diff options
Diffstat (limited to 'drivers/misc/pti.c')
-rw-r--r-- | drivers/misc/pti.c | 983 |
1 files changed, 983 insertions, 0 deletions
diff --git a/drivers/misc/pti.c b/drivers/misc/pti.c new file mode 100644 index 000000000000..374dfcfccd07 --- /dev/null +++ b/drivers/misc/pti.c | |||
@@ -0,0 +1,983 @@ | |||
1 | /* | ||
2 | * pti.c - PTI driver for cJTAG data extration | ||
3 | * | ||
4 | * Copyright (C) Intel 2010 | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License version 2 as | ||
8 | * published by the Free Software Foundation. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
16 | * | ||
17 | * The PTI (Parallel Trace Interface) driver directs trace data routed from | ||
18 | * various parts in the system out through the Intel Penwell PTI port and | ||
19 | * out of the mobile device for analysis with a debugging tool | ||
20 | * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7, | ||
21 | * compact JTAG, standard. | ||
22 | */ | ||
23 | |||
24 | #include <linux/init.h> | ||
25 | #include <linux/sched.h> | ||
26 | #include <linux/interrupt.h> | ||
27 | #include <linux/console.h> | ||
28 | #include <linux/kernel.h> | ||
29 | #include <linux/module.h> | ||
30 | #include <linux/tty.h> | ||
31 | #include <linux/tty_driver.h> | ||
32 | #include <linux/pci.h> | ||
33 | #include <linux/mutex.h> | ||
34 | #include <linux/miscdevice.h> | ||
35 | #include <linux/pti.h> | ||
36 | |||
37 | #define DRIVERNAME "pti" | ||
38 | #define PCINAME "pciPTI" | ||
39 | #define TTYNAME "ttyPTI" | ||
40 | #define CHARNAME "pti" | ||
41 | #define PTITTY_MINOR_START 0 | ||
42 | #define PTITTY_MINOR_NUM 2 | ||
43 | #define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */ | ||
44 | #define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */ | ||
45 | #define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */ | ||
46 | #define MODEM_BASE_ID 71 /* modem master ID address */ | ||
47 | #define CONTROL_ID 72 /* control master ID address */ | ||
48 | #define CONSOLE_ID 73 /* console master ID address */ | ||
49 | #define OS_BASE_ID 74 /* base OS master ID address */ | ||
50 | #define APP_BASE_ID 80 /* base App master ID address */ | ||
51 | #define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */ | ||
52 | #define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */ | ||
53 | #define APERTURE_14 0x3800000 /* offset to first OS write addr */ | ||
54 | #define APERTURE_LEN 0x400000 /* address length */ | ||
55 | |||
56 | struct pti_tty { | ||
57 | struct pti_masterchannel *mc; | ||
58 | }; | ||
59 | |||
60 | struct pti_dev { | ||
61 | struct tty_port port; | ||
62 | unsigned long pti_addr; | ||
63 | unsigned long aperture_base; | ||
64 | void __iomem *pti_ioaddr; | ||
65 | u8 ia_app[MAX_APP_IDS]; | ||
66 | u8 ia_os[MAX_OS_IDS]; | ||
67 | u8 ia_modem[MAX_MODEM_IDS]; | ||
68 | }; | ||
69 | |||
70 | /* | ||
71 | * This protects access to ia_app, ia_os, and ia_modem, | ||
72 | * which keeps track of channels allocated in | ||
73 | * an aperture write id. | ||
74 | */ | ||
75 | static DEFINE_MUTEX(alloclock); | ||
76 | |||
77 | static struct pci_device_id pci_ids[] __devinitconst = { | ||
78 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)}, | ||
79 | {0} | ||
80 | }; | ||
81 | |||
82 | static struct tty_driver *pti_tty_driver; | ||
83 | static struct pti_dev *drv_data; | ||
84 | |||
85 | static unsigned int pti_console_channel; | ||
86 | static unsigned int pti_control_channel; | ||
87 | |||
88 | /** | ||
89 | * pti_write_to_aperture()- The private write function to PTI HW. | ||
90 | * | ||
91 | * @mc: The 'aperture'. It's part of a write address that holds | ||
92 | * a master and channel ID. | ||
93 | * @buf: Data being written to the HW that will ultimately be seen | ||
94 | * in a debugging tool (Fido, Lauterbach). | ||
95 | * @len: Size of buffer. | ||
96 | * | ||
97 | * Since each aperture is specified by a unique | ||
98 | * master/channel ID, no two processes will be writing | ||
99 | * to the same aperture at the same time so no lock is required. The | ||
100 | * PTI-Output agent will send these out in the order that they arrived, and | ||
101 | * thus, it will intermix these messages. The debug tool can then later | ||
102 | * regroup the appropriate message segments together reconstituting each | ||
103 | * message. | ||
104 | */ | ||
105 | static void pti_write_to_aperture(struct pti_masterchannel *mc, | ||
106 | u8 *buf, | ||
