aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/crypto/mv_cesa.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/crypto/mv_cesa.c')
-rw-r--r--drivers/crypto/mv_cesa.c692
1 files changed, 619 insertions, 73 deletions
diff --git a/drivers/crypto/mv_cesa.c b/drivers/crypto/mv_cesa.c
index 6f29012bcc43..e095422b58dd 100644
--- a/drivers/crypto/mv_cesa.c
+++ b/drivers/crypto/mv_cesa.c
@@ -15,8 +15,14 @@
15#include <linux/platform_device.h> 15#include <linux/platform_device.h>
16#include <linux/scatterlist.h> 16#include <linux/scatterlist.h>
17#include <linux/slab.h> 17#include <linux/slab.h>
18#include <crypto/internal/hash.h>
19#include <crypto/sha.h>
18 20
19#include "mv_cesa.h" 21#include "mv_cesa.h"
22
23#define MV_CESA "MV-CESA:"
24#define MAX_HW_HASH_SIZE 0xFFFF
25
20/* 26/*
21 * STM: 27 * STM:
22 * /---------------------------------------\ 28 * /---------------------------------------\
@@ -39,10 +45,12 @@ enum engine_status {
39 * @dst_sg_it: sg iterator for dst 45 * @dst_sg_it: sg iterator for dst
40 * @sg_src_left: bytes left in src to process (scatter list) 46 * @sg_src_left: bytes left in src to process (scatter list)
41 * @src_start: offset to add to src start position (scatter list) 47 * @src_start: offset to add to src start position (scatter list)
42 * @crypt_len: length of current crypt process 48 * @crypt_len: length of current hw crypt/hash process
49 * @hw_nbytes: total bytes to process in hw for this request
50 * @copy_back: whether to copy data back (crypt) or not (hash)
43 * @sg_dst_left: bytes left dst to process in this scatter list 51 * @sg_dst_left: bytes left dst to process in this scatter list
44 * @dst_start: offset to add to dst start position (scatter list) 52 * @dst_start: offset to add to dst start position (scatter list)
45 * @total_req_bytes: total number of bytes processed (request). 53 * @hw_processed_bytes: number of bytes processed by hw (request).
46 * 54 *
47 * sg helper are used to iterate over the scatterlist. Since the size of the 55 * sg helper are used to iterate over the scatterlist. Since the size of the
48 * SRAM may be less than the scatter size, this struct struct is used to keep 56 * SRAM may be less than the scatter size, this struct struct is used to keep
@@ -51,15 +59,19 @@ enum engine_status {
51struct req_progress { 59struct req_progress {
52 struct sg_mapping_iter src_sg_it; 60 struct sg_mapping_iter src_sg_it;
53 struct sg_mapping_iter dst_sg_it; 61 struct sg_mapping_iter dst_sg_it;
62 void (*complete) (void);
63 void (*process) (int is_first);
54 64
55 /* src mostly */ 65 /* src mostly */
56 int sg_src_left; 66 int sg_src_left;
57 int src_start; 67 int src_start;
58 int crypt_len; 68 int crypt_len;
69 int hw_nbytes;
59 /* dst mostly */ 70 /* dst mostly */
71 int copy_back;
60 int sg_dst_left; 72 int sg_dst_left;
61 int dst_start; 73 int dst_start;
62 int total_req_bytes; 74 int hw_processed_bytes;
63}; 75};
64 76
65struct crypto_priv { 77struct crypto_priv {
@@ -72,10 +84,12 @@ struct crypto_priv {
72 spinlock_t lock; 84 spinlock_t lock;
73 struct crypto_queue queue; 85 struct crypto_queue queue;
74 enum engine_status eng_st; 86 enum engine_status eng_st;
75 struct ablkcipher_request *cur_req; 87 struct crypto_async_request *cur_req;
76 struct req_progress p; 88 struct req_progress p;
77 int max_req_size; 89 int max_req_size;
78 int sram_size; 90 int sram_size;
91 int has_sha1;
92 int has_hmac_sha1;
79}; 93};
80 94
81static struct crypto_priv *cpg; 95static struct crypto_priv *cpg;
@@ -97,6 +111,31 @@ struct mv_req_ctx {
97 int decrypt; 111 int decrypt;
98}; 112};
99 113
114enum hash_op {
115 COP_SHA1,
116 COP_HMAC_SHA1
117};
118
119struct mv_tfm_hash_ctx {
120 struct crypto_shash *fallback;
121 struct crypto_shash *base_hash;
122 u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
123 int count_add;
124 enum hash_op op;
125};
126
127struct mv_req_hash_ctx {
128 u64 count;
129 u32 state[SHA1_DIGEST_SIZE / 4];
