diff options
Diffstat (limited to 'drivers/media/video/cx23885/cx23888-ir.c')
-rw-r--r-- | drivers/media/video/cx23885/cx23888-ir.c | 1239 |
1 files changed, 1239 insertions, 0 deletions
diff --git a/drivers/media/video/cx23885/cx23888-ir.c b/drivers/media/video/cx23885/cx23888-ir.c new file mode 100644 index 000000000000..3ccc8afeccf3 --- /dev/null +++ b/drivers/media/video/cx23885/cx23888-ir.c | |||
@@ -0,0 +1,1239 @@ | |||
1 | /* | ||
2 | * Driver for the Conexant CX23885/7/8 PCIe bridge | ||
3 | * | ||
4 | * CX23888 Integrated Consumer Infrared Controller | ||
5 | * | ||
6 | * Copyright (C) 2009 Andy Walls <awalls@radix.net> | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or | ||
9 | * modify it under the terms of the GNU General Public License | ||
10 | * as published by the Free Software Foundation; either version 2 | ||
11 | * of the License, or (at your option) any later version. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, | ||
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | * GNU General Public License for more details. | ||
17 | * | ||
18 | * You should have received a copy of the GNU General Public License | ||
19 | * along with this program; if not, write to the Free Software | ||
20 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | ||
21 | * 02110-1301, USA. | ||
22 | */ | ||
23 | |||
24 | #include <linux/kfifo.h> | ||
25 | |||
26 | #include <media/v4l2-device.h> | ||
27 | #include <media/v4l2-chip-ident.h> | ||
28 | |||
29 | #include "cx23885.h" | ||
30 | |||
31 | static unsigned int ir_888_debug; | ||
32 | module_param(ir_888_debug, int, 0644); | ||
33 | MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]"); | ||
34 | |||
35 | #define CX23888_IR_REG_BASE 0x170000 | ||
36 | /* | ||
37 | * These CX23888 register offsets have a straightforward one to one mapping | ||
38 | * to the CX23885 register offsets of 0x200 through 0x218 | ||
39 | */ | ||
40 | #define CX23888_IR_CNTRL_REG 0x170000 | ||
41 | #define CNTRL_WIN_3_3 0x00000000 | ||
42 | #define CNTRL_WIN_4_3 0x00000001 | ||
43 | #define CNTRL_WIN_3_4 0x00000002 | ||
44 | #define CNTRL_WIN_4_4 0x00000003 | ||
45 | #define CNTRL_WIN 0x00000003 | ||
46 | #define CNTRL_EDG_NONE 0x00000000 | ||
47 | #define CNTRL_EDG_FALL 0x00000004 | ||
48 | #define CNTRL_EDG_RISE 0x00000008 | ||
49 | #define CNTRL_EDG_BOTH 0x0000000C | ||
50 | #define CNTRL_EDG 0x0000000C | ||
51 | #define CNTRL_DMD 0x00000010 | ||
52 | #define CNTRL_MOD 0x00000020 | ||
53 | #define CNTRL_RFE 0x00000040 | ||
54 | #define CNTRL_TFE 0x00000080 | ||
55 | #define CNTRL_RXE 0x00000100 | ||
56 | #define CNTRL_TXE 0x00000200 | ||
57 | #define CNTRL_RIC 0x00000400 | ||
58 | #define CNTRL_TIC 0x00000800 | ||
59 | #define CNTRL_CPL 0x00001000 | ||
60 | #define CNTRL_LBM 0x00002000 | ||
61 | #define CNTRL_R 0x00004000 | ||
62 | |||
63 | #define CX23888_IR_TXCLK_REG 0x170004 | ||
64 | #define TXCLK_TCD 0x0000FFFF | ||
65 | |||
66 | #define CX23888_IR_RXCLK_REG 0x170008 | ||
67 | #define RXCLK_RCD 0x0000FFFF | ||
68 | |||
69 | #define CX23888_IR_CDUTY_REG 0x17000C | ||
70 | #define CDUTY_CDC 0x0000000F | ||
71 | |||
72 | #define CX23888_IR_STATS_REG 0x170010 | ||
73 | #define STATS_RTO 0x00000001 | ||
74 | #define STATS_ROR 0x00000002 | ||
75 | #define STATS_RBY 0x00000004 | ||
76 | #define STATS_TBY 0x00000008 | ||
77 | #define STATS_RSR 0x00000010 | ||
78 | #define STATS_TSR 0x00000020 | ||
79 | |||
80 | #define CX23888_IR_IRQEN_REG 0x170014 | ||
81 | #define IRQEN_RTE 0x00000001 | ||
82 | #define IRQEN_ROE 0x00000002 | ||
83 | #define IRQEN_RSE 0x00000010 | ||
84 | #define IRQEN_TSE 0x00000020 | ||
85 | |||
86 | #define CX23888_IR_FILTR_REG 0x170018 | ||
87 | #define FILTR_LPF 0x0000FFFF | ||
88 | |||
89 | /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */ | ||
90 | #define CX23888_IR_FIFO_REG 0x170040 | ||
91 | #define FIFO_RXTX 0x0000FFFF | ||
92 | #define FIFO_RXTX_LVL 0x00010000 | ||
93 | #define FIFO_RXTX_RTO 0x0001FFFF | ||
94 | #define FIFO_RX_NDV 0x00020000 | ||
95 | #define FIFO_RX_DEPTH 8 | ||
96 | #define FIFO_TX_DEPTH 8 | ||
97 | |||
98 | /* CX23888 unique registers */ | ||
99 | #define CX23888_IR_SEEDP_REG 0x17001C | ||
100 | #define CX23888_IR_TIMOL_REG 0x170020 | ||
101 | #define CX23888_IR_WAKE0_REG 0x170024 | ||
102 | #define CX23888_IR_WAKE1_REG 0x170028 | ||
103 | #define CX23888_IR_WAKE2_REG 0x17002C | ||
104 | #define CX23888_IR_MASK0_REG 0x170030 | ||
105 | #define CX23888_IR_MASK1_REG 0x170034 | ||
106 | #define CX23888_IR_MAKS2_REG 0x170038 | ||
107 | #define CX23888_IR_DPIPG_REG 0x17003C | ||
108 | #define CX23888_IR_LEARN_REG 0x170044 | ||
109 | |||
110 | #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ | ||
111 | #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2) | ||
112 | |||
113 | #define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32)) | ||
114 | #define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32)) | ||
115 | |||
116 | struct cx23888_ir_state { | ||
117 | struct v4l2_subdev sd; | ||
118 | struct cx23885_dev *dev; | ||
119 | u32 id; | ||
120 | u32 rev; | ||
121 | |||
122 | struct v4l2_subdev_ir_parameters rx_params; | ||
123 | struct mutex rx_params_lock; | ||
124 | atomic_t rxclk_divider; | ||
125 | atomic_t rx_invert; | ||
126 | |||
127 | struct kfifo *rx_kfifo; | ||
128 | spinlock_t rx_kfifo_lock; | ||
129 | |||
130 | struct v4l2_subdev_ir_parameters tx_params; | ||
131 | struct mutex tx_params_lock; | ||
132 | atomic_t txclk_divider; | ||
133 | |||
134 | struct kfifo *tx_kfifo; | ||
135 | spinlock_t tx_kfifo_lock; | ||
136 | }; | ||
137 | |||
138 | static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd) | ||
139 | { | ||
140 | return v4l2_get_subdevdata(sd); | ||
141 | } | ||
142 | |||
143 | /* | ||
144 | * IR register block read and write functions | ||
145 | */ | ||
146 | static | ||
147 | inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value) | ||
