diff options
Diffstat (limited to 'drivers/crypto/nx/nx-sha256.c')
-rw-r--r-- | drivers/crypto/nx/nx-sha256.c | 246 |
1 files changed, 246 insertions, 0 deletions
diff --git a/drivers/crypto/nx/nx-sha256.c b/drivers/crypto/nx/nx-sha256.c new file mode 100644 index 000000000000..9767315f8c0b --- /dev/null +++ b/drivers/crypto/nx/nx-sha256.c | |||
@@ -0,0 +1,246 @@ | |||
1 | /** | ||
2 | * SHA-256 routines supporting the Power 7+ Nest Accelerators driver | ||
3 | * | ||
4 | * Copyright (C) 2011-2012 International Business Machines Inc. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License as published by | ||
8 | * the Free Software Foundation; version 2 only. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
18 | * | ||
19 | * Author: Kent Yoder <yoder1@us.ibm.com> | ||
20 | */ | ||
21 | |||
22 | #include <crypto/internal/hash.h> | ||
23 | #include <crypto/sha.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <asm/vio.h> | ||
26 | |||
27 | #include "nx_csbcpb.h" | ||
28 | #include "nx.h" | ||
29 | |||
30 | |||
31 | static int nx_sha256_init(struct shash_desc *desc) | ||
32 | { | ||
33 | struct sha256_state *sctx = shash_desc_ctx(desc); | ||
34 | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | ||
35 | struct nx_sg *out_sg; | ||
36 | |||
37 | nx_ctx_init(nx_ctx, HCOP_FC_SHA); | ||
38 | |||
39 | memset(sctx, 0, sizeof *sctx); | ||
40 | |||
41 | nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; | ||
42 | |||
43 | NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); | ||
44 | out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, | ||
45 | SHA256_DIGEST_SIZE, nx_ctx->ap->sglen); | ||
46 | nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | ||
47 | |||
48 | return 0; | ||
49 | } | ||
50 | |||
51 | static int nx_sha256_update(struct shash_desc *desc, const u8 *data, | ||
52 | unsigned int len) | ||
53 | { | ||
54 | struct sha256_state *sctx = shash_desc_ctx(desc); | ||
55 | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | ||
56 | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | ||
57 | struct nx_sg *in_sg; | ||
58 | u64 to_process, leftover; | ||
59 | int rc = 0; | ||
60 | |||
61 | if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | ||
62 | /* we've hit the nx chip previously and we're updating again, | ||
63 | * so copy over the partial digest */ | ||
64 | memcpy(csbcpb->cpb.sha256.input_partial_digest, | ||
65 | csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | ||
66 | } | ||
67 | |||
68 | /* 2 cases for total data len: | ||
69 | * 1: <= SHA256_BLOCK_SIZE: copy into state, return 0 | ||
70 | * 2: > SHA256_BLOCK_SIZE: process X blocks, copy in leftover | ||
71 | */ | ||
72 | if (len + sctx->count <= SHA256_BLOCK_SIZE) { | ||
73 | memcpy(sctx->buf + sctx->count, data, len); | ||
74 | sctx->count += len; | ||
75 | goto out; | ||
76 | } | ||
77 | |||
78 | /* to_process: the SHA256_BLOCK_SIZE data chunk to process in this | ||
79 | * update */ | ||
80 | to_process = (sctx->count + len) & ~(SHA256_BLOCK_SIZE - 1); | ||
81 | leftover = (sctx->count + len) & (SHA256_BLOCK_SIZE - 1); | ||
82 | |||
83 | if (sctx->count) { | ||
84 | in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, | ||
85 | sctx->count, nx_ctx->ap->sglen); | ||
86 | in_sg = nx_build_sg_list(in_sg, (u8 *)data, | ||
87 | to_process - sctx->count, | ||
88 | nx_ctx->ap->sglen); | ||
89 | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * | ||
90 | sizeof(struct nx_sg); | ||
91 | } else { | ||
92 | in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, | ||
93 | to_process, nx_ctx->ap->sglen); | ||
94 | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * | ||
95 | sizeof(struct nx_sg); | ||
96 | } | ||
97 | |||
98 | NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; | ||
99 | |||
100 | if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { | ||
101 | rc = -EINVAL; | ||
102 | goto out; | ||
103 | } | ||
104 | |||
105 | rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | ||
106 | desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | ||
107 | if (rc) | ||
108 | goto out; | ||
109 | |||
110 | atomic_inc(&(nx_ctx->stats->sha256_ops)); | ||
111 | |||
112 | /* copy the leftover back into the state struct */ | ||
113 | memcpy(sctx->buf, data + len - leftover, leftover); | ||
114 | sctx->count = leftover; | ||
115 | |||
116 | csbcpb->cpb.sha256.message_bit_length += (u64) | ||
117 | (csbcpb->cpb.sha256.spbc * 8); | ||
118 | |||
119 | /* everything after the first update is continuation */ | ||
120 | NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | ||
121 | out: | ||
122 | return rc; | ||
123 | } | ||
124 | |||
125 | static int nx_sha256_final(struct shash_desc *desc, u8 *out) | ||
126 | { | ||
127 | struct sha256_state *sctx = shash_desc_ctx(desc); | ||