130 u8 buffer[SHA1_BLOCK_SIZE];
131 int first_hash; /* marks that we don't have previous state */
132 int last_chunk; /* marks that this is the 'final' request */
133 int extra_bytes; /* unprocessed bytes in buffer */
134 enum hash_op op;
135 int count_add;
136 struct scatterlist dummysg;
137};
138
100static void compute_aes_dec_key(struct mv_ctx *ctx) 139static void compute_aes_dec_key(struct mv_ctx *ctx)
101{ 140{
102 struct crypto_aes_ctx gen_aes_key; 141 struct crypto_aes_ctx gen_aes_key;
@@ -144,32 +183,51 @@ static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
144 return 0; 183 return 0;
145} 184}
146 185
147static void setup_data_in(struct ablkcipher_request *req) 186static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
148{ 187{
149 int ret; 188 int ret;
150 void *buf; 189 void *sbuf;
190 int copied = 0;
151 191
152 if (!cpg->p.sg_src_left) { 192 while (1) {
153 ret = sg_miter_next(&cpg->p.src_sg_it); 193 if (!p->sg_src_left) {
154 BUG_ON(!ret); 194 ret = sg_miter_next(&p->src_sg_it);
155 cpg->p.sg_src_left = cpg->p.src_sg_it.length; 195 BUG_ON(!ret);
156 cpg->p.src_start = 0; 196 p->sg_src_left = p->src_sg_it.length;
157 } 197 p->src_start = 0;
158 198 }
159 cpg->p.crypt_len = min(cpg->p.sg_src_left, cpg->max_req_size);
160
161 buf = cpg->p.src_sg_it.addr;
162 buf += cpg->p.src_start;
163 199
164 memcpy(cpg->sram + SRAM_DATA_IN_START, buf, cpg->p.crypt_len); 200 sbuf = p->src_sg_it.addr + p->src_start;
201
202 if (p->sg_src_left <= len - copied) {
203 memcpy(dbuf + copied, sbuf, p->sg_src_left);
204 copied += p->sg_src_left;
205 p->sg_src_left = 0;
206 if (copied >= len)
207 break;
208 } else {
209 int copy_len = len - copied;
210 memcpy(dbuf + copied, sbuf, copy_len);
211 p->src_start += copy_len;
212 p->sg_src_left -= copy_len;
213 break;
214 }
215 }
216}
165 217
166 cpg->p.sg_src_left -= cpg->p.crypt_len; 218static void setup_data_in(void)
167 cpg->p.src_start += cpg->p.crypt_len; 219{
220 struct req_progress *p = &cpg->p;
221 int data_in_sram =
222 min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
223 copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
224 data_in_sram - p->crypt_len);
225 p->crypt_len = data_in_sram;
168} 226}
169 227
170static void mv_process_current_q(int first_block) 228static void mv_process_current_q(int first_block)
171{ 229{
172 struct ablkcipher_request *req = cpg->cur_req; 230 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
173 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 231 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
174 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); 232 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
175 struct sec_accel_config op; 233 struct sec_accel_config op;
@@ -179,6 +237,7 @@ static void mv_process_current_q(int first_block)
179 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB; 237 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
180 break; 238 break;
181 case COP_AES_CBC: 239 case COP_AES_CBC:
240 default:
182 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC; 241 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
183 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) | 242 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
184 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF); 243 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
@@ -211,7 +270,7 @@ static void mv_process_current_q(int first_block)
211 ENC_P_DST(SRAM_DATA_OUT_START); 270 ENC_P_DST(SRAM_DATA_OUT_START);
212 op.enc_key_p = SRAM_DATA_KEY_P; 271 op.enc_key_p = SRAM_DATA_KEY_P;
213 272
214 setup_data_in(req); 273 setup_data_in();
215 op.enc_len = cpg->p.crypt_len; 274 op.enc_len = cpg->p.crypt_len;
216 memcpy(cpg->sram + SRAM_CONFIG, &op, 275 memcpy(cpg->sram + SRAM_CONFIG, &op,
217 sizeof(struct sec_accel_config)); 276 sizeof(struct sec_accel_config));
@@ -228,91 +287,294 @@ static void mv_process_current_q(int first_block)