148 | { | ||
149 | cx_write(addr, value); | ||
150 | return 0; | ||
151 | } | ||
152 | |||
153 | static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr) | ||
154 | { | ||
155 | return cx_read(addr); | ||
156 | } | ||
157 | |||
158 | static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr, | ||
159 | u32 and_mask, u32 or_value) | ||
160 | { | ||
161 | cx_andor(addr, ~and_mask, or_value); | ||
162 | return 0; | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * Rx and Tx Clock Divider register computations | ||
167 | * | ||
168 | * Note the largest clock divider value of 0xffff corresponds to: | ||
169 | * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns | ||
170 | * which fits in 21 bits, so we'll use unsigned int for time arguments. | ||
171 | */ | ||
172 | static inline u16 count_to_clock_divider(unsigned int d) | ||
173 | { | ||
174 | if (d > RXCLK_RCD + 1) | ||
175 | d = RXCLK_RCD; | ||
176 | else if (d < 2) | ||
177 | d = 1; | ||
178 | else | ||
179 | d--; | ||
180 | return (u16) d; | ||
181 | } | ||
182 | |||
183 | static inline u16 ns_to_clock_divider(unsigned int ns) | ||
184 | { | ||
185 | return count_to_clock_divider( | ||
186 | DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000)); | ||
187 | } | ||
188 | |||
189 | static inline unsigned int clock_divider_to_ns(unsigned int divider) | ||
190 | { | ||
191 | /* Period of the Rx or Tx clock in ns */ | ||
192 | return DIV_ROUND_CLOSEST((divider + 1) * 1000, | ||
193 | CX23888_IR_REFCLK_FREQ / 1000000); | ||
194 | } | ||
195 | |||
196 | static inline u16 carrier_freq_to_clock_divider(unsigned int freq) | ||
197 | { | ||
198 | return count_to_clock_divider( | ||
199 | DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16)); | ||
200 | } | ||
201 | |||
202 | static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) | ||
203 | { | ||
204 | return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16); | ||
205 | } | ||
206 | |||
207 | static inline u16 freq_to_clock_divider(unsigned int freq, | ||
208 | unsigned int rollovers) | ||
209 | { | ||
210 | return count_to_clock_divider( | ||
211 | DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers)); | ||
212 | } | ||
213 | |||
214 | static inline unsigned int clock_divider_to_freq(unsigned int divider, | ||
215 | unsigned int rollovers) | ||
216 | { | ||
217 | return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, | ||
218 | (divider + 1) * rollovers); | ||
219 | } | ||
220 | |||
221 | /* | ||
222 | * Low Pass Filter register calculations | ||
223 | * | ||
224 | * Note the largest count value of 0xffff corresponds to: | ||
225 | * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns | ||
226 | * which fits in 21 bits, so we'll use unsigned int for time arguments. | ||
227 | */ | ||
228 | static inline u16 count_to_lpf_count(unsigned int d) | ||
229 | { | ||
230 | if (d > FILTR_LPF) | ||
231 | d = FILTR_LPF; | ||
232 | else if (d < 4) | ||
233 | d = 0; | ||
234 | return (u16) d; | ||
235 | } | ||
236 | |||
237 | static inline u16 ns_to_lpf_count(unsigned int ns) | ||
238 | { | ||
239 | return count_to_lpf_count( | ||
240 | DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000)); | ||
241 | } | ||
242 | |||
243 | static inline unsigned int lpf_count_to_ns(unsigned int count) | ||
244 | { | ||
245 | /* Duration of the Low Pass Filter rejection window in ns */ | ||
246 | return DIV_ROUND_CLOSEST(count * 1000, | ||
247 | CX23888_IR_REFCLK_FREQ / 1000000); | ||
248 | } | ||
249 | |||
250 | static inline unsigned int lpf_count_to_us(unsigned int count) | ||
251 | { | ||
252 | /* Duration of the Low Pass Filter rejection window in us */ | ||
253 | return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000); | ||
254 | } | ||
255 | |||
256 | /* | ||
257 | * FIFO register pulse width count compuations | ||
258 | */ | ||
259 | static u32 clock_divider_to_resolution(u16 divider) | ||
260 | { | ||
261 | /* | ||
262 | * Resolution is the duration of 1 tick of the readable portion of | ||
263 | * of the pulse width counter as read from the FIFO. The two lsb's are | ||
264 | * not readable, hence the << 2. This function returns ns. | ||
265 | */ | ||
266 | return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, | ||
267 | CX23888_IR_REFCLK_FREQ / 1000000); | ||
268 | } | ||
269 | |||
270 | static u64 pulse_width_count_to_ns(u16 count, u16 divider) | ||
271 | { | ||
272 | u64 n; | ||
273 | u32 rem; | ||
274 | |||
275 | /* | ||
276 | * The 2 lsb's of the pulse width timer count are not readable, hence | ||
277 | * the (count << 2) | 0x3 | ||
278 | */ | ||
279 | n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ | ||
280 | rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ | ||
281 | if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2) | ||
282 | n++; | ||
283 | return n; | ||
284 | } | ||
285 | |||
286 | static unsigned int pulse_width_count_to_us(u16 count, u16 divider) | ||
287 | { | ||
288 | u64 n; | ||
289 | u32 rem; | ||
290 | |||
291 | /* | ||
292 | * The 2 lsb's of the pulse width timer count are not readable, hence | ||
293 | * the (count << 2) | 0x3 | ||
294 | */ | ||
295 | n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ | ||
296 | rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ | ||
297 | if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2) | ||
298 | n++; | ||
299 | return (unsigned int) n; | ||
300 | } | ||
301 | |||
302 | /* | ||
303 | * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts | ||
304 | * | ||
305 | * The total pulse clock count is an 18 bit pulse width timer count as the most | ||
306 | * significant part and (up to) 16 bit clock divider count as a modulus. | ||
307 | * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse | ||
308 | * width timer count's least significant bit. | ||
309 | */ | ||
310 | static u64 ns_to_pulse_clocks(u32 ns) | ||
