aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/devices/st_spi_fsm.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/devices/st_spi_fsm.c')
-rw-r--r--drivers/mtd/devices/st_spi_fsm.c2108
1 files changed, 2108 insertions, 0 deletions
diff --git a/drivers/mtd/devices/st_spi_fsm.c b/drivers/mtd/devices/st_spi_fsm.c
new file mode 100644
index 000000000000..1957d7c8e185
--- /dev/null
+++ b/drivers/mtd/devices/st_spi_fsm.c
@@ -0,0 +1,2108 @@
1/*
2 * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
3 *
4 * Author: Angus Clark <angus.clark@st.com>
5 *
6 * Copyright (C) 2010-2014 STMicroelectronics Limited
7 *
8 * JEDEC probe based on drivers/mtd/devices/m25p80.c
9 *
10 * This code is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 */
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/regmap.h>
18#include <linux/platform_device.h>
19#include <linux/mfd/syscon.h>
20#include <linux/mtd/mtd.h>
21#include <linux/mtd/partitions.h>
22#include <linux/sched.h>
23#include <linux/delay.h>
24#include <linux/io.h>
25#include <linux/of.h>
26
27#include "serial_flash_cmds.h"
28
29/*
30 * FSM SPI Controller Registers
31 */
32#define SPI_CLOCKDIV 0x0010
33#define SPI_MODESELECT 0x0018
34#define SPI_CONFIGDATA 0x0020
35#define SPI_STA_MODE_CHANGE 0x0028
36#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100
37#define SPI_FAST_SEQ_ADD1 0x0104
38#define SPI_FAST_SEQ_ADD2 0x0108
39#define SPI_FAST_SEQ_ADD_CFG 0x010c
40#define SPI_FAST_SEQ_OPC1 0x0110
41#define SPI_FAST_SEQ_OPC2 0x0114
42#define SPI_FAST_SEQ_OPC3 0x0118
43#define SPI_FAST_SEQ_OPC4 0x011c
44#define SPI_FAST_SEQ_OPC5 0x0120
45#define SPI_MODE_BITS 0x0124
46#define SPI_DUMMY_BITS 0x0128
47#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c
48#define SPI_FAST_SEQ_1 0x0130
49#define SPI_FAST_SEQ_2 0x0134
50#define SPI_FAST_SEQ_3 0x0138
51#define SPI_FAST_SEQ_4 0x013c
52#define SPI_FAST_SEQ_CFG 0x0140
53#define SPI_FAST_SEQ_STA 0x0144
54#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148
55#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c
56#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150
57#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154
58#define SPI_PROGRAM_ERASE_TIME 0x0158
59#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c
60#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160
61#define SPI_STATUS_WR_TIME_REG 0x0164
62#define SPI_FAST_SEQ_DATA_REG 0x0300
63
64/*
65 * Register: SPI_MODESELECT
66 */
67#define SPI_MODESELECT_CONTIG 0x01
68#define SPI_MODESELECT_FASTREAD 0x02
69#define SPI_MODESELECT_DUALIO 0x04
70#define SPI_MODESELECT_FSM 0x08
71#define SPI_MODESELECT_QUADBOOT 0x10
72
73/*
74 * Register: SPI_CONFIGDATA
75 */
76#define SPI_CFG_DEVICE_ST 0x1
77#define SPI_CFG_DEVICE_ATMEL 0x4
78#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4)
79#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16)
80#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24)
81
82#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA)
83#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0)
84#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00)
85
86/*
87 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
88 */
89#define TRANSFER_SIZE(x) ((x) * 8)
90
91/*
92 * Register: SPI_FAST_SEQ_ADD_CFG
93 */
94#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0)
95#define ADR_CFG_PADS_1_ADD1 (0x0 << 6)
96#define ADR_CFG_PADS_2_ADD1 (0x1 << 6)
97#define ADR_CFG_PADS_4_ADD1 (0x3 << 6)
98#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8)
99#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16))
100#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16))
101#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16))
102#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16))
103#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16))
104
105/*
106 * Register: SPI_FAST_SEQ_n
107 */
108#define SEQ_OPC_OPCODE(x) ((x) << 0)
109#define SEQ_OPC_CYCLES(x) ((x) << 8)
110#define SEQ_OPC_PADS_1 (0x0 << 14)
111#define SEQ_OPC_PADS_2 (0x1 << 14)
112#define SEQ_OPC_PADS_4 (0x3 << 14)
113#define SEQ_OPC_CSDEASSERT (1 << 16)
114
115/*
116 * Register: SPI_FAST_SEQ_CFG
117 */
118#define SEQ_CFG_STARTSEQ (1 << 0)
119#define SEQ_CFG_SWRESET (1 << 5)
120#define SEQ_CFG_CSDEASSERT (1 << 6)
121#define SEQ_CFG_READNOTWRITE (1 << 7)
122#define SEQ_CFG_ERASE (1 << 8)
123#define SEQ_CFG_PADS_1 (0x0 << 16)
124#define SEQ_CFG_PADS_2 (0x1 << 16)
125#define SEQ_CFG_PADS_4 (0x3 << 16)
126
127/*
128 * Register: SPI_MODE_BITS
129 */
130#define MODE_DATA(x) (x & 0xff)
131#define MODE_CYCLES(x) ((x & 0x3f) << 16)
132#define MODE_PADS_1 (0x0 << 22)
133#define MODE_PADS_2 (0x1 << 22)
134#define MODE_PADS_4 (0x3 << 22)
135#define DUMMY_CSDEASSERT (1 << 24)
136
137/*
138 * Register: SPI_DUMMY_BITS
139 */
140#define DUMMY_CYCLES(x) ((x & 0x3f) << 16)
141#define DUMMY_PADS_1 (0x0 << 22)
142#define DUMMY_PADS_2 (0x1 << 22)
143#define DUMMY_PADS_4 (0x3 << 22)
144#define DUMMY_CSDEASSERT (1 << 24)
145
146/*
147 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
148 */
149#define STA_DATA_BYTE1(x) ((x & 0xff) << 0)
150#define STA_DATA_BYTE2(x) ((x & 0xff) << 8)
151#define STA_PADS_1 (0x0 << 16)
152#define STA_PADS_2 (0x1 << 16)
153#define STA_PADS_4 (0x3 << 16)
154#define STA_CSDEASSERT (0x1 << 20)
155#define STA_RDNOTWR (0x1 << 21)
156
157/*
158 * FSM SPI Instruction Opcodes
159 */
160#define STFSM_OPC_CMD 0x1
161#define STFSM_OPC_ADD 0x2
162#define STFSM_OPC_STA 0x3
163#define STFSM_OPC_MODE 0x4
164#define STFSM_OPC_DUMMY 0x5
165#define STFSM_OPC_DATA 0x6
166#define STFSM_OPC_WAIT 0x7
167#define STFSM_OPC_JUMP 0x8
168#define STFSM_OPC_GOTO 0x9
169#define STFSM_OPC_STOP 0xF
170
171/*
172 * FSM SPI Instructions (== opcode + operand).
