aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/edac/edac_mc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/edac/edac_mc.c')
-rw-r--r--drivers/edac/edac_mc.c1317
1 files changed, 11 insertions, 1306 deletions
diff --git a/drivers/edac/edac_mc.c b/drivers/edac/edac_mc.c
index 88bee33e7ecf..3be5b7fe79cd 100644
--- a/drivers/edac/edac_mc.c
+++ b/drivers/edac/edac_mc.c
@@ -27,1197 +27,17 @@
27#include <linux/list.h> 27#include <linux/list.h>
28#include <linux/sysdev.h> 28#include <linux/sysdev.h>
29#include <linux/ctype.h> 29#include <linux/ctype.h>
30#include <linux/kthread.h>
31#include <linux/freezer.h>
32#include <asm/uaccess.h> 30#include <asm/uaccess.h>
33#include <asm/page.h> 31#include <asm/page.h>
34#include <asm/edac.h> 32#include <asm/edac.h>
35#include "edac_mc.h" 33#include "edac_mc.h"
34#include "edac_module.h"
36 35
37#define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
38
39
40#ifdef CONFIG_EDAC_DEBUG
41/* Values of 0 to 4 will generate output */
42int edac_debug_level = 1;
43EXPORT_SYMBOL_GPL(edac_debug_level);
44#endif
45
46/* EDAC Controls, setable by module parameter, and sysfs */
47static int log_ue = 1;
48static int log_ce = 1;
49static int panic_on_ue;
50static int poll_msec = 1000;
51 36
52/* lock to memory controller's control array */ 37/* lock to memory controller's control array */
53static DECLARE_MUTEX(mem_ctls_mutex); 38static DECLARE_MUTEX(mem_ctls_mutex);
54static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices); 39static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
55 40
56static struct task_struct *edac_thread;
57
58#ifdef CONFIG_PCI
59static int check_pci_parity = 0; /* default YES check PCI parity */
60static int panic_on_pci_parity; /* default no panic on PCI Parity */
61static atomic_t pci_parity_count = ATOMIC_INIT(0);
62
63static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
64static struct completion edac_pci_kobj_complete;
65#endif /* CONFIG_PCI */
66
67/* START sysfs data and methods */
68
69
70static const char *mem_types[] = {
71 [MEM_EMPTY] = "Empty",
72 [MEM_RESERVED] = "Reserved",
73 [MEM_UNKNOWN] = "Unknown",
74 [MEM_FPM] = "FPM",
75 [MEM_EDO] = "EDO",
76 [MEM_BEDO] = "BEDO",
77 [MEM_SDR] = "Unbuffered-SDR",
78 [MEM_RDR] = "Registered-SDR",
79 [MEM_DDR] = "Unbuffered-DDR",
80 [MEM_RDDR] = "Registered-DDR",
81 [MEM_RMBS] = "RMBS"
82};
83
84static const char *dev_types[] = {
85 [DEV_UNKNOWN] = "Unknown",
86 [DEV_X1] = "x1",
87 [DEV_X2] = "x2",
88 [DEV_X4] = "x4",
89 [DEV_X8] = "x8",
90 [DEV_X16] = "x16",
91 [DEV_X32] = "x32",
92 [DEV_X64] = "x64"
93};
94
95static const char *edac_caps[] = {
96 [EDAC_UNKNOWN] = "Unknown",
97 [EDAC_NONE] = "None",
98 [EDAC_RESERVED] = "Reserved",
99 [EDAC_PARITY] = "PARITY",
100 [EDAC_EC] = "EC",
101 [EDAC_SECDED] = "SECDED",
102 [EDAC_S2ECD2ED] = "S2ECD2ED",
103 [EDAC_S4ECD4ED] = "S4ECD4ED",
104 [EDAC_S8ECD8ED] = "S8ECD8ED",
105 [EDAC_S16ECD16ED] = "S16ECD16ED"
106};
107
108/* sysfs object: /sys/devices/system/edac */
109static struct sysdev_class edac_class = {
110 set_kset_name("edac"),
111};
112
113/* sysfs object:
114 * /sys/devices/system/edac/mc
115 */
116static struct kobject edac_memctrl_kobj;
117
118/* We use these to wait for the reference counts on edac_memctrl_kobj and
119 * edac_pci_kobj to reach 0.
