x10000
76#define BNAD_MIN_Q_DEPTH 0x200
77
78#define BNAD_JUMBO_MTU 9000
79
80#define BNAD_NETIF_WAKE_THRESHOLD 8
81
82#define BNAD_RXQ_REFILL_THRESHOLD_SHIFT 3
83
84/* Bit positions for tcb->flags */
85#define BNAD_TXQ_FREE_SENT 0
86#define BNAD_TXQ_TX_STARTED 1
87
88/* Bit positions for rcb->flags */
89#define BNAD_RXQ_REFILL 0
90#define BNAD_RXQ_STARTED 1
91
92/*
93 * DATA STRUCTURES
94 */
95
96/* enums */
97enum bnad_intr_source {
98 BNAD_INTR_TX = 1,
99 BNAD_INTR_RX = 2
100};
101
102enum bnad_link_state {
103 BNAD_LS_DOWN = 0,
104 BNAD_LS_UP = 1
105};
106
107struct bnad_completion {
108 struct completion ioc_comp;
109 struct completion ucast_comp;
110 struct completion mcast_comp;
111 struct completion tx_comp;
112 struct completion rx_comp;
113 struct completion stats_comp;
114 struct completion port_comp;
115
116 u8 ioc_comp_status;
117 u8 ucast_comp_status;
118 u8 mcast_comp_status;
119 u8 tx_comp_status;
120 u8 rx_comp_status;
121 u8 stats_comp_status;
122 u8 port_comp_status;
123};
124
125/* Tx Rx Control Stats */
126struct bnad_drv_stats {
127 u64 netif_queue_stop;
128 u64 netif_queue_wakeup;
129 u64 netif_queue_stopped;
130 u64 tso4;
131 u64 tso6;
132 u64 tso_err;
133 u64 tcpcsum_offload;
134 u64 udpcsum_offload;
135 u64 csum_help;
136 u64 csum_help_err;
137
138 u64 hw_stats_updates;
139 u64 netif_rx_schedule;
140 u64 netif_rx_complete;
141 u64 netif_rx_dropped;
142
143 u64 link_toggle;
144 u64 cee_up;
145
146 u64 rxp_info_alloc_failed;
147 u64 mbox_intr_disabled;
148 u64 mbox_intr_enabled;
149 u64 tx_unmap_q_alloc_failed;
150 u64 rx_unmap_q_alloc_failed;
151
152 u64 rxbuf_alloc_failed;
153};
154
155/* Complete driver stats */
156struct bnad_stats {
157 struct bnad_drv_stats drv_stats;
158 struct bna_stats *bna_stats;
159};
160
161/* Tx / Rx Resources */
162struct bnad_tx_res_info {
163 struct bna_res_info res_info[BNA_TX_RES_T_MAX];
164};
165
166struct bnad_rx_res_info {
167 struct bna_res_info res_info[BNA_RX_RES_T_MAX];
168};
169
170struct bnad_tx_info {
171 struct bna_tx *tx; /* 1:1 between tx_info & tx */
172 struct bna_tcb *tcb[BNAD_MAX_TXQ_PER_TX];
173} ____cacheline_aligned;
174
175struct bnad_rx_info {
176 struct bna_rx *rx; /* 1:1 between rx_info & rx */
177
178 struct bnad_rx_ctrl rx_ctrl[BNAD_MAX_RXPS_PER_RX];
179} ____cacheline_aligned;
180
181/* Unmap queues for Tx / Rx cleanup */
182struct bnad_skb_unmap {
183 struct sk_buff *skb;
184 DEFINE_DMA_UNMAP_ADDR(dma_addr);
185};
186
187struct bnad_unmap_q {
188 u32 producer_index;
189 u32 consumer_index;
190 u32 q_depth;
191 /* This should be the last one */
192 struct bnad_skb_unmap unmap_array[1];
193};
194
195/* Bit mask values for bnad->cfg_flags */
196#define BNAD_CF_DIM_ENABLED 0x01 /* DIM */
197#define BNAD_CF_PROMISC 0x02
198#define BNAD_CF_ALLMULTI 0x04
199#define BNAD_CF_MSIX 0x08 /* If in MSIx mode */
200
201/* Defines for run_flags bit-mask */
202/* Set, tested & cleared using xxx_bit() functions */
203/* Values indicated bit positions */
204#define BNAD_RF_CEE_RUNNING 1
205#define BNAD_RF_MBOX_IRQ_DISABLED 2
206#define BNAD_RF_RX_STARTED 3
207#define BNAD_RF_DIM_TIMER_RUNNING 4
208#define BNAD_RF_STATS_TIMER_RUNNING 5
209#define BNAD_RF_TX_SHUTDOWN_DELAYED 6
210#define BNAD_RF_RX_SHUTDOWN_DELAYED 7
211
212struct bnad {
213 struct net_device *netdev;
214
215 /* Data path */
216 struct bnad_tx_info tx_info[BNAD_MAX_TXS];
217 struct bnad_rx_info rx_info[BNAD_MAX_RXS];
218
219 struct vlan_group *vlan_grp;
220 /*
221 * These q numbers are global only because
222 * they are used to calculate MSIx vectors.
223 * Actually the exact # of queues are per Tx/Rx
224 * object.
225 */
226 u32 num_tx;
227 u32 num_rx;
228 u32 num_txq_per_tx;
229 u32 num_rxp_per_rx;
230
231 u32 txq_depth;
232 u32 rxq_depth;
233
234 u8 tx_coalescing_timeo;
235 u8 rx_coalescing_timeo;
236
237 struct bna_rx_config rx_config[BNAD_MAX_RXS];
238 struct bna_tx_config tx_config[BNAD_MAX_TXS];
239
240 void __iomem *bar0; /* BAR0 address */
241
242 struct bna bna;
243
244 u32 cfg_flags;
245 unsigned long run_flags;
246
247 struct pci_dev *pcidev;
248 u64 mmio_start;
249 u64 mmio_len;
250
251 u32 msix_num;
252 struct msix_entry *msix_table;
253
254 struct mutex conf_mutex;
255 spinlock_t bna_lock ____cacheline_aligned;
256
257 /* Timers */
258 struct timer_list ioc_timer;
259 struct timer_list dim_timer;
260 struct timer_list stats_timer;
261
262 /* Control path resources, memory & irq */
263 struct bna_res_info res_info[BNA_RES_T_MAX];
264 struct bnad_tx_res_info tx_res_info[BNAD_MAX_TXS];
265 struct bnad_rx_res_info rx_res_info[BNAD_MAX_RXS];
266
267 struct bnad_completion bnad_completions;
268
269 /* Burnt in MAC address */
270 mac_t perm_addr;
271
272 struct tasklet_struct tx_free_tasklet;
273
274 /* Statistics */
275 struct bnad_stats stats;
276
277 struct bnad_diag *diag;
278
279 char adapter_name[BNAD_NAME_LEN];
280 char port_name[BNAD_NAME_LEN];
281 char mbox_irq_name[BNAD_NAME_LEN];
282};
283
284/*
285 * EXTERN VARIABLES
286 */
287extern struct firmware *bfi_fw;
288extern u32 bnad_rxqs_per_cq;
289
290/*
291 * EXTERN PROTOTYPES
292 */
293extern u32 *cna_get_firmware_buf(struct pci_dev *pdev);
294/* Netdev entry point prototypes */
295extern void bnad_set_ethtool_ops(struct net_device *netdev);
296
297/* Configuration & setup */
