diff options
Diffstat (limited to 'drivers/media/dvb/b2c2/skystar2.c')
-rw-r--r-- | drivers/media/dvb/b2c2/skystar2.c | 2644 |
1 files changed, 0 insertions, 2644 deletions
diff --git a/drivers/media/dvb/b2c2/skystar2.c b/drivers/media/dvb/b2c2/skystar2.c deleted file mode 100644 index acbc4c34f72a..000000000000 --- a/drivers/media/dvb/b2c2/skystar2.c +++ /dev/null | |||
@@ -1,2644 +0,0 @@ | |||
1 | /* | ||
2 | * skystar2.c - driver for the Technisat SkyStar2 PCI DVB card | ||
3 | * based on the FlexCopII by B2C2,Inc. | ||
4 | * | ||
5 | * Copyright (C) 2003 Vadim Catana, skystar@moldova.cc | ||
6 | * | ||
7 | * FIX: DISEQC Tone Burst in flexcop_diseqc_ioctl() | ||
8 | * FIX: FULL soft DiSEqC for skystar2 (FlexCopII rev 130) VP310 equipped | ||
9 | * Vincenzo Di Massa, hawk.it at tiscalinet.it | ||
10 | * | ||
11 | * Converted to Linux coding style | ||
12 | * Misc reorganization, polishing, restyling | ||
13 | * Roberto Ragusa, skystar2-c5b8 at robertoragusa dot it | ||
14 | * | ||
15 | * Added hardware filtering support, | ||
16 | * Niklas Peinecke, peinecke at gdv.uni-hannover.de | ||
17 | * | ||
18 | * | ||
19 | * This program is free software; you can redistribute it and/or | ||
20 | * modify it under the terms of the GNU Lesser General Public License | ||
21 | * as published by the Free Software Foundation; either version 2.1 | ||
22 | * of the License, or (at your option) any later version. | ||
23 | * | ||
24 | * This program is distributed in the hope that it will be useful, | ||
25 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
26 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
27 | * GNU General Public License for more details. | ||
28 | * | ||
29 | * You should have received a copy of the GNU Lesser General Public License | ||
30 | * along with this program; if not, write to the Free Software | ||
31 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
32 | */ | ||
33 | |||
34 | #include <linux/module.h> | ||
35 | #include <linux/moduleparam.h> | ||
36 | #include <linux/delay.h> | ||
37 | #include <linux/pci.h> | ||
38 | #include <linux/init.h> | ||
39 | #include <linux/version.h> | ||
40 | |||
41 | #include <asm/io.h> | ||
42 | |||
43 | #include "dvb_frontend.h" | ||
44 | |||
45 | #include <linux/dvb/frontend.h> | ||
46 | #include <linux/dvb/dmx.h> | ||
47 | #include "dvb_demux.h" | ||
48 | #include "dmxdev.h" | ||
49 | #include "dvb_filter.h" | ||
50 | #include "dvbdev.h" | ||
51 | #include "demux.h" | ||
52 | #include "dvb_net.h" | ||
53 | #include "stv0299.h" | ||
54 | #include "mt352.h" | ||
55 | #include "mt312.h" | ||
56 | #include "nxt2002.h" | ||
57 | |||
58 | static int debug; | ||
59 | static int enable_hw_filters = 2; | ||
60 | |||
61 | module_param(debug, int, 0644); | ||
62 | MODULE_PARM_DESC(debug, "Set debugging level (0 = default, 1 = most messages, 2 = all messages)."); | ||
63 | module_param(enable_hw_filters, int, 0444); | ||
64 | MODULE_PARM_DESC(enable_hw_filters, "enable hardware filters: supported values: 0 (none), 1, 2"); | ||
65 | |||
66 | #define dprintk(x...) do { if (debug>=1) printk(x); } while (0) | ||
67 | #define ddprintk(x...) do { if (debug>=2) printk(x); } while (0) | ||
68 | |||
69 | #define SIZE_OF_BUF_DMA1 0x3ac00 | ||
70 | #define SIZE_OF_BUF_DMA2 0x758 | ||
71 | |||
72 | #define MAX_N_HW_FILTERS (6+32) | ||
73 | #define N_PID_SLOTS 256 | ||
74 | |||
75 | struct dmaq { | ||
76 | u32 bus_addr; | ||
77 | u32 head; | ||
78 | u32 tail; | ||
79 | u32 buffer_size; | ||
80 | u8 *buffer; | ||
81 | }; | ||
82 | |||
83 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9) | ||
84 | #define __iomem | ||
85 | #endif | ||
86 | |||
87 | struct adapter { | ||
88 | struct pci_dev *pdev; | ||
89 | |||
90 | u8 card_revision; | ||
91 | u32 b2c2_revision; | ||
92 | u32 pid_filter_max; | ||
93 | u32 mac_filter_max; | ||
94 | u32 irq; | ||
95 | void __iomem *io_mem; | ||
96 | unsigned long io_port; | ||
97 | u8 mac_addr[8]; | ||
98 | u32 dw_sram_type; | ||
99 | |||
100 | struct dvb_adapter dvb_adapter; | ||
101 | struct dvb_demux demux; | ||
102 | struct dmxdev dmxdev; | ||
103 | struct dmx_frontend hw_frontend; | ||
104 | struct dmx_frontend mem_frontend; | ||
105 | struct i2c_adapter i2c_adap; | ||
106 | struct dvb_net dvbnet; | ||
107 | |||
108 | struct semaphore i2c_sem; | ||
109 | |||
110 | struct dmaq dmaq1; | ||
111 | struct dmaq dmaq2; | ||
112 | |||
113 | u32 dma_ctrl; | ||
114 | u32 dma_status; | ||
115 | |||
116 | int capturing; | ||
117 | |||
118 | spinlock_t lock; | ||
119 | |||
120 | int useable_hw_filters; | ||
121 | u16 hw_pids[MAX_N_HW_FILTERS]; | ||
122 | u16 pid_list[N_PID_SLOTS]; | ||
123 | int pid_rc[N_PID_SLOTS]; // ref counters for the pids | ||
124 | int pid_count; | ||
125 | int whole_bandwidth_count; | ||
126 | u32 mac_filter; | ||
127 | |||
128 | struct dvb_frontend* fe; | ||
129 | int (*fe_sleep)(struct dvb_frontend* fe); | ||
130 | }; | ||
131 | |||
132 | #define write_reg_dw(adapter,reg,value) writel(value, adapter->io_mem + reg) | ||
133 | #define read_reg_dw(adapter,reg) readl(adapter->io_mem + reg) | ||
134 | |||
135 | static void write_reg_bitfield(struct adapter *adapter, u32 reg, u32 zeromask, u32 orvalue) | ||
136 | { | ||
137 | u32 tmp; | ||
138 | |||
139 | tmp = read_reg_dw(adapter, reg); | ||
140 | tmp = (tmp & ~zeromask) | orvalue; | ||
141 | write_reg_dw(adapter, reg, tmp); | ||
142 | } | ||
143 | |||
144 | /* i2c functions */ | ||
145 | static int i2c_main_write_for_flex2(struct adapter *adapter, u32 command, u8 *buf, int retries) | ||
146 | { | ||
147 | int i; | ||
148 | u32 value; | ||
149 | |||
150 | write_reg_dw(adapter, 0x100, 0); | ||
151 | write_reg_dw(adapter, 0x100, command); | ||
152 | |||
153 | for (i = 0; i < retries; i++) { | ||
154 | value = read_reg_dw(adapter, 0x100); | ||
155 | |||
156 | if ((value & 0x40000000) == 0) { | ||
157 | if ((value & 0x81000000) == 0x80000000) { | ||
158 | if (buf != 0) | ||
159 | *buf = (value >> 0x10) & 0xff; | ||
160 | |||
161 | return 1; | ||
162 | } | ||
163 | } else { | ||
164 | write_reg_dw(adapter, 0x100, 0); | ||
165 | write_reg_dw(adapter, 0x100, command); | ||
166 | } | ||
167 | } | ||
168 | |||
169 | return 0; | ||
170 | } | ||
171 | |||
172 | /* device = 0x10000000 for tuner, 0x20000000 for eeprom */ | ||
173 | static void i2c_main_setup(u32 device, u32 chip_addr, u8 op, u8 addr, u32 value, u32 len, u32 *command) | ||
174 | { | ||
175 | *command = device | ((len - 1) << 26) | (value << 16) | (addr << 8) | chip_addr; | ||
176 | |||
177 | if (op != 0) | ||
178 | *command = *command | 0x03000000; | ||
179 | else | ||
180 | *command = *command | 0x01000000; | ||
181 | } | ||
182 | |||
183 | static int flex_i2c_read4(struct adapter *adapter, u32 device, u32 chip_addr, u16 addr, u8 *buf, u8 len) | ||
184 | { | ||
185 | u32 command; | ||
186 | u32 value; | ||
187 | |||
188 | int result, i; | ||
189 | |||
190 | i2c_main_setup(device, chip_addr, 1, addr, 0, len, &command); | ||
191 | |||
192 | result = i2c_main_write_for_flex2(adapter, command, buf, 100000); | ||
193 | |||
194 | if ((result & 0xff) != 0) { | ||
195 | if (len > 1) { | ||
196 | value = read_reg_dw(adapter, 0x104); | ||
197 | |||
198 | for (i = 1; i < len; i++) { | ||
199 | buf[i] = value & 0xff; | ||
200 | value = value >> 8; | ||
201 | } | ||
202 | } | ||
203 | } | ||
204 | |||
205 | return result; | ||
206 | } | ||
207 | |||
208 | static int flex_i2c_write4(struct adapter *adapter, u32 device, u32 chip_addr, u32 addr, u8 *buf, u8 len) | ||
209 | { | ||
210 | u32 command; | ||
211 | u32 value; | ||
212 | int i; | ||
213 | |||
214 | if (len > 1) { | ||
215 | value = 0; | ||
216 | |||
217 | for (i = len; i > 1; i--) { | ||
218 | value = value << 8; | ||
219 | value = value | buf[i - 1]; | ||
220 | } | ||
221 | |||
222 | write_reg_dw(adapter, 0x104, value); | ||
223 | } | ||
224 | |||
225 | i2c_main_setup(device, chip_addr, 0, addr, buf[0], len, &command); | ||
226 | |||
227 | return i2c_main_write_for_flex2(adapter, command, NULL, 100000); | ||
228 | } | ||
229 | |||
230 | static void fixchipaddr(u32 device, u32 bus, u32 addr, u32 *ret) | ||
231 | { | ||
232 | if (device == 0x20000000) | ||
233 | *ret = bus | ((addr >> 8) & 3); | ||
234 | else | ||
235 | *ret = bus; | ||
236 | } | ||
237 | |||
238 | static u32 flex_i2c_read(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len) | ||
239 | { | ||
240 | u32 chipaddr; | ||
241 | u32 bytes_to_transfer; | ||
242 | u8 *start; | ||
243 | |||
244 | ddprintk("%s:\n", __FUNCTION__); | ||
245 | |||
246 | start = buf; | ||
247 | |||
248 | while (len != 0) { | ||
249 | bytes_to_transfer = len; | ||
250 | |||
251 | if (bytes_to_transfer > 4) | ||
252 | bytes_to_transfer = 4; | ||
253 | |||
254 | fixchipaddr(device, bus, addr, &chipaddr); | ||
255 | |||
256 | if (flex_i2c_read4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) | ||
257 | return buf - start; | ||
258 | |||
259 | buf = buf + bytes_to_transfer; | ||
260 | addr = addr + bytes_to_transfer; | ||
261 | len = len - bytes_to_transfer; | ||
262 | }; | ||
263 | |||
264 | return buf - start; | ||
265 | } | ||
266 | |||
267 | static u32 flex_i2c_write(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len) | ||
268 | { | ||
269 | u32 chipaddr; | ||
270 | u32 bytes_to_transfer; | ||
271 | u8 *start; | ||
272 | |||
273 | ddprintk("%s:\n", __FUNCTION__); | ||
274 | |||
275 | start = buf; | ||
276 | |||
277 | while (len != 0) { | ||
278 | bytes_to_transfer = len; | ||
279 | |||
280 | if (bytes_to_transfer > 4) | ||
281 | bytes_to_transfer = 4; | ||
282 | |||
283 | fixchipaddr(device, bus, addr, &chipaddr); | ||
284 | |||
285 | if (flex_i2c_write4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) | ||
286 | return buf - start; | ||
287 | |||
288 | buf = buf + bytes_to_transfer; | ||
289 | addr = addr + bytes_to_transfer; | ||
290 | len = len - bytes_to_transfer; | ||
291 | } | ||
292 | |||
293 | return buf - start; | ||
294 | } | ||
295 | |||
296 | static int master_xfer(struct i2c_adapter* adapter, struct i2c_msg *msgs, int num) | ||
297 | { | ||
298 | struct adapter *tmp = i2c_get_adapdata(adapter); | ||
299 | int i, ret = 0; | ||
300 | |||
301 | if (down_interruptible(&tmp->i2c_sem)) | ||
302 | return -ERESTARTSYS; | ||
303 | |||
304 | ddprintk("%s: %d messages to transfer\n", __FUNCTION__, num); | ||
305 | |||
306 | for (i = 0; i < num; i++) { | ||
307 | ddprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, | ||
308 | msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); | ||
309 | } | ||
310 | |||
311 | // read command | ||
312 | if ((num == 2) && (msgs[0].flags == 0) && (msgs[1].flags == I2C_M_RD) && (msgs[0].buf != NULL) && (msgs[1].buf != NULL)) { | ||
313 | |||
314 | ret = flex_i2c_read(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], msgs[1].buf, msgs[1].len); | ||
315 | |||
316 | up(&tmp->i2c_sem); | ||
317 | |||
318 | if (ret != msgs[1].len) { | ||
319 | dprintk("%s: read error !\n", __FUNCTION__); | ||
320 | |||
321 | for (i = 0; i < 2; i++) { | ||
322 | dprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, | ||
323 | msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); | ||
324 | } | ||
325 | |||
326 | return -EREMOTEIO; | ||