120 */
121static struct completion edac_memctrl_kobj_complete;
122
123/*
124 * /sys/devices/system/edac/mc;
125 * data structures and methods
126 */
127static ssize_t memctrl_int_show(void *ptr, char *buffer)
128{
129 int *value = (int*) ptr;
130 return sprintf(buffer, "%u\n", *value);
131}
132
133static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
134{
135 int *value = (int*) ptr;
136
137 if (isdigit(*buffer))
138 *value = simple_strtoul(buffer, NULL, 0);
139
140 return count;
141}
142
143struct memctrl_dev_attribute {
144 struct attribute attr;
145 void *value;
146 ssize_t (*show)(void *,char *);
147 ssize_t (*store)(void *, const char *, size_t);
148};
149
150/* Set of show/store abstract level functions for memory control object */
151static ssize_t memctrl_dev_show(struct kobject *kobj,
152 struct attribute *attr, char *buffer)
153{
154 struct memctrl_dev_attribute *memctrl_dev;
155 memctrl_dev = (struct memctrl_dev_attribute*)attr;
156
157 if (memctrl_dev->show)
158 return memctrl_dev->show(memctrl_dev->value, buffer);
159
160 return -EIO;
161}
162
163static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
164 const char *buffer, size_t count)
165{
166 struct memctrl_dev_attribute *memctrl_dev;
167 memctrl_dev = (struct memctrl_dev_attribute*)attr;
168
169 if (memctrl_dev->store)
170 return memctrl_dev->store(memctrl_dev->value, buffer, count);
171
172 return -EIO;
173}
174
175static struct sysfs_ops memctrlfs_ops = {
176 .show = memctrl_dev_show,
177 .store = memctrl_dev_store
178};
179
180#define MEMCTRL_ATTR(_name,_mode,_show,_store) \
181static struct memctrl_dev_attribute attr_##_name = { \
182 .attr = {.name = __stringify(_name), .mode = _mode }, \
183 .value = &_name, \
184 .show = _show, \
185 .store = _store, \
186};
187
188#define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store) \
189static struct memctrl_dev_attribute attr_##_name = { \
190 .attr = {.name = __stringify(_name), .mode = _mode }, \
191 .value = _data, \
192 .show = _show, \
193 .store = _store, \
194};
195
196/* csrow<id> control files */
197MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
198MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
199MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
200MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
201
202/* Base Attributes of the memory ECC object */
203static struct memctrl_dev_attribute *memctrl_attr[] = {
204 &attr_panic_on_ue,
205 &attr_log_ue,
206 &attr_log_ce,
207 &attr_poll_msec,
208 NULL,
209};
210
211/* Main MC kobject release() function */
212static void edac_memctrl_master_release(struct kobject *kobj)
213{
214 debugf1("%s()\n", __func__);
215 complete(&edac_memctrl_kobj_complete);
216}
217
218static struct kobj_type ktype_memctrl = {
219 .release = edac_memctrl_master_release,
220 .sysfs_ops = &memctrlfs_ops,
221 .default_attrs = (struct attribute **) memctrl_attr,
222};
223
224/* Initialize the main sysfs entries for edac:
225 * /sys/devices/system/edac
226 *
227 * and children
228 *
229 * Return: 0 SUCCESS
230 * !0 FAILURE
231 */
232static int edac_sysfs_memctrl_setup(void)
233{
234 int err = 0;
235
236 debugf1("%s()\n", __func__);
237
238 /* create the /sys/devices/system/edac directory */
239 err = sysdev_class_register(&edac_class);
240
241 if (err) {
242 debugf1("%s() error=%d\n", __func__, err);
243 return err;
244 }
245
246 /* Init the MC's kobject */
247 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
248 edac_memctrl_kobj.parent = &edac_class.kset.kobj;
249 edac_memctrl_kobj.ktype = &ktype_memctrl;
250
251 /* generate sysfs "..../edac/mc" */
252 err = kobject_set_name(&edac_memctrl_kobj,"mc");
253
254 if (err)
255 goto fail;
256
257 /* FIXME: maybe new sysdev_create_subdir() */
258 err = kobject_register(&edac_memctrl_kobj);
259
260 if (err) {
261 debugf1("Failed to register '.../edac/mc'\n");
262 goto fail;
263 }
264
265 debugf1("Registered '.../edac/mc' kobject\n");
266
267 return 0;
268
269fail:
270 sysdev_class_unregister(&edac_class);
271 return err;
272}
273
274/*
275 * MC teardown:
276 * the '..../edac/mc' kobject followed by '..../edac' itself
277 */
278static void edac_sysfs_memctrl_teardown(void)
279{
280 debugf0("MC: " __FILE__ ": %s()\n", __func__);
281
282 /* Unregister the MC's kobject and wait for reference count to reach
283 * 0.
284 */
285 init_completion(&edac_memctrl_kobj_complete);
286 kobject_unregister(&edac_memctrl_kobj);
287 wait_for_completion(&edac_memctrl_kobj_complete);
288
289 /* Unregister the 'edac' object */
290 sysdev_class_unregister(&edac_class);
291}
292
293#ifdef CONFIG_PCI
294static ssize_t edac_pci_int_show(void *ptr, char *buffer)
295{
296 int *value = ptr;
297 return sprintf(buffer,"%d\n",*value);
298}
299
300static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
301{
302 int *value = ptr;
303
304 if (isdigit(*buffer))
305 *value = simple_strtoul(buffer,NULL,0);
306
307 return count;
308}
309
310struct edac_pci_dev_attribute {
311 struct attribute attr;
312 void *value;
313 ssize_t (*show)(void *,char *);
314 ssize_t (*store)(void *, const char *,size_t);
315};
316
317/* Set of show/store abstract level functions for PCI Parity object */
318static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
319 char *buffer)
320{
321 struct edac_pci_dev_attribute *edac_pci_dev;
322 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
323
324 if (edac_pci_dev->show)
325 return edac_pci_dev->show(edac_pci_dev->value, buffer);
326 return -EIO;
327}
328
329static ssize_t edac_pci_dev_store(struct kobject *kobj,
330 struct attribute *attr, const char *buffer, size_t count)
331{
332 struct edac_pci_dev_attribute *edac_pci_dev;
333 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
334
335 if (edac_pci_dev->show)
336 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
337 return -EIO;
338}
339
340static struct sysfs_ops edac_pci_sysfs_ops = {
341 .show = edac_pci_dev_show,
342 .store = edac_pci_dev_store
343};
344
345#define EDAC_PCI_ATTR(_name,_mode,_show,_store) \
346static struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
347 .attr = {.name = __stringify(_name), .mode = _mode }, \
348 .value = &_name, \
349 .show = _show, \
350 .store = _store, \
351};
352
353#define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store) \
354static struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
355 .attr = {.name = __stringify(_name), .mode = _mode }, \
356 .value = _data, \
357 .show = _show, \
358 .store = _store, \
359};
360