107 | int len) | ||
108 | { | ||
109 | int dwordcnt; | ||
110 | int final; | ||
111 | int i; | ||
112 | u32 ptiword; | ||
113 | u32 __iomem *aperture; | ||
114 | u8 *p = buf; | ||
115 | |||
116 | /* | ||
117 | * calculate the aperture offset from the base using the master and | ||
118 | * channel id's. | ||
119 | */ | ||
120 | aperture = drv_data->pti_ioaddr + (mc->master << 15) | ||
121 | + (mc->channel << 8); | ||
122 | |||
123 | dwordcnt = len >> 2; | ||
124 | final = len - (dwordcnt << 2); /* final = trailing bytes */ | ||
125 | if (final == 0 && dwordcnt != 0) { /* always need a final dword */ | ||
126 | final += 4; | ||
127 | dwordcnt--; | ||
128 | } | ||
129 | |||
130 | for (i = 0; i < dwordcnt; i++) { | ||
131 | ptiword = be32_to_cpu(*(u32 *)p); | ||
132 | p += 4; | ||
133 | iowrite32(ptiword, aperture); | ||
134 | } | ||
135 | |||
136 | aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */ | ||
137 | |||
138 | ptiword = 0; | ||
139 | for (i = 0; i < final; i++) | ||
140 | ptiword |= *p++ << (24-(8*i)); | ||
141 | |||
142 | iowrite32(ptiword, aperture); | ||
143 | return; | ||
144 | } | ||
145 | |||
146 | /** | ||
147 | * pti_control_frame_built_and_sent()- control frame build and send function. | ||
148 | * | ||
149 | * @mc: The master / channel structure on which the function | ||
150 | * built a control frame. | ||
151 | * | ||
152 | * To be able to post process the PTI contents on host side, a control frame | ||
153 | * is added before sending any PTI content. So the host side knows on | ||
154 | * each PTI frame the name of the thread using a dedicated master / channel. | ||
155 | * The thread name is retrieved from the 'current' global variable. | ||
156 | * This function builds this frame and sends it to a master ID CONTROL_ID. | ||
157 | * The overhead is only 32 bytes since the driver only writes to HW | ||
158 | * in 32 byte chunks. | ||
159 | */ | ||
160 | |||
161 | static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc) | ||
162 | { | ||
163 | struct pti_masterchannel mccontrol = {.master = CONTROL_ID, | ||
164 | .channel = 0}; | ||
165 | const char *control_format = "%3d %3d %s"; | ||
166 | u8 control_frame[CONTROL_FRAME_LEN]; | ||
167 | |||
168 | /* | ||
169 | * Since we access the comm member in current's task_struct, | ||
170 | * we only need to be as large as what 'comm' in that | ||
171 | * structure is. | ||
172 | */ | ||
173 | char comm[TASK_COMM_LEN]; | ||
174 | |||
175 | if (!in_interrupt()) | ||
176 | get_task_comm(comm, current); | ||
177 | else | ||
178 | strncpy(comm, "Interrupt", TASK_COMM_LEN); | ||
179 | |||
180 | /* Absolutely ensure our buffer is zero terminated. */ | ||
181 | comm[TASK_COMM_LEN-1] = 0; | ||
182 | |||
183 | mccontrol.channel = pti_control_channel; | ||
184 | pti_control_channel = (pti_control_channel + 1) & 0x7f; | ||
185 | |||
186 | snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master, | ||
187 | mc->channel, comm); | ||
188 | pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame)); | ||
189 | } | ||
190 | |||
191 | /** | ||
192 | * pti_write_full_frame_to_aperture()- high level function to | ||
193 | * write to PTI. | ||
194 | * | ||
195 | * @mc: The 'aperture'. It's part of a write address that holds | ||
196 | * a master and channel ID. | ||
197 | * @buf: Data being written to the HW that will ultimately be seen | ||
198 | * in a debugging tool (Fido, Lauterbach). | ||
199 | * @len: Size of buffer. | ||
200 | * | ||
201 | * All threads sending data (either console, user space application, ...) | ||
202 | * are calling the high level function to write to PTI meaning that it is | ||
203 | * possible to add a control frame before sending the content. | ||
204 | */ | ||
205 | static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc, | ||
206 | const unsigned char *buf, | ||
207 | int len) | ||
208 | { | ||
209 | pti_control_frame_built_and_sent(mc); | ||
210 | pti_write_to_aperture(mc, (u8 *)buf, len); | ||
211 | } | ||
212 | |||
213 | /** | ||
214 | * get_id()- Allocate a master and channel ID. | ||
215 | * | ||
216 | * @id_array: an array of bits representing what channel | ||
217 | * id's are allocated for writing. | ||
218 | * @max_ids: The max amount of available write IDs to use. | ||
219 | * @base_id: The starting SW channel ID, based on the Intel | ||
220 | * PTI arch. | ||
221 | * | ||
222 | * Returns: | ||
223 | * pti_masterchannel struct with master, channel ID address | ||