298extern void bnad_tx_coalescing_timeo_set(struct bnad *bnad);
299extern void bnad_rx_coalescing_timeo_set(struct bnad *bnad);
300
301extern int bnad_setup_rx(struct bnad *bnad, uint rx_id);
302extern int bnad_setup_tx(struct bnad *bnad, uint tx_id);
303extern void bnad_cleanup_tx(struct bnad *bnad, uint tx_id);
304extern void bnad_cleanup_rx(struct bnad *bnad, uint rx_id);
305
306/* Timer start/stop protos */
307extern void bnad_dim_timer_start(struct bnad *bnad);
308
309/* Statistics */
310extern void bnad_netdev_qstats_fill(struct bnad *bnad,
311 struct rtnl_link_stats64 *stats);
312extern void bnad_netdev_hwstats_fill(struct bnad *bnad,
313 struct rtnl_link_stats64 *stats);
314
315/**
316 * MACROS
317 */
318/* To set & get the stats counters */
319#define BNAD_UPDATE_CTR(_bnad, _ctr) \
320 (((_bnad)->stats.drv_stats._ctr)++)
321
322#define BNAD_GET_CTR(_bnad, _ctr) ((_bnad)->stats.drv_stats._ctr)
323
324#define bnad_enable_rx_irq_unsafe(_ccb) \
325{ \
326 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags))) {\
327 bna_ib_coalescing_timer_set((_ccb)->i_dbell, \
328 (_ccb)->rx_coalescing_timeo); \
329 bna_ib_ack((_ccb)->i_dbell, 0); \
330 } \
331}
332
333#define bnad_dim_timer_running(_bnad) \
334 (((_bnad)->cfg_flags & BNAD_CF_DIM_ENABLED) && \
335 (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &((_bnad)->run_flags))))
336
337#endif /* __BNAD_H__ */
diff --git a/drivers/net/bna/bnad_ethtool.c b/drivers/net/bna/bnad_ethtool.c
new file mode 100644
index 000000000000..3330cd78da2c
--- /dev/null
+++ b/drivers/net/bna/bnad_ethtool.c
@@ -0,0 +1,1214 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#include "cna.h"
20
21#include <linux/netdevice.h>
22#include <linux/skbuff.h>
23#include <linux/ethtool.h>
24#include <linux/rtnetlink.h>
25
26#include "bna.h"
27
28#include "bnad.h"
29
30#define BNAD_NUM_TXF_COUNTERS 12
31#define BNAD_NUM_RXF_COUNTERS 10
32#define BNAD_NUM_CQ_COUNTERS 3
33#define BNAD_NUM_RXQ_COUNTERS 6
34#define BNAD_NUM_TXQ_COUNTERS 5
35
36#define BNAD_ETHTOOL_STATS_NUM \
37 (sizeof(struct rtnl_link_stats64) / sizeof(u64) + \
38 sizeof(struct bnad_drv_stats) / sizeof(u64) + \
39 offsetof(struct bfi_ll_stats, rxf_stats[0]) / sizeof(u64))
40
41static char *bnad_net_stats_strings[BNAD_ETHTOOL_STATS_NUM] = {
42 "rx_packets",
43 "tx_packets",
44 "rx_bytes",
45 "tx_bytes",
46 "rx_errors",
47 "tx_errors",
48 "rx_dropped",
49 "tx_dropped",
50 "multicast",
51 "collisions",
52
53 "rx_length_errors",
54 "rx_over_errors",
55 "rx_crc_errors",
56 "rx_frame_errors",
57 "rx_fifo_errors",
58 "rx_missed_errors",
59
60 "tx_aborted_errors",
61 "tx_carrier_errors",
62 "tx_fifo_errors",
63 "tx_heartbeat_errors",
64 "tx_window_errors",
65
66 "rx_compressed",
67 "tx_compressed",
68
69 "netif_queue_stop",
70 "netif_queue_wakeup",
71 "netif_queue_stopped",
72 "tso4",
73 "tso6",
74 "tso_err",
75 "tcpcsum_offload",
76 "udpcsum_offload",
77 "csum_help",
78 "csum_help_err",
79 "hw_stats_updates",
80 "netif_rx_schedule",
81 "netif_rx_complete",
82 "netif_rx_dropped",
83
84 "link_toggle",
85 "cee_up",
86
87 "rxp_info_alloc_failed",
88 "mbox_intr_disabled",
89 "mbox_intr_enabled",
90 "tx_unmap_q_alloc_failed",
91 "rx_unmap_q_alloc_failed",
92 "rxbuf_alloc_failed",
93
94 "mac_frame_64",
95 "mac_frame_65_127",
96 "mac_frame_128_255",
97 "mac_frame_256_511",
98 "mac_frame_512_1023",
99 "mac_frame_1024_1518",
100 "mac_frame_1518_1522",
101 "mac_rx_bytes",
102 "mac_rx_packets",
103 "mac_rx_fcs_error",
104 "mac_rx_multicast",
105 "mac_rx_broadcast",
106 "mac_rx_control_frames",
107 "mac_rx_pause",
108 "mac_rx_unknown_opcode",
109 "mac_rx_alignment_error",
110 "mac_rx_frame_length_error",
111 "mac_rx_code_error",
112 "mac_rx_carrier_sense_error",
113 "mac_rx_undersize",
114 "mac_rx_oversize",
115 "mac_rx_fragments",
116 "mac_rx_jabber",
117 "mac_rx_drop",
118
119 "mac_tx_bytes",
120 "mac_tx_packets",
121 "mac_tx_multicast",
122 "mac_tx_broadcast",
123 "mac_tx_pause",
124 "mac_tx_deferral",
125 "mac_tx_excessive_deferral",
126 "mac_tx_single_collision",
127 "mac_tx_muliple_collision",
128 "mac_tx_late_collision",
129 "mac_tx_excessive_collision",
130 "mac_tx_total_collision",
131 "mac_tx_pause_honored",
132 "mac_tx_drop",
133 "mac_tx_jabber",
134 "mac_tx_fcs_error",
135 "mac_tx_control_frame",
136 "mac_tx_oversize",
137 "mac_tx_undersize",
138 "mac_tx_fragments",
139
140 "bpc_tx_pause_0",
141 "bpc_tx_pause_1",
142 "bpc_tx_pause_2",
143 "bpc_tx_pause_3",
144 "bpc_tx_pause_4",
145 "bpc_tx_pause_5",
146 "bpc_tx_pause_6",
147 "bpc_tx_pause_7",
148 "bpc_tx_zero_pause_0",
149 "bpc_tx_zero_pause_1",
150 "bpc_tx_zero_pause_2",
151 "bpc_tx_zero_pause_3",
152 "bpc_tx_zero_pause_4",
153 "bpc_tx_zero_pause_5",
154 "bpc_tx_zero_pause_6",
155 "bpc_tx_zero_pause_7",
156 "bpc_tx_first_pause_0",
157 "bpc_tx_first_pause_1",
158 "bpc_tx_first_pause_2",
159 "bpc_tx_first_pause_3",
160 "bpc_tx_first_pause_4",
161 "bpc_tx_first_pause_5",
162 "bpc_tx_first_pause_6",
163 "bpc_tx_first_pause_7",
164
165 "bpc_rx_pause_0",
166 "bpc_rx_pause_1",
167 "bpc_rx_pause_2",
168 "bpc_rx_pause_3",
169 "bpc_rx_pause_4",
170 "bpc_rx_pause_5",
171 "bpc_rx_pause_6",
172 "bpc_rx_pause_7",
173 "bpc_rx_zero_pause_0",
174 "bpc_rx_zero_pause_1",
175 "bpc_rx_zero_pause_2",
176 "bpc_rx_zero_pause_3",
177 "bpc_rx_zero_pause_4",
178 "bpc_rx_zero_pause_5",
179 "bpc_rx_zero_pause_6",