228 287
229static void mv_crypto_algo_completion(void) 288static void mv_crypto_algo_completion(void)
230{ 289{
231 struct ablkcipher_request *req = cpg->cur_req; 290 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
232 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); 291 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
233 292
293 sg_miter_stop(&cpg->p.src_sg_it);
294 sg_miter_stop(&cpg->p.dst_sg_it);
295
234 if (req_ctx->op != COP_AES_CBC) 296 if (req_ctx->op != COP_AES_CBC)
235 return ; 297 return ;
236 298
237 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16); 299 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
238} 300}
239 301
302static void mv_process_hash_current(int first_block)
303{
304 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
305 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
306 struct req_progress *p = &cpg->p;
307 struct sec_accel_config op = { 0 };
308 int is_last;
309
310 switch (req_ctx->op) {
311 case COP_SHA1:
312 default:
313 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
314 break;
315 case COP_HMAC_SHA1:
316 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
317 break;
318 }
319
320 op.mac_src_p =
321 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
322 req_ctx->
323 count);
324
325 setup_data_in();
326
327 op.mac_digest =
328 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
329 op.mac_iv =
330 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
331 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
332
333 is_last = req_ctx->last_chunk
334 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
335 && (req_ctx->count <= MAX_HW_HASH_SIZE);
336 if (req_ctx->first_hash) {
337 if (is_last)
338 op.config |= CFG_NOT_FRAG;
339 else
340 op.config |= CFG_FIRST_FRAG;
341
342 req_ctx->first_hash = 0;
343 } else {
344 if (is_last)
345 op.config |= CFG_LAST_FRAG;
346 else
347 op.config |= CFG_MID_FRAG;
348 }
349
350 memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
351
352 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
353 /* GO */
354 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
355
356 /*
357 * XXX: add timer if the interrupt does not occur for some mystery
358 * reason
359 */
360}
361
362static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
363 struct shash_desc *desc)
364{
365 int i;
366 struct sha1_state shash_state;
367
368 shash_state.count = ctx->count + ctx->count_add;
369 for (i = 0; i < 5; i++)
370 shash_state.state[i] = ctx->state[i];
371 memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
372 return crypto_shash_import(desc, &shash_state);
373}
374
375static int mv_hash_final_fallback(struct ahash_request *req)
376{
377 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
378 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
379 struct {
380 struct shash_desc shash;
381 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
382 } desc;
383 int rc;
384
385 desc.shash.tfm = tfm_ctx->fallback;
386 desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
387 if (unlikely(req_ctx->first_hash)) {
388 crypto_shash_init(&desc.shash);
389 crypto_shash_update(&desc.shash, req_ctx->buffer,
390 req_ctx->extra_bytes);
391 } else {
392 /* only SHA1 for now....
393 */
394 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
395 if (rc)
396 goto out;
397 }
398 rc = crypto_shash_final(&desc.shash, req->result);
399out:
400 return rc;
401}
402
403static void mv_hash_algo_completion(void)
404{
405 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
406 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
407
408 if (ctx->extra_bytes)
409 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
410 sg_miter_stop(&cpg->p.src_sg_it);
411
412 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
413 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
414 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
415 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