173 */
174#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4))
175
176#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1)
177#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2)
178#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3)
179#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4)
180#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5)
181#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1)
182#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2)
183
184#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1)
185#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2)
186
187#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
188#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
189#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2)
190#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3)
191
192#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0)
193#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0)
194#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0)
195#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0)
196
197#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */
198#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
199
200#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */
201
202#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
203
204/* Flash Commands */
205#define FLASH_CMD_WREN 0x06
206#define FLASH_CMD_WRDI 0x04
207#define FLASH_CMD_RDID 0x9f
208#define FLASH_CMD_RDSR 0x05
209#define FLASH_CMD_RDSR2 0x35
210#define FLASH_CMD_WRSR 0x01
211#define FLASH_CMD_SE_4K 0x20
212#define FLASH_CMD_SE_32K 0x52
213#define FLASH_CMD_SE 0xd8
214#define FLASH_CMD_CHIPERASE 0xc7
215#define FLASH_CMD_WRVCR 0x81
216#define FLASH_CMD_RDVCR 0x85
217
218#define FLASH_CMD_READ 0x03 /* READ */
219#define FLASH_CMD_READ_FAST 0x0b /* FAST READ */
220#define FLASH_CMD_READ_1_1_2 0x3b /* DUAL OUTPUT READ */
221#define FLASH_CMD_READ_1_2_2 0xbb /* DUAL I/O READ */
222#define FLASH_CMD_READ_1_1_4 0x6b /* QUAD OUTPUT READ */
223#define FLASH_CMD_READ_1_4_4 0xeb /* QUAD I/O READ */
224
225#define FLASH_CMD_WRITE 0x02 /* PAGE PROGRAM */
226#define FLASH_CMD_WRITE_1_1_2 0xa2 /* DUAL INPUT PROGRAM */
227#define FLASH_CMD_WRITE_1_2_2 0xd2 /* DUAL INPUT EXT PROGRAM */
228#define FLASH_CMD_WRITE_1_1_4 0x32 /* QUAD INPUT PROGRAM */
229#define FLASH_CMD_WRITE_1_4_4 0x12 /* QUAD INPUT EXT PROGRAM */
230
231#define FLASH_CMD_EN4B_ADDR 0xb7 /* Enter 4-byte address mode */
232#define FLASH_CMD_EX4B_ADDR 0xe9 /* Exit 4-byte address mode */
233
234/* READ commands with 32-bit addressing (N25Q256 and S25FLxxxS) */
235#define FLASH_CMD_READ4 0x13
236#define FLASH_CMD_READ4_FAST 0x0c
237#define FLASH_CMD_READ4_1_1_2 0x3c
238#define FLASH_CMD_READ4_1_2_2 0xbc
239#define FLASH_CMD_READ4_1_1_4 0x6c
240#define FLASH_CMD_READ4_1_4_4 0xec
241
242/* S25FLxxxS commands */
243#define S25FL_CMD_WRITE4_1_1_4 0x34
244#define S25FL_CMD_SE4 0xdc
245#define S25FL_CMD_CLSR 0x30
246#define S25FL_CMD_DYBWR 0xe1
247#define S25FL_CMD_DYBRD 0xe0
248#define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with
249 * 'FLASH_CMD_WRITE_1_4_4'
250 * as found on N25Qxxx devices! */
251
252/* Status register */
253#define FLASH_STATUS_BUSY 0x01
254#define FLASH_STATUS_WEL 0x02
255#define FLASH_STATUS_BP0 0x04
256#define FLASH_STATUS_BP1 0x08
257#define FLASH_STATUS_BP2 0x10
258#define FLASH_STATUS_SRWP0 0x80
259#define FLASH_STATUS_TIMEOUT 0xff
260/* S25FL Error Flags */
261#define S25FL_STATUS_E_ERR 0x20
262#define S25FL_STATUS_P_ERR 0x40
263
264#define FLASH_PAGESIZE 256 /* In Bytes */
265#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */
266#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */
267
268/*
269 * Flags to tweak operation of default read/write/erase routines
270 */
271#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001
272#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002
273#define CFG_WRITE_EX_32BIT_ADDR_DELAY 0x00000004
274#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
275#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010
276
277struct stfsm_seq {
278 uint32_t data_size;
279 uint32_t addr1;
280 uint32_t addr2;
281 uint32_t addr_cfg;
282 uint32_t seq_opc[5];
283 uint32_t mode;
284 uint32_t dummy;
285 uint32_t status;
286 uint8_t seq[16];
287 uint32_t seq_cfg;
288} __packed __aligned(4);
289
290struct stfsm {
291 struct device *dev;
292 void __iomem *base;
293 struct resource *region;
294 struct mtd_info mtd;
295 struct mutex lock;
296 struct flash_info *info;
297
298 uint32_t configuration;
299 uint32_t fifo_dir_delay;
300 bool booted_from_spi;
301 bool reset_signal;
302 bool reset_por;
303
304 struct stfsm_seq stfsm_seq_read;
305 struct stfsm_seq stfsm_seq_write;
306 struct stfsm_seq stfsm_seq_en_32bit_addr;
307};
308
309/* Parameters to configure a READ or WRITE FSM sequence */
310struct seq_rw_config {
311 uint32_t flags; /* flags to support config */
312 uint8_t cmd; /* FLASH command */
313 int write; /* Write Sequence */
314 uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */
315 uint8_t data_pads; /* No. of data pads */
316 uint8_t mode_data; /* MODE data */
317 uint8_t mode_cycles; /* No. of MODE cycles */
318 uint8_t dummy_cycles; /* No. of DUMMY cycles */
319};
320
321/* SPI Flash Device Table */
322struct flash_info {
323 char *name;
324 /*
325 * JEDEC id zero means "no ID" (most older chips); otherwise it has
326 * a high byte of zero plus three data bytes: the manufacturer id,
327 * then a two byte device id.
328 */
329 u32 jedec_id;
330 u16 ext_id;
331 /*
332 * The size listed here is what works with FLASH_CMD_SE, which isn't
333 * necessarily called a "sector" by the vendor.
334 */
335 unsigned sector_size;
336 u16 n_sectors;
337 u32 flags;
338 /*
339 * Note, where FAST_READ is supported, freq_max specifies the
340 * FAST_READ frequency, not the READ frequency.
341 */
342 u32 max_freq;
343 int (*config)(struct stfsm *);
344};
345
346static int stfsm_n25q_config(struct stfsm *fsm);
347static int stfsm_mx25_config(struct stfsm *fsm);
348static int stfsm_s25fl_config(struct stfsm *fsm);
349static int stfsm_w25q_config(struct stfsm *fsm);
350
351static struct flash_info flash_types[] = {
352 /*
353 * ST Microelectronics/Numonyx --
354 * (newer production versions may have feature updates
355 * (eg faster operating frequency)
356 */
357#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
358 { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL },
359 { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL },
360 { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL },
361 { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL },
362 { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL },
363 { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL },
364
365#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \
366 FLASH_FLAG_READ_FAST | \
367 FLASH_FLAG_READ_1_1_2 | \
368 FLASH_FLAG_WRITE_1_1_2)
369 { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL },
370 { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL },
371
372#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
373 FLASH_FLAG_READ_FAST | \
374 FLASH_FLAG_READ_1_1_2 | \
375 FLASH_FLAG_READ_1_2_2 | \
376 FLASH_FLAG_READ_1_1_4 | \
377 FLASH_FLAG_READ_1_4_4 | \
378 FLASH_FLAG_SE_4K | \
379 FLASH_FLAG_SE_32K)
380 { "mx25l25635e", 0xc22019, 0, 64*1024, 512,
381 (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
382 stfsm_mx25_config },
383
384#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
385 FLASH_FLAG_READ_FAST | \
386 FLASH_FLAG_READ_1_1_2 | \
387 FLASH_FLAG_READ_1_2_2 | \
388 FLASH_FLAG_READ_1_1_4 | \
389 FLASH_FLAG_READ_1_4_4 | \
390 FLASH_FLAG_WRITE_1_1_2 | \
391 FLASH_FLAG_WRITE_1_2_2 | \
392 FLASH_FLAG_WRITE_1_1_4 | \
393 FLASH_FLAG_WRITE_1_4_4)
394 { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108,
395 stfsm_n25q_config },
396 { "n25q256", 0x20ba19, 0, 64 * 1024, 512,
397 N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
398
399 /*
400 * Spansion S25FLxxxP
401 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
402 */
403#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \
404 FLASH_FLAG_READ_1_1_2 | \
405 FLASH_FLAG_READ_1_2_2 | \
406 FLASH_FLAG_READ_1_1_4 | \
407 FLASH_FLAG_READ_1_4_4 | \
408 FLASH_FLAG_WRITE_1_1_4 | \
409 FLASH_FLAG_READ_FAST)
410 { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80,
411 stfsm_s25fl_config },
412 { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80,
413 stfsm_s25fl_config },
414
415 /*
416 * Spansion S25FLxxxS
417 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
418 * - RESET# signal supported by die but not bristled out on all
419 * package types. The package type is a function of board design,
420 * so this information is captured in the board's flags.
421 * - Supports 'DYB' sector protection. Depending on variant, sectors
422 * may default to locked state on power-on.
