diff options
Diffstat (limited to 'drivers/mtd/nand/bcm_umi_nand.c')
-rw-r--r-- | drivers/mtd/nand/bcm_umi_nand.c | 582 |
1 files changed, 582 insertions, 0 deletions
diff --git a/drivers/mtd/nand/bcm_umi_nand.c b/drivers/mtd/nand/bcm_umi_nand.c new file mode 100644 index 000000000000..c997f98eeb3d --- /dev/null +++ b/drivers/mtd/nand/bcm_umi_nand.c | |||
@@ -0,0 +1,582 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | |||
15 | /* ---- Include Files ---------------------------------------------------- */ | ||
16 | #include <linux/version.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/types.h> | ||
19 | #include <linux/init.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/string.h> | ||
23 | #include <linux/ioport.h> | ||
24 | #include <linux/device.h> | ||
25 | #include <linux/delay.h> | ||
26 | #include <linux/err.h> | ||
27 | #include <linux/io.h> | ||
28 | #include <linux/platform_device.h> | ||
29 | #include <linux/mtd/mtd.h> | ||
30 | #include <linux/mtd/nand.h> | ||
31 | #include <linux/mtd/nand_ecc.h> | ||
32 | #include <linux/mtd/partitions.h> | ||
33 | |||
34 | #include <asm/mach-types.h> | ||
35 | #include <asm/system.h> | ||
36 | |||
37 | #include <mach/reg_nand.h> | ||
38 | #include <mach/reg_umi.h> | ||
39 | |||
40 | #include "nand_bcm_umi.h" | ||
41 | |||
42 | #include <mach/memory_settings.h> | ||
43 | |||
44 | #define USE_DMA 1 | ||
45 | #include <mach/dma.h> | ||
46 | #include <linux/dma-mapping.h> | ||
47 | #include <linux/completion.h> | ||
48 | |||
49 | /* ---- External Variable Declarations ----------------------------------- */ | ||
50 | /* ---- External Function Prototypes ------------------------------------- */ | ||
51 | /* ---- Public Variables ------------------------------------------------- */ | ||
52 | /* ---- Private Constants and Types -------------------------------------- */ | ||
53 | static const __devinitconst char gBanner[] = KERN_INFO \ | ||
54 | "BCM UMI MTD NAND Driver: 1.00\n"; | ||
55 | |||
56 | #ifdef CONFIG_MTD_PARTITIONS | ||
57 | const char *part_probes[] = { "cmdlinepart", NULL }; | ||
58 | #endif | ||
59 | |||
60 | #if NAND_ECC_BCH | ||
61 | static uint8_t scan_ff_pattern[] = { 0xff }; | ||
62 | |||
63 | static struct nand_bbt_descr largepage_bbt = { | ||
64 | .options = 0, | ||
65 | .offs = 0, | ||
66 | .len = 1, | ||
67 | .pattern = scan_ff_pattern | ||
68 | }; | ||
69 | #endif | ||
70 | |||
71 | /* | ||
72 | ** Preallocate a buffer to avoid having to do this every dma operation. | ||
73 | ** This is the size of the preallocated coherent DMA buffer. | ||
74 | */ | ||
75 | #if USE_DMA | ||
76 | #define DMA_MIN_BUFLEN 512 | ||
77 | #define DMA_MAX_BUFLEN PAGE_SIZE | ||
78 | #define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \ | ||
79 | ((len) > DMA_MAX_BUFLEN)) | ||
80 | |||
81 | /* | ||
82 | * The current NAND data space goes from 0x80001900 to 0x80001FFF, | ||
83 | * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page | ||
84 | * size NAND flash. Need to break the DMA down to multiple 1Ks. | ||
85 | * | ||
86 | * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000 | ||
87 | */ | ||
88 | #define DMA_MAX_LEN 1024 | ||
89 | |||
90 | #else /* !USE_DMA */ | ||
91 | #define DMA_MIN_BUFLEN 0 | ||
92 | #define DMA_MAX_BUFLEN 0 | ||
93 | #define USE_DIRECT_IO(len) 1 | ||
94 | #endif | ||
95 | /* ---- Private Function Prototypes -------------------------------------- */ | ||
96 | static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len); | ||
97 | static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, | ||
98 | int len); | ||
99 | |||
100 | /* ---- Private Variables ------------------------------------------------ */ | ||
101 | static struct mtd_info *board_mtd; | ||
102 | static void __iomem *bcm_umi_io_base; | ||
103 | static void *virtPtr; | ||
104 | static dma_addr_t physPtr; | ||
