aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/media/video/cx23885/cx23888-ir.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/media/video/cx23885/cx23888-ir.c')
-rw-r--r--drivers/media/video/cx23885/cx23888-ir.c1239
1 files changed, 1239 insertions, 0 deletions
diff --git a/drivers/media/video/cx23885/cx23888-ir.c b/drivers/media/video/cx23885/cx23888-ir.c
new file mode 100644
index 000000000000..3ccc8afeccf3
--- /dev/null
+++ b/drivers/media/video/cx23885/cx23888-ir.c
@@ -0,0 +1,1239 @@
1/*
2 * Driver for the Conexant CX23885/7/8 PCIe bridge
3 *
4 * CX23888 Integrated Consumer Infrared Controller
5 *
6 * Copyright (C) 2009 Andy Walls <awalls@radix.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 */
23
24#include <linux/kfifo.h>
25
26#include <media/v4l2-device.h>
27#include <media/v4l2-chip-ident.h>
28
29#include "cx23885.h"
30
31static unsigned int ir_888_debug;
32module_param(ir_888_debug, int, 0644);
33MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
34
35#define CX23888_IR_REG_BASE 0x170000
36/*
37 * These CX23888 register offsets have a straightforward one to one mapping
38 * to the CX23885 register offsets of 0x200 through 0x218
39 */
40#define CX23888_IR_CNTRL_REG 0x170000
41#define CNTRL_WIN_3_3 0x00000000
42#define CNTRL_WIN_4_3 0x00000001
43#define CNTRL_WIN_3_4 0x00000002
44#define CNTRL_WIN_4_4 0x00000003
45#define CNTRL_WIN 0x00000003
46#define CNTRL_EDG_NONE 0x00000000
47#define CNTRL_EDG_FALL 0x00000004
48#define CNTRL_EDG_RISE 0x00000008
49#define CNTRL_EDG_BOTH 0x0000000C
50#define CNTRL_EDG 0x0000000C
51#define CNTRL_DMD 0x00000010
52#define CNTRL_MOD 0x00000020
53#define CNTRL_RFE 0x00000040
54#define CNTRL_TFE 0x00000080
55#define CNTRL_RXE 0x00000100
56#define CNTRL_TXE 0x00000200
57#define CNTRL_RIC 0x00000400
58#define CNTRL_TIC 0x00000800
59#define CNTRL_CPL 0x00001000
60#define CNTRL_LBM 0x00002000
61#define CNTRL_R 0x00004000
62
63#define CX23888_IR_TXCLK_REG 0x170004
64#define TXCLK_TCD 0x0000FFFF
65
66#define CX23888_IR_RXCLK_REG 0x170008
67#define RXCLK_RCD 0x0000FFFF
68
69#define CX23888_IR_CDUTY_REG 0x17000C
70#define CDUTY_CDC 0x0000000F
71
72#define CX23888_IR_STATS_REG 0x170010
73#define STATS_RTO 0x00000001
74#define STATS_ROR 0x00000002
75#define STATS_RBY 0x00000004
76#define STATS_TBY 0x00000008
77#define STATS_RSR 0x00000010
78#define STATS_TSR 0x00000020
79
80#define CX23888_IR_IRQEN_REG 0x170014
81#define IRQEN_RTE 0x00000001
82#define IRQEN_ROE 0x00000002
83#define IRQEN_RSE 0x00000010
84#define IRQEN_TSE 0x00000020
85
86#define CX23888_IR_FILTR_REG 0x170018
87#define FILTR_LPF 0x0000FFFF
88
89/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
90#define CX23888_IR_FIFO_REG 0x170040
91#define FIFO_RXTX 0x0000FFFF
92#define FIFO_RXTX_LVL 0x00010000
93#define FIFO_RXTX_RTO 0x0001FFFF
94#define FIFO_RX_NDV 0x00020000
95#define FIFO_RX_DEPTH 8
96#define FIFO_TX_DEPTH 8
97
98/* CX23888 unique registers */
99#define CX23888_IR_SEEDP_REG 0x17001C
100#define CX23888_IR_TIMOL_REG 0x170020
101#define CX23888_IR_WAKE0_REG 0x170024
102#define CX23888_IR_WAKE1_REG 0x170028
103#define CX23888_IR_WAKE2_REG 0x17002C
104#define CX23888_IR_MASK0_REG 0x170030
105#define CX23888_IR_MASK1_REG 0x170034
106#define CX23888_IR_MAKS2_REG 0x170038
107#define CX23888_IR_DPIPG_REG 0x17003C
108#define CX23888_IR_LEARN_REG 0x170044
109
110#define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
111#define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
112
113#define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32))
114#define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32))
115
116struct cx23888_ir_state {
117 struct v4l2_subdev sd;
118 struct cx23885_dev *dev;
119 u32 id;
120 u32 rev;
121
122 struct v4l2_subdev_ir_parameters rx_params;
123 struct mutex rx_params_lock;
