diff options
Diffstat (limited to 'drivers/char/rio/rioboot.c')
-rw-r--r-- | drivers/char/rio/rioboot.c | 1113 |
1 files changed, 0 insertions, 1113 deletions
diff --git a/drivers/char/rio/rioboot.c b/drivers/char/rio/rioboot.c deleted file mode 100644 index d956dd316005..000000000000 --- a/drivers/char/rio/rioboot.c +++ /dev/null | |||
@@ -1,1113 +0,0 @@ | |||
1 | /* | ||
2 | ** ----------------------------------------------------------------------------- | ||
3 | ** | ||
4 | ** Perle Specialix driver for Linux | ||
5 | ** Ported from existing RIO Driver for SCO sources. | ||
6 | * | ||
7 | * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License as published by | ||
11 | * the Free Software Foundation; either version 2 of the License, or | ||
12 | * (at your option) any later version. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, | ||
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
17 | * GNU General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
22 | ** | ||
23 | ** Module : rioboot.c | ||
24 | ** SID : 1.3 | ||
25 | ** Last Modified : 11/6/98 10:33:36 | ||
26 | ** Retrieved : 11/6/98 10:33:48 | ||
27 | ** | ||
28 | ** ident @(#)rioboot.c 1.3 | ||
29 | ** | ||
30 | ** ----------------------------------------------------------------------------- | ||
31 | */ | ||
32 | |||
33 | #include <linux/module.h> | ||
34 | #include <linux/slab.h> | ||
35 | #include <linux/termios.h> | ||
36 | #include <linux/serial.h> | ||
37 | #include <linux/vmalloc.h> | ||
38 | #include <linux/generic_serial.h> | ||
39 | #include <linux/errno.h> | ||
40 | #include <linux/interrupt.h> | ||
41 | #include <linux/delay.h> | ||
42 | #include <asm/io.h> | ||
43 | #include <asm/system.h> | ||
44 | #include <asm/string.h> | ||
45 | #include <asm/uaccess.h> | ||
46 | |||
47 | |||
48 | #include "linux_compat.h" | ||
49 | #include "rio_linux.h" | ||
50 | #include "pkt.h" | ||
51 | #include "daemon.h" | ||
52 | #include "rio.h" | ||
53 | #include "riospace.h" | ||
54 | #include "cmdpkt.h" | ||
55 | #include "map.h" | ||
56 | #include "rup.h" | ||
57 | #include "port.h" | ||
58 | #include "riodrvr.h" | ||
59 | #include "rioinfo.h" | ||
60 | #include "func.h" | ||
61 | #include "errors.h" | ||
62 | #include "pci.h" | ||
63 | |||
64 | #include "parmmap.h" | ||
65 | #include "unixrup.h" | ||
66 | #include "board.h" | ||
67 | #include "host.h" | ||
68 | #include "phb.h" | ||
69 | #include "link.h" | ||
70 | #include "cmdblk.h" | ||
71 | #include "route.h" | ||
72 | |||
73 | static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP); | ||
74 | |||
75 | static const unsigned char RIOAtVec2Ctrl[] = { | ||
76 | /* 0 */ INTERRUPT_DISABLE, | ||
77 | /* 1 */ INTERRUPT_DISABLE, | ||
78 | /* 2 */ INTERRUPT_DISABLE, | ||
79 | /* 3 */ INTERRUPT_DISABLE, | ||
80 | /* 4 */ INTERRUPT_DISABLE, | ||
81 | /* 5 */ INTERRUPT_DISABLE, | ||
82 | /* 6 */ INTERRUPT_DISABLE, | ||
83 | /* 7 */ INTERRUPT_DISABLE, | ||
84 | /* 8 */ INTERRUPT_DISABLE, | ||
85 | /* 9 */ IRQ_9 | INTERRUPT_ENABLE, | ||
86 | /* 10 */ INTERRUPT_DISABLE, | ||
87 | /* 11 */ IRQ_11 | INTERRUPT_ENABLE, | ||
88 | /* 12 */ IRQ_12 | INTERRUPT_ENABLE, | ||
89 | /* 13 */ INTERRUPT_DISABLE, | ||
90 | /* 14 */ INTERRUPT_DISABLE, | ||
91 | /* 15 */ IRQ_15 | INTERRUPT_ENABLE | ||
92 | }; | ||
93 | |||
94 | /** | ||
95 | * RIOBootCodeRTA - Load RTA boot code | ||
96 | * @p: RIO to load | ||
97 | * @rbp: Download descriptor | ||
98 | * | ||
99 | * Called when the user process initiates booting of the card firmware. | ||
100 | * Lads the firmware | ||
101 | */ | ||
102 | |||
103 | int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp) | ||
104 | { | ||
105 | int offset; | ||
106 | |||
107 | func_enter(); | ||
