diff options
Diffstat (limited to 'drivers/macintosh/therm_pm72.c')
-rw-r--r-- | drivers/macintosh/therm_pm72.c | 2080 |
1 files changed, 2080 insertions, 0 deletions
diff --git a/drivers/macintosh/therm_pm72.c b/drivers/macintosh/therm_pm72.c new file mode 100644 index 000000000000..82336a5a5474 --- /dev/null +++ b/drivers/macintosh/therm_pm72.c | |||
@@ -0,0 +1,2080 @@ | |||
1 | /* | ||
2 | * Device driver for the thermostats & fan controller of the | ||
3 | * Apple G5 "PowerMac7,2" desktop machines. | ||
4 | * | ||
5 | * (c) Copyright IBM Corp. 2003-2004 | ||
6 | * | ||
7 | * Maintained by: Benjamin Herrenschmidt | ||
8 | * <benh@kernel.crashing.org> | ||
9 | * | ||
10 | * | ||
11 | * The algorithm used is the PID control algorithm, used the same | ||
12 | * way the published Darwin code does, using the same values that | ||
13 | * are present in the Darwin 7.0 snapshot property lists. | ||
14 | * | ||
15 | * As far as the CPUs control loops are concerned, I use the | ||
16 | * calibration & PID constants provided by the EEPROM, | ||
17 | * I do _not_ embed any value from the property lists, as the ones | ||
18 | * provided by Darwin 7.0 seem to always have an older version that | ||
19 | * what I've seen on the actual computers. | ||
20 | * It would be interesting to verify that though. Darwin has a | ||
21 | * version code of 1.0.0d11 for all control loops it seems, while | ||
22 | * so far, the machines EEPROMs contain a dataset versioned 1.0.0f | ||
23 | * | ||
24 | * Darwin doesn't provide source to all parts, some missing | ||
25 | * bits like the AppleFCU driver or the actual scale of some | ||
26 | * of the values returned by sensors had to be "guessed" some | ||
27 | * way... or based on what Open Firmware does. | ||
28 | * | ||
29 | * I didn't yet figure out how to get the slots power consumption | ||
30 | * out of the FCU, so that part has not been implemented yet and | ||
31 | * the slots fan is set to a fixed 50% PWM, hoping this value is | ||
32 | * safe enough ... | ||
33 | * | ||
34 | * Note: I have observed strange oscillations of the CPU control | ||
35 | * loop on a dual G5 here. When idle, the CPU exhaust fan tend to | ||
36 | * oscillates slowly (over several minutes) between the minimum | ||
37 | * of 300RPMs and approx. 1000 RPMs. I don't know what is causing | ||
38 | * this, it could be some incorrect constant or an error in the | ||
39 | * way I ported the algorithm, or it could be just normal. I | ||
40 | * don't have full understanding on the way Apple tweaked the PID | ||
41 | * algorithm for the CPU control, it is definitely not a standard | ||
42 | * implementation... | ||
43 | * | ||
44 | * TODO: - Check MPU structure version/signature | ||
45 | * - Add things like /sbin/overtemp for non-critical | ||
46 | * overtemp conditions so userland can take some policy | ||
47 | * decisions, like slewing down CPUs | ||
48 | * - Deal with fan and i2c failures in a better way | ||
49 | * - Maybe do a generic PID based on params used for | ||
50 | * U3 and Drives ? Definitely need to factor code a bit | ||
51 | * bettter... also make sensor detection more robust using | ||
52 | * the device-tree to probe for them | ||
53 | * - Figure out how to get the slots consumption and set the | ||
54 | * slots fan accordingly | ||
55 | * | ||
56 | * History: | ||
57 | * | ||
58 | * Nov. 13, 2003 : 0.5 | ||
59 | * - First release | ||
60 | * | ||
61 | * Nov. 14, 2003 : 0.6 | ||
62 | * - Read fan speed from FCU, low level fan routines now deal | ||
63 | * with errors & check fan status, though higher level don't | ||
64 | * do much. | ||
65 | * - Move a bunch of definitions to .h file | ||
66 | * | ||
67 | * Nov. 18, 2003 : 0.7 | ||
68 | * - Fix build on ppc64 kernel | ||
69 | * - Move back statics definitions to .c file | ||
70 | * - Avoid calling schedule_timeout with a negative number | ||
71 | * | ||
72 | * Dec. 18, 2003 : 0.8 | ||
73 | * - Fix typo when reading back fan speed on 2 CPU machines | ||
74 | * | ||
75 | * Mar. 11, 2004 : 0.9 | ||
76 | * - Rework code accessing the ADC chips, make it more robust and | ||
77 | * closer to the chip spec. Also make sure it is configured properly, | ||
78 | * I've seen yet unexplained cases where on startup, I would have stale | ||
79 | * values in the configuration register | ||
80 | * - Switch back to use of target fan speed for PID, thus lowering | ||
81 | * pressure on i2c | ||
82 | * | ||
83 | * Oct. 20, 2004 : 1.1 | ||
84 | * - Add device-tree lookup for fan IDs, should detect liquid cooling | ||
85 | * pumps when present | ||
86 | * - Enable driver for PowerMac7,3 machines | ||
87 | * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does | ||
88 | * - Add new CPU cooling algorithm for machines with liquid cooling | ||
89 | * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree | ||
90 | * - Fix a signed/unsigned compare issue in some PID loops | ||
91 | * | ||
92 | * Mar. 10, 2005 : 1.2 | ||
93 | * - Add basic support for Xserve G5 | ||
94 | * - Retreive pumps min/max from EEPROM image in device-tree (broken) | ||
95 | * - Use min/max macros here or there | ||
96 | * - Latest darwin updated U3H min fan speed to 20% PWM | ||
97 | * | ||
98 | */ | ||
99 | |||
100 | #include <linux/config.h> | ||
101 | #include <linux/types.h> | ||
102 | #include <linux/module.h> | ||
103 | #include <linux/errno.h> | ||
104 | #include <linux/kernel.h> | ||
105 | #include <linux/delay.h> | ||
106 | #include <linux/sched.h> | ||
107 | #include <linux/i2c.h> | ||
108 | #include <linux/slab.h> | ||
109 | #include <linux/init.h> | ||
110 | #include <linux/spinlock.h> | ||
111 | #include <linux/smp_lock.h> | ||
112 | #include <linux/wait.h> | ||
113 | #include <linux/reboot.h> | ||
114 | #include <linux/kmod.h> | ||
115 | #include <linux/i2c.h> | ||
116 | #include <linux/i2c-dev.h> | ||
117 | #include <asm/prom.h> | ||
118 | #include <asm/machdep.h> | ||
119 | #include <asm/io.h> | ||
120 | #include <asm/system.h> | ||
121 | #include <asm/sections.h> | ||
122 | #include <asm/of_device.h> | ||
123 | |||
124 | #include "therm_pm72.h" | ||
125 | |||
126 | #define VERSION "1.2b2" | ||
127 | |||
128 | #undef DEBUG | ||
129 | |||
130 | #ifdef DEBUG | ||
131 | #define DBG(args...) printk(args) | ||
132 | #else | ||
133 | #define DBG(args...) do { } while(0) | ||
134 | #endif | ||
135 | |||
136 | |||
137 | /* | ||
138 | * Driver statics | ||
139 | */ | ||
140 | |||
141 | static struct of_device * of_dev; | ||
142 | static struct i2c_adapter * u3_0; | ||
143 | static struct i2c_adapter * u3_1; | ||
144 | static struct i2c_adapter * k2; | ||
145 | static struct i2c_client * fcu; | ||
146 | static struct cpu_pid_state cpu_state[2]; | ||
147 | static struct basckside_pid_params backside_params; | ||
148 | static struct backside_pid_state backside_state; | ||
149 | static struct drives_pid_state drives_state; | ||
150 | static struct dimm_pid_state dimms_state; | ||
151 | static int state; | ||
152 | static int cpu_count; | ||
153 | static int cpu_pid_type; | ||
154 | static pid_t ctrl_task; | ||
155 | static struct completion ctrl_complete; | ||
156 | static int critical_state; | ||
157 | static int rackmac; | ||
158 | static s32 dimm_output_clamp; | ||
159 | |||
160 | static DECLARE_MUTEX(driver_lock); | ||
161 | |||
162 | /* | ||
163 | * We have 3 types of CPU PID control. One is "split" old style control | ||
164 | * for intake & exhaust fans, the other is "combined" control for both | ||
165 | * CPUs that also deals with the pumps when present. To be "compatible" | ||
166 | * with OS X at this point, we only use "COMBINED" on the machines that | ||
167 | * are identified as having the pumps (though that identification is at | ||
168 | * least dodgy). Ultimately, we could probably switch completely to this | ||
169 | * algorithm provided we hack it to deal with the UP case | ||
170 | */ | ||
171 | #define CPU_PID_TYPE_SPLIT 0 | ||
172 | #define CPU_PID_TYPE_COMBINED 1 | ||
173 | #define CPU_PID_TYPE_RACKMAC 2 | ||
174 | |||
175 | /* | ||
176 | * This table describes all fans in the FCU. The "id" and "type" values | ||
177 | * are defaults valid for all earlier machines. Newer machines will | ||
178 | * eventually override the table content based on the device-tree | ||
179 | */ | ||
180 | struct fcu_fan_table | ||
181 | { | ||
182 | char* loc; /* location code */ | ||
183 | int type; /* 0 = rpm, 1 = pwm, 2 = pump */ | ||
184 | int id; /* id or -1 */ | ||
185 | }; | ||
186 | |||
187 | #define FCU_FAN_RPM 0 | ||
188 | #define FCU_FAN_PWM 1 | ||
189 | |||
190 | #define FCU_FAN_ABSENT_ID -1 | ||
191 | |||
192 | #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans) | ||
193 | |||
194 | struct fcu_fan_table fcu_fans[] = { | ||
195 | [BACKSIDE_FAN_PWM_INDEX] = { | ||
196 | .loc = "BACKSIDE,SYS CTRLR FAN", | ||
197 | .type = FCU_FAN_PWM, | ||
198 | .id = BACKSIDE_FAN_PWM_DEFAULT_ID, | ||
199 | }, | ||
200 | [DRIVES_FAN_RPM_INDEX] = { | ||
201 | .loc = "DRIVE BAY", | ||
202 | .type = FCU_FAN_RPM, | ||
203 | .id = DRIVES_FAN_RPM_DEFAULT_ID, | ||
204 | }, | ||
205 | [SLOTS_FAN_PWM_INDEX] = { | ||
206 | .loc = "SLOT,PCI FAN", | ||
207 | .type = FCU_FAN_PWM, | ||
208 | .id = SLOTS_FAN_PWM_DEFAULT_ID, | ||
209 | }, | ||
210 | [CPUA_INTAKE_FAN_RPM_INDEX] = { | ||
211 | .loc = "CPU A INTAKE", | ||
212 | .type = FCU_FAN_RPM, | ||
213 | .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID, | ||
214 | }, | ||
215 | [CPUA_EXHAUST_FAN_RPM_INDEX] = { | ||
216 | .loc = "CPU A EXHAUST", | ||
217 | .type = FCU_FAN_RPM, | ||
218 | .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID, | ||
219 | }, | ||
220 | [CPUB_INTAKE_FAN_RPM_INDEX] = { | ||
221 | .loc = "CPU B INTAKE", | ||
222 | .type = FCU_FAN_RPM, | ||
223 | .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID, | ||
