diff options
Diffstat (limited to 'drivers/gpu/drm/nouveau/nouveau_calc.c')
-rw-r--r-- | drivers/gpu/drm/nouveau/nouveau_calc.c | 478 |
1 files changed, 478 insertions, 0 deletions
diff --git a/drivers/gpu/drm/nouveau/nouveau_calc.c b/drivers/gpu/drm/nouveau/nouveau_calc.c new file mode 100644 index 000000000000..88f9bc0941eb --- /dev/null +++ b/drivers/gpu/drm/nouveau/nouveau_calc.c | |||
@@ -0,0 +1,478 @@ | |||
1 | /* | ||
2 | * Copyright 1993-2003 NVIDIA, Corporation | ||
3 | * Copyright 2007-2009 Stuart Bennett | ||
4 | * | ||
5 | * Permission is hereby granted, free of charge, to any person obtaining a | ||
6 | * copy of this software and associated documentation files (the "Software"), | ||
7 | * to deal in the Software without restriction, including without limitation | ||
8 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
9 | * and/or sell copies of the Software, and to permit persons to whom the | ||
10 | * Software is furnished to do so, subject to the following conditions: | ||
11 | * | ||
12 | * The above copyright notice and this permission notice shall be included in | ||
13 | * all copies or substantial portions of the Software. | ||
14 | * | ||
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
18 | * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | ||
19 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF | ||
20 | * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
21 | * SOFTWARE. | ||
22 | */ | ||
23 | |||
24 | #include "drmP.h" | ||
25 | #include "nouveau_drv.h" | ||
26 | #include "nouveau_hw.h" | ||
27 | |||
28 | /****************************************************************************\ | ||
29 | * * | ||
30 | * The video arbitration routines calculate some "magic" numbers. Fixes * | ||
31 | * the snow seen when accessing the framebuffer without it. * | ||
32 | * It just works (I hope). * | ||
33 | * * | ||
34 | \****************************************************************************/ | ||
35 | |||
36 | struct nv_fifo_info { | ||
37 | int lwm; | ||
38 | int burst; | ||
39 | }; | ||
40 | |||
41 | struct nv_sim_state { | ||
42 | int pclk_khz; | ||
43 | int mclk_khz; | ||
44 | int nvclk_khz; | ||
45 | int bpp; | ||
46 | int mem_page_miss; | ||
47 | int mem_latency; | ||
48 | int memory_type; | ||
49 | int memory_width; | ||
50 | int two_heads; | ||
51 | }; | ||
52 | |||
53 | static void | ||
54 | nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) | ||
55 | { | ||
56 | int pagemiss, cas, width, bpp; | ||
57 | int nvclks, mclks, pclks, crtpagemiss; | ||
58 | int found, mclk_extra, mclk_loop, cbs, m1, p1; | ||
59 | int mclk_freq, pclk_freq, nvclk_freq; | ||
60 | int us_m, us_n, us_p, crtc_drain_rate; | ||
61 | int cpm_us, us_crt, clwm; | ||
62 | |||
63 | pclk_freq = arb->pclk_khz; | ||
64 | mclk_freq = arb->mclk_khz; | ||
65 | nvclk_freq = arb->nvclk_khz; | ||
66 | pagemiss = arb->mem_page_miss; | ||
67 | cas = arb->mem_latency; | ||
68 | width = arb->memory_width >> 6; | ||
69 | bpp = arb->bpp; | ||
70 | cbs = 128; | ||
71 | |||
72 | pclks = 2; | ||
73 | nvclks = 10; | ||
74 | mclks = 13 + cas; | ||
75 | mclk_extra = 3; | ||
76 | found = 0; | ||
77 | |||
78 | while (!found) { | ||
79 | found = 1; | ||
80 | |||
81 | mclk_loop = mclks + mclk_extra; | ||
82 | us_m = mclk_loop * 1000 * 1000 / mclk_freq; | ||
83 | us_n = nvclks * 1000 * 1000 / nvclk_freq; | ||
84 | us_p = nvclks * 1000 * 1000 / pclk_freq; | ||
85 | |||
86 | crtc_drain_rate = pclk_freq * bpp / 8; | ||