423 */
424#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \
425 FLASH_FLAG_RESET | \
426 FLASH_FLAG_DYB_LOCKING)
427 { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80,
428 stfsm_s25fl_config },
429 { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80,
430 stfsm_s25fl_config },
431 { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
432 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
433 { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512,
434 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
435
436 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
437#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \
438 FLASH_FLAG_READ_FAST | \
439 FLASH_FLAG_READ_1_1_2 | \
440 FLASH_FLAG_WRITE_1_1_2)
441 { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL },
442 { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL },
443 { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL },
444 { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL },
445 { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL },
446
447 /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
448#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \
449 FLASH_FLAG_READ_FAST | \
450 FLASH_FLAG_READ_1_1_2 | \
451 FLASH_FLAG_READ_1_2_2 | \
452 FLASH_FLAG_READ_1_1_4 | \
453 FLASH_FLAG_READ_1_4_4 | \
454 FLASH_FLAG_WRITE_1_1_4)
455 { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80,
456 stfsm_w25q_config },
457 { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80,
458 stfsm_w25q_config },
459 { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80,
460 stfsm_w25q_config },
461 { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80,
462 stfsm_w25q_config },
463
464 /* Sentinel */
465 { NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
466};
467
468/*
469 * FSM message sequence configurations:
470 *
471 * All configs are presented in order of preference
472 */
473
474/* Default READ configurations, in order of preference */
475static struct seq_rw_config default_read_configs[] = {
476 {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ_1_4_4, 0, 4, 4, 0x00, 2, 4},
477 {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ_1_1_4, 0, 1, 4, 0x00, 4, 0},
478 {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ_1_2_2, 0, 2, 2, 0x00, 4, 0},
479 {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
480 {FLASH_FLAG_READ_FAST, FLASH_CMD_READ_FAST, 0, 1, 1, 0x00, 0, 8},
481 {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ, 0, 1, 1, 0x00, 0, 0},
482 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
483};
484
485/* Default WRITE configurations */
486static struct seq_rw_config default_write_configs[] = {
487 {FLASH_FLAG_WRITE_1_4_4, FLASH_CMD_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
488 {FLASH_FLAG_WRITE_1_1_4, FLASH_CMD_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
489 {FLASH_FLAG_WRITE_1_2_2, FLASH_CMD_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
490 {FLASH_FLAG_WRITE_1_1_2, FLASH_CMD_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
491 {FLASH_FLAG_READ_WRITE, FLASH_CMD_WRITE, 1, 1, 1, 0x00, 0, 0},
492 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
493};
494
495/*
496 * [N25Qxxx] Configuration
497 */
498#define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4)
499#define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3)
500#define N25Q_VCR_WRAP_CONT 0x3
501
502/* N25Q 3-byte Address READ configurations
503 * - 'FAST' variants configured for 8 dummy cycles.
504 *
505 * Note, the number of dummy cycles used for 'FAST' READ operations is
506 * configurable and would normally be tuned according to the READ command and
507 * operating frequency. However, this applies universally to all 'FAST' READ
508 * commands, including those used by the SPIBoot controller, and remains in
509 * force until the device is power-cycled. Since the SPIBoot controller is
510 * hard-wired to use 8 dummy cycles, we must configure the device to also use 8
511 * cycles.
512 */
513static struct seq_rw_config n25q_read3_configs[] = {
514 {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ_1_4_4, 0, 4, 4, 0x00, 0, 8},
515 {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ_1_1_4, 0, 1, 4, 0x00, 0, 8},
516 {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ_1_2_2, 0, 2, 2, 0x00, 0, 8},
517 {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
518 {FLASH_FLAG_READ_FAST, FLASH_CMD_READ_FAST, 0, 1, 1, 0x00, 0, 8},
519 {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ, 0, 1, 1, 0x00, 0, 0},
520 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
521};
522
523/* N25Q 4-byte Address READ configurations
524 * - use special 4-byte address READ commands (reduces overheads, and
525 * reduces risk of hitting watchdog reset issues).
526 * - 'FAST' variants configured for 8 dummy cycles (see note above.)
527 */
528static struct seq_rw_config n25q_read4_configs[] = {
529 {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ4_1_4_4, 0, 4, 4, 0x00, 0, 8},
530 {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8},
531 {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ4_1_2_2, 0, 2, 2, 0x00, 0, 8},
532 {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8},
533 {FLASH_FLAG_READ_FAST, FLASH_CMD_READ4_FAST, 0, 1, 1, 0x00, 0, 8},
534 {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ4, 0, 1, 1, 0x00, 0, 0},
535 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
536};
537
538/*
539 * [MX25xxx] Configuration
540 */
541#define MX25_STATUS_QE (0x1 << 6)
542
543static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
544{
545 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
546 SEQ_OPC_CYCLES(8) |
547 SEQ_OPC_OPCODE(FLASH_CMD_EN4B_ADDR) |
548 SEQ_OPC_CSDEASSERT);
549
550 seq->seq[0] = STFSM_INST_CMD1;
551 seq->seq[1] = STFSM_INST_WAIT;
552 seq->seq[2] = STFSM_INST_STOP;
553
554 seq->seq_cfg = (SEQ_CFG_PADS_1 |
555 SEQ_CFG_ERASE |
556 SEQ_CFG_READNOTWRITE |
557 SEQ_CFG_CSDEASSERT |
558 SEQ_CFG_STARTSEQ);
559
560 return 0;
561}
562
563/*
564 * [S25FLxxx] Configuration
565 */
566#define STFSM_S25FL_CONFIG_QE (0x1 << 1)
567
568/*
569 * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
570 * Register, Extended Address Modes, and a 32-bit address command set. The
571 * 32-bit address command set is used here, since it avoids any problems with
572 * entering a state that is incompatible with the SPIBoot Controller.
573 */
574static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
575 {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ4_1_4_4, 0, 4, 4, 0x00, 2, 4},
576 {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8},
577 {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ4_1_2_2, 0, 2, 2, 0x00, 4, 0},
578 {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8},
579 {FLASH_FLAG_READ_FAST, FLASH_CMD_READ4_FAST, 0, 1, 1, 0x00, 0, 8},
580 {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ4, 0, 1, 1, 0x00, 0, 0},
581 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
582};
583
584static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
585 {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0},
586 {FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0},
587 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
588};
589
590/*
591 * [W25Qxxx] Configuration
592 */
593#define W25Q_STATUS_QE (0x1 << 9)
594
595static struct stfsm_seq stfsm_seq_read_jedec = {
596 .data_size = TRANSFER_SIZE(8),
597 .seq_opc[0] = (SEQ_OPC_PADS_1 |
598 SEQ_OPC_CYCLES(8) |
599 SEQ_OPC_OPCODE(FLASH_CMD_RDID)),
600 .seq = {
601 STFSM_INST_CMD1,
602 STFSM_INST_DATA_READ,
603 STFSM_INST_STOP,
604 },
605 .seq_cfg = (SEQ_CFG_PADS_1 |
606 SEQ_CFG_READNOTWRITE |
607 SEQ_CFG_CSDEASSERT |
608 SEQ_CFG_STARTSEQ),
609};
610
611static struct stfsm_seq stfsm_seq_read_status_fifo = {
612 .data_size = TRANSFER_SIZE(4),
613 .seq_opc[0] = (SEQ_OPC_PADS_1 |
614 SEQ_OPC_CYCLES(8) |
615 SEQ_OPC_OPCODE(FLASH_CMD_RDSR)),
616 .seq = {
617 STFSM_INST_CMD1,
618 STFSM_INST_DATA_READ,
619 STFSM_INST_STOP,
620 },
621 .seq_cfg = (SEQ_CFG_PADS_1 |
622 SEQ_CFG_READNOTWRITE |
623 SEQ_CFG_CSDEASSERT |
624 SEQ_CFG_STARTSEQ),
625};
626
627static struct stfsm_seq stfsm_seq_erase_sector = {
628 /* 'addr_cfg' configured during initialisation */
629 .seq_opc = {
630 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
631 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
632
633 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
634 SEQ_OPC_OPCODE(FLASH_CMD_SE)),
635 },
636 .seq = {
637 STFSM_INST_CMD1,
638 STFSM_INST_CMD2,
639 STFSM_INST_ADD1,