327 | } | ||
328 | |||
329 | return num; | ||
330 | } | ||
331 | // write command | ||
332 | for (i = 0; i < num; i++) { | ||
333 | |||
334 | if ((msgs[i].flags != 0) || (msgs[i].buf == NULL) || (msgs[i].len < 2)) | ||
335 | return -EINVAL; | ||
336 | |||
337 | ret = flex_i2c_write(tmp, 0x10000000, msgs[i].addr, msgs[i].buf[0], &msgs[i].buf[1], msgs[i].len - 1); | ||
338 | |||
339 | up(&tmp->i2c_sem); | ||
340 | |||
341 | if (ret != msgs[0].len - 1) { | ||
342 | dprintk("%s: write error %i !\n", __FUNCTION__, ret); | ||
343 | |||
344 | dprintk("message %d: flags=0x%x, addr=0x%x, buf[0]=0x%x, len=%d \n", i, | ||
345 | msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); | ||
346 | |||
347 | return -EREMOTEIO; | ||
348 | } | ||
349 | |||
350 | return num; | ||
351 | } | ||
352 | |||
353 | printk("%s: unknown command format !\n", __FUNCTION__); | ||
354 | |||
355 | return -EINVAL; | ||
356 | } | ||
357 | |||
358 | /* SRAM (Skystar2 rev2.3 has one "ISSI IS61LV256" chip on board, | ||
359 | but it seems that FlexCopII can work with more than one chip) */ | ||
360 | static void sram_set_net_dest(struct adapter *adapter, u8 dest) | ||
361 | { | ||
362 | u32 tmp; | ||
363 | |||
364 | udelay(1000); | ||
365 | |||
366 | tmp = (read_reg_dw(adapter, 0x714) & 0xfffffffc) | (dest & 3); | ||
367 | |||
368 | udelay(1000); | ||
369 | |||
370 | write_reg_dw(adapter, 0x714, tmp); | ||
371 | write_reg_dw(adapter, 0x714, tmp); | ||
372 | |||
373 | udelay(1000); | ||
374 | |||
375 | /* return value is never used? */ | ||
376 | /* return tmp; */ | ||
377 | } | ||
378 | |||
379 | static void sram_set_cai_dest(struct adapter *adapter, u8 dest) | ||
380 | { | ||
381 | u32 tmp; | ||
382 | |||
383 | udelay(1000); | ||
384 | |||
385 | tmp = (read_reg_dw(adapter, 0x714) & 0xfffffff3) | ((dest & 3) << 2); | ||
386 | |||
387 | udelay(1000); | ||
388 | udelay(1000); | ||
389 | |||
390 | write_reg_dw(adapter, 0x714, tmp); | ||
391 | write_reg_dw(adapter, 0x714, tmp); | ||
392 | |||
393 | udelay(1000); | ||
394 | |||
395 | /* return value is never used? */ | ||
396 | /* return tmp; */ | ||
397 | } | ||
398 | |||
399 | static void sram_set_cao_dest(struct adapter *adapter, u8 dest) | ||
400 | { | ||
401 | u32 tmp; | ||
402 | |||
403 | udelay(1000); | ||
404 | |||
405 | tmp = (read_reg_dw(adapter, 0x714) & 0xffffffcf) | ((dest & 3) << 4); | ||
406 | |||
407 | udelay(1000); | ||
408 | udelay(1000); | ||
409 | |||
410 | write_reg_dw(adapter, 0x714, tmp); | ||
411 | write_reg_dw(adapter, 0x714, tmp); | ||
412 | |||
413 | udelay(1000); | ||
414 | |||
415 | /* return value is never used? */ | ||
416 | /* return tmp; */ | ||
417 | } | ||
418 | |||
419 | static void sram_set_media_dest(struct adapter *adapter, u8 dest) | ||
420 | { | ||
421 | u32 tmp; | ||
422 | |||
423 | udelay(1000); | ||
424 | |||
425 | tmp = (read_reg_dw(adapter, 0x714) & 0xffffff3f) | ((dest & 3) << 6); | ||
426 | |||
427 | udelay(1000); | ||
428 | udelay(1000); | ||
429 | |||
430 | write_reg_dw(adapter, 0x714, tmp); | ||
431 | write_reg_dw(adapter, 0x714, tmp); | ||
432 | |||
433 | udelay(1000); | ||
434 | |||
435 | /* return value is never used? */ | ||
436 | /* return tmp; */ | ||
437 | } | ||
438 | |||
439 | /* SRAM memory is accessed through a buffer register in the FlexCop | ||
440 | chip (0x700). This register has the following structure: | ||
441 | bits 0-14 : address | ||
442 | bit 15 : read/write flag | ||
443 | bits 16-23 : 8-bit word to write | ||
444 | bits 24-27 : = 4 | ||
445 | bits 28-29 : memory bank selector | ||
446 | bit 31 : busy flag | ||
447 | */ | ||
448 | static void flex_sram_write(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len) | ||
449 | { | ||
450 | int i, retries; | ||
451 | u32 command; | ||
452 | |||
453 | for (i = 0; i < len; i++) { | ||
454 | command = bank | addr | 0x04000000 | (*buf << 0x10); | ||
455 | |||
456 | retries = 2; | ||
457 | |||
458 | while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { | ||
459 | mdelay(1); | ||
460 | retries--; | ||
461 | }; | ||
462 | |||
463 | if (retries == 0) | ||
464 | printk("%s: SRAM timeout\n", __FUNCTION__); | ||
465 | |||
466 | write_reg_dw(adapter, 0x700, command); | ||
467 | |||
468 | buf++; | ||
469 | addr++; | ||
470 | } | ||
471 | } | ||
472 | |||
473 | static void flex_sram_read(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len) | ||
474 | { | ||
475 | int i, retries; | ||
476 | u32 command, value; | ||
477 | |||
478 | for (i = 0; i < len; i++) { | ||
479 | command = bank | addr | 0x04008000; | ||
480 | |||
481 | retries = 10000; | ||
482 | |||
483 | while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { | ||
484 | mdelay(1); | ||
485 | retries--; | ||
486 | }; | ||
487 | |||
488 | if (retries == 0) | ||
489 | printk("%s: SRAM timeout\n", __FUNCTION__); | ||
490 | |||
491 | write_reg_dw(adapter, 0x700, command); | ||
492 | |||
493 | retries = 10000; | ||
494 | |||
495 | while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { | ||
496 | mdelay(1); | ||
497 | retries--; | ||
498 | }; | ||
499 | |||
500 | if (retries == 0) | ||
501 | printk("%s: SRAM timeout\n", __FUNCTION__); | ||
502 | |||
503 | value = read_reg_dw(adapter, 0x700) >> 0x10; | ||
504 | |||
505 | *buf = (value & 0xff); | ||
506 | |||
507 | addr++; | ||
508 | buf++; | ||
509 | } | ||
510 | } | ||
511 | |||
512 | static void sram_write_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len) | ||
513 | { | ||
514 | u32 bank; | ||
515 | |||
516 | bank = 0; | ||
517 | |||
518 | if (adapter->dw_sram_type == 0x20000) { | ||
519 | bank = (addr & 0x18000) << 0x0d; | ||
520 | } | ||
521 | |||
522 | if (adapter->dw_sram_type == 0x00000) { | ||
523 | if ((addr >> 0x0f) == 0) | ||
524 | bank = 0x20000000; | ||
525 | else | ||
526 | bank = 0x10000000; | ||
527 | } | ||
528 | |||
529 | flex_sram_write(adapter, bank, addr & 0x7fff, buf, len); | ||
530 | } | ||
531 | |||
532 | static void sram_read_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len) | ||
533 | { | ||
534 | u32 bank; | ||
535 | |||
536 | bank = 0; | ||
537 | |||
538 | if (adapter->dw_sram_type == 0x20000) { | ||
539 | bank = (addr & 0x18000) << 0x0d; | ||
540 | } | ||
541 | |||
542 | if (adapter->dw_sram_type == 0x00000) { | ||
543 | if ((addr >> 0x0f) == 0) | ||
544 | bank = 0x20000000; | ||
545 | else | ||
546 | bank = 0x10000000; | ||
547 | } | ||
548 | |||
549 | flex_sram_read(adapter, bank, addr & 0x7fff, buf, len); | ||
550 | } | ||
551 | |||
552 | static void sram_read(struct adapter *adapter, u32 addr, u8 *buf, u32 len) | ||
553 | { | ||
554 | u32 length; | ||
555 | |||
556 | while (len != 0) { | ||
557 | length = len; | ||
558 | |||
559 | // check if the address range belongs to the same | ||
560 | // 32K memory chip. If not, the data is read from | ||
561 | // one chip at a time. | ||
562 | if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) { | ||
563 | length = (((addr >> 0x0f) + 1) << 0x0f) - addr; | ||
564 | } | ||
565 | |||
566 | sram_read_chunk(adapter, addr, buf, length); | ||
567 | |||
568 | addr = addr + length; | ||
569 | buf = buf + length; | ||
570 | len = len - length; | ||
571 | } | ||
572 | } | ||
573 | |||
574 | static void sram_write(struct adapter *adapter, u32 addr, u8 *buf, u32 len) | ||
575 | { | ||
576 | u32 length; | ||
577 | |||
578 | while (len != 0) { | ||
579 | length = len; | ||
580 | |||
581 | // check if the address range belongs to the same | ||
582 | // 32K memory chip. If not, the data is written to | ||
583 | // one chip at a time. | ||
584 | if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) { | ||
585 | length = (((addr >> 0x0f) + 1) << 0x0f) - addr; | ||
586 | } | ||
587 | |||
588 | sram_write_chunk(adapter, addr, buf, length); | ||
589 | |||
590 | addr = addr + length; | ||
591 | buf = buf + length; | ||
592 | len = len - length; | ||
593 | } | ||
594 | } | ||
595 | |||
596 | static void sram_set_size(struct adapter *adapter, u32 mask) | ||
597 | { | ||
598 | write_reg_dw(adapter, 0x71c, (mask | (~0x30000 & read_reg_dw(adapter, 0x71c)))); | ||
599 | } | ||
600 | |||
601 | static void sram_init(struct adapter *adapter) | ||
602 | { | ||
603 | u32 tmp; | ||
604 | |||
605 | tmp = read_reg_dw(adapter, 0x71c); | ||
606 | |||
607 | write_reg_dw(adapter, 0x71c, 1); | ||
608 | |||
609 | if (read_reg_dw(adapter, 0x71c) != 0) { | ||
610 | write_reg_dw(adapter, 0x71c, tmp); | ||
611 | |||
612 | adapter->dw_sram_type = tmp & 0x30000; | ||
613 | |||
614 | ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type); | ||
615 | |||
616 | } else { | ||
617 | |||
618 | adapter->dw_sram_type = 0x10000; | ||
619 | |||
620 | ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type); | ||
621 | } | ||
622 | |||
623 | /* return value is never used? */ | ||
624 | /* return adapter->dw_sram_type; */ | ||
625 | } | ||
626 | |||
627 | static int sram_test_location(struct adapter *adapter, u32 mask, u32 addr) | ||
628 | { | ||
629 | u8 tmp1, tmp2; | ||
630 | |||
631 | dprintk("%s: mask = %x, addr = %x\n", __FUNCTION__, mask, addr); | ||
632 | |||
633 | sram_set_size(adapter, mask); | ||
634 | sram_init(adapter); | ||
635 | |||
636 | tmp2 = 0xa5; | ||
637 | tmp1 = 0x4f; | ||
638 | |||
639 | sram_write(adapter, addr, &tmp2, 1); | ||
640 | sram_write(adapter, addr + 4, &tmp1, 1); | ||
641 | |||
642 | tmp2 = 0; | ||
643 | |||
644 | mdelay(20); | ||
645 | |||
646 | sram_read(adapter, addr, &tmp2, 1); | ||
647 | sram_read(adapter, addr, &tmp2, 1); | ||
648 | |||
649 | dprintk("%s: wrote 0xa5, read 0x%2x\n", __FUNCTION__, tmp2); | ||
650 | |||
651 | if (tmp2 != 0xa5) | ||
652 | return 0; | ||
653 | |||
654 | tmp2 = 0x5a; | ||
655 | tmp1 = 0xf4; | ||
656 | |||
657 | sram_write(adapter, addr, &tmp2, 1); | ||
658 | sram_write(adapter, addr + 4, &tmp1, 1); | ||
659 | |||
660 | tmp2 = 0; | ||
661 | |||
662 | mdelay(20); | ||
663 | |||
664 | sram_read(adapter, addr, &tmp2, 1); | ||
665 | sram_read(adapter, addr, &tmp2, 1); | ||
666 | |||
667 | dprintk("%s: wrote 0x5a, read 0x%2x\n", __FUNCTION__, tmp2); | ||
668 | |||
669 | if (tmp2 != 0x5a) | ||
670 | return 0; | ||
671 | |||
672 | return 1; | ||
673 | } | ||
674 | |||
675 | static u32 sram_length(struct adapter *adapter) | ||
676 | { | ||
677 | if (adapter->dw_sram_type == 0x10000) | ||
678 | return 32768; // 32K | ||
679 | if (adapter->dw_sram_type == 0x00000) | ||
680 | return 65536; // 64K | ||
681 | if (adapter->dw_sram_type == 0x20000) | ||
682 | return 131072; // 128K | ||
683 | |||
684 | return 32768; // 32K | ||
685 | } | ||
686 | |||
687 | /* FlexcopII can work with 32K, 64K or 128K of external SRAM memory. | ||
688 | - for 128K there are 4x32K chips at bank 0,1,2,3. | ||
689 | - for 64K there are 2x32K chips at bank 1,2. | ||
690 | - for 32K there is one 32K chip at bank 0. | ||
691 | |||
692 | FlexCop works only with one bank at a time. The bank is selected | ||
693 | by bits 28-29 of the 0x700 register. | ||
694 | |||
695 | bank 0 covers addresses 0x00000-0x07fff | ||
696 | bank 1 covers addresses 0x08000-0x0ffff | ||
697 | bank 2 covers addresses 0x10000-0x17fff | ||
698 | bank 3 covers addresses 0x18000-0x1ffff | ||
699 | */ | ||
700 | static int sram_detect_for_flex2(struct adapter *adapter) | ||
701 | { | ||