87 | crtpagemiss = 2; | ||
88 | crtpagemiss += 1; | ||
89 | cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; | ||
90 | us_crt = cpm_us + us_m + us_n + us_p; | ||
91 | clwm = us_crt * crtc_drain_rate / (1000 * 1000); | ||
92 | clwm++; | ||
93 | |||
94 | m1 = clwm + cbs - 512; | ||
95 | p1 = m1 * pclk_freq / mclk_freq; | ||
96 | p1 = p1 * bpp / 8; | ||
97 | if ((p1 < m1 && m1 > 0) || clwm > 519) { | ||
98 | found = !mclk_extra; | ||
99 | mclk_extra--; | ||
100 | } | ||
101 | if (clwm < 384) | ||
102 | clwm = 384; | ||
103 | |||
104 | fifo->lwm = clwm; | ||
105 | fifo->burst = cbs; | ||
106 | } | ||
107 | } | ||
108 | |||
109 | static void | ||
110 | nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) | ||
111 | { | ||
112 | int fill_rate, drain_rate; | ||
113 | int pclks, nvclks, mclks, xclks; | ||
114 | int pclk_freq, nvclk_freq, mclk_freq; | ||
115 | int fill_lat, extra_lat; | ||
116 | int max_burst_o, max_burst_l; | ||
117 | int fifo_len, min_lwm, max_lwm; | ||
118 | const int burst_lat = 80; /* Maximum allowable latency due | ||
119 | * to the CRTC FIFO burst. (ns) */ | ||
120 | |||
121 | pclk_freq = arb->pclk_khz; | ||
122 | nvclk_freq = arb->nvclk_khz; | ||
123 | mclk_freq = arb->mclk_khz; | ||
124 | |||
125 | fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */ | ||
126 | drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */ | ||
127 | |||
128 | fifo_len = arb->two_heads ? 1536 : 1024; /* B */ | ||
129 | |||
130 | /* Fixed FIFO refill latency. */ | ||
131 | |||
132 | pclks = 4; /* lwm detect. */ | ||
133 | |||
134 | nvclks = 3 /* lwm -> sync. */ | ||
135 | + 2 /* fbi bus cycles (1 req + 1 busy) */ | ||
136 | + 1 /* 2 edge sync. may be very close to edge so | ||
137 | * just put one. */ | ||
138 | + 1 /* fbi_d_rdv_n */ | ||
139 | + 1 /* Fbi_d_rdata */ | ||
140 | + 1; /* crtfifo load */ | ||
141 | |||
142 | mclks = 1 /* 2 edge sync. may be very close to edge so | ||
143 | * just put one. */ | ||
144 | + 1 /* arb_hp_req */ | ||
145 | + 5 /* tiling pipeline */ | ||
146 | + 2 /* latency fifo */ | ||
147 | + 2 /* memory request to fbio block */ | ||
148 | + 7; /* data returned from fbio block */ | ||
149 | |||
150 | /* Need to accumulate 256 bits for read */ | ||
151 | mclks += (arb->memory_type == 0 ? 2 : 1) | ||
152 | * arb->memory_width / 32; | ||
153 | |||
154 | fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */ | ||
155 | + nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */ | ||
156 | + pclks * 1000 * 1000 / pclk_freq; /* pclk latency */ | ||
157 | |||
158 | /* Conditional FIFO refill latency. */ | ||
159 | |||
160 | xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to | ||
161 | * the overlay. */ | ||
162 | + 2 * arb->mem_page_miss /* Extra pagemiss latency. */ | ||
163 | + (arb->bpp == 32 ? 8 : 4); /* Margin of error. */ | ||
164 | |||
165 | extra_lat = xclks * 1000 * 1000 / mclk_freq; | ||
166 | |||
167 | if (arb->two_heads) | ||
168 | /* Account for another CRTC. */ | ||
169 | extra_lat += fill_lat + extra_lat + burst_lat; | ||
170 | |||
171 | /* FIFO burst */ | ||
172 | |||
173 | /* Max burst not leading to overflows. */ | ||
174 | max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000)) | ||
175 | * (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000); | ||
176 | fifo->burst = min(max_burst_o, 1024); | ||
177 | |||
178 | /* Max burst value with an acceptable latency. */ | ||
179 | max_burst_l = burst_lat * fill_rate / (1000 * 1000); | ||