311 | { | ||
312 | u64 clocks; | ||
313 | u32 rem; | ||
314 | clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ | ||
315 | rem = do_div(clocks, 1000); /* /1000 = cycles */ | ||
316 | if (rem >= 1000 / 2) | ||
317 | clocks++; | ||
318 | return clocks; | ||
319 | } | ||
320 | |||
321 | static u16 pulse_clocks_to_clock_divider(u64 count) | ||
322 | { | ||
323 | u32 rem; | ||
324 | |||
325 | rem = do_div(count, (FIFO_RXTX << 2) | 0x3); | ||
326 | |||
327 | /* net result needs to be rounded down and decremented by 1 */ | ||
328 | if (count > RXCLK_RCD + 1) | ||
329 | count = RXCLK_RCD; | ||
330 | else if (count < 2) | ||
331 | count = 1; | ||
332 | else | ||
333 | count--; | ||
334 | return (u16) count; | ||
335 | } | ||
336 | |||
337 | /* | ||
338 | * IR Control Register helpers | ||
339 | */ | ||
340 | enum tx_fifo_watermark { | ||
341 | TX_FIFO_HALF_EMPTY = 0, | ||
342 | TX_FIFO_EMPTY = CNTRL_TIC, | ||
343 | }; | ||
344 | |||
345 | enum rx_fifo_watermark { | ||
346 | RX_FIFO_HALF_FULL = 0, | ||
347 | RX_FIFO_NOT_EMPTY = CNTRL_RIC, | ||
348 | }; | ||
349 | |||
350 | static inline void control_tx_irq_watermark(struct cx23885_dev *dev, | ||
351 | enum tx_fifo_watermark level) | ||
352 | { | ||
353 | cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level); | ||
354 | } | ||
355 | |||
356 | static inline void control_rx_irq_watermark(struct cx23885_dev *dev, | ||
357 | enum rx_fifo_watermark level) | ||
358 | { | ||
359 | cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level); | ||
360 | } | ||
361 | |||
362 | static inline void control_tx_enable(struct cx23885_dev *dev, bool enable) | ||
363 | { | ||
364 | cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), | ||
365 | enable ? (CNTRL_TXE | CNTRL_TFE) : 0); | ||
366 | } | ||
367 | |||
368 | static inline void control_rx_enable(struct cx23885_dev *dev, bool enable) | ||
369 | { | ||
370 | cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), | ||
371 | enable ? (CNTRL_RXE | CNTRL_RFE) : 0); | ||
372 | } | ||
373 | |||
374 | static inline void control_tx_modulation_enable(struct cx23885_dev *dev, | ||
375 | bool enable) | ||
376 | { | ||
377 | cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD, | ||
378 | enable ? CNTRL_MOD : 0); | ||
379 | } | ||
380 | |||
381 | static inline void control_rx_demodulation_enable(struct cx23885_dev *dev, | ||
382 | bool enable) | ||
383 | { | ||
384 | cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD, | ||
385 | enable ? CNTRL_DMD : 0); | ||
386 | } | ||
387 | |||
388 | static inline void control_rx_s_edge_detection(struct cx23885_dev *dev, | ||
389 | u32 edge_types) | ||
390 | { | ||
391 | cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, | ||
392 | edge_types & CNTRL_EDG_BOTH); | ||
393 | } | ||
394 | |||
395 | static void control_rx_s_carrier_window(struct cx23885_dev *dev, | ||
396 | unsigned int carrier, | ||
397 | unsigned int *carrier_range_low, | ||
398 | unsigned int *carrier_range_high) | ||
399 | { | ||
400 | u32 v; | ||
401 | unsigned int c16 = carrier * 16; | ||
402 | |||
403 | if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { | ||
404 | v = CNTRL_WIN_3_4; | ||
405 | *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); | ||
406 | } else { | ||
407 | v = CNTRL_WIN_3_3; | ||
408 | *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); | ||
409 | } | ||
410 | |||
411 | if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { | ||
412 | v |= CNTRL_WIN_4_3; | ||
413 | *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); | ||
414 | } else { | ||
415 | v |= CNTRL_WIN_3_3; | ||
416 | *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); | ||
417 | } | ||
418 | cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v); | ||
419 | } | ||
420 | |||
421 | static inline void control_tx_polarity_invert(struct cx23885_dev *dev, | ||
422 | bool invert) | ||
423 | { | ||
424 | cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL, | ||
425 | invert ? CNTRL_CPL : 0); | ||
426 | } | ||
427 | |||
428 | /* | ||
429 | * IR Rx & Tx Clock Register helpers | ||
430 | */ | ||
431 | static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev, | ||
432 | unsigned int freq, | ||
433 | u16 *divider) | ||
434 | { | ||
435 | *divider = carrier_freq_to_clock_divider(freq); | ||
436 | cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider); | ||
437 | return clock_divider_to_carrier_freq(*divider); | ||
438 | } | ||
439 | |||
440 | static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev, | ||
441 | unsigned int freq, | ||
442 | u16 *divider) | ||
443 | { | ||
444 | *divider = carrier_freq_to_clock_divider(freq); | ||
445 | cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider); | ||
446 | return clock_divider_to_carrier_freq(*divider); | ||
447 | } | ||
448 | |||
449 | static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns, | ||
450 | u16 *divider) | ||
451 | { | ||
452 | u64 pulse_clocks; | ||
453 | |||
454 | if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS) | ||
455 | ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS; | ||
456 | pulse_clocks = ns_to_pulse_clocks(ns); | ||
457 | *divider = pulse_clocks_to_clock_divider(pulse_clocks); | ||
458 | cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider); | ||
459 | return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); | ||
460 | } | ||
461 | |||
462 | static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns, | ||
463 | u16 *divider) | ||
464 | { | ||
465 | u64 pulse_clocks; | ||
466 | |||
467 | if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS) | ||
468 | ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS; | ||
469 | pulse_clocks = ns_to_pulse_clocks(ns); | ||
470 | *divider = pulse_clocks_to_clock_divider(pulse_clocks); | ||
471 | cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider); | ||