124 atomic_t rxclk_divider;
125 atomic_t rx_invert;
126
127 struct kfifo *rx_kfifo;
128 spinlock_t rx_kfifo_lock;
129
130 struct v4l2_subdev_ir_parameters tx_params;
131 struct mutex tx_params_lock;
132 atomic_t txclk_divider;
133
134 struct kfifo *tx_kfifo;
135 spinlock_t tx_kfifo_lock;
136};
137
138static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
139{
140 return v4l2_get_subdevdata(sd);
141}
142
143/*
144 * IR register block read and write functions
145 */
146static
147inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
148{
149 cx_write(addr, value);
150 return 0;
151}
152
153static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
154{
155 return cx_read(addr);
156}
157
158static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
159 u32 and_mask, u32 or_value)
160{
161 cx_andor(addr, ~and_mask, or_value);
162 return 0;
163}
164
165/*
166 * Rx and Tx Clock Divider register computations
167 *
168 * Note the largest clock divider value of 0xffff corresponds to:
169 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
170 * which fits in 21 bits, so we'll use unsigned int for time arguments.
171 */
172static inline u16 count_to_clock_divider(unsigned int d)
173{
174 if (d > RXCLK_RCD + 1)
175 d = RXCLK_RCD;
176 else if (d < 2)
177 d = 1;
178 else
179 d--;
180 return (u16) d;
181}
182
183static inline u16 ns_to_clock_divider(unsigned int ns)
184{
185 return count_to_clock_divider(
186 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
187}
188
189static inline unsigned int clock_divider_to_ns(unsigned int divider)
190{
191 /* Period of the Rx or Tx clock in ns */
192 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
193 CX23888_IR_REFCLK_FREQ / 1000000);
194}
195
196static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
197{
198 return count_to_clock_divider(
199 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
200}
201
202static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
203{
204 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
205}
206
207static inline u16 freq_to_clock_divider(unsigned int freq,
208 unsigned int rollovers)
209{
210 return count_to_clock_divider(
211 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
212}
213
214static inline unsigned int clock_divider_to_freq(unsigned int divider,
215 unsigned int rollovers)
216{
217 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
218 (divider + 1) * rollovers);
219}
220
221/*
222 * Low Pass Filter register calculations
223 *
224 * Note the largest count value of 0xffff corresponds to:
225 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
226 * which fits in 21 bits, so we'll use unsigned int for time arguments.
227 */
228static inline u16 count_to_lpf_count(unsigned int d)
229{
230 if (d > FILTR_LPF)
231 d = FILTR_LPF;
232 else if (d < 4)
233 d = 0;
234 return (u16) d;
235}
236
237static inline u16 ns_to_lpf_count(unsigned int ns)
238{
239 return count_to_lpf_count(
240 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
241}
242
243static inline unsigned int lpf_count_to_ns(unsigned int count)
244{
245 /* Duration of the Low Pass Filter rejection window in ns */
246 return DIV_ROUND_CLOSEST(count * 1000,
247 CX23888_IR_REFCLK_FREQ / 1000000);
248}
249
250static inline unsigned int lpf_count_to_us(unsigned int count)
251{
252 /* Duration of the Low Pass Filter rejection window in us */
253 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
254}
255
256/*
257 * FIFO register pulse width count compuations
258 */
259static u32 clock_divider_to_resolution(u16 divider)
260{
261 /*
262 * Resolution is the duration of 1 tick of the readable portion of
263 * of the pulse width counter as read from the FIFO. The two lsb's are
264 * not readable, hence the << 2. This function returns ns.