180 "bpc_rx_zero_pause_7",
181 "bpc_rx_first_pause_0",
182 "bpc_rx_first_pause_1",
183 "bpc_rx_first_pause_2",
184 "bpc_rx_first_pause_3",
185 "bpc_rx_first_pause_4",
186 "bpc_rx_first_pause_5",
187 "bpc_rx_first_pause_6",
188 "bpc_rx_first_pause_7",
189
190 "rad_rx_frames",
191 "rad_rx_octets",
192 "rad_rx_vlan_frames",
193 "rad_rx_ucast",
194 "rad_rx_ucast_octets",
195 "rad_rx_ucast_vlan",
196 "rad_rx_mcast",
197 "rad_rx_mcast_octets",
198 "rad_rx_mcast_vlan",
199 "rad_rx_bcast",
200 "rad_rx_bcast_octets",
201 "rad_rx_bcast_vlan",
202 "rad_rx_drops",
203
204 "fc_rx_ucast_octets",
205 "fc_rx_ucast",
206 "fc_rx_ucast_vlan",
207 "fc_rx_mcast_octets",
208 "fc_rx_mcast",
209 "fc_rx_mcast_vlan",
210 "fc_rx_bcast_octets",
211 "fc_rx_bcast",
212 "fc_rx_bcast_vlan",
213
214 "fc_tx_ucast_octets",
215 "fc_tx_ucast",
216 "fc_tx_ucast_vlan",
217 "fc_tx_mcast_octets",
218 "fc_tx_mcast",
219 "fc_tx_mcast_vlan",
220 "fc_tx_bcast_octets",
221 "fc_tx_bcast",
222 "fc_tx_bcast_vlan",
223 "fc_tx_parity_errors",
224 "fc_tx_timeout",
225 "fc_tx_fid_parity_errors",
226};
227
228static int
229bnad_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
230{
231 cmd->supported = SUPPORTED_10000baseT_Full;
232 cmd->advertising = ADVERTISED_10000baseT_Full;
233 cmd->autoneg = AUTONEG_DISABLE;
234 cmd->supported |= SUPPORTED_FIBRE;
235 cmd->advertising |= ADVERTISED_FIBRE;
236 cmd->port = PORT_FIBRE;
237 cmd->phy_address = 0;
238
239 if (netif_carrier_ok(netdev)) {
240 ethtool_cmd_speed_set(cmd, SPEED_10000);
241 cmd->duplex = DUPLEX_FULL;
242 } else {
243 ethtool_cmd_speed_set(cmd, -1);
244 cmd->duplex = -1;
245 }
246 cmd->transceiver = XCVR_EXTERNAL;
247 cmd->maxtxpkt = 0;
248 cmd->maxrxpkt = 0;
249
250 return 0;
251}
252
253static int
254bnad_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
255{
256 /* 10G full duplex setting supported only */
257 if (cmd->autoneg == AUTONEG_ENABLE)
258 return -EOPNOTSUPP; else {
259 if ((ethtool_cmd_speed(cmd) == SPEED_10000)
260 && (cmd->duplex == DUPLEX_FULL))
261 return 0;
262 }
263
264 return -EOPNOTSUPP;
265}
266
267static void
268bnad_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
269{
270 struct bnad *bnad = netdev_priv(netdev);
271 struct bfa_ioc_attr *ioc_attr;
272 unsigned long flags;
273
274 strcpy(drvinfo->driver, BNAD_NAME);
275 strcpy(drvinfo->version, BNAD_VERSION);
276
277 ioc_attr = kzalloc(sizeof(*ioc_attr), GFP_KERNEL);
278 if (ioc_attr) {
279 spin_lock_irqsave(&bnad->bna_lock, flags);
280 bfa_nw_ioc_get_attr(&bnad->bna.device.ioc, ioc_attr);
281 spin_unlock_irqrestore(&bnad->bna_lock, flags);
282
283 strncpy(drvinfo->fw_version, ioc_attr->adapter_attr.fw_ver,
284 sizeof(drvinfo->fw_version) - 1);
285 kfree(ioc_attr);
286 }
287
288 strncpy(drvinfo->bus_info, pci_name(bnad->pcidev), ETHTOOL_BUSINFO_LEN);
289}
290
291static int
292get_regs(struct bnad *bnad, u32 * regs)
293{
294 int num = 0, i;
295 u32 reg_addr;
296 unsigned long flags;
297
298#define BNAD_GET_REG(addr) \
299do { \
300 if (regs) \
301 regs[num++] = readl(bnad->bar0 + (addr)); \
302 else \
303 num++; \
304} while (0)
305
306 spin_lock_irqsave(&bnad->bna_lock, flags);
307
308 /* DMA Block Internal Registers */
309 BNAD_GET_REG(DMA_CTRL_REG0);
310 BNAD_GET_REG(DMA_CTRL_REG1);
311 BNAD_GET_REG(DMA_ERR_INT_STATUS);
312 BNAD_GET_REG(DMA_ERR_INT_ENABLE);
313 BNAD_GET_REG(DMA_ERR_INT_STATUS_SET);
314
315 /* APP Block Register Address Offset from BAR0 */
316 BNAD_GET_REG(HOSTFN0_INT_STATUS);
317 BNAD_GET_REG(HOSTFN0_INT_MASK);
318 BNAD_GET_REG(HOST_PAGE_NUM_FN0);
319 BNAD_GET_REG(HOST_MSIX_ERR_INDEX_FN0);
320 BNAD_GET_REG(FN0_PCIE_ERR_REG);
321 BNAD_GET_REG(FN0_ERR_TYPE_STATUS_REG);
322 BNAD_GET_REG(FN0_ERR_TYPE_MSK_STATUS_REG);
323
324 BNAD_GET_REG(HOSTFN1_INT_STATUS);
325 BNAD_GET_REG(HOSTFN1_INT_MASK);
326 BNAD_GET_REG(HOST_PAGE_NUM_FN1);
327 BNAD_GET_REG(HOST_MSIX_ERR_INDEX_FN1);
328 BNAD_GET_REG(FN1_PCIE_ERR_REG);
329 BNAD_GET_REG(FN1_ERR_TYPE_STATUS_REG);
330 BNAD_GET_REG(FN1_ERR_TYPE_MSK_STATUS_REG);
331
332 BNAD_GET_REG(PCIE_MISC_REG);
333
334 BNAD_GET_REG(HOST_SEM0_INFO_REG);
335 BNAD_GET_REG(HOST_SEM1_INFO_REG);
336 BNAD_GET_REG(HOST_SEM2_INFO_REG);
337 BNAD_GET_REG(HOST_SEM3_INFO_REG);
338
339 BNAD_GET_REG(TEMPSENSE_CNTL_REG);
340 BNAD_GET_REG(TEMPSENSE_STAT_REG);
341
342 BNAD_GET_REG(APP_LOCAL_ERR_STAT);
343 BNAD_GET_REG(APP_LOCAL_ERR_MSK);
344
345 BNAD_GET_REG(PCIE_LNK_ERR_STAT);
346 BNAD_GET_REG(PCIE_LNK_ERR_MSK);
347
348 BNAD_GET_REG(FCOE_FIP_ETH_TYPE);
349 BNAD_GET_REG(RESV_ETH_TYPE);
350
351 BNAD_GET_REG(HOSTFN2_INT_STATUS);
352 BNAD_GET_REG(HOSTFN2_INT_MASK);
353 BNAD_GET_REG(HOST_PAGE_NUM_FN2);
354 BNAD_GET_REG(HOST_MSIX_ERR_INDEX_FN2);
355 BNAD_GET_REG(FN2_PCIE_ERR_REG);
356 BNAD_GET_REG(FN2_ERR_TYPE_STATUS_REG);
357 BNAD_GET_REG(FN2_ERR_TYPE_MSK_STATUS_REG);
358
359 BNAD_GET_REG(HOSTFN3_INT_STATUS);
360 BNAD_GET_REG(HOSTFN3_INT_MASK);
361 BNAD_GET_REG(HOST_PAGE_NUM_FN3);
362 BNAD_GET_REG(HOST_MSIX_ERR_INDEX_FN3);
363 BNAD_GET_REG(FN3_PCIE_ERR_REG);
364 BNAD_GET_REG(FN3_ERR_TYPE_STATUS_REG);
365 BNAD_GET_REG(FN3_ERR_TYPE_MSK_STATUS_REG);
366
367 /* Host Command Status Registers */
368 reg_addr = HOST_CMDSTS0_CLR_REG;
369 for (i = 0; i < 16; i++) {
370 BNAD_GET_REG(reg_addr);
371 BNAD_GET_REG(reg_addr + 4);
372 BNAD_GET_REG(reg_addr + 8);
373 reg_addr += 0x10;
374 }
375