472 | return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * IR Tx Carrier Duty Cycle register helpers | ||
477 | */ | ||
478 | static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev, | ||
479 | unsigned int duty_cycle) | ||
480 | { | ||
481 | u32 n; | ||
482 | n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ | ||
483 | if (n != 0) | ||
484 | n--; | ||
485 | if (n > 15) | ||
486 | n = 15; | ||
487 | cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n); | ||
488 | return DIV_ROUND_CLOSEST((n + 1) * 100, 16); | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * IR Filter Register helpers | ||
493 | */ | ||
494 | static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns) | ||
495 | { | ||
496 | u32 count = ns_to_lpf_count(min_width_ns); | ||
497 | cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count); | ||
498 | return lpf_count_to_ns(count); | ||
499 | } | ||
500 | |||
501 | /* | ||
502 | * IR IRQ Enable Register helpers | ||
503 | */ | ||
504 | static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask) | ||
505 | { | ||
506 | mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); | ||
507 | cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, | ||
508 | ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); | ||
509 | } | ||
510 | |||
511 | static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask) | ||
512 | { | ||
513 | mask &= IRQEN_TSE; | ||
514 | cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask); | ||
515 | } | ||
516 | |||
517 | /* | ||
518 | * V4L2 Subdevice IR Ops | ||
519 | */ | ||
520 | static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status, | ||
521 | bool *handled) | ||
522 | { | ||
523 | struct cx23888_ir_state *state = to_state(sd); | ||
524 | struct cx23885_dev *dev = state->dev; | ||
525 | |||
526 | u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG); | ||
527 | u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG); | ||
528 | u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG); | ||
529 | |||
530 | u32 rx_data[FIFO_RX_DEPTH]; | ||
531 | int i, j, k; | ||
532 | u32 events, v; | ||
533 | int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; | ||
534 | |||
535 | tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ | ||
536 | rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ | ||
537 | rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ | ||
538 | ror = stats & STATS_ROR; /* Rx FIFO Over Run */ | ||
539 | |||
540 | tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ | ||
541 | rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */ | ||
542 | rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ | ||
543 | roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ | ||
544 | |||
545 | *handled = false; | ||
546 | v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n", | ||
547 | tsr ? "tsr" : " ", rsr ? "rsr" : " ", | ||
548 | rto ? "rto" : " ", ror ? "ror" : " ", | ||
549 | stats & STATS_TBY ? "tby" : " ", | ||
550 | stats & STATS_RBY ? "rby" : " "); | ||
551 | |||
552 | v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n", | ||
553 | tse ? "tse" : " ", rse ? "rse" : " ", | ||
554 | rte ? "rte" : " ", roe ? "roe" : " "); | ||
555 | |||
556 | /* | ||
557 | * Transmitter interrupt service | ||
558 | */ | ||
559 | if (tse && tsr) { | ||
560 | /* | ||
561 | * TODO: | ||
562 | * Check the watermark threshold setting | ||
563 | * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo | ||
564 | * Push the data to the hardware FIFO. | ||
565 | * If there was nothing more to send in the tx_kfifo, disable | ||
566 | * the TSR IRQ and notify the v4l2_device. | ||
567 | * If there was something in the tx_kfifo, check the tx_kfifo | ||
568 | * level and notify the v4l2_device, if it is low. | ||
569 | */ | ||
570 | /* For now, inhibit TSR interrupt until Tx is implemented */ | ||
571 | irqenable_tx(dev, 0); | ||
572 | events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; | ||
573 | v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); | ||
574 | *handled = true; | ||
575 | } | ||
576 | |||
577 | /* | ||
578 | * Receiver interrupt service | ||
579 | */ | ||
580 | kror = 0; | ||
581 | if ((rse && rsr) || (rte && rto)) { | ||
582 | /* | ||
583 | * Receive data on RSR to clear the STATS_RSR. | ||
584 | * Receive data on RTO, since we may not have yet hit the RSR | ||
585 | * watermark when we receive the RTO. | ||
586 | */ | ||
587 | for (i = 0, v = FIFO_RX_NDV; | ||
588 | (v & FIFO_RX_NDV) && !kror; i = 0) { | ||
589 | for (j = 0; | ||
590 | (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { | ||
591 | v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG); | ||
592 | rx_data[i++] = v & ~FIFO_RX_NDV; | ||
593 | } | ||
594 | if (i == 0) | ||
595 | break; | ||
596 | j = i * sizeof(u32); | ||
597 | k = kfifo_put(state->rx_kfifo, | ||
598 | (unsigned char *) rx_data, j); | ||
599 | if (k != j) | ||
600 | kror++; /* rx_kfifo over run */ | ||
601 | } | ||
602 | *handled = true; | ||
603 | } | ||
604 | |||
605 | events = 0; | ||
606 | v = 0; | ||
607 | if (kror) { | ||
608 | events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; | ||
609 | v4l2_err(sd, "IR receiver software FIFO overrun\n"); | ||
610 | } | ||
611 | if (roe && ror) { | ||
612 | /* | ||
613 | * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear | ||
614 | * the Rx FIFO Over Run status (STATS_ROR) | ||
615 | */ | ||
616 | v |= CNTRL_RFE; | ||
617 | events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; | ||
618 | v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); | ||
619 | } | ||
620 | if (rte && rto) { | ||
621 | /* | ||
622 | * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear | ||
623 | * the Rx Pulse Width Timer Time Out (STATS_RTO) | ||
624 | */ | ||
625 | v |= CNTRL_RXE; | ||
626 | events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; | ||
627 | } | ||
