aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/ide/ide-dma.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/ide/ide-dma.c')
-rw-r--r--drivers/ide/ide-dma.c519
1 files changed, 66 insertions, 453 deletions
diff --git a/drivers/ide/ide-dma.c b/drivers/ide/ide-dma.c
index 3fa07c0aeaa4..fffd11717b2d 100644
--- a/drivers/ide/ide-dma.c
+++ b/drivers/ide/ide-dma.c
@@ -28,24 +28,13 @@
28 * for supplying a Promise UDMA board & WD UDMA drive for this work! 28 * for supplying a Promise UDMA board & WD UDMA drive for this work!
29 */ 29 */
30 30
31#include <linux/module.h>
32#include <linux/types.h> 31#include <linux/types.h>
33#include <linux/kernel.h> 32#include <linux/kernel.h>
34#include <linux/timer.h>
35#include <linux/mm.h>
36#include <linux/interrupt.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/ide.h> 33#include <linux/ide.h>
40#include <linux/delay.h>
41#include <linux/scatterlist.h> 34#include <linux/scatterlist.h>
42#include <linux/dma-mapping.h> 35#include <linux/dma-mapping.h>
43 36
44#include <asm/io.h> 37static const struct drive_list_entry drive_whitelist[] = {
45#include <asm/irq.h>
46
47static const struct drive_list_entry drive_whitelist [] = {
48
49 { "Micropolis 2112A" , NULL }, 38 { "Micropolis 2112A" , NULL },
50 { "CONNER CTMA 4000" , NULL }, 39 { "CONNER CTMA 4000" , NULL },
51 { "CONNER CTT8000-A" , NULL }, 40 { "CONNER CTT8000-A" , NULL },
@@ -53,8 +42,7 @@ static const struct drive_list_entry drive_whitelist [] = {
53 { NULL , NULL } 42 { NULL , NULL }
54}; 43};
55 44
56static const struct drive_list_entry drive_blacklist [] = { 45static const struct drive_list_entry drive_blacklist[] = {
57
58 { "WDC AC11000H" , NULL }, 46 { "WDC AC11000H" , NULL },
59 { "WDC AC22100H" , NULL }, 47 { "WDC AC22100H" , NULL },
60 { "WDC AC32500H" , NULL }, 48 { "WDC AC32500H" , NULL },
@@ -94,11 +82,11 @@ static const struct drive_list_entry drive_blacklist [] = {
94 * ide_dma_intr - IDE DMA interrupt handler 82 * ide_dma_intr - IDE DMA interrupt handler
95 * @drive: the drive the interrupt is for 83 * @drive: the drive the interrupt is for
96 * 84 *
97 * Handle an interrupt completing a read/write DMA transfer on an 85 * Handle an interrupt completing a read/write DMA transfer on an
98 * IDE device 86 * IDE device
99 */ 87 */
100 88
101ide_startstop_t ide_dma_intr (ide_drive_t *drive) 89ide_startstop_t ide_dma_intr(ide_drive_t *drive)
102{ 90{
103 ide_hwif_t *hwif = drive->hwif; 91 ide_hwif_t *hwif = drive->hwif;
104 u8 stat = 0, dma_stat = 0; 92 u8 stat = 0, dma_stat = 0;
@@ -106,22 +94,21 @@ ide_startstop_t ide_dma_intr (ide_drive_t *drive)
106 dma_stat = hwif->dma_ops->dma_end(drive); 94 dma_stat = hwif->dma_ops->dma_end(drive);
107 stat = hwif->tp_ops->read_status(hwif); 95 stat = hwif->tp_ops->read_status(hwif);
108 96
109 if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) { 97 if (OK_STAT(stat, DRIVE_READY, drive->bad_wstat | ATA_DRQ)) {
110 if (!dma_stat) { 98 if (!dma_stat) {
111 struct request *rq = HWGROUP(drive)->rq; 99 struct request *rq = hwif->hwgroup->rq;
112 100
113 task_end_request(drive, rq, stat); 101 task_end_request(drive, rq, stat);
114 return ide_stopped; 102 return ide_stopped;
115 } 103 }