361/* PCI Parity control files */
362EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
363 edac_pci_int_store);
364EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
365 edac_pci_int_store);
366EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
367
368/* Base Attributes of the memory ECC object */
369static struct edac_pci_dev_attribute *edac_pci_attr[] = {
370 &edac_pci_attr_check_pci_parity,
371 &edac_pci_attr_panic_on_pci_parity,
372 &edac_pci_attr_pci_parity_count,
373 NULL,
374};
375
376/* No memory to release */
377static void edac_pci_release(struct kobject *kobj)
378{
379 debugf1("%s()\n", __func__);
380 complete(&edac_pci_kobj_complete);
381}
382
383static struct kobj_type ktype_edac_pci = {
384 .release = edac_pci_release,
385 .sysfs_ops = &edac_pci_sysfs_ops,
386 .default_attrs = (struct attribute **) edac_pci_attr,
387};
388
389/**
390 * edac_sysfs_pci_setup()
391 *
392 */
393static int edac_sysfs_pci_setup(void)
394{
395 int err;
396
397 debugf1("%s()\n", __func__);
398
399 memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
400 edac_pci_kobj.parent = &edac_class.kset.kobj;
401 edac_pci_kobj.ktype = &ktype_edac_pci;
402 err = kobject_set_name(&edac_pci_kobj, "pci");
403
404 if (!err) {
405 /* Instanstiate the csrow object */
406 /* FIXME: maybe new sysdev_create_subdir() */
407 err = kobject_register(&edac_pci_kobj);
408
409 if (err)
410 debugf1("Failed to register '.../edac/pci'\n");
411 else
412 debugf1("Registered '.../edac/pci' kobject\n");
413 }
414
415 return err;
416}
417
418static void edac_sysfs_pci_teardown(void)
419{
420 debugf0("%s()\n", __func__);
421 init_completion(&edac_pci_kobj_complete);
422 kobject_unregister(&edac_pci_kobj);
423 wait_for_completion(&edac_pci_kobj_complete);
424}
425
426
427static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
428{
429 int where;
430 u16 status;
431
432 where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
433 pci_read_config_word(dev, where, &status);
434
435 /* If we get back 0xFFFF then we must suspect that the card has been
436 * pulled but the Linux PCI layer has not yet finished cleaning up.
437 * We don't want to report on such devices
438 */
439
440 if (status == 0xFFFF) {
441 u32 sanity;
442
443 pci_read_config_dword(dev, 0, &sanity);
444
445 if (sanity == 0xFFFFFFFF)
446 return 0;
447 }
448
449 status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
450 PCI_STATUS_PARITY;
451
452 if (status)
453 /* reset only the bits we are interested in */
454 pci_write_config_word(dev, where, status);
455
456 return status;
457}
458
459typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
460
461/* Clear any PCI parity errors logged by this device. */
462static void edac_pci_dev_parity_clear(struct pci_dev *dev)
463{
464 u8 header_type;
465
466 get_pci_parity_status(dev, 0);
467
468 /* read the device TYPE, looking for bridges */
469 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
470
471 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
472 get_pci_parity_status(dev, 1);
473}
474
475/*
476 * PCI Parity polling
477 *
478 */
479static void edac_pci_dev_parity_test(struct pci_dev *dev)
480{
481 u16 status;
482 u8 header_type;
483
484 /* read the STATUS register on this device
485 */
486 status = get_pci_parity_status(dev, 0);
487
488 debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
489
490 /* check the status reg for errors */
491 if (status) {
492 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
493 edac_printk(KERN_CRIT, EDAC_PCI,
494 "Signaled System Error on %s\n",
495 pci_name(dev));
496
497 if (status & (PCI_STATUS_PARITY)) {
498 edac_printk(KERN_CRIT, EDAC_PCI,
499 "Master Data Parity Error on %s\n",
500 pci_name(dev));
501
502 atomic_inc(&pci_parity_count);
503 }
504
505 if (status & (PCI_STATUS_DETECTED_PARITY)) {
506 edac_printk(KERN_CRIT, EDAC_PCI,
507 "Detected Parity Error on %s\n",
508 pci_name(dev));
509
510 atomic_inc(&pci_parity_count);
511 }
512 }
513
514 /* read the device TYPE, looking for bridges */
515 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
516
517 debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
518
519 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
520 /* On bridges, need to examine secondary status register */
521 status = get_pci_parity_status(dev, 1);
522
523 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
524 status, dev->dev.bus_id );
525
526 /* check the secondary status reg for errors */
527 if (status) {
528 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
529 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
530 "Signaled System Error on %s\n",
531 pci_name(dev));
532
533 if (status & (PCI_STATUS_PARITY)) {
534 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
535 "Master Data Parity Error on "
536 "%s\n", pci_name(dev));
537
538 atomic_inc(&pci_parity_count);
539 }
540
541 if (status & (PCI_STATUS_DETECTED_PARITY)) {
542 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
543 "Detected Parity Error on %s\n",
544 pci_name(dev));
545
546 atomic_inc(&pci_parity_count);
547 }
548 }
549 }
550}
551
552/*
553 * pci_dev parity list iterator
554 * Scan the PCI device list for one iteration, looking for SERRORs
555 * Master Parity ERRORS or Parity ERRORs on primary or secondary devices
556 */
557static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
558{
559 struct pci_dev *dev = NULL;
560
561 /* request for kernel access to the next PCI device, if any,
562 * and while we are looking at it have its reference count
563 * bumped until we are done with it
564 */
565 while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
566 fn(dev);
567 }
568}
569
570static void do_pci_parity_check(void)
571{
572 unsigned long flags;
573 int before_count;
574
575 debugf3("%s()\n", __func__);
576
577 if (!check_pci_parity)
578 return;
579
580 before_count = atomic_read(&pci_parity_count);
581
582 /* scan all PCI devices looking for a Parity Error on devices and
583 * bridges
584 */
585 local_irq_save(flags);
586 edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
587 local_irq_restore(flags);
588
589 /* Only if operator has selected panic on PCI Error */
590 if (panic_on_pci_parity) {
591 /* If the count is different 'after' from 'before' */
592 if (before_count != atomic_read(&pci_parity_count))
593 panic("EDAC: PCI Parity Error");
594 }
595}
596
597static inline void clear_pci_parity_errors(void)
598{
599 /* Clear any PCI bus parity errors that devices initially have logged
600 * in their registers.