224 | }, | ||
225 | [CPUB_EXHAUST_FAN_RPM_INDEX] = { | ||
226 | .loc = "CPU B EXHAUST", | ||
227 | .type = FCU_FAN_RPM, | ||
228 | .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID, | ||
229 | }, | ||
230 | /* pumps aren't present by default, have to be looked up in the | ||
231 | * device-tree | ||
232 | */ | ||
233 | [CPUA_PUMP_RPM_INDEX] = { | ||
234 | .loc = "CPU A PUMP", | ||
235 | .type = FCU_FAN_RPM, | ||
236 | .id = FCU_FAN_ABSENT_ID, | ||
237 | }, | ||
238 | [CPUB_PUMP_RPM_INDEX] = { | ||
239 | .loc = "CPU B PUMP", | ||
240 | .type = FCU_FAN_RPM, | ||
241 | .id = FCU_FAN_ABSENT_ID, | ||
242 | }, | ||
243 | /* Xserve fans */ | ||
244 | [CPU_A1_FAN_RPM_INDEX] = { | ||
245 | .loc = "CPU A 1", | ||
246 | .type = FCU_FAN_RPM, | ||
247 | .id = FCU_FAN_ABSENT_ID, | ||
248 | }, | ||
249 | [CPU_A2_FAN_RPM_INDEX] = { | ||
250 | .loc = "CPU A 2", | ||
251 | .type = FCU_FAN_RPM, | ||
252 | .id = FCU_FAN_ABSENT_ID, | ||
253 | }, | ||
254 | [CPU_A3_FAN_RPM_INDEX] = { | ||
255 | .loc = "CPU A 3", | ||
256 | .type = FCU_FAN_RPM, | ||
257 | .id = FCU_FAN_ABSENT_ID, | ||
258 | }, | ||
259 | [CPU_B1_FAN_RPM_INDEX] = { | ||
260 | .loc = "CPU B 1", | ||
261 | .type = FCU_FAN_RPM, | ||
262 | .id = FCU_FAN_ABSENT_ID, | ||
263 | }, | ||
264 | [CPU_B2_FAN_RPM_INDEX] = { | ||
265 | .loc = "CPU B 2", | ||
266 | .type = FCU_FAN_RPM, | ||
267 | .id = FCU_FAN_ABSENT_ID, | ||
268 | }, | ||
269 | [CPU_B3_FAN_RPM_INDEX] = { | ||
270 | .loc = "CPU B 3", | ||
271 | .type = FCU_FAN_RPM, | ||
272 | .id = FCU_FAN_ABSENT_ID, | ||
273 | }, | ||
274 | }; | ||
275 | |||
276 | /* | ||
277 | * i2c_driver structure to attach to the host i2c controller | ||
278 | */ | ||
279 | |||
280 | static int therm_pm72_attach(struct i2c_adapter *adapter); | ||
281 | static int therm_pm72_detach(struct i2c_adapter *adapter); | ||
282 | |||
283 | static struct i2c_driver therm_pm72_driver = | ||
284 | { | ||
285 | .owner = THIS_MODULE, | ||
286 | .name = "therm_pm72", | ||
287 | .flags = I2C_DF_NOTIFY, | ||
288 | .attach_adapter = therm_pm72_attach, | ||
289 | .detach_adapter = therm_pm72_detach, | ||
290 | }; | ||
291 | |||
292 | /* | ||
293 | * Utility function to create an i2c_client structure and | ||
294 | * attach it to one of u3 adapters | ||
295 | */ | ||
296 | static struct i2c_client *attach_i2c_chip(int id, const char *name) | ||
297 | { | ||
298 | struct i2c_client *clt; | ||
299 | struct i2c_adapter *adap; | ||
300 | |||
301 | if (id & 0x200) | ||
302 | adap = k2; | ||
303 | else if (id & 0x100) | ||
304 | adap = u3_1; | ||
305 | else | ||
306 | adap = u3_0; | ||
307 | if (adap == NULL) | ||
308 | return NULL; | ||
309 | |||
310 | clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL); | ||
311 | if (clt == NULL) | ||
312 | return NULL; | ||
313 | memset(clt, 0, sizeof(struct i2c_client)); | ||
314 | |||
315 | clt->addr = (id >> 1) & 0x7f; | ||
316 | clt->adapter = adap; | ||
317 | clt->driver = &therm_pm72_driver; | ||
318 | strncpy(clt->name, name, I2C_NAME_SIZE-1); | ||
319 | |||
320 | if (i2c_attach_client(clt)) { | ||
321 | printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id); | ||
322 | kfree(clt); | ||
323 | return NULL; | ||
324 | } | ||
325 | return clt; | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * Utility function to get rid of the i2c_client structure | ||
330 | * (will also detach from the adapter hopepfully) | ||
331 | */ | ||
332 | static void detach_i2c_chip(struct i2c_client *clt) | ||
333 | { | ||
334 | i2c_detach_client(clt); | ||
335 | kfree(clt); | ||
336 | } | ||
337 | |||
338 | /* | ||
339 | * Here are the i2c chip access wrappers | ||
340 | */ | ||
341 | |||
342 | static void initialize_adc(struct cpu_pid_state *state) | ||
343 | { | ||
344 | int rc; | ||
345 | u8 buf[2]; | ||
346 | |||
347 | /* Read ADC the configuration register and cache it. We | ||
348 | * also make sure Config2 contains proper values, I've seen | ||
349 | * cases where we got stale grabage in there, thus preventing | ||
350 | * proper reading of conv. values | ||
351 | */ | ||
352 | |||
353 | /* Clear Config2 */ | ||
354 | buf[0] = 5; | ||
355 | buf[1] = 0; | ||
356 | i2c_master_send(state->monitor, buf, 2); | ||
357 | |||
358 | /* Read & cache Config1 */ | ||
359 | buf[0] = 1; | ||
360 | rc = i2c_master_send(state->monitor, buf, 1); | ||
361 | if (rc > 0) { | ||
362 | rc = i2c_master_recv(state->monitor, buf, 1); | ||
363 | if (rc > 0) { | ||
364 | state->adc_config = buf[0]; | ||
365 | DBG("ADC config reg: %02x\n", state->adc_config); | ||
366 | /* Disable shutdown mode */ | ||
367 | state->adc_config &= 0xfe; | ||
368 | buf[0] = 1; | ||
369 | buf[1] = state->adc_config; | ||
370 | rc = i2c_master_send(state->monitor, buf, 2); | ||
371 | } | ||
372 | } | ||
373 | if (rc <= 0) | ||
374 | printk(KERN_ERR "therm_pm72: Error reading ADC config" | ||
375 | " register !\n"); | ||
376 | } | ||
377 | |||
378 | static int read_smon_adc(struct cpu_pid_state *state, int chan) | ||
379 | { | ||
380 | int rc, data, tries = 0; | ||
381 | u8 buf[2]; | ||
382 | |||
383 | for (;;) { | ||
384 | /* Set channel */ | ||
385 | buf[0] = 1; | ||
386 | buf[1] = (state->adc_config & 0x1f) | (chan << 5); | ||
387 | rc = i2c_master_send(state->monitor, buf, 2); | ||
388 | if (rc <= 0) | ||
389 | goto error; | ||
390 | /* Wait for convertion */ | ||
391 | msleep(1); | ||
392 | /* Switch to data register */ | ||
393 | buf[0] = 4; | ||
394 | rc = i2c_master_send(state->monitor, buf, 1); | ||
395 | if (rc <= 0) | ||
396 | goto error; | ||
397 | /* Read result */ | ||
398 | rc = i2c_master_recv(state->monitor, buf, 2); | ||
399 | if (rc < 0) | ||
400 | goto error; | ||
401 | data = ((u16)buf[0]) << 8 | (u16)buf[1]; | ||
402 | return data >> 6; | ||
403 | error: | ||
404 | DBG("Error reading ADC, retrying...\n"); | ||
405 | if (++tries > 10) { | ||
406 | printk(KERN_ERR "therm_pm72: Error reading ADC !\n"); | ||
407 | return -1; | ||
408 | } | ||
409 | msleep(10); | ||
410 | } | ||
411 | } | ||
412 | |||
413 | static int read_lm87_reg(struct i2c_client * chip, int reg) | ||
414 | { | ||
415 | int rc, tries = 0; | ||
416 | u8 buf; | ||
417 | |||
418 | for (;;) { | ||
419 | /* Set address */ | ||
420 | buf = (u8)reg; | ||
421 | rc = i2c_master_send(chip, &buf, 1); | ||
422 | if (rc <= 0) | ||
423 | goto error; | ||
424 | rc = i2c_master_recv(chip, &buf, 1); | ||
425 | if (rc <= 0) | ||
426 | goto error; | ||
427 | return (int)buf; | ||
428 | error: | ||
429 | DBG("Error reading LM87, retrying...\n"); | ||
430 | if (++tries > 10) { | ||
431 | printk(KERN_ERR "therm_pm72: Error reading LM87 !\n"); | ||
432 | return -1; | ||
433 | } | ||
434 | msleep(10); | ||
435 | } | ||
436 | } | ||
437 | |||
438 | static int fan_read_reg(int reg, unsigned char *buf, int nb) | ||
439 | { | ||
440 | int tries, nr, nw; | ||
441 | |||
442 | buf[0] = reg; | ||
443 | tries = 0; | ||
444 | for (;;) { | ||
445 | nw = i2c_master_send(fcu, buf, 1); | ||
446 | if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100) | ||
447 | break; | ||
448 | msleep(10); | ||
449 | ++tries; | ||
450 | } | ||
451 | if (nw <= 0) { | ||
452 | printk(KERN_ERR "Failure writing address to FCU: %d", nw); | ||
453 | return -EIO; | ||
454 | } | ||
455 | tries = 0; | ||
456 | for (;;) { | ||
457 | nr = i2c_master_recv(fcu, buf, nb); | ||
458 | if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100) | ||
459 | break; | ||
460 | msleep(10); | ||
461 | ++tries; | ||
462 | } | ||
463 | if (nr <= 0) | ||
464 | printk(KERN_ERR "Failure reading data from FCU: %d", nw); | ||
465 | return nr; | ||
466 | } | ||
467 | |||
468 | static int fan_write_reg(int reg, const unsigned char *ptr, int nb) | ||
469 | { | ||
470 | int tries, nw; | ||
471 | unsigned char buf[16]; | ||
472 | |||
473 | buf[0] = reg; | ||
474 | memcpy(buf+1, ptr, nb); | ||
475 | ++nb; | ||
476 | tries = 0; | ||
477 | for (;;) { | ||
478 | nw = i2c_master_send(fcu, buf, nb); | ||
479 | if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100) | ||
480 | break; | ||
481 | msleep(10); | ||
482 | ++tries; | ||
483 | } | ||
484 | if (nw < 0) | ||
485 | printk(KERN_ERR "Failure writing to FCU: %d", nw); | ||
486 | return nw; | ||
487 | } | ||
488 | |||
489 | static int start_fcu(void) | ||
490 | { | ||
491 | unsigned char buf = 0xff; | ||
492 | int rc; | ||
493 | |||
494 | rc = fan_write_reg(0xe, &buf, 1); | ||
495 | if (rc < 0) | ||
496 | return -EIO; | ||
497 | rc = fan_write_reg(0x2e, &buf, 1); | ||
498 | if (rc < 0) | ||
499 | return -EIO; | ||
500 | return 0; | ||
501 | } | ||
502 | |||
503 | static int set_rpm_fan(int fan_index, int rpm) | ||
504 | { | ||
505 | unsigned char buf[2]; | ||
506 | int rc, id; | ||
507 | |||
508 | if (fcu_fans[fan_index].type != FCU_FAN_RPM) | ||
509 | return -EINVAL; | ||
510 | id = fcu_fans[fan_index].id; | ||
511 | if (id == FCU_FAN_ABSENT_ID) | ||
512 | return -EINVAL; | ||
513 | |||
514 | if (rpm < 300) | ||
515 | rpm = 300; | ||
516 | else if (rpm > 8191) | ||
517 | rpm = 8191; | ||
518 | buf[0] = rpm >> 5; | ||
519 | buf[1] = rpm << 3; | ||
520 | rc = fan_write_reg(0x10 + (id * 2), buf, 2); | ||
521 | if (rc < 0) | ||
522 | return -EIO; | ||
523 | return 0; | ||
524 | } | ||
525 | |||
526 | static int get_rpm_fan(int fan_index, int programmed) | ||
527 | { | ||
528 | unsigned char failure; | ||
529 | unsigned char active; | ||
530 | unsigned char buf[2]; | ||
531 | int rc, id, reg_base; | ||
532 | |||
533 | if (fcu_fans[fan_index].type != FCU_FAN_RPM) | ||
534 | return -EINVAL; | ||
535 | id = fcu_fans[fan_index].id; | ||
536 | if (id == FCU_FAN_ABSENT_ID) | ||
537 | return -EINVAL; | ||
538 | |||
539 | rc = fan_read_reg(0xb, &failure, 1); | ||
540 | if (rc != 1) | ||
541 | return -EIO; | ||
542 | if ((failure & (1 << id)) != 0) | ||
543 | return -EFAULT; | ||