116 printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n", 104 printk(KERN_ERR "%s: %s: bad DMA status (0x%02x)\n",
117 drive->name, dma_stat); 105 drive->name, __func__, dma_stat);
118 } 106 }
119 return ide_error(drive, "dma_intr", stat); 107 return ide_error(drive, "dma_intr", stat);
120} 108}
121
122EXPORT_SYMBOL_GPL(ide_dma_intr); 109EXPORT_SYMBOL_GPL(ide_dma_intr);
123 110
124static int ide_dma_good_drive(ide_drive_t *drive) 111int ide_dma_good_drive(ide_drive_t *drive)
125{ 112{
126 return ide_in_drive_list(drive->id, drive_whitelist); 113 return ide_in_drive_list(drive->id, drive_whitelist);
127} 114}
@@ -139,7 +126,7 @@ static int ide_dma_good_drive(ide_drive_t *drive)
139 126
140int ide_build_sglist(ide_drive_t *drive, struct request *rq) 127int ide_build_sglist(ide_drive_t *drive, struct request *rq)
141{ 128{
142 ide_hwif_t *hwif = HWIF(drive); 129 ide_hwif_t *hwif = drive->hwif;
143 struct scatterlist *sg = hwif->sg_table; 130 struct scatterlist *sg = hwif->sg_table;
144 131
145 ide_map_sg(drive, rq); 132 ide_map_sg(drive, rq);
@@ -152,106 +139,8 @@ int ide_build_sglist(ide_drive_t *drive, struct request *rq)
152 return dma_map_sg(hwif->dev, sg, hwif->sg_nents, 139 return dma_map_sg(hwif->dev, sg, hwif->sg_nents,
153 hwif->sg_dma_direction); 140 hwif->sg_dma_direction);
154} 141}
155
156EXPORT_SYMBOL_GPL(ide_build_sglist); 142EXPORT_SYMBOL_GPL(ide_build_sglist);
157 143
158#ifdef CONFIG_BLK_DEV_IDEDMA_SFF
159/**
160 * ide_build_dmatable - build IDE DMA table
161 *
162 * ide_build_dmatable() prepares a dma request. We map the command
163 * to get the pci bus addresses of the buffers and then build up
164 * the PRD table that the IDE layer wants to be fed. The code
165 * knows about the 64K wrap bug in the CS5530.
166 *
167 * Returns the number of built PRD entries if all went okay,
168 * returns 0 otherwise.
169 *
170 * May also be invoked from trm290.c
171 */
172
173int ide_build_dmatable (ide_drive_t *drive, struct request *rq)
174{
175 ide_hwif_t *hwif = HWIF(drive);
176 __le32 *table = (__le32 *)hwif->dmatable_cpu;
177 unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0;
178 unsigned int count = 0;
179 int i;
180 struct scatterlist *sg;
181
182 hwif->sg_nents = i = ide_build_sglist(drive, rq);
183
184 if (!i)
185 return 0;
186
187 sg = hwif->sg_table;
188 while (i) {
189 u32 cur_addr;
190 u32 cur_len;
191
192 cur_addr = sg_dma_address(sg);
193 cur_len = sg_dma_len(sg);
194
195 /*
196 * Fill in the dma table, without crossing any 64kB boundaries.
197 * Most hardware requires 16-bit alignment of all blocks,
198 * but the trm290 requires 32-bit alignment.
199 */
200
201 while (cur_len) {
202 if (count++ >= PRD_ENTRIES) {
203 printk(KERN_ERR "%s: DMA table too small\n", drive->name);
204 goto use_pio_instead;
205 } else {
206 u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff);
207
208 if (bcount > cur_len)
209 bcount = cur_len;
210 *table++ = cpu_to_le32(cur_addr);
211 xcount = bcount & 0xffff;
212 if (is_trm290)
213 xcount = ((xcount >> 2) - 1) << 16;
214 else if (xcount == 0x0000) {
215 /*
216 * Most chipsets correctly interpret a length of 0x0000 as 64KB,
217 * but at least one (e.g. CS5530) misinterprets it as zero (!).