180 | fifo->burst = min(max_burst_l, fifo->burst); | ||
181 | |||
182 | fifo->burst = rounddown_pow_of_two(fifo->burst); | ||
183 | |||
184 | /* FIFO low watermark */ | ||
185 | |||
186 | min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1; | ||
187 | max_lwm = fifo_len - fifo->burst | ||
188 | + fill_lat * drain_rate / (1000 * 1000) | ||
189 | + fifo->burst * drain_rate / fill_rate; | ||
190 | |||
191 | fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */ | ||
192 | } | ||
193 | |||
194 | static void | ||
195 | nv04_update_arb(struct drm_device *dev, int VClk, int bpp, | ||
196 | int *burst, int *lwm) | ||
197 | { | ||
198 | struct drm_nouveau_private *dev_priv = dev->dev_private; | ||
199 | struct nv_fifo_info fifo_data; | ||
200 | struct nv_sim_state sim_data; | ||
201 | int MClk = nouveau_hw_get_clock(dev, MPLL); | ||
202 | int NVClk = nouveau_hw_get_clock(dev, NVPLL); | ||
203 | uint32_t cfg1 = nvReadFB(dev, NV_PFB_CFG1); | ||
204 | |||
205 | sim_data.pclk_khz = VClk; | ||
206 | sim_data.mclk_khz = MClk; | ||
207 | sim_data.nvclk_khz = NVClk; | ||
208 | sim_data.bpp = bpp; | ||
209 | sim_data.two_heads = nv_two_heads(dev); | ||
210 | if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ || | ||
211 | (dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) { | ||
212 | uint32_t type; | ||
213 | |||
214 | pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type); | ||
215 | |||
216 | sim_data.memory_type = (type >> 12) & 1; | ||
217 | sim_data.memory_width = 64; | ||
218 | sim_data.mem_latency = 3; | ||
219 | sim_data.mem_page_miss = 10; | ||
220 | } else { | ||
221 | sim_data.memory_type = nvReadFB(dev, NV_PFB_CFG0) & 0x1; | ||
222 | sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64; | ||
223 | sim_data.mem_latency = cfg1 & 0xf; | ||
224 | sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1); | ||
225 | } | ||
226 | |||
227 | if (dev_priv->card_type == NV_04) | ||
228 | nv04_calc_arb(&fifo_data, &sim_data); | ||
229 | else | ||
230 | nv10_calc_arb(&fifo_data, &sim_data); | ||
231 | |||
232 | *burst = ilog2(fifo_data.burst >> 4); | ||
233 | *lwm = fifo_data.lwm >> 3; | ||
234 | } | ||
235 | |||
236 | static void | ||
237 | nv30_update_arb(int *burst, int *lwm) | ||
238 | { | ||
239 | unsigned int fifo_size, burst_size, graphics_lwm; | ||
240 | |||
241 | fifo_size = 2048; | ||
242 | burst_size = 512; | ||
243 | graphics_lwm = fifo_size - burst_size; | ||
244 | |||
245 | *burst = ilog2(burst_size >> 5); | ||
246 | *lwm = graphics_lwm >> 3; | ||
247 | } | ||
248 | |||
249 | void | ||
250 | nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm) | ||
251 | { | ||
252 | struct drm_nouveau_private *dev_priv = dev->dev_private; | ||
253 | |||
254 | if (dev_priv->card_type < NV_30) | ||
255 | nv04_update_arb(dev, vclk, bpp, burst, lwm); | ||
256 | else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ || | ||
257 | (dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) { | ||
258 | *burst = 128; | ||
259 | *lwm = 0x0480; | ||
260 | } else | ||
261 | nv30_update_arb(burst, lwm); | ||
262 | } | ||
263 | |||
264 | static int | ||
265 | getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk, | ||
266 | struct nouveau_pll_vals *bestpv) | ||
267 | { | ||
268 | /* Find M, N and P for a single stage PLL | ||
269 | * | ||
270 | * Note that some bioses (NV3x) have lookup tables of precomputed MNP | ||
271 | * values, but we're too lazy to use those atm | ||
272 | * | ||
273 | * "clk" parameter in kHz | ||