105 | static struct completion nand_comp; | ||
106 | |||
107 | /* ---- Private Functions ------------------------------------------------ */ | ||
108 | #if NAND_ECC_BCH | ||
109 | #include "bcm_umi_bch.c" | ||
110 | #else | ||
111 | #include "bcm_umi_hamming.c" | ||
112 | #endif | ||
113 | |||
114 | #if USE_DMA | ||
115 | |||
116 | /* Handler called when the DMA finishes. */ | ||
117 | static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData) | ||
118 | { | ||
119 | complete(&nand_comp); | ||
120 | } | ||
121 | |||
122 | static int nand_dma_init(void) | ||
123 | { | ||
124 | int rc; | ||
125 | |||
126 | rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM, | ||
127 | nand_dma_handler, NULL); | ||
128 | if (rc != 0) { | ||
129 | printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc); | ||
130 | return rc; | ||
131 | } | ||
132 | |||
133 | virtPtr = | ||
134 | dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL); | ||
135 | if (virtPtr == NULL) { | ||
136 | printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n"); | ||
137 | return -ENOMEM; | ||
138 | } | ||
139 | |||
140 | return 0; | ||
141 | } | ||
142 | |||
143 | static void nand_dma_term(void) | ||
144 | { | ||
145 | if (virtPtr != NULL) | ||
146 | dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr); | ||
147 | } | ||
148 | |||
149 | static void nand_dma_read(void *buf, int len) | ||
150 | { | ||
151 | int offset = 0; | ||
152 | int tmp_len = 0; | ||
153 | int len_left = len; | ||
154 | DMA_Handle_t hndl; | ||
155 | |||
156 | if (virtPtr == NULL) | ||
157 | panic("nand_dma_read: virtPtr == NULL\n"); | ||
158 | |||
159 | if ((void *)physPtr == NULL) | ||
160 | panic("nand_dma_read: physPtr == NULL\n"); | ||
161 | |||
162 | hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); | ||
163 | if (hndl < 0) { | ||
164 | printk(KERN_ERR | ||
165 | "nand_dma_read: unable to allocate dma channel: %d\n", | ||
166 | (int)hndl); | ||
167 | panic("\n"); | ||
168 | } | ||
169 | |||
170 | while (len_left > 0) { | ||
171 | if (len_left > DMA_MAX_LEN) { | ||
172 | tmp_len = DMA_MAX_LEN; | ||
173 | len_left -= DMA_MAX_LEN; | ||
174 | } else { | ||
175 | tmp_len = len_left; | ||
176 | len_left = 0; | ||
177 | } | ||
178 | |||
179 | init_completion(&nand_comp); | ||
180 | dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR, | ||
181 | physPtr + offset, tmp_len); | ||
182 | wait_for_completion(&nand_comp); | ||
183 | |||
184 | offset += tmp_len; | ||
185 | } | ||
186 | |||
187 | dma_free_channel(hndl); | ||
188 | |||
189 | if (buf != NULL) | ||
190 | memcpy(buf, virtPtr, len); | ||
191 | } | ||
192 | |||
193 | static void nand_dma_write(const void *buf, int len) | ||
194 | { | ||
195 | int offset = 0; | ||
196 | int tmp_len = 0; | ||
197 | int len_left = len; | ||
198 | DMA_Handle_t hndl; | ||
199 | |||
200 | if (buf == NULL) | ||
201 | panic("nand_dma_write: buf == NULL\n"); | ||
202 | |||
203 | if (virtPtr == NULL) | ||
204 | panic("nand_dma_write: virtPtr == NULL\n"); | ||
205 | |||
206 | if ((void *)physPtr == NULL) | ||
207 | panic("nand_dma_write: physPtr == NULL\n"); | ||
208 | |||
209 | memcpy(virtPtr, buf, len); | ||
210 | |||
211 | |||
212 | hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); | ||
213 | if (hndl < 0) { | ||
214 | printk(KERN_ERR | ||
215 | "nand_dma_write: unable to allocate dma channel: %d\n", | ||
216 | (int)hndl); | ||
217 | panic("\n"); | ||
218 | } | ||
219 | |||
220 | while (len_left > 0) { | ||
221 | if (len_left > DMA_MAX_LEN) { | ||
222 | tmp_len = DMA_MAX_LEN; | ||
223 | len_left -= DMA_MAX_LEN; | ||
224 | } else { | ||
225 | tmp_len = len_left; | ||
226 | len_left = 0; | ||
227 | } | ||
228 | |||
229 | init_completion(&nand_comp); | ||
230 | dma_transfer_mem_to_mem(hndl, physPtr + offset, | ||
231 | REG_NAND_DATA_PADDR, tmp_len); | ||
232 | wait_for_completion(&nand_comp); | ||