544 | rc = fan_read_reg(0xd, &active, 1); | ||
545 | if (rc != 1) | ||
546 | return -EIO; | ||
547 | if ((active & (1 << id)) == 0) | ||
548 | return -ENXIO; | ||
549 | |||
550 | /* Programmed value or real current speed */ | ||
551 | reg_base = programmed ? 0x10 : 0x11; | ||
552 | rc = fan_read_reg(reg_base + (id * 2), buf, 2); | ||
553 | if (rc != 2) | ||
554 | return -EIO; | ||
555 | |||
556 | return (buf[0] << 5) | buf[1] >> 3; | ||
557 | } | ||
558 | |||
559 | static int set_pwm_fan(int fan_index, int pwm) | ||
560 | { | ||
561 | unsigned char buf[2]; | ||
562 | int rc, id; | ||
563 | |||
564 | if (fcu_fans[fan_index].type != FCU_FAN_PWM) | ||
565 | return -EINVAL; | ||
566 | id = fcu_fans[fan_index].id; | ||
567 | if (id == FCU_FAN_ABSENT_ID) | ||
568 | return -EINVAL; | ||
569 | |||
570 | if (pwm < 10) | ||
571 | pwm = 10; | ||
572 | else if (pwm > 100) | ||
573 | pwm = 100; | ||
574 | pwm = (pwm * 2559) / 1000; | ||
575 | buf[0] = pwm; | ||
576 | rc = fan_write_reg(0x30 + (id * 2), buf, 1); | ||
577 | if (rc < 0) | ||
578 | return rc; | ||
579 | return 0; | ||
580 | } | ||
581 | |||
582 | static int get_pwm_fan(int fan_index) | ||
583 | { | ||
584 | unsigned char failure; | ||
585 | unsigned char active; | ||
586 | unsigned char buf[2]; | ||
587 | int rc, id; | ||
588 | |||
589 | if (fcu_fans[fan_index].type != FCU_FAN_PWM) | ||
590 | return -EINVAL; | ||
591 | id = fcu_fans[fan_index].id; | ||
592 | if (id == FCU_FAN_ABSENT_ID) | ||
593 | return -EINVAL; | ||
594 | |||
595 | rc = fan_read_reg(0x2b, &failure, 1); | ||
596 | if (rc != 1) | ||
597 | return -EIO; | ||
598 | if ((failure & (1 << id)) != 0) | ||
599 | return -EFAULT; | ||
600 | rc = fan_read_reg(0x2d, &active, 1); | ||
601 | if (rc != 1) | ||
602 | return -EIO; | ||
603 | if ((active & (1 << id)) == 0) | ||
604 | return -ENXIO; | ||
605 | |||
606 | /* Programmed value or real current speed */ | ||
607 | rc = fan_read_reg(0x30 + (id * 2), buf, 1); | ||
608 | if (rc != 1) | ||
609 | return -EIO; | ||
610 | |||
611 | return (buf[0] * 1000) / 2559; | ||
612 | } | ||
613 | |||
614 | /* | ||
615 | * Utility routine to read the CPU calibration EEPROM data | ||
616 | * from the device-tree | ||
617 | */ | ||
618 | static int read_eeprom(int cpu, struct mpu_data *out) | ||
619 | { | ||
620 | struct device_node *np; | ||
621 | char nodename[64]; | ||
622 | u8 *data; | ||
623 | int len; | ||
624 | |||
625 | /* prom.c routine for finding a node by path is a bit brain dead | ||
626 | * and requires exact @xxx unit numbers. This is a bit ugly but | ||
627 | * will work for these machines | ||
628 | */ | ||
629 | sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0); | ||
630 | np = of_find_node_by_path(nodename); | ||
631 | if (np == NULL) { | ||
632 | printk(KERN_ERR "therm_pm72: Failed to retreive cpuid node from device-tree\n"); | ||
633 | return -ENODEV; | ||
634 | } | ||
635 | data = (u8 *)get_property(np, "cpuid", &len); | ||
636 | if (data == NULL) { | ||
637 | printk(KERN_ERR "therm_pm72: Failed to retreive cpuid property from device-tree\n"); | ||
638 | of_node_put(np); | ||
639 | return -ENODEV; | ||
640 | } | ||
641 | memcpy(out, data, sizeof(struct mpu_data)); | ||
642 | of_node_put(np); | ||
643 | |||
644 | return 0; | ||
645 | } | ||
646 | |||
647 | static void fetch_cpu_pumps_minmax(void) | ||
648 | { | ||
649 | struct cpu_pid_state *state0 = &cpu_state[0]; | ||
650 | struct cpu_pid_state *state1 = &cpu_state[1]; | ||
651 | u16 pump_min = 0, pump_max = 0xffff; | ||
652 | u16 tmp[4]; | ||
653 | |||
654 | /* Try to fetch pumps min/max infos from eeprom */ | ||
655 | |||
656 | memcpy(&tmp, &state0->mpu.processor_part_num, 8); | ||
657 | if (tmp[0] != 0xffff && tmp[1] != 0xffff) { | ||
658 | pump_min = max(pump_min, tmp[0]); | ||
659 | pump_max = min(pump_max, tmp[1]); | ||
660 | } | ||
661 | if (tmp[2] != 0xffff && tmp[3] != 0xffff) { | ||
662 | pump_min = max(pump_min, tmp[2]); | ||
663 | pump_max = min(pump_max, tmp[3]); | ||
664 | } | ||
665 | |||
666 | /* Double check the values, this _IS_ needed as the EEPROM on | ||
667 | * some dual 2.5Ghz G5s seem, at least, to have both min & max | ||
668 | * same to the same value ... (grrrr) | ||
669 | */ | ||
670 | if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) { | ||
671 | pump_min = CPU_PUMP_OUTPUT_MIN; | ||
672 | pump_max = CPU_PUMP_OUTPUT_MAX; | ||
673 | } | ||
674 | |||
675 | state0->pump_min = state1->pump_min = pump_min; | ||
676 | state0->pump_max = state1->pump_max = pump_max; | ||
677 | } | ||
678 | |||
679 | /* | ||
680 | * Now, unfortunately, sysfs doesn't give us a nice void * we could | ||
681 | * pass around to the attribute functions, so we don't really have | ||
682 | * choice but implement a bunch of them... | ||
683 | * | ||
684 | * That sucks a bit, we take the lock because FIX32TOPRINT evaluates | ||
685 | * the input twice... I accept patches :) | ||
686 | */ | ||
687 | #define BUILD_SHOW_FUNC_FIX(name, data) \ | ||
688 | static ssize_t show_##name(struct device *dev, char *buf) \ | ||
689 | { \ | ||
690 | ssize_t r; \ | ||
691 | down(&driver_lock); \ | ||
692 | r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \ | ||
693 | up(&driver_lock); \ | ||
694 | return r; \ | ||
695 | } | ||
696 | #define BUILD_SHOW_FUNC_INT(name, data) \ | ||
697 | static ssize_t show_##name(struct device *dev, char *buf) \ | ||
698 | { \ | ||
699 | return sprintf(buf, "%d", data); \ | ||
700 | } | ||
701 | |||
702 | BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp) | ||
703 | BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage) | ||
704 | BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a) | ||
705 | BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm) | ||
706 | BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm) | ||
707 | |||
708 | BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp) | ||
709 | BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage) | ||
710 | BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a) | ||
711 | BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm) | ||
712 | BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm) | ||
713 | |||
714 | BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp) | ||
715 | BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm) | ||
716 | |||
717 | BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp) | ||
718 | BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm) | ||
719 | |||
720 | BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp) | ||
721 | |||
722 | static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL); | ||
723 | static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL); | ||
724 | static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL); | ||
725 | static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL); | ||
726 | static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL); | ||
727 | |||
728 | static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL); | ||
729 | static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL); | ||
730 | static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL); | ||
731 | static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL); | ||
732 | static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL); | ||
733 | |||
734 | static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL); | ||
735 | static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL); | ||
736 | |||
737 | static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL); | ||
738 | static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL); | ||
739 | |||
740 | static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL); | ||
741 | |||
742 | /* | ||
743 | * CPUs fans control loop | ||
744 | */ | ||
745 | |||
746 | static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power) | ||
747 | { | ||
748 | s32 ltemp, volts, amps; | ||
749 | int index, rc = 0; | ||
750 | |||
751 | /* Default (in case of error) */ | ||
752 | *temp = state->cur_temp; | ||
753 | *power = state->cur_power; | ||
754 | |||
755 | if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) | ||
756 | index = (state->index == 0) ? | ||
757 | CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX; | ||
758 | else | ||
759 | index = (state->index == 0) ? | ||
760 | CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX; | ||
761 | |||
762 | /* Read current fan status */ | ||
763 | rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED); | ||
764 | if (rc < 0) { | ||
765 | /* XXX What do we do now ? Nothing for now, keep old value, but | ||
766 | * return error upstream | ||
767 | */ | ||
768 | DBG(" cpu %d, fan reading error !\n", state->index); | ||
769 | } else { | ||
770 | state->rpm = rc; | ||
771 | DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm); | ||
772 | } | ||
773 | |||
774 | /* Get some sensor readings and scale it */ | ||
775 | ltemp = read_smon_adc(state, 1); | ||
776 | if (ltemp == -1) { | ||
777 | /* XXX What do we do now ? */ | ||
778 | state->overtemp++; | ||
779 | if (rc == 0) | ||
780 | rc = -EIO; | ||
781 | DBG(" cpu %d, temp reading error !\n", state->index); | ||
782 | } else { | ||
783 | /* Fixup temperature according to diode calibration | ||
784 | */ | ||
785 | DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n", | ||
786 | state->index, | ||
787 | ltemp, state->mpu.mdiode, state->mpu.bdiode); | ||
788 | *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2; | ||
789 | state->last_temp = *temp; | ||
790 | DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp))); | ||
791 | } | ||
792 | |||
793 | /* | ||
794 | * Read voltage & current and calculate power | ||
795 | */ | ||
796 | volts = read_smon_adc(state, 3); | ||
797 | amps = read_smon_adc(state, 4); | ||
798 | |||
799 | /* Scale voltage and current raw sensor values according to fixed scales | ||