640 STFSM_INST_ADD2,
641 STFSM_INST_STOP,
642 },
643 .seq_cfg = (SEQ_CFG_PADS_1 |
644 SEQ_CFG_READNOTWRITE |
645 SEQ_CFG_CSDEASSERT |
646 SEQ_CFG_STARTSEQ),
647};
648
649static struct stfsm_seq stfsm_seq_erase_chip = {
650 .seq_opc = {
651 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
652 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
653
654 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
655 SEQ_OPC_OPCODE(FLASH_CMD_CHIPERASE) | SEQ_OPC_CSDEASSERT),
656 },
657 .seq = {
658 STFSM_INST_CMD1,
659 STFSM_INST_CMD2,
660 STFSM_INST_WAIT,
661 STFSM_INST_STOP,
662 },
663 .seq_cfg = (SEQ_CFG_PADS_1 |
664 SEQ_CFG_ERASE |
665 SEQ_CFG_READNOTWRITE |
666 SEQ_CFG_CSDEASSERT |
667 SEQ_CFG_STARTSEQ),
668};
669
670static struct stfsm_seq stfsm_seq_write_status = {
671 .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
672 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
673 .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
674 SEQ_OPC_OPCODE(FLASH_CMD_WRSR)),
675 .seq = {
676 STFSM_INST_CMD1,
677 STFSM_INST_CMD2,
678 STFSM_INST_STA_WR1,
679 STFSM_INST_STOP,
680 },
681 .seq_cfg = (SEQ_CFG_PADS_1 |
682 SEQ_CFG_READNOTWRITE |
683 SEQ_CFG_CSDEASSERT |
684 SEQ_CFG_STARTSEQ),
685};
686
687static struct stfsm_seq stfsm_seq_wrvcr = {
688 .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
689 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
690 .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
691 SEQ_OPC_OPCODE(FLASH_CMD_WRVCR)),
692 .seq = {
693 STFSM_INST_CMD1,
694 STFSM_INST_CMD2,
695 STFSM_INST_STA_WR1,
696 STFSM_INST_STOP,
697 },
698 .seq_cfg = (SEQ_CFG_PADS_1 |
699 SEQ_CFG_READNOTWRITE |
700 SEQ_CFG_CSDEASSERT |
701 SEQ_CFG_STARTSEQ),
702};
703
704static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
705{
706 seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
707 SEQ_OPC_OPCODE(FLASH_CMD_EN4B_ADDR));
708 seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
709 SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
710 SEQ_OPC_CSDEASSERT);
711
712 seq->seq[0] = STFSM_INST_CMD2;
713 seq->seq[1] = STFSM_INST_CMD1;
714 seq->seq[2] = STFSM_INST_WAIT;
715 seq->seq[3] = STFSM_INST_STOP;
716
717 seq->seq_cfg = (SEQ_CFG_PADS_1 |
718 SEQ_CFG_ERASE |
719 SEQ_CFG_READNOTWRITE |
720 SEQ_CFG_CSDEASSERT |
721 SEQ_CFG_STARTSEQ);
722
723 return 0;
724}
725
726static inline int stfsm_is_idle(struct stfsm *fsm)
727{
728 return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
729}
730
731static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
732{
733 return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
734}
735
736static void stfsm_clear_fifo(struct stfsm *fsm)
737{
738 uint32_t avail;
739
740 for (;;) {
741 avail = stfsm_fifo_available(fsm);
742 if (!avail)
743 break;
744
745 while (avail) {
746 readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
747 avail--;
748 }
749 }
750}
751
752static inline void stfsm_load_seq(struct stfsm *fsm,
753 const struct stfsm_seq *seq)
754{
755 void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
756 const uint32_t *src = (const uint32_t *)seq;
757 int words = sizeof(*seq) / sizeof(*src);
758
759 BUG_ON(!stfsm_is_idle(fsm));
760
761 while (words--) {
762 writel(*src, dst);
763 src++;
764 dst += 4;
765 }
766}
767
768static void stfsm_wait_seq(struct stfsm *fsm)
769{
770 unsigned long deadline;
771 int timeout = 0;
772
773 deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
774
775 while (!timeout) {
776 if (time_after_eq(jiffies, deadline))
777 timeout = 1;
778
779 if (stfsm_is_idle(fsm))
780 return;
781
782 cond_resched();
783 }
784
785 dev_err(fsm->dev, "timeout on sequence completion\n");
786}
787
788static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
789{
790 uint32_t remaining = size >> 2;
791 uint32_t avail;
792 uint32_t words;
793
794 dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
795
796 BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
797
798 while (remaining) {
799 for (;;) {
800 avail = stfsm_fifo_available(fsm);
801 if (avail)
802 break;
803 udelay(1);
804 }
805 words = min(avail, remaining);
806 remaining -= words;
807
808 readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
809 buf += words;
810 }
811}
812
813static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
814 uint32_t size)
815{
816 uint32_t words = size >> 2;
817
818 dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
819
820 BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
821
822 writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
823
824 return size;
825}
826
827static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
828{
829 struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
830 uint32_t cmd = enter ? FLASH_CMD_EN4B_ADDR : FLASH_CMD_EX4B_ADDR;
831
832 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
833 SEQ_OPC_CYCLES(8) |
834 SEQ_OPC_OPCODE(cmd) |
835 SEQ_OPC_CSDEASSERT);
836
837 stfsm_load_seq(fsm, seq);
838
839 stfsm_wait_seq(fsm);
840
841 return 0;
842}
843
844static uint8_t stfsm_wait_busy(struct stfsm *fsm)
845{
846 struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
847 unsigned long deadline;
848 uint32_t status;
849 int timeout = 0;
850
851 /* Use RDRS1 */
852 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
853 SEQ_OPC_CYCLES(8) |
854 SEQ_OPC_OPCODE(FLASH_CMD_RDSR));
855
856 /* Load read_status sequence */
857 stfsm_load_seq(fsm, seq);
858
859 /*
860 * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
861 */
862 deadline = jiffies + FLASH_MAX_BUSY_WAIT;
863 while (!timeout) {
864 if (time_after_eq(jiffies, deadline))
865 timeout = 1;
866
867 stfsm_wait_seq(fsm);
868
869 stfsm_read_fifo(fsm, &status, 4);
870
871 if ((status & FLASH_STATUS_BUSY) == 0)
872 return 0;
873
874 if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
875 ((status & S25FL_STATUS_P_ERR) ||
876 (status & S25FL_STATUS_E_ERR)))
877 return (uint8_t)(status & 0xff);
878
879 if (!timeout)
880 /* Restart */
881 writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
882
883 cond_resched();
884 }
885
886 dev_err(fsm->dev, "timeout on wait_busy\n");
887
888 return FLASH_STATUS_TIMEOUT;
889}
890
891static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
892 uint8_t *status)
893{
894 struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
895 uint32_t tmp;
896
897 dev_dbg(fsm->dev, "reading STA[%s]\n",
898 (cmd == FLASH_CMD_RDSR) ? "1" : "2");
899
900 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
901 SEQ_OPC_CYCLES(8) |
902 SEQ_OPC_OPCODE(cmd)),
903
904 stfsm_load_seq(fsm, seq);
905
906 stfsm_read_fifo(fsm, &tmp, 4);
907
908 *status = (uint8_t)(tmp >> 24);
909
910 stfsm_wait_seq(fsm);
911
912 return 0;
913}
914
915static int stfsm_write_status(struct stfsm *fsm, uint16_t status,
916 int sta_bytes)
917{
918 struct stfsm_seq *seq = &stfsm_seq_write_status;
919
920 dev_dbg(fsm->dev, "writing STA[%s] 0x%04x\n",
921 (sta_bytes == 1) ? "1" : "1+2", status);
922
923 seq->status = (uint32_t)status | STA_PADS_1 | STA_CSDEASSERT;
924 seq->seq[2] = (sta_bytes == 1) ?
925 STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
926
927 stfsm_load_seq(fsm, seq);
928
929 stfsm_wait_seq(fsm);
930
931 return 0;
932};
933
934static int stfsm_wrvcr(struct stfsm *fsm, uint8_t data)
935{
936 struct stfsm_seq *seq = &stfsm_seq_wrvcr;
937
938 dev_dbg(fsm->dev, "writing VCR 0x%02x\n", data);
939
940 seq->status = (STA_DATA_BYTE1(data) | STA_PADS_1 | STA_CSDEASSERT);
941
942 stfsm_load_seq(fsm, seq);
943
944 stfsm_wait_seq(fsm);
945
946 return 0;
947}
948
949/*
950 * SoC reset on 'boot-from-spi' systems
951 *
952 * Certain modes of operation cause the Flash device to enter a particular state
953 * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
954 * Addr' commands). On boot-from-spi systems, it is important to consider what
955 * happens if a warm reset occurs during this period. The SPIBoot controller
956 * assumes that Flash device is in its default reset state, 24-bit address mode,
957 * and ready to accept commands. This can be achieved using some form of
958 * on-board logic/controller to force a device POR in response to a SoC-level
959 * reset or by making use of the device reset signal if available (limited
960 * number of devices only).
961 *
962 * Failure to take such precautions can cause problems following a warm reset.
963 * For some operations (e.g. ERASE), there is little that can be done. For
964 * other modes of operation (e.g. 32-bit addressing), options are often
965 * available that can help minimise the window in which a reset could cause a
966 * problem.