218 * So here we break the 64KB entry into two 32KB entries instead.
219 */
220 if (count++ >= PRD_ENTRIES) {
221 printk(KERN_ERR "%s: DMA table too small\n", drive->name);
222 goto use_pio_instead;
223 }
224 *table++ = cpu_to_le32(0x8000);
225 *table++ = cpu_to_le32(cur_addr + 0x8000);
226 xcount = 0x8000;
227 }
228 *table++ = cpu_to_le32(xcount);
229 cur_addr += bcount;
230 cur_len -= bcount;
231 }
232 }
233
234 sg = sg_next(sg);
235 i--;
236 }
237
238 if (count) {
239 if (!is_trm290)
240 *--table |= cpu_to_le32(0x80000000);
241 return count;
242 }
243
244 printk(KERN_ERR "%s: empty DMA table?\n", drive->name);
245
246use_pio_instead:
247 ide_destroy_dmatable(drive);
248
249 return 0; /* revert to PIO for this request */
250}
251
252EXPORT_SYMBOL_GPL(ide_build_dmatable);
253#endif
254
255/** 144/**
256 * ide_destroy_dmatable - clean up DMA mapping 145 * ide_destroy_dmatable - clean up DMA mapping
257 * @drive: The drive to unmap 146 * @drive: The drive to unmap
@@ -262,146 +151,30 @@ EXPORT_SYMBOL_GPL(ide_build_dmatable);
262 * an oops as only one mapping can be live for each target at a given 151 * an oops as only one mapping can be live for each target at a given
263 * time. 152 * time.
264 */ 153 */
265 154
266void ide_destroy_dmatable (ide_drive_t *drive) 155void ide_destroy_dmatable(ide_drive_t *drive)
267{ 156{
268 ide_hwif_t *hwif = drive->hwif; 157 ide_hwif_t *hwif = drive->hwif;
269 158
270 dma_unmap_sg(hwif->dev, hwif->sg_table, hwif->sg_nents, 159 dma_unmap_sg(hwif->dev, hwif->sg_table, hwif->sg_nents,
271 hwif->sg_dma_direction); 160 hwif->sg_dma_direction);
272} 161}
273
274EXPORT_SYMBOL_GPL(ide_destroy_dmatable); 162EXPORT_SYMBOL_GPL(ide_destroy_dmatable);
275 163
276#ifdef CONFIG_BLK_DEV_IDEDMA_SFF
277/**
278 * config_drive_for_dma - attempt to activate IDE DMA
279 * @drive: the drive to place in DMA mode
280 *
281 * If the drive supports at least mode 2 DMA or UDMA of any kind
282 * then attempt to place it into DMA mode. Drives that are known to
283 * support DMA but predate the DMA properties or that are known
284 * to have DMA handling bugs are also set up appropriately based
285 * on the good/bad drive lists.
286 */
287
288static int config_drive_for_dma (ide_drive_t *drive)
289{
290 ide_hwif_t *hwif = drive->hwif;
291 struct hd_driveid *id = drive->id;
292
293 if (drive->media != ide_disk) {
294 if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
295 return 0;
296 }
297
298 /*
299 * Enable DMA on any drive that has
300 * UltraDMA (mode 0/1/2/3/4/5/6) enabled
301 */
302 if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f))
303 return 1;
304
305 /*
306 * Enable DMA on any drive that has mode2 DMA
307 * (multi or single) enabled
308 */
309 if (id->field_valid & 2) /* regular DMA */
310 if ((id->dma_mword & 0x404) == 0x404 ||
311 (id->dma_1word & 0x404) == 0x404)
312 return 1;
313
314 /* Consult the list of known "good" drives */
315 if (ide_dma_good_drive(drive))
316 return 1;
317
318 return 0;
319}
320
321/**
322 * dma_timer_expiry - handle a DMA timeout
323 * @drive: Drive that timed out
324 *
325 * An IDE DMA transfer timed out. In the event of an error we ask
326 * the driver to resolve the problem, if a DMA transfer is still
327 * in progress we continue to wait (arguably we need to add a
328 * secondary 'I don't care what the drive thinks' timeout here)
329 * Finally if we have an interrupt we let it complete the I/O.