800 | * obtained in Darwin and calculate power from I and V | ||
801 | */ | ||
802 | volts *= ADC_CPU_VOLTAGE_SCALE; | ||
803 | amps *= ADC_CPU_CURRENT_SCALE; | ||
804 | *power = (((u64)volts) * ((u64)amps)) >> 16; | ||
805 | state->voltage = volts; | ||
806 | state->current_a = amps; | ||
807 | state->last_power = *power; | ||
808 | |||
809 | DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n", | ||
810 | state->index, FIX32TOPRINT(state->current_a), | ||
811 | FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power)); | ||
812 | |||
813 | return 0; | ||
814 | } | ||
815 | |||
816 | static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power) | ||
817 | { | ||
818 | s32 power_target, integral, derivative, proportional, adj_in_target, sval; | ||
819 | s64 integ_p, deriv_p, prop_p, sum; | ||
820 | int i; | ||
821 | |||
822 | /* Calculate power target value (could be done once for all) | ||
823 | * and convert to a 16.16 fp number | ||
824 | */ | ||
825 | power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16; | ||
826 | DBG(" power target: %d.%03d, error: %d.%03d\n", | ||
827 | FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power)); | ||
828 | |||
829 | /* Store temperature and power in history array */ | ||
830 | state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE; | ||
831 | state->temp_history[state->cur_temp] = temp; | ||
832 | state->cur_power = (state->cur_power + 1) % state->count_power; | ||
833 | state->power_history[state->cur_power] = power; | ||
834 | state->error_history[state->cur_power] = power_target - power; | ||
835 | |||
836 | /* If first loop, fill the history table */ | ||
837 | if (state->first) { | ||
838 | for (i = 0; i < (state->count_power - 1); i++) { | ||
839 | state->cur_power = (state->cur_power + 1) % state->count_power; | ||
840 | state->power_history[state->cur_power] = power; | ||
841 | state->error_history[state->cur_power] = power_target - power; | ||
842 | } | ||
843 | for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) { | ||
844 | state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE; | ||
845 | state->temp_history[state->cur_temp] = temp; | ||
846 | } | ||
847 | state->first = 0; | ||
848 | } | ||
849 | |||
850 | /* Calculate the integral term normally based on the "power" values */ | ||
851 | sum = 0; | ||
852 | integral = 0; | ||
853 | for (i = 0; i < state->count_power; i++) | ||
854 | integral += state->error_history[i]; | ||
855 | integral *= CPU_PID_INTERVAL; | ||
856 | DBG(" integral: %08x\n", integral); | ||
857 | |||
858 | /* Calculate the adjusted input (sense value). | ||
859 | * G_r is 12.20 | ||
860 | * integ is 16.16 | ||
861 | * so the result is 28.36 | ||
862 | * | ||
863 | * input target is mpu.ttarget, input max is mpu.tmax | ||
864 | */ | ||
865 | integ_p = ((s64)state->mpu.pid_gr) * (s64)integral; | ||
866 | DBG(" integ_p: %d\n", (int)(integ_p >> 36)); | ||
867 | sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff); | ||
868 | adj_in_target = (state->mpu.ttarget << 16); | ||
869 | if (adj_in_target > sval) | ||
870 | adj_in_target = sval; | ||
871 | DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target), | ||
872 | state->mpu.ttarget); | ||
873 | |||
874 | /* Calculate the derivative term */ | ||
875 | derivative = state->temp_history[state->cur_temp] - | ||
876 | state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1) | ||
877 | % CPU_TEMP_HISTORY_SIZE]; | ||
878 | derivative /= CPU_PID_INTERVAL; | ||
879 | deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative; | ||
880 | DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); | ||
881 | sum += deriv_p; | ||
882 | |||
883 | /* Calculate the proportional term */ | ||
884 | proportional = temp - adj_in_target; | ||
885 | prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional; | ||
886 | DBG(" prop_p: %d\n", (int)(prop_p >> 36)); | ||
887 | sum += prop_p; | ||
888 | |||
889 | /* Scale sum */ | ||
890 | sum >>= 36; | ||
891 | |||
892 | DBG(" sum: %d\n", (int)sum); | ||
893 | state->rpm += (s32)sum; | ||
894 | } | ||
895 | |||
896 | static void do_monitor_cpu_combined(void) | ||
897 | { | ||
898 | struct cpu_pid_state *state0 = &cpu_state[0]; | ||
899 | struct cpu_pid_state *state1 = &cpu_state[1]; | ||
900 | s32 temp0, power0, temp1, power1; | ||
901 | s32 temp_combi, power_combi; | ||
902 | int rc, intake, pump; | ||
903 | |||
904 | rc = do_read_one_cpu_values(state0, &temp0, &power0); | ||
905 | if (rc < 0) { | ||
906 | /* XXX What do we do now ? */ | ||
907 | } | ||
908 | state1->overtemp = 0; | ||
909 | rc = do_read_one_cpu_values(state1, &temp1, &power1); | ||
910 | if (rc < 0) { | ||
911 | /* XXX What do we do now ? */ | ||
912 | } | ||
913 | if (state1->overtemp) | ||
914 | state0->overtemp++; | ||
915 | |||
916 | temp_combi = max(temp0, temp1); | ||
917 | power_combi = max(power0, power1); | ||
918 | |||
919 | /* Check tmax, increment overtemp if we are there. At tmax+8, we go | ||
920 | * full blown immediately and try to trigger a shutdown | ||
921 | */ | ||
922 | if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) { | ||
923 | printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n", | ||
924 | temp_combi >> 16); | ||
925 | state0->overtemp = CPU_MAX_OVERTEMP; | ||
926 | } else if (temp_combi > (state0->mpu.tmax << 16)) | ||
927 | state0->overtemp++; | ||
928 | else | ||
929 | state0->overtemp = 0; | ||
930 | if (state0->overtemp >= CPU_MAX_OVERTEMP) | ||
931 | critical_state = 1; | ||
932 | if (state0->overtemp > 0) { | ||
933 | state0->rpm = state0->mpu.rmaxn_exhaust_fan; | ||
934 | state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan; | ||
935 | pump = state0->pump_min; | ||
936 | goto do_set_fans; | ||
937 | } | ||
938 | |||
939 | /* Do the PID */ | ||
940 | do_cpu_pid(state0, temp_combi, power_combi); | ||
941 | |||
942 | /* Range check */ | ||
943 | state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan); | ||
944 | state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan); | ||
945 | |||
946 | /* Calculate intake fan speed */ | ||
947 | intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16; | ||
948 | intake = max(intake, (int)state0->mpu.rminn_intake_fan); | ||
949 | intake = min(intake, (int)state0->mpu.rmaxn_intake_fan); | ||
950 | state0->intake_rpm = intake; | ||
951 | |||
952 | /* Calculate pump speed */ | ||
953 | pump = (state0->rpm * state0->pump_max) / | ||
954 | state0->mpu.rmaxn_exhaust_fan; | ||
955 | pump = min(pump, state0->pump_max); | ||
956 | pump = max(pump, state0->pump_min); | ||
957 | |||
958 | do_set_fans: | ||
959 | /* We copy values from state 0 to state 1 for /sysfs */ | ||
960 | state1->rpm = state0->rpm; | ||
961 | state1->intake_rpm = state0->intake_rpm; | ||
962 | |||
963 | DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n", | ||
964 | state1->index, (int)state1->rpm, intake, pump, state1->overtemp); | ||
965 | |||
966 | /* We should check for errors, shouldn't we ? But then, what | ||
967 | * do we do once the error occurs ? For FCU notified fan | ||
968 | * failures (-EFAULT) we probably want to notify userland | ||
969 | * some way... | ||
970 | */ | ||
971 | set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); | ||
972 | set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm); | ||
973 | set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); | ||
974 | set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm); | ||
975 | |||
976 | if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) | ||
977 | set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump); | ||
978 | if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) | ||
979 | set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump); | ||
980 | } | ||
981 | |||
982 | static void do_monitor_cpu_split(struct cpu_pid_state *state) | ||
983 | { | ||
984 | s32 temp, power; | ||
985 | int rc, intake; | ||
986 | |||
987 | /* Read current fan status */ | ||
988 | rc = do_read_one_cpu_values(state, &temp, &power); | ||
989 | if (rc < 0) { | ||
990 | /* XXX What do we do now ? */ | ||
991 | } | ||
992 | |||
993 | /* Check tmax, increment overtemp if we are there. At tmax+8, we go | ||
994 | * full blown immediately and try to trigger a shutdown | ||
995 | */ | ||
996 | if (temp >= ((state->mpu.tmax + 8) << 16)) { | ||
997 | printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum" | ||
998 | " (%d) !\n", | ||
999 | state->index, temp >> 16); | ||
1000 | state->overtemp = CPU_MAX_OVERTEMP; | ||
1001 | } else if (temp > (state->mpu.tmax << 16)) | ||
1002 | state->overtemp++; | ||
1003 | else | ||
1004 | state->overtemp = 0; | ||
1005 | if (state->overtemp >= CPU_MAX_OVERTEMP) | ||
1006 | critical_state = 1; | ||
1007 | if (state->overtemp > 0) { | ||
1008 | state->rpm = state->mpu.rmaxn_exhaust_fan; | ||
1009 | state->intake_rpm = intake = state->mpu.rmaxn_intake_fan; | ||
1010 | goto do_set_fans; | ||
1011 | } | ||
1012 | |||
1013 | /* Do the PID */ | ||
1014 | do_cpu_pid(state, temp, power); | ||
1015 | |||
1016 | /* Range check */ | ||
1017 | state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan); | ||
1018 | state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan); | ||
1019 | |||
1020 | /* Calculate intake fan */ | ||
1021 | intake = (state->rpm * CPU_INTAKE_SCALE) >> 16; | ||
1022 | intake = max(intake, (int)state->mpu.rminn_intake_fan); | ||
1023 | intake = min(intake, (int)state->mpu.rmaxn_intake_fan); | ||
1024 | state->intake_rpm = intake; | ||
1025 | |||
1026 | do_set_fans: | ||
1027 | DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n", | ||
1028 | state->index, (int)state->rpm, intake, state->overtemp); | ||
1029 | |||
1030 | /* We should check for errors, shouldn't we ? But then, what | ||