376 /* Function ID register */
377 BNAD_GET_REG(FNC_ID_REG);
378
379 /* Function personality register */
380 BNAD_GET_REG(FNC_PERS_REG);
381
382 /* Operation mode register */
383 BNAD_GET_REG(OP_MODE);
384
385 /* LPU0 Registers */
386 BNAD_GET_REG(LPU0_MBOX_CTL_REG);
387 BNAD_GET_REG(LPU0_MBOX_CMD_REG);
388 BNAD_GET_REG(LPU0_MBOX_LINK_0REG);
389 BNAD_GET_REG(LPU1_MBOX_LINK_0REG);
390 BNAD_GET_REG(LPU0_MBOX_STATUS_0REG);
391 BNAD_GET_REG(LPU1_MBOX_STATUS_0REG);
392 BNAD_GET_REG(LPU0_ERR_STATUS_REG);
393 BNAD_GET_REG(LPU0_ERR_SET_REG);
394
395 /* LPU1 Registers */
396 BNAD_GET_REG(LPU1_MBOX_CTL_REG);
397 BNAD_GET_REG(LPU1_MBOX_CMD_REG);
398 BNAD_GET_REG(LPU0_MBOX_LINK_1REG);
399 BNAD_GET_REG(LPU1_MBOX_LINK_1REG);
400 BNAD_GET_REG(LPU0_MBOX_STATUS_1REG);
401 BNAD_GET_REG(LPU1_MBOX_STATUS_1REG);
402 BNAD_GET_REG(LPU1_ERR_STATUS_REG);
403 BNAD_GET_REG(LPU1_ERR_SET_REG);
404
405 /* PSS Registers */
406 BNAD_GET_REG(PSS_CTL_REG);
407 BNAD_GET_REG(PSS_ERR_STATUS_REG);
408 BNAD_GET_REG(ERR_STATUS_SET);
409 BNAD_GET_REG(PSS_RAM_ERR_STATUS_REG);
410
411 /* Catapult CPQ Registers */
412 BNAD_GET_REG(HOSTFN0_LPU0_MBOX0_CMD_STAT);
413 BNAD_GET_REG(HOSTFN0_LPU1_MBOX0_CMD_STAT);
414 BNAD_GET_REG(LPU0_HOSTFN0_MBOX0_CMD_STAT);
415 BNAD_GET_REG(LPU1_HOSTFN0_MBOX0_CMD_STAT);
416
417 BNAD_GET_REG(HOSTFN0_LPU0_MBOX1_CMD_STAT);
418 BNAD_GET_REG(HOSTFN0_LPU1_MBOX1_CMD_STAT);
419 BNAD_GET_REG(LPU0_HOSTFN0_MBOX1_CMD_STAT);
420 BNAD_GET_REG(LPU1_HOSTFN0_MBOX1_CMD_STAT);
421
422 BNAD_GET_REG(HOSTFN1_LPU0_MBOX0_CMD_STAT);
423 BNAD_GET_REG(HOSTFN1_LPU1_MBOX0_CMD_STAT);
424 BNAD_GET_REG(LPU0_HOSTFN1_MBOX0_CMD_STAT);
425 BNAD_GET_REG(LPU1_HOSTFN1_MBOX0_CMD_STAT);
426
427 BNAD_GET_REG(HOSTFN1_LPU0_MBOX1_CMD_STAT);
428 BNAD_GET_REG(HOSTFN1_LPU1_MBOX1_CMD_STAT);
429 BNAD_GET_REG(LPU0_HOSTFN1_MBOX1_CMD_STAT);
430 BNAD_GET_REG(LPU1_HOSTFN1_MBOX1_CMD_STAT);
431
432 BNAD_GET_REG(HOSTFN2_LPU0_MBOX0_CMD_STAT);
433 BNAD_GET_REG(HOSTFN2_LPU1_MBOX0_CMD_STAT);
434 BNAD_GET_REG(LPU0_HOSTFN2_MBOX0_CMD_STAT);
435 BNAD_GET_REG(LPU1_HOSTFN2_MBOX0_CMD_STAT);
436
437 BNAD_GET_REG(HOSTFN2_LPU0_MBOX1_CMD_STAT);
438 BNAD_GET_REG(HOSTFN2_LPU1_MBOX1_CMD_STAT);
439 BNAD_GET_REG(LPU0_HOSTFN2_MBOX1_CMD_STAT);
440 BNAD_GET_REG(LPU1_HOSTFN2_MBOX1_CMD_STAT);
441
442 BNAD_GET_REG(HOSTFN3_LPU0_MBOX0_CMD_STAT);
443 BNAD_GET_REG(HOSTFN3_LPU1_MBOX0_CMD_STAT);
444 BNAD_GET_REG(LPU0_HOSTFN3_MBOX0_CMD_STAT);
445 BNAD_GET_REG(LPU1_HOSTFN3_MBOX0_CMD_STAT);
446
447 BNAD_GET_REG(HOSTFN3_LPU0_MBOX1_CMD_STAT);
448 BNAD_GET_REG(HOSTFN3_LPU1_MBOX1_CMD_STAT);
449 BNAD_GET_REG(LPU0_HOSTFN3_MBOX1_CMD_STAT);
450 BNAD_GET_REG(LPU1_HOSTFN3_MBOX1_CMD_STAT);
451
452 /* Host Function Force Parity Error Registers */
453 BNAD_GET_REG(HOSTFN0_LPU_FORCE_PERR);
454 BNAD_GET_REG(HOSTFN1_LPU_FORCE_PERR);
455 BNAD_GET_REG(HOSTFN2_LPU_FORCE_PERR);
456 BNAD_GET_REG(HOSTFN3_LPU_FORCE_PERR);
457
458 /* LL Port[0|1] Halt Mask Registers */
459 BNAD_GET_REG(LL_HALT_MSK_P0);
460 BNAD_GET_REG(LL_HALT_MSK_P1);
461
462 /* LL Port[0|1] Error Mask Registers */
463 BNAD_GET_REG(LL_ERR_MSK_P0);
464 BNAD_GET_REG(LL_ERR_MSK_P1);
465
466 /* EMC FLI Registers */
467 BNAD_GET_REG(FLI_CMD_REG);
468 BNAD_GET_REG(FLI_ADDR_REG);
469 BNAD_GET_REG(FLI_CTL_REG);
470 BNAD_GET_REG(FLI_WRDATA_REG);
471 BNAD_GET_REG(FLI_RDDATA_REG);
472 BNAD_GET_REG(FLI_DEV_STATUS_REG);
473 BNAD_GET_REG(FLI_SIG_WD_REG);
474
475 BNAD_GET_REG(FLI_DEV_VENDOR_REG);
476 BNAD_GET_REG(FLI_ERR_STATUS_REG);
477
478 /* RxAdm 0 Registers */
479 BNAD_GET_REG(RAD0_CTL_REG);
480 BNAD_GET_REG(RAD0_PE_PARM_REG);
481 BNAD_GET_REG(RAD0_BCN_REG);
482 BNAD_GET_REG(RAD0_DEFAULT_REG);
483 BNAD_GET_REG(RAD0_PROMISC_REG);
484 BNAD_GET_REG(RAD0_BCNQ_REG);
485 BNAD_GET_REG(RAD0_DEFAULTQ_REG);
486
487 BNAD_GET_REG(RAD0_ERR_STS);
488 BNAD_GET_REG(RAD0_SET_ERR_STS);
489 BNAD_GET_REG(RAD0_ERR_INT_EN);
490 BNAD_GET_REG(RAD0_FIRST_ERR);
491 BNAD_GET_REG(RAD0_FORCE_ERR);
492
493 BNAD_GET_REG(RAD0_MAC_MAN_1H);
494 BNAD_GET_REG(RAD0_MAC_MAN_1L);
495 BNAD_GET_REG(RAD0_MAC_MAN_2H);
496 BNAD_GET_REG(RAD0_MAC_MAN_2L);
497 BNAD_GET_REG(RAD0_MAC_MAN_3H);
498 BNAD_GET_REG(RAD0_MAC_MAN_3L);
499 BNAD_GET_REG(RAD0_MAC_MAN_4H);
500 BNAD_GET_REG(RAD0_MAC_MAN_4L);
501
502 BNAD_GET_REG(RAD0_LAST4_IP);
503
504 /* RxAdm 1 Registers */
505 BNAD_GET_REG(RAD1_CTL_REG);
506 BNAD_GET_REG(RAD1_PE_PARM_REG);
507 BNAD_GET_REG(RAD1_BCN_REG);
508 BNAD_GET_REG(RAD1_DEFAULT_REG);
509 BNAD_GET_REG(RAD1_PROMISC_REG);
510 BNAD_GET_REG(RAD1_BCNQ_REG);
511 BNAD_GET_REG(RAD1_DEFAULTQ_REG);
512
513 BNAD_GET_REG(RAD1_ERR_STS);
514 BNAD_GET_REG(RAD1_SET_ERR_STS);
515 BNAD_GET_REG(RAD1_ERR_INT_EN);
516
517 /* TxA0 Registers */
518 BNAD_GET_REG(TXA0_CTRL_REG);
519 /* TxA0 TSO Sequence # Registers (RO) */
520 for (i = 0; i < 8; i++) {
521 BNAD_GET_REG(TXA0_TSO_TCP_SEQ_REG(i));
522 BNAD_GET_REG(TXA0_TSO_IP_INFO_REG(i));
523 }
524
525 /* TxA1 Registers */
526 BNAD_GET_REG(TXA1_CTRL_REG);
527 /* TxA1 TSO Sequence # Registers (RO) */
528 for (i = 0; i < 8; i++) {
529 BNAD_GET_REG(TXA1_TSO_TCP_SEQ_REG(i));
530 BNAD_GET_REG(TXA1_TSO_IP_INFO_REG(i));
531 }
532
533 /* RxA Registers */
534 BNAD_GET_REG(RXA0_CTL_REG);
535 BNAD_GET_REG(RXA1_CTL_REG);
536
537 /* PLB0 Registers */
538 BNAD_GET_REG(PLB0_ECM_TIMER_REG);
539 BNAD_GET_REG(PLB0_RL_CTL);
540 for (i = 0; i < 8; i++)
541 BNAD_GET_REG(PLB0_RL_MAX_BC(i));