967 *
968 */
969static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
970{
971 /* Reset signal is available on the board and supported by the device */
972 if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
973 return true;
974
975 /* Board-level logic forces a power-on-reset */
976 if (fsm->reset_por)
977 return true;
978
979 /* Reset is not properly handled and may result in failure to reboot */
980 return false;
981}
982
983/* Configure 'addr_cfg' according to addressing mode */
984static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
985 struct stfsm_seq *seq)
986{
987 int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
988
989 seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
990 ADR_CFG_PADS_1_ADD1 |
991 ADR_CFG_CYCLES_ADD2(16) |
992 ADR_CFG_PADS_1_ADD2 |
993 ADR_CFG_CSDEASSERT_ADD2);
994}
995
996/* Search for preferred configuration based on available flags */
997static struct seq_rw_config *
998stfsm_search_seq_rw_configs(struct stfsm *fsm,
999 struct seq_rw_config cfgs[])
1000{
1001 struct seq_rw_config *config;
1002 int flags = fsm->info->flags;
1003
1004 for (config = cfgs; config->cmd != 0; config++)
1005 if ((config->flags & flags) == config->flags)
1006 return config;
1007
1008 return NULL;
1009}
1010
1011/* Prepare a READ/WRITE sequence according to configuration parameters */
1012static void stfsm_prepare_rw_seq(struct stfsm *fsm,
1013 struct stfsm_seq *seq,
1014 struct seq_rw_config *cfg)
1015{
1016 int addr1_cycles, addr2_cycles;
1017 int i = 0;
1018
1019 memset(seq, 0, sizeof(*seq));
1020
1021 /* Add READ/WRITE OPC */
1022 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1023 SEQ_OPC_CYCLES(8) |
1024 SEQ_OPC_OPCODE(cfg->cmd));
1025
1026 /* Add WREN OPC for a WRITE sequence */
1027 if (cfg->write)
1028 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1029 SEQ_OPC_CYCLES(8) |
1030 SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
1031 SEQ_OPC_CSDEASSERT);
1032
1033 /* Address configuration (24 or 32-bit addresses) */
1034 addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
1035 addr1_cycles /= cfg->addr_pads;
1036 addr2_cycles = 16 / cfg->addr_pads;
1037 seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */
1038 (cfg->addr_pads - 1) << 6 | /* ADD1 pads */
1039 (addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */
1040 ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
1041
1042 /* Data/Sequence configuration */
1043 seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
1044 SEQ_CFG_STARTSEQ |
1045 SEQ_CFG_CSDEASSERT);
1046 if (!cfg->write)
1047 seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
1048
1049 /* Mode configuration (no. of pads taken from addr cfg) */
1050 seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */
1051 (cfg->mode_cycles & 0x3f) << 16 | /* cycles */
1052 (cfg->addr_pads - 1) << 22); /* pads */
1053
1054 /* Dummy configuration (no. of pads taken from addr cfg) */
1055 seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */
1056 (cfg->addr_pads - 1) << 22); /* pads */
1057
1058
1059 /* Instruction sequence */
1060 i = 0;
1061 if (cfg->write)
1062 seq->seq[i++] = STFSM_INST_CMD2;
1063
1064 seq->seq[i++] = STFSM_INST_CMD1;
1065
1066 seq->seq[i++] = STFSM_INST_ADD1;
1067 seq->seq[i++] = STFSM_INST_ADD2;
1068
1069 if (cfg->mode_cycles)
1070 seq->seq[i++] = STFSM_INST_MODE;
1071
1072 if (cfg->dummy_cycles)
1073 seq->seq[i++] = STFSM_INST_DUMMY;
1074
1075 seq->seq[i++] =
1076 cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
1077 seq->seq[i++] = STFSM_INST_STOP;
1078}
1079
1080static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
1081 struct stfsm_seq *seq,
1082 struct seq_rw_config *cfgs)
1083{
1084 struct seq_rw_config *config;
1085
1086 config = stfsm_search_seq_rw_configs(fsm, cfgs);
1087 if (!config) {
1088 dev_err(fsm->dev, "failed to find suitable config\n");
1089 return -EINVAL;
1090 }
1091
1092 stfsm_prepare_rw_seq(fsm, seq, config);
1093
1094 return 0;
1095}
1096
1097/* Prepare a READ/WRITE/ERASE 'default' sequences */
1098static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
1099{
1100 uint32_t flags = fsm->info->flags;
1101 int ret;
1102
1103 /* Configure 'READ' sequence */
1104 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1105 default_read_configs);
1106 if (ret) {
1107 dev_err(fsm->dev,
1108 "failed to prep READ sequence with flags [0x%08x]\n",
1109 flags);
1110 return ret;
1111 }
1112
1113 /* Configure 'WRITE' sequence */
1114 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1115 default_write_configs);
1116 if (ret) {
1117 dev_err(fsm->dev,
1118 "failed to prep WRITE sequence with flags [0x%08x]\n",
1119 flags);
1120 return ret;
1121 }
1122
1123 /* Configure 'ERASE_SECTOR' sequence */
1124 stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1125
1126 return 0;
1127}
1128
1129static int stfsm_mx25_config(struct stfsm *fsm)
1130{
1131 uint32_t flags = fsm->info->flags;
1132 uint32_t data_pads;
1133 uint8_t sta;
1134 int ret;
1135 bool soc_reset;
1136
1137 /*
1138 * Use default READ/WRITE sequences
1139 */
1140 ret = stfsm_prepare_rwe_seqs_default(fsm);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * Configure 32-bit Address Support
1146 */
1147 if (flags & FLASH_FLAG_32BIT_ADDR) {
1148 /* Configure 'enter_32bitaddr' FSM sequence */
1149 stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1150
1151 soc_reset = stfsm_can_handle_soc_reset(fsm);
1152 if (soc_reset || !fsm->booted_from_spi) {
1153 /* If we can handle SoC resets, we enable 32-bit address
1154 * mode pervasively */
1155 stfsm_enter_32bit_addr(fsm, 1);
1156
1157 } else {
1158 /* Else, enable/disable 32-bit addressing before/after
1159 * each operation */
1160 fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
1161 CFG_WRITE_TOGGLE_32BIT_ADDR |
1162 CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1163 /* It seems a small delay is required after exiting
1164 * 32-bit mode following a write operation. The issue
1165 * is under investigation.
1166 */
1167 fsm->configuration |= CFG_WRITE_EX_32BIT_ADDR_DELAY;
1168 }
1169 }
1170
1171 /* For QUAD mode, set 'QE' STATUS bit */
1172 data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1173 if (data_pads == 4) {
1174 stfsm_read_status(fsm, FLASH_CMD_RDSR, &sta);
1175 sta |= MX25_STATUS_QE;
1176 stfsm_write_status(fsm, sta, 1);
1177 }
1178
1179 return 0;
1180}
1181
1182static int stfsm_n25q_config(struct stfsm *fsm)
1183{
1184 uint32_t flags = fsm->info->flags;
1185 uint8_t vcr;
1186 int ret = 0;
1187 bool soc_reset;
1188
1189 /* Configure 'READ' sequence */
1190 if (flags & FLASH_FLAG_32BIT_ADDR)
1191 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1192 n25q_read4_configs);
1193 else
1194 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1195 n25q_read3_configs);
1196 if (ret) {
1197 dev_err(fsm->dev,
1198 "failed to prepare READ sequence with flags [0x%08x]\n",
1199 flags);
1200 return ret;
1201 }
1202
1203 /* Configure 'WRITE' sequence (default configs) */
1204 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1205 default_write_configs);
1206 if (ret) {
1207 dev_err(fsm->dev,
1208 "preparing WRITE sequence using flags [0x%08x] failed\n",
1209 flags);
1210 return ret;
1211 }
1212
1213 /* * Configure 'ERASE_SECTOR' sequence */
1214 stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1215
1216 /* Configure 32-bit address support */
1217 if (flags & FLASH_FLAG_32BIT_ADDR) {
1218 stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1219
1220 soc_reset = stfsm_can_handle_soc_reset(fsm);
1221 if (soc_reset || !fsm->booted_from_spi) {
1222 /*
1223 * If we can handle SoC resets, we enable 32-bit
1224 * address mode pervasively
1225 */
1226 stfsm_enter_32bit_addr(fsm, 1);
1227 } else {
1228 /*
1229 * If not, enable/disable for WRITE and ERASE
1230 * operations (READ uses special commands)
1231 */
1232 fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
1233 CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1234 }
1235 }
1236
1237 /*
1238 * Configure device to use 8 dummy cycles
1239 */
1240 vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
1241 N25Q_VCR_WRAP_CONT);
1242 stfsm_wrvcr(fsm, vcr);
1243
1244 return 0;
1245}
1246
1247static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq)
1248{
1249 seq->seq_opc[1] = (SEQ_OPC_PADS_1 |
1250 SEQ_OPC_CYCLES(8) |
1251 SEQ_OPC_OPCODE(S25FL_CMD_SE4));
1252
1253 seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1254 ADR_CFG_PADS_1_ADD1 |
1255 ADR_CFG_CYCLES_ADD2(16) |
1256 ADR_CFG_PADS_1_ADD2 |
1257 ADR_CFG_CSDEASSERT_ADD2);
1258}
1259
1260static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby)
1261{
1262 uint32_t tmp;
1263 struct stfsm_seq seq = {
1264 .data_size = TRANSFER_SIZE(4),
1265 .seq_opc[0] = (SEQ_OPC_PADS_1 |
1266 SEQ_OPC_CYCLES(8) |
1267 SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)),
1268 .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1269 ADR_CFG_PADS_1_ADD1 |