1031 | * do we do once the error occurs ? For FCU notified fan | ||
1032 | * failures (-EFAULT) we probably want to notify userland | ||
1033 | * some way... | ||
1034 | */ | ||
1035 | if (state->index == 0) { | ||
1036 | set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); | ||
1037 | set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm); | ||
1038 | } else { | ||
1039 | set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); | ||
1040 | set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm); | ||
1041 | } | ||
1042 | } | ||
1043 | |||
1044 | static void do_monitor_cpu_rack(struct cpu_pid_state *state) | ||
1045 | { | ||
1046 | s32 temp, power, fan_min; | ||
1047 | int rc; | ||
1048 | |||
1049 | /* Read current fan status */ | ||
1050 | rc = do_read_one_cpu_values(state, &temp, &power); | ||
1051 | if (rc < 0) { | ||
1052 | /* XXX What do we do now ? */ | ||
1053 | } | ||
1054 | |||
1055 | /* Check tmax, increment overtemp if we are there. At tmax+8, we go | ||
1056 | * full blown immediately and try to trigger a shutdown | ||
1057 | */ | ||
1058 | if (temp >= ((state->mpu.tmax + 8) << 16)) { | ||
1059 | printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum" | ||
1060 | " (%d) !\n", | ||
1061 | state->index, temp >> 16); | ||
1062 | state->overtemp = CPU_MAX_OVERTEMP; | ||
1063 | } else if (temp > (state->mpu.tmax << 16)) | ||
1064 | state->overtemp++; | ||
1065 | else | ||
1066 | state->overtemp = 0; | ||
1067 | if (state->overtemp >= CPU_MAX_OVERTEMP) | ||
1068 | critical_state = 1; | ||
1069 | if (state->overtemp > 0) { | ||
1070 | state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan; | ||
1071 | goto do_set_fans; | ||
1072 | } | ||
1073 | |||
1074 | /* Do the PID */ | ||
1075 | do_cpu_pid(state, temp, power); | ||
1076 | |||
1077 | /* Check clamp from dimms */ | ||
1078 | fan_min = dimm_output_clamp; | ||
1079 | fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan); | ||
1080 | |||
1081 | state->rpm = max(state->rpm, (int)fan_min); | ||
1082 | state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan); | ||
1083 | state->intake_rpm = state->rpm; | ||
1084 | |||
1085 | do_set_fans: | ||
1086 | DBG("** CPU %d RPM: %d overtemp: %d\n", | ||
1087 | state->index, (int)state->rpm, state->overtemp); | ||
1088 | |||
1089 | /* We should check for errors, shouldn't we ? But then, what | ||
1090 | * do we do once the error occurs ? For FCU notified fan | ||
1091 | * failures (-EFAULT) we probably want to notify userland | ||
1092 | * some way... | ||
1093 | */ | ||
1094 | if (state->index == 0) { | ||
1095 | set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm); | ||
1096 | set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm); | ||
1097 | set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm); | ||
1098 | } else { | ||
1099 | set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm); | ||
1100 | set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm); | ||
1101 | set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm); | ||
1102 | } | ||
1103 | } | ||
1104 | |||
1105 | /* | ||
1106 | * Initialize the state structure for one CPU control loop | ||
1107 | */ | ||
1108 | static int init_cpu_state(struct cpu_pid_state *state, int index) | ||
1109 | { | ||
1110 | state->index = index; | ||
1111 | state->first = 1; | ||
1112 | state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000; | ||
1113 | state->overtemp = 0; | ||
1114 | state->adc_config = 0x00; | ||
1115 | |||
1116 | |||
1117 | if (index == 0) | ||
1118 | state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor"); | ||
1119 | else if (index == 1) | ||
1120 | state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor"); | ||
1121 | if (state->monitor == NULL) | ||
1122 | goto fail; | ||
1123 | |||
1124 | if (read_eeprom(index, &state->mpu)) | ||
1125 | goto fail; | ||
1126 | |||
1127 | state->count_power = state->mpu.tguardband; | ||
1128 | if (state->count_power > CPU_POWER_HISTORY_SIZE) { | ||
1129 | printk(KERN_WARNING "Warning ! too many power history slots\n"); | ||
1130 | state->count_power = CPU_POWER_HISTORY_SIZE; | ||
1131 | } | ||
1132 | DBG("CPU %d Using %d power history entries\n", index, state->count_power); | ||
1133 | |||
1134 | if (index == 0) { | ||
1135 | device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature); | ||
1136 | device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage); | ||
1137 | device_create_file(&of_dev->dev, &dev_attr_cpu0_current); | ||
1138 | device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm); | ||
1139 | device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm); | ||
1140 | } else { | ||
1141 | device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature); | ||
1142 | device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage); | ||
1143 | device_create_file(&of_dev->dev, &dev_attr_cpu1_current); | ||
1144 | device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm); | ||
1145 | device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm); | ||
1146 | } | ||
1147 | |||
1148 | return 0; | ||
1149 | fail: | ||
1150 | if (state->monitor) | ||
1151 | detach_i2c_chip(state->monitor); | ||
1152 | state->monitor = NULL; | ||
1153 | |||
1154 | return -ENODEV; | ||
1155 | } | ||
1156 | |||
1157 | /* | ||
1158 | * Dispose of the state data for one CPU control loop | ||
1159 | */ | ||
1160 | static void dispose_cpu_state(struct cpu_pid_state *state) | ||
1161 | { | ||
1162 | if (state->monitor == NULL) | ||
1163 | return; | ||
1164 | |||
1165 | if (state->index == 0) { | ||
1166 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature); | ||
1167 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage); | ||
1168 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_current); | ||
1169 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm); | ||
1170 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm); | ||
1171 | } else { | ||
1172 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature); | ||
1173 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage); | ||
1174 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_current); | ||
1175 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm); | ||
1176 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm); | ||
1177 | } | ||
1178 | |||
1179 | detach_i2c_chip(state->monitor); | ||
1180 | state->monitor = NULL; | ||
1181 | } | ||
1182 | |||
1183 | /* | ||
1184 | * Motherboard backside & U3 heatsink fan control loop | ||
1185 | */ | ||
1186 | static void do_monitor_backside(struct backside_pid_state *state) | ||
1187 | { | ||
1188 | s32 temp, integral, derivative, fan_min; | ||
1189 | s64 integ_p, deriv_p, prop_p, sum; | ||
1190 | int i, rc; | ||
1191 | |||
1192 | if (--state->ticks != 0) | ||
1193 | return; | ||
1194 | state->ticks = backside_params.interval; | ||
1195 | |||
1196 | DBG("backside:\n"); | ||
1197 | |||
1198 | /* Check fan status */ | ||
1199 | rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX); | ||
1200 | if (rc < 0) { | ||
1201 | printk(KERN_WARNING "Error %d reading backside fan !\n", rc); | ||
1202 | /* XXX What do we do now ? */ | ||
1203 | } else | ||
1204 | state->pwm = rc; | ||
1205 | DBG(" current pwm: %d\n", state->pwm); | ||
1206 | |||
1207 | /* Get some sensor readings */ | ||
1208 | temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16; | ||
1209 | state->last_temp = temp; | ||
1210 | DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), | ||
1211 | FIX32TOPRINT(backside_params.input_target)); | ||
1212 | |||
1213 | /* Store temperature and error in history array */ | ||
1214 | state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE; | ||
1215 | state->sample_history[state->cur_sample] = temp; | ||
1216 | state->error_history[state->cur_sample] = temp - backside_params.input_target; | ||
1217 | |||
1218 | /* If first loop, fill the history table */ | ||
1219 | if (state->first) { | ||
1220 | for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) { | ||
1221 | state->cur_sample = (state->cur_sample + 1) % | ||
1222 | BACKSIDE_PID_HISTORY_SIZE; | ||
1223 | state->sample_history[state->cur_sample] = temp; | ||
1224 | state->error_history[state->cur_sample] = | ||
1225 | temp - backside_params.input_target; | ||
1226 | } | ||
1227 | state->first = 0; | ||
1228 | } | ||
1229 | |||
1230 | /* Calculate the integral term */ | ||
1231 | sum = 0; | ||
1232 | integral = 0; | ||
1233 | for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++) | ||
1234 | integral += state->error_history[i]; | ||
1235 | integral *= backside_params.interval; | ||
1236 | DBG(" integral: %08x\n", integral); | ||
1237 | integ_p = ((s64)backside_params.G_r) * (s64)integral; | ||
1238 | DBG(" integ_p: %d\n", (int)(integ_p >> 36)); | ||
1239 | sum += integ_p; | ||
1240 | |||
1241 | /* Calculate the derivative term */ | ||
1242 | derivative = state->error_history[state->cur_sample] - | ||
1243 | state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1) | ||
1244 | % BACKSIDE_PID_HISTORY_SIZE]; | ||
1245 | derivative /= backside_params.interval; | ||
1246 | deriv_p = ((s64)backside_params.G_d) * (s64)derivative; | ||
1247 | DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); | ||
1248 | sum += deriv_p; | ||
1249 | |||
1250 | /* Calculate the proportional term */ | ||
1251 | prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]); | ||
1252 | DBG(" prop_p: %d\n", (int)(prop_p >> 36)); | ||
1253 | sum += prop_p; | ||
1254 | |||
1255 | /* Scale sum */ | ||
1256 | sum >>= 36; | ||
1257 | |||
1258 | DBG(" sum: %d\n", (int)sum); | ||
1259 | if (backside_params.additive) | ||
1260 | state->pwm += (s32)sum; | ||
1261 | else | ||
1262 | state->pwm = sum; | ||
1263 | |||
1264 | /* Check for clamp */ | ||