628 | if (v) { | ||
629 | /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */ | ||
630 | cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v); | ||
631 | cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl); | ||
632 | *handled = true; | ||
633 | } | ||
634 | if (kfifo_len(state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2) | ||
635 | events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; | ||
636 | |||
637 | if (events) | ||
638 | v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); | ||
639 | return 0; | ||
640 | } | ||
641 | |||
642 | /* Receiver */ | ||
643 | static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, | ||
644 | ssize_t *num) | ||
645 | { | ||
646 | struct cx23888_ir_state *state = to_state(sd); | ||
647 | bool invert = (bool) atomic_read(&state->rx_invert); | ||
648 | u16 divider = (u16) atomic_read(&state->rxclk_divider); | ||
649 | |||
650 | unsigned int i, n; | ||
651 | u32 *p; | ||
652 | u32 u, v; | ||
653 | |||
654 | n = count / sizeof(u32) * sizeof(u32); | ||
655 | if (n == 0) { | ||
656 | *num = 0; | ||
657 | return 0; | ||
658 | } | ||
659 | |||
660 | n = kfifo_get(state->rx_kfifo, buf, n); | ||
661 | |||
662 | n /= sizeof(u32); | ||
663 | *num = n * sizeof(u32); | ||
664 | |||
665 | for (p = (u32 *) buf, i = 0; i < n; p++, i++) { | ||
666 | if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { | ||
667 | *p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END; | ||
668 | v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n"); | ||
669 | continue; | ||
670 | } | ||
671 | |||
672 | u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0; | ||
673 | if (invert) | ||
674 | u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK; | ||
675 | |||
676 | v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX), | ||
677 | divider); | ||
678 | if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS) | ||
679 | v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1; | ||
680 | |||
681 | *p = u | v; | ||
682 | |||
683 | v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s\n", | ||
684 | v, u ? "mark" : "space"); | ||
685 | } | ||
686 | return 0; | ||
687 | } | ||
688 | |||
689 | static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd, | ||
690 | struct v4l2_subdev_ir_parameters *p) | ||
691 | { | ||
692 | struct cx23888_ir_state *state = to_state(sd); | ||
693 | mutex_lock(&state->rx_params_lock); | ||
694 | memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters)); | ||
695 | mutex_unlock(&state->rx_params_lock); | ||
696 | return 0; | ||
697 | } | ||
698 | |||
699 | static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd) | ||
700 | { | ||
701 | struct cx23888_ir_state *state = to_state(sd); | ||
702 | struct cx23885_dev *dev = state->dev; | ||
703 | |||
704 | mutex_lock(&state->rx_params_lock); | ||
705 | |||
706 | /* Disable or slow down all IR Rx circuits and counters */ | ||
707 | irqenable_rx(dev, 0); | ||
708 | control_rx_enable(dev, false); | ||
709 | control_rx_demodulation_enable(dev, false); | ||
710 | control_rx_s_edge_detection(dev, CNTRL_EDG_NONE); | ||
711 | filter_rx_s_min_width(dev, 0); | ||
712 | cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD); | ||
713 | |||
714 | state->rx_params.shutdown = true; | ||
715 | |||
716 | mutex_unlock(&state->rx_params_lock); | ||
717 | return 0; | ||
718 | } | ||
719 | |||
720 | static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd, | ||
721 | struct v4l2_subdev_ir_parameters *p) | ||
722 | { | ||
723 | struct cx23888_ir_state *state = to_state(sd); | ||
724 | struct cx23885_dev *dev = state->dev; | ||
725 | struct v4l2_subdev_ir_parameters *o = &state->rx_params; | ||
726 | u16 rxclk_divider; | ||
727 | |||
728 | if (p->shutdown) | ||
729 | return cx23888_ir_rx_shutdown(sd); | ||
730 | |||
731 | if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) | ||
732 | return -ENOSYS; | ||
733 | |||
734 | mutex_lock(&state->rx_params_lock); | ||
735 | |||
736 | o->shutdown = p->shutdown; | ||
737 | |||
738 | o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; | ||
739 | |||
740 | o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32); | ||
741 | |||
742 | /* Before we tweak the hardware, we have to disable the receiver */ | ||
743 | irqenable_rx(dev, 0); | ||
744 | control_rx_enable(dev, false); | ||
745 | |||
746 | control_rx_demodulation_enable(dev, p->modulation); | ||
747 | o->modulation = p->modulation; | ||
748 | |||
749 | if (p->modulation) { | ||
750 | p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq, | ||
751 | &rxclk_divider); | ||
752 | |||
753 | o->carrier_freq = p->carrier_freq; | ||
754 | |||
755 | o->duty_cycle = p->duty_cycle = 50; | ||
756 | |||
757 | control_rx_s_carrier_window(dev, p->carrier_freq, | ||
758 | &p->carrier_range_lower, | ||
759 | &p->carrier_range_upper); | ||
760 | o->carrier_range_lower = p->carrier_range_lower; | ||
761 | o->carrier_range_upper = p->carrier_range_upper; | ||
762 | } else { | ||
763 | p->max_pulse_width = | ||
764 | rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width, | ||
765 | &rxclk_divider); | ||
766 | o->max_pulse_width = p->max_pulse_width; | ||
767 | } | ||
768 | atomic_set(&state->rxclk_divider, rxclk_divider); | ||
769 | |||
770 | p->noise_filter_min_width = | ||
771 | filter_rx_s_min_width(dev, p->noise_filter_min_width); | ||
772 | o->noise_filter_min_width = p->noise_filter_min_width; | ||
773 | |||
774 | p->resolution = clock_divider_to_resolution(rxclk_divider); | ||
775 | o->resolution = p->resolution; | ||
776 | |||
777 | /* FIXME - make this dependent on resolution for better performance */ | ||
778 | control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL); | ||
779 | |||
780 | control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH); | ||
781 | |||
782 | o->invert = p->invert; | ||
783 | atomic_set(&state->rx_invert, p->invert); | ||