265 */
266 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
267 CX23888_IR_REFCLK_FREQ / 1000000);
268}
269
270static u64 pulse_width_count_to_ns(u16 count, u16 divider)
271{
272 u64 n;
273 u32 rem;
274
275 /*
276 * The 2 lsb's of the pulse width timer count are not readable, hence
277 * the (count << 2) | 0x3
278 */
279 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
280 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
281 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
282 n++;
283 return n;
284}
285
286static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
287{
288 u64 n;
289 u32 rem;
290
291 /*
292 * The 2 lsb's of the pulse width timer count are not readable, hence
293 * the (count << 2) | 0x3
294 */
295 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
296 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
297 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
298 n++;
299 return (unsigned int) n;
300}
301
302/*
303 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
304 *
305 * The total pulse clock count is an 18 bit pulse width timer count as the most
306 * significant part and (up to) 16 bit clock divider count as a modulus.
307 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
308 * width timer count's least significant bit.
309 */
310static u64 ns_to_pulse_clocks(u32 ns)
311{
312 u64 clocks;
313 u32 rem;
314 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
315 rem = do_div(clocks, 1000); /* /1000 = cycles */
316 if (rem >= 1000 / 2)
317 clocks++;
318 return clocks;
319}
320
321static u16 pulse_clocks_to_clock_divider(u64 count)
322{
323 u32 rem;
324
325 rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
326
327 /* net result needs to be rounded down and decremented by 1 */
328 if (count > RXCLK_RCD + 1)
329 count = RXCLK_RCD;
330 else if (count < 2)
331 count = 1;
332 else
333 count--;
334 return (u16) count;
335}
336
337/*
338 * IR Control Register helpers
339 */
340enum tx_fifo_watermark {
341 TX_FIFO_HALF_EMPTY = 0,
342 TX_FIFO_EMPTY = CNTRL_TIC,
343};
344
345enum rx_fifo_watermark {
346 RX_FIFO_HALF_FULL = 0,
347 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
348};
349
350static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
351 enum tx_fifo_watermark level)
352{
353 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
354}
355
356static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
357 enum rx_fifo_watermark level)
358{
359 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
360}
361
362static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
363{
364 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
365 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
366}
367
368static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
369{
370 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
371 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
372}
373
374static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
375 bool enable)
376{
377 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
378 enable ? CNTRL_MOD : 0);
379}
380
381static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
382 bool enable)
383{
384 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
385 enable ? CNTRL_DMD : 0);
386}
387
388static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
389 u32 edge_types)
390{
391 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
392 edge_types & CNTRL_EDG_BOTH);
393}
394
395static void control_rx_s_carrier_window(struct cx23885_dev *dev,
396 unsigned int carrier,
397 unsigned int *carrier_range_low,
398 unsigned int *carrier_range_high)
399{
400 u32 v;
401 unsigned int c16 = carrier * 16;
402
403 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
404 v = CNTRL_WIN_3_4;
405 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
406 } else {
407 v = CNTRL_WIN_3_3;
408 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
409 }
410
411 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
412 v |= CNTRL_WIN_4_3;
413 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
414 } else {
415 v |= CNTRL_WIN_3_3;
416 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
417 }
418 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
419}
420
421static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
422 bool invert)
423{
424 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
425 invert ? CNTRL_CPL : 0);
426}
427
428/*
429 * IR Rx & Tx Clock Register helpers
430 */
431static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
432 unsigned int freq,
433 u16 *divider)
434{
435 *divider = carrier_freq_to_clock_divider(freq);
436 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
437 return clock_divider_to_carrier_freq(*divider);
438}
439
440static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
441 unsigned int freq,
442 u16 *divider)
443{
444 *divider = carrier_freq_to_clock_divider(freq);