1265 | fan_min = (dimm_output_clamp * 100) / 14000; | ||
1266 | fan_min = max(fan_min, backside_params.output_min); | ||
1267 | |||
1268 | state->pwm = max(state->pwm, fan_min); | ||
1269 | state->pwm = min(state->pwm, backside_params.output_max); | ||
1270 | |||
1271 | DBG("** BACKSIDE PWM: %d\n", (int)state->pwm); | ||
1272 | set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm); | ||
1273 | } | ||
1274 | |||
1275 | /* | ||
1276 | * Initialize the state structure for the backside fan control loop | ||
1277 | */ | ||
1278 | static int init_backside_state(struct backside_pid_state *state) | ||
1279 | { | ||
1280 | struct device_node *u3; | ||
1281 | int u3h = 1; /* conservative by default */ | ||
1282 | |||
1283 | /* | ||
1284 | * There are different PID params for machines with U3 and machines | ||
1285 | * with U3H, pick the right ones now | ||
1286 | */ | ||
1287 | u3 = of_find_node_by_path("/u3@0,f8000000"); | ||
1288 | if (u3 != NULL) { | ||
1289 | u32 *vers = (u32 *)get_property(u3, "device-rev", NULL); | ||
1290 | if (vers) | ||
1291 | if (((*vers) & 0x3f) < 0x34) | ||
1292 | u3h = 0; | ||
1293 | of_node_put(u3); | ||
1294 | } | ||
1295 | |||
1296 | if (rackmac) { | ||
1297 | backside_params.G_d = BACKSIDE_PID_RACK_G_d; | ||
1298 | backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET; | ||
1299 | backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; | ||
1300 | backside_params.interval = BACKSIDE_PID_RACK_INTERVAL; | ||
1301 | backside_params.G_p = BACKSIDE_PID_RACK_G_p; | ||
1302 | backside_params.G_r = BACKSIDE_PID_G_r; | ||
1303 | backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; | ||
1304 | backside_params.additive = 0; | ||
1305 | } else if (u3h) { | ||
1306 | backside_params.G_d = BACKSIDE_PID_U3H_G_d; | ||
1307 | backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET; | ||
1308 | backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; | ||
1309 | backside_params.interval = BACKSIDE_PID_INTERVAL; | ||
1310 | backside_params.G_p = BACKSIDE_PID_G_p; | ||
1311 | backside_params.G_r = BACKSIDE_PID_G_r; | ||
1312 | backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; | ||
1313 | backside_params.additive = 1; | ||
1314 | } else { | ||
1315 | backside_params.G_d = BACKSIDE_PID_U3_G_d; | ||
1316 | backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET; | ||
1317 | backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN; | ||
1318 | backside_params.interval = BACKSIDE_PID_INTERVAL; | ||
1319 | backside_params.G_p = BACKSIDE_PID_G_p; | ||
1320 | backside_params.G_r = BACKSIDE_PID_G_r; | ||
1321 | backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; | ||
1322 | backside_params.additive = 1; | ||
1323 | } | ||
1324 | |||
1325 | state->ticks = 1; | ||
1326 | state->first = 1; | ||
1327 | state->pwm = 50; | ||
1328 | |||
1329 | state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp"); | ||
1330 | if (state->monitor == NULL) | ||
1331 | return -ENODEV; | ||
1332 | |||
1333 | device_create_file(&of_dev->dev, &dev_attr_backside_temperature); | ||
1334 | device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm); | ||
1335 | |||
1336 | return 0; | ||
1337 | } | ||
1338 | |||
1339 | /* | ||
1340 | * Dispose of the state data for the backside control loop | ||
1341 | */ | ||
1342 | static void dispose_backside_state(struct backside_pid_state *state) | ||
1343 | { | ||
1344 | if (state->monitor == NULL) | ||
1345 | return; | ||
1346 | |||
1347 | device_remove_file(&of_dev->dev, &dev_attr_backside_temperature); | ||
1348 | device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm); | ||
1349 | |||
1350 | detach_i2c_chip(state->monitor); | ||
1351 | state->monitor = NULL; | ||
1352 | } | ||
1353 | |||
1354 | /* | ||
1355 | * Drives bay fan control loop | ||
1356 | */ | ||
1357 | static void do_monitor_drives(struct drives_pid_state *state) | ||
1358 | { | ||
1359 | s32 temp, integral, derivative; | ||
1360 | s64 integ_p, deriv_p, prop_p, sum; | ||
1361 | int i, rc; | ||
1362 | |||
1363 | if (--state->ticks != 0) | ||
1364 | return; | ||
1365 | state->ticks = DRIVES_PID_INTERVAL; | ||
1366 | |||
1367 | DBG("drives:\n"); | ||
1368 | |||
1369 | /* Check fan status */ | ||
1370 | rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED); | ||
1371 | if (rc < 0) { | ||
1372 | printk(KERN_WARNING "Error %d reading drives fan !\n", rc); | ||
1373 | /* XXX What do we do now ? */ | ||
1374 | } else | ||
1375 | state->rpm = rc; | ||
1376 | DBG(" current rpm: %d\n", state->rpm); | ||
1377 | |||
1378 | /* Get some sensor readings */ | ||
1379 | temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, DS1775_TEMP)) << 8; | ||
1380 | state->last_temp = temp; | ||
1381 | DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), | ||
1382 | FIX32TOPRINT(DRIVES_PID_INPUT_TARGET)); | ||
1383 | |||
1384 | /* Store temperature and error in history array */ | ||
1385 | state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE; | ||
1386 | state->sample_history[state->cur_sample] = temp; | ||
1387 | state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET; | ||
1388 | |||
1389 | /* If first loop, fill the history table */ | ||
1390 | if (state->first) { | ||
1391 | for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) { | ||
1392 | state->cur_sample = (state->cur_sample + 1) % | ||
1393 | DRIVES_PID_HISTORY_SIZE; | ||
1394 | state->sample_history[state->cur_sample] = temp; | ||
1395 | state->error_history[state->cur_sample] = | ||
1396 | temp - DRIVES_PID_INPUT_TARGET; | ||
1397 | } | ||
1398 | state->first = 0; | ||
1399 | } | ||
1400 | |||
1401 | /* Calculate the integral term */ | ||
1402 | sum = 0; | ||
1403 | integral = 0; | ||
1404 | for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++) | ||
1405 | integral += state->error_history[i]; | ||
1406 | integral *= DRIVES_PID_INTERVAL; | ||
1407 | DBG(" integral: %08x\n", integral); | ||
1408 | integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral; | ||
1409 | DBG(" integ_p: %d\n", (int)(integ_p >> 36)); | ||
1410 | sum += integ_p; | ||
1411 | |||
1412 | /* Calculate the derivative term */ | ||
1413 | derivative = state->error_history[state->cur_sample] - | ||
1414 | state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1) | ||
1415 | % DRIVES_PID_HISTORY_SIZE]; | ||
1416 | derivative /= DRIVES_PID_INTERVAL; | ||
1417 | deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative; | ||
1418 | DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); | ||
1419 | sum += deriv_p; | ||
1420 | |||
1421 | /* Calculate the proportional term */ | ||
1422 | prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]); | ||
1423 | DBG(" prop_p: %d\n", (int)(prop_p >> 36)); | ||
1424 | sum += prop_p; | ||
1425 | |||
1426 | /* Scale sum */ | ||
1427 | sum >>= 36; | ||
1428 | |||
1429 | DBG(" sum: %d\n", (int)sum); | ||
1430 | state->rpm += (s32)sum; | ||
1431 | |||
1432 | state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN); | ||
1433 | state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX); | ||
1434 | |||
1435 | DBG("** DRIVES RPM: %d\n", (int)state->rpm); | ||
1436 | set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm); | ||
1437 | } | ||
1438 | |||
1439 | /* | ||
1440 | * Initialize the state structure for the drives bay fan control loop | ||
1441 | */ | ||
1442 | static int init_drives_state(struct drives_pid_state *state) | ||
1443 | { | ||
1444 | state->ticks = 1; | ||
1445 | state->first = 1; | ||
1446 | state->rpm = 1000; | ||
1447 | |||
1448 | state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp"); | ||
1449 | if (state->monitor == NULL) | ||
1450 | return -ENODEV; | ||
1451 | |||
1452 | device_create_file(&of_dev->dev, &dev_attr_drives_temperature); | ||
1453 | device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm); | ||
1454 | |||
1455 | return 0; | ||
1456 | } | ||
1457 | |||
1458 | /* | ||
1459 | * Dispose of the state data for the drives control loop | ||
1460 | */ | ||
1461 | static void dispose_drives_state(struct drives_pid_state *state) | ||
1462 | { | ||
1463 | if (state->monitor == NULL) | ||
1464 | return; | ||
1465 | |||
1466 | device_remove_file(&of_dev->dev, &dev_attr_drives_temperature); | ||
1467 | device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm); | ||
1468 | |||
1469 | detach_i2c_chip(state->monitor); | ||
1470 | state->monitor = NULL; | ||
1471 | } | ||
1472 | |||
1473 | /* | ||
1474 | * DIMMs temp control loop | ||
1475 | */ | ||
1476 | static void do_monitor_dimms(struct dimm_pid_state *state) | ||
1477 | { | ||
1478 | s32 temp, integral, derivative, fan_min; | ||
1479 | s64 integ_p, deriv_p, prop_p, sum; | ||
1480 | int i; | ||
1481 | |||
1482 | if (--state->ticks != 0) | ||
1483 | return; | ||
1484 | state->ticks = DIMM_PID_INTERVAL; | ||
1485 | |||
1486 | DBG("DIMM:\n"); | ||
1487 | |||
1488 | DBG(" current value: %d\n", state->output); | ||
1489 | |||
1490 | temp = read_lm87_reg(state->monitor, LM87_INT_TEMP); | ||
1491 | if (temp < 0) | ||
1492 | return; | ||
1493 | temp <<= 16; | ||
1494 | state->last_temp = temp; | ||
1495 | DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), | ||
1496 | FIX32TOPRINT(DIMM_PID_INPUT_TARGET)); | ||
1497 | |||
1498 | /* Store temperature and error in history array */ | ||
1499 | state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE; | ||
1500 | state->sample_history[state->cur_sample] = temp; | ||
1501 | state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET; | ||
1502 | |||
1503 | /* If first loop, fill the history table */ | ||
1504 | if (state->first) { | ||
1505 | for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) { | ||
1506 | state->cur_sample = (state->cur_sample + 1) % | ||
1507 | DIMM_PID_HISTORY_SIZE; | ||
1508 | state->sample_history[state->cur_sample] = temp; | ||