702 | u32 tmp, tmp2, tmp3; | ||
703 | |||
704 | dprintk("%s:\n", __FUNCTION__); | ||
705 | |||
706 | tmp = read_reg_dw(adapter, 0x208); | ||
707 | write_reg_dw(adapter, 0x208, 0); | ||
708 | |||
709 | tmp2 = read_reg_dw(adapter, 0x71c); | ||
710 | |||
711 | dprintk("%s: tmp2 = %x\n", __FUNCTION__, tmp2); | ||
712 | |||
713 | write_reg_dw(adapter, 0x71c, 1); | ||
714 | |||
715 | tmp3 = read_reg_dw(adapter, 0x71c); | ||
716 | |||
717 | dprintk("%s: tmp3 = %x\n", __FUNCTION__, tmp3); | ||
718 | |||
719 | write_reg_dw(adapter, 0x71c, tmp2); | ||
720 | |||
721 | // check for internal SRAM ??? | ||
722 | tmp3--; | ||
723 | if (tmp3 != 0) { | ||
724 | sram_set_size(adapter, 0x10000); | ||
725 | sram_init(adapter); | ||
726 | write_reg_dw(adapter, 0x208, tmp); | ||
727 | |||
728 | dprintk("%s: sram size = 32K\n", __FUNCTION__); | ||
729 | |||
730 | return 32; | ||
731 | } | ||
732 | |||
733 | if (sram_test_location(adapter, 0x20000, 0x18000) != 0) { | ||
734 | sram_set_size(adapter, 0x20000); | ||
735 | sram_init(adapter); | ||
736 | write_reg_dw(adapter, 0x208, tmp); | ||
737 | |||
738 | dprintk("%s: sram size = 128K\n", __FUNCTION__); | ||
739 | |||
740 | return 128; | ||
741 | } | ||
742 | |||
743 | if (sram_test_location(adapter, 0x00000, 0x10000) != 0) { | ||
744 | sram_set_size(adapter, 0x00000); | ||
745 | sram_init(adapter); | ||
746 | write_reg_dw(adapter, 0x208, tmp); | ||
747 | |||
748 | dprintk("%s: sram size = 64K\n", __FUNCTION__); | ||
749 | |||
750 | return 64; | ||
751 | } | ||
752 | |||
753 | if (sram_test_location(adapter, 0x10000, 0x00000) != 0) { | ||
754 | sram_set_size(adapter, 0x10000); | ||
755 | sram_init(adapter); | ||
756 | write_reg_dw(adapter, 0x208, tmp); | ||
757 | |||
758 | dprintk("%s: sram size = 32K\n", __FUNCTION__); | ||
759 | |||
760 | return 32; | ||
761 | } | ||
762 | |||
763 | sram_set_size(adapter, 0x10000); | ||
764 | sram_init(adapter); | ||
765 | write_reg_dw(adapter, 0x208, tmp); | ||
766 | |||
767 | dprintk("%s: SRAM detection failed. Set to 32K \n", __FUNCTION__); | ||
768 | |||
769 | return 0; | ||
770 | } | ||
771 | |||
772 | static void sll_detect_sram_size(struct adapter *adapter) | ||
773 | { | ||
774 | sram_detect_for_flex2(adapter); | ||
775 | } | ||
776 | |||
777 | /* EEPROM (Skystar2 has one "24LC08B" chip on board) */ | ||
778 | /* | ||
779 | static int eeprom_write(struct adapter *adapter, u16 addr, u8 *buf, u16 len) | ||
780 | { | ||
781 | return flex_i2c_write(adapter, 0x20000000, 0x50, addr, buf, len); | ||
782 | } | ||
783 | */ | ||
784 | |||
785 | static int eeprom_read(struct adapter *adapter, u16 addr, u8 *buf, u16 len) | ||
786 | { | ||
787 | return flex_i2c_read(adapter, 0x20000000, 0x50, addr, buf, len); | ||
788 | } | ||
789 | |||
790 | static u8 calc_lrc(u8 *buf, int len) | ||
791 | { | ||
792 | int i; | ||
793 | u8 sum; | ||
794 | |||
795 | sum = 0; | ||
796 | |||
797 | for (i = 0; i < len; i++) | ||
798 | sum = sum ^ buf[i]; | ||
799 | |||
800 | return sum; | ||
801 | } | ||
802 | |||
803 | static int eeprom_lrc_read(struct adapter *adapter, u32 addr, u32 len, u8 *buf, int retries) | ||
804 | { | ||
805 | int i; | ||
806 | |||
807 | for (i = 0; i < retries; i++) { | ||
808 | if (eeprom_read(adapter, addr, buf, len) == len) { | ||
809 | if (calc_lrc(buf, len - 1) == buf[len - 1]) | ||
810 | return 1; | ||
811 | } | ||
812 | } | ||
813 | |||
814 | return 0; | ||
815 | } | ||
816 | |||
817 | /* | ||
818 | static int eeprom_lrc_write(struct adapter *adapter, u32 addr, u32 len, u8 *wbuf, u8 *rbuf, int retries) | ||
819 | { | ||
820 | int i; | ||
821 | |||
822 | for (i = 0; i < retries; i++) { | ||
823 | if (eeprom_write(adapter, addr, wbuf, len) == len) { | ||
824 | if (eeprom_lrc_read(adapter, addr, len, rbuf, retries) == 1) | ||
825 | return 1; | ||
826 | } | ||
827 | } | ||
828 | |||
829 | return 0; | ||
830 | } | ||
831 | */ | ||
832 | |||
833 | |||
834 | /* These functions could be used to unlock SkyStar2 cards. */ | ||
835 | |||
836 | /* | ||
837 | static int eeprom_writeKey(struct adapter *adapter, u8 *key, u32 len) | ||
838 | { | ||
839 | u8 rbuf[20]; | ||
840 | u8 wbuf[20]; | ||
841 | |||
842 | if (len != 16) | ||
843 | return 0; | ||
844 | |||
845 | memcpy(wbuf, key, len); | ||
846 | |||
847 | wbuf[16] = 0; | ||
848 | wbuf[17] = 0; | ||
849 | wbuf[18] = 0; | ||
850 | wbuf[19] = calc_lrc(wbuf, 19); | ||
851 | |||
852 | return eeprom_lrc_write(adapter, 0x3e4, 20, wbuf, rbuf, 4); | ||
853 | } | ||
854 | |||
855 | static int eeprom_readKey(struct adapter *adapter, u8 *key, u32 len) | ||
856 | { | ||
857 | u8 buf[20]; | ||
858 | |||
859 | if (len != 16) | ||
860 | return 0; | ||
861 | |||
862 | if (eeprom_lrc_read(adapter, 0x3e4, 20, buf, 4) == 0) | ||
863 | return 0; | ||
864 | |||
865 | memcpy(key, buf, len); | ||
866 | |||
867 | return 1; | ||
868 | } | ||
869 | */ | ||
870 | |||
871 | static int eeprom_get_mac_addr(struct adapter *adapter, char type, u8 *mac) | ||
872 | { | ||
873 | u8 tmp[8]; | ||
874 | |||
875 | if (eeprom_lrc_read(adapter, 0x3f8, 8, tmp, 4) != 0) { | ||
876 | if (type != 0) { | ||
877 | mac[0] = tmp[0]; | ||
878 | mac[1] = tmp[1]; | ||
879 | mac[2] = tmp[2]; | ||
880 | mac[3] = 0xfe; | ||
881 | mac[4] = 0xff; | ||
882 | mac[5] = tmp[3]; | ||
883 | mac[6] = tmp[4]; | ||
884 | mac[7] = tmp[5]; | ||
885 | |||
886 | } else { | ||
887 | |||
888 | mac[0] = tmp[0]; | ||
889 | mac[1] = tmp[1]; | ||
890 | mac[2] = tmp[2]; | ||
891 | mac[3] = tmp[3]; | ||
892 | mac[4] = tmp[4]; | ||
893 | mac[5] = tmp[5]; | ||
894 | } | ||
895 | |||
896 | return 1; | ||
897 | |||
898 | } else { | ||
899 | |||
900 | if (type == 0) { | ||
901 | memset(mac, 0, 6); | ||
902 | |||
903 | } else { | ||
904 | |||
905 | memset(mac, 0, 8); | ||
906 | } | ||
907 | |||
908 | return 0; | ||
909 | } | ||
910 | } | ||
911 | |||
912 | /* | ||
913 | static char eeprom_set_mac_addr(struct adapter *adapter, char type, u8 *mac) | ||
914 | { | ||
915 | u8 tmp[8]; | ||
916 | |||
917 | if (type != 0) { | ||
918 | tmp[0] = mac[0]; | ||
919 | tmp[1] = mac[1]; | ||
920 | tmp[2] = mac[2]; | ||
921 | tmp[3] = mac[5]; | ||
922 | tmp[4] = mac[6]; | ||
923 | tmp[5] = mac[7]; | ||
924 | |||
925 | } else { | ||
926 | |||
927 | tmp[0] = mac[0]; | ||
928 | tmp[1] = mac[1]; | ||
929 | tmp[2] = mac[2]; | ||
930 | tmp[3] = mac[3]; | ||
931 | tmp[4] = mac[4]; | ||
932 | tmp[5] = mac[5]; | ||
933 | } | ||
934 | |||
935 | tmp[6] = 0; | ||
936 | tmp[7] = calc_lrc(tmp, 7); | ||
937 | |||
938 | if (eeprom_write(adapter, 0x3f8, tmp, 8) == 8) | ||
939 | return 1; | ||
940 | |||
941 | return 0; | ||
942 | } | ||
943 | */ | ||
944 | |||
945 | /* PID filter */ | ||
946 | |||
947 | /* every flexcop has 6 "lower" hw PID filters */ | ||
948 | /* these are enabled by setting bits 0-5 of 0x208 */ | ||
949 | /* for the 32 additional filters we have to select one */ | ||
950 | /* of them through 0x310 and modify through 0x314 */ | ||
951 | /* op: 0=disable, 1=enable */ | ||
952 | static void filter_enable_hw_filter(struct adapter *adapter, int id, u8 op) | ||
953 | { | ||
954 | dprintk("%s: id=%d op=%d\n", __FUNCTION__, id, op); | ||
955 | if (id <= 5) { | ||
956 | u32 mask = (0x00000001 << id); | ||
957 | write_reg_bitfield(adapter, 0x208, mask, op ? mask : 0); | ||
958 | } else { | ||
959 | /* select */ | ||
960 | write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f); | ||
961 | /* modify */ | ||
962 | write_reg_bitfield(adapter, 0x314, 0x00006000, op ? 0x00004000 : 0); | ||
963 | } | ||
964 | } | ||
965 | |||
966 | /* this sets the PID that should pass the specified filter */ | ||
967 | static void pid_set_hw_pid(struct adapter *adapter, int id, u16 pid) | ||
968 | { | ||
969 | dprintk("%s: id=%d pid=%d\n", __FUNCTION__, id, pid); | ||
970 | if (id <= 5) { | ||
971 | u32 adr = 0x300 + ((id & 6) << 1); | ||
972 | int shift = (id & 1) ? 16 : 0; | ||
973 | dprintk("%s: id=%d addr=%x %c pid=%d\n", __FUNCTION__, id, adr, (id & 1) ? 'h' : 'l', pid); | ||
974 | write_reg_bitfield(adapter, adr, (0x7fff) << shift, (pid & 0x1fff) << shift); | ||
975 | } else { | ||
976 | /* select */ | ||
977 | write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f); | ||
978 | /* modify */ | ||
979 | write_reg_bitfield(adapter, 0x314, 0x1fff, pid & 0x1fff); | ||
980 | } | ||
981 | } | ||
982 | |||
983 | |||
984 | /* | ||
985 | static void filter_enable_null_filter(struct adapter *adapter, u32 op) | ||
986 | { | ||
987 | dprintk("%s: op=%x\n", __FUNCTION__, op); | ||
988 | |||
989 | write_reg_bitfield(adapter, 0x208, 0x00000040, op?0x00000040:0); | ||
990 | } | ||
991 | */ | ||
992 | |||
993 | static void filter_enable_mask_filter(struct adapter *adapter, u32 op) | ||
994 | { | ||
995 | dprintk("%s: op=%x\n", __FUNCTION__, op); | ||
996 | |||
997 | write_reg_bitfield(adapter, 0x208, 0x00000080, op ? 0x00000080 : 0); | ||
998 | } | ||
999 | |||
1000 | |||
1001 | static void ctrl_enable_mac(struct adapter *adapter, u32 op) | ||
1002 | { | ||
1003 | write_reg_bitfield(adapter, 0x208, 0x00004000, op ? 0x00004000 : 0); | ||
1004 | } | ||
1005 | |||
1006 | static int ca_set_mac_dst_addr_filter(struct adapter *adapter, u8 *mac) | ||
1007 | { | ||
1008 | u32 tmp1, tmp2; | ||
1009 | |||
1010 | tmp1 = (mac[3] << 0x18) | (mac[2] << 0x10) | (mac[1] << 0x08) | mac[0]; | ||
1011 | tmp2 = (mac[5] << 0x08) | mac[4]; | ||
1012 | |||
1013 | write_reg_dw(adapter, 0x418, tmp1); | ||
1014 | write_reg_dw(adapter, 0x41c, tmp2); | ||
1015 | |||
1016 | return 0; | ||
1017 | } | ||
1018 | |||
1019 | /* | ||
1020 | static void set_ignore_mac_filter(struct adapter *adapter, u8 op) | ||
1021 | { | ||
1022 | if (op != 0) { | ||
1023 | write_reg_bitfield(adapter, 0x208, 0x00004000, 0); | ||
1024 | adapter->mac_filter = 1; | ||
1025 | } else { | ||
1026 | if (adapter->mac_filter != 0) { | ||
1027 | adapter->mac_filter = 0; | ||
1028 | write_reg_bitfield(adapter, 0x208, 0x00004000, 0x00004000); | ||
1029 | } | ||
1030 | } | ||
1031 | } | ||
1032 | */ | ||
1033 | |||
1034 | /* | ||
1035 | static void check_null_filter_enable(struct adapter *adapter) | ||
1036 | { | ||
1037 | filter_enable_null_filter(adapter, 1); | ||
1038 | filter_enable_mask_filter(adapter, 1); | ||
1039 | } | ||
1040 | */ | ||
1041 | |||
1042 | static void pid_set_group_pid(struct adapter *adapter, u16 pid) | ||
1043 | { | ||
1044 | u32 value; | ||
1045 | |||
1046 | dprintk("%s: pid=%x\n", __FUNCTION__, pid); | ||
1047 | value = (pid & 0x3fff) | (read_reg_dw(adapter, 0x30c) & 0xffff0000); | ||
1048 | write_reg_dw(adapter, 0x30c, value); | ||
1049 | } | ||
1050 | |||
1051 | static void pid_set_group_mask(struct adapter *adapter, u16 pid) | ||
1052 | { | ||
1053 | u32 value; | ||
1054 | |||
1055 | dprintk("%s: pid=%x\n", __FUNCTION__, pid); | ||
1056 | value = ((pid & 0x3fff) << 0x10) | (read_reg_dw(adapter, 0x30c) & 0xffff); | ||
1057 | write_reg_dw(adapter, 0x30c, value); | ||
1058 | } | ||
1059 | |||
1060 | /* | ||
1061 | static int pid_get_group_pid(struct adapter *adapter) | ||
1062 | { | ||
1063 | return read_reg_dw(adapter, 0x30c) & 0x00001fff; | ||
1064 | } | ||
1065 | |||
1066 | static int pid_get_group_mask(struct adapter *adapter) | ||
1067 | { | ||
1068 | return (read_reg_dw(adapter, 0x30c) >> 0x10)& 0x00001fff; | ||
1069 | } | ||