601 */
602 edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
603}
604
605#else /* CONFIG_PCI */
606
607/* pre-process these away */
608#define do_pci_parity_check()
609#define clear_pci_parity_errors()
610#define edac_sysfs_pci_teardown()
611#define edac_sysfs_pci_setup() (0)
612
613#endif /* CONFIG_PCI */
614
615/* EDAC sysfs CSROW data structures and methods
616 */
617
618/* Set of more default csrow<id> attribute show/store functions */
619static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
620{
621 return sprintf(data,"%u\n", csrow->ue_count);
622}
623
624static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
625{
626 return sprintf(data,"%u\n", csrow->ce_count);
627}
628
629static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
630{
631 return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
632}
633
634static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
635{
636 return sprintf(data,"%s\n", mem_types[csrow->mtype]);
637}
638
639static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
640{
641 return sprintf(data,"%s\n", dev_types[csrow->dtype]);
642}
643
644static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
645{
646 return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
647}
648
649/* show/store functions for DIMM Label attributes */
650static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
651 char *data, int channel)
652{
653 return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
654 csrow->channels[channel].label);
655}
656
657static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
658 const char *data,
659 size_t count,
660 int channel)
661{
662 ssize_t max_size = 0;
663
664 max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
665 strncpy(csrow->channels[channel].label, data, max_size);
666 csrow->channels[channel].label[max_size] = '\0';
667
668 return max_size;
669}
670
671/* show function for dynamic chX_ce_count attribute */
672static ssize_t channel_ce_count_show(struct csrow_info *csrow,
673 char *data,
674 int channel)
675{
676 return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
677}
678
679/* csrow specific attribute structure */
680struct csrowdev_attribute {
681 struct attribute attr;
682 ssize_t (*show)(struct csrow_info *,char *,int);
683 ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
684 int private;
685};
686
687#define to_csrow(k) container_of(k, struct csrow_info, kobj)
688#define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
689
690/* Set of show/store higher level functions for default csrow attributes */
691static ssize_t csrowdev_show(struct kobject *kobj,
692 struct attribute *attr,
693 char *buffer)
694{
695 struct csrow_info *csrow = to_csrow(kobj);
696 struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
697
698 if (csrowdev_attr->show)
699 return csrowdev_attr->show(csrow,
700 buffer,
701 csrowdev_attr->private);
702 return -EIO;
703}
704
705static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
706 const char *buffer, size_t count)
707{
708 struct csrow_info *csrow = to_csrow(kobj);
709 struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
710
711 if (csrowdev_attr->store)
712 return csrowdev_attr->store(csrow,
713 buffer,
714 count,
715 csrowdev_attr->private);
716 return -EIO;
717}
718
719static struct sysfs_ops csrowfs_ops = {
720 .show = csrowdev_show,
721 .store = csrowdev_store
722};
723
724#define CSROWDEV_ATTR(_name,_mode,_show,_store,_private) \
725static struct csrowdev_attribute attr_##_name = { \
726 .attr = {.name = __stringify(_name), .mode = _mode }, \
727 .show = _show, \
728 .store = _store, \
729 .private = _private, \
730};
731
732/* default cwrow<id>/attribute files */
733CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
734CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
735CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
736CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
737CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
738CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
739
740/* default attributes of the CSROW<id> object */
741static struct csrowdev_attribute *default_csrow_attr[] = {
742 &attr_dev_type,
743 &attr_mem_type,
744 &attr_edac_mode,
745 &attr_size_mb,
746 &attr_ue_count,
747 &attr_ce_count,
748 NULL,
749};
750
751
752/* possible dynamic channel DIMM Label attribute files */
753CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
754 channel_dimm_label_show,
755 channel_dimm_label_store,
756 0 );
757CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
758 channel_dimm_label_show,
759 channel_dimm_label_store,
760 1 );
761CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
762 channel_dimm_label_show,
763 channel_dimm_label_store,
764 2 );
765CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
766 channel_dimm_label_show,
767 channel_dimm_label_store,
768 3 );
769CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
770 channel_dimm_label_show,
771 channel_dimm_label_store,
772 4 );
773CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
774 channel_dimm_label_show,