784 | |||
785 | o->interrupt_enable = p->interrupt_enable; | ||
786 | o->enable = p->enable; | ||
787 | if (p->enable) { | ||
788 | kfifo_reset(state->rx_kfifo); | ||
789 | if (p->interrupt_enable) | ||
790 | irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); | ||
791 | control_rx_enable(dev, p->enable); | ||
792 | } | ||
793 | |||
794 | mutex_unlock(&state->rx_params_lock); | ||
795 | return 0; | ||
796 | } | ||
797 | |||
798 | /* Transmitter */ | ||
799 | static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, | ||
800 | ssize_t *num) | ||
801 | { | ||
802 | struct cx23888_ir_state *state = to_state(sd); | ||
803 | struct cx23885_dev *dev = state->dev; | ||
804 | /* For now enable the Tx FIFO Service interrupt & pretend we did work */ | ||
805 | irqenable_tx(dev, IRQEN_TSE); | ||
806 | *num = count; | ||
807 | return 0; | ||
808 | } | ||
809 | |||
810 | static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd, | ||
811 | struct v4l2_subdev_ir_parameters *p) | ||
812 | { | ||
813 | struct cx23888_ir_state *state = to_state(sd); | ||
814 | mutex_lock(&state->tx_params_lock); | ||
815 | memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters)); | ||
816 | mutex_unlock(&state->tx_params_lock); | ||
817 | return 0; | ||
818 | } | ||
819 | |||
820 | static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd) | ||
821 | { | ||
822 | struct cx23888_ir_state *state = to_state(sd); | ||
823 | struct cx23885_dev *dev = state->dev; | ||
824 | |||
825 | mutex_lock(&state->tx_params_lock); | ||
826 | |||
827 | /* Disable or slow down all IR Tx circuits and counters */ | ||
828 | irqenable_tx(dev, 0); | ||
829 | control_tx_enable(dev, false); | ||
830 | control_tx_modulation_enable(dev, false); | ||
831 | cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD); | ||
832 | |||
833 | state->tx_params.shutdown = true; | ||
834 | |||
835 | mutex_unlock(&state->tx_params_lock); | ||
836 | return 0; | ||
837 | } | ||
838 | |||
839 | static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd, | ||
840 | struct v4l2_subdev_ir_parameters *p) | ||
841 | { | ||
842 | struct cx23888_ir_state *state = to_state(sd); | ||
843 | struct cx23885_dev *dev = state->dev; | ||
844 | struct v4l2_subdev_ir_parameters *o = &state->tx_params; | ||
845 | u16 txclk_divider; | ||
846 | |||
847 | if (p->shutdown) | ||
848 | return cx23888_ir_tx_shutdown(sd); | ||
849 | |||
850 | if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) | ||
851 | return -ENOSYS; | ||
852 | |||
853 | mutex_lock(&state->tx_params_lock); | ||
854 | |||
855 | o->shutdown = p->shutdown; | ||
856 | |||
857 | o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; | ||
858 | |||
859 | o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32); | ||
860 | |||
861 | /* Before we tweak the hardware, we have to disable the transmitter */ | ||
862 | irqenable_tx(dev, 0); | ||
863 | control_tx_enable(dev, false); | ||
864 | |||
865 | control_tx_modulation_enable(dev, p->modulation); | ||
866 | o->modulation = p->modulation; | ||
867 | |||
868 | if (p->modulation) { | ||
869 | p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq, | ||
870 | &txclk_divider); | ||
871 | o->carrier_freq = p->carrier_freq; | ||
872 | |||
873 | p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle); | ||
874 | o->duty_cycle = p->duty_cycle; | ||
875 | } else { | ||
876 | p->max_pulse_width = | ||
877 | txclk_tx_s_max_pulse_width(dev, p->max_pulse_width, | ||
878 | &txclk_divider); | ||
879 | o->max_pulse_width = p->max_pulse_width; | ||
880 | } | ||
881 | atomic_set(&state->txclk_divider, txclk_divider); | ||
882 | |||
883 | p->resolution = clock_divider_to_resolution(txclk_divider); | ||
884 | o->resolution = p->resolution; | ||
885 | |||
886 | /* FIXME - make this dependent on resolution for better performance */ | ||
887 | control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY); | ||
888 | |||
889 | control_tx_polarity_invert(dev, p->invert); | ||
890 | o->invert = p->invert; | ||
891 | |||
892 | o->interrupt_enable = p->interrupt_enable; | ||
893 | o->enable = p->enable; | ||
894 | if (p->enable) { | ||
895 | kfifo_reset(state->tx_kfifo); | ||
896 | if (p->interrupt_enable) | ||
897 | irqenable_tx(dev, IRQEN_TSE); | ||
898 | control_tx_enable(dev, p->enable); | ||
899 | } | ||
900 | |||
901 | mutex_unlock(&state->tx_params_lock); | ||
902 | return 0; | ||
903 | } | ||
904 | |||
905 | |||
906 | /* | ||
907 | * V4L2 Subdevice Core Ops | ||
908 | */ | ||
909 | static int cx23888_ir_log_status(struct v4l2_subdev *sd) | ||
910 | { | ||
911 | struct cx23888_ir_state *state = to_state(sd); | ||
912 | struct cx23885_dev *dev = state->dev; | ||
913 | char *s; | ||
914 | int i, j; | ||
915 | |||
916 | u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG); | ||
917 | u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD; | ||
918 | u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD; | ||
919 | u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC; | ||
920 | u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG); | ||
921 | u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG); | ||
922 | u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF; | ||
923 | |||
924 | v4l2_info(sd, "IR Receiver:\n"); | ||
925 | v4l2_info(sd, "\tEnabled: %s\n", | ||
926 | cntrl & CNTRL_RXE ? "yes" : "no"); | ||
927 | v4l2_info(sd, "\tDemodulation from a carrier: %s\n", | ||
928 | cntrl & CNTRL_DMD ? "enabled" : "disabled"); | ||
929 | v4l2_info(sd, "\tFIFO: %s\n", | ||
930 | cntrl & CNTRL_RFE ? "enabled" : "disabled"); | ||
931 | switch (cntrl & CNTRL_EDG) { | ||
932 | case CNTRL_EDG_NONE: | ||
933 | s = "disabled"; | ||
934 | break; | ||
935 | case CNTRL_EDG_FALL: | ||
936 | s = "falling edge"; | ||
937 | break; | ||
938 | case CNTRL_EDG_RISE: | ||
939 | s = "rising edge"; | ||
940 | break; | ||