128 | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | ||
129 | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | ||
130 | struct nx_sg *in_sg, *out_sg; | ||
131 | int rc; | ||
132 | |||
133 | if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | ||
134 | /* we've hit the nx chip previously, now we're finalizing, | ||
135 | * so copy over the partial digest */ | ||
136 | memcpy(csbcpb->cpb.sha256.input_partial_digest, | ||
137 | csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | ||
138 | } | ||
139 | |||
140 | /* final is represented by continuing the operation and indicating that | ||
141 | * this is not an intermediate operation */ | ||
142 | NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; | ||
143 | |||
144 | csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8); | ||
145 | |||
146 | in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, | ||
147 | sctx->count, nx_ctx->ap->sglen); | ||
148 | out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE, | ||
149 | nx_ctx->ap->sglen); | ||
150 | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); | ||
151 | nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | ||
152 | |||
153 | if (!nx_ctx->op.outlen) { | ||
154 | rc = -EINVAL; | ||
155 | goto out; | ||
156 | } | ||
157 | |||
158 | rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | ||
159 | desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | ||
160 | if (rc) | ||
161 | goto out; | ||
162 | |||
163 | atomic_inc(&(nx_ctx->stats->sha256_ops)); | ||
164 | |||
165 | atomic64_add(csbcpb->cpb.sha256.message_bit_length, | ||
166 | &(nx_ctx->stats->sha256_bytes)); | ||
167 | memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | ||
168 | out: | ||
169 | return rc; | ||
170 | } | ||
171 | |||
172 | static int nx_sha256_export(struct shash_desc *desc, void *out) | ||
173 | { | ||
174 | struct sha256_state *sctx = shash_desc_ctx(desc); | ||
175 | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | ||
176 | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | ||
177 | struct sha256_state *octx = out; | ||
178 | |||
179 | octx->count = sctx->count + | ||
180 | (csbcpb->cpb.sha256.message_bit_length / 8); | ||
181 | memcpy(octx->buf, sctx->buf, sizeof(octx->buf)); | ||
182 | |||
183 | /* if no data has been processed yet, we need to export SHA256's | ||
184 | * initial data, in case this context gets imported into a software | ||
185 | * context */ | ||
186 | if (csbcpb->cpb.sha256.message_bit_length) | ||
187 | memcpy(octx->state, csbcpb->cpb.sha256.message_digest, | ||
188 | SHA256_DIGEST_SIZE); | ||
189 | else { | ||
190 | octx->state[0] = SHA256_H0; | ||
191 | octx->state[1] = SHA256_H1; | ||
192 | octx->state[2] = SHA256_H2; | ||
193 | octx->state[3] = SHA256_H3; | ||
194 | octx->state[4] = SHA256_H4; | ||
195 | octx->state[5] = SHA256_H5; | ||
196 | octx->state[6] = SHA256_H6; | ||
197 | octx->state[7] = SHA256_H7; | ||
198 | } | ||
199 | |||
200 | return 0; | ||
201 | } | ||
202 | |||
203 | static int nx_sha256_import(struct shash_desc *desc, const void *in) | ||
204 | { | ||
205 | struct sha256_state *sctx = shash_desc_ctx(desc); | ||
206 | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | ||
207 | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | ||
208 | const struct sha256_state *ictx = in; | ||
209 | |||
210 | memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf)); | ||
211 | |||
212 | sctx->count = ictx->count & 0x3f; | ||
213 | csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8; | ||
214 | |||
215 | if (csbcpb->cpb.sha256.message_bit_length) { | ||
216 | memcpy(csbcpb->cpb.sha256.message_digest, ictx->state, | ||
217 | SHA256_DIGEST_SIZE); | ||
218 | |||
219 | NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | ||
220 | NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; | ||
221 | } | ||
222 | |||
223 | return 0; | ||
224 | } | ||
225 | |||
226 | struct shash_alg nx_shash_sha256_alg = { | ||
227 | .digestsize = SHA256_DIGEST_SIZE, | ||
228 | .init = nx_sha256_init, | ||
229 | .update = nx_sha256_update, | ||
230 | .final = nx_sha256_final, | ||
231 | .export = nx_sha256_export, | ||
232 | .import = nx_sha256_import, | ||
233 | .descsize = sizeof(struct sha256_state), | ||
234 | .statesize = sizeof(struct sha256_state), | ||
235 | .base = { | ||
236 | .cra_name = "sha256", | ||
237 | .cra_driver_name = "sha256-nx", | ||
238 | .cra_priority = 300, | ||
239 | .cra_flags = CRYPTO_ALG_TYPE_SHASH, | ||
240 | .cra_blocksize = SHA256_BLOCK_SIZE, | ||
241 | .cra_module = THIS_MODULE, | ||
242 | .cra_ctxsize = sizeof(struct nx_crypto_ctx), | ||
243 | .cra_init = nx_crypto_ctx_sha_init, | ||
244 | .cra_exit = nx_crypto_ctx_exit, | ||
245 | } | ||
246 | }; | ||