775 channel_dimm_label_store,
776 5 );
777
778/* Total possible dynamic DIMM Label attribute file table */
779static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
780 &attr_ch0_dimm_label,
781 &attr_ch1_dimm_label,
782 &attr_ch2_dimm_label,
783 &attr_ch3_dimm_label,
784 &attr_ch4_dimm_label,
785 &attr_ch5_dimm_label
786};
787
788/* possible dynamic channel ce_count attribute files */
789CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
790 channel_ce_count_show,
791 NULL,
792 0 );
793CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
794 channel_ce_count_show,
795 NULL,
796 1 );
797CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
798 channel_ce_count_show,
799 NULL,
800 2 );
801CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
802 channel_ce_count_show,
803 NULL,
804 3 );
805CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
806 channel_ce_count_show,
807 NULL,
808 4 );
809CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
810 channel_ce_count_show,
811 NULL,
812 5 );
813
814/* Total possible dynamic ce_count attribute file table */
815static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
816 &attr_ch0_ce_count,
817 &attr_ch1_ce_count,
818 &attr_ch2_ce_count,
819 &attr_ch3_ce_count,
820 &attr_ch4_ce_count,
821 &attr_ch5_ce_count
822};
823
824
825#define EDAC_NR_CHANNELS 6
826
827/* Create dynamic CHANNEL files, indexed by 'chan', under specifed CSROW */
828static int edac_create_channel_files(struct kobject *kobj, int chan)
829{
830 int err=-ENODEV;
831
832 if (chan >= EDAC_NR_CHANNELS)
833 return err;
834
835 /* create the DIMM label attribute file */
836 err = sysfs_create_file(kobj,
837 (struct attribute *) dynamic_csrow_dimm_attr[chan]);
838
839 if (!err) {
840 /* create the CE Count attribute file */
841 err = sysfs_create_file(kobj,
842 (struct attribute *) dynamic_csrow_ce_count_attr[chan]);
843 } else {
844 debugf1("%s() dimm labels and ce_count files created", __func__);
845 }
846
847 return err;
848}
849
850/* No memory to release for this kobj */
851static void edac_csrow_instance_release(struct kobject *kobj)
852{
853 struct csrow_info *cs;
854
855 cs = container_of(kobj, struct csrow_info, kobj);
856 complete(&cs->kobj_complete);
857}
858
859/* the kobj_type instance for a CSROW */
860static struct kobj_type ktype_csrow = {
861 .release = edac_csrow_instance_release,
862 .sysfs_ops = &csrowfs_ops,
863 .default_attrs = (struct attribute **) default_csrow_attr,
864};
865
866/* Create a CSROW object under specifed edac_mc_device */
867static int edac_create_csrow_object(
868 struct kobject *edac_mci_kobj,
869 struct csrow_info *csrow,
870 int index)
871{
872 int err = 0;
873 int chan;
874
875 memset(&csrow->kobj, 0, sizeof(csrow->kobj));
876
877 /* generate ..../edac/mc/mc<id>/csrow<index> */
878
879 csrow->kobj.parent = edac_mci_kobj;
880 csrow->kobj.ktype = &ktype_csrow;
881
882 /* name this instance of csrow<id> */
883 err = kobject_set_name(&csrow->kobj,"csrow%d",index);
884 if (err)
885 goto error_exit;
886
887 /* Instanstiate the csrow object */
888 err = kobject_register(&csrow->kobj);
889 if (!err) {
890 /* Create the dyanmic attribute files on this csrow,
891 * namely, the DIMM labels and the channel ce_count
892 */
893 for (chan = 0; chan < csrow->nr_channels; chan++) {
894 err = edac_create_channel_files(&csrow->kobj,chan);
895 if (err)
896 break;
897 }
898 }
899
900error_exit:
901 return err;
902}
903
904/* default sysfs methods and data structures for the main MCI kobject */
905
906static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
907 const char *data, size_t count)
908{
909 int row, chan;
910
911 mci->ue_noinfo_count = 0;
912 mci->ce_noinfo_count = 0;
913 mci->ue_count = 0;
914 mci->ce_count = 0;
915
916 for (row = 0; row < mci->nr_csrows; row++) {
917 struct csrow_info *ri = &mci->csrows[row];
918
919 ri->ue_count = 0;
920 ri->ce_count = 0;
921
922 for (chan = 0; chan < ri->nr_channels; chan++)
923 ri->channels[chan].ce_count = 0;
924 }
925
926 mci->start_time = jiffies;
927 return count;
928}
929
930/* memory scrubbing */
931static ssize_t mci_sdram_scrub_rate_store(struct mem_ctl_info *mci,
932 const char *data, size_t count)
933{
934 u32 bandwidth = -1;
935
936 if (mci->set_sdram_scrub_rate) {
937
938 memctrl_int_store(&bandwidth, data, count);
939
940 if (!(*mci->set_sdram_scrub_rate)(mci, &bandwidth)) {
941 edac_printk(KERN_DEBUG, EDAC_MC,
942 "Scrub rate set successfully, applied: %d\n",
943 bandwidth);
944 } else {
945 /* FIXME: error codes maybe? */
946 edac_printk(KERN_DEBUG, EDAC_MC,
947 "Scrub rate set FAILED, could not apply: %d\n",
948 bandwidth);
949 }
950 } else {
951 /* FIXME: produce "not implemented" ERROR for user-side. */
952 edac_printk(KERN_WARNING, EDAC_MC,
953 "Memory scrubbing 'set'control is not implemented!\n");
954 }
955 return count;
956}
957
958static ssize_t mci_sdram_scrub_rate_show(struct mem_ctl_info *mci, char *data)
959{
960 u32 bandwidth = -1;
961
962 if (mci->get_sdram_scrub_rate) {
963 if (!(*mci->get_sdram_scrub_rate)(mci, &bandwidth)) {