1270 ADR_CFG_CYCLES_ADD2(16) |
1271 ADR_CFG_PADS_1_ADD2),
1272 .addr1 = (offs >> 16) & 0xffff,
1273 .addr2 = offs & 0xffff,
1274 .seq = {
1275 STFSM_INST_CMD1,
1276 STFSM_INST_ADD1,
1277 STFSM_INST_ADD2,
1278 STFSM_INST_DATA_READ,
1279 STFSM_INST_STOP,
1280 },
1281 .seq_cfg = (SEQ_CFG_PADS_1 |
1282 SEQ_CFG_READNOTWRITE |
1283 SEQ_CFG_CSDEASSERT |
1284 SEQ_CFG_STARTSEQ),
1285 };
1286
1287 stfsm_load_seq(fsm, &seq);
1288
1289 stfsm_read_fifo(fsm, &tmp, 4);
1290
1291 *dby = (uint8_t)(tmp >> 24);
1292
1293 stfsm_wait_seq(fsm);
1294}
1295
1296static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
1297{
1298 struct stfsm_seq seq = {
1299 .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1300 SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
1301 SEQ_OPC_CSDEASSERT),
1302 .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1303 SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
1304 .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1305 ADR_CFG_PADS_1_ADD1 |
1306 ADR_CFG_CYCLES_ADD2(16) |
1307 ADR_CFG_PADS_1_ADD2),
1308 .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT,
1309 .addr1 = (offs >> 16) & 0xffff,
1310 .addr2 = offs & 0xffff,
1311 .seq = {
1312 STFSM_INST_CMD1,
1313 STFSM_INST_CMD2,
1314 STFSM_INST_ADD1,
1315 STFSM_INST_ADD2,
1316 STFSM_INST_STA_WR1,
1317 STFSM_INST_STOP,
1318 },
1319 .seq_cfg = (SEQ_CFG_PADS_1 |
1320 SEQ_CFG_READNOTWRITE |
1321 SEQ_CFG_CSDEASSERT |
1322 SEQ_CFG_STARTSEQ),
1323 };
1324
1325 stfsm_load_seq(fsm, &seq);
1326 stfsm_wait_seq(fsm);
1327
1328 stfsm_wait_busy(fsm);
1329}
1330
1331static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
1332{
1333 struct stfsm_seq seq = {
1334 .seq_opc[0] = (SEQ_OPC_PADS_1 |
1335 SEQ_OPC_CYCLES(8) |
1336 SEQ_OPC_OPCODE(S25FL_CMD_CLSR) |
1337 SEQ_OPC_CSDEASSERT),
1338 .seq_opc[1] = (SEQ_OPC_PADS_1 |
1339 SEQ_OPC_CYCLES(8) |
1340 SEQ_OPC_OPCODE(FLASH_CMD_WRDI) |
1341 SEQ_OPC_CSDEASSERT),
1342 .seq = {
1343 STFSM_INST_CMD1,
1344 STFSM_INST_CMD2,
1345 STFSM_INST_WAIT,
1346 STFSM_INST_STOP,
1347 },
1348 .seq_cfg = (SEQ_CFG_PADS_1 |
1349 SEQ_CFG_ERASE |
1350 SEQ_CFG_READNOTWRITE |
1351 SEQ_CFG_CSDEASSERT |
1352 SEQ_CFG_STARTSEQ),
1353 };
1354
1355 stfsm_load_seq(fsm, &seq);
1356
1357 stfsm_wait_seq(fsm);
1358
1359 return 0;
1360}
1361
1362static int stfsm_s25fl_config(struct stfsm *fsm)
1363{
1364 struct flash_info *info = fsm->info;
1365 uint32_t flags = info->flags;
1366 uint32_t data_pads;
1367 uint32_t offs;
1368 uint16_t sta_wr;
1369 uint8_t sr1, cr1, dyb;
1370 int ret;
1371
1372 if (flags & FLASH_FLAG_32BIT_ADDR) {
1373 /*
1374 * Prepare Read/Write/Erase sequences according to S25FLxxx
1375 * 32-bit address command set
1376 */
1377 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1378 stfsm_s25fl_read4_configs);
1379 if (ret)
1380 return ret;
1381
1382 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1383 stfsm_s25fl_write4_configs);
1384 if (ret)
1385 return ret;
1386
1387 stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector);
1388
1389 } else {
1390 /* Use default configurations for 24-bit addressing */
1391 ret = stfsm_prepare_rwe_seqs_default(fsm);
1392 if (ret)
1393 return ret;
1394 }
1395
1396 /*
1397 * For devices that support 'DYB' sector locking, check lock status and
1398 * unlock sectors if necessary (some variants power-on with sectors
1399 * locked by default)
1400 */
1401 if (flags & FLASH_FLAG_DYB_LOCKING) {
1402 offs = 0;
1403 for (offs = 0; offs < info->sector_size * info->n_sectors;) {
1404 stfsm_s25fl_read_dyb(fsm, offs, &dyb);
1405 if (dyb == 0x00)
1406 stfsm_s25fl_write_dyb(fsm, offs, 0xff);
1407
1408 /* Handle bottom/top 4KiB parameter sectors */
1409 if ((offs < info->sector_size * 2) ||
1410 (offs >= (info->sector_size - info->n_sectors * 4)))
1411 offs += 0x1000;
1412 else
1413 offs += 0x10000;
1414 }
1415 }
1416
1417 /* Check status of 'QE' bit */
1418 data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1419 stfsm_read_status(fsm, FLASH_CMD_RDSR2, &cr1);
1420 if (data_pads == 4) {
1421 if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
1422 /* Set 'QE' */
1423 cr1 |= STFSM_S25FL_CONFIG_QE;
1424
1425 stfsm_read_status(fsm, FLASH_CMD_RDSR, &sr1);
1426 sta_wr = ((uint16_t)cr1 << 8) | sr1;
1427
1428 stfsm_write_status(fsm, sta_wr, 2);
1429
1430 stfsm_wait_busy(fsm);
1431 }
1432 } else {
1433 if ((cr1 & STFSM_S25FL_CONFIG_QE)) {
1434 /* Clear 'QE' */
1435 cr1 &= ~STFSM_S25FL_CONFIG_QE;
1436
1437 stfsm_read_status(fsm, FLASH_CMD_RDSR, &sr1);
1438 sta_wr = ((uint16_t)cr1 << 8) | sr1;
1439
1440 stfsm_write_status(fsm, sta_wr, 2);
1441
1442 stfsm_wait_busy(fsm);
1443 }
1444
1445 }
1446
1447 /*
1448 * S25FLxxx devices support Program and Error error flags.
1449 * Configure driver to check flags and clear if necessary.
1450 */
1451 fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS;
1452
1453 return 0;
1454}
1455
1456static int stfsm_w25q_config(struct stfsm *fsm)
1457{
1458 uint32_t data_pads;
1459 uint16_t sta_wr;
1460 uint8_t sta1, sta2;
1461 int ret;
1462
1463 ret = stfsm_prepare_rwe_seqs_default(fsm);
1464 if (ret)
1465 return ret;
1466
1467 /* If using QUAD mode, set QE STATUS bit */
1468 data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1469 if (data_pads == 4) {
1470 stfsm_read_status(fsm, FLASH_CMD_RDSR, &sta1);
1471 stfsm_read_status(fsm, FLASH_CMD_RDSR2, &sta2);
1472
1473 sta_wr = ((uint16_t)sta2 << 8) | sta1;
1474
1475 sta_wr |= W25Q_STATUS_QE;
1476
1477 stfsm_write_status(fsm, sta_wr, 2);
1478
1479 stfsm_wait_busy(fsm);
1480 }
1481
1482 return 0;
1483}
1484
1485static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
1486 uint32_t offset)
1487{
1488 struct stfsm_seq *seq = &fsm->stfsm_seq_read;
1489 uint32_t data_pads;
1490 uint32_t read_mask;
1491 uint32_t size_ub;
1492 uint32_t size_lb;
1493 uint32_t size_mop;
1494 uint32_t tmp[4];
1495 uint32_t page_buf[FLASH_PAGESIZE_32];
1496 uint8_t *p;
1497
1498 dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
1499
1500 /* Enter 32-bit address mode, if required */
1501 if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1502 stfsm_enter_32bit_addr(fsm, 1);
1503
1504 /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
1505 data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1506 read_mask = (data_pads << 2) - 1;
1507
1508 /* Handle non-aligned buf */
1509 p = ((uint32_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
1510
1511 /* Handle non-aligned size */
1512 size_ub = (size + read_mask) & ~read_mask;
1513 size_lb = size & ~read_mask;
1514 size_mop = size & read_mask;
1515
1516 seq->data_size = TRANSFER_SIZE(size_ub);
1517 seq->addr1 = (offset >> 16) & 0xffff;
1518 seq->addr2 = offset & 0xffff;
1519
1520 stfsm_load_seq(fsm, seq);
1521
1522 if (size_lb)
1523 stfsm_read_fifo(fsm, (uint32_t *)p, size_lb);
1524
1525 if (size_mop) {
1526 stfsm_read_fifo(fsm, tmp, read_mask + 1);
1527 memcpy(p + size_lb, &tmp, size_mop);
1528 }
1529
1530 /* Handle non-aligned buf */
1531 if ((uint32_t)buf & 0x3)
1532 memcpy(buf, page_buf, size);
1533
1534 /* Wait for sequence to finish */
1535 stfsm_wait_seq(fsm);
1536
1537 stfsm_clear_fifo(fsm);
1538
1539 /* Exit 32-bit address mode, if required */
1540 if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1541 stfsm_enter_32bit_addr(fsm, 0);
1542
1543 return 0;
1544}
1545
1546static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
1547 uint32_t size, uint32_t offset)
1548{
1549 struct stfsm_seq *seq = &fsm->stfsm_seq_write;
1550 uint32_t data_pads;
1551 uint32_t write_mask;
1552 uint32_t size_ub;
1553 uint32_t size_lb;
1554 uint32_t size_mop;
1555 uint32_t tmp[4];
1556 uint32_t page_buf[FLASH_PAGESIZE_32];
1557 uint8_t *t = (uint8_t *)&tmp;
1558 const uint8_t *p;
1559 int ret;
1560 int i;
1561
1562 dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
1563
1564 /* Enter 32-bit address mode, if required */
1565 if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1566 stfsm_enter_32bit_addr(fsm, 1);
1567
1568 /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
1569 data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1570 write_mask = (data_pads << 2) - 1;
1571
1572 /* Handle non-aligned buf */
1573 if ((uint32_t)buf & 0x3) {
1574 memcpy(page_buf, buf, size);
1575 p = (uint8_t *)page_buf;
1576 } else {
1577 p = buf;
1578 }
1579
1580 /* Handle non-aligned size */
1581 size_ub = (size + write_mask) & ~write_mask;
1582 size_lb = size & ~write_mask;
1583 size_mop = size & write_mask;
1584
1585 seq->data_size = TRANSFER_SIZE(size_ub);
1586 seq->addr1 = (offset >> 16) & 0xffff;
1587 seq->addr2 = offset & 0xffff;
1588
1589 /* Need to set FIFO to write mode, before writing data to FIFO (see
1590 * GNBvb79594)
1591 */
1592 writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
1593
1594 /*
1595 * Before writing data to the FIFO, apply a small delay to allow a
1596 * potential change of FIFO direction to complete.