445 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
446 return clock_divider_to_carrier_freq(*divider);
447}
448
449static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
450 u16 *divider)
451{
452 u64 pulse_clocks;
453
454 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
455 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
456 pulse_clocks = ns_to_pulse_clocks(ns);
457 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
458 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
459 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
460}
461
462static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
463 u16 *divider)
464{
465 u64 pulse_clocks;
466
467 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
468 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
469 pulse_clocks = ns_to_pulse_clocks(ns);
470 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
471 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
472 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
473}
474
475/*
476 * IR Tx Carrier Duty Cycle register helpers
477 */
478static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
479 unsigned int duty_cycle)
480{
481 u32 n;
482 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
483 if (n != 0)
484 n--;
485 if (n > 15)
486 n = 15;
487 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
488 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
489}
490
491/*
492 * IR Filter Register helpers
493 */
494static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
495{
496 u32 count = ns_to_lpf_count(min_width_ns);
497 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
498 return lpf_count_to_ns(count);
499}
500
501/*
502 * IR IRQ Enable Register helpers
503 */
504static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
505{
506 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
507 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
508 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
509}
510
511static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
512{
513 mask &= IRQEN_TSE;
514 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
515}
516
517/*
518 * V4L2 Subdevice IR Ops
519 */
520static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
521 bool *handled)
522{
523 struct cx23888_ir_state *state = to_state(sd);
524 struct cx23885_dev *dev = state->dev;
525
526 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
527 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
528 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
529
530 u32 rx_data[FIFO_RX_DEPTH];
531 int i, j, k;
532 u32 events, v;
533 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
534
535 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
536 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
537 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
538 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
539
540 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
541 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
542 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
543 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
544
545 *handled = false;
546 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
547 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
548 rto ? "rto" : " ", ror ? "ror" : " ",
549 stats & STATS_TBY ? "tby" : " ",
550 stats & STATS_RBY ? "rby" : " ");
551
552 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
553 tse ? "tse" : " ", rse ? "rse" : " ",
554 rte ? "rte" : " ", roe ? "roe" : " ");
555
556 /*
557 * Transmitter interrupt service
558 */
559 if (tse && tsr) {
560 /*
561 * TODO:
562 * Check the watermark threshold setting
563 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
564 * Push the data to the hardware FIFO.
565 * If there was nothing more to send in the tx_kfifo, disable
566 * the TSR IRQ and notify the v4l2_device.
567 * If there was something in the tx_kfifo, check the tx_kfifo
568 * level and notify the v4l2_device, if it is low.
569 */
570 /* For now, inhibit TSR interrupt until Tx is implemented */
571 irqenable_tx(dev, 0);
572 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
573 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
574 *handled = true;
575 }
576
577 /*
578 * Receiver interrupt service
579 */
580 kror = 0;
581 if ((rse && rsr) || (rte && rto)) {
582 /*
583 * Receive data on RSR to clear the STATS_RSR.
584 * Receive data on RTO, since we may not have yet hit the RSR
585 * watermark when we receive the RTO.
586 */
587 for (i = 0, v = FIFO_RX_NDV;
588 (v & FIFO_RX_NDV) && !kror; i = 0) {
589 for (j = 0;
590 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
591 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
592 rx_data[i++] = v & ~FIFO_RX_NDV;
593 }
594 if (i == 0)
595 break;
596 j = i * sizeof(u32);
597 k = kfifo_put(state->rx_kfifo,
598 (unsigned char *) rx_data, j);
599 if (k != j)