964 edac_printk(KERN_DEBUG, EDAC_MC,
965 "Scrub rate successfully, fetched: %d\n",
966 bandwidth);
967 } else {
968 /* FIXME: error codes maybe? */
969 edac_printk(KERN_DEBUG, EDAC_MC,
970 "Scrub rate fetch FAILED, got: %d\n",
971 bandwidth);
972 }
973 } else {
974 /* FIXME: produce "not implemented" ERROR for user-side. */
975 edac_printk(KERN_WARNING, EDAC_MC,
976 "Memory scrubbing 'get' control is not implemented!\n");
977 }
978 return sprintf(data, "%d\n", bandwidth);
979}
980
981/* default attribute files for the MCI object */
982static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
983{
984 return sprintf(data,"%d\n", mci->ue_count);
985}
986
987static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
988{
989 return sprintf(data,"%d\n", mci->ce_count);
990}
991
992static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
993{
994 return sprintf(data,"%d\n", mci->ce_noinfo_count);
995}
996
997static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
998{
999 return sprintf(data,"%d\n", mci->ue_noinfo_count);
1000}
1001
1002static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
1003{
1004 return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
1005}
1006
1007static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
1008{
1009 return sprintf(data,"%s\n", mci->ctl_name);
1010}
1011
1012static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
1013{
1014 int total_pages, csrow_idx;
1015
1016 for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
1017 csrow_idx++) {
1018 struct csrow_info *csrow = &mci->csrows[csrow_idx];
1019
1020 if (!csrow->nr_pages)
1021 continue;
1022
1023 total_pages += csrow->nr_pages;
1024 }
1025
1026 return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
1027}
1028
1029struct mcidev_attribute {
1030 struct attribute attr;
1031 ssize_t (*show)(struct mem_ctl_info *,char *);
1032 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
1033};
1034
1035#define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
1036#define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
1037
1038/* MCI show/store functions for top most object */
1039static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1040 char *buffer)
1041{
1042 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1043 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1044
1045 if (mcidev_attr->show)
1046 return mcidev_attr->show(mem_ctl_info, buffer);
1047
1048 return -EIO;
1049}
1050
1051static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1052 const char *buffer, size_t count)
1053{
1054 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1055 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1056
1057 if (mcidev_attr->store)
1058 return mcidev_attr->store(mem_ctl_info, buffer, count);
1059
1060 return -EIO;
1061}
1062
1063static struct sysfs_ops mci_ops = {
1064 .show = mcidev_show,
1065 .store = mcidev_store
1066};
1067
1068#define MCIDEV_ATTR(_name,_mode,_show,_store) \
1069static struct mcidev_attribute mci_attr_##_name = { \
1070 .attr = {.name = __stringify(_name), .mode = _mode }, \
1071 .show = _show, \
1072 .store = _store, \
1073};
1074
1075/* default Control file */
1076MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1077
1078/* default Attribute files */
1079MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1080MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1081MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1082MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1083MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1084MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1085MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1086
1087/* memory scrubber attribute file */
1088MCIDEV_ATTR(sdram_scrub_rate,S_IRUGO|S_IWUSR,mci_sdram_scrub_rate_show,mci_sdram_scrub_rate_store);
1089
1090static struct mcidev_attribute *mci_attr[] = {
1091 &mci_attr_reset_counters,
1092 &mci_attr_mc_name,
1093 &mci_attr_size_mb,
1094 &mci_attr_seconds_since_reset,
1095 &mci_attr_ue_noinfo_count,
1096 &mci_attr_ce_noinfo_count,
1097 &mci_attr_ue_count,
1098 &mci_attr_ce_count,
1099 &mci_attr_sdram_scrub_rate,
1100 NULL
1101};
1102
1103/*
1104 * Release of a MC controlling instance
1105 */
1106static void edac_mci_instance_release(struct kobject *kobj)
1107{
1108 struct mem_ctl_info *mci;
1109
1110 mci = to_mci(kobj);
1111 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1112 complete(&mci->kobj_complete);
1113}
1114
1115static struct kobj_type ktype_mci = {
1116 .release = edac_mci_instance_release,
1117 .sysfs_ops = &mci_ops,
1118 .default_attrs = (struct attribute **) mci_attr,
1119};
1120
1121
1122#define EDAC_DEVICE_SYMLINK "device"
1123
1124/*
1125 * Create a new Memory Controller kobject instance,
1126 * mc<id> under the 'mc' directory
1127 *
1128 * Return:
1129 * 0 Success
1130 * !0 Failure
1131 */
1132static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1133{
1134 int i;
1135 int err;
1136 struct csrow_info *csrow;
1137 struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1138