416 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
417
418 if (likely(ctx->last_chunk)) {
419 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
420 memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
421 crypto_ahash_digestsize(crypto_ahash_reqtfm
422 (req)));
423 } else
424 mv_hash_final_fallback(req);
425 }
426}
427
240static void dequeue_complete_req(void) 428static void dequeue_complete_req(void)
241{ 429{
242 struct ablkcipher_request *req = cpg->cur_req; 430 struct crypto_async_request *req = cpg->cur_req;
243 void *buf; 431 void *buf;
244 int ret; 432 int ret;
433 cpg->p.hw_processed_bytes += cpg->p.crypt_len;
434 if (cpg->p.copy_back) {
435 int need_copy_len = cpg->p.crypt_len;
436 int sram_offset = 0;
437 do {
438 int dst_copy;
439
440 if (!cpg->p.sg_dst_left) {
441 ret = sg_miter_next(&cpg->p.dst_sg_it);
442 BUG_ON(!ret);
443 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
444 cpg->p.dst_start = 0;
445 }
245 446
246 cpg->p.total_req_bytes += cpg->p.crypt_len; 447 buf = cpg->p.dst_sg_it.addr;
247 do { 448 buf += cpg->p.dst_start;
248 int dst_copy;
249
250 if (!cpg->p.sg_dst_left) {
251 ret = sg_miter_next(&cpg->p.dst_sg_it);
252 BUG_ON(!ret);
253 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
254 cpg->p.dst_start = 0;
255 }
256
257 buf = cpg->p.dst_sg_it.addr;
258 buf += cpg->p.dst_start;
259 449
260 dst_copy = min(cpg->p.crypt_len, cpg->p.sg_dst_left); 450 dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
261 451
262 memcpy(buf, cpg->sram + SRAM_DATA_OUT_START, dst_copy); 452 memcpy(buf,
453 cpg->sram + SRAM_DATA_OUT_START + sram_offset,
454 dst_copy);
455 sram_offset += dst_copy;
456 cpg->p.sg_dst_left -= dst_copy;
457 need_copy_len -= dst_copy;
458 cpg->p.dst_start += dst_copy;
459 } while (need_copy_len > 0);
460 }
263 461
264 cpg->p.sg_dst_left -= dst_copy; 462 cpg->p.crypt_len = 0;
265 cpg->p.crypt_len -= dst_copy;
266 cpg->p.dst_start += dst_copy;
267 } while (cpg->p.crypt_len > 0);
268 463
269 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE); 464 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
270 if (cpg->p.total_req_bytes < req->nbytes) { 465 if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
271 /* process next scatter list entry */ 466 /* process next scatter list entry */
272 cpg->eng_st = ENGINE_BUSY; 467 cpg->eng_st = ENGINE_BUSY;
273 mv_process_current_q(0); 468 cpg->p.process(0);
274 } else { 469 } else {
275 sg_miter_stop(&cpg->p.src_sg_it); 470 cpg->p.complete();
276 sg_miter_stop(&cpg->p.dst_sg_it);
277 mv_crypto_algo_completion();
278 cpg->eng_st = ENGINE_IDLE; 471 cpg->eng_st = ENGINE_IDLE;
279 req->base.complete(&req->base, 0); 472 local_bh_disable();
473 req->complete(req, 0);
474 local_bh_enable();
280 } 475 }
281} 476}
282 477
283static int count_sgs(struct scatterlist *sl, unsigned int total_bytes) 478static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
284{ 479{
285 int i = 0; 480 int i = 0;
286 481 size_t cur_len;
287 do { 482
288 total_bytes -= sl[i].length; 483 while (1) {
289 i++; 484 cur_len = sl[i].length;
290 485 ++i;
291 } while (total_bytes > 0); 486 if (total_bytes > cur_len)
487 total_bytes -= cur_len;
488 else
489 break;
490 }
292 491
293 return i; 492 return i;
294} 493}
295 494
296static void mv_enqueue_new_req(struct ablkcipher_request *req) 495static void mv_start_new_crypt_req(struct ablkcipher_request *req)
297{ 496{
497 struct req_progress *p = &cpg->p;
298 int num_sgs; 498 int num_sgs;
299 499
300 cpg->cur_req = req; 500 cpg->cur_req = &req->base;
301 memset(&cpg->p, 0, sizeof(struct req_progress)); 501 memset(p, 0, sizeof(struct req_progress));
502 p->hw_nbytes = req->nbytes;
503 p->complete = mv_crypto_algo_completion;
504 p->process = mv_process_current_q;
505 p->copy_back = 1;
302 506
303 num_sgs = count_sgs(req->src, req->nbytes); 507 num_sgs = count_sgs(req->src, req->nbytes);