600 kror++; /* rx_kfifo over run */
601 }
602 *handled = true;
603 }
604
605 events = 0;
606 v = 0;
607 if (kror) {
608 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
609 v4l2_err(sd, "IR receiver software FIFO overrun\n");
610 }
611 if (roe && ror) {
612 /*
613 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
614 * the Rx FIFO Over Run status (STATS_ROR)
615 */
616 v |= CNTRL_RFE;
617 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
618 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
619 }
620 if (rte && rto) {
621 /*
622 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
623 * the Rx Pulse Width Timer Time Out (STATS_RTO)
624 */
625 v |= CNTRL_RXE;
626 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
627 }
628 if (v) {
629 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
630 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
631 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
632 *handled = true;
633 }
634 if (kfifo_len(state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
635 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
636
637 if (events)
638 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
639 return 0;
640}
641
642/* Receiver */
643static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
644 ssize_t *num)
645{
646 struct cx23888_ir_state *state = to_state(sd);
647 bool invert = (bool) atomic_read(&state->rx_invert);
648 u16 divider = (u16) atomic_read(&state->rxclk_divider);
649
650 unsigned int i, n;
651 u32 *p;
652 u32 u, v;
653
654 n = count / sizeof(u32) * sizeof(u32);
655 if (n == 0) {
656 *num = 0;
657 return 0;
658 }
659
660 n = kfifo_get(state->rx_kfifo, buf, n);
661
662 n /= sizeof(u32);
663 *num = n * sizeof(u32);
664
665 for (p = (u32 *) buf, i = 0; i < n; p++, i++) {
666 if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
667 *p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END;
668 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
669 continue;
670 }
671
672 u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0;
673 if (invert)
674 u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK;
675
676 v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX),
677 divider);
678 if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
679 v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1;
680
681 *p = u | v;
682
683 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s\n",
684 v, u ? "mark" : "space");
685 }
686 return 0;
687}
688
689static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
690 struct v4l2_subdev_ir_parameters *p)
691{
692 struct cx23888_ir_state *state = to_state(sd);
693 mutex_lock(&state->rx_params_lock);
694 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
695 mutex_unlock(&state->rx_params_lock);
696 return 0;
697}
698
699static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
700{
701 struct cx23888_ir_state *state = to_state(sd);
702 struct cx23885_dev *dev = state->dev;
703
704 mutex_lock(&state->rx_params_lock);
705
706 /* Disable or slow down all IR Rx circuits and counters */
707 irqenable_rx(dev, 0);
708 control_rx_enable(dev, false);
709 control_rx_demodulation_enable(dev, false);
710 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
711 filter_rx_s_min_width(dev, 0);
712 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
713
714 state->rx_params.shutdown = true;
715
716 mutex_unlock(&state->rx_params_lock);
717 return 0;
718}
719
720static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
721 struct v4l2_subdev_ir_parameters *p)
722{
723 struct cx23888_ir_state *state = to_state(sd);
724 struct cx23885_dev *dev = state->dev;
725 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
726 u16 rxclk_divider;
727
728 if (p->shutdown)
729 return cx23888_ir_rx_shutdown(sd);
730
731 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
732 return -ENOSYS;
733
734 mutex_lock(&state->rx_params_lock);
735
736 o->shutdown = p->shutdown;
737
738 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
739
740 o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
741
742 /* Before we tweak the hardware, we have to disable the receiver */
743 irqenable_rx(dev, 0);
744 control_rx_enable(dev, false);
745
746 control_rx_demodulation_enable(dev, p->modulation);
747 o->modulation = p->modulation;
748
749 if (p->modulation) {
750 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
751 &rxclk_divider);
752
753 o->carrier_freq = p->carrier_freq;
754
755 o->duty_cycle = p->duty_cycle = 50;
756
757 control_rx_s_carrier_window(dev, p->carrier_freq,
758 &p->carrier_range_lower,
759 &p->carrier_range_upper);
760 o->carrier_range_lower = p->carrier_range_lower;
761 o->carrier_range_upper = p->carrier_range_upper;
762 } else {
763 p->max_pulse_width =
764 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
765 &rxclk_divider);
766 o->max_pulse_width = p->max_pulse_width;
767 }
768 atomic_set(&state->rxclk_divider, rxclk_divider);