274 | * returns calculated clock | ||
275 | */ | ||
276 | struct drm_nouveau_private *dev_priv = dev->dev_private; | ||
277 | int cv = dev_priv->vbios.chip_version; | ||
278 | int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq; | ||
279 | int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m; | ||
280 | int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n; | ||
281 | int minU = pll_lim->vco1.min_inputfreq; | ||
282 | int maxU = pll_lim->vco1.max_inputfreq; | ||
283 | int minP = pll_lim->max_p ? pll_lim->min_p : 0; | ||
284 | int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p; | ||
285 | int crystal = pll_lim->refclk; | ||
286 | int M, N, thisP, P; | ||
287 | int clkP, calcclk; | ||
288 | int delta, bestdelta = INT_MAX; | ||
289 | int bestclk = 0; | ||
290 | |||
291 | /* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */ | ||
292 | /* possibly correlated with introduction of 27MHz crystal */ | ||
293 | if (dev_priv->card_type < NV_50) { | ||
294 | if (cv < 0x17 || cv == 0x1a || cv == 0x20) { | ||
295 | if (clk > 250000) | ||
296 | maxM = 6; | ||
297 | if (clk > 340000) | ||
298 | maxM = 2; | ||
299 | } else if (cv < 0x40) { | ||
300 | if (clk > 150000) | ||
301 | maxM = 6; | ||
302 | if (clk > 200000) | ||
303 | maxM = 4; | ||
304 | if (clk > 340000) | ||
305 | maxM = 2; | ||
306 | } | ||
307 | } | ||
308 | |||
309 | P = pll_lim->max_p ? maxP : (1 << maxP); | ||
310 | if ((clk * P) < minvco) { | ||
311 | minvco = clk * maxP; | ||
312 | maxvco = minvco * 2; | ||
313 | } | ||
314 | |||
315 | if (clk + clk/200 > maxvco) /* +0.5% */ | ||
316 | maxvco = clk + clk/200; | ||
317 | |||
318 | /* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */ | ||
319 | for (thisP = minP; thisP <= maxP; thisP++) { | ||
320 | P = pll_lim->max_p ? thisP : (1 << thisP); | ||
321 | clkP = clk * P; | ||
322 | |||
323 | if (clkP < minvco) | ||
324 | continue; | ||
325 | if (clkP > maxvco) | ||
326 | return bestclk; | ||
327 | |||
328 | for (M = minM; M <= maxM; M++) { | ||
329 | if (crystal/M < minU) | ||
330 | return bestclk; | ||
331 | if (crystal/M > maxU) | ||
332 | continue; | ||
333 | |||
334 | /* add crystal/2 to round better */ | ||
335 | N = (clkP * M + crystal/2) / crystal; | ||
336 | |||
337 | if (N < minN) | ||
338 | continue; | ||
339 | if (N > maxN) | ||
340 | break; | ||
341 | |||
342 | /* more rounding additions */ | ||
343 | calcclk = ((N * crystal + P/2) / P + M/2) / M; | ||
344 | delta = abs(calcclk - clk); | ||
345 | /* we do an exhaustive search rather than terminating | ||
346 | * on an optimality condition... | ||
347 | */ | ||
348 | if (delta < bestdelta) { | ||
349 | bestdelta = delta; | ||
350 | bestclk = calcclk; | ||
351 | bestpv->N1 = N; | ||
352 | bestpv->M1 = M; | ||
353 | bestpv->log2P = thisP; | ||
354 | if (delta == 0) /* except this one */ | ||
355 | return bestclk; | ||
356 | } | ||
357 | } | ||
358 | } | ||
359 | |||
360 | return bestclk; | ||
361 | } | ||
362 | |||
363 | static int | ||
364 | getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk, | ||
365 | struct nouveau_pll_vals *bestpv) | ||
366 | { | ||
367 | /* Find M, N and P for a two stage PLL | ||
368 | * | ||
369 | * Note that some bioses (NV30+) have lookup tables of precomputed MNP | ||
370 | * values, but we're too lazy to use those atm | ||
371 | * | ||
372 | * "clk" parameter in kHz | ||
373 | * returns calculated clock | ||
374 | */ | ||
375 | struct drm_nouveau_private *dev_priv = dev->dev_private; | ||