224 | * 0 for error | ||
225 | * | ||
226 | * Each bit in the arrays ia_app and ia_os correspond to a master and | ||
227 | * channel id. The bit is one if the id is taken and 0 if free. For | ||
228 | * every master there are 128 channel id's. | ||
229 | */ | ||
230 | static struct pti_masterchannel *get_id(u8 *id_array, int max_ids, int base_id) | ||
231 | { | ||
232 | struct pti_masterchannel *mc; | ||
233 | int i, j, mask; | ||
234 | |||
235 | mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL); | ||
236 | if (mc == NULL) | ||
237 | return NULL; | ||
238 | |||
239 | /* look for a byte with a free bit */ | ||
240 | for (i = 0; i < max_ids; i++) | ||
241 | if (id_array[i] != 0xff) | ||
242 | break; | ||
243 | if (i == max_ids) { | ||
244 | kfree(mc); | ||
245 | return NULL; | ||
246 | } | ||
247 | /* find the bit in the 128 possible channel opportunities */ | ||
248 | mask = 0x80; | ||
249 | for (j = 0; j < 8; j++) { | ||
250 | if ((id_array[i] & mask) == 0) | ||
251 | break; | ||
252 | mask >>= 1; | ||
253 | } | ||
254 | |||
255 | /* grab it */ | ||
256 | id_array[i] |= mask; | ||
257 | mc->master = base_id; | ||
258 | mc->channel = ((i & 0xf)<<3) + j; | ||
259 | /* write new master Id / channel Id allocation to channel control */ | ||
260 | pti_control_frame_built_and_sent(mc); | ||
261 | return mc; | ||
262 | } | ||
263 | |||
264 | /* | ||
265 | * The following three functions: | ||
266 | * pti_request_mastercahannel(), mipi_release_masterchannel() | ||
267 | * and pti_writedata() are an API for other kernel drivers to | ||
268 | * access PTI. | ||
269 | */ | ||
270 | |||
271 | /** | ||
272 | * pti_request_masterchannel()- Kernel API function used to allocate | ||
273 | * a master, channel ID address | ||
274 | * to write to PTI HW. | ||
275 | * | ||
276 | * @type: 0- request Application master, channel aperture ID write address. | ||
277 | * 1- request OS master, channel aperture ID write | ||
278 | * address. | ||
279 | * 2- request Modem master, channel aperture ID | ||
280 | * write address. | ||
281 | * Other values, error. | ||
282 | * | ||
283 | * Returns: | ||
284 | * pti_masterchannel struct | ||
285 | * 0 for error | ||
286 | */ | ||
287 | struct pti_masterchannel *pti_request_masterchannel(u8 type) | ||
288 | { | ||
289 | struct pti_masterchannel *mc; | ||
290 | |||
291 | mutex_lock(&alloclock); | ||
292 | |||
293 | switch (type) { | ||
294 | |||
295 | case 0: | ||
296 | mc = get_id(drv_data->ia_app, MAX_APP_IDS, APP_BASE_ID); | ||
297 | break; | ||
298 | |||
299 | case 1: | ||
300 | mc = get_id(drv_data->ia_os, MAX_OS_IDS, OS_BASE_ID); | ||
301 | break; | ||
302 | |||
303 | case 2: | ||
304 | mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS, MODEM_BASE_ID); | ||
305 | break; | ||
306 | default: | ||
307 | mc = NULL; | ||
308 | } | ||
309 | |||
310 | mutex_unlock(&alloclock); | ||
311 | return mc; | ||
312 | } | ||
313 | EXPORT_SYMBOL_GPL(pti_request_masterchannel); | ||
314 | |||
315 | /** | ||
316 | * pti_release_masterchannel()- Kernel API function used to release | ||
317 | * a master, channel ID address | ||
318 | * used to write to PTI HW. | ||
319 | * | ||
320 | * @mc: master, channel apeture ID address to be released. This | ||
321 | * will de-allocate the structure via kfree(). | ||
322 | */ | ||
323 | void pti_release_masterchannel(struct pti_masterchannel *mc) | ||
324 | { | ||
325 | u8 master, channel, i; | ||
326 | |||
327 | mutex_lock(&alloclock); | ||
328 | |||
329 | if (mc) { | ||
330 | master = mc->master; | ||
331 | channel = mc->channel; | ||
332 | |||
333 | if (master == APP_BASE_ID) { | ||
334 | i = channel >> 3; | ||
335 | drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7)); | ||
336 | } else if (master == OS_BASE_ID) { | ||
337 | i = channel >> 3; | ||
338 | drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7)); | ||
339 | } else { | ||
340 | i = channel >> 3; | ||
341 | drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7)); | ||
342 | } | ||
343 | |||
344 | kfree(mc); | ||
345 | } | ||
346 | |||
347 | mutex_unlock(&alloclock); | ||
348 | } | ||
349 | EXPORT_SYMBOL_GPL(pti_release_masterchannel); | ||
350 | |||
351 | /** | ||
352 | * pti_writedata()- Kernel API function used to write trace | ||
353 | * debugging data to PTI HW. | ||
354 | * | ||
355 | * @mc: Master, channel aperture ID address to write to. | ||
356 | * Null value will return with no write occurring. | ||