1509 | state->error_history[state->cur_sample] = | ||
1510 | temp - DIMM_PID_INPUT_TARGET; | ||
1511 | } | ||
1512 | state->first = 0; | ||
1513 | } | ||
1514 | |||
1515 | /* Calculate the integral term */ | ||
1516 | sum = 0; | ||
1517 | integral = 0; | ||
1518 | for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++) | ||
1519 | integral += state->error_history[i]; | ||
1520 | integral *= DIMM_PID_INTERVAL; | ||
1521 | DBG(" integral: %08x\n", integral); | ||
1522 | integ_p = ((s64)DIMM_PID_G_r) * (s64)integral; | ||
1523 | DBG(" integ_p: %d\n", (int)(integ_p >> 36)); | ||
1524 | sum += integ_p; | ||
1525 | |||
1526 | /* Calculate the derivative term */ | ||
1527 | derivative = state->error_history[state->cur_sample] - | ||
1528 | state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1) | ||
1529 | % DIMM_PID_HISTORY_SIZE]; | ||
1530 | derivative /= DIMM_PID_INTERVAL; | ||
1531 | deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative; | ||
1532 | DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); | ||
1533 | sum += deriv_p; | ||
1534 | |||
1535 | /* Calculate the proportional term */ | ||
1536 | prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]); | ||
1537 | DBG(" prop_p: %d\n", (int)(prop_p >> 36)); | ||
1538 | sum += prop_p; | ||
1539 | |||
1540 | /* Scale sum */ | ||
1541 | sum >>= 36; | ||
1542 | |||
1543 | DBG(" sum: %d\n", (int)sum); | ||
1544 | state->output = (s32)sum; | ||
1545 | state->output = max(state->output, DIMM_PID_OUTPUT_MIN); | ||
1546 | state->output = min(state->output, DIMM_PID_OUTPUT_MAX); | ||
1547 | dimm_output_clamp = state->output; | ||
1548 | |||
1549 | DBG("** DIMM clamp value: %d\n", (int)state->output); | ||
1550 | |||
1551 | /* Backside PID is only every 5 seconds, force backside fan clamping now */ | ||
1552 | fan_min = (dimm_output_clamp * 100) / 14000; | ||
1553 | fan_min = max(fan_min, backside_params.output_min); | ||
1554 | if (backside_state.pwm < fan_min) { | ||
1555 | backside_state.pwm = fan_min; | ||
1556 | DBG(" -> applying clamp to backside fan now: %d !\n", fan_min); | ||
1557 | set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min); | ||
1558 | } | ||
1559 | } | ||
1560 | |||
1561 | /* | ||
1562 | * Initialize the state structure for the DIMM temp control loop | ||
1563 | */ | ||
1564 | static int init_dimms_state(struct dimm_pid_state *state) | ||
1565 | { | ||
1566 | state->ticks = 1; | ||
1567 | state->first = 1; | ||
1568 | state->output = 4000; | ||
1569 | |||
1570 | state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp"); | ||
1571 | if (state->monitor == NULL) | ||
1572 | return -ENODEV; | ||
1573 | |||
1574 | device_create_file(&of_dev->dev, &dev_attr_dimms_temperature); | ||
1575 | |||
1576 | return 0; | ||
1577 | } | ||
1578 | |||
1579 | /* | ||
1580 | * Dispose of the state data for the drives control loop | ||
1581 | */ | ||
1582 | static void dispose_dimms_state(struct dimm_pid_state *state) | ||
1583 | { | ||
1584 | if (state->monitor == NULL) | ||
1585 | return; | ||
1586 | |||
1587 | device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature); | ||
1588 | |||
1589 | detach_i2c_chip(state->monitor); | ||
1590 | state->monitor = NULL; | ||
1591 | } | ||
1592 | |||
1593 | static int call_critical_overtemp(void) | ||
1594 | { | ||
1595 | char *argv[] = { critical_overtemp_path, NULL }; | ||
1596 | static char *envp[] = { "HOME=/", | ||
1597 | "TERM=linux", | ||
1598 | "PATH=/sbin:/usr/sbin:/bin:/usr/bin", | ||
1599 | NULL }; | ||
1600 | |||
1601 | return call_usermodehelper(critical_overtemp_path, argv, envp, 0); | ||
1602 | } | ||
1603 | |||
1604 | |||
1605 | /* | ||
1606 | * Here's the kernel thread that calls the various control loops | ||
1607 | */ | ||
1608 | static int main_control_loop(void *x) | ||
1609 | { | ||
1610 | daemonize("kfand"); | ||
1611 | |||
1612 | DBG("main_control_loop started\n"); | ||
1613 | |||
1614 | down(&driver_lock); | ||
1615 | |||
1616 | if (start_fcu() < 0) { | ||
1617 | printk(KERN_ERR "kfand: failed to start FCU\n"); | ||
1618 | up(&driver_lock); | ||
1619 | goto out; | ||
1620 | } | ||
1621 | |||
1622 | /* Set the PCI fan once for now */ | ||
1623 | set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM); | ||
1624 | |||
1625 | /* Initialize ADCs */ | ||
1626 | initialize_adc(&cpu_state[0]); | ||
1627 | if (cpu_state[1].monitor != NULL) | ||
1628 | initialize_adc(&cpu_state[1]); | ||
1629 | |||
1630 | up(&driver_lock); | ||
1631 | |||
1632 | while (state == state_attached) { | ||
1633 | unsigned long elapsed, start; | ||
1634 | |||
1635 | start = jiffies; | ||
1636 | |||
1637 | down(&driver_lock); | ||
1638 | |||
1639 | /* First, we always calculate the new DIMMs state on an Xserve */ | ||
1640 | if (rackmac) | ||
1641 | do_monitor_dimms(&dimms_state); | ||
1642 | |||
1643 | /* Then, the CPUs */ | ||
1644 | if (cpu_pid_type == CPU_PID_TYPE_COMBINED) | ||
1645 | do_monitor_cpu_combined(); | ||
1646 | else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) { | ||
1647 | do_monitor_cpu_rack(&cpu_state[0]); | ||
1648 | if (cpu_state[1].monitor != NULL) | ||
1649 | do_monitor_cpu_rack(&cpu_state[1]); | ||
1650 | // better deal with UP | ||
1651 | } else { | ||
1652 | do_monitor_cpu_split(&cpu_state[0]); | ||
1653 | if (cpu_state[1].monitor != NULL) | ||
1654 | do_monitor_cpu_split(&cpu_state[1]); | ||
1655 | // better deal with UP | ||
1656 | } | ||
1657 | /* Then, the rest */ | ||
1658 | do_monitor_backside(&backside_state); | ||
1659 | if (!rackmac) | ||
1660 | do_monitor_drives(&drives_state); | ||
1661 | up(&driver_lock); | ||
1662 | |||
1663 | if (critical_state == 1) { | ||
1664 | printk(KERN_WARNING "Temperature control detected a critical condition\n"); | ||
1665 | printk(KERN_WARNING "Attempting to shut down...\n"); | ||
1666 | if (call_critical_overtemp()) { | ||
1667 | printk(KERN_WARNING "Can't call %s, power off now!\n", | ||
1668 | critical_overtemp_path); | ||
1669 | machine_power_off(); | ||
1670 | } | ||
1671 | } | ||
1672 | if (critical_state > 0) | ||
1673 | critical_state++; | ||
1674 | if (critical_state > MAX_CRITICAL_STATE) { | ||
1675 | printk(KERN_WARNING "Shutdown timed out, power off now !\n"); | ||
1676 | machine_power_off(); | ||
1677 | } | ||
1678 | |||
1679 | // FIXME: Deal with signals | ||
1680 | set_current_state(TASK_INTERRUPTIBLE); | ||
1681 | elapsed = jiffies - start; | ||
1682 | if (elapsed < HZ) | ||
1683 | schedule_timeout(HZ - elapsed); | ||
1684 | } | ||
1685 | |||
1686 | out: | ||
1687 | DBG("main_control_loop ended\n"); | ||
1688 | |||
1689 | ctrl_task = 0; | ||
1690 | complete_and_exit(&ctrl_complete, 0); | ||
1691 | } | ||
1692 | |||
1693 | /* | ||
1694 | * Dispose the control loops when tearing down | ||
1695 | */ | ||
1696 | static void dispose_control_loops(void) | ||
1697 | { | ||
1698 | dispose_cpu_state(&cpu_state[0]); | ||
1699 | dispose_cpu_state(&cpu_state[1]); | ||
1700 | dispose_backside_state(&backside_state); | ||
1701 | dispose_drives_state(&drives_state); | ||
1702 | dispose_dimms_state(&dimms_state); | ||
1703 | } | ||
1704 | |||
1705 | /* | ||
1706 | * Create the control loops. U3-0 i2c bus is up, so we can now | ||
1707 | * get to the various sensors | ||
1708 | */ | ||
1709 | static int create_control_loops(void) | ||
1710 | { | ||
1711 | struct device_node *np; | ||
1712 | |||
1713 | /* Count CPUs from the device-tree, we don't care how many are | ||
1714 | * actually used by Linux | ||
1715 | */ | ||
1716 | cpu_count = 0; | ||
1717 | for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));) | ||
1718 | cpu_count++; | ||
1719 | |||
1720 | DBG("counted %d CPUs in the device-tree\n", cpu_count); | ||
1721 | |||
1722 | /* Decide the type of PID algorithm to use based on the presence of | ||
1723 | * the pumps, though that may not be the best way, that is good enough | ||
1724 | * for now | ||
1725 | */ | ||
1726 | if (rackmac) | ||
1727 | cpu_pid_type = CPU_PID_TYPE_RACKMAC; | ||
1728 | else if (machine_is_compatible("PowerMac7,3") | ||
1729 | && (cpu_count > 1) | ||
1730 | && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID | ||
1731 | && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) { | ||
1732 | printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n"); | ||
1733 | cpu_pid_type = CPU_PID_TYPE_COMBINED; | ||
1734 | } else | ||
1735 | cpu_pid_type = CPU_PID_TYPE_SPLIT; | ||
1736 | |||
1737 | /* Create control loops for everything. If any fail, everything | ||
1738 | * fails | ||
1739 | */ | ||
1740 | if (init_cpu_state(&cpu_state[0], 0)) | ||
1741 | goto fail; | ||
1742 | if (cpu_pid_type == CPU_PID_TYPE_COMBINED) | ||
1743 | fetch_cpu_pumps_minmax(); | ||
1744 | |||
1745 | if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1)) | ||
1746 | goto fail; | ||
1747 | if (init_backside_state(&backside_state)) | ||
1748 | goto fail; | ||
1749 | if (rackmac && init_dimms_state(&dimms_state)) | ||
1750 | goto fail; | ||
1751 | if (!rackmac && init_drives_state(&drives_state)) | ||
1752 | goto fail; | ||
1753 | |||
1754 | DBG("all control loops up !\n"); | ||
1755 | |||
1756 | return 0; | ||
1757 | |||
1758 | fail: | ||
1759 | DBG("failure creating control loops, disposing\n"); | ||
1760 | |||
1761 | dispose_control_loops(); | ||
1762 | |||
1763 | return -ENODEV; | ||
1764 | } | ||
1765 | |||
1766 | /* | ||
1767 | * Start the control loops after everything is up, that is create | ||
1768 | * the thread that will make them run | ||
1769 | */ | ||
1770 | static void start_control_loops(void) | ||
1771 | { | ||
1772 | init_completion(&ctrl_complete); | ||
1773 | |||
1774 | ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL); | ||
1775 | } | ||
1776 | |||
1777 | /* | ||
1778 | * Stop the control loops when tearing down | ||
1779 | */ | ||
1780 | static void stop_control_loops(void) | ||