330 * But only one time - we clear expiry and if it's still not
331 * completed after WAIT_CMD, we error and retry in PIO.
332 * This can occur if an interrupt is lost or due to hang or bugs.
333 */
334
335static int dma_timer_expiry (ide_drive_t *drive)
336{
337 ide_hwif_t *hwif = HWIF(drive);
338 u8 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
339
340 printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n",
341 drive->name, dma_stat);
342
343 if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */
344 return WAIT_CMD;
345
346 HWGROUP(drive)->expiry = NULL; /* one free ride for now */
347
348 /* 1 dmaing, 2 error, 4 intr */
349 if (dma_stat & 2) /* ERROR */
350 return -1;
351
352 if (dma_stat & 1) /* DMAing */
353 return WAIT_CMD;
354
355 if (dma_stat & 4) /* Got an Interrupt */
356 return WAIT_CMD;
357
358 return 0; /* Status is unknown -- reset the bus */
359}
360
361/**
362 * ide_dma_host_set - Enable/disable DMA on a host
363 * @drive: drive to control
364 *
365 * Enable/disable DMA on an IDE controller following generic
366 * bus-mastering IDE controller behaviour.
367 */
368
369void ide_dma_host_set(ide_drive_t *drive, int on)
370{
371 ide_hwif_t *hwif = HWIF(drive);
372 u8 unit = (drive->select.b.unit & 0x01);
373 u8 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
374
375 if (on)
376 dma_stat |= (1 << (5 + unit));
377 else
378 dma_stat &= ~(1 << (5 + unit));
379
380 if (hwif->host_flags & IDE_HFLAG_MMIO)
381 writeb(dma_stat,
382 (void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
383 else
384 outb(dma_stat, hwif->dma_base + ATA_DMA_STATUS);
385}
386
387EXPORT_SYMBOL_GPL(ide_dma_host_set);
388#endif /* CONFIG_BLK_DEV_IDEDMA_SFF */
389
390/** 164/**
391 * ide_dma_off_quietly - Generic DMA kill 165 * ide_dma_off_quietly - Generic DMA kill
392 * @drive: drive to control 166 * @drive: drive to control
393 * 167 *
394 * Turn off the current DMA on this IDE controller. 168 * Turn off the current DMA on this IDE controller.
395 */ 169 */
396 170
397void ide_dma_off_quietly(ide_drive_t *drive) 171void ide_dma_off_quietly(ide_drive_t *drive)
398{ 172{
399 drive->using_dma = 0; 173 drive->dev_flags &= ~IDE_DFLAG_USING_DMA;
400 ide_toggle_bounce(drive, 0); 174 ide_toggle_bounce(drive, 0);
401 175
402 drive->hwif->dma_ops->dma_host_set(drive, 0); 176 drive->hwif->dma_ops->dma_host_set(drive, 0);
403} 177}
404
405EXPORT_SYMBOL(ide_dma_off_quietly); 178EXPORT_SYMBOL(ide_dma_off_quietly);
406 179
407/** 180/**
@@ -417,7 +190,6 @@ void ide_dma_off(ide_drive_t *drive)
417 printk(KERN_INFO "%s: DMA disabled\n", drive->name); 190 printk(KERN_INFO "%s: DMA disabled\n", drive->name);
418 ide_dma_off_quietly(drive); 191 ide_dma_off_quietly(drive);
419} 192}
420
421EXPORT_SYMBOL(ide_dma_off); 193EXPORT_SYMBOL(ide_dma_off);
422 194
423/** 195/**
@@ -429,179 +201,24 @@ EXPORT_SYMBOL(ide_dma_off);
429 201
430void ide_dma_on(ide_drive_t *drive) 202void ide_dma_on(ide_drive_t *drive)
431{ 203{
432 drive->using_dma = 1; 204 drive->dev_flags |= IDE_DFLAG_USING_DMA;
433 ide_toggle_bounce(drive, 1); 205 ide_toggle_bounce(drive, 1);
434 206
435 drive->hwif->dma_ops->dma_host_set(drive, 1); 207 drive->hwif->dma_ops->dma_host_set(drive, 1);
436} 208}
437 209
438#ifdef CONFIG_BLK_DEV_IDEDMA_SFF 210int __ide_dma_bad_drive(ide_drive_t *drive)
439/**
440 * ide_dma_setup - begin a DMA phase
441 * @drive: target device
442 *
443 * Build an IDE DMA PRD (IDE speak for scatter gather table)
444 * and then set up the DMA transfer registers for a device
445 * that follows generic IDE PCI DMA behaviour. Controllers can
446 * override this function if they need to
447 *
448 * Returns 0 on success. If a PIO fallback is required then 1
449 * is returned.