1070 | */ | ||
1071 | |||
1072 | /* | ||
1073 | static void reset_hardware_pid_filter(struct adapter *adapter) | ||
1074 | { | ||
1075 | pid_set_stream1_pid(adapter, 0x1fff); | ||
1076 | |||
1077 | pid_set_stream2_pid(adapter, 0x1fff); | ||
1078 | filter_enable_stream2_filter(adapter, 0); | ||
1079 | |||
1080 | pid_set_pcr_pid(adapter, 0x1fff); | ||
1081 | filter_enable_pcr_filter(adapter, 0); | ||
1082 | |||
1083 | pid_set_pmt_pid(adapter, 0x1fff); | ||
1084 | filter_enable_pmt_filter(adapter, 0); | ||
1085 | |||
1086 | pid_set_ecm_pid(adapter, 0x1fff); | ||
1087 | filter_enable_ecm_filter(adapter, 0); | ||
1088 | |||
1089 | pid_set_emm_pid(adapter, 0x1fff); | ||
1090 | filter_enable_emm_filter(adapter, 0); | ||
1091 | } | ||
1092 | */ | ||
1093 | |||
1094 | static void init_pids(struct adapter *adapter) | ||
1095 | { | ||
1096 | int i; | ||
1097 | |||
1098 | adapter->pid_count = 0; | ||
1099 | adapter->whole_bandwidth_count = 0; | ||
1100 | for (i = 0; i < adapter->useable_hw_filters; i++) { | ||
1101 | dprintk("%s: setting filter %d to 0x1fff\n", __FUNCTION__, i); | ||
1102 | adapter->hw_pids[i] = 0x1fff; | ||
1103 | pid_set_hw_pid(adapter, i, 0x1fff); | ||
1104 | } | ||
1105 | |||
1106 | pid_set_group_pid(adapter, 0); | ||
1107 | pid_set_group_mask(adapter, 0x1fe0); | ||
1108 | } | ||
1109 | |||
1110 | static void open_whole_bandwidth(struct adapter *adapter) | ||
1111 | { | ||
1112 | dprintk("%s:\n", __FUNCTION__); | ||
1113 | pid_set_group_pid(adapter, 0); | ||
1114 | pid_set_group_mask(adapter, 0); | ||
1115 | /* | ||
1116 | filter_enable_mask_filter(adapter, 1); | ||
1117 | */ | ||
1118 | } | ||
1119 | |||
1120 | static void close_whole_bandwidth(struct adapter *adapter) | ||
1121 | { | ||
1122 | dprintk("%s:\n", __FUNCTION__); | ||
1123 | pid_set_group_pid(adapter, 0); | ||
1124 | pid_set_group_mask(adapter, 0x1fe0); | ||
1125 | /* | ||
1126 | filter_enable_mask_filter(adapter, 1); | ||
1127 | */ | ||
1128 | } | ||
1129 | |||
1130 | static void whole_bandwidth_inc(struct adapter *adapter) | ||
1131 | { | ||
1132 | if (adapter->whole_bandwidth_count++ == 0) | ||
1133 | open_whole_bandwidth(adapter); | ||
1134 | } | ||
1135 | |||
1136 | static void whole_bandwidth_dec(struct adapter *adapter) | ||
1137 | { | ||
1138 | if (--adapter->whole_bandwidth_count <= 0) | ||
1139 | close_whole_bandwidth(adapter); | ||
1140 | } | ||
1141 | |||
1142 | /* The specified PID has to be let through the | ||
1143 | hw filters. | ||
1144 | We try to allocate an hardware filter and open whole | ||
1145 | bandwidth when allocation is impossible. | ||
1146 | All pids<=0x1f pass through the group filter. | ||
1147 | Returns 1 on success, -1 on error */ | ||
1148 | static int add_hw_pid(struct adapter *adapter, u16 pid) | ||
1149 | { | ||
1150 | int i; | ||
1151 | |||
1152 | dprintk("%s: pid=%d\n", __FUNCTION__, pid); | ||
1153 | |||
1154 | if (pid <= 0x1f) | ||
1155 | return 1; | ||
1156 | |||
1157 | /* we can't use a filter for 0x2000, so no search */ | ||
1158 | if (pid != 0x2000) { | ||
1159 | /* find an unused hardware filter */ | ||
1160 | for (i = 0; i < adapter->useable_hw_filters; i++) { | ||
1161 | dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i); | ||
1162 | if (adapter->hw_pids[i] == 0x1fff) { | ||
1163 | dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i); | ||
1164 | adapter->hw_pids[i] = pid; | ||
1165 | pid_set_hw_pid(adapter, i, pid); | ||
1166 | filter_enable_hw_filter(adapter, i, 1); | ||
1167 | return 1; | ||
1168 | } | ||
1169 | } | ||
1170 | } | ||
1171 | /* if we have not used a filter, this pid depends on whole bandwidth */ | ||
1172 | dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid); | ||
1173 | whole_bandwidth_inc(adapter); | ||
1174 | return 1; | ||
1175 | } | ||
1176 | |||
1177 | /* returns -1 if the pid was not present in the filters */ | ||
1178 | static int remove_hw_pid(struct adapter *adapter, u16 pid) | ||
1179 | { | ||
1180 | int i; | ||
1181 | |||
1182 | dprintk("%s: pid=%d\n", __FUNCTION__, pid); | ||
1183 | |||
1184 | if (pid <= 0x1f) | ||
1185 | return 1; | ||
1186 | |||
1187 | /* we can't use a filter for 0x2000, so no search */ | ||
1188 | if (pid != 0x2000) { | ||
1189 | for (i = 0; i < adapter->useable_hw_filters; i++) { | ||
1190 | dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i); | ||
1191 | if (adapter->hw_pids[i] == pid) { // find the pid slot | ||
1192 | dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i); | ||
1193 | adapter->hw_pids[i] = 0x1fff; | ||
1194 | pid_set_hw_pid(adapter, i, 0x1fff); | ||
1195 | filter_enable_hw_filter(adapter, i, 0); | ||
1196 | return 1; | ||
1197 | } | ||
1198 | } | ||
1199 | } | ||
1200 | /* if we have not used a filter, this pid depended on whole bandwith */ | ||
1201 | dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid); | ||
1202 | whole_bandwidth_dec(adapter); | ||
1203 | return 1; | ||
1204 | } | ||
1205 | |||
1206 | /* Adds a PID to the filters. | ||
1207 | Adding a pid more than once is possible, we keep reference counts. | ||
1208 | Whole stream available through pid==0x2000. | ||
1209 | Returns 1 on success, -1 on error */ | ||
1210 | static int add_pid(struct adapter *adapter, u16 pid) | ||
1211 | { | ||
1212 | int i; | ||
1213 | |||
1214 | dprintk("%s: pid=%d\n", __FUNCTION__, pid); | ||
1215 | |||
1216 | if (pid > 0x1ffe && pid != 0x2000) | ||
1217 | return -1; | ||
1218 | |||
1219 | // check if the pid is already present | ||
1220 | for (i = 0; i < adapter->pid_count; i++) | ||
1221 | if (adapter->pid_list[i] == pid) { | ||
1222 | adapter->pid_rc[i]++; // increment ref counter | ||
1223 | return 1; | ||
1224 | } | ||
1225 | |||
1226 | if (adapter->pid_count == N_PID_SLOTS) | ||
1227 | return -1; // no more pids can be added | ||
1228 | adapter->pid_list[adapter->pid_count] = pid; // register pid | ||
1229 | adapter->pid_rc[adapter->pid_count] = 1; | ||
1230 | adapter->pid_count++; | ||
1231 | // hardware setting | ||
1232 | add_hw_pid(adapter, pid); | ||
1233 | |||
1234 | return 1; | ||
1235 | } | ||
1236 | |||
1237 | /* Removes a PID from the filters. */ | ||
1238 | static int remove_pid(struct adapter *adapter, u16 pid) | ||
1239 | { | ||
1240 | int i; | ||
1241 | |||
1242 | dprintk("%s: pid=%d\n", __FUNCTION__, pid); | ||
1243 | |||
1244 | if (pid > 0x1ffe && pid != 0x2000) | ||
1245 | return -1; | ||
1246 | |||
1247 | // check if the pid is present (it must be!) | ||
1248 | for (i = 0; i < adapter->pid_count; i++) { | ||
1249 | if (adapter->pid_list[i] == pid) { | ||
1250 | adapter->pid_rc[i]--; | ||
1251 | if (adapter->pid_rc[i] <= 0) { | ||
1252 | // remove from the list | ||
1253 | adapter->pid_count--; | ||
1254 | adapter->pid_list[i]=adapter->pid_list[adapter->pid_count]; | ||
1255 | adapter->pid_rc[i] = adapter->pid_rc[adapter->pid_count]; | ||
1256 | // hardware setting | ||
1257 | remove_hw_pid(adapter, pid); | ||
1258 | } | ||
1259 | return 1; | ||
1260 | } | ||
1261 | } | ||
1262 | |||
1263 | return -1; | ||
1264 | } | ||
1265 | |||
1266 | |||
1267 | /* dma & irq */ | ||
1268 | static void ctrl_enable_smc(struct adapter *adapter, u32 op) | ||
1269 | { | ||
1270 | write_reg_bitfield(adapter, 0x208, 0x00000800, op ? 0x00000800 : 0); | ||
1271 | } | ||
1272 | |||
1273 | static void dma_enable_disable_irq(struct adapter *adapter, u32 flag1, u32 flag2, u32 flag3) | ||
1274 | { | ||
1275 | adapter->dma_ctrl = adapter->dma_ctrl & 0x000f0000; | ||
1276 | |||
1277 | if (flag1 == 0) { | ||
1278 | if (flag2 == 0) | ||
1279 | adapter->dma_ctrl = adapter->dma_ctrl & ~0x00010000; | ||
1280 | else | ||
1281 | adapter->dma_ctrl = adapter->dma_ctrl | 0x00010000; | ||
1282 | |||
1283 | if (flag3 == 0) | ||
1284 | adapter->dma_ctrl = adapter->dma_ctrl & ~0x00020000; | ||
1285 | else | ||
1286 | adapter->dma_ctrl = adapter->dma_ctrl | 0x00020000; | ||
1287 | |||
1288 | } else { | ||
1289 | |||
1290 | if (flag2 == 0) | ||
1291 | adapter->dma_ctrl = adapter->dma_ctrl & ~0x00040000; | ||
1292 | else | ||
1293 | adapter->dma_ctrl = adapter->dma_ctrl | 0x00040000; | ||
1294 | |||
1295 | if (flag3 == 0) | ||
1296 | adapter->dma_ctrl = adapter->dma_ctrl & ~0x00080000; | ||
1297 | else | ||
1298 | adapter->dma_ctrl = adapter->dma_ctrl | 0x00080000; | ||
1299 | } | ||
1300 | } | ||
1301 | |||
1302 | static void irq_dma_enable_disable_irq(struct adapter *adapter, u32 op) | ||
1303 | { | ||
1304 | u32 value; | ||
1305 | |||
1306 | value = read_reg_dw(adapter, 0x208) & 0xfff0ffff; | ||
1307 | |||
1308 | if (op != 0) | ||
1309 | value = value | (adapter->dma_ctrl & 0x000f0000); | ||
1310 | |||
1311 | write_reg_dw(adapter, 0x208, value); | ||
1312 | } | ||
1313 | |||
1314 | /* FlexCopII has 2 dma channels. DMA1 is used to transfer TS data to | ||
1315 | system memory. | ||
1316 | |||
1317 | The DMA1 buffer is divided in 2 subbuffers of equal size. | ||
1318 | FlexCopII will transfer TS data to one subbuffer, signal an interrupt | ||
1319 | when the subbuffer is full and continue fillig the second subbuffer. | ||
1320 | |||
1321 | For DMA1: | ||
1322 | subbuffer size in 32-bit words is stored in the first 24 bits of | ||
1323 | register 0x004. The last 8 bits of register 0x004 contain the number | ||
1324 | of subbuffers. | ||
1325 | |||
1326 | the first 30 bits of register 0x000 contain the address of the first | ||
1327 | subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, | ||
1328 | when dma1 is enabled. | ||
1329 | |||
1330 | the first 30 bits of register 0x00c contain the address of the second | ||
1331 | subbuffer. the last 2 bits contain 1. | ||
1332 | |||
1333 | register 0x008 will contain the address of the subbuffer that was filled | ||
1334 | with TS data, when FlexCopII will generate an interrupt. | ||
1335 | |||
1336 | For DMA2: | ||
1337 | subbuffer size in 32-bit words is stored in the first 24 bits of | ||
1338 | register 0x014. The last 8 bits of register 0x014 contain the number | ||
1339 | of subbuffers. | ||
1340 | |||
1341 | the first 30 bits of register 0x010 contain the address of the first | ||
1342 | subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, | ||
1343 | when dma1 is enabled. | ||
1344 | |||
1345 | the first 30 bits of register 0x01c contain the address of the second | ||
1346 | subbuffer. the last 2 bits contain 1. | ||
1347 | |||
1348 | register 0x018 contains the address of the subbuffer that was filled | ||
1349 | with TS data, when FlexCopII generates an interrupt. | ||
1350 | */ | ||
1351 | static int dma_init_dma(struct adapter *adapter, u32 dma_channel) | ||
1352 | { | ||
1353 | u32 subbuffers, subbufsize, subbuf0, subbuf1; | ||
1354 | |||
1355 | if (dma_channel == 0) { | ||
1356 | dprintk("%s: Initializing DMA1 channel\n", __FUNCTION__); | ||
1357 | |||
1358 | subbuffers = 2; | ||
1359 | |||
1360 | subbufsize = (((adapter->dmaq1.buffer_size / 2) / 4) << 8) | subbuffers; | ||
1361 | |||
1362 | subbuf0 = adapter->dmaq1.bus_addr & 0xfffffffc; | ||
1363 | |||
1364 | subbuf1 = ((adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) & 0xfffffffc) | 1; | ||
1365 | |||
1366 | dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); | ||
1367 | udelay(1000); | ||
1368 | write_reg_dw(adapter, 0x000, subbuf0); | ||
1369 | |||