1597 */
1598 if (fsm->fifo_dir_delay == 0)
1599 readl(fsm->base + SPI_FAST_SEQ_CFG);
1600 else
1601 udelay(fsm->fifo_dir_delay);
1602
1603
1604 /* Write data to FIFO, before starting sequence (see GNBvd79593) */
1605 if (size_lb) {
1606 stfsm_write_fifo(fsm, (uint32_t *)p, size_lb);
1607 p += size_lb;
1608 }
1609
1610 /* Handle non-aligned size */
1611 if (size_mop) {
1612 memset(t, 0xff, write_mask + 1); /* fill with 0xff's */
1613 for (i = 0; i < size_mop; i++)
1614 t[i] = *p++;
1615
1616 stfsm_write_fifo(fsm, tmp, write_mask + 1);
1617 }
1618
1619 /* Start sequence */
1620 stfsm_load_seq(fsm, seq);
1621
1622 /* Wait for sequence to finish */
1623 stfsm_wait_seq(fsm);
1624
1625 /* Wait for completion */
1626 ret = stfsm_wait_busy(fsm);
1627 if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1628 stfsm_s25fl_clear_status_reg(fsm);
1629
1630 /* Exit 32-bit address mode, if required */
1631 if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) {
1632 stfsm_enter_32bit_addr(fsm, 0);
1633 if (fsm->configuration & CFG_WRITE_EX_32BIT_ADDR_DELAY)
1634 udelay(1);
1635 }
1636
1637 return 0;
1638}
1639
1640/*
1641 * Read an address range from the flash chip. The address range
1642 * may be any size provided it is within the physical boundaries.
1643 */
1644static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
1645 size_t *retlen, u_char *buf)
1646{
1647 struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1648 uint32_t bytes;
1649
1650 dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
1651 __func__, (u32)from, len);
1652
1653 mutex_lock(&fsm->lock);
1654
1655 while (len > 0) {
1656 bytes = min_t(size_t, len, FLASH_PAGESIZE);
1657
1658 stfsm_read(fsm, buf, bytes, from);
1659
1660 buf += bytes;
1661 from += bytes;
1662 len -= bytes;
1663
1664 *retlen += bytes;
1665 }
1666
1667 mutex_unlock(&fsm->lock);
1668
1669 return 0;
1670}
1671
1672static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset)
1673{
1674 struct stfsm_seq *seq = &stfsm_seq_erase_sector;
1675 int ret;
1676
1677 dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
1678
1679 /* Enter 32-bit address mode, if required */
1680 if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1681 stfsm_enter_32bit_addr(fsm, 1);
1682
1683 seq->addr1 = (offset >> 16) & 0xffff;
1684 seq->addr2 = offset & 0xffff;
1685
1686 stfsm_load_seq(fsm, seq);
1687
1688 stfsm_wait_seq(fsm);
1689
1690 /* Wait for completion */
1691 ret = stfsm_wait_busy(fsm);
1692 if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1693 stfsm_s25fl_clear_status_reg(fsm);
1694
1695 /* Exit 32-bit address mode, if required */
1696 if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1697 stfsm_enter_32bit_addr(fsm, 0);
1698
1699 return ret;
1700}
1701
1702static int stfsm_erase_chip(struct stfsm *fsm)
1703{
1704 const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
1705
1706 dev_dbg(fsm->dev, "erasing chip\n");
1707
1708 stfsm_load_seq(fsm, seq);
1709
1710 stfsm_wait_seq(fsm);
1711
1712 return stfsm_wait_busy(fsm);
1713}
1714
1715/*
1716 * Write an address range to the flash chip. Data must be written in
1717 * FLASH_PAGESIZE chunks. The address range may be any size provided
1718 * it is within the physical boundaries.
1719 */
1720static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
1721 size_t *retlen, const u_char *buf)
1722{
1723 struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1724
1725 u32 page_offs;
1726 u32 bytes;
1727 uint8_t *b = (uint8_t *)buf;
1728 int ret = 0;
1729
1730 dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
1731
1732 /* Offset within page */
1733 page_offs = to % FLASH_PAGESIZE;
1734
1735 mutex_lock(&fsm->lock);
1736
1737 while (len) {
1738 /* Write up to page boundary */
1739 bytes = min(FLASH_PAGESIZE - page_offs, len);
1740
1741 ret = stfsm_write(fsm, b, bytes, to);
1742 if (ret)
1743 goto out1;
1744
1745 b += bytes;
1746 len -= bytes;
1747 to += bytes;
1748
1749 /* We are now page-aligned */
1750 page_offs = 0;
1751
1752 *retlen += bytes;
1753
1754 }
1755
1756out1:
1757 mutex_unlock(&fsm->lock);
1758
1759 return ret;
1760}
1761
1762/*
1763 * Erase an address range on the flash chip. The address range may extend
1764 * one or more erase sectors. Return an error is there is a problem erasing.
1765 */
1766static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1767{
1768 struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1769 u32 addr, len;
1770 int ret;
1771
1772 dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
1773 (long long)instr->addr, (long long)instr->len);
1774
1775 addr = instr->addr;
1776 len = instr->len;
1777
1778 mutex_lock(&fsm->lock);
1779
1780 /* Whole-chip erase? */
1781 if (len == mtd->size) {
1782 ret = stfsm_erase_chip(fsm);
1783 if (ret)
1784 goto out1;
1785 } else {
1786 while (len) {
1787 ret = stfsm_erase_sector(fsm, addr);
1788 if (ret)
1789 goto out1;
1790
1791 addr += mtd->erasesize;
1792 len -= mtd->erasesize;
1793 }
1794 }
1795
1796 mutex_unlock(&fsm->lock);
1797
1798 instr->state = MTD_ERASE_DONE;
1799 mtd_erase_callback(instr);
1800
1801 return 0;
1802
1803out1:
1804 instr->state = MTD_ERASE_FAILED;
1805 mutex_unlock(&fsm->lock);
1806
1807 return ret;
1808}
1809
1810static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec)
1811{
1812 const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
1813 uint32_t tmp[2];
1814
1815 stfsm_load_seq(fsm, seq);
1816
1817 stfsm_read_fifo(fsm, tmp, 8);
1818
1819 memcpy(jedec, tmp, 5);
1820
1821 stfsm_wait_seq(fsm);
1822}
1823
1824static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
1825{
1826 struct flash_info *info;
1827 u16 ext_jedec;
1828 u32 jedec;
1829 u8 id[5];
1830
1831 stfsm_read_jedec(fsm, id);
1832
1833 jedec = id[0] << 16 | id[1] << 8 | id[2];
1834 /*
1835 * JEDEC also defines an optional "extended device information"
1836 * string for after vendor-specific data, after the three bytes
1837 * we use here. Supporting some chips might require using it.