542 BNAD_GET_REG(PLB0_RL_TU_PRIO);
543 for (i = 0; i < 8; i++)
544 BNAD_GET_REG(PLB0_RL_BYTE_CNT(i));
545 BNAD_GET_REG(PLB0_RL_MIN_REG);
546 BNAD_GET_REG(PLB0_RL_MAX_REG);
547 BNAD_GET_REG(PLB0_EMS_ADD_REG);
548
549 /* PLB1 Registers */
550 BNAD_GET_REG(PLB1_ECM_TIMER_REG);
551 BNAD_GET_REG(PLB1_RL_CTL);
552 for (i = 0; i < 8; i++)
553 BNAD_GET_REG(PLB1_RL_MAX_BC(i));
554 BNAD_GET_REG(PLB1_RL_TU_PRIO);
555 for (i = 0; i < 8; i++)
556 BNAD_GET_REG(PLB1_RL_BYTE_CNT(i));
557 BNAD_GET_REG(PLB1_RL_MIN_REG);
558 BNAD_GET_REG(PLB1_RL_MAX_REG);
559 BNAD_GET_REG(PLB1_EMS_ADD_REG);
560
561 /* HQM Control Register */
562 BNAD_GET_REG(HQM0_CTL_REG);
563 BNAD_GET_REG(HQM0_RXQ_STOP_SEM);
564 BNAD_GET_REG(HQM0_TXQ_STOP_SEM);
565 BNAD_GET_REG(HQM1_CTL_REG);
566 BNAD_GET_REG(HQM1_RXQ_STOP_SEM);
567 BNAD_GET_REG(HQM1_TXQ_STOP_SEM);
568
569 /* LUT Registers */
570 BNAD_GET_REG(LUT0_ERR_STS);
571 BNAD_GET_REG(LUT0_SET_ERR_STS);
572 BNAD_GET_REG(LUT1_ERR_STS);
573 BNAD_GET_REG(LUT1_SET_ERR_STS);
574
575 /* TRC Registers */
576 BNAD_GET_REG(TRC_CTL_REG);
577 BNAD_GET_REG(TRC_MODS_REG);
578 BNAD_GET_REG(TRC_TRGC_REG);
579 BNAD_GET_REG(TRC_CNT1_REG);
580 BNAD_GET_REG(TRC_CNT2_REG);
581 BNAD_GET_REG(TRC_NXTS_REG);
582 BNAD_GET_REG(TRC_DIRR_REG);
583 for (i = 0; i < 10; i++)
584 BNAD_GET_REG(TRC_TRGM_REG(i));
585 for (i = 0; i < 10; i++)
586 BNAD_GET_REG(TRC_NXTM_REG(i));
587 for (i = 0; i < 10; i++)
588 BNAD_GET_REG(TRC_STRM_REG(i));
589
590 spin_unlock_irqrestore(&bnad->bna_lock, flags);
591#undef BNAD_GET_REG
592 return num;
593}
594static int
595bnad_get_regs_len(struct net_device *netdev)
596{
597 int ret = get_regs(netdev_priv(netdev), NULL) * sizeof(u32);
598 return ret;
599}
600
601static void
602bnad_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *buf)
603{
604 memset(buf, 0, bnad_get_regs_len(netdev));
605 get_regs(netdev_priv(netdev), buf);
606}
607
608static void
609bnad_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wolinfo)
610{
611 wolinfo->supported = 0;
612 wolinfo->wolopts = 0;
613}
614
615static int
616bnad_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *coalesce)
617{
618 struct bnad *bnad = netdev_priv(netdev);
619 unsigned long flags;
620
621 /* Lock rqd. to access bnad->bna_lock */
622 spin_lock_irqsave(&bnad->bna_lock, flags);
623 coalesce->use_adaptive_rx_coalesce =
624 (bnad->cfg_flags & BNAD_CF_DIM_ENABLED) ? true : false;
625 spin_unlock_irqrestore(&bnad->bna_lock, flags);
626
627 coalesce->rx_coalesce_usecs = bnad->rx_coalescing_timeo *
628 BFI_COALESCING_TIMER_UNIT;
629 coalesce->tx_coalesce_usecs = bnad->tx_coalescing_timeo *
630 BFI_COALESCING_TIMER_UNIT;
631 coalesce->tx_max_coalesced_frames = BFI_TX_INTERPKT_COUNT;
632
633 return 0;
634}
635
636static int
637bnad_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *coalesce)
638{
639 struct bnad *bnad = netdev_priv(netdev);
640 unsigned long flags;
641 int dim_timer_del = 0;
642
643 if (coalesce->rx_coalesce_usecs == 0 ||
644 coalesce->rx_coalesce_usecs >
645 BFI_MAX_COALESCING_TIMEO * BFI_COALESCING_TIMER_UNIT)
646 return -EINVAL;
647
648 if (coalesce->tx_coalesce_usecs == 0 ||
649 coalesce->tx_coalesce_usecs >
650 BFI_MAX_COALESCING_TIMEO * BFI_COALESCING_TIMER_UNIT)
651 return -EINVAL;
652
653 mutex_lock(&bnad->conf_mutex);
654 /*
655 * Do not need to store rx_coalesce_usecs here
656 * Every time DIM is disabled, we can get it from the
657 * stack.
658 */
659 spin_lock_irqsave(&bnad->bna_lock, flags);
660 if (coalesce->use_adaptive_rx_coalesce) {
661 if (!(bnad->cfg_flags & BNAD_CF_DIM_ENABLED)) {
662 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
663 bnad_dim_timer_start(bnad);
664 }
665 } else {
666 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED) {
667 bnad->cfg_flags &= ~BNAD_CF_DIM_ENABLED;
668 dim_timer_del = bnad_dim_timer_running(bnad);
669 if (dim_timer_del) {
670 clear_bit(BNAD_RF_DIM_TIMER_RUNNING,
671 &bnad->run_flags);
672 spin_unlock_irqrestore(&bnad->bna_lock, flags);
673 del_timer_sync(&bnad->dim_timer);
674 spin_lock_irqsave(&bnad->bna_lock, flags);
675 }
676 bnad_rx_coalescing_timeo_set(bnad);
677 }
678 }
679 if (bnad->tx_coalescing_timeo != coalesce->tx_coalesce_usecs /
680 BFI_COALESCING_TIMER_UNIT) {
681 bnad->tx_coalescing_timeo = coalesce->tx_coalesce_usecs /
682 BFI_COALESCING_TIMER_UNIT;
683 bnad_tx_coalescing_timeo_set(bnad);
684 }
685
686 if (bnad->rx_coalescing_timeo != coalesce->rx_coalesce_usecs /
687 BFI_COALESCING_TIMER_UNIT) {
688 bnad->rx_coalescing_timeo = coalesce->rx_coalesce_usecs /
689 BFI_COALESCING_TIMER_UNIT;
690
691 if (!(bnad->cfg_flags & BNAD_CF_DIM_ENABLED))
692 bnad_rx_coalescing_timeo_set(bnad);
693
694 }
695
696 /* Add Tx Inter-pkt DMA count? */
697
698 spin_unlock_irqrestore(&bnad->bna_lock, flags);
699
700 mutex_unlock(&bnad->conf_mutex);
701 return 0;
702}
703
704static void
705bnad_get_ringparam(struct net_device *netdev,
706 struct ethtool_ringparam *ringparam)
707{
708 struct bnad *bnad = netdev_priv(netdev);
709
710 ringparam->rx_max_pending = BNAD_MAX_Q_DEPTH / bnad_rxqs_per_cq;
711 ringparam->rx_mini_max_pending = 0;
712 ringparam->rx_jumbo_max_pending = 0;
713 ringparam->tx_max_pending = BNAD_MAX_Q_DEPTH;
714
715 ringparam->rx_pending = bnad->rxq_depth;
716 ringparam->rx_mini_max_pending = 0;
717 ringparam->rx_jumbo_max_pending = 0;