1370 | dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); | ||
1371 | udelay(1000); | ||
1372 | write_reg_dw(adapter, 0x004, subbufsize); | ||
1373 | |||
1374 | dprintk("%s: second subbuffer address = 0x%x\n", __FUNCTION__, subbuf1); | ||
1375 | udelay(1000); | ||
1376 | write_reg_dw(adapter, 0x00c, subbuf1); | ||
1377 | |||
1378 | dprintk("%s: counter = 0x%x\n", __FUNCTION__, adapter->dmaq1.bus_addr & 0xfffffffc); | ||
1379 | write_reg_dw(adapter, 0x008, adapter->dmaq1.bus_addr & 0xfffffffc); | ||
1380 | udelay(1000); | ||
1381 | |||
1382 | dma_enable_disable_irq(adapter, 0, 1, subbuffers ? 1 : 0); | ||
1383 | |||
1384 | irq_dma_enable_disable_irq(adapter, 1); | ||
1385 | |||
1386 | sram_set_media_dest(adapter, 1); | ||
1387 | sram_set_net_dest(adapter, 1); | ||
1388 | sram_set_cai_dest(adapter, 2); | ||
1389 | sram_set_cao_dest(adapter, 2); | ||
1390 | } | ||
1391 | |||
1392 | if (dma_channel == 1) { | ||
1393 | dprintk("%s: Initializing DMA2 channel\n", __FUNCTION__); | ||
1394 | |||
1395 | subbuffers = 2; | ||
1396 | |||
1397 | subbufsize = (((adapter->dmaq2.buffer_size / 2) / 4) << 8) | subbuffers; | ||
1398 | |||
1399 | subbuf0 = adapter->dmaq2.bus_addr & 0xfffffffc; | ||
1400 | |||
1401 | subbuf1 = ((adapter->dmaq2.bus_addr + adapter->dmaq2.buffer_size / 2) & 0xfffffffc) | 1; | ||
1402 | |||
1403 | dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); | ||
1404 | udelay(1000); | ||
1405 | write_reg_dw(adapter, 0x010, subbuf0); | ||
1406 | |||
1407 | dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); | ||
1408 | udelay(1000); | ||
1409 | write_reg_dw(adapter, 0x014, subbufsize); | ||
1410 | |||
1411 | dprintk("%s: second buffer address = 0x%x\n", __FUNCTION__, subbuf1); | ||
1412 | udelay(1000); | ||
1413 | write_reg_dw(adapter, 0x01c, subbuf1); | ||
1414 | |||
1415 | sram_set_cai_dest(adapter, 2); | ||
1416 | } | ||
1417 | |||
1418 | return 0; | ||
1419 | } | ||
1420 | |||
1421 | static void ctrl_enable_receive_data(struct adapter *adapter, u32 op) | ||
1422 | { | ||
1423 | if (op == 0) { | ||
1424 | write_reg_bitfield(adapter, 0x208, 0x00008000, 0); | ||
1425 | adapter->dma_status = adapter->dma_status & ~0x00000004; | ||
1426 | } else { | ||
1427 | write_reg_bitfield(adapter, 0x208, 0x00008000, 0x00008000); | ||
1428 | adapter->dma_status = adapter->dma_status | 0x00000004; | ||
1429 | } | ||
1430 | } | ||
1431 | |||
1432 | /* bit 0 of dma_mask is set to 1 if dma1 channel has to be enabled/disabled | ||
1433 | bit 1 of dma_mask is set to 1 if dma2 channel has to be enabled/disabled | ||
1434 | */ | ||
1435 | static void dma_start_stop(struct adapter *adapter, u32 dma_mask, int start_stop) | ||
1436 | { | ||
1437 | u32 dma_enable, dma1_enable, dma2_enable; | ||
1438 | |||
1439 | dprintk("%s: dma_mask=%x\n", __FUNCTION__, dma_mask); | ||
1440 | |||
1441 | if (start_stop == 1) { | ||
1442 | dprintk("%s: starting dma\n", __FUNCTION__); | ||
1443 | |||
1444 | dma1_enable = 0; | ||
1445 | dma2_enable = 0; | ||
1446 | |||
1447 | if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) == 0) && (adapter->dmaq1.bus_addr != 0)) { | ||
1448 | adapter->dma_status = adapter->dma_status | 1; | ||
1449 | dma1_enable = 1; | ||
1450 | } | ||
1451 | |||
1452 | if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) == 0) && (adapter->dmaq2.bus_addr != 0)) { | ||
1453 | adapter->dma_status = adapter->dma_status | 2; | ||
1454 | dma2_enable = 1; | ||
1455 | } | ||
1456 | // enable dma1 and dma2 | ||
1457 | if ((dma1_enable == 1) && (dma2_enable == 1)) { | ||
1458 | write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1); | ||
1459 | write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); | ||
1460 | write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1); | ||
1461 | |||
1462 | ctrl_enable_receive_data(adapter, 1); | ||
1463 | |||
1464 | return; | ||
1465 | } | ||
1466 | // enable dma1 | ||
1467 | if ((dma1_enable == 1) && (dma2_enable == 0)) { | ||
1468 | write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1); | ||
1469 | write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); | ||
1470 | |||
1471 | ctrl_enable_receive_data(adapter, 1); | ||
1472 | |||
1473 | return; | ||
1474 | } | ||
1475 | // enable dma2 | ||
1476 | if ((dma1_enable == 0) && (dma2_enable == 1)) { | ||
1477 | write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1); | ||
1478 | |||
1479 | ctrl_enable_receive_data(adapter, 1); | ||
1480 | |||
1481 | return; | ||
1482 | } | ||
1483 | // start dma | ||
1484 | if ((dma1_enable == 0) && (dma2_enable == 0)) { | ||
1485 | ctrl_enable_receive_data(adapter, 1); | ||
1486 | |||
1487 | return; | ||
1488 | } | ||
1489 | |||
1490 | } else { | ||
1491 | |||
1492 | dprintk("%s: stopping dma\n", __FUNCTION__); | ||
1493 | |||
1494 | dma_enable = adapter->dma_status & 0x00000003; | ||
1495 | |||
1496 | if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0)) { | ||
1497 | dma_enable = dma_enable & 0xfffffffe; | ||
1498 | } | ||
1499 | |||
1500 | if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0)) { | ||
1501 | dma_enable = dma_enable & 0xfffffffd; | ||
1502 | } | ||
1503 | //stop dma | ||
1504 | if ((dma_enable == 0) && ((adapter->dma_status & 4) != 0)) { | ||
1505 | ctrl_enable_receive_data(adapter, 0); | ||
1506 | |||
1507 | udelay(3000); | ||
1508 | } | ||
1509 | //disable dma1 | ||
1510 | if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0) && (adapter->dmaq1.bus_addr != 0)) { | ||
1511 | write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr); | ||
1512 | write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); | ||
1513 | |||
1514 | adapter->dma_status = adapter->dma_status & ~0x00000001; | ||
1515 | } | ||
1516 | //disable dma2 | ||
1517 | if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0) && (adapter->dmaq2.bus_addr != 0)) { | ||
1518 | write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr); | ||
1519 | |||
1520 | adapter->dma_status = adapter->dma_status & ~0x00000002; | ||
1521 | } | ||
1522 | } | ||
1523 | } | ||
1524 | |||
1525 | static void open_stream(struct adapter *adapter, u16 pid) | ||
1526 | { | ||
1527 | u32 dma_mask; | ||
1528 | |||
1529 | ++adapter->capturing; | ||
1530 | |||
1531 | filter_enable_mask_filter(adapter, 1); | ||
1532 | |||
1533 | add_pid(adapter, pid); | ||
1534 | |||
1535 | dprintk("%s: adapter->dma_status=%x\n", __FUNCTION__, adapter->dma_status); | ||
1536 | |||
1537 | if ((adapter->dma_status & 7) != 7) { | ||
1538 | dma_mask = 0; | ||
1539 | |||
1540 | if (((adapter->dma_status & 0x10000000) != 0) && ((adapter->dma_status & 1) == 0)) { | ||
1541 | dma_mask = dma_mask | 1; | ||
1542 | |||
1543 | adapter->dmaq1.head = 0; | ||
1544 | adapter->dmaq1.tail = 0; | ||
1545 | |||
1546 | memset(adapter->dmaq1.buffer, 0, adapter->dmaq1.buffer_size); | ||
1547 | } | ||
1548 | |||
1549 | if (((adapter->dma_status & 0x20000000) != 0) && ((adapter->dma_status & 2) == 0)) { | ||
1550 | dma_mask = dma_mask | 2; | ||
1551 | |||
1552 | adapter->dmaq2.head = 0; | ||
1553 | adapter->dmaq2.tail = 0; | ||
1554 | } | ||
1555 | |||
1556 | if (dma_mask != 0) { | ||
1557 | irq_dma_enable_disable_irq(adapter, 1); | ||
1558 | |||
1559 | dma_start_stop(adapter, dma_mask, 1); | ||
1560 | } | ||
1561 | } | ||
1562 | } | ||
1563 | |||
1564 | static void close_stream(struct adapter *adapter, u16 pid) | ||
1565 | { | ||
1566 | if (adapter->capturing > 0) | ||
1567 | --adapter->capturing; | ||
1568 | |||
1569 | dprintk("%s: dma_status=%x\n", __FUNCTION__, adapter->dma_status); | ||
1570 | |||
1571 | if (adapter->capturing == 0) { | ||
1572 | u32 dma_mask = 0; | ||
1573 | |||
1574 | if ((adapter->dma_status & 1) != 0) | ||
1575 | dma_mask = dma_mask | 0x00000001; | ||
1576 | if ((adapter->dma_status & 2) != 0) | ||
1577 | dma_mask = dma_mask | 0x00000002; | ||
1578 | |||
1579 | if (dma_mask != 0) { | ||
1580 | dma_start_stop(adapter, dma_mask, 0); | ||
1581 | } | ||
1582 | } | ||
1583 | remove_pid(adapter, pid); | ||
1584 | } | ||
1585 | |||
1586 | static void interrupt_service_dma1(struct adapter *adapter) | ||
1587 | { | ||
1588 | struct dvb_demux *dvbdmx = &adapter->demux; | ||
1589 | |||
1590 | int n_cur_dma_counter; | ||
1591 | u32 n_num_bytes_parsed; | ||
1592 | u32 n_num_new_bytes_transferred; | ||
1593 | u32 dw_default_packet_size = 188; | ||
1594 | u8 gb_tmp_buffer[188]; | ||
1595 | u8 *pb_dma_buf_cur_pos; | ||
1596 | |||
1597 | n_cur_dma_counter = readl(adapter->io_mem + 0x008) - adapter->dmaq1.bus_addr; | ||
1598 | n_cur_dma_counter = (n_cur_dma_counter / dw_default_packet_size) * dw_default_packet_size; | ||
1599 | |||
1600 | if ((n_cur_dma_counter < 0) || (n_cur_dma_counter > adapter->dmaq1.buffer_size)) { | ||
1601 | dprintk("%s: dma counter outside dma buffer\n", __FUNCTION__); | ||
1602 | return; | ||
1603 | } | ||
1604 | |||
1605 | adapter->dmaq1.head = n_cur_dma_counter; | ||
1606 | |||
1607 | if (adapter->dmaq1.tail <= n_cur_dma_counter) { | ||
1608 | n_num_new_bytes_transferred = n_cur_dma_counter - adapter->dmaq1.tail; | ||
1609 | |||
1610 | } else { | ||
1611 | |||
1612 | n_num_new_bytes_transferred = (adapter->dmaq1.buffer_size - adapter->dmaq1.tail) + n_cur_dma_counter; | ||
1613 | } | ||
1614 | |||
1615 | ddprintk("%s: n_cur_dma_counter = %d\n", __FUNCTION__, n_cur_dma_counter); | ||
1616 | ddprintk("%s: dmaq1.tail = %d\n", __FUNCTION__, adapter->dmaq1.tail); | ||
1617 | ddprintk("%s: bytes_transferred = %d\n", __FUNCTION__, n_num_new_bytes_transferred); | ||
1618 | |||
1619 | if (n_num_new_bytes_transferred < dw_default_packet_size) | ||
1620 | return; | ||
1621 | |||
1622 | n_num_bytes_parsed = 0; | ||
1623 | |||
1624 | while (n_num_bytes_parsed < n_num_new_bytes_transferred) { | ||
1625 | pb_dma_buf_cur_pos = adapter->dmaq1.buffer + adapter->dmaq1.tail; | ||
1626 | |||
1627 | if (adapter->dmaq1.buffer + adapter->dmaq1.buffer_size < adapter->dmaq1.buffer + adapter->dmaq1.tail + 188) { | ||
1628 | memcpy(gb_tmp_buffer, adapter->dmaq1.buffer + adapter->dmaq1.tail, | ||
1629 | adapter->dmaq1.buffer_size - adapter->dmaq1.tail); | ||
1630 | memcpy(gb_tmp_buffer + (adapter->dmaq1.buffer_size - adapter->dmaq1.tail), adapter->dmaq1.buffer, | ||
1631 | (188 - (adapter->dmaq1.buffer_size - adapter->dmaq1.tail))); | ||
1632 | |||
1633 | pb_dma_buf_cur_pos = gb_tmp_buffer; | ||
1634 | } | ||
1635 | |||
1636 | if (adapter->capturing != 0) { | ||
1637 | dvb_dmx_swfilter_packets(dvbdmx, pb_dma_buf_cur_pos, dw_default_packet_size / 188); | ||
1638 | } | ||
1639 | |||
1640 | n_num_bytes_parsed = n_num_bytes_parsed + dw_default_packet_size; | ||
1641 | |||
1642 | adapter->dmaq1.tail = adapter->dmaq1.tail + dw_default_packet_size; | ||
1643 | |||
1644 | if (adapter->dmaq1.tail >= adapter->dmaq1.buffer_size) | ||
1645 | adapter->dmaq1.tail = adapter->dmaq1.tail - adapter->dmaq1.buffer_size; | ||
1646 | }; | ||
1647 | } | ||
1648 | |||
1649 | static void interrupt_service_dma2(struct adapter *adapter) | ||
1650 | { | ||
1651 | printk("%s:\n", __FUNCTION__); | ||
1652 | } | ||
1653 | |||
1654 | static irqreturn_t isr(int irq, void *dev_id, struct pt_regs *regs) | ||
1655 | { | ||
1656 | struct adapter *tmp = dev_id; | ||
1657 | |||
1658 | u32 value; | ||
1659 | |||