304 sg_miter_start(&cpg->p.src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG); 508 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
305 509
306 num_sgs = count_sgs(req->dst, req->nbytes); 510 num_sgs = count_sgs(req->dst, req->nbytes);
307 sg_miter_start(&cpg->p.dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG); 511 sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
512
308 mv_process_current_q(1); 513 mv_process_current_q(1);
309} 514}
310 515
516static void mv_start_new_hash_req(struct ahash_request *req)
517{
518 struct req_progress *p = &cpg->p;
519 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
520 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
521 int num_sgs, hw_bytes, old_extra_bytes, rc;
522 cpg->cur_req = &req->base;
523 memset(p, 0, sizeof(struct req_progress));
524 hw_bytes = req->nbytes + ctx->extra_bytes;
525 old_extra_bytes = ctx->extra_bytes;
526
527 if (unlikely(ctx->extra_bytes)) {
528 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
529 ctx->extra_bytes);
530 p->crypt_len = ctx->extra_bytes;
531 }
532
533 memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
534
535 if (unlikely(!ctx->first_hash)) {
536 writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
537 writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
538 writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
539 writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
540 writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
541 }
542
543 ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
544 if (ctx->extra_bytes != 0
545 && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
546 hw_bytes -= ctx->extra_bytes;
547 else
548 ctx->extra_bytes = 0;
549
550 num_sgs = count_sgs(req->src, req->nbytes);
551 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
552
553 if (hw_bytes) {
554 p->hw_nbytes = hw_bytes;
555 p->complete = mv_hash_algo_completion;
556 p->process = mv_process_hash_current;
557
558 mv_process_hash_current(1);
559 } else {
560 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
561 ctx->extra_bytes - old_extra_bytes);
562 sg_miter_stop(&p->src_sg_it);
563 if (ctx->last_chunk)
564 rc = mv_hash_final_fallback(req);
565 else
566 rc = 0;
567 cpg->eng_st = ENGINE_IDLE;
568 local_bh_disable();
569 req->base.complete(&req->base, rc);
570 local_bh_enable();
571 }
572}
573
311static int queue_manag(void *data) 574static int queue_manag(void *data)
312{ 575{
313 cpg->eng_st = ENGINE_IDLE; 576 cpg->eng_st = ENGINE_IDLE;
314 do { 577 do {
315 struct ablkcipher_request *req;
316 struct crypto_async_request *async_req = NULL; 578 struct crypto_async_request *async_req = NULL;
317 struct crypto_async_request *backlog; 579 struct crypto_async_request *backlog;
318 580
@@ -338,9 +600,18 @@ static int queue_manag(void *data)
338 } 600 }
339 601
340 if (async_req) { 602 if (async_req) {
341 req = container_of(async_req, 603 if (async_req->tfm->__crt_alg->cra_type !=
342 struct ablkcipher_request, base); 604 &crypto_ahash_type) {
343 mv_enqueue_new_req(req); 605 struct ablkcipher_request *req =
606 container_of(async_req,
607 struct ablkcipher_request,
608 base);
609 mv_start_new_crypt_req(req);
610 } else {
611 struct ahash_request *req =
612 ahash_request_cast(async_req);
613 mv_start_new_hash_req(req);
614 }
344 async_req = NULL; 615 async_req = NULL;
345 } 616 }
346 617
@@ -350,13 +621,13 @@ static int queue_manag(void *data)
350 return 0; 621 return 0;
351} 622}
352 623
353static int mv_handle_req(struct ablkcipher_request *req) 624static int mv_handle_req(struct crypto_async_request *req)
354{ 625{
355 unsigned long flags; 626 unsigned long flags;
356 int ret; 627 int ret;
357 628
358 spin_lock_irqsave(&cpg->lock, flags); 629 spin_lock_irqsave(&cpg->lock, flags);
359 ret = ablkcipher_enqueue_request(&cpg->queue, req); 630 ret = crypto_enqueue_request(&cpg->queue, req);
360 spin_unlock_irqrestore(&cpg->lock, flags); 631 spin_unlock_irqrestore(&cpg->lock, flags);