233 | |||
234 | offset += tmp_len; | ||
235 | } | ||
236 | |||
237 | dma_free_channel(hndl); | ||
238 | } | ||
239 | |||
240 | #endif | ||
241 | |||
242 | static int nand_dev_ready(struct mtd_info *mtd) | ||
243 | { | ||
244 | return nand_bcm_umi_dev_ready(); | ||
245 | } | ||
246 | |||
247 | /**************************************************************************** | ||
248 | * | ||
249 | * bcm_umi_nand_inithw | ||
250 | * | ||
251 | * This routine does the necessary hardware (board-specific) | ||
252 | * initializations. This includes setting up the timings, etc. | ||
253 | * | ||
254 | ***************************************************************************/ | ||
255 | int bcm_umi_nand_inithw(void) | ||
256 | { | ||
257 | /* Configure nand timing parameters */ | ||
258 | REG_UMI_NAND_TCR &= ~0x7ffff; | ||
259 | REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR; | ||
260 | |||
261 | #if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS) | ||
262 | /* enable software control of CS */ | ||
263 | REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL; | ||
264 | #endif | ||
265 | |||
266 | /* keep NAND chip select asserted */ | ||
267 | REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED; | ||
268 | |||
269 | REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16; | ||
270 | /* enable writes to flash */ | ||
271 | REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP; | ||
272 | |||
273 | writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET); | ||
274 | nand_bcm_umi_wait_till_ready(); | ||
275 | |||
276 | #if NAND_ECC_BCH | ||
277 | nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES); | ||
278 | #endif | ||
279 | |||
280 | return 0; | ||
281 | } | ||
282 | |||
283 | /* Used to turn latch the proper register for access. */ | ||
284 | static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd, | ||
285 | unsigned int ctrl) | ||
286 | { | ||
287 | /* send command to hardware */ | ||
288 | struct nand_chip *chip = mtd->priv; | ||
289 | if (ctrl & NAND_CTRL_CHANGE) { | ||
290 | if (ctrl & NAND_CLE) { | ||
291 | chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET; | ||
292 | goto CMD; | ||
293 | } | ||
294 | if (ctrl & NAND_ALE) { | ||
295 | chip->IO_ADDR_W = | ||
296 | bcm_umi_io_base + REG_NAND_ADDR_OFFSET; | ||
297 | goto CMD; | ||
298 | } | ||
299 | chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; | ||
300 | } | ||
301 | |||
302 | CMD: | ||
303 | /* Send command to chip directly */ | ||
304 | if (cmd != NAND_CMD_NONE) | ||
305 | writeb(cmd, chip->IO_ADDR_W); | ||
306 | } | ||
307 | |||
308 | static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, | ||
309 | int len) | ||
310 | { | ||
311 | if (USE_DIRECT_IO(len)) { | ||
312 | /* Do it the old way if the buffer is small or too large. | ||
313 | * Probably quicker than starting and checking dma. */ | ||
314 | int i; | ||
315 | struct nand_chip *this = mtd->priv; | ||
316 | |||
317 | for (i = 0; i < len; i++) | ||
318 | writeb(buf[i], this->IO_ADDR_W); | ||
319 | } | ||
320 | #if USE_DMA | ||
321 | else | ||
322 | nand_dma_write(buf, len); | ||
323 | #endif | ||
324 | } | ||
325 | |||
326 | static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len) | ||
327 | { | ||
328 | if (USE_DIRECT_IO(len)) { | ||
329 | int i; | ||
330 | struct nand_chip *this = mtd->priv; | ||
331 | |||
332 | for (i = 0; i < len; i++) | ||
333 | buf[i] = readb(this->IO_ADDR_R); | ||
334 | } | ||
335 | #if USE_DMA | ||
336 | else | ||
337 | nand_dma_read(buf, len); | ||
338 | #endif | ||
339 | } | ||
340 | |||
341 | static uint8_t readbackbuf[NAND_MAX_PAGESIZE]; | ||
342 | static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, | ||
343 | int len) | ||
344 | { | ||
345 | /* | ||
346 | * Try to readback page with ECC correction. This is necessary | ||