769
770 p->noise_filter_min_width =
771 filter_rx_s_min_width(dev, p->noise_filter_min_width);
772 o->noise_filter_min_width = p->noise_filter_min_width;
773
774 p->resolution = clock_divider_to_resolution(rxclk_divider);
775 o->resolution = p->resolution;
776
777 /* FIXME - make this dependent on resolution for better performance */
778 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
779
780 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
781
782 o->invert = p->invert;
783 atomic_set(&state->rx_invert, p->invert);
784
785 o->interrupt_enable = p->interrupt_enable;
786 o->enable = p->enable;
787 if (p->enable) {
788 kfifo_reset(state->rx_kfifo);
789 if (p->interrupt_enable)
790 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
791 control_rx_enable(dev, p->enable);
792 }
793
794 mutex_unlock(&state->rx_params_lock);
795 return 0;
796}
797
798/* Transmitter */
799static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
800 ssize_t *num)
801{
802 struct cx23888_ir_state *state = to_state(sd);
803 struct cx23885_dev *dev = state->dev;
804 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
805 irqenable_tx(dev, IRQEN_TSE);
806 *num = count;
807 return 0;
808}
809
810static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
811 struct v4l2_subdev_ir_parameters *p)
812{
813 struct cx23888_ir_state *state = to_state(sd);
814 mutex_lock(&state->tx_params_lock);
815 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
816 mutex_unlock(&state->tx_params_lock);
817 return 0;
818}
819
820static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
821{
822 struct cx23888_ir_state *state = to_state(sd);
823 struct cx23885_dev *dev = state->dev;
824
825 mutex_lock(&state->tx_params_lock);
826
827 /* Disable or slow down all IR Tx circuits and counters */
828 irqenable_tx(dev, 0);
829 control_tx_enable(dev, false);
830 control_tx_modulation_enable(dev, false);
831 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
832
833 state->tx_params.shutdown = true;
834
835 mutex_unlock(&state->tx_params_lock);
836 return 0;
837}
838
839static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
840 struct v4l2_subdev_ir_parameters *p)
841{
842 struct cx23888_ir_state *state = to_state(sd);
843 struct cx23885_dev *dev = state->dev;
844 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
845 u16 txclk_divider;
846
847 if (p->shutdown)
848 return cx23888_ir_tx_shutdown(sd);
849
850 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
851 return -ENOSYS;
852
853 mutex_lock(&state->tx_params_lock);
854
855 o->shutdown = p->shutdown;
856
857 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
858
859 o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
860
861 /* Before we tweak the hardware, we have to disable the transmitter */
862 irqenable_tx(dev, 0);
863 control_tx_enable(dev, false);
864
865 control_tx_modulation_enable(dev, p->modulation);
866 o->modulation = p->modulation;
867
868 if (p->modulation) {
869 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
870 &txclk_divider);
871 o->carrier_freq = p->carrier_freq;
872
873 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
874 o->duty_cycle = p->duty_cycle;
875 } else {
876 p->max_pulse_width =
877 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
878 &txclk_divider);
879 o->max_pulse_width = p->max_pulse_width;
880 }
881 atomic_set(&state->txclk_divider, txclk_divider);
882
883 p->resolution = clock_divider_to_resolution(txclk_divider);
884 o->resolution = p->resolution;
885
886 /* FIXME - make this dependent on resolution for better performance */
887 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
888
889 control_tx_polarity_invert(dev, p->invert);
890 o->invert = p->invert;
891
892 o->interrupt_enable = p->interrupt_enable;
893 o->enable = p->enable;
894 if (p->enable) {
895 kfifo_reset(state->tx_kfifo);
896 if (p->interrupt_enable)
897 irqenable_tx(dev, IRQEN_TSE);
898 control_tx_enable(dev, p->enable);
899 }
900
901 mutex_unlock(&state->tx_params_lock);
902 return 0;
903}
904
905
906/*
907 * V4L2 Subdevice Core Ops
908 */
909static int cx23888_ir_log_status(struct v4l2_subdev *sd)
910{
911 struct cx23888_ir_state *state = to_state(sd);
912 struct cx23885_dev *dev = state->dev;
913 char *s;
914 int i, j;
915
916 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
917 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
918 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
919 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
920 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
921 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
922 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
923
924 v4l2_info(sd, "IR Receiver:\n");
925 v4l2_info(sd, "\tEnabled: %s\n",
926 cntrl & CNTRL_RXE ? "yes" : "no");
927 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
928 cntrl & CNTRL_DMD ? "enabled" : "disabled");