450 */
451
452int ide_dma_setup(ide_drive_t *drive)
453{ 211{
454 ide_hwif_t *hwif = drive->hwif; 212 u16 *id = drive->id;
455 struct request *rq = HWGROUP(drive)->rq;
456 unsigned int reading;
457 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
458 u8 dma_stat;
459
460 if (rq_data_dir(rq))
461 reading = 0;
462 else
463 reading = 1 << 3;
464
465 /* fall back to pio! */
466 if (!ide_build_dmatable(drive, rq)) {
467 ide_map_sg(drive, rq);
468 return 1;
469 }
470
471 /* PRD table */
472 if (hwif->host_flags & IDE_HFLAG_MMIO)
473 writel(hwif->dmatable_dma,
474 (void __iomem *)(hwif->dma_base + ATA_DMA_TABLE_OFS));
475 else
476 outl(hwif->dmatable_dma, hwif->dma_base + ATA_DMA_TABLE_OFS);
477
478 /* specify r/w */
479 if (mmio)
480 writeb(reading, (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
481 else
482 outb(reading, hwif->dma_base + ATA_DMA_CMD);
483
484 /* read DMA status for INTR & ERROR flags */
485 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
486
487 /* clear INTR & ERROR flags */
488 if (mmio)
489 writeb(dma_stat | 6,
490 (void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
491 else
492 outb(dma_stat | 6, hwif->dma_base + ATA_DMA_STATUS);
493
494 drive->waiting_for_dma = 1;
495 return 0;
496}
497
498EXPORT_SYMBOL_GPL(ide_dma_setup);
499
500void ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
501{
502 /* issue cmd to drive */
503 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry);
504}
505EXPORT_SYMBOL_GPL(ide_dma_exec_cmd);
506
507void ide_dma_start(ide_drive_t *drive)
508{
509 ide_hwif_t *hwif = drive->hwif;
510 u8 dma_cmd;
511
512 /* Note that this is done *after* the cmd has
513 * been issued to the drive, as per the BM-IDE spec.
514 * The Promise Ultra33 doesn't work correctly when
515 * we do this part before issuing the drive cmd.