1660 | ddprintk("%s:\n", __FUNCTION__); | ||
1661 | |||
1662 | spin_lock_irq(&tmp->lock); | ||
1663 | |||
1664 | if (0 == ((value = read_reg_dw(tmp, 0x20c)) & 0x0f)) { | ||
1665 | spin_unlock_irq(&tmp->lock); | ||
1666 | return IRQ_NONE; | ||
1667 | } | ||
1668 | |||
1669 | while (value != 0) { | ||
1670 | if ((value & 0x03) != 0) | ||
1671 | interrupt_service_dma1(tmp); | ||
1672 | if ((value & 0x0c) != 0) | ||
1673 | interrupt_service_dma2(tmp); | ||
1674 | value = read_reg_dw(tmp, 0x20c) & 0x0f; | ||
1675 | } | ||
1676 | |||
1677 | spin_unlock_irq(&tmp->lock); | ||
1678 | return IRQ_HANDLED; | ||
1679 | } | ||
1680 | |||
1681 | static int init_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq, | ||
1682 | int size, int dmaq_offset) | ||
1683 | { | ||
1684 | struct pci_dev *pdev = adapter->pdev; | ||
1685 | dma_addr_t dma_addr; | ||
1686 | |||
1687 | dmaq->head = 0; | ||
1688 | dmaq->tail = 0; | ||
1689 | |||
1690 | dmaq->buffer = pci_alloc_consistent(pdev, size + 0x80, &dma_addr); | ||
1691 | if (!dmaq->buffer) | ||
1692 | return -ENOMEM; | ||
1693 | |||
1694 | dmaq->bus_addr = dma_addr; | ||
1695 | dmaq->buffer_size = size; | ||
1696 | |||
1697 | dma_init_dma(adapter, dmaq_offset); | ||
1698 | |||
1699 | ddprintk("%s: allocated dma buffer at 0x%p, length=%d\n", | ||
1700 | __FUNCTION__, dmaq->buffer, size); | ||
1701 | |||
1702 | return 0; | ||
1703 | } | ||
1704 | |||
1705 | static int init_dma_queue(struct adapter *adapter) | ||
1706 | { | ||
1707 | struct { | ||
1708 | struct dmaq *dmaq; | ||
1709 | u32 dma_status; | ||
1710 | int size; | ||
1711 | } dmaq_desc[] = { | ||
1712 | { &adapter->dmaq1, 0x10000000, SIZE_OF_BUF_DMA1 }, | ||
1713 | { &adapter->dmaq2, 0x20000000, SIZE_OF_BUF_DMA2 } | ||
1714 | }, *p = dmaq_desc; | ||
1715 | int i; | ||
1716 | |||
1717 | for (i = 0; i < 2; i++, p++) { | ||
1718 | if (init_dma_queue_one(adapter, p->dmaq, p->size, i) < 0) | ||
1719 | adapter->dma_status &= ~p->dma_status; | ||
1720 | else | ||
1721 | adapter->dma_status |= p->dma_status; | ||
1722 | } | ||
1723 | return (adapter->dma_status & 0x30000000) ? 0 : -ENOMEM; | ||
1724 | } | ||
1725 | |||
1726 | static void free_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq) | ||
1727 | { | ||
1728 | if (dmaq->buffer) { | ||
1729 | pci_free_consistent(adapter->pdev, dmaq->buffer_size + 0x80, | ||
1730 | dmaq->buffer, dmaq->bus_addr); | ||
1731 | memset(dmaq, 0, sizeof(*dmaq)); | ||
1732 | } | ||
1733 | } | ||
1734 | |||
1735 | static void free_dma_queue(struct adapter *adapter) | ||
1736 | { | ||
1737 | struct dmaq *dmaq[] = { | ||
1738 | &adapter->dmaq1, | ||
1739 | &adapter->dmaq2, | ||
1740 | NULL | ||
1741 | }, **p; | ||
1742 | |||
1743 | for (p = dmaq; *p; p++) | ||
1744 | free_dma_queue_one(adapter, *p); | ||
1745 | } | ||
1746 | |||
1747 | static void release_adapter(struct adapter *adapter) | ||
1748 | { | ||
1749 | struct pci_dev *pdev = adapter->pdev; | ||
1750 | |||
1751 | iounmap(adapter->io_mem); | ||
1752 | pci_disable_device(pdev); | ||
1753 | pci_release_region(pdev, 0); | ||
1754 | pci_release_region(pdev, 1); | ||
1755 | } | ||
1756 | |||
1757 | static void free_adapter_object(struct adapter *adapter) | ||
1758 | { | ||
1759 | dprintk("%s:\n", __FUNCTION__); | ||
1760 | |||
1761 | close_stream(adapter, 0); | ||
1762 | free_irq(adapter->irq, adapter); | ||
1763 | free_dma_queue(adapter); | ||
1764 | release_adapter(adapter); | ||
1765 | kfree(adapter); | ||
1766 | } | ||
1767 | |||
1768 | static struct pci_driver skystar2_pci_driver; | ||
1769 | |||
1770 | static int claim_adapter(struct adapter *adapter) | ||
1771 | { | ||
1772 | struct pci_dev *pdev = adapter->pdev; | ||
1773 | u16 var; | ||
1774 | int ret; | ||
1775 | |||
1776 | ret = pci_request_region(pdev, 1, skystar2_pci_driver.name); | ||
1777 | if (ret < 0) | ||
1778 | goto out; | ||
1779 | |||
1780 | ret = pci_request_region(pdev, 0, skystar2_pci_driver.name); | ||
1781 | if (ret < 0) | ||
1782 | goto err_pci_release_1; | ||
1783 | |||
1784 | pci_read_config_byte(pdev, PCI_CLASS_REVISION, &adapter->card_revision); | ||
1785 | |||
1786 | dprintk("%s: card revision %x \n", __FUNCTION__, adapter->card_revision); | ||
1787 | |||
1788 | ret = pci_enable_device(pdev); | ||
1789 | if (ret < 0) | ||
1790 | goto err_pci_release_0; | ||
1791 | |||
1792 | pci_read_config_word(pdev, 4, &var); | ||
1793 | |||
1794 | if ((var & 4) == 0) | ||
1795 | pci_set_master(pdev); | ||
1796 | |||
1797 | adapter->io_port = pdev->resource[1].start; | ||
1798 | |||
1799 | adapter->io_mem = ioremap(pdev->resource[0].start, 0x800); | ||
1800 | |||
1801 | if (!adapter->io_mem) { | ||
1802 | dprintk("%s: can not map io memory\n", __FUNCTION__); | ||
1803 | ret = -EIO; | ||
1804 | goto err_pci_disable; | ||
1805 | } | ||
1806 | |||
1807 | dprintk("%s: io memory maped at %p\n", __FUNCTION__, adapter->io_mem); | ||
1808 | |||
1809 | ret = 1; | ||
1810 | out: | ||
1811 | return ret; | ||
1812 | |||
1813 | err_pci_disable: | ||
1814 | pci_disable_device(pdev); | ||
1815 | err_pci_release_0: | ||
1816 | pci_release_region(pdev, 0); | ||
1817 | err_pci_release_1: | ||
1818 | pci_release_region(pdev, 1); | ||
1819 | goto out; | ||
1820 | } | ||
1821 | |||
1822 | /* | ||
1823 | static int sll_reset_flexcop(struct adapter *adapter) | ||
1824 | { | ||
1825 | write_reg_dw(adapter, 0x208, 0); | ||
1826 | write_reg_dw(adapter, 0x210, 0xb2ff); | ||
1827 | |||
1828 | return 0; | ||
1829 | } | ||
1830 | */ | ||
1831 | |||
1832 | static void decide_how_many_hw_filters(struct adapter *adapter) | ||
1833 | { | ||
1834 | int hw_filters; | ||
1835 | int mod_option_hw_filters; | ||
1836 | |||
1837 | // FlexCop IIb & III have 6+32 hw filters | ||
1838 | // FlexCop II has 6 hw filters, every other should have at least 6 | ||
1839 | switch (adapter->b2c2_revision) { | ||
1840 | case 0x82: /* II */ | ||
1841 | hw_filters = 6; | ||
1842 | break; | ||
1843 | case 0xc3: /* IIB */ | ||
1844 | hw_filters = 6 + 32; | ||
1845 | break; | ||
1846 | case 0xc0: /* III */ | ||
1847 | hw_filters = 6 + 32; | ||
1848 | break; | ||
1849 | default: | ||
1850 | hw_filters = 6; | ||
1851 | break; | ||
1852 | } | ||
1853 | printk("%s: the chip has %i hardware filters", __FILE__, hw_filters); | ||
1854 | |||
1855 | mod_option_hw_filters = 0; | ||
1856 | if (enable_hw_filters >= 1) | ||
1857 | mod_option_hw_filters += 6; | ||
1858 | if (enable_hw_filters >= 2) | ||
1859 | mod_option_hw_filters += 32; | ||
1860 | |||
1861 | if (mod_option_hw_filters >= hw_filters) { | ||
1862 | adapter->useable_hw_filters = hw_filters; | ||
1863 | } else { | ||
1864 | adapter->useable_hw_filters = mod_option_hw_filters; | ||
1865 | printk(", but only %d will be used because of module option", mod_option_hw_filters); | ||
1866 | } | ||
1867 | printk("\n"); | ||
1868 | dprintk("%s: useable_hardware_filters set to %i\n", __FILE__, adapter->useable_hw_filters); | ||
1869 | } | ||
1870 | |||
1871 | static int driver_initialize(struct pci_dev *pdev) | ||
1872 | { | ||
1873 | struct adapter *adapter; | ||
1874 | u32 tmp; | ||
1875 | int ret = -ENOMEM; | ||
1876 | |||
1877 | adapter = kmalloc(sizeof(struct adapter), GFP_KERNEL); | ||
1878 | if (!adapter) { | ||
1879 | dprintk("%s: out of memory!\n", __FUNCTION__); | ||
1880 | goto out; | ||
1881 | } | ||
1882 | |||
1883 | memset(adapter, 0, sizeof(struct adapter)); | ||
1884 | |||
1885 | pci_set_drvdata(pdev,adapter); | ||
1886 | |||
1887 | adapter->pdev = pdev; | ||
1888 | adapter->irq = pdev->irq; | ||
1889 | |||
1890 | ret = claim_adapter(adapter); | ||
1891 | if (ret < 0) | ||
1892 | goto err_kfree; | ||
1893 | |||
1894 | irq_dma_enable_disable_irq(adapter, 0); | ||
1895 | |||
1896 | ret = request_irq(pdev->irq, isr, 0x4000000, "Skystar2", adapter); | ||
1897 | if (ret < 0) { | ||
1898 | dprintk("%s: unable to allocate irq=%d !\n", __FUNCTION__, pdev->irq); | ||
1899 | goto err_release_adapter; | ||
1900 | } | ||
1901 | |||
1902 | read_reg_dw(adapter, 0x208); | ||
1903 | write_reg_dw(adapter, 0x208, 0); | ||
1904 | write_reg_dw(adapter, 0x210, 0xb2ff); | ||
1905 | write_reg_dw(adapter, 0x208, 0x40); | ||
1906 | |||
1907 | ret = init_dma_queue(adapter); | ||
1908 | if (ret < 0) | ||
1909 | goto err_free_irq; | ||
1910 | |||
1911 | adapter->b2c2_revision = (read_reg_dw(adapter, 0x204) >> 0x18); | ||
1912 | |||
1913 | switch (adapter->b2c2_revision) { | ||
1914 | case 0x82: | ||
1915 | printk("%s: FlexCopII(rev.130) chip found\n", __FILE__); | ||
1916 | break; | ||
1917 | case 0xc3: | ||
1918 | printk("%s: FlexCopIIB(rev.195) chip found\n", __FILE__); | ||
1919 | break; | ||
1920 | case 0xc0: | ||
1921 | printk("%s: FlexCopIII(rev.192) chip found\n", __FILE__); | ||
1922 | break; | ||
1923 | default: | ||
1924 | printk("%s: The revision of the FlexCop chip on your card is %d\n", __FILE__, adapter->b2c2_revision); | ||
1925 | printk("%s: This driver works only with FlexCopII(rev.130), FlexCopIIB(rev.195) and FlexCopIII(rev.192).\n", __FILE__); | ||
1926 | ret = -ENODEV; | ||
1927 | goto err_free_dma_queue; | ||
1928 | } | ||
1929 | |||
1930 | decide_how_many_hw_filters(adapter); | ||
1931 | |||
1932 | init_pids(adapter); | ||
1933 | |||
1934 | tmp = read_reg_dw(adapter, 0x204); | ||
1935 | |||
1936 | write_reg_dw(adapter, 0x204, 0); | ||
1937 | mdelay(20); | ||
1938 | |||
1939 | write_reg_dw(adapter, 0x204, tmp); | ||
1940 | mdelay(10); | ||
1941 | |||
1942 | tmp = read_reg_dw(adapter, 0x308); | ||
1943 | write_reg_dw(adapter, 0x308, 0x4000 | tmp); | ||
1944 | |||
1945 | adapter->dw_sram_type = 0x10000; | ||
1946 | |||
1947 | sll_detect_sram_size(adapter); | ||
1948 | |||
1949 | dprintk("%s sram length = %d, sram type= %x\n", __FUNCTION__, sram_length(adapter), adapter->dw_sram_type); | ||
1950 | |||
1951 | sram_set_media_dest(adapter, 1); | ||
1952 | sram_set_net_dest(adapter, 1); | ||
1953 | |||
1954 | ctrl_enable_smc(adapter, 0); | ||
1955 | |||
1956 | sram_set_cai_dest(adapter, 2); | ||
1957 | sram_set_cao_dest(adapter, 2); | ||
1958 | |||
1959 | dma_enable_disable_irq(adapter, 1, 0, 0); | ||
1960 | |||
1961 | if (eeprom_get_mac_addr(adapter, 0, adapter->mac_addr) != 0) { | ||
1962 | printk("%s MAC address = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x \n", __FUNCTION__, adapter->mac_addr[0], | ||
1963 | adapter->mac_addr[1], adapter->mac_addr[2], adapter->mac_addr[3], adapter->mac_addr[4], adapter->mac_addr[5], | ||
1964 | adapter->mac_addr[6], adapter->mac_addr[7] | ||
1965 | ); | ||
1966 | |||
1967 | ca_set_mac_dst_addr_filter(adapter, adapter->mac_addr); | ||
1968 | ctrl_enable_mac(adapter, 1); | ||
1969 | } | ||
1970 | |||
1971 | spin_lock_init(&adapter->lock); | ||
1972 | |||
1973 | out: | ||
1974 | return ret; | ||
1975 | |||
1976 | err_free_dma_queue: | ||
1977 | free_dma_queue(adapter); | ||
1978 | err_free_irq: | ||
1979 | free_irq(pdev->irq, adapter); | ||
1980 | err_release_adapter: | ||
1981 | release_adapter(adapter); | ||
1982 | err_kfree: | ||
1983 | pci_set_drvdata(pdev, NULL); | ||
1984 | kfree(adapter); | ||
1985 | goto out; | ||
1986 | } | ||
1987 | |||
1988 | static void driver_halt(struct pci_dev *pdev) | ||
1989 | { | ||
1990 | struct adapter *adapter = pci_get_drvdata(pdev); | ||
1991 | |||
1992 | irq_dma_enable_disable_irq(adapter, 0); | ||