108 | |||
109 | rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP); | ||
110 | |||
111 | /* | ||
112 | ** Check that we have set asside enough memory for this | ||
113 | */ | ||
114 | if (rbp->Count > SIXTY_FOUR_K) { | ||
115 | rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n"); | ||
116 | p->RIOError.Error = HOST_FILE_TOO_LARGE; | ||
117 | func_exit(); | ||
118 | return -ENOMEM; | ||
119 | } | ||
120 | |||
121 | if (p->RIOBooting) { | ||
122 | rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n"); | ||
123 | p->RIOError.Error = BOOT_IN_PROGRESS; | ||
124 | func_exit(); | ||
125 | return -EBUSY; | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary, | ||
130 | ** so calculate how far we have to move the data up the buffer | ||
131 | ** to achieve this. | ||
132 | */ | ||
133 | offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE; | ||
134 | |||
135 | /* | ||
136 | ** Be clean, and clear the 'unused' portion of the boot buffer, | ||
137 | ** because it will (eventually) be part of the Rta run time environment | ||
138 | ** and so should be zeroed. | ||
139 | */ | ||
140 | memset(p->RIOBootPackets, 0, offset); | ||
141 | |||
142 | /* | ||
143 | ** Copy the data from user space into the array | ||
144 | */ | ||
145 | |||
146 | if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) { | ||
147 | rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n"); | ||
148 | p->RIOError.Error = COPYIN_FAILED; | ||
149 | func_exit(); | ||
150 | return -EFAULT; | ||
151 | } | ||
152 | |||
153 | /* | ||
154 | ** Make sure that our copy of the size includes that offset we discussed | ||
155 | ** earlier. | ||
156 | */ | ||
157 | p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE; | ||
158 | p->RIOBootCount = rbp->Count; | ||
159 | |||
160 | func_exit(); | ||
161 | return 0; | ||
162 | } | ||
163 | |||
164 | /** | ||
165 | * rio_start_card_running - host card start | ||
166 | * @HostP: The RIO to kick off | ||
167 | * | ||
168 | * Start a RIO processor unit running. Encapsulates the knowledge | ||
169 | * of the card type. | ||
170 | */ | ||
171 | |||
172 | void rio_start_card_running(struct Host *HostP) | ||
173 | { | ||
174 | switch (HostP->Type) { | ||
175 | case RIO_AT: | ||
176 | rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n"); | ||
177 | writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control); | ||
178 | break; | ||
179 | case RIO_PCI: | ||
180 | /* | ||
181 | ** PCI is much the same as MCA. Everything is once again memory | ||
182 | ** mapped, so we are writing to memory registers instead of io | ||
183 | ** ports. | ||
184 | */ | ||
185 | rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n"); | ||
186 | writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control); | ||
187 | break; | ||
188 | default: | ||
189 | rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type); | ||
190 | break; | ||
191 | } | ||
192 | return; | ||
193 | } | ||
194 | |||
195 | /* | ||
196 | ** Load in the host boot code - load it directly onto all halted hosts | ||
197 | ** of the correct type. | ||
198 | ** | ||
199 | ** Put your rubber pants on before messing with this code - even the magic | ||
200 | ** numbers have trouble understanding what they are doing here. | ||
201 | */ | ||
202 | |||
203 | int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp) | ||
204 | { | ||
205 | struct Host *HostP; | ||
206 | u8 __iomem *Cad; | ||
207 | PARM_MAP __iomem *ParmMapP; | ||
208 | int RupN; | ||
209 | int PortN; | ||
210 | unsigned int host; | ||
211 | u8 __iomem *StartP; | ||
212 | u8 __iomem *DestP; | ||
213 | int wait_count; | ||
214 | u16 OldParmMap; | ||
215 | u16 offset; /* It is very important that this is a u16 */ | ||