516 */
517 if (hwif->host_flags & IDE_HFLAG_MMIO) {
518 dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
519 /* start DMA */
520 writeb(dma_cmd | 1,
521 (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
522 } else {
523 dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
524 outb(dma_cmd | 1, hwif->dma_base + ATA_DMA_CMD);
525 }
526
527 hwif->dma = 1;
528 wmb();
529}
530
531EXPORT_SYMBOL_GPL(ide_dma_start);
532
533/* returns 1 on error, 0 otherwise */
534int __ide_dma_end (ide_drive_t *drive)
535{
536 ide_hwif_t *hwif = drive->hwif;
537 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
538 u8 dma_stat = 0, dma_cmd = 0;
539
540 drive->waiting_for_dma = 0;
541
542 if (mmio) {
543 /* get DMA command mode */
544 dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
545 /* stop DMA */
546 writeb(dma_cmd & ~1,
547 (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
548 } else {
549 dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
550 outb(dma_cmd & ~1, hwif->dma_base + ATA_DMA_CMD);
551 }
552
553 /* get DMA status */
554 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
555
556 if (mmio)
557 /* clear the INTR & ERROR bits */
558 writeb(dma_stat | 6,
559 (void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
560 else
561 outb(dma_stat | 6, hwif->dma_base + ATA_DMA_STATUS);
562
563 /* purge DMA mappings */
564 ide_destroy_dmatable(drive);
565 /* verify good DMA status */
566 hwif->dma = 0;
567 wmb();
568 return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0;
569}
570
571EXPORT_SYMBOL(__ide_dma_end);
572
573/* returns 1 if dma irq issued, 0 otherwise */
574int ide_dma_test_irq(ide_drive_t *drive)
575{
576 ide_hwif_t *hwif = HWIF(drive);
577 u8 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
578
579 /* return 1 if INTR asserted */
580 if ((dma_stat & 4) == 4)
581 return 1;
582 if (!drive->waiting_for_dma)
583 printk(KERN_WARNING "%s: (%s) called while not waiting\n",
584 drive->name, __func__);
585 return 0;
586}
587EXPORT_SYMBOL_GPL(ide_dma_test_irq);
588#else
589static inline int config_drive_for_dma(ide_drive_t *drive) { return 0; }
590#endif /* CONFIG_BLK_DEV_IDEDMA_SFF */
591
592int __ide_dma_bad_drive (ide_drive_t *drive)
593{
594 struct hd_driveid *id = drive->id;
595 213
596 int blacklist = ide_in_drive_list(id, drive_blacklist); 214 int blacklist = ide_in_drive_list(id, drive_blacklist);
597 if (blacklist) { 215 if (blacklist) {
598 printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n", 216 printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
599 drive->name, id->model); 217 drive->name, (char *)&id[ATA_ID_PROD]);
600 return blacklist; 218 return blacklist;
601 } 219 }
602 return 0; 220 return 0;
603} 221}
604
605EXPORT_SYMBOL(__ide_dma_bad_drive); 222EXPORT_SYMBOL(__ide_dma_bad_drive);
606 223
607static const u8 xfer_mode_bases[] = { 224static const u8 xfer_mode_bases[] = {
@@ -612,21 +229,21 @@ static const u8 xfer_mode_bases[] = {
612 229
613static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode) 230static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode)
614{ 231{
615 struct hd_driveid *id = drive->id; 232 u16 *id = drive->id;
616 ide_hwif_t *hwif = drive->hwif; 233 ide_hwif_t *hwif = drive->hwif;
617 const struct ide_port_ops *port_ops = hwif->port_ops; 234 const struct ide_port_ops *port_ops = hwif->port_ops;
618 unsigned int mask = 0; 235 unsigned int mask = 0;
619 236
620 switch(base) { 237 switch (base) {
621 case XFER_UDMA_0: 238 case XFER_UDMA_0:
622 if ((id->field_valid & 4) == 0) 239 if ((id[ATA_ID_FIELD_VALID] & 4) == 0)
623 break; 240 break;
624 241
625 if (port_ops && port_ops->udma_filter) 242 if (port_ops && port_ops->udma_filter)
626 mask = port_ops->udma_filter(drive); 243 mask = port_ops->udma_filter(drive);
627 else 244 else
628 mask = hwif->ultra_mask; 245 mask = hwif->ultra_mask;
629 mask &= id->dma_ultra; 246 mask &= id[ATA_ID_UDMA_MODES];
630 247
631 /* 248 /*
632 * avoid false cable warning from eighty_ninty_three() 249 * avoid false cable warning from eighty_ninty_three()
@@ -637,19 +254,19 @@ static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode)
637 } 254 }
638 break; 255 break;
639 case XFER_MW_DMA_0: 256 case XFER_MW_DMA_0:
640 if ((id->field_valid & 2) == 0) 257 if ((id[ATA_ID_FIELD_VALID] & 2) == 0)
641 break; 258 break;
642 if (port_ops && port_ops->mdma_filter) 259 if (port_ops && port_ops->mdma_filter)
643 mask = port_ops->mdma_filter(drive); 260 mask = port_ops->mdma_filter(drive);
644 else 261 else
645 mask = hwif->mwdma_mask; 262 mask = hwif->mwdma_mask;
646 mask &= id->dma_mword; 263 mask &= id[ATA_ID_MWDMA_MODES];
647 break; 264 break;
648 case XFER_SW_DMA_0: 265 case XFER_SW_DMA_0:
649 if (id->field_valid & 2) { 266 if (id[ATA_ID_FIELD_VALID] & 2) {
650 mask = id->dma_1word & hwif->swdma_mask; 267 mask = id[ATA_ID_SWDMA_MODES] & hwif->swdma_mask;
651 } else if (id->tDMA) { 268 } else if (id[ATA_ID_OLD_DMA_MODES] >> 8) {
652 u8 mode = id->tDMA; 269 u8 mode = id[ATA_ID_OLD_DMA_MODES] >> 8;
653 270
654 /* 271 /*
655 * if the mode is valid convert it to the mask 272 * if the mode is valid convert it to the mask
@@ -706,7 +323,8 @@ u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode)
706 /* 323 /*
707 * is this correct? 324 * is this correct?