1993 | |||
1994 | ctrl_enable_receive_data(adapter, 0); | ||
1995 | |||
1996 | free_adapter_object(adapter); | ||
1997 | |||
1998 | pci_set_drvdata(pdev, NULL); | ||
1999 | } | ||
2000 | |||
2001 | static int dvb_start_feed(struct dvb_demux_feed *dvbdmxfeed) | ||
2002 | { | ||
2003 | struct dvb_demux *dvbdmx = dvbdmxfeed->demux; | ||
2004 | struct adapter *adapter = (struct adapter *) dvbdmx->priv; | ||
2005 | |||
2006 | dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); | ||
2007 | |||
2008 | open_stream(adapter, dvbdmxfeed->pid); | ||
2009 | |||
2010 | return 0; | ||
2011 | } | ||
2012 | |||
2013 | static int dvb_stop_feed(struct dvb_demux_feed *dvbdmxfeed) | ||
2014 | { | ||
2015 | struct dvb_demux *dvbdmx = dvbdmxfeed->demux; | ||
2016 | struct adapter *adapter = (struct adapter *) dvbdmx->priv; | ||
2017 | |||
2018 | dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); | ||
2019 | |||
2020 | close_stream(adapter, dvbdmxfeed->pid); | ||
2021 | |||
2022 | return 0; | ||
2023 | } | ||
2024 | |||
2025 | /* lnb control */ | ||
2026 | static void set_tuner_tone(struct adapter *adapter, u8 tone) | ||
2027 | { | ||
2028 | u16 wz_half_period_for_45_mhz[] = { 0x01ff, 0x0154, 0x00ff, 0x00cc }; | ||
2029 | u16 ax; | ||
2030 | |||
2031 | dprintk("%s: %u\n", __FUNCTION__, tone); | ||
2032 | |||
2033 | switch (tone) { | ||
2034 | case 1: | ||
2035 | ax = wz_half_period_for_45_mhz[0]; | ||
2036 | break; | ||
2037 | case 2: | ||
2038 | ax = wz_half_period_for_45_mhz[1]; | ||
2039 | break; | ||
2040 | case 3: | ||
2041 | ax = wz_half_period_for_45_mhz[2]; | ||
2042 | break; | ||
2043 | case 4: | ||
2044 | ax = wz_half_period_for_45_mhz[3]; | ||
2045 | break; | ||
2046 | |||
2047 | default: | ||
2048 | ax = 0; | ||
2049 | } | ||
2050 | |||
2051 | if (ax != 0) { | ||
2052 | write_reg_dw(adapter, 0x200, ((ax << 0x0f) + (ax & 0x7fff)) | 0x40000000); | ||
2053 | |||
2054 | } else { | ||
2055 | |||
2056 | write_reg_dw(adapter, 0x200, 0x40ff8000); | ||
2057 | } | ||
2058 | } | ||
2059 | |||
2060 | static void set_tuner_polarity(struct adapter *adapter, u8 polarity) | ||
2061 | { | ||
2062 | u32 var; | ||
2063 | |||
2064 | dprintk("%s : polarity = %u \n", __FUNCTION__, polarity); | ||
2065 | |||
2066 | var = read_reg_dw(adapter, 0x204); | ||
2067 | |||
2068 | if (polarity == 0) { | ||
2069 | dprintk("%s: LNB power off\n", __FUNCTION__); | ||
2070 | var = var | 1; | ||
2071 | }; | ||
2072 | |||
2073 | if (polarity == 1) { | ||
2074 | var = var & ~1; | ||
2075 | var = var & ~4; | ||
2076 | }; | ||
2077 | |||
2078 | if (polarity == 2) { | ||
2079 | var = var & ~1; | ||
2080 | var = var | 4; | ||
2081 | } | ||
2082 | |||
2083 | write_reg_dw(adapter, 0x204, var); | ||
2084 | } | ||
2085 | |||
2086 | static void diseqc_send_bit(struct adapter *adapter, int data) | ||
2087 | { | ||
2088 | set_tuner_tone(adapter, 1); | ||
2089 | udelay(data ? 500 : 1000); | ||
2090 | set_tuner_tone(adapter, 0); | ||
2091 | udelay(data ? 1000 : 500); | ||
2092 | } | ||
2093 | |||
2094 | |||
2095 | static void diseqc_send_byte(struct adapter *adapter, int data) | ||
2096 | { | ||
2097 | int i, par = 1, d; | ||
2098 | |||
2099 | for (i = 7; i >= 0; i--) { | ||
2100 | d = (data >> i) & 1; | ||
2101 | par ^= d; | ||
2102 | diseqc_send_bit(adapter, d); | ||
2103 | } | ||
2104 | |||
2105 | diseqc_send_bit(adapter, par); | ||
2106 | } | ||
2107 | |||
2108 | |||
2109 | static int send_diseqc_msg(struct adapter *adapter, int len, u8 *msg, unsigned long burst) | ||
2110 | { | ||
2111 | int i; | ||
2112 | |||
2113 | set_tuner_tone(adapter, 0); | ||
2114 | mdelay(16); | ||
2115 | |||
2116 | for (i = 0; i < len; i++) | ||
2117 | diseqc_send_byte(adapter, msg[i]); | ||
2118 | |||
2119 | mdelay(16); | ||
2120 | |||
2121 | if (burst != -1) { | ||
2122 | if (burst) | ||
2123 | diseqc_send_byte(adapter, 0xff); | ||
2124 | else { | ||
2125 | set_tuner_tone(adapter, 1); | ||
2126 | udelay(12500); | ||
2127 | set_tuner_tone(adapter, 0); | ||
2128 | } | ||
2129 | msleep(20); | ||
2130 | } | ||
2131 | |||
2132 | return 0; | ||
2133 | } | ||
2134 | |||
2135 | static int flexcop_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone) | ||
2136 | { | ||
2137 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; | ||
2138 | |||
2139 | switch(tone) { | ||
2140 | case SEC_TONE_ON: | ||
2141 | set_tuner_tone(adapter, 1); | ||
2142 | break; | ||
2143 | case SEC_TONE_OFF: | ||
2144 | set_tuner_tone(adapter, 0); | ||
2145 | break; | ||
2146 | default: | ||
2147 | return -EINVAL; | ||
2148 | }; | ||
2149 | |||
2150 | return 0; | ||
2151 | } | ||
2152 | |||
2153 | static int flexcop_diseqc_send_master_cmd(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd* cmd) | ||
2154 | { | ||
2155 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; | ||
2156 | |||
2157 | send_diseqc_msg(adapter, cmd->msg_len, cmd->msg, 0); | ||
2158 | |||
2159 | return 0; | ||
2160 | } | ||
2161 | |||
2162 | static int flexcop_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd) | ||
2163 | { | ||
2164 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; | ||
2165 | |||
2166 | send_diseqc_msg(adapter, 0, NULL, minicmd); | ||
2167 | |||
2168 | return 0; | ||
2169 | } | ||
2170 | |||
2171 | static int flexcop_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage) | ||
2172 | { | ||
2173 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; | ||
2174 | |||
2175 | dprintk("%s: FE_SET_VOLTAGE\n", __FUNCTION__); | ||
2176 | |||
2177 | switch (voltage) { | ||
2178 | case SEC_VOLTAGE_13: | ||
2179 | dprintk("%s: SEC_VOLTAGE_13, %x\n", __FUNCTION__, SEC_VOLTAGE_13); | ||
2180 | set_tuner_polarity(adapter, 1); | ||
2181 | return 0; | ||
2182 | |||
2183 | case SEC_VOLTAGE_18: | ||
2184 | dprintk("%s: SEC_VOLTAGE_18, %x\n", __FUNCTION__, SEC_VOLTAGE_18); | ||
2185 | set_tuner_polarity(adapter, 2); | ||
2186 | return 0; | ||
2187 | |||
2188 | default: | ||
2189 | return -EINVAL; | ||
2190 | } | ||
2191 | } | ||
2192 | |||
2193 | static int flexcop_sleep(struct dvb_frontend* fe) | ||
2194 | { | ||
2195 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; | ||
2196 | |||
2197 | dprintk("%s: FE_SLEEP\n", __FUNCTION__); | ||
2198 | set_tuner_polarity(adapter, 0); | ||
2199 | |||
2200 | if (adapter->fe_sleep) return adapter->fe_sleep(fe); | ||
2201 | return 0; | ||
2202 | } | ||
2203 | |||
2204 | static u32 flexcop_i2c_func(struct i2c_adapter *adapter) | ||
2205 | { | ||
2206 | printk("flexcop_i2c_func\n"); | ||
2207 | |||
2208 | return I2C_FUNC_I2C; | ||
2209 | } | ||
2210 | |||
2211 | static struct i2c_algorithm flexcop_algo = { | ||
2212 | .name = "flexcop i2c algorithm", | ||
2213 | .id = I2C_ALGO_BIT, | ||
2214 | .master_xfer = master_xfer, | ||
2215 | .functionality = flexcop_i2c_func, | ||
2216 | }; | ||
2217 | |||
2218 | |||
2219 | |||
2220 | |||
2221 | static int samsung_tbmu24112_set_symbol_rate(struct dvb_frontend* fe, u32 srate, u32 ratio) | ||
2222 | { | ||
2223 | u8 aclk = 0; | ||
2224 | u8 bclk = 0; | ||
2225 | |||
2226 | if (srate < 1500000) { aclk = 0xb7; bclk = 0x47; } | ||
2227 | else if (srate < 3000000) { aclk = 0xb7; bclk = 0x4b; } | ||
2228 | else if (srate < 7000000) { aclk = 0xb7; bclk = 0x4f; } | ||
2229 | else if (srate < 14000000) { aclk = 0xb7; bclk = 0x53; } | ||
2230 | else if (srate < 30000000) { aclk = 0xb6; bclk = 0x53; } | ||
2231 | else if (srate < 45000000) { aclk = 0xb4; bclk = 0x51; } | ||
2232 | |||
2233 | stv0299_writereg (fe, 0x13, aclk); | ||
2234 | stv0299_writereg (fe, 0x14, bclk); | ||
2235 | stv0299_writereg (fe, 0x1f, (ratio >> 16) & 0xff); | ||
2236 | stv0299_writereg (fe, 0x20, (ratio >> 8) & 0xff); | ||
2237 | stv0299_writereg (fe, 0x21, (ratio ) & 0xf0); | ||
2238 | |||
2239 | return 0; | ||
2240 | } | ||
2241 | |||
2242 | static int samsung_tbmu24112_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params) | ||
2243 | { | ||
2244 | u8 buf[4]; | ||
2245 | u32 div; | ||
2246 | struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) }; | ||
2247 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; | ||
2248 | |||
2249 | div = params->frequency / 125; | ||
2250 | |||
2251 | buf[0] = (div >> 8) & 0x7f; | ||
2252 | buf[1] = div & 0xff; | ||
2253 | buf[2] = 0x84; // 0xC4 | ||
2254 | buf[3] = 0x08; | ||
2255 | |||
2256 | if (params->frequency < 1500000) buf[3] |= 0x10; | ||
2257 | |||
2258 | if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO; | ||
2259 | return 0; | ||
2260 | } | ||
2261 | |||
2262 | static u8 samsung_tbmu24112_inittab[] = { | ||
2263 | 0x01, 0x15, | ||
2264 | 0x02, 0x30, | ||
2265 | 0x03, 0x00, | ||
2266 | 0x04, 0x7D, | ||
2267 | 0x05, 0x35, | ||
2268 | 0x06, 0x02, | ||
2269 | 0x07, 0x00, | ||
2270 | 0x08, 0xC3, | ||
2271 | 0x0C, 0x00, | ||
2272 | 0x0D, 0x81, | ||
2273 | 0x0E, 0x23, | ||
2274 | 0x0F, 0x12, | ||
2275 | 0x10, 0x7E, | ||
2276 | 0x11, 0x84, | ||
2277 | 0x12, 0xB9, | ||
2278 | 0x13, 0x88, | ||
2279 | 0x14, 0x89, | ||
2280 | 0x15, 0xC9, | ||
2281 | 0x16, 0x00, | ||
2282 | 0x17, 0x5C, | ||
2283 | 0x18, 0x00, | ||
2284 | 0x19, 0x00, | ||
2285 | 0x1A, 0x00, | ||
2286 | 0x1C, 0x00, | ||
2287 | 0x1D, 0x00, | ||
2288 | 0x1E, 0x00, | ||
2289 | 0x1F, 0x3A, | ||
2290 | 0x20, 0x2E, | ||
2291 | 0x21, 0x80, | ||
2292 | 0x22, 0xFF, | ||
2293 | 0x23, 0xC1, | ||
2294 | 0x28, 0x00, | ||
2295 | 0x29, 0x1E, | ||
2296 | 0x2A, 0x14, | ||
2297 | 0x2B, 0x0F, | ||
2298 | 0x2C, 0x09, | ||
2299 | 0x2D, 0x05, | ||
2300 | 0x31, 0x1F, | ||
2301 | 0x32, 0x19, | ||
2302 | 0x33, 0xFE, | ||
2303 | 0x34, 0x93, | ||
2304 | 0xff, 0xff, | ||
2305 | }; | ||
2306 | |||
2307 | static struct stv0299_config samsung_tbmu24112_config = { | ||
2308 | .demod_address = 0x68, | ||
2309 | .inittab = samsung_tbmu24112_inittab, | ||
2310 | .mclk = 88000000UL, | ||
2311 | .invert = 0, | ||
2312 | .enhanced_tuning = 0, | ||
2313 | .skip_reinit = 0, | ||
2314 | .lock_output = STV0229_LOCKOUTPUT_LK, | ||
2315 | .volt13_op0_op1 = STV0299_VOLT13_OP1, | ||
2316 | .min_delay_ms = 100, | ||
2317 | .set_symbol_rate = samsung_tbmu24112_set_symbol_rate, | ||
2318 | .pll_set = samsung_tbmu24112_pll_set, | ||
2319 | }; | ||
2320 | |||
2321 | |||
2322 | |||
2323 | static int nxt2002_request_firmware(struct dvb_frontend* fe, const struct firmware **fw, char* name) | ||
2324 | { | ||
2325 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; | ||
2326 | |||
2327 | return request_firmware(fw, name, &adapter->pdev->dev); | ||
2328 | } | ||
2329 | |||
2330 | |||
2331 | static struct nxt2002_config samsung_tbmv_config = { | ||
2332 | .demod_address = 0x0A, | ||
2333 | .request_firmware = nxt2002_request_firmware, | ||
2334 | }; | ||
2335 | |||
2336 | static int samsung_tdtc9251dh0_demod_init(struct dvb_frontend* fe) | ||
2337 | { | ||
2338 | static u8 mt352_clock_config [] = { 0x89, 0x18, 0x2d }; | ||
2339 | static u8 mt352_reset [] = { 0x50, 0x80 }; | ||
2340 | static u8 mt352_adc_ctl_1_cfg [] = { 0x8E, 0x40 }; | ||
2341 | static u8 mt352_agc_cfg [] = { 0x67, 0x28, 0xa1 }; | ||
2342 | static u8 mt352_capt_range_cfg[] = { 0x75, 0x32 }; | ||
2343 | |||
2344 | mt352_write(fe, mt352_clock_config, sizeof(mt352_clock_config)); | ||
2345 | udelay(2000); | ||
2346 | mt352_write(fe, mt352_reset, sizeof(mt352_reset)); | ||