357 | * @buf: Trace debuging data to write to the PTI HW. | ||
358 | * Null value will return with no write occurring. | ||
359 | * @count: Size of buf. Value of 0 or a negative number will | ||
360 | * return with no write occuring. | ||
361 | */ | ||
362 | void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count) | ||
363 | { | ||
364 | /* | ||
365 | * since this function is exported, this is treated like an | ||
366 | * API function, thus, all parameters should | ||
367 | * be checked for validity. | ||
368 | */ | ||
369 | if ((mc != NULL) && (buf != NULL) && (count > 0)) | ||
370 | pti_write_to_aperture(mc, buf, count); | ||
371 | return; | ||
372 | } | ||
373 | EXPORT_SYMBOL_GPL(pti_writedata); | ||
374 | |||
375 | /** | ||
376 | * pti_pci_remove()- Driver exit method to remove PTI from | ||
377 | * PCI bus. | ||
378 | * @pdev: variable containing pci info of PTI. | ||
379 | */ | ||
380 | static void __devexit pti_pci_remove(struct pci_dev *pdev) | ||
381 | { | ||
382 | struct pti_dev *drv_data; | ||
383 | |||
384 | drv_data = pci_get_drvdata(pdev); | ||
385 | if (drv_data != NULL) { | ||
386 | pci_iounmap(pdev, drv_data->pti_ioaddr); | ||
387 | pci_set_drvdata(pdev, NULL); | ||
388 | kfree(drv_data); | ||
389 | pci_release_region(pdev, 1); | ||
390 | pci_disable_device(pdev); | ||
391 | } | ||
392 | } | ||
393 | |||
394 | /* | ||
395 | * for the tty_driver_*() basic function descriptions, see tty_driver.h. | ||
396 | * Specific header comments made for PTI-related specifics. | ||
397 | */ | ||
398 | |||
399 | /** | ||
400 | * pti_tty_driver_open()- Open an Application master, channel aperture | ||
401 | * ID to the PTI device via tty device. | ||
402 | * | ||
403 | * @tty: tty interface. | ||
404 | * @filp: filp interface pased to tty_port_open() call. | ||
405 | * | ||
406 | * Returns: | ||
407 | * int, 0 for success | ||
408 | * otherwise, fail value | ||
409 | * | ||
410 | * The main purpose of using the tty device interface is for | ||
411 | * each tty port to have a unique PTI write aperture. In an | ||
412 | * example use case, ttyPTI0 gets syslogd and an APP aperture | ||
413 | * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route | ||
414 | * modem messages into PTI. Modem trace data does not have to | ||
415 | * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct | ||
416 | * master IDs. These messages go through the PTI HW and out of | ||
417 | * the handheld platform and to the Fido/Lauterbach device. | ||
418 | */ | ||
419 | static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp) | ||
420 | { | ||
421 | /* | ||
422 | * we actually want to allocate a new channel per open, per | ||
423 | * system arch. HW gives more than plenty channels for a single | ||
424 | * system task to have its own channel to write trace data. This | ||
425 | * also removes a locking requirement for the actual write | ||
426 | * procedure. | ||
427 | */ | ||
428 | return tty_port_open(&drv_data->port, tty, filp); | ||
429 | } | ||
430 | |||
431 | /** | ||
432 | * pti_tty_driver_close()- close tty device and release Application | ||
433 | * master, channel aperture ID to the PTI device via tty device. | ||
434 | * | ||
435 | * @tty: tty interface. | ||
436 | * @filp: filp interface pased to tty_port_close() call. | ||
437 | * | ||
438 | * The main purpose of using the tty device interface is to route | ||
439 | * syslog daemon messages to the PTI HW and out of the handheld platform | ||
440 | * and to the Fido/Lauterbach device. | ||
441 | */ | ||
442 | static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp) | ||
443 | { | ||
444 | tty_port_close(&drv_data->port, tty, filp); | ||
445 | } | ||
446 | |||
447 | /** | ||
448 | * pti_tty_intstall()- Used to set up specific master-channels | ||
449 | * to tty ports for organizational purposes when | ||
450 | * tracing viewed from debuging tools. | ||
451 | * | ||
452 | * @driver: tty driver information. | ||
453 | * @tty: tty struct containing pti information. | ||
454 | * | ||
455 | * Returns: | ||
456 | * 0 for success | ||
457 | * otherwise, error | ||
458 | */ | ||
459 | static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty) | ||
460 | { | ||
461 | int idx = tty->index; | ||
462 | struct pti_tty *pti_tty_data; | ||
463 | int ret = tty_init_termios(tty); | ||
464 | |||
465 | if (ret == 0) { | ||
466 | tty_driver_kref_get(driver); | ||
467 | tty->count++; | ||
468 | driver->ttys[idx] = tty; | ||
469 | |||