929 v4l2_info(sd, "\tFIFO: %s\n",
930 cntrl & CNTRL_RFE ? "enabled" : "disabled");
931 switch (cntrl & CNTRL_EDG) {
932 case CNTRL_EDG_NONE:
933 s = "disabled";
934 break;
935 case CNTRL_EDG_FALL:
936 s = "falling edge";
937 break;
938 case CNTRL_EDG_RISE:
939 s = "rising edge";
940 break;
941 case CNTRL_EDG_BOTH:
942 s = "rising & falling edges";
943 break;
944 default:
945 s = "??? edge";
946 break;
947 }
948 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
949 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
950 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
951 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
952 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
953 v4l2_info(sd, "\tLoopback mode: %s\n",
954 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
955 if (cntrl & CNTRL_DMD) {
956 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
957 clock_divider_to_carrier_freq(rxclk));
958 switch (cntrl & CNTRL_WIN) {
959 case CNTRL_WIN_3_3:
960 i = 3;
961 j = 3;
962 break;
963 case CNTRL_WIN_4_3:
964 i = 4;
965 j = 3;
966 break;
967 case CNTRL_WIN_3_4:
968 i = 3;
969 j = 4;
970 break;
971 case CNTRL_WIN_4_4:
972 i = 4;
973 j = 4;
974 break;
975 default:
976 i = 0;
977 j = 0;
978 break;
979 }
980 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
981 "-%1d/+%1d, %u to %u Hz\n", i, j,
982 clock_divider_to_freq(rxclk, 16 + j),
983 clock_divider_to_freq(rxclk, 16 - i));
984 } else {
985 v4l2_info(sd, "\tMax measurable pulse width: %u us, "
986 "%llu ns\n",
987 pulse_width_count_to_us(FIFO_RXTX, rxclk),
988 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
989 }
990 v4l2_info(sd, "\tLow pass filter: %s\n",
991 filtr ? "enabled" : "disabled");
992 if (filtr)
993 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
994 "%u ns\n",
995 lpf_count_to_us(filtr),
996 lpf_count_to_ns(filtr));
997 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
998 stats & STATS_RTO ? "yes" : "no");
999 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1000 irqen & IRQEN_RTE ? "enabled" : "disabled");
1001 v4l2_info(sd, "\tFIFO overrun: %s\n",
1002 stats & STATS_ROR ? "yes" : "no");
1003 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1004 irqen & IRQEN_ROE ? "enabled" : "disabled");
1005 v4l2_info(sd, "\tBusy: %s\n",
1006 stats & STATS_RBY ? "yes" : "no");
1007 v4l2_info(sd, "\tFIFO service requested: %s\n",
1008 stats & STATS_RSR ? "yes" : "no");
1009 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1010 irqen & IRQEN_RSE ? "enabled" : "disabled");
1011
1012 v4l2_info(sd, "IR Transmitter:\n");
1013 v4l2_info(sd, "\tEnabled: %s\n",
1014 cntrl & CNTRL_TXE ? "yes" : "no");
1015 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1016 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1017 v4l2_info(sd, "\tFIFO: %s\n",
1018 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1019 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1020 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1021 v4l2_info(sd, "\tSignal polarity: %s\n",
1022 cntrl & CNTRL_CPL ? "0:mark 1:space" : "0:space 1:mark");
1023 if (cntrl & CNTRL_MOD) {
1024 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1025 clock_divider_to_carrier_freq(txclk));
1026 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1027 cduty + 1);
1028 } else {
1029 v4l2_info(sd, "\tMax pulse width: %u us, "
1030 "%llu ns\n",
1031 pulse_width_count_to_us(FIFO_RXTX, txclk),
1032 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1033 }
1034 v4l2_info(sd, "\tBusy: %s\n",
1035 stats & STATS_TBY ? "yes" : "no");
1036 v4l2_info(sd, "\tFIFO service requested: %s\n",
1037 stats & STATS_TSR ? "yes" : "no");
1038 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1039 irqen & IRQEN_TSE ? "enabled" : "disabled");
1040
1041 return 0;
1042}
1043
1044static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1045{
1046 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1047}
1048
1049static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1050 struct v4l2_dbg_chip_ident *chip)
1051{
1052 struct cx23888_ir_state *state = to_state(sd);
1053
1054 if (cx23888_ir_dbg_match(&chip->match)) {
1055 chip->ident = state->id;
1056 chip->revision = state->rev;
1057 }
1058 return 0;
1059}
1060
1061#ifdef CONFIG_VIDEO_ADV_DEBUG
1062static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1063 struct v4l2_dbg_register *reg)
1064{
1065 struct cx23888_ir_state *state = to_state(sd);
1066 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1067
1068 if (!cx23888_ir_dbg_match(&reg->match))
1069 return -EINVAL;
1070 if ((addr & 0x3) != 0)
1071 return -EINVAL;
1072 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1073 return -EINVAL;
1074 if (!capable(CAP_SYS_ADMIN))
1075 return -EPERM;
1076 reg->size = 4;
1077 reg->val = cx23888_ir_read4(state->dev, addr);
1078 return 0;
1079}
1080
1081static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1082 struct v4l2_dbg_register *reg)
1083{