1139 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1140 memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1141
1142 /* set the name of the mc<id> object */
1143 err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1144 if (err)
1145 return err;
1146
1147 /* link to our parent the '..../edac/mc' object */
1148 edac_mci_kobj->parent = &edac_memctrl_kobj;
1149 edac_mci_kobj->ktype = &ktype_mci;
1150
1151 /* register the mc<id> kobject */
1152 err = kobject_register(edac_mci_kobj);
1153 if (err)
1154 return err;
1155
1156 /* create a symlink for the device */
1157 err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1158 EDAC_DEVICE_SYMLINK);
1159 if (err)
1160 goto fail0;
1161
1162 /* Make directories for each CSROW object
1163 * under the mc<id> kobject
1164 */
1165 for (i = 0; i < mci->nr_csrows; i++) {
1166 csrow = &mci->csrows[i];
1167
1168 /* Only expose populated CSROWs */
1169 if (csrow->nr_pages > 0) {
1170 err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1171 if (err)
1172 goto fail1;
1173 }
1174 }
1175
1176 return 0;
1177
1178 /* CSROW error: backout what has already been registered, */
1179fail1:
1180 for ( i--; i >= 0; i--) {
1181 if (csrow->nr_pages > 0) {
1182 init_completion(&csrow->kobj_complete);
1183 kobject_unregister(&mci->csrows[i].kobj);
1184 wait_for_completion(&csrow->kobj_complete);
1185 }
1186 }
1187
1188fail0:
1189 init_completion(&mci->kobj_complete);
1190 kobject_unregister(edac_mci_kobj);
1191 wait_for_completion(&mci->kobj_complete);
1192 return err;
1193}
1194
1195/*
1196 * remove a Memory Controller instance
1197 */
1198static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1199{
1200 int i;
1201
1202 debugf0("%s()\n", __func__);
1203
1204 /* remove all csrow kobjects */
1205 for (i = 0; i < mci->nr_csrows; i++) {
1206 if (mci->csrows[i].nr_pages > 0) {
1207 init_completion(&mci->csrows[i].kobj_complete);
1208 kobject_unregister(&mci->csrows[i].kobj);
1209 wait_for_completion(&mci->csrows[i].kobj_complete);
1210 }
1211 }
1212
1213 sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1214 init_completion(&mci->kobj_complete);
1215 kobject_unregister(&mci->edac_mci_kobj);
1216 wait_for_completion(&mci->kobj_complete);
1217}
1218
1219/* END OF sysfs data and methods */
1220
1221#ifdef CONFIG_EDAC_DEBUG 41#ifdef CONFIG_EDAC_DEBUG
1222 42
1223static void edac_mc_dump_channel(struct channel_info *chan) 43static void edac_mc_dump_channel(struct channel_info *chan)
@@ -1672,7 +492,7 @@ void edac_mc_handle_ce(struct mem_ctl_info *mci,
1672 return; 492 return;
1673 } 493 }
1674 494
1675 if (log_ce) 495 if (edac_get_log_ce())
1676 /* FIXME - put in DIMM location */ 496 /* FIXME - put in DIMM location */
1677 edac_mc_printk(mci, KERN_WARNING, 497 edac_mc_printk(mci, KERN_WARNING,
1678 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome " 498 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
@@ -1707,7 +527,7 @@ EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1707 527
1708void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg) 528void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1709{ 529{
1710 if (log_ce) 530 if (edac_get_log_ce())
1711 edac_mc_printk(mci, KERN_WARNING, 531 edac_mc_printk(mci, KERN_WARNING,
1712 "CE - no information available: %s\n", msg); 532 "CE - no information available: %s\n", msg);
1713 533
@@ -1751,14 +571,14 @@ void edac_mc_handle_ue(struct mem_ctl_info *mci,
1751 pos += chars; 571 pos += chars;
1752 } 572 }
1753 573
1754 if (log_ue) 574 if (edac_get_log_ue())
1755 edac_mc_printk(mci, KERN_EMERG, 575 edac_mc_printk(mci, KERN_EMERG,
1756 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, " 576 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1757 "labels \"%s\": %s\n", page_frame_number, 577 "labels \"%s\": %s\n", page_frame_number,
1758 offset_in_page, mci->csrows[row].grain, row, labels, 578 offset_in_page, mci->csrows[row].grain, row, labels,
1759 msg); 579 msg);
1760 580
1761 if (panic_on_ue) 581 if (edac_get_panic_on_ue())
1762 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, " 582 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1763 "row %d, labels \"%s\": %s\n", mci->mc_idx, 583 "row %d, labels \"%s\": %s\n", mci->mc_idx,
1764 page_frame_number, offset_in_page, 584 page_frame_number, offset_in_page,
@@ -1771,10 +591,10 @@ EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1771 591
1772void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg) 592void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1773{ 593{
1774 if (panic_on_ue) 594 if (edac_get_panic_on_ue())
1775 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx); 595 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1776 596
1777 if (log_ue) 597 if (edac_get_log_ue())
1778 edac_mc_printk(mci, KERN_WARNING, 598 edac_mc_printk(mci, KERN_WARNING,
1779 "UE - no information available: %s\n", msg); 599 "UE - no information available: %s\n", msg);
1780 mci->ue_noinfo_count++; 600 mci->ue_noinfo_count++;
@@ -1837,13 +657,13 @@ void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