361 wake_up_process(cpg->queue_th); 632 wake_up_process(cpg->queue_th);
362 return ret; 633 return ret;
@@ -369,7 +640,7 @@ static int mv_enc_aes_ecb(struct ablkcipher_request *req)
369 req_ctx->op = COP_AES_ECB; 640 req_ctx->op = COP_AES_ECB;
370 req_ctx->decrypt = 0; 641 req_ctx->decrypt = 0;
371 642
372 return mv_handle_req(req); 643 return mv_handle_req(&req->base);
373} 644}
374 645
375static int mv_dec_aes_ecb(struct ablkcipher_request *req) 646static int mv_dec_aes_ecb(struct ablkcipher_request *req)
@@ -381,7 +652,7 @@ static int mv_dec_aes_ecb(struct ablkcipher_request *req)
381 req_ctx->decrypt = 1; 652 req_ctx->decrypt = 1;
382 653
383 compute_aes_dec_key(ctx); 654 compute_aes_dec_key(ctx);
384 return mv_handle_req(req); 655 return mv_handle_req(&req->base);
385} 656}
386 657
387static int mv_enc_aes_cbc(struct ablkcipher_request *req) 658static int mv_enc_aes_cbc(struct ablkcipher_request *req)
@@ -391,7 +662,7 @@ static int mv_enc_aes_cbc(struct ablkcipher_request *req)
391 req_ctx->op = COP_AES_CBC; 662 req_ctx->op = COP_AES_CBC;
392 req_ctx->decrypt = 0; 663 req_ctx->decrypt = 0;
393 664
394 return mv_handle_req(req); 665 return mv_handle_req(&req->base);
395} 666}
396 667
397static int mv_dec_aes_cbc(struct ablkcipher_request *req) 668static int mv_dec_aes_cbc(struct ablkcipher_request *req)
@@ -403,7 +674,7 @@ static int mv_dec_aes_cbc(struct ablkcipher_request *req)
403 req_ctx->decrypt = 1; 674 req_ctx->decrypt = 1;
404 675
405 compute_aes_dec_key(ctx); 676 compute_aes_dec_key(ctx);
406 return mv_handle_req(req); 677 return mv_handle_req(&req->base);
407} 678}
408 679
409static int mv_cra_init(struct crypto_tfm *tfm) 680static int mv_cra_init(struct crypto_tfm *tfm)
@@ -412,6 +683,215 @@ static int mv_cra_init(struct crypto_tfm *tfm)
412 return 0; 683 return 0;
413} 684}
414 685
686static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
687 int is_last, unsigned int req_len,
688 int count_add)
689{
690 memset(ctx, 0, sizeof(*ctx));
691 ctx->op = op;
692 ctx->count = req_len;
693 ctx->first_hash = 1;
694 ctx->last_chunk = is_last;
695 ctx->count_add = count_add;
696}
697
698static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
699 unsigned req_len)
700{
701 ctx->last_chunk = is_last;
702 ctx->count += req_len;
703}
704
705static int mv_hash_init(struct ahash_request *req)
706{
707 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
708 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
709 tfm_ctx->count_add);
710 return 0;
711}
712
713static int mv_hash_update(struct ahash_request *req)
714{
715 if (!req->nbytes)
716 return 0;
717
718 mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
719 return mv_handle_req(&req->base);
720}
721
722static int mv_hash_final(struct ahash_request *req)
723{
724 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
725 /* dummy buffer of 4 bytes */
726 sg_init_one(&ctx->dummysg, ctx->buffer, 4);
727 /* I think I'm allowed to do that... */
728 ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
729 mv_update_hash_req_ctx(ctx, 1, 0);
730 return mv_handle_req(&req->base);
731}
732
733static int mv_hash_finup(struct ahash_request *req)
734{
735 if (!req->nbytes)
736 return mv_hash_final(req);
737
738 mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
739 return mv_handle_req(&req->base);
740}
741
742static int mv_hash_digest(struct ahash_request *req)
743{
744 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
745 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
746 req->nbytes, tfm_ctx->count_add);
747 return mv_handle_req(&req->base);
748}
749
750static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
751 const void *ostate)
752{
753 const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
754 int i;
755 for (i = 0; i < 5; i++) {
756 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
757 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
758 }
759}
760
761static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