718 ringparam->tx_pending = bnad->txq_depth;
719}
720
721static int
722bnad_set_ringparam(struct net_device *netdev,
723 struct ethtool_ringparam *ringparam)
724{
725 int i, current_err, err = 0;
726 struct bnad *bnad = netdev_priv(netdev);
727
728 mutex_lock(&bnad->conf_mutex);
729 if (ringparam->rx_pending == bnad->rxq_depth &&
730 ringparam->tx_pending == bnad->txq_depth) {
731 mutex_unlock(&bnad->conf_mutex);
732 return 0;
733 }
734
735 if (ringparam->rx_pending < BNAD_MIN_Q_DEPTH ||
736 ringparam->rx_pending > BNAD_MAX_Q_DEPTH / bnad_rxqs_per_cq ||
737 !BNA_POWER_OF_2(ringparam->rx_pending)) {
738 mutex_unlock(&bnad->conf_mutex);
739 return -EINVAL;
740 }
741 if (ringparam->tx_pending < BNAD_MIN_Q_DEPTH ||
742 ringparam->tx_pending > BNAD_MAX_Q_DEPTH ||
743 !BNA_POWER_OF_2(ringparam->tx_pending)) {
744 mutex_unlock(&bnad->conf_mutex);
745 return -EINVAL;
746 }
747
748 if (ringparam->rx_pending != bnad->rxq_depth) {
749 bnad->rxq_depth = ringparam->rx_pending;
750 for (i = 0; i < bnad->num_rx; i++) {
751 if (!bnad->rx_info[i].rx)
752 continue;
753 bnad_cleanup_rx(bnad, i);
754 current_err = bnad_setup_rx(bnad, i);
755 if (current_err && !err)
756 err = current_err;
757 }
758 }
759 if (ringparam->tx_pending != bnad->txq_depth) {
760 bnad->txq_depth = ringparam->tx_pending;
761 for (i = 0; i < bnad->num_tx; i++) {
762 if (!bnad->tx_info[i].tx)
763 continue;
764 bnad_cleanup_tx(bnad, i);
765 current_err = bnad_setup_tx(bnad, i);
766 if (current_err && !err)
767 err = current_err;
768 }
769 }
770
771 mutex_unlock(&bnad->conf_mutex);
772 return err;
773}
774
775static void
776bnad_get_pauseparam(struct net_device *netdev,
777 struct ethtool_pauseparam *pauseparam)
778{
779 struct bnad *bnad = netdev_priv(netdev);
780
781 pauseparam->autoneg = 0;
782 pauseparam->rx_pause = bnad->bna.port.pause_config.rx_pause;
783 pauseparam->tx_pause = bnad->bna.port.pause_config.tx_pause;
784}
785
786static int
787bnad_set_pauseparam(struct net_device *netdev,
788 struct ethtool_pauseparam *pauseparam)
789{
790 struct bnad *bnad = netdev_priv(netdev);
791 struct bna_pause_config pause_config;
792 unsigned long flags;
793
794 if (pauseparam->autoneg == AUTONEG_ENABLE)
795 return -EINVAL;
796
797 mutex_lock(&bnad->conf_mutex);
798 if (pauseparam->rx_pause != bnad->bna.port.pause_config.rx_pause ||
799 pauseparam->tx_pause != bnad->bna.port.pause_config.tx_pause) {
800 pause_config.rx_pause = pauseparam->rx_pause;
801 pause_config.tx_pause = pauseparam->tx_pause;
802 spin_lock_irqsave(&bnad->bna_lock, flags);
803 bna_port_pause_config(&bnad->bna.port, &pause_config, NULL);
804 spin_unlock_irqrestore(&bnad->bna_lock, flags);
805 }
806 mutex_unlock(&bnad->conf_mutex);
807 return 0;
808}
809
810static void
811bnad_get_strings(struct net_device *netdev, u32 stringset, u8 * string)
812{
813 struct bnad *bnad = netdev_priv(netdev);
814 int i, j, q_num;
815 u64 bmap;
816
817 mutex_lock(&bnad->conf_mutex);
818
819 switch (stringset) {
820 case ETH_SS_STATS:
821 for (i = 0; i < BNAD_ETHTOOL_STATS_NUM; i++) {
822 BUG_ON(!(strlen(bnad_net_stats_strings[i]) <
823 ETH_GSTRING_LEN));
824 memcpy(string, bnad_net_stats_strings[i],
825 ETH_GSTRING_LEN);
826 string += ETH_GSTRING_LEN;
827 }
828 bmap = (u64)bnad->bna.tx_mod.txf_bmap[0] |
829 ((u64)bnad->bna.tx_mod.txf_bmap[1] << 32);
830 for (i = 0; bmap && (i < BFI_LL_TXF_ID_MAX); i++) {
831 if (bmap & 1) {
832 sprintf(string, "txf%d_ucast_octets", i);
833 string += ETH_GSTRING_LEN;
834 sprintf(string, "txf%d_ucast", i);
835 string += ETH_GSTRING_LEN;
836 sprintf(string, "txf%d_ucast_vlan", i);
837 string += ETH_GSTRING_LEN;
838 sprintf(string, "txf%d_mcast_octets", i);
839 string += ETH_GSTRING_LEN;
840 sprintf(string, "txf%d_mcast", i);
841 string += ETH_GSTRING_LEN;
842 sprintf(string, "txf%d_mcast_vlan", i);
843 string += ETH_GSTRING_LEN;
844 sprintf(string, "txf%d_bcast_octets", i);
845 string += ETH_GSTRING_LEN;
846 sprintf(string, "txf%d_bcast", i);
847 string += ETH_GSTRING_LEN;
848 sprintf(string, "txf%d_bcast_vlan", i);
849 string += ETH_GSTRING_LEN;
850 sprintf(string, "txf%d_errors", i);
851 string += ETH_GSTRING_LEN;
852 sprintf(string, "txf%d_filter_vlan", i);
853 string += ETH_GSTRING_LEN;
854 sprintf(string, "txf%d_filter_mac_sa", i);
855 string += ETH_GSTRING_LEN;
856 }
857 bmap >>= 1;
858 }
859
860 bmap = (u64)bnad->bna.rx_mod.rxf_bmap[0] |
861 ((u64)bnad->bna.rx_mod.rxf_bmap[1] << 32);
862 for (i = 0; bmap && (i < BFI_LL_RXF_ID_MAX); i++) {
863 if (bmap & 1) {
864 sprintf(string, "rxf%d_ucast_octets", i);
865 string += ETH_GSTRING_LEN;
866 sprintf(string, "rxf%d_ucast", i);
867 string += ETH_GSTRING_LEN;
868 sprintf(string, "rxf%d_ucast_vlan", i);
869 string += ETH_GSTRING_LEN;
870 sprintf(string, "rxf%d_mcast_octets", i);
871 string += ETH_GSTRING_LEN;
872 sprintf(string, "rxf%d_mcast", i);
873 string += ETH_GSTRING_LEN;
874 sprintf(string, "rxf%d_mcast_vlan", i);
875 string += ETH_GSTRING_LEN;
876 sprintf(string, "rxf%d_bcast_octets", i);
877 string += ETH_GSTRING_LEN;
878 sprintf(string, "rxf%d_bcast", i);
879 string += ETH_GSTRING_LEN;
880 sprintf(string, "rxf%d_bcast_vlan", i);
881 string += ETH_GSTRING_LEN;
882 sprintf(string, "rxf%d_frame_drops", i);
883 string += ETH_GSTRING_LEN;
884 }
885 bmap >>= 1;
886 }
887
888 q_num = 0;
889 for (i = 0; i < bnad->num_rx; i++) {