941 | case CNTRL_EDG_BOTH: | ||
942 | s = "rising & falling edges"; | ||
943 | break; | ||
944 | default: | ||
945 | s = "??? edge"; | ||
946 | break; | ||
947 | } | ||
948 | v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); | ||
949 | v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", | ||
950 | cntrl & CNTRL_R ? "not loaded" : "overflow marker"); | ||
951 | v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", | ||
952 | cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); | ||
953 | v4l2_info(sd, "\tLoopback mode: %s\n", | ||
954 | cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); | ||
955 | if (cntrl & CNTRL_DMD) { | ||
956 | v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", | ||
957 | clock_divider_to_carrier_freq(rxclk)); | ||
958 | switch (cntrl & CNTRL_WIN) { | ||
959 | case CNTRL_WIN_3_3: | ||
960 | i = 3; | ||
961 | j = 3; | ||
962 | break; | ||
963 | case CNTRL_WIN_4_3: | ||
964 | i = 4; | ||
965 | j = 3; | ||
966 | break; | ||
967 | case CNTRL_WIN_3_4: | ||
968 | i = 3; | ||
969 | j = 4; | ||
970 | break; | ||
971 | case CNTRL_WIN_4_4: | ||
972 | i = 4; | ||
973 | j = 4; | ||
974 | break; | ||
975 | default: | ||
976 | i = 0; | ||
977 | j = 0; | ||
978 | break; | ||
979 | } | ||
980 | v4l2_info(sd, "\tNext carrier edge window: 16 clocks " | ||
981 | "-%1d/+%1d, %u to %u Hz\n", i, j, | ||
982 | clock_divider_to_freq(rxclk, 16 + j), | ||
983 | clock_divider_to_freq(rxclk, 16 - i)); | ||
984 | } else { | ||
985 | v4l2_info(sd, "\tMax measurable pulse width: %u us, " | ||
986 | "%llu ns\n", | ||
987 | pulse_width_count_to_us(FIFO_RXTX, rxclk), | ||
988 | pulse_width_count_to_ns(FIFO_RXTX, rxclk)); | ||
989 | } | ||
990 | v4l2_info(sd, "\tLow pass filter: %s\n", | ||
991 | filtr ? "enabled" : "disabled"); | ||
992 | if (filtr) | ||
993 | v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, " | ||
994 | "%u ns\n", | ||
995 | lpf_count_to_us(filtr), | ||
996 | lpf_count_to_ns(filtr)); | ||
997 | v4l2_info(sd, "\tPulse width timer timed-out: %s\n", | ||
998 | stats & STATS_RTO ? "yes" : "no"); | ||
999 | v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", | ||
1000 | irqen & IRQEN_RTE ? "enabled" : "disabled"); | ||
1001 | v4l2_info(sd, "\tFIFO overrun: %s\n", | ||
1002 | stats & STATS_ROR ? "yes" : "no"); | ||
1003 | v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", | ||
1004 | irqen & IRQEN_ROE ? "enabled" : "disabled"); | ||
1005 | v4l2_info(sd, "\tBusy: %s\n", | ||
1006 | stats & STATS_RBY ? "yes" : "no"); | ||
1007 | v4l2_info(sd, "\tFIFO service requested: %s\n", | ||
1008 | stats & STATS_RSR ? "yes" : "no"); | ||
1009 | v4l2_info(sd, "\tFIFO service request interrupt: %s\n", | ||
1010 | irqen & IRQEN_RSE ? "enabled" : "disabled"); | ||
1011 | |||
1012 | v4l2_info(sd, "IR Transmitter:\n"); | ||
1013 | v4l2_info(sd, "\tEnabled: %s\n", | ||
1014 | cntrl & CNTRL_TXE ? "yes" : "no"); | ||
1015 | v4l2_info(sd, "\tModulation onto a carrier: %s\n", | ||
1016 | cntrl & CNTRL_MOD ? "enabled" : "disabled"); | ||
1017 | v4l2_info(sd, "\tFIFO: %s\n", | ||
1018 | cntrl & CNTRL_TFE ? "enabled" : "disabled"); | ||
1019 | v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", | ||
1020 | cntrl & CNTRL_TIC ? "not empty" : "half full or less"); | ||
1021 | v4l2_info(sd, "\tSignal polarity: %s\n", | ||
1022 | cntrl & CNTRL_CPL ? "0:mark 1:space" : "0:space 1:mark"); | ||
1023 | if (cntrl & CNTRL_MOD) { | ||
1024 | v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", | ||
1025 | clock_divider_to_carrier_freq(txclk)); | ||
1026 | v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", | ||
1027 | cduty + 1); | ||
1028 | } else { | ||
1029 | v4l2_info(sd, "\tMax pulse width: %u us, " | ||
1030 | "%llu ns\n", | ||
1031 | pulse_width_count_to_us(FIFO_RXTX, txclk), | ||
1032 | pulse_width_count_to_ns(FIFO_RXTX, txclk)); | ||
1033 | } | ||
1034 | v4l2_info(sd, "\tBusy: %s\n", | ||
1035 | stats & STATS_TBY ? "yes" : "no"); | ||
1036 | v4l2_info(sd, "\tFIFO service requested: %s\n", | ||
1037 | stats & STATS_TSR ? "yes" : "no"); | ||
1038 | v4l2_info(sd, "\tFIFO service request interrupt: %s\n", | ||
1039 | irqen & IRQEN_TSE ? "enabled" : "disabled"); | ||
1040 | |||
1041 | return 0; | ||
1042 | } | ||
1043 | |||
1044 | static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match) | ||
1045 | { | ||
1046 | return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2; | ||
1047 | } | ||
1048 | |||
1049 | static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd, | ||
1050 | struct v4l2_dbg_chip_ident *chip) | ||
1051 | { | ||
1052 | struct cx23888_ir_state *state = to_state(sd); | ||
1053 | |||
1054 | if (cx23888_ir_dbg_match(&chip->match)) { | ||
1055 | chip->ident = state->id; | ||
1056 | chip->revision = state->rev; | ||
1057 | } | ||
1058 | return 0; | ||
1059 | } | ||
1060 | |||
1061 | #ifdef CONFIG_VIDEO_ADV_DEBUG | ||
1062 | static int cx23888_ir_g_register(struct v4l2_subdev *sd, | ||
1063 | struct v4l2_dbg_register *reg) | ||
1064 | { | ||
1065 | struct cx23888_ir_state *state = to_state(sd); | ||
1066 | u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg; | ||
1067 | |||
1068 | if (!cx23888_ir_dbg_match(®->match)) | ||
1069 | return -EINVAL; | ||
1070 | if ((addr & 0x3) != 0) | ||
1071 | return -EINVAL; | ||
1072 | if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG) | ||
1073 | return -EINVAL; | ||
1074 | if (!capable(CAP_SYS_ADMIN)) | ||
1075 | return -EPERM; | ||
1076 | reg->size = 4; | ||
1077 | reg->val = cx23888_ir_read4(state->dev, addr); | ||
1078 | return 0; | ||
1079 | } | ||
1080 | |||
1081 | static int cx23888_ir_s_register(struct v4l2_subdev *sd, | ||
1082 | struct v4l2_dbg_register *reg) | ||
1083 | { | ||
1084 | struct cx23888_ir_state *state = to_state(sd); | ||
1085 | u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg; | ||
1086 | |||
1087 | if (!cx23888_ir_dbg_match(®->match)) | ||