1838 */
1839 ext_jedec = id[3] << 8 | id[4];
1840
1841 dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n",
1842 jedec, id[0], id[1], id[2], id[3], id[4]);
1843
1844 for (info = flash_types; info->name; info++) {
1845 if (info->jedec_id == jedec) {
1846 if (info->ext_id && info->ext_id != ext_jedec)
1847 continue;
1848 return info;
1849 }
1850 }
1851 dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
1852
1853 return NULL;
1854}
1855
1856static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
1857{
1858 int ret, timeout = 10;
1859
1860 /* Wait for controller to accept mode change */
1861 while (--timeout) {
1862 ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
1863 if (ret & 0x1)
1864 break;
1865 udelay(1);
1866 }
1867
1868 if (!timeout)
1869 return -EBUSY;
1870
1871 writel(mode, fsm->base + SPI_MODESELECT);
1872
1873 return 0;
1874}
1875
1876static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
1877{
1878 uint32_t emi_freq;
1879 uint32_t clk_div;
1880
1881 /* TODO: Make this dynamic */
1882 emi_freq = STFSM_DEFAULT_EMI_FREQ;
1883
1884 /*
1885 * Calculate clk_div - values between 2 and 128
1886 * Multiple of 2, rounded up
1887 */
1888 clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
1889 if (clk_div < 2)
1890 clk_div = 2;
1891 else if (clk_div > 128)
1892 clk_div = 128;
1893
1894 /*
1895 * Determine a suitable delay for the IP to complete a change of
1896 * direction of the FIFO. The required delay is related to the clock
1897 * divider used. The following heuristics are based on empirical tests,
1898 * using a 100MHz EMI clock.
1899 */
1900 if (clk_div <= 4)
1901 fsm->fifo_dir_delay = 0;
1902 else if (clk_div <= 10)
1903 fsm->fifo_dir_delay = 1;
1904 else
1905 fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
1906
1907 dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
1908 emi_freq, spi_freq, clk_div);
1909
1910 writel(clk_div, fsm->base + SPI_CLOCKDIV);
1911}
1912
1913static int stfsm_init(struct stfsm *fsm)
1914{
1915 int ret;
1916
1917 /* Perform a soft reset of the FSM controller */
1918 writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
1919 udelay(1);
1920 writel(0, fsm->base + SPI_FAST_SEQ_CFG);
1921
1922 /* Set clock to 'safe' frequency initially */
1923 stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
1924
1925 /* Switch to FSM */
1926 ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
1927 if (ret)
1928 return ret;
1929
1930 /* Set timing parameters */
1931 writel(SPI_CFG_DEVICE_ST |
1932 SPI_CFG_DEFAULT_MIN_CS_HIGH |
1933 SPI_CFG_DEFAULT_CS_SETUPHOLD |
1934 SPI_CFG_DEFAULT_DATA_HOLD,
1935 fsm->base + SPI_CONFIGDATA);
1936 writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
1937
1938 /* Clear FIFO, just in case */
1939 stfsm_clear_fifo(fsm);
1940
1941 return 0;
1942}
1943
1944static void stfsm_fetch_platform_configs(struct platform_device *pdev)
1945{
1946 struct stfsm *fsm = platform_get_drvdata(pdev);
1947 struct device_node *np = pdev->dev.of_node;
1948 struct regmap *regmap;
1949 uint32_t boot_device_reg;
1950 uint32_t boot_device_spi;
1951 uint32_t boot_device; /* Value we read from *boot_device_reg */
1952 int ret;
1953
1954 /* Booting from SPI NOR Flash is the default */
1955 fsm->booted_from_spi = true;
1956
1957 regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1958 if (IS_ERR(regmap))
1959 goto boot_device_fail;
1960
1961 fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");
1962
1963 fsm->reset_por = of_property_read_bool(np, "st,reset-por");
1964
1965 /* Where in the syscon the boot device information lives */
1966 ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
1967 if (ret)
1968 goto boot_device_fail;
1969
1970 /* Boot device value when booted from SPI NOR */
1971 ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
1972 if (ret)
1973 goto boot_device_fail;
1974
1975 ret = regmap_read(regmap, boot_device_reg, &boot_device);
1976 if (ret)
1977 goto boot_device_fail;
1978
1979 if (boot_device != boot_device_spi)
1980 fsm->booted_from_spi = false;
1981
1982 return;
1983
1984boot_device_fail:
1985 dev_warn(&pdev->dev,
1986 "failed to fetch boot device, assuming boot from SPI\n");
1987}
1988
1989static int stfsm_probe(struct platform_device *pdev)
1990{
1991 struct device_node *np = pdev->dev.of_node;
1992 struct mtd_part_parser_data ppdata;
1993 struct flash_info *info;
1994 struct resource *res;
1995 struct stfsm *fsm;
1996 int ret;
1997
1998 if (!np) {
1999 dev_err(&pdev->dev, "No DT found\n");
2000 return -EINVAL;
2001 }
2002 ppdata.of_node = np;
2003
2004 fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
2005 if (!fsm)
2006 return -ENOMEM;
2007
2008 fsm->dev = &pdev->dev;
2009
2010 platform_set_drvdata(pdev, fsm);
2011
2012 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2013 if (!res) {
2014 dev_err(&pdev->dev, "Resource not found\n");
2015 return -ENODEV;
2016 }
2017
2018 fsm->base = devm_ioremap_resource(&pdev->dev, res);
2019 if (IS_ERR(fsm->base)) {
2020 dev_err(&pdev->dev,
2021 "Failed to reserve memory region %pR\n", res);
2022 return PTR_ERR(fsm->base);
2023 }
2024
2025 mutex_init(&fsm->lock);
2026
2027 ret = stfsm_init(fsm);
2028 if (ret) {
2029 dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
2030 return ret;
2031 }
2032
2033 stfsm_fetch_platform_configs(pdev);
2034
2035 /* Detect SPI FLASH device */
2036 info = stfsm_jedec_probe(fsm);
2037 if (!info)
2038 return -ENODEV;
2039 fsm->info = info;
2040
2041 /* Use device size to determine address width */
2042 if (info->sector_size * info->n_sectors > 0x1000000)
2043 info->flags |= FLASH_FLAG_32BIT_ADDR;
2044
2045 /*
2046 * Configure READ/WRITE/ERASE sequences according to platform and
2047 * device flags.
2048 */
2049 if (info->config) {
2050 ret = info->config(fsm);
2051 if (ret)
2052 return ret;
2053 } else {
2054 ret = stfsm_prepare_rwe_seqs_default(fsm);
2055 if (ret)
2056 return ret;
2057 }
2058
2059 fsm->mtd.name = info->name;
2060 fsm->mtd.dev.parent = &pdev->dev;
2061 fsm->mtd.type = MTD_NORFLASH;
2062 fsm->mtd.writesize = 4;
2063 fsm->mtd.writebufsize = fsm->mtd.writesize;
2064 fsm->mtd.flags = MTD_CAP_NORFLASH;
2065 fsm->mtd.size = info->sector_size * info->n_sectors;
2066 fsm->mtd.erasesize = info->sector_size;
2067
2068 fsm->mtd._read = stfsm_mtd_read;
2069 fsm->mtd._write = stfsm_mtd_write;
2070 fsm->mtd._erase = stfsm_mtd_erase;
2071
2072 dev_info(&pdev->dev,
2073 "Found serial flash device: %s\n"
2074 " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
2075 info->name,
2076 (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
2077 fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
2078
2079 return mtd_device_parse_register(&fsm->mtd, NULL, &ppdata, NULL, 0);
2080}
2081
2082static int stfsm_remove(struct platform_device *pdev)
2083{
2084 struct stfsm *fsm = platform_get_drvdata(pdev);
2085
2086 return mtd_device_unregister(&fsm->mtd);
2087}
2088
2089static struct of_device_id stfsm_match[] = {
2090 { .compatible = "st,spi-fsm", },
2091 {},
2092};
2093MODULE_DEVICE_TABLE(of, stfsm_match);
2094
2095static struct platform_driver stfsm_driver = {
2096 .probe = stfsm_probe,
2097 .remove = stfsm_remove,
2098 .driver = {
2099 .name = "st-spi-fsm",
2100 .owner = THIS_MODULE,
2101 .of_match_table = stfsm_match,
2102 },
2103};
2104module_platform_driver(stfsm_driver);
2105
2106MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
2107MODULE_DESCRIPTION("ST SPI FSM driver");
2108MODULE_LICENSE("GPL");