890 if (!bnad->rx_info[i].rx)
891 continue;
892 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
893 sprintf(string, "cq%d_producer_index", q_num);
894 string += ETH_GSTRING_LEN;
895 sprintf(string, "cq%d_consumer_index", q_num);
896 string += ETH_GSTRING_LEN;
897 sprintf(string, "cq%d_hw_producer_index",
898 q_num);
899 string += ETH_GSTRING_LEN;
900 q_num++;
901 }
902 }
903
904 q_num = 0;
905 for (i = 0; i < bnad->num_rx; i++) {
906 if (!bnad->rx_info[i].rx)
907 continue;
908 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
909 sprintf(string, "rxq%d_packets", q_num);
910 string += ETH_GSTRING_LEN;
911 sprintf(string, "rxq%d_bytes", q_num);
912 string += ETH_GSTRING_LEN;
913 sprintf(string, "rxq%d_packets_with_error",
914 q_num);
915 string += ETH_GSTRING_LEN;
916 sprintf(string, "rxq%d_allocbuf_failed", q_num);
917 string += ETH_GSTRING_LEN;
918 sprintf(string, "rxq%d_producer_index", q_num);
919 string += ETH_GSTRING_LEN;
920 sprintf(string, "rxq%d_consumer_index", q_num);
921 string += ETH_GSTRING_LEN;
922 q_num++;
923 if (bnad->rx_info[i].rx_ctrl[j].ccb &&
924 bnad->rx_info[i].rx_ctrl[j].ccb->
925 rcb[1] &&
926 bnad->rx_info[i].rx_ctrl[j].ccb->
927 rcb[1]->rxq) {
928 sprintf(string, "rxq%d_packets", q_num);
929 string += ETH_GSTRING_LEN;
930 sprintf(string, "rxq%d_bytes", q_num);
931 string += ETH_GSTRING_LEN;
932 sprintf(string,
933 "rxq%d_packets_with_error", q_num);
934 string += ETH_GSTRING_LEN;
935 sprintf(string, "rxq%d_allocbuf_failed",
936 q_num);
937 string += ETH_GSTRING_LEN;
938 sprintf(string, "rxq%d_producer_index",
939 q_num);
940 string += ETH_GSTRING_LEN;
941 sprintf(string, "rxq%d_consumer_index",
942 q_num);
943 string += ETH_GSTRING_LEN;
944 q_num++;
945 }
946 }
947 }
948
949 q_num = 0;
950 for (i = 0; i < bnad->num_tx; i++) {
951 if (!bnad->tx_info[i].tx)
952 continue;
953 for (j = 0; j < bnad->num_txq_per_tx; j++) {
954 sprintf(string, "txq%d_packets", q_num);
955 string += ETH_GSTRING_LEN;
956 sprintf(string, "txq%d_bytes", q_num);
957 string += ETH_GSTRING_LEN;
958 sprintf(string, "txq%d_producer_index", q_num);
959 string += ETH_GSTRING_LEN;
960 sprintf(string, "txq%d_consumer_index", q_num);
961 string += ETH_GSTRING_LEN;
962 sprintf(string, "txq%d_hw_consumer_index",
963 q_num);
964 string += ETH_GSTRING_LEN;
965 q_num++;
966 }
967 }
968
969 break;
970
971 default:
972 break;
973 }
974
975 mutex_unlock(&bnad->conf_mutex);
976}
977
978static int
979bnad_get_stats_count_locked(struct net_device *netdev)
980{
981 struct bnad *bnad = netdev_priv(netdev);
982 int i, j, count, rxf_active_num = 0, txf_active_num = 0;
983 u64 bmap;
984
985 bmap = (u64)bnad->bna.tx_mod.txf_bmap[0] |
986 ((u64)bnad->bna.tx_mod.txf_bmap[1] << 32);
987 for (i = 0; bmap && (i < BFI_LL_TXF_ID_MAX); i++) {
988 if (bmap & 1)
989 txf_active_num++;
990 bmap >>= 1;
991 }
992 bmap = (u64)bnad->bna.rx_mod.rxf_bmap[0] |
993 ((u64)bnad->bna.rx_mod.rxf_bmap[1] << 32);
994 for (i = 0; bmap && (i < BFI_LL_RXF_ID_MAX); i++) {
995 if (bmap & 1)
996 rxf_active_num++;
997 bmap >>= 1;
998 }
999 count = BNAD_ETHTOOL_STATS_NUM +
1000 txf_active_num * BNAD_NUM_TXF_COUNTERS +
1001 rxf_active_num * BNAD_NUM_RXF_COUNTERS;
1002
1003 for (i = 0; i < bnad->num_rx; i++) {
1004 if (!bnad->rx_info[i].rx)
1005 continue;
1006 count += bnad->num_rxp_per_rx * BNAD_NUM_CQ_COUNTERS;
1007 count += bnad->num_rxp_per_rx * BNAD_NUM_RXQ_COUNTERS;
1008 for (j = 0; j < bnad->num_rxp_per_rx; j++)
1009 if (bnad->rx_info[i].rx_ctrl[j].ccb &&
1010 bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
1011 bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1]->rxq)
1012 count += BNAD_NUM_RXQ_COUNTERS;
1013 }
1014
1015 for (i = 0; i < bnad->num_tx; i++) {
1016 if (!bnad->tx_info[i].tx)
1017 continue;
1018 count += bnad->num_txq_per_tx * BNAD_NUM_TXQ_COUNTERS;
1019 }
1020 return count;
1021}
1022
1023static int
1024bnad_per_q_stats_fill(struct bnad *bnad, u64 *buf, int bi)
1025{
1026 int i, j;
1027 struct bna_rcb *rcb = NULL;
1028 struct bna_tcb *tcb = NULL;
1029
1030 for (i = 0; i < bnad->num_rx; i++) {
1031 if (!bnad->rx_info[i].rx)
1032 continue;
1033 for (j = 0; j < bnad->num_rxp_per_rx; j++)
1034 if (bnad->rx_info[i].rx_ctrl[j].ccb &&
1035 bnad->rx_info[i].rx_ctrl[j].ccb->rcb[0] &&
1036 bnad->rx_info[i].rx_ctrl[j].ccb->rcb[0]->rxq) {
1037 buf[bi++] = bnad->rx_info[i].rx_ctrl[j].
1038 ccb->producer_index;
1039 buf[bi++] = 0; /* ccb->consumer_index */
1040 buf[bi++] = *(bnad->rx_info[i].rx_ctrl[j].
1041 ccb->hw_producer_index);
1042 }
1043 }
1044 for (i = 0; i < bnad->num_rx; i++) {
1045 if (!bnad->rx_info[i].rx)
1046 continue;
1047 for (j = 0; j < bnad->num_rxp_per_rx; j++)
1048 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
1049 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[0] &&
1050 bnad->rx_info[i].rx_ctrl[j].ccb->
1051 rcb[0]->rxq) {
1052 rcb = bnad->rx_info[i].rx_ctrl[j].
1053 ccb->rcb[0];
1054 buf[bi++] = rcb->rxq->rx_packets;
1055 buf[bi++] = rcb->rxq->rx_bytes;
1056 buf[bi++] = rcb->rxq->
1057 rx_packets_with_error;
1058 buf[bi++] = rcb->rxq->
1059 rxbuf_alloc_failed;
1060 buf[bi++] = rcb->producer_index;
1061 buf[bi++] = rcb->consumer_index;
1062 }
1063 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
1064 bnad->rx_info[i].rx_ctrl[j].ccb->
1065 rcb[1]->rxq) {
1066 rcb = bnad->rx_info[i].rx_ctrl[j].