347 | * for MLC parts which may have permanently stuck bits. | ||
348 | */ | ||
349 | struct nand_chip *chip = mtd->priv; | ||
350 | int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0); | ||
351 | if (ret < 0) | ||
352 | return -EFAULT; | ||
353 | else { | ||
354 | if (memcmp(readbackbuf, buf, len) == 0) | ||
355 | return 0; | ||
356 | |||
357 | return -EFAULT; | ||
358 | } | ||
359 | return 0; | ||
360 | } | ||
361 | |||
362 | static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) | ||
363 | { | ||
364 | struct nand_chip *this; | ||
365 | struct resource *r; | ||
366 | int err = 0; | ||
367 | |||
368 | printk(gBanner); | ||
369 | |||
370 | /* Allocate memory for MTD device structure and private data */ | ||
371 | board_mtd = | ||
372 | kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), | ||
373 | GFP_KERNEL); | ||
374 | if (!board_mtd) { | ||
375 | printk(KERN_WARNING | ||
376 | "Unable to allocate NAND MTD device structure.\n"); | ||
377 | return -ENOMEM; | ||
378 | } | ||
379 | |||
380 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
381 | |||
382 | if (!r) | ||
383 | return -ENXIO; | ||
384 | |||
385 | /* map physical address */ | ||
386 | bcm_umi_io_base = ioremap(r->start, r->end - r->start + 1); | ||
387 | |||
388 | if (!bcm_umi_io_base) { | ||
389 | printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n"); | ||
390 | kfree(board_mtd); | ||
391 | return -EIO; | ||
392 | } | ||
393 | |||
394 | /* Get pointer to private data */ | ||
395 | this = (struct nand_chip *)(&board_mtd[1]); | ||
396 | |||
397 | /* Initialize structures */ | ||
398 | memset((char *)board_mtd, 0, sizeof(struct mtd_info)); | ||
399 | memset((char *)this, 0, sizeof(struct nand_chip)); | ||
400 | |||
401 | /* Link the private data with the MTD structure */ | ||
402 | board_mtd->priv = this; | ||
403 | |||
404 | /* Initialize the NAND hardware. */ | ||
405 | if (bcm_umi_nand_inithw() < 0) { | ||
406 | printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n"); | ||
407 | iounmap(bcm_umi_io_base); | ||
408 | kfree(board_mtd); | ||
409 | return -EIO; | ||
410 | } | ||
411 | |||
412 | /* Set address of NAND IO lines */ | ||
413 | this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; | ||
414 | this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; | ||
415 | |||
416 | /* Set command delay time, see datasheet for correct value */ | ||
417 | this->chip_delay = 0; | ||
418 | /* Assign the device ready function, if available */ | ||
419 | this->dev_ready = nand_dev_ready; | ||
420 | this->options = 0; | ||
421 | |||
422 | this->write_buf = bcm_umi_nand_write_buf; | ||
423 | this->read_buf = bcm_umi_nand_read_buf; | ||
424 | this->verify_buf = bcm_umi_nand_verify_buf; | ||
425 | |||
426 | this->cmd_ctrl = bcm_umi_nand_hwcontrol; | ||
427 | this->ecc.mode = NAND_ECC_HW; | ||
428 | this->ecc.size = 512; | ||
429 | this->ecc.bytes = NAND_ECC_NUM_BYTES; | ||
430 | #if NAND_ECC_BCH | ||
431 | this->ecc.read_page = bcm_umi_bch_read_page_hwecc; | ||
432 | this->ecc.write_page = bcm_umi_bch_write_page_hwecc; | ||
433 | #else | ||
434 | this->ecc.correct = nand_correct_data512; | ||
435 | this->ecc.calculate = bcm_umi_hamming_get_hw_ecc; | ||
436 | this->ecc.hwctl = bcm_umi_hamming_enable_hwecc; | ||
437 | #endif | ||
438 | |||
439 | #if USE_DMA | ||
440 | err = nand_dma_init(); | ||
441 | if (err != 0) | ||
442 | return err; | ||
443 | #endif | ||
444 | |||
445 | /* Figure out the size of the device that we have. | ||
446 | * We need to do this to figure out which ECC | ||
447 | * layout we'll be using. | ||
448 | */ | ||
449 | |||
450 | err = nand_scan_ident(board_mtd, 1); | ||
451 | if (err) { | ||
452 | printk(KERN_ERR "nand_scan failed: %d\n", err); | ||
453 | iounmap(bcm_umi_io_base); | ||
454 | kfree(board_mtd); | ||
455 | return err; | ||
456 | } | ||
457 | |||