708 */ 325 */
709 if (ide_dma_good_drive(drive) && drive->id->eide_dma_time < 150) 326 if (ide_dma_good_drive(drive) &&
327 drive->id[ATA_ID_EIDE_DMA_TIME] < 150)
710 mode = XFER_MW_DMA_1; 328 mode = XFER_MW_DMA_1;
711 } 329 }
712 330
@@ -717,7 +335,6 @@ u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode)
717 335
718 return mode; 336 return mode;
719} 337}
720
721EXPORT_SYMBOL_GPL(ide_find_dma_mode); 338EXPORT_SYMBOL_GPL(ide_find_dma_mode);
722 339
723static int ide_tune_dma(ide_drive_t *drive) 340static int ide_tune_dma(ide_drive_t *drive)
@@ -725,7 +342,8 @@ static int ide_tune_dma(ide_drive_t *drive)
725 ide_hwif_t *hwif = drive->hwif; 342 ide_hwif_t *hwif = drive->hwif;
726 u8 speed; 343 u8 speed;
727 344
728 if (drive->nodma || (drive->id->capability & 1) == 0) 345 if (ata_id_has_dma(drive->id) == 0 ||
346 (drive->dev_flags & IDE_DFLAG_NODMA))
729 return 0; 347 return 0;
730 348
731 /* consult the list of known "bad" drives */ 349 /* consult the list of known "bad" drives */
@@ -767,13 +385,15 @@ static int ide_dma_check(ide_drive_t *drive)
767 385
768int ide_id_dma_bug(ide_drive_t *drive) 386int ide_id_dma_bug(ide_drive_t *drive)
769{ 387{
770 struct hd_driveid *id = drive->id; 388 u16 *id = drive->id;
771 389
772 if (id->field_valid & 4) { 390 if (id[ATA_ID_FIELD_VALID] & 4) {
773 if ((id->dma_ultra >> 8) && (id->dma_mword >> 8)) 391 if ((id[ATA_ID_UDMA_MODES] >> 8) &&
392 (id[ATA_ID_MWDMA_MODES] >> 8))
774 goto err_out; 393 goto err_out;
775 } else if (id->field_valid & 2) { 394 } else if (id[ATA_ID_FIELD_VALID] & 2) {
776 if ((id->dma_mword >> 8) && (id->dma_1word >> 8)) 395 if ((id[ATA_ID_MWDMA_MODES] >> 8) &&
396 (id[ATA_ID_SWDMA_MODES] >> 8))
777 goto err_out; 397 goto err_out;
778 } 398 }
779 return 0; 399 return 0;
@@ -823,66 +443,59 @@ void ide_check_dma_crc(ide_drive_t *drive)
823 ide_dma_on(drive); 443 ide_dma_on(drive);
824} 444}
825 445
826#ifdef CONFIG_BLK_DEV_IDEDMA_SFF 446void ide_dma_lost_irq(ide_drive_t *drive)
827void ide_dma_lost_irq (ide_drive_t *drive)
828{ 447{
829 printk("%s: DMA interrupt recovery\n", drive->name); 448 printk(KERN_ERR "%s: DMA interrupt recovery\n", drive->name);
830} 449}
450EXPORT_SYMBOL_GPL(ide_dma_lost_irq);
831 451
832EXPORT_SYMBOL(ide_dma_lost_irq); 452void ide_dma_timeout(ide_drive_t *drive)
833
834void ide_dma_timeout (ide_drive_t *drive)
835{ 453{
836 ide_hwif_t *hwif = HWIF(drive); 454 ide_hwif_t *hwif = drive->hwif;
837 455