470 | pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL); | ||
471 | if (pti_tty_data == NULL) | ||
472 | return -ENOMEM; | ||
473 | |||
474 | if (idx == PTITTY_MINOR_START) | ||
475 | pti_tty_data->mc = pti_request_masterchannel(0); | ||
476 | else | ||
477 | pti_tty_data->mc = pti_request_masterchannel(2); | ||
478 | |||
479 | if (pti_tty_data->mc == NULL) { | ||
480 | kfree(pti_tty_data); | ||
481 | return -ENXIO; | ||
482 | } | ||
483 | tty->driver_data = pti_tty_data; | ||
484 | } | ||
485 | |||
486 | return ret; | ||
487 | } | ||
488 | |||
489 | /** | ||
490 | * pti_tty_cleanup()- Used to de-allocate master-channel resources | ||
491 | * tied to tty's of this driver. | ||
492 | * | ||
493 | * @tty: tty struct containing pti information. | ||
494 | */ | ||
495 | static void pti_tty_cleanup(struct tty_struct *tty) | ||
496 | { | ||
497 | struct pti_tty *pti_tty_data = tty->driver_data; | ||
498 | if (pti_tty_data == NULL) | ||
499 | return; | ||
500 | pti_release_masterchannel(pti_tty_data->mc); | ||
501 | kfree(pti_tty_data); | ||
502 | tty->driver_data = NULL; | ||
503 | } | ||
504 | |||
505 | /** | ||
506 | * pti_tty_driver_write()- Write trace debugging data through the char | ||
507 | * interface to the PTI HW. Part of the misc device implementation. | ||
508 | * | ||
509 | * @filp: Contains private data which is used to obtain | ||
510 | * master, channel write ID. | ||
511 | * @data: trace data to be written. | ||
512 | * @len: # of byte to write. | ||
513 | * | ||
514 | * Returns: | ||
515 | * int, # of bytes written | ||
516 | * otherwise, error | ||
517 | */ | ||
518 | static int pti_tty_driver_write(struct tty_struct *tty, | ||
519 | const unsigned char *buf, int len) | ||
520 | { | ||
521 | struct pti_tty *pti_tty_data = tty->driver_data; | ||
522 | if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) { | ||
523 | pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len); | ||
524 | return len; | ||
525 | } | ||
526 | /* | ||
527 | * we can't write to the pti hardware if the private driver_data | ||
528 | * and the mc address is not there. | ||
529 | */ | ||
530 | else | ||
531 | return -EFAULT; | ||
532 | } | ||
533 | |||
534 | /** | ||
535 | * pti_tty_write_room()- Always returns 2048. | ||
536 | * | ||
537 | * @tty: contains tty info of the pti driver. | ||
538 | */ | ||
539 | static int pti_tty_write_room(struct tty_struct *tty) | ||
540 | { | ||
541 | return 2048; | ||
542 | } | ||
543 | |||
544 | /** | ||
545 | * pti_char_open()- Open an Application master, channel aperture | ||
546 | * ID to the PTI device. Part of the misc device implementation. | ||
547 | * | ||
548 | * @inode: not used. | ||
549 | * @filp: Output- will have a masterchannel struct set containing | ||
550 | * the allocated application PTI aperture write address. | ||
551 | * | ||
552 | * Returns: | ||
553 | * int, 0 for success | ||
554 | * otherwise, a fail value | ||
555 | */ | ||
556 | static int pti_char_open(struct inode *inode, struct file *filp) | ||
557 | { | ||
558 | struct pti_masterchannel *mc; | ||
559 | |||
560 | /* | ||
561 | * We really do want to fail immediately if | ||
562 | * pti_request_masterchannel() fails, | ||
563 | * before assigning the value to filp->private_data. | ||
564 | * Slightly easier to debug if this driver needs debugging. | ||
565 | */ | ||
566 | mc = pti_request_masterchannel(0); | ||
567 | if (mc == NULL) | ||
568 | return -ENOMEM; | ||
569 | filp->private_data = mc; | ||
570 | return 0; | ||
571 | } | ||
572 | |||
573 | /** | ||
574 | * pti_char_release()- Close a char channel to the PTI device. Part | ||
575 | * of the misc device implementation. | ||
576 | * | ||
577 | * @inode: Not used in this implementaiton. | ||
578 | * @filp: Contains private_data that contains the master, channel | ||
579 | * ID to be released by the PTI device. | ||
580 | * | ||
581 | * Returns: | ||
582 | * always 0 | ||
583 | */ | ||
584 | static int pti_char_release(struct inode *inode, struct file *filp) | ||
585 | { | ||
586 | pti_release_masterchannel(filp->private_data); | ||
587 | filp->private_data = NULL; | ||
588 | return 0; | ||
589 | } | ||
590 | |||
591 | /** | ||
592 | * pti_char_write()- Write trace debugging data through the char | ||
593 | * interface to the PTI HW. Part of the misc device implementation. | ||
594 | * | ||
595 | * @filp: Contains private data which is used to obtain | ||
596 | * master, channel write ID. | ||