1781 | { | ||
1782 | if (ctrl_task != 0) | ||
1783 | wait_for_completion(&ctrl_complete); | ||
1784 | } | ||
1785 | |||
1786 | /* | ||
1787 | * Attach to the i2c FCU after detecting U3-1 bus | ||
1788 | */ | ||
1789 | static int attach_fcu(void) | ||
1790 | { | ||
1791 | fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu"); | ||
1792 | if (fcu == NULL) | ||
1793 | return -ENODEV; | ||
1794 | |||
1795 | DBG("FCU attached\n"); | ||
1796 | |||
1797 | return 0; | ||
1798 | } | ||
1799 | |||
1800 | /* | ||
1801 | * Detach from the i2c FCU when tearing down | ||
1802 | */ | ||
1803 | static void detach_fcu(void) | ||
1804 | { | ||
1805 | if (fcu) | ||
1806 | detach_i2c_chip(fcu); | ||
1807 | fcu = NULL; | ||
1808 | } | ||
1809 | |||
1810 | /* | ||
1811 | * Attach to the i2c controller. We probe the various chips based | ||
1812 | * on the device-tree nodes and build everything for the driver to | ||
1813 | * run, we then kick the driver monitoring thread | ||
1814 | */ | ||
1815 | static int therm_pm72_attach(struct i2c_adapter *adapter) | ||
1816 | { | ||
1817 | down(&driver_lock); | ||
1818 | |||
1819 | /* Check state */ | ||
1820 | if (state == state_detached) | ||
1821 | state = state_attaching; | ||
1822 | if (state != state_attaching) { | ||
1823 | up(&driver_lock); | ||
1824 | return 0; | ||
1825 | } | ||
1826 | |||
1827 | /* Check if we are looking for one of these */ | ||
1828 | if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) { | ||
1829 | u3_0 = adapter; | ||
1830 | DBG("found U3-0\n"); | ||
1831 | if (k2 || !rackmac) | ||
1832 | if (create_control_loops()) | ||
1833 | u3_0 = NULL; | ||
1834 | } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) { | ||
1835 | u3_1 = adapter; | ||
1836 | DBG("found U3-1, attaching FCU\n"); | ||
1837 | if (attach_fcu()) | ||
1838 | u3_1 = NULL; | ||
1839 | } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) { | ||
1840 | k2 = adapter; | ||
1841 | DBG("Found K2\n"); | ||
1842 | if (u3_0 && rackmac) | ||
1843 | if (create_control_loops()) | ||
1844 | k2 = NULL; | ||
1845 | } | ||
1846 | /* We got all we need, start control loops */ | ||
1847 | if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) { | ||
1848 | DBG("everything up, starting control loops\n"); | ||
1849 | state = state_attached; | ||
1850 | start_control_loops(); | ||
1851 | } | ||
1852 | up(&driver_lock); | ||
1853 | |||
1854 | return 0; | ||
1855 | } | ||
1856 | |||
1857 | /* | ||
1858 | * Called on every adapter when the driver or the i2c controller | ||
1859 | * is going away. | ||
1860 | */ | ||
1861 | static int therm_pm72_detach(struct i2c_adapter *adapter) | ||
1862 | { | ||
1863 | down(&driver_lock); | ||
1864 | |||
1865 | if (state != state_detached) | ||
1866 | state = state_detaching; | ||
1867 | |||
1868 | /* Stop control loops if any */ | ||
1869 | DBG("stopping control loops\n"); | ||
1870 | up(&driver_lock); | ||
1871 | stop_control_loops(); | ||
1872 | down(&driver_lock); | ||
1873 | |||
1874 | if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) { | ||
1875 | DBG("lost U3-0, disposing control loops\n"); | ||
1876 | dispose_control_loops(); | ||
1877 | u3_0 = NULL; | ||
1878 | } | ||
1879 | |||
1880 | if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) { | ||
1881 | DBG("lost U3-1, detaching FCU\n"); | ||
1882 | detach_fcu(); | ||
1883 | u3_1 = NULL; | ||
1884 | } | ||
1885 | if (u3_0 == NULL && u3_1 == NULL) | ||
1886 | state = state_detached; | ||
1887 | |||
1888 | up(&driver_lock); | ||
1889 | |||
1890 | return 0; | ||
1891 | } | ||
1892 | |||
1893 | static int fan_check_loc_match(const char *loc, int fan) | ||
1894 | { | ||
1895 | char tmp[64]; | ||
1896 | char *c, *e; | ||
1897 | |||
1898 | strlcpy(tmp, fcu_fans[fan].loc, 64); | ||
1899 | |||
1900 | c = tmp; | ||
1901 | for (;;) { | ||
1902 | e = strchr(c, ','); | ||
1903 | if (e) | ||
1904 | *e = 0; | ||
1905 | if (strcmp(loc, c) == 0) | ||
1906 | return 1; | ||
1907 | if (e == NULL) | ||
1908 | break; | ||
1909 | c = e + 1; | ||
1910 | } | ||
1911 | return 0; | ||
1912 | } | ||
1913 | |||
1914 | static void fcu_lookup_fans(struct device_node *fcu_node) | ||
1915 | { | ||
1916 | struct device_node *np = NULL; | ||
1917 | int i; | ||
1918 | |||
1919 | /* The table is filled by default with values that are suitable | ||
1920 | * for the old machines without device-tree informations. We scan | ||
1921 | * the device-tree and override those values with whatever is | ||
1922 | * there | ||
1923 | */ | ||
1924 | |||
1925 | DBG("Looking up FCU controls in device-tree...\n"); | ||
1926 | |||
1927 | while ((np = of_get_next_child(fcu_node, np)) != NULL) { | ||
1928 | int type = -1; | ||
1929 | char *loc; | ||
1930 | u32 *reg; | ||
1931 | |||
1932 | DBG(" control: %s, type: %s\n", np->name, np->type); | ||
1933 | |||
1934 | /* Detect control type */ | ||
1935 | if (!strcmp(np->type, "fan-rpm-control") || | ||
1936 | !strcmp(np->type, "fan-rpm")) | ||
1937 | type = FCU_FAN_RPM; | ||
1938 | if (!strcmp(np->type, "fan-pwm-control") || | ||
1939 | !strcmp(np->type, "fan-pwm")) | ||
1940 | type = FCU_FAN_PWM; | ||
1941 | /* Only care about fans for now */ | ||
1942 | if (type == -1) | ||
1943 | continue; | ||
1944 | |||
1945 | /* Lookup for a matching location */ | ||
1946 | loc = (char *)get_property(np, "location", NULL); | ||
1947 | reg = (u32 *)get_property(np, "reg", NULL); | ||
1948 | if (loc == NULL || reg == NULL) | ||
1949 | continue; | ||
1950 | DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg); | ||
1951 | |||
1952 | for (i = 0; i < FCU_FAN_COUNT; i++) { | ||
1953 | int fan_id; | ||
1954 | |||
1955 | if (!fan_check_loc_match(loc, i)) | ||
1956 | continue; | ||
1957 | DBG(" location match, index: %d\n", i); | ||
1958 | fcu_fans[i].id = FCU_FAN_ABSENT_ID; | ||
1959 | if (type != fcu_fans[i].type) { | ||
1960 | printk(KERN_WARNING "therm_pm72: Fan type mismatch " | ||
1961 | "in device-tree for %s\n", np->full_name); | ||
1962 | break; | ||
1963 | } | ||
1964 | if (type == FCU_FAN_RPM) | ||
1965 | fan_id = ((*reg) - 0x10) / 2; | ||
1966 | else | ||
1967 | fan_id = ((*reg) - 0x30) / 2; | ||
1968 | if (fan_id > 7) { | ||
1969 | printk(KERN_WARNING "therm_pm72: Can't parse " | ||
1970 | "fan ID in device-tree for %s\n", np->full_name); | ||
1971 | break; | ||
1972 | } | ||
1973 | DBG(" fan id -> %d, type -> %d\n", fan_id, type); | ||
1974 | fcu_fans[i].id = fan_id; | ||
1975 | } | ||
1976 | } | ||
1977 | |||
1978 | /* Now dump the array */ | ||
1979 | printk(KERN_INFO "Detected fan controls:\n"); | ||
1980 | for (i = 0; i < FCU_FAN_COUNT; i++) { | ||
1981 | if (fcu_fans[i].id == FCU_FAN_ABSENT_ID) | ||
1982 | continue; | ||
1983 | printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i, | ||
1984 | fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM", | ||
1985 | fcu_fans[i].id, fcu_fans[i].loc); | ||
1986 | } | ||
1987 | } | ||
1988 | |||
1989 | static int fcu_of_probe(struct of_device* dev, const struct of_match *match) | ||
1990 | { | ||
1991 | int rc; | ||
1992 | |||
1993 | state = state_detached; | ||
1994 | |||
1995 | /* Lookup the fans in the device tree */ | ||
1996 | fcu_lookup_fans(dev->node); | ||
1997 | |||
1998 | /* Add the driver */ | ||
1999 | rc = i2c_add_driver(&therm_pm72_driver); | ||
2000 | if (rc < 0) | ||
2001 | return rc; | ||
2002 | return 0; | ||
2003 | } | ||
2004 | |||
2005 | static int fcu_of_remove(struct of_device* dev) | ||
2006 | { | ||
2007 | i2c_del_driver(&therm_pm72_driver); | ||
2008 | |||
2009 | return 0; | ||
2010 | } | ||
2011 | |||
2012 | static struct of_match fcu_of_match[] = | ||
2013 | { | ||
2014 | { | ||
2015 | .name = OF_ANY_MATCH, | ||
2016 | .type = "fcu", | ||
2017 | .compatible = OF_ANY_MATCH | ||
2018 | }, | ||
2019 | {}, | ||
2020 | }; | ||
2021 | |||
2022 | static struct of_platform_driver fcu_of_platform_driver = | ||
2023 | { | ||
2024 | .name = "temperature", | ||
2025 | .match_table = fcu_of_match, | ||
2026 | .probe = fcu_of_probe, | ||
2027 | .remove = fcu_of_remove | ||
2028 | }; | ||
2029 | |||
2030 | /* | ||
2031 | * Check machine type, attach to i2c controller | ||
2032 | */ | ||
2033 | static int __init therm_pm72_init(void) | ||
2034 | { | ||
2035 | struct device_node *np; | ||
2036 | |||
2037 | rackmac = machine_is_compatible("RackMac3,1"); | ||
2038 | |||
2039 | if (!machine_is_compatible("PowerMac7,2") && | ||
2040 | !machine_is_compatible("PowerMac7,3") && | ||
2041 | !rackmac) | ||
2042 | return -ENODEV; | ||
2043 | |||
2044 | printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION); | ||
2045 | |||
2046 | np = of_find_node_by_type(NULL, "fcu"); | ||
2047 | if (np == NULL) { | ||
2048 | /* Some machines have strangely broken device-tree */ | ||
2049 | np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e"); | ||
2050 | if (np == NULL) { | ||
2051 | printk(KERN_ERR "Can't find FCU in device-tree !\n"); | ||
2052 | return -ENODEV; | ||
2053 | } | ||
2054 | } | ||
2055 | of_dev = of_platform_device_create(np, "temperature"); | ||
2056 | if (of_dev == NULL) { | ||
2057 | printk(KERN_ERR "Can't register FCU platform device !\n"); | ||
2058 | return -ENODEV; | ||
2059 | } | ||
2060 | |||
2061 | of_register_driver(&fcu_of_platform_driver); | ||
2062 | |||
2063 | return 0; | ||
2064 | } | ||
2065 | |||
2066 | static void __exit therm_pm72_exit(void) | ||
2067 | { | ||
2068 | of_unregister_driver(&fcu_of_platform_driver); | ||
2069 | |||
2070 | if (of_dev) | ||
2071 | of_device_unregister(of_dev); | ||
2072 | } | ||
2073 | |||
2074 | module_init(therm_pm72_init); | ||
2075 | module_exit(therm_pm72_exit); | ||
2076 | |||
2077 | MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>"); | ||
2078 | MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control"); | ||
2079 | MODULE_LICENSE("GPL"); | ||
2080 | |||