762 unsigned int keylen)
763{
764 int rc;
765 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
766 int bs, ds, ss;
767
768 if (!ctx->base_hash)
769 return 0;
770
771 rc = crypto_shash_setkey(ctx->fallback, key, keylen);
772 if (rc)
773 return rc;
774
775 /* Can't see a way to extract the ipad/opad from the fallback tfm
776 so I'm basically copying code from the hmac module */
777 bs = crypto_shash_blocksize(ctx->base_hash);
778 ds = crypto_shash_digestsize(ctx->base_hash);
779 ss = crypto_shash_statesize(ctx->base_hash);
780
781 {
782 struct {
783 struct shash_desc shash;
784 char ctx[crypto_shash_descsize(ctx->base_hash)];
785 } desc;
786 unsigned int i;
787 char ipad[ss];
788 char opad[ss];
789
790 desc.shash.tfm = ctx->base_hash;
791 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
792 CRYPTO_TFM_REQ_MAY_SLEEP;
793
794 if (keylen > bs) {
795 int err;
796
797 err =
798 crypto_shash_digest(&desc.shash, key, keylen, ipad);
799 if (err)
800 return err;
801
802 keylen = ds;
803 } else
804 memcpy(ipad, key, keylen);
805
806 memset(ipad + keylen, 0, bs - keylen);
807 memcpy(opad, ipad, bs);
808
809 for (i = 0; i < bs; i++) {
810 ipad[i] ^= 0x36;
811 opad[i] ^= 0x5c;
812 }
813
814 rc = crypto_shash_init(&desc.shash) ? :
815 crypto_shash_update(&desc.shash, ipad, bs) ? :
816 crypto_shash_export(&desc.shash, ipad) ? :
817 crypto_shash_init(&desc.shash) ? :
818 crypto_shash_update(&desc.shash, opad, bs) ? :
819 crypto_shash_export(&desc.shash, opad);
820
821 if (rc == 0)
822 mv_hash_init_ivs(ctx, ipad, opad);
823
824 return rc;
825 }
826}
827
828static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
829 enum hash_op op, int count_add)
830{
831 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
832 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
833 struct crypto_shash *fallback_tfm = NULL;
834 struct crypto_shash *base_hash = NULL;
835 int err = -ENOMEM;
836
837 ctx->op = op;
838 ctx->count_add = count_add;
839
840 /* Allocate a fallback and abort if it failed. */
841 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
842 CRYPTO_ALG_NEED_FALLBACK);
843 if (IS_ERR(fallback_tfm)) {
844 printk(KERN_WARNING MV_CESA
845 "Fallback driver '%s' could not be loaded!\n",
846 fallback_driver_name);
847 err = PTR_ERR(fallback_tfm);
848 goto out;
849 }
850 ctx->fallback = fallback_tfm;
851
852 if (base_hash_name) {
853 /* Allocate a hash to compute the ipad/opad of hmac. */
854 base_hash = crypto_alloc_shash(base_hash_name, 0,
855 CRYPTO_ALG_NEED_FALLBACK);
856 if (IS_ERR(base_hash)) {
857 printk(KERN_WARNING MV_CESA
858 "Base driver '%s' could not be loaded!\n",
859 base_hash_name);
860 err = PTR_ERR(fallback_tfm);
861 goto err_bad_base;
862 }
863 }
864 ctx->base_hash = base_hash;
865
866 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
867 sizeof(struct mv_req_hash_ctx) +
868 crypto_shash_descsize(ctx->fallback));
869 return 0;
870err_bad_base:
871 crypto_free_shash(fallback_tfm);
872out:
873 return err;
874}
875
876static void mv_cra_hash_exit(struct crypto_tfm *tfm)
877{
878 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
879
880 crypto_free_shash(ctx->fallback);
881 if (ctx->base_hash)
882 crypto_free_shash(ctx->base_hash);
883}
884
885static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
886{
887 return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
888}
889
890static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
891{
892 return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
893}
894
415irqreturn_t crypto_int(int irq, void *priv) 895irqreturn_t crypto_int(int irq, void *priv)
416{ 896{
417 u32 val; 897 u32 val;
@@ -474,6 +954,53 @@ struct crypto_alg mv_aes_alg_cbc = {
474 }, 954 },
475}; 955};
476 956
957struct ahash_alg mv_sha1_alg = {
958 .init = mv_hash_init,
959 .update = mv_hash_update,
960 .final = mv_hash_final,
961 .finup = mv_hash_finup,
962 .digest = mv_hash_digest,
963 .halg = {