597 | * @data: trace data to be written. | ||
598 | * @len: # of byte to write. | ||
599 | * @ppose: Not used in this function implementation. | ||
600 | * | ||
601 | * Returns: | ||
602 | * int, # of bytes written | ||
603 | * otherwise, error value | ||
604 | * | ||
605 | * Notes: From side discussions with Alan Cox and experimenting | ||
606 | * with PTI debug HW like Nokia's Fido box and Lauterbach | ||
607 | * devices, 8192 byte write buffer used by USER_COPY_SIZE was | ||
608 | * deemed an appropriate size for this type of usage with | ||
609 | * debugging HW. | ||
610 | */ | ||
611 | static ssize_t pti_char_write(struct file *filp, const char __user *data, | ||
612 | size_t len, loff_t *ppose) | ||
613 | { | ||
614 | struct pti_masterchannel *mc; | ||
615 | void *kbuf; | ||
616 | const char __user *tmp; | ||
617 | size_t size = USER_COPY_SIZE; | ||
618 | size_t n = 0; | ||
619 | |||
620 | tmp = data; | ||
621 | mc = filp->private_data; | ||
622 | |||
623 | kbuf = kmalloc(size, GFP_KERNEL); | ||
624 | if (kbuf == NULL) { | ||
625 | pr_err("%s(%d): buf allocation failed\n", | ||
626 | __func__, __LINE__); | ||
627 | return -ENOMEM; | ||
628 | } | ||
629 | |||
630 | do { | ||
631 | if (len - n > USER_COPY_SIZE) | ||
632 | size = USER_COPY_SIZE; | ||
633 | else | ||
634 | size = len - n; | ||
635 | |||
636 | if (copy_from_user(kbuf, tmp, size)) { | ||
637 | kfree(kbuf); | ||
638 | return n ? n : -EFAULT; | ||
639 | } | ||
640 | |||
641 | pti_write_to_aperture(mc, kbuf, size); | ||
642 | n += size; | ||
643 | tmp += size; | ||
644 | |||
645 | } while (len > n); | ||
646 | |||
647 | kfree(kbuf); | ||
648 | return len; | ||
649 | } | ||
650 | |||
651 | static const struct tty_operations pti_tty_driver_ops = { | ||
652 | .open = pti_tty_driver_open, | ||
653 | .close = pti_tty_driver_close, | ||
654 | .write = pti_tty_driver_write, | ||
655 | .write_room = pti_tty_write_room, | ||
656 | .install = pti_tty_install, | ||
657 | .cleanup = pti_tty_cleanup | ||
658 | }; | ||
659 | |||
660 | static const struct file_operations pti_char_driver_ops = { | ||
661 | .owner = THIS_MODULE, | ||
662 | .write = pti_char_write, | ||
663 | .open = pti_char_open, | ||
664 | .release = pti_char_release, | ||
665 | }; | ||
666 | |||
667 | static struct miscdevice pti_char_driver = { | ||
668 | .minor = MISC_DYNAMIC_MINOR, | ||
669 | .name = CHARNAME, | ||
670 | .fops = &pti_char_driver_ops | ||
671 | }; | ||
672 | |||
673 | /** | ||
674 | * pti_console_write()- Write to the console that has been acquired. | ||
675 | * | ||
676 | * @c: Not used in this implementaiton. | ||
677 | * @buf: Data to be written. | ||
678 | * @len: Length of buf. | ||
679 | */ | ||
680 | static void pti_console_write(struct console *c, const char *buf, unsigned len) | ||
681 | { | ||
682 | static struct pti_masterchannel mc = {.master = CONSOLE_ID, | ||
683 | .channel = 0}; | ||
684 | |||
685 | mc.channel = pti_console_channel; | ||
686 | pti_console_channel = (pti_console_channel + 1) & 0x7f; | ||
687 | |||
688 | pti_write_full_frame_to_aperture(&mc, buf, len); | ||
689 | } | ||
690 | |||
691 | /** | ||
692 | * pti_console_device()- Return the driver tty structure and set the | ||
693 | * associated index implementation. | ||
694 | * | ||
695 | * @c: Console device of the driver. | ||
696 | * @index: index associated with c. | ||
697 | * | ||
698 | * Returns: | ||
699 | * always value of pti_tty_driver structure when this function | ||
700 | * is called. | ||
701 | */ | ||
702 | static struct tty_driver *pti_console_device(struct console *c, int *index) | ||
703 | { | ||
704 | *index = c->index; | ||
705 | return pti_tty_driver; | ||
706 | } | ||
707 | |||
708 | /** | ||
709 | * pti_console_setup()- Initialize console variables used by the driver. | ||
710 | * | ||
711 | * @c: Not used. | ||
712 | * @opts: Not used. | ||
713 | * | ||
714 | * Returns: | ||
715 | * always 0. | ||
716 | */ | ||
717 | static int pti_console_setup(struct console *c, char *opts) | ||
718 | { | ||
719 | pti_console_channel = 0; | ||
720 | pti_control_channel = 0; | ||
721 | return 0; | ||
722 | } | ||
723 | |||
724 | /* | ||
725 | * pti_console struct, used to capture OS printk()'s and shift | ||
726 | * out to the PTI device for debugging. This cannot be | ||
727 | * enabled upon boot because of the possibility of eating | ||
728 | * any serial console printk's (race condition discovered). | ||
729 | * The console should be enabled upon when the tty port is | ||