1837 chars = snprintf(pos, len + 1, "-%s", 657 chars = snprintf(pos, len + 1, "-%s",
1838 mci->csrows[csrow].channels[channelb].label); 658 mci->csrows[csrow].channels[channelb].label);
1839 659
1840 if (log_ue) 660 if (edac_get_log_ue())
1841 edac_mc_printk(mci, KERN_EMERG, 661 edac_mc_printk(mci, KERN_EMERG,
1842 "UE row %d, channel-a= %d channel-b= %d " 662 "UE row %d, channel-a= %d channel-b= %d "
1843 "labels \"%s\": %s\n", csrow, channela, channelb, 663 "labels \"%s\": %s\n", csrow, channela, channelb,
1844 labels, msg); 664 labels, msg);
1845 665
1846 if (panic_on_ue) 666 if (edac_get_panic_on_ue())
1847 panic("UE row %d, channel-a= %d channel-b= %d " 667 panic("UE row %d, channel-a= %d channel-b= %d "
1848 "labels \"%s\": %s\n", csrow, channela, 668 "labels \"%s\": %s\n", csrow, channela,
1849 channelb, labels, msg); 669 channelb, labels, msg);
@@ -1878,7 +698,7 @@ void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
1878 return; 698 return;
1879 } 699 }
1880 700
1881 if (log_ce) 701 if (edac_get_log_ce())
1882 /* FIXME - put in DIMM location */ 702 /* FIXME - put in DIMM location */
1883 edac_mc_printk(mci, KERN_WARNING, 703 edac_mc_printk(mci, KERN_WARNING,
1884 "CE row %d, channel %d, label \"%s\": %s\n", 704 "CE row %d, channel %d, label \"%s\": %s\n",
@@ -1896,7 +716,7 @@ EXPORT_SYMBOL(edac_mc_handle_fbd_ce);
1896/* 716/*
1897 * Iterate over all MC instances and check for ECC, et al, errors 717 * Iterate over all MC instances and check for ECC, et al, errors
1898 */ 718 */
1899static inline void check_mc_devices(void) 719void edac_check_mc_devices(void)
1900{ 720{
1901 struct list_head *item; 721 struct list_head *item;
1902 struct mem_ctl_info *mci; 722 struct mem_ctl_info *mci;
@@ -1913,118 +733,3 @@ static inline void check_mc_devices(void)
1913 733
1914 up(&mem_ctls_mutex); 734 up(&mem_ctls_mutex);
1915} 735}
1916
1917/*
1918 * Check MC status every poll_msec.
1919 * Check PCI status every poll_msec as well.
1920 *
1921 * This where the work gets done for edac.
1922 *
1923 * SMP safe, doesn't use NMI, and auto-rate-limits.
1924 */
1925static void do_edac_check(void)
1926{
1927 debugf3("%s()\n", __func__);
1928 check_mc_devices();
1929 do_pci_parity_check();
1930}
1931
1932static int edac_kernel_thread(void *arg)
1933{
1934 set_freezable();
1935 while (!kthread_should_stop()) {
1936 do_edac_check();
1937
1938 /* goto sleep for the interval */
1939 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
1940 try_to_freeze();
1941 }
1942
1943 return 0;
1944}
1945
1946/*
1947 * edac_mc_init
1948 * module initialization entry point
1949 */
1950static int __init edac_mc_init(void)
1951{
1952 edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
1953
1954 /*
1955 * Harvest and clear any boot/initialization PCI parity errors
1956 *
1957 * FIXME: This only clears errors logged by devices present at time of
1958 * module initialization. We should also do an initial clear
1959 * of each newly hotplugged device.
1960 */
1961 clear_pci_parity_errors();
1962
1963 /* Create the MC sysfs entries */
1964 if (edac_sysfs_memctrl_setup()) {
1965 edac_printk(KERN_ERR, EDAC_MC,
1966 "Error initializing sysfs code\n");
1967 return -ENODEV;
1968 }
1969
1970 /* Create the PCI parity sysfs entries */
1971 if (edac_sysfs_pci_setup()) {
1972 edac_sysfs_memctrl_teardown();
1973 edac_printk(KERN_ERR, EDAC_MC,
1974 "EDAC PCI: Error initializing sysfs code\n");
1975 return -ENODEV;
1976 }
1977
1978 /* create our kernel thread */
1979 edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
1980
1981 if (IS_ERR(edac_thread)) {
1982 /* remove the sysfs entries */
1983 edac_sysfs_memctrl_teardown();
1984 edac_sysfs_pci_teardown();
1985 return PTR_ERR(edac_thread);
1986 }
1987
1988 return 0;
1989}
1990
1991/*
1992 * edac_mc_exit()
1993 * module exit/termination functioni
1994 */
1995static void __exit edac_mc_exit(void)
1996{
1997 debugf0("%s()\n", __func__);
1998 kthread_stop(edac_thread);
1999
2000 /* tear down the sysfs device */
2001 edac_sysfs_memctrl_teardown();
2002 edac_sysfs_pci_teardown();
2003}
2004
2005module_init(edac_mc_init);
2006module_exit(edac_mc_exit);
2007
2008MODULE_LICENSE("GPL");
2009MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2010 "Based on work by Dan Hollis et al");
2011MODULE_DESCRIPTION("Core library routines for MC reporting");
2012
2013module_param(panic_on_ue, int, 0644);
2014MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2015#ifdef CONFIG_PCI
2016module_param(check_pci_parity, int, 0644);
2017MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2018module_param(panic_on_pci_parity, int, 0644);
2019MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2020#endif
2021module_param(log_ue, int, 0644);
2022MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2023module_param(log_ce, int, 0644);
2024MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2025module_param(poll_msec, int, 0644);
2026MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2027#ifdef CONFIG_EDAC_DEBUG
2028module_param(edac_debug_level, int, 0644);
2029MODULE_PARM_DESC(edac_debug_level, "Debug level");
2030#endif