458 | /* Now that we know the nand size, we can setup the ECC layout */ | ||
459 | |||
460 | switch (board_mtd->writesize) { /* writesize is the pagesize */ | ||
461 | case 4096: | ||
462 | this->ecc.layout = &nand_hw_eccoob_4096; | ||
463 | break; | ||
464 | case 2048: | ||
465 | this->ecc.layout = &nand_hw_eccoob_2048; | ||
466 | break; | ||
467 | case 512: | ||
468 | this->ecc.layout = &nand_hw_eccoob_512; | ||
469 | break; | ||
470 | default: | ||
471 | { | ||
472 | printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n", | ||
473 | board_mtd->writesize); | ||
474 | return -EINVAL; | ||
475 | } | ||
476 | } | ||
477 | |||
478 | #if NAND_ECC_BCH | ||
479 | if (board_mtd->writesize > 512) { | ||
480 | if (this->options & NAND_USE_FLASH_BBT) | ||
481 | largepage_bbt.options = NAND_BBT_SCAN2NDPAGE; | ||
482 | this->badblock_pattern = &largepage_bbt; | ||
483 | } | ||
484 | #endif | ||
485 | |||
486 | /* Now finish off the scan, now that ecc.layout has been initialized. */ | ||
487 | |||
488 | err = nand_scan_tail(board_mtd); | ||
489 | if (err) { | ||
490 | printk(KERN_ERR "nand_scan failed: %d\n", err); | ||
491 | iounmap(bcm_umi_io_base); | ||
492 | kfree(board_mtd); | ||
493 | return err; | ||
494 | } | ||
495 | |||
496 | /* Register the partitions */ | ||
497 | { | ||
498 | int nr_partitions; | ||
499 | struct mtd_partition *partition_info; | ||
500 | |||
501 | board_mtd->name = "bcm_umi-nand"; | ||
502 | nr_partitions = | ||
503 | parse_mtd_partitions(board_mtd, part_probes, | ||
504 | &partition_info, 0); | ||
505 | |||
506 | if (nr_partitions <= 0) { | ||
507 | printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n", | ||
508 | nr_partitions); | ||
509 | iounmap(bcm_umi_io_base); | ||
510 | kfree(board_mtd); | ||
511 | return -EIO; | ||
512 | } | ||
513 | add_mtd_partitions(board_mtd, partition_info, nr_partitions); | ||
514 | } | ||
515 | |||
516 | /* Return happy */ | ||
517 | return 0; | ||
518 | } | ||
519 | |||
520 | static int bcm_umi_nand_remove(struct platform_device *pdev) | ||
521 | { | ||
522 | #if USE_DMA | ||
523 | nand_dma_term(); | ||
524 | #endif | ||
525 | |||
526 | /* Release resources, unregister device */ | ||
527 | nand_release(board_mtd); | ||
528 | |||
529 | /* unmap physical address */ | ||
530 | iounmap(bcm_umi_io_base); | ||
531 | |||
532 | /* Free the MTD device structure */ | ||
533 | kfree(board_mtd); | ||
534 | |||
535 | return 0; | ||
536 | } | ||
537 | |||
538 | #ifdef CONFIG_PM | ||
539 | static int bcm_umi_nand_suspend(struct platform_device *pdev, | ||
540 | pm_message_t state) | ||
541 | { | ||
542 | printk(KERN_ERR "MTD NAND suspend is being called\n"); | ||
543 | return 0; | ||
544 | } | ||
545 | |||
546 | static int bcm_umi_nand_resume(struct platform_device *pdev) | ||
547 | { | ||
548 | printk(KERN_ERR "MTD NAND resume is being called\n"); | ||
549 | return 0; | ||
550 | } | ||
551 | #else | ||
552 | #define bcm_umi_nand_suspend NULL | ||
553 | #define bcm_umi_nand_resume NULL | ||
554 | #endif | ||
555 | |||
556 | static struct platform_driver nand_driver = { | ||
557 | .driver = { | ||
558 | .name = "bcm-nand", | ||
559 | .owner = THIS_MODULE, | ||
560 | }, | ||
561 | .probe = bcm_umi_nand_probe, | ||
562 | .remove = bcm_umi_nand_remove, | ||
563 | .suspend = bcm_umi_nand_suspend, | ||
564 | .resume = bcm_umi_nand_resume, | ||
565 | }; | ||
566 | |||
567 | static int __init nand_init(void) | ||
568 | { | ||
569 | return platform_driver_register(&nand_driver); | ||
570 | } | ||
571 | |||
572 | static void __exit nand_exit(void) | ||
573 | { | ||
574 | platform_driver_unregister(&nand_driver); | ||
575 | } | ||
576 | |||
577 | module_init(nand_init); | ||
578 | module_exit(nand_exit); | ||
579 | |||
580 | MODULE_LICENSE("GPL"); | ||
581 | MODULE_AUTHOR("Broadcom"); | ||
582 | MODULE_DESCRIPTION("BCM UMI MTD NAND driver"); | ||