1084 struct cx23888_ir_state *state = to_state(sd);
1085 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1086
1087 if (!cx23888_ir_dbg_match(&reg->match))
1088 return -EINVAL;
1089 if ((addr & 0x3) != 0)
1090 return -EINVAL;
1091 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1092 return -EINVAL;
1093 if (!capable(CAP_SYS_ADMIN))
1094 return -EPERM;
1095 cx23888_ir_write4(state->dev, addr, reg->val);
1096 return 0;
1097}
1098#endif
1099
1100static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1101 .g_chip_ident = cx23888_ir_g_chip_ident,
1102 .log_status = cx23888_ir_log_status,
1103#ifdef CONFIG_VIDEO_ADV_DEBUG
1104 .g_register = cx23888_ir_g_register,
1105 .s_register = cx23888_ir_s_register,
1106#endif
1107};
1108
1109static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1110 .interrupt_service_routine = cx23888_ir_irq_handler,
1111
1112 .rx_read = cx23888_ir_rx_read,
1113 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1114 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1115
1116 .tx_write = cx23888_ir_tx_write,
1117 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1118 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1119};
1120
1121static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1122 .core = &cx23888_ir_core_ops,
1123 .ir = &cx23888_ir_ir_ops,
1124};
1125
1126static const struct v4l2_subdev_ir_parameters default_rx_params = {
1127 .bytes_per_data_element = sizeof(u32),
1128 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1129
1130 .enable = false,
1131 .interrupt_enable = false,
1132 .shutdown = true,
1133
1134 .modulation = true,
1135 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1136
1137 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1138 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1139 .noise_filter_min_width = 333333, /* ns */
1140 .carrier_range_lower = 35000,
1141 .carrier_range_upper = 37000,
1142 .invert = false,
1143};
1144
1145static const struct v4l2_subdev_ir_parameters default_tx_params = {
1146 .bytes_per_data_element = sizeof(u32),
1147 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1148
1149 .enable = false,
1150 .interrupt_enable = false,
1151 .shutdown = true,
1152
1153 .modulation = true,
1154 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1155 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1156 .invert = false,
1157};
1158
1159int cx23888_ir_probe(struct cx23885_dev *dev)
1160{
1161 struct cx23888_ir_state *state;
1162 struct v4l2_subdev *sd;
1163 struct v4l2_subdev_ir_parameters default_params;
1164 int ret;
1165
1166 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1167 if (state == NULL)
1168 return -ENOMEM;
1169
1170 spin_lock_init(&state->rx_kfifo_lock);
1171 state->rx_kfifo = kfifo_alloc(CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL,
1172 &state->rx_kfifo_lock);
1173 if (state->rx_kfifo == NULL)
1174 return -ENOMEM;
1175
1176 spin_lock_init(&state->tx_kfifo_lock);
1177 state->tx_kfifo = kfifo_alloc(CX23888_IR_TX_KFIFO_SIZE, GFP_KERNEL,
1178 &state->tx_kfifo_lock);
1179 if (state->tx_kfifo == NULL) {
1180 kfifo_free(state->rx_kfifo);
1181 return -ENOMEM;
1182 }
1183
1184 state->dev = dev;
1185 state->id = V4L2_IDENT_CX23888_IR;
1186 state->rev = 0;
1187 sd = &state->sd;
1188
1189 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1190 v4l2_set_subdevdata(sd, state);
1191 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1192 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1193 sd->grp_id = CX23885_HW_888_IR;
1194
1195 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1196 if (ret == 0) {
1197 /*
1198 * Ensure no interrupts arrive from '888 specific conditions,
1199 * since we ignore them in this driver to have commonality with
1200 * similar IR controller cores.
1201 */
1202 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1203
1204 mutex_init(&state->rx_params_lock);
1205 memcpy(&default_params, &default_rx_params,
1206 sizeof(struct v4l2_subdev_ir_parameters));
1207 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1208
1209 mutex_init(&state->tx_params_lock);
1210 memcpy(&default_params, &default_tx_params,
1211 sizeof(struct v4l2_subdev_ir_parameters));
1212 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1213 } else {
1214 kfifo_free(state->rx_kfifo);
1215 kfifo_free(state->tx_kfifo);
1216 }
1217 return ret;
1218}
1219
1220int cx23888_ir_remove(struct cx23885_dev *dev)
1221{
1222 struct v4l2_subdev *sd;
1223 struct cx23888_ir_state *state;
1224
1225 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1226 if (sd == NULL)
1227 return -ENODEV;
1228
1229 cx23888_ir_rx_shutdown(sd);
1230 cx23888_ir_tx_shutdown(sd);
1231
1232 state = to_state(sd);
1233 v4l2_device_unregister_subdev(sd);
1234 kfifo_free(state->rx_kfifo);
1235 kfifo_free(state->tx_kfifo);
1236 kfree(state);
1237 /* Nothing more to free() as state held the actual v4l2_subdev object */
1238 return 0;
1239}