1088 | return -EINVAL; | ||
1089 | if ((addr & 0x3) != 0) | ||
1090 | return -EINVAL; | ||
1091 | if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG) | ||
1092 | return -EINVAL; | ||
1093 | if (!capable(CAP_SYS_ADMIN)) | ||
1094 | return -EPERM; | ||
1095 | cx23888_ir_write4(state->dev, addr, reg->val); | ||
1096 | return 0; | ||
1097 | } | ||
1098 | #endif | ||
1099 | |||
1100 | static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = { | ||
1101 | .g_chip_ident = cx23888_ir_g_chip_ident, | ||
1102 | .log_status = cx23888_ir_log_status, | ||
1103 | #ifdef CONFIG_VIDEO_ADV_DEBUG | ||
1104 | .g_register = cx23888_ir_g_register, | ||
1105 | .s_register = cx23888_ir_s_register, | ||
1106 | #endif | ||
1107 | }; | ||
1108 | |||
1109 | static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = { | ||
1110 | .interrupt_service_routine = cx23888_ir_irq_handler, | ||
1111 | |||
1112 | .rx_read = cx23888_ir_rx_read, | ||
1113 | .rx_g_parameters = cx23888_ir_rx_g_parameters, | ||
1114 | .rx_s_parameters = cx23888_ir_rx_s_parameters, | ||
1115 | |||
1116 | .tx_write = cx23888_ir_tx_write, | ||
1117 | .tx_g_parameters = cx23888_ir_tx_g_parameters, | ||
1118 | .tx_s_parameters = cx23888_ir_tx_s_parameters, | ||
1119 | }; | ||
1120 | |||
1121 | static const struct v4l2_subdev_ops cx23888_ir_controller_ops = { | ||
1122 | .core = &cx23888_ir_core_ops, | ||
1123 | .ir = &cx23888_ir_ir_ops, | ||
1124 | }; | ||
1125 | |||
1126 | static const struct v4l2_subdev_ir_parameters default_rx_params = { | ||
1127 | .bytes_per_data_element = sizeof(u32), | ||
1128 | .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, | ||
1129 | |||
1130 | .enable = false, | ||
1131 | .interrupt_enable = false, | ||
1132 | .shutdown = true, | ||
1133 | |||
1134 | .modulation = true, | ||
1135 | .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */ | ||
1136 | |||
1137 | /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ | ||
1138 | /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ | ||
1139 | .noise_filter_min_width = 333333, /* ns */ | ||
1140 | .carrier_range_lower = 35000, | ||
1141 | .carrier_range_upper = 37000, | ||
1142 | .invert = false, | ||
1143 | }; | ||
1144 | |||
1145 | static const struct v4l2_subdev_ir_parameters default_tx_params = { | ||
1146 | .bytes_per_data_element = sizeof(u32), | ||
1147 | .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, | ||
1148 | |||
1149 | .enable = false, | ||
1150 | .interrupt_enable = false, | ||
1151 | .shutdown = true, | ||
1152 | |||
1153 | .modulation = true, | ||
1154 | .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ | ||
1155 | .duty_cycle = 25, /* 25 % - RC-5 carrier */ | ||
1156 | .invert = false, | ||
1157 | }; | ||
1158 | |||
1159 | int cx23888_ir_probe(struct cx23885_dev *dev) | ||
1160 | { | ||
1161 | struct cx23888_ir_state *state; | ||
1162 | struct v4l2_subdev *sd; | ||
1163 | struct v4l2_subdev_ir_parameters default_params; | ||
1164 | int ret; | ||
1165 | |||
1166 | state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL); | ||
1167 | if (state == NULL) | ||
1168 | return -ENOMEM; | ||
1169 | |||
1170 | spin_lock_init(&state->rx_kfifo_lock); | ||
1171 | state->rx_kfifo = kfifo_alloc(CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL, | ||
1172 | &state->rx_kfifo_lock); | ||
1173 | if (state->rx_kfifo == NULL) | ||
1174 | return -ENOMEM; | ||
1175 | |||
1176 | spin_lock_init(&state->tx_kfifo_lock); | ||
1177 | state->tx_kfifo = kfifo_alloc(CX23888_IR_TX_KFIFO_SIZE, GFP_KERNEL, | ||
1178 | &state->tx_kfifo_lock); | ||
1179 | if (state->tx_kfifo == NULL) { | ||
1180 | kfifo_free(state->rx_kfifo); | ||
1181 | return -ENOMEM; | ||
1182 | } | ||
1183 | |||
1184 | state->dev = dev; | ||
1185 | state->id = V4L2_IDENT_CX23888_IR; | ||
1186 | state->rev = 0; | ||
1187 | sd = &state->sd; | ||
1188 | |||
1189 | v4l2_subdev_init(sd, &cx23888_ir_controller_ops); | ||
1190 | v4l2_set_subdevdata(sd, state); | ||
1191 | /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */ | ||
1192 | snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name); | ||
1193 | sd->grp_id = CX23885_HW_888_IR; | ||
1194 | |||
1195 | ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd); | ||
1196 | if (ret == 0) { | ||
1197 | /* | ||
1198 | * Ensure no interrupts arrive from '888 specific conditions, | ||
1199 | * since we ignore them in this driver to have commonality with | ||
1200 | * similar IR controller cores. | ||
1201 | */ | ||
1202 | cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0); | ||
1203 | |||
1204 | mutex_init(&state->rx_params_lock); | ||
1205 | memcpy(&default_params, &default_rx_params, | ||
1206 | sizeof(struct v4l2_subdev_ir_parameters)); | ||
1207 | v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); | ||
1208 | |||
1209 | mutex_init(&state->tx_params_lock); | ||
1210 | memcpy(&default_params, &default_tx_params, | ||
1211 | sizeof(struct v4l2_subdev_ir_parameters)); | ||
1212 | v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); | ||
1213 | } else { | ||
1214 | kfifo_free(state->rx_kfifo); | ||
1215 | kfifo_free(state->tx_kfifo); | ||
1216 | } | ||
1217 | return ret; | ||
1218 | } | ||
1219 | |||
1220 | int cx23888_ir_remove(struct cx23885_dev *dev) | ||
1221 | { | ||
1222 | struct v4l2_subdev *sd; | ||
1223 | struct cx23888_ir_state *state; | ||
1224 | |||
1225 | sd = cx23885_find_hw(dev, CX23885_HW_888_IR); | ||
1226 | if (sd == NULL) | ||
1227 | return -ENODEV; | ||
1228 | |||
1229 | cx23888_ir_rx_shutdown(sd); | ||
1230 | cx23888_ir_tx_shutdown(sd); | ||
1231 | |||
1232 | state = to_state(sd); | ||
1233 | v4l2_device_unregister_subdev(sd); | ||
1234 | kfifo_free(state->rx_kfifo); | ||
1235 | kfifo_free(state->tx_kfifo); | ||
1236 | kfree(state); | ||
1237 | /* Nothing more to free() as state held the actual v4l2_subdev object */ | ||
1238 | return 0; | ||
1239 | } | ||