730 | * used for the first time. Since the primary purpose for | ||
731 | * the tty port is to hook up syslog to it, the tty port | ||
732 | * will be open for a really long time. | ||
733 | */ | ||
734 | static struct console pti_console = { | ||
735 | .name = TTYNAME, | ||
736 | .write = pti_console_write, | ||
737 | .device = pti_console_device, | ||
738 | .setup = pti_console_setup, | ||
739 | .flags = CON_PRINTBUFFER, | ||
740 | .index = 0, | ||
741 | }; | ||
742 | |||
743 | /** | ||
744 | * pti_port_activate()- Used to start/initialize any items upon | ||
745 | * first opening of tty_port(). | ||
746 | * | ||
747 | * @port- The tty port number of the PTI device. | ||
748 | * @tty- The tty struct associated with this device. | ||
749 | * | ||
750 | * Returns: | ||
751 | * always returns 0 | ||
752 | * | ||
753 | * Notes: The primary purpose of the PTI tty port 0 is to hook | ||
754 | * the syslog daemon to it; thus this port will be open for a | ||
755 | * very long time. | ||
756 | */ | ||
757 | static int pti_port_activate(struct tty_port *port, struct tty_struct *tty) | ||
758 | { | ||
759 | if (port->tty->index == PTITTY_MINOR_START) | ||
760 | console_start(&pti_console); | ||
761 | return 0; | ||
762 | } | ||
763 | |||
764 | /** | ||
765 | * pti_port_shutdown()- Used to stop/shutdown any items upon the | ||
766 | * last tty port close. | ||
767 | * | ||
768 | * @port- The tty port number of the PTI device. | ||
769 | * | ||
770 | * Notes: The primary purpose of the PTI tty port 0 is to hook | ||
771 | * the syslog daemon to it; thus this port will be open for a | ||
772 | * very long time. | ||
773 | */ | ||
774 | static void pti_port_shutdown(struct tty_port *port) | ||
775 | { | ||
776 | if (port->tty->index == PTITTY_MINOR_START) | ||
777 | console_stop(&pti_console); | ||
778 | } | ||
779 | |||
780 | static const struct tty_port_operations tty_port_ops = { | ||
781 | .activate = pti_port_activate, | ||
782 | .shutdown = pti_port_shutdown, | ||
783 | }; | ||
784 | |||
785 | /* | ||
786 | * Note the _probe() call sets everything up and ties the char and tty | ||
787 | * to successfully detecting the PTI device on the pci bus. | ||
788 | */ | ||
789 | |||
790 | /** | ||
791 | * pti_pci_probe()- Used to detect pti on the pci bus and set | ||
792 | * things up in the driver. | ||
793 | * | ||
794 | * @pdev- pci_dev struct values for pti. | ||
795 | * @ent- pci_device_id struct for pti driver. | ||
796 | * | ||
797 | * Returns: | ||
798 | * 0 for success | ||
799 | * otherwise, error | ||
800 | */ | ||
801 | static int __devinit pti_pci_probe(struct pci_dev *pdev, | ||
802 | const struct pci_device_id *ent) | ||
803 | { | ||
804 | int retval = -EINVAL; | ||
805 | int pci_bar = 1; | ||
806 | |||
807 | dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__, | ||
808 | __func__, __LINE__, pdev->vendor, pdev->device); | ||
809 | |||
810 | retval = misc_register(&pti_char_driver); | ||
811 | if (retval) { | ||
812 | pr_err("%s(%d): CHAR registration failed of pti driver\n", | ||
813 | __func__, __LINE__); | ||
814 | pr_err("%s(%d): Error value returned: %d\n", | ||
815 | __func__, __LINE__, retval); | ||
816 | return retval; | ||
817 | } | ||
818 | |||
819 | retval = pci_enable_device(pdev); | ||
820 | if (retval != 0) { | ||
821 | dev_err(&pdev->dev, | ||
822 | "%s: pci_enable_device() returned error %d\n", | ||
823 | __func__, retval); | ||
824 | return retval; | ||
825 | } | ||
826 | |||
827 | drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL); | ||
828 | |||
829 | if (drv_data == NULL) { | ||
830 | retval = -ENOMEM; | ||
831 | dev_err(&pdev->dev, | ||
832 | "%s(%d): kmalloc() returned NULL memory.\n", | ||
833 | __func__, __LINE__); | ||
834 | return retval; | ||
835 | } | ||
836 | drv_data->pti_addr = pci_resource_start(pdev, pci_bar); | ||
837 | |||
838 | retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev)); | ||
839 | if (retval != 0) { | ||
840 | dev_err(&pdev->dev, | ||
841 | "%s(%d): pci_request_region() returned error %d\n", | ||
842 | __func__, __LINE__, retval); | ||
843 | kfree(drv_data); | ||
844 | return retval; | ||
845 | } | ||
846 | drv_data->aperture_base = drv_data->pti_addr+APERTURE_14; | ||
847 | drv_data->pti_ioaddr = | ||
848 | ioremap_nocache((u32)drv_data->aperture_base, | ||
849 | APERTURE_LEN); | ||
850 | if (!drv_data->pti_ioaddr) { | ||
851 | pci_release_region(pdev, pci_bar); | ||