1067 ccb->rcb[1];
1068 buf[bi++] = rcb->rxq->rx_packets;
1069 buf[bi++] = rcb->rxq->rx_bytes;
1070 buf[bi++] = rcb->rxq->
1071 rx_packets_with_error;
1072 buf[bi++] = rcb->rxq->
1073 rxbuf_alloc_failed;
1074 buf[bi++] = rcb->producer_index;
1075 buf[bi++] = rcb->consumer_index;
1076 }
1077 }
1078 }
1079
1080 for (i = 0; i < bnad->num_tx; i++) {
1081 if (!bnad->tx_info[i].tx)
1082 continue;
1083 for (j = 0; j < bnad->num_txq_per_tx; j++)
1084 if (bnad->tx_info[i].tcb[j] &&
1085 bnad->tx_info[i].tcb[j]->txq) {
1086 tcb = bnad->tx_info[i].tcb[j];
1087 buf[bi++] = tcb->txq->tx_packets;
1088 buf[bi++] = tcb->txq->tx_bytes;
1089 buf[bi++] = tcb->producer_index;
1090 buf[bi++] = tcb->consumer_index;
1091 buf[bi++] = *(tcb->hw_consumer_index);
1092 }
1093 }
1094
1095 return bi;
1096}
1097
1098static void
1099bnad_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats,
1100 u64 *buf)
1101{
1102 struct bnad *bnad = netdev_priv(netdev);
1103 int i, j, bi;
1104 unsigned long flags;
1105 struct rtnl_link_stats64 *net_stats64;
1106 u64 *stats64;
1107 u64 bmap;
1108
1109 mutex_lock(&bnad->conf_mutex);
1110 if (bnad_get_stats_count_locked(netdev) != stats->n_stats) {
1111 mutex_unlock(&bnad->conf_mutex);
1112 return;
1113 }
1114
1115 /*
1116 * Used bna_lock to sync reads from bna_stats, which is written
1117 * under the same lock
1118 */
1119 spin_lock_irqsave(&bnad->bna_lock, flags);
1120 bi = 0;
1121 memset(buf, 0, stats->n_stats * sizeof(u64));
1122
1123 net_stats64 = (struct rtnl_link_stats64 *)buf;
1124 bnad_netdev_qstats_fill(bnad, net_stats64);
1125 bnad_netdev_hwstats_fill(bnad, net_stats64);
1126
1127 bi = sizeof(*net_stats64) / sizeof(u64);
1128
1129 /* Get netif_queue_stopped from stack */
1130 bnad->stats.drv_stats.netif_queue_stopped = netif_queue_stopped(netdev);
1131
1132 /* Fill driver stats into ethtool buffers */
1133 stats64 = (u64 *)&bnad->stats.drv_stats;
1134 for (i = 0; i < sizeof(struct bnad_drv_stats) / sizeof(u64); i++)
1135 buf[bi++] = stats64[i];
1136
1137 /* Fill hardware stats excluding the rxf/txf into ethtool bufs */
1138 stats64 = (u64 *) bnad->stats.bna_stats->hw_stats;
1139 for (i = 0;
1140 i < offsetof(struct bfi_ll_stats, rxf_stats[0]) / sizeof(u64);
1141 i++)
1142 buf[bi++] = stats64[i];
1143
1144 /* Fill txf stats into ethtool buffers */
1145 bmap = (u64)bnad->bna.tx_mod.txf_bmap[0] |
1146 ((u64)bnad->bna.tx_mod.txf_bmap[1] << 32);
1147 for (i = 0; bmap && (i < BFI_LL_TXF_ID_MAX); i++) {
1148 if (bmap & 1) {
1149 stats64 = (u64 *)&bnad->stats.bna_stats->
1150 hw_stats->txf_stats[i];
1151 for (j = 0; j < sizeof(struct bfi_ll_stats_txf) /
1152 sizeof(u64); j++)
1153 buf[bi++] = stats64[j];
1154 }
1155 bmap >>= 1;
1156 }
1157
1158 /* Fill rxf stats into ethtool buffers */
1159 bmap = (u64)bnad->bna.rx_mod.rxf_bmap[0] |
1160 ((u64)bnad->bna.rx_mod.rxf_bmap[1] << 32);
1161 for (i = 0; bmap && (i < BFI_LL_RXF_ID_MAX); i++) {
1162 if (bmap & 1) {
1163 stats64 = (u64 *)&bnad->stats.bna_stats->
1164 hw_stats->rxf_stats[i];
1165 for (j = 0; j < sizeof(struct bfi_ll_stats_rxf) /
1166 sizeof(u64); j++)
1167 buf[bi++] = stats64[j];
1168 }
1169 bmap >>= 1;
1170 }
1171
1172 /* Fill per Q stats into ethtool buffers */
1173 bi = bnad_per_q_stats_fill(bnad, buf, bi);
1174
1175 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1176
1177 mutex_unlock(&bnad->conf_mutex);
1178}
1179
1180static int
1181bnad_get_sset_count(struct net_device *netdev, int sset)
1182{
1183 switch (sset) {
1184 case ETH_SS_STATS:
1185 return bnad_get_stats_count_locked(netdev);
1186 default:
1187 return -EOPNOTSUPP;
1188 }
1189}
1190
1191static struct ethtool_ops bnad_ethtool_ops = {
1192 .get_settings = bnad_get_settings,
1193 .set_settings = bnad_set_settings,
1194 .get_drvinfo = bnad_get_drvinfo,
1195 .get_regs_len = bnad_get_regs_len,
1196 .get_regs = bnad_get_regs,
1197 .get_wol = bnad_get_wol,
1198 .get_link = ethtool_op_get_link,
1199 .get_coalesce = bnad_get_coalesce,
1200 .set_coalesce = bnad_set_coalesce,
1201 .get_ringparam = bnad_get_ringparam,
1202 .set_ringparam = bnad_set_ringparam,
1203 .get_pauseparam = bnad_get_pauseparam,
1204 .set_pauseparam = bnad_set_pauseparam,
1205 .get_strings = bnad_get_strings,
1206 .get_ethtool_stats = bnad_get_ethtool_stats,
1207 .get_sset_count = bnad_get_sset_count
1208};
1209
1210void
1211bnad_set_ethtool_ops(struct net_device *netdev)
1212{
1213 SET_ETHTOOL_OPS(netdev, &bnad_ethtool_ops);
1214}
diff --git a/drivers/net/bna/cna.h b/drivers/net/bna/cna.h
new file mode 100644
index 000000000000..bbd39dc65972
--- /dev/null
+++ b/drivers/net/bna/cna.h
@@ -0,0 +1,81 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2006-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19#ifndef __CNA_H__
20#define __CNA_H__
21
22#include <linux/version.h>
23#include <linux/kernel.h>
24#include <linux/types.h>
25#include <linux/pci.h>
26#include <linux/delay.h>
27#include <linux/bitops.h>
28#include <linux/timer.h>
29#include <linux/interrupt.h>
30#include <linux/if_ether.h>
31#include <asm/page.h>
32#include <asm/io.h>
33#include <asm/string.h>
34
35#include <linux/list.h>
36
37#define bfa_sm_fault(__mod, __event) do { \
38 pr_err("SM Assertion failure: %s: %d: event = %d", __FILE__, __LINE__, \
39 __event); \
40} while (0)
41
42extern char bfa_version[];
43
44#define CNA_FW_FILE_CT "ctfw_cna.bin"
45#define FC_SYMNAME_MAX 256 /*!< max name server symbolic name size */
46
47#pragma pack(1)
48
49#define MAC_ADDRLEN (6)
50typedef struct mac { u8 mac[MAC_ADDRLEN]; } mac_t;
51
52#pragma pack()
53
54#define bfa_q_first(_q) ((void *)(((struct list_head *) (_q))->next))
55#define bfa_q_next(_qe) (((struct list_head *) (_qe))->next)
56#define bfa_q_prev(_qe) (((struct list_head *) (_qe))->prev)
57
58/*
59 * bfa_q_qe_init - to initialize a queue element
60 */
61#define bfa_q_qe_init(_qe) { \
62 bfa_q_next(_qe) = (struct list_head *) NULL; \
63 bfa_q_prev(_qe) = (struct list_head *) NULL; \
64}
65
66/*
67 * bfa_q_deq - dequeue an element from head of the queue
68 */
69#define bfa_q_deq(_q, _qe) { \
70 if (!list_empty(_q)) { \
71 (*((struct list_head **) (_qe))) = bfa_q_next(_q); \
72 bfa_q_prev(bfa_q_next(*((struct list_head **) _qe))) = \
73 (struct list_head *) (_q); \
74 bfa_q_next(_q) = bfa_q_next(*((struct list_head **) _qe)); \
75 bfa_q_qe_init(*((struct list_head **) _qe)); \
76 } else { \
77 *((struct list_head **) (_qe)) = (struct list_head *) NULL; \
78 } \
79}
80
81#endif /* __CNA_H__ */
diff --git a/drivers/net/bna/cna_fwimg.c b/drivers/net/bna/cna_fwimg.c
new file mode 100644
index 000000000000..e8f4ecd9ebb5
--- /dev/null
+++ b/drivers/net/bna/cna_fwimg.c
@@ -0,0 +1,64 @@
1/*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13/*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18#include <linux/firmware.h>
19#include "cna.h"
20
21const struct firmware *bfi_fw;
22static u32 *bfi_image_ct_cna;
23static u32 bfi_image_ct_cna_size;
24
25static u32 *
26cna_read_firmware(struct pci_dev *pdev, u32 **bfi_image,
27 u32 *bfi_image_size, char *fw_name)
28{
29 const struct firmware *fw;
30
31 if (request_firmware(&fw, fw_name, &pdev->dev)) {
32 pr_alert("Can't locate firmware %s\n", fw_name);
33 goto error;
34 }
35
36 *bfi_image = (u32 *)fw->data;
37 *bfi_image_size = fw->size/sizeof(u32);
38 bfi_fw = fw;
39
40 return *bfi_image;
41error:
42 return NULL;
43}
44
45u32 *
46cna_get_firmware_buf(struct pci_dev *pdev)
47{
48 if (bfi_image_ct_cna_size == 0)
49 cna_read_firmware(pdev, &bfi_image_ct_cna,
50 &bfi_image_ct_cna_size, CNA_FW_FILE_CT);
51 return bfi_image_ct_cna;
52}
53
54u32 *
55bfa_cb_image_get_chunk(int type, u32 off)
56{
57 return (u32 *)(bfi_image_ct_cna + off);
58}
59
60u32
61bfa_cb_image_get_size(int type)
62{
63 return bfi_image_ct_cna_size;
64}