376 | int chip_version = dev_priv->vbios.chip_version; | ||
377 | int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq; | ||
378 | int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq; | ||
379 | int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq; | ||
380 | int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq; | ||
381 | int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m; | ||
382 | int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n; | ||
383 | int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m; | ||
384 | int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n; | ||
385 | int maxlog2P = pll_lim->max_usable_log2p; | ||
386 | int crystal = pll_lim->refclk; | ||
387 | bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2); | ||
388 | int M1, N1, M2, N2, log2P; | ||
389 | int clkP, calcclk1, calcclk2, calcclkout; | ||
390 | int delta, bestdelta = INT_MAX; | ||
391 | int bestclk = 0; | ||
392 | |||
393 | int vco2 = (maxvco2 - maxvco2/200) / 2; | ||
394 | for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++) | ||
395 | ; | ||
396 | clkP = clk << log2P; | ||
397 | |||
398 | if (maxvco2 < clk + clk/200) /* +0.5% */ | ||
399 | maxvco2 = clk + clk/200; | ||
400 | |||
401 | for (M1 = minM1; M1 <= maxM1; M1++) { | ||
402 | if (crystal/M1 < minU1) | ||
403 | return bestclk; | ||
404 | if (crystal/M1 > maxU1) | ||
405 | continue; | ||
406 | |||
407 | for (N1 = minN1; N1 <= maxN1; N1++) { | ||
408 | calcclk1 = crystal * N1 / M1; | ||
409 | if (calcclk1 < minvco1) | ||
410 | continue; | ||
411 | if (calcclk1 > maxvco1) | ||
412 | break; | ||
413 | |||
414 | for (M2 = minM2; M2 <= maxM2; M2++) { | ||
415 | if (calcclk1/M2 < minU2) | ||
416 | break; | ||
417 | if (calcclk1/M2 > maxU2) | ||
418 | continue; | ||
419 | |||
420 | /* add calcclk1/2 to round better */ | ||
421 | N2 = (clkP * M2 + calcclk1/2) / calcclk1; | ||
422 | if (N2 < minN2) | ||
423 | continue; | ||
424 | if (N2 > maxN2) | ||
425 | break; | ||
426 | |||
427 | if (!fixedgain2) { | ||
428 | if (chip_version < 0x60) | ||
429 | if (N2/M2 < 4 || N2/M2 > 10) | ||
430 | continue; | ||
431 | |||
432 | calcclk2 = calcclk1 * N2 / M2; | ||
433 | if (calcclk2 < minvco2) | ||
434 | break; | ||
435 | if (calcclk2 > maxvco2) | ||
436 | continue; | ||
437 | } else | ||
438 | calcclk2 = calcclk1; | ||
439 | |||
440 | calcclkout = calcclk2 >> log2P; | ||
441 | delta = abs(calcclkout - clk); | ||
442 | /* we do an exhaustive search rather than terminating | ||
443 | * on an optimality condition... | ||
444 | */ | ||
445 | if (delta < bestdelta) { | ||
446 | bestdelta = delta; | ||
447 | bestclk = calcclkout; | ||
448 | bestpv->N1 = N1; | ||
449 | bestpv->M1 = M1; | ||
450 | bestpv->N2 = N2; | ||
451 | bestpv->M2 = M2; | ||
452 | bestpv->log2P = log2P; | ||
453 | if (delta == 0) /* except this one */ | ||
454 | return bestclk; | ||
455 | } | ||
456 | } | ||
457 | } | ||
458 | } | ||
459 | |||
460 | return bestclk; | ||
461 | } | ||
462 | |||
463 | int | ||
464 | nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk, | ||
465 | struct nouveau_pll_vals *pv) | ||
466 | { | ||
467 | int outclk; | ||
468 | |||
469 | if (!pll_lim->vco2.maxfreq) | ||
470 | outclk = getMNP_single(dev, pll_lim, clk, pv); | ||
471 | else | ||
472 | outclk = getMNP_double(dev, pll_lim, clk, pv); | ||
473 | |||
474 | if (!outclk) | ||
475 | NV_ERROR(dev, "Could not find a compatible set of PLL values\n"); | ||
476 | |||
477 | return outclk; | ||
478 | } | ||