964 .digestsize = SHA1_DIGEST_SIZE,
965 .base = {
966 .cra_name = "sha1",
967 .cra_driver_name = "mv-sha1",
968 .cra_priority = 300,
969 .cra_flags =
970 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
971 .cra_blocksize = SHA1_BLOCK_SIZE,
972 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
973 .cra_init = mv_cra_hash_sha1_init,
974 .cra_exit = mv_cra_hash_exit,
975 .cra_module = THIS_MODULE,
976 }
977 }
978};
979
980struct ahash_alg mv_hmac_sha1_alg = {
981 .init = mv_hash_init,
982 .update = mv_hash_update,
983 .final = mv_hash_final,
984 .finup = mv_hash_finup,
985 .digest = mv_hash_digest,
986 .setkey = mv_hash_setkey,
987 .halg = {
988 .digestsize = SHA1_DIGEST_SIZE,
989 .base = {
990 .cra_name = "hmac(sha1)",
991 .cra_driver_name = "mv-hmac-sha1",
992 .cra_priority = 300,
993 .cra_flags =
994 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
995 .cra_blocksize = SHA1_BLOCK_SIZE,
996 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
997 .cra_init = mv_cra_hash_hmac_sha1_init,
998 .cra_exit = mv_cra_hash_exit,
999 .cra_module = THIS_MODULE,
1000 }
1001 }
1002};
1003
477static int mv_probe(struct platform_device *pdev) 1004static int mv_probe(struct platform_device *pdev)
478{ 1005{
479 struct crypto_priv *cp; 1006 struct crypto_priv *cp;
@@ -482,7 +1009,7 @@ static int mv_probe(struct platform_device *pdev)
482 int ret; 1009 int ret;
483 1010
484 if (cpg) { 1011 if (cpg) {
485 printk(KERN_ERR "Second crypto dev?\n"); 1012 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
486 return -EEXIST; 1013 return -EEXIST;
487 } 1014 }
488 1015
@@ -496,7 +1023,7 @@ static int mv_probe(struct platform_device *pdev)
496 1023
497 spin_lock_init(&cp->lock); 1024 spin_lock_init(&cp->lock);
498 crypto_init_queue(&cp->queue, 50); 1025 crypto_init_queue(&cp->queue, 50);
499 cp->reg = ioremap(res->start, res->end - res->start + 1); 1026 cp->reg = ioremap(res->start, resource_size(res));
500 if (!cp->reg) { 1027 if (!cp->reg) {
501 ret = -ENOMEM; 1028 ret = -ENOMEM;
502 goto err; 1029 goto err;
@@ -507,7 +1034,7 @@ static int mv_probe(struct platform_device *pdev)
507 ret = -ENXIO; 1034 ret = -ENXIO;
508 goto err_unmap_reg; 1035 goto err_unmap_reg;
509 } 1036 }
510 cp->sram_size = res->end - res->start + 1; 1037 cp->sram_size = resource_size(res);
511 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE; 1038 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
512 cp->sram = ioremap(res->start, cp->sram_size); 1039 cp->sram = ioremap(res->start, cp->sram_size);
513 if (!cp->sram) { 1040 if (!cp->sram) {
@@ -546,6 +1073,21 @@ static int mv_probe(struct platform_device *pdev)
546 ret = crypto_register_alg(&mv_aes_alg_cbc); 1073 ret = crypto_register_alg(&mv_aes_alg_cbc);
547 if (ret) 1074 if (ret)
548 goto err_unreg_ecb; 1075 goto err_unreg_ecb;
1076
1077 ret = crypto_register_ahash(&mv_sha1_alg);
1078 if (ret == 0)
1079 cpg->has_sha1 = 1;
1080 else
1081 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1082
1083 ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1084 if (ret == 0) {
1085 cpg->has_hmac_sha1 = 1;
1086 } else {
1087 printk(KERN_WARNING MV_CESA
1088 "Could not register hmac-sha1 driver\n");
1089 }
1090
549 return 0; 1091 return 0;
550err_unreg_ecb: 1092err_unreg_ecb:
551 crypto_unregister_alg(&mv_aes_alg_ecb); 1093 crypto_unregister_alg(&mv_aes_alg_ecb);
@@ -570,6 +1112,10 @@ static int mv_remove(struct platform_device *pdev)
570 1112
571 crypto_unregister_alg(&mv_aes_alg_ecb); 1113 crypto_unregister_alg(&mv_aes_alg_ecb);
572 crypto_unregister_alg(&mv_aes_alg_cbc); 1114 crypto_unregister_alg(&mv_aes_alg_cbc);
1115 if (cp->has_sha1)
1116 crypto_unregister_ahash(&mv_sha1_alg);
1117 if (cp->has_hmac_sha1)
1118 crypto_unregister_ahash(&mv_hmac_sha1_alg);
573 kthread_stop(cp->queue_th); 1119 kthread_stop(cp->queue_th);
574 free_irq(cp->irq, cp); 1120 free_irq(cp->irq, cp);
575 memset(cp->sram, 0, cp->sram_size); 1121 memset(cp->sram, 0, cp->sram_size);