838 printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name); 456 printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
839 457
840 if (hwif->dma_ops->dma_test_irq(drive)) 458 if (hwif->dma_ops->dma_test_irq(drive))
841 return; 459 return;
842 460
461 ide_dump_status(drive, "DMA timeout", hwif->tp_ops->read_status(hwif));
462
843 hwif->dma_ops->dma_end(drive); 463 hwif->dma_ops->dma_end(drive);
844} 464}
845 465EXPORT_SYMBOL_GPL(ide_dma_timeout);
846EXPORT_SYMBOL(ide_dma_timeout);
847 466
848void ide_release_dma_engine(ide_hwif_t *hwif) 467void ide_release_dma_engine(ide_hwif_t *hwif)
849{ 468{
850 if (hwif->dmatable_cpu) { 469 if (hwif->dmatable_cpu) {
851 struct pci_dev *pdev = to_pci_dev(hwif->dev); 470 int prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
852 471
853 pci_free_consistent(pdev, PRD_ENTRIES * PRD_BYTES, 472 dma_free_coherent(hwif->dev, prd_size,
854 hwif->dmatable_cpu, hwif->dmatable_dma); 473 hwif->dmatable_cpu, hwif->dmatable_dma);
855 hwif->dmatable_cpu = NULL; 474 hwif->dmatable_cpu = NULL;
856 } 475 }
857} 476}
477EXPORT_SYMBOL_GPL(ide_release_dma_engine);
858 478
859int ide_allocate_dma_engine(ide_hwif_t *hwif) 479int ide_allocate_dma_engine(ide_hwif_t *hwif)
860{ 480{
861 struct pci_dev *pdev = to_pci_dev(hwif->dev); 481 int prd_size;
862 482
863 hwif->dmatable_cpu = pci_alloc_consistent(pdev, 483 if (hwif->prd_max_nents == 0)
864 PRD_ENTRIES * PRD_BYTES, 484 hwif->prd_max_nents = PRD_ENTRIES;
865 &hwif->dmatable_dma); 485 if (hwif->prd_ent_size == 0)
486 hwif->prd_ent_size = PRD_BYTES;
866 487
867 if (hwif->dmatable_cpu) 488 prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
868 return 0;
869 489
870 printk(KERN_ERR "%s: -- Error, unable to allocate DMA table.\n", 490 hwif->dmatable_cpu = dma_alloc_coherent(hwif->dev, prd_size,
491 &hwif->dmatable_dma,
492 GFP_ATOMIC);
493 if (hwif->dmatable_cpu == NULL) {
494 printk(KERN_ERR "%s: unable to allocate PRD table\n",
871 hwif->name); 495 hwif->name);
496 return -ENOMEM;
497 }
872 498
873 return 1; 499 return 0;
874} 500}
875EXPORT_SYMBOL_GPL(ide_allocate_dma_engine); 501EXPORT_SYMBOL_GPL(ide_allocate_dma_engine);
876
877const struct ide_dma_ops sff_dma_ops = {
878 .dma_host_set = ide_dma_host_set,
879 .dma_setup = ide_dma_setup,
880 .dma_exec_cmd = ide_dma_exec_cmd,
881 .dma_start = ide_dma_start,
882 .dma_end = __ide_dma_end,
883 .dma_test_irq = ide_dma_test_irq,
884 .dma_timeout = ide_dma_timeout,
885 .dma_lost_irq = ide_dma_lost_irq,
886};
887EXPORT_SYMBOL_GPL(sff_dma_ops);
888#endif /* CONFIG_BLK_DEV_IDEDMA_SFF */