2347 | mt352_write(fe, mt352_adc_ctl_1_cfg, sizeof(mt352_adc_ctl_1_cfg)); | ||
2348 | |||
2349 | mt352_write(fe, mt352_agc_cfg, sizeof(mt352_agc_cfg)); | ||
2350 | mt352_write(fe, mt352_capt_range_cfg, sizeof(mt352_capt_range_cfg)); | ||
2351 | |||
2352 | return 0; | ||
2353 | } | ||
2354 | |||
2355 | static int samsung_tdtc9251dh0_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params, u8* pllbuf) | ||
2356 | { | ||
2357 | u32 div; | ||
2358 | unsigned char bs = 0; | ||
2359 | |||
2360 | #define IF_FREQUENCYx6 217 /* 6 * 36.16666666667MHz */ | ||
2361 | div = (((params->frequency + 83333) * 3) / 500000) + IF_FREQUENCYx6; | ||
2362 | |||
2363 | if (params->frequency >= 48000000 && params->frequency <= 154000000) bs = 0x09; | ||
2364 | if (params->frequency >= 161000000 && params->frequency <= 439000000) bs = 0x0a; | ||
2365 | if (params->frequency >= 447000000 && params->frequency <= 863000000) bs = 0x08; | ||
2366 | |||
2367 | pllbuf[0] = 0xc2; // Note: non-linux standard PLL i2c address | ||
2368 | pllbuf[1] = div >> 8; | ||
2369 | pllbuf[2] = div & 0xff; | ||
2370 | pllbuf[3] = 0xcc; | ||
2371 | pllbuf[4] = bs; | ||
2372 | |||
2373 | return 0; | ||
2374 | } | ||
2375 | |||
2376 | static struct mt352_config samsung_tdtc9251dh0_config = { | ||
2377 | |||
2378 | .demod_address = 0x0f, | ||
2379 | .demod_init = samsung_tdtc9251dh0_demod_init, | ||
2380 | .pll_set = samsung_tdtc9251dh0_pll_set, | ||
2381 | }; | ||
2382 | |||
2383 | static int skystar23_samsung_tbdu18132_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params) | ||
2384 | { | ||
2385 | u8 buf[4]; | ||
2386 | u32 div; | ||
2387 | struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) }; | ||
2388 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; | ||
2389 | |||
2390 | div = (params->frequency + (125/2)) / 125; | ||
2391 | |||
2392 | buf[0] = (div >> 8) & 0x7f; | ||
2393 | buf[1] = (div >> 0) & 0xff; | ||
2394 | buf[2] = 0x84 | ((div >> 10) & 0x60); | ||
2395 | buf[3] = 0x80; | ||
2396 | |||
2397 | if (params->frequency < 1550000) | ||
2398 | buf[3] |= 0x02; | ||
2399 | |||
2400 | if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO; | ||
2401 | return 0; | ||
2402 | } | ||
2403 | |||
2404 | static struct mt312_config skystar23_samsung_tbdu18132_config = { | ||
2405 | |||
2406 | .demod_address = 0x0e, | ||
2407 | .pll_set = skystar23_samsung_tbdu18132_pll_set, | ||
2408 | }; | ||
2409 | |||
2410 | |||
2411 | |||
2412 | |||
2413 | static void frontend_init(struct adapter *skystar2) | ||
2414 | { | ||
2415 | switch(skystar2->pdev->device) { | ||
2416 | case 0x2103: // Technisat Skystar2 OR Technisat Airstar2 (DVB-T or ATSC) | ||
2417 | |||
2418 | // Attempt to load the Nextwave nxt2002 for ATSC support | ||
2419 | skystar2->fe = nxt2002_attach(&samsung_tbmv_config, &skystar2->i2c_adap); | ||
2420 | if (skystar2->fe != NULL) { | ||
2421 | skystar2->fe_sleep = skystar2->fe->ops->sleep; | ||
2422 | skystar2->fe->ops->sleep = flexcop_sleep; | ||
2423 | break; | ||
2424 | } | ||
2425 | |||
2426 | // try the skystar2 v2.6 first (stv0299/Samsung tbmu24112(sl1935)) | ||
2427 | skystar2->fe = stv0299_attach(&samsung_tbmu24112_config, &skystar2->i2c_adap); | ||
2428 | if (skystar2->fe != NULL) { | ||
2429 | skystar2->fe->ops->set_voltage = flexcop_set_voltage; | ||
2430 | skystar2->fe_sleep = skystar2->fe->ops->sleep; | ||
2431 | skystar2->fe->ops->sleep = flexcop_sleep; | ||
2432 | break; | ||
2433 | } | ||
2434 | |||
2435 | // try the airstar2 (mt352/Samsung tdtc9251dh0(??)) | ||
2436 | skystar2->fe = mt352_attach(&samsung_tdtc9251dh0_config, &skystar2->i2c_adap); | ||
2437 | if (skystar2->fe != NULL) { | ||
2438 | skystar2->fe->ops->info.frequency_min = 474000000; | ||
2439 | skystar2->fe->ops->info.frequency_max = 858000000; | ||
2440 | break; | ||
2441 | } | ||
2442 | |||
2443 | // try the skystar2 v2.3 (vp310/Samsung tbdu18132(tsa5059)) | ||
2444 | skystar2->fe = vp310_attach(&skystar23_samsung_tbdu18132_config, &skystar2->i2c_adap); | ||
2445 | if (skystar2->fe != NULL) { | ||
2446 | skystar2->fe->ops->diseqc_send_master_cmd = flexcop_diseqc_send_master_cmd; | ||
2447 | skystar2->fe->ops->diseqc_send_burst = flexcop_diseqc_send_burst; | ||
2448 | skystar2->fe->ops->set_tone = flexcop_set_tone; | ||
2449 | skystar2->fe->ops->set_voltage = flexcop_set_voltage; | ||
2450 | skystar2->fe_sleep = skystar2->fe->ops->sleep; | ||
2451 | skystar2->fe->ops->sleep = flexcop_sleep; | ||
2452 | break; | ||
2453 | } | ||
2454 | break; | ||
2455 | } | ||
2456 | |||
2457 | if (skystar2->fe == NULL) { | ||
2458 | printk("skystar2: A frontend driver was not found for device %04x/%04x subsystem %04x/%04x\n", | ||
2459 | skystar2->pdev->vendor, | ||
2460 | skystar2->pdev->device, | ||
2461 | skystar2->pdev->subsystem_vendor, | ||
2462 | skystar2->pdev->subsystem_device); | ||
2463 | } else { | ||
2464 | if (dvb_register_frontend(&skystar2->dvb_adapter, skystar2->fe)) { | ||
2465 | printk("skystar2: Frontend registration failed!\n"); | ||
2466 | if (skystar2->fe->ops->release) | ||
2467 | skystar2->fe->ops->release(skystar2->fe); | ||
2468 | skystar2->fe = NULL; | ||
2469 | } | ||
2470 | } | ||
2471 | } | ||
2472 | |||
2473 | |||
2474 | static int skystar2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) | ||
2475 | { | ||
2476 | struct adapter *adapter; | ||
2477 | struct dvb_adapter *dvb_adapter; | ||
2478 | struct dvb_demux *dvbdemux; | ||
2479 | struct dmx_demux *dmx; | ||
2480 | int ret = -ENODEV; | ||
2481 | |||
2482 | if (!pdev) | ||
2483 | goto out; | ||
2484 | |||
2485 | ret = driver_initialize(pdev); | ||
2486 | if (ret < 0) | ||
2487 | goto out; | ||
2488 | |||
2489 | adapter = pci_get_drvdata(pdev); | ||
2490 | dvb_adapter = &adapter->dvb_adapter; | ||
2491 | |||
2492 | ret = dvb_register_adapter(dvb_adapter, skystar2_pci_driver.name, | ||
2493 | THIS_MODULE); | ||
2494 | if (ret < 0) { | ||
2495 | printk("%s: Error registering DVB adapter\n", __FUNCTION__); | ||
2496 | goto err_halt; | ||
2497 | } | ||
2498 | |||
2499 | dvb_adapter->priv = adapter; | ||
2500 | |||
2501 | |||
2502 | init_MUTEX(&adapter->i2c_sem); | ||
2503 | |||
2504 | |||
2505 | memset(&adapter->i2c_adap, 0, sizeof(struct i2c_adapter)); | ||
2506 | strcpy(adapter->i2c_adap.name, "SkyStar2"); | ||
2507 | |||
2508 | i2c_set_adapdata(&adapter->i2c_adap, adapter); | ||
2509 | |||
2510 | #ifdef I2C_ADAP_CLASS_TV_DIGITAL | ||
2511 | adapter->i2c_adap.class = I2C_ADAP_CLASS_TV_DIGITAL; | ||
2512 | #else | ||
2513 | adapter->i2c_adap.class = I2C_CLASS_TV_DIGITAL; | ||
2514 | #endif | ||
2515 | adapter->i2c_adap.algo = &flexcop_algo; | ||
2516 | adapter->i2c_adap.algo_data = NULL; | ||
2517 | adapter->i2c_adap.id = I2C_ALGO_BIT; | ||
2518 | |||
2519 | ret = i2c_add_adapter(&adapter->i2c_adap); | ||
2520 | if (ret < 0) | ||
2521 | goto err_dvb_unregister; | ||
2522 | |||
2523 | dvbdemux = &adapter->demux; | ||
2524 | |||
2525 | dvbdemux->priv = adapter; | ||
2526 | dvbdemux->filternum = N_PID_SLOTS; | ||
2527 | dvbdemux->feednum = N_PID_SLOTS; | ||
2528 | dvbdemux->start_feed = dvb_start_feed; | ||
2529 | dvbdemux->stop_feed = dvb_stop_feed; | ||
2530 | dvbdemux->write_to_decoder = NULL; | ||
2531 | dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING); | ||
2532 | |||
2533 | ret = dvb_dmx_init(&adapter->demux); | ||
2534 | if (ret < 0) | ||
2535 | goto err_i2c_del; | ||
2536 | |||
2537 | dmx = &dvbdemux->dmx; | ||
2538 | |||
2539 | adapter->hw_frontend.source = DMX_FRONTEND_0; | ||
2540 | adapter->dmxdev.filternum = N_PID_SLOTS; | ||
2541 | adapter->dmxdev.demux = dmx; | ||
2542 | adapter->dmxdev.capabilities = 0; | ||
2543 | |||
2544 | ret = dvb_dmxdev_init(&adapter->dmxdev, &adapter->dvb_adapter); | ||
2545 | if (ret < 0) | ||
2546 | goto err_dmx_release; | ||
2547 | |||
2548 | ret = dmx->add_frontend(dmx, &adapter->hw_frontend); | ||
2549 | if (ret < 0) | ||
2550 | goto err_dmxdev_release; | ||
2551 | |||
2552 | adapter->mem_frontend.source = DMX_MEMORY_FE; | ||
2553 | |||
2554 | ret = dmx->add_frontend(dmx, &adapter->mem_frontend); | ||
2555 | if (ret < 0) | ||
2556 | goto err_remove_hw_frontend; | ||
2557 | |||
2558 | ret = dmx->connect_frontend(dmx, &adapter->hw_frontend); | ||
2559 | if (ret < 0) | ||
2560 | goto err_remove_mem_frontend; | ||
2561 | |||
2562 | dvb_net_init(&adapter->dvb_adapter, &adapter->dvbnet, &dvbdemux->dmx); | ||
2563 | |||
2564 | frontend_init(adapter); | ||
2565 | out: | ||
2566 | return ret; | ||
2567 | |||
2568 | err_remove_mem_frontend: | ||
2569 | dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->mem_frontend); | ||
2570 | err_remove_hw_frontend: | ||
2571 | dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->hw_frontend); | ||
2572 | err_dmxdev_release: | ||
2573 | dvb_dmxdev_release(&adapter->dmxdev); | ||
2574 | err_dmx_release: | ||
2575 | dvb_dmx_release(&adapter->demux); | ||
2576 | err_i2c_del: | ||
2577 | i2c_del_adapter(&adapter->i2c_adap); | ||
2578 | err_dvb_unregister: | ||
2579 | dvb_unregister_adapter(&adapter->dvb_adapter); | ||
2580 | err_halt: | ||
2581 | driver_halt(pdev); | ||
2582 | goto out; | ||
2583 | } | ||
2584 | |||
2585 | static void skystar2_remove(struct pci_dev *pdev) | ||
2586 | { | ||
2587 | struct adapter *adapter = pci_get_drvdata(pdev); | ||
2588 | struct dvb_demux *dvbdemux; | ||
2589 | struct dmx_demux *dmx; | ||
2590 | |||
2591 | if (!adapter) | ||
2592 | return; | ||
2593 | |||
2594 | dvb_net_release(&adapter->dvbnet); | ||
2595 | dvbdemux = &adapter->demux; | ||
2596 | dmx = &dvbdemux->dmx; | ||
2597 | |||
2598 | dmx->close(dmx); | ||
2599 | dmx->remove_frontend(dmx, &adapter->hw_frontend); | ||
2600 | dmx->remove_frontend(dmx, &adapter->mem_frontend); | ||
2601 | |||
2602 | dvb_dmxdev_release(&adapter->dmxdev); | ||
2603 | dvb_dmx_release(dvbdemux); | ||
2604 | |||
2605 | if (adapter->fe != NULL) | ||
2606 | dvb_unregister_frontend(adapter->fe); | ||
2607 | |||
2608 | dvb_unregister_adapter(&adapter->dvb_adapter); | ||
2609 | |||
2610 | i2c_del_adapter(&adapter->i2c_adap); | ||
2611 | |||
2612 | driver_halt(pdev); | ||
2613 | } | ||
2614 | |||
2615 | static struct pci_device_id skystar2_pci_tbl[] = { | ||
2616 | {0x000013d0, 0x00002103, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, | ||
2617 | /* {0x000013d0, 0x00002200, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, UNDEFINED HARDWARE - mail linuxtv.org list */ //FCIII | ||
2618 | {0,}, | ||
2619 | }; | ||
2620 | |||
2621 | MODULE_DEVICE_TABLE(pci, skystar2_pci_tbl); | ||
2622 | |||
2623 | static struct pci_driver skystar2_pci_driver = { | ||
2624 | .name = "SkyStar2", | ||
2625 | .id_table = skystar2_pci_tbl, | ||
2626 | .probe = skystar2_probe, | ||
2627 | .remove = skystar2_remove, | ||
2628 | }; | ||
2629 | |||
2630 | static int skystar2_init(void) | ||
2631 | { | ||
2632 | return pci_register_driver(&skystar2_pci_driver); | ||
2633 | } | ||
2634 | |||
2635 | static void skystar2_cleanup(void) | ||
2636 | { | ||
2637 | pci_unregister_driver(&skystar2_pci_driver); | ||
2638 | } | ||
2639 | |||
2640 | module_init(skystar2_init); | ||
2641 | module_exit(skystar2_cleanup); | ||
2642 | |||
2643 | MODULE_DESCRIPTION("Technisat SkyStar2 DVB PCI Driver"); | ||
2644 | MODULE_LICENSE("GPL"); | ||