852 | retval = -ENOMEM; | ||
853 | kfree(drv_data); | ||
854 | return retval; | ||
855 | } | ||
856 | |||
857 | pci_set_drvdata(pdev, drv_data); | ||
858 | |||
859 | tty_port_init(&drv_data->port); | ||
860 | drv_data->port.ops = &tty_port_ops; | ||
861 | |||
862 | tty_register_device(pti_tty_driver, 0, &pdev->dev); | ||
863 | tty_register_device(pti_tty_driver, 1, &pdev->dev); | ||
864 | |||
865 | register_console(&pti_console); | ||
866 | |||
867 | return retval; | ||
868 | } | ||
869 | |||
870 | static struct pci_driver pti_pci_driver = { | ||
871 | .name = PCINAME, | ||
872 | .id_table = pci_ids, | ||
873 | .probe = pti_pci_probe, | ||
874 | .remove = pti_pci_remove, | ||
875 | }; | ||
876 | |||
877 | /** | ||
878 | * | ||
879 | * pti_init()- Overall entry/init call to the pti driver. | ||
880 | * It starts the registration process with the kernel. | ||
881 | * | ||
882 | * Returns: | ||
883 | * int __init, 0 for success | ||
884 | * otherwise value is an error | ||
885 | * | ||
886 | */ | ||
887 | static int __init pti_init(void) | ||
888 | { | ||
889 | int retval = -EINVAL; | ||
890 | |||
891 | /* First register module as tty device */ | ||
892 | |||
893 | pti_tty_driver = alloc_tty_driver(1); | ||
894 | if (pti_tty_driver == NULL) { | ||
895 | pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n", | ||
896 | __func__, __LINE__); | ||
897 | return -ENOMEM; | ||
898 | } | ||
899 | |||
900 | pti_tty_driver->owner = THIS_MODULE; | ||
901 | pti_tty_driver->magic = TTY_DRIVER_MAGIC; | ||
902 | pti_tty_driver->driver_name = DRIVERNAME; | ||
903 | pti_tty_driver->name = TTYNAME; | ||
904 | pti_tty_driver->major = 0; | ||
905 | pti_tty_driver->minor_start = PTITTY_MINOR_START; | ||
906 | pti_tty_driver->minor_num = PTITTY_MINOR_NUM; | ||
907 | pti_tty_driver->num = PTITTY_MINOR_NUM; | ||
908 | pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM; | ||
909 | pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS; | ||
910 | pti_tty_driver->flags = TTY_DRIVER_REAL_RAW | | ||
911 | TTY_DRIVER_DYNAMIC_DEV; | ||
912 | pti_tty_driver->init_termios = tty_std_termios; | ||
913 | |||
914 | tty_set_operations(pti_tty_driver, &pti_tty_driver_ops); | ||
915 | |||
916 | retval = tty_register_driver(pti_tty_driver); | ||
917 | if (retval) { | ||
918 | pr_err("%s(%d): TTY registration failed of pti driver\n", | ||
919 | __func__, __LINE__); | ||
920 | pr_err("%s(%d): Error value returned: %d\n", | ||
921 | __func__, __LINE__, retval); | ||
922 | |||
923 | pti_tty_driver = NULL; | ||
924 | return retval; | ||
925 | } | ||
926 | |||
927 | retval = pci_register_driver(&pti_pci_driver); | ||
928 | |||
929 | if (retval) { | ||
930 | pr_err("%s(%d): PCI registration failed of pti driver\n", | ||
931 | __func__, __LINE__); | ||
932 | pr_err("%s(%d): Error value returned: %d\n", | ||
933 | __func__, __LINE__, retval); | ||
934 | |||
935 | tty_unregister_driver(pti_tty_driver); | ||
936 | pr_err("%s(%d): Unregistering TTY part of pti driver\n", | ||
937 | __func__, __LINE__); | ||
938 | pti_tty_driver = NULL; | ||
939 | return retval; | ||
940 | } | ||
941 | |||
942 | return retval; | ||
943 | } | ||
944 | |||
945 | /** | ||
946 | * pti_exit()- Unregisters this module as a tty and pci driver. | ||
947 | */ | ||
948 | static void __exit pti_exit(void) | ||
949 | { | ||
950 | int retval; | ||
951 | |||
952 | tty_unregister_device(pti_tty_driver, 0); | ||
953 | tty_unregister_device(pti_tty_driver, 1); | ||
954 | |||
955 | retval = tty_unregister_driver(pti_tty_driver); | ||
956 | if (retval) { | ||
957 | pr_err("%s(%d): TTY unregistration failed of pti driver\n", | ||
958 | __func__, __LINE__); | ||
959 | pr_err("%s(%d): Error value returned: %d\n", | ||
960 | __func__, __LINE__, retval); | ||
961 | } | ||
962 | |||
963 | pci_unregister_driver(&pti_pci_driver); | ||
964 | |||
965 | retval = misc_deregister(&pti_char_driver); | ||
966 | if (retval) { | ||
967 | pr_err("%s(%d): CHAR unregistration failed of pti driver\n", | ||
968 | __func__, __LINE__); | ||
969 | pr_err("%s(%d): Error value returned: %d\n", | ||
970 | __func__, __LINE__, retval); | ||
971 | } | ||
972 | |||
973 | unregister_console(&pti_console); | ||
974 | return; | ||
975 | } | ||
976 | |||
977 | module_init(pti_init); | ||
978 | module_exit(pti_exit); | ||
979 | |||
980 | MODULE_LICENSE("GPL"); | ||
981 | MODULE_AUTHOR("Ken Mills, Jay Freyensee"); | ||
982 | MODULE_DESCRIPTION("PTI Driver"); | ||
983 | |||