216 | u8 *DownCode = NULL; | ||
217 | unsigned long flags; | ||
218 | |||
219 | HostP = NULL; /* Assure the compiler we've initialized it */ | ||
220 | |||
221 | |||
222 | /* Walk the hosts */ | ||
223 | for (host = 0; host < p->RIONumHosts; host++) { | ||
224 | rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host); | ||
225 | HostP = &p->RIOHosts[host]; | ||
226 | |||
227 | rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec); | ||
228 | |||
229 | /* Don't boot hosts already running */ | ||
230 | if ((HostP->Flags & RUN_STATE) != RC_WAITING) { | ||
231 | rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host); | ||
232 | continue; | ||
233 | } | ||
234 | |||
235 | /* | ||
236 | ** Grab a pointer to the card (ioremapped) | ||
237 | */ | ||
238 | Cad = HostP->Caddr; | ||
239 | |||
240 | /* | ||
241 | ** We are going to (try) and load in rbp->Count bytes. | ||
242 | ** The last byte will reside at p->RIOConf.HostLoadBase-1; | ||
243 | ** Therefore, we need to start copying at address | ||
244 | ** (caddr+p->RIOConf.HostLoadBase-rbp->Count) | ||
245 | */ | ||
246 | StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count]; | ||
247 | |||
248 | rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad); | ||
249 | rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP); | ||
250 | rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase); | ||
251 | rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count); | ||
252 | |||
253 | /* Make sure it fits */ | ||
254 | if (p->RIOConf.HostLoadBase < rbp->Count) { | ||
255 | rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n"); | ||
256 | p->RIOError.Error = HOST_FILE_TOO_LARGE; | ||
257 | func_exit(); | ||
258 | return -EFBIG; | ||
259 | } | ||
260 | /* | ||
261 | ** Ensure that the host really is stopped. | ||
262 | ** Disable it's external bus & twang its reset line. | ||
263 | */ | ||
264 | RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot); | ||
265 | |||
266 | /* | ||
267 | ** Copy the data directly from user space to the SRAM. | ||
268 | ** This ain't going to be none too clever if the download | ||
269 | ** code is bigger than this segment. | ||
270 | */ | ||
271 | rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n"); | ||
272 | |||
273 | /* Buffer to local memory as we want to use I/O space and | ||
274 | some cards only do 8 or 16 bit I/O */ | ||
275 | |||
276 | DownCode = vmalloc(rbp->Count); | ||
277 | if (!DownCode) { | ||
278 | p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY; | ||
279 | func_exit(); | ||
280 | return -ENOMEM; | ||
281 | } | ||
282 | if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) { | ||
283 | kfree(DownCode); | ||
284 | p->RIOError.Error = COPYIN_FAILED; | ||
285 | func_exit(); | ||
286 | return -EFAULT; | ||
287 | } | ||
288 | HostP->Copy(DownCode, StartP, rbp->Count); | ||
289 | vfree(DownCode); | ||
290 | |||
291 | rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n"); | ||
292 | |||
293 | /* | ||
294 | ** S T O P ! | ||
295 | ** | ||
296 | ** Upto this point the code has been fairly rational, and possibly | ||
297 | ** even straight forward. What follows is a pile of crud that will | ||
298 | ** magically turn into six bytes of transputer assembler. Normally | ||
299 | ** you would expect an array or something, but, being me, I have | ||
300 | ** chosen [been told] to use a technique whereby the startup code | ||
301 | ** will be correct if we change the loadbase for the code. Which | ||
302 | ** brings us onto another issue - the loadbase is the *end* of the | ||
303 | ** code, not the start. | ||
304 | ** | ||
305 | ** If I were you I wouldn't start from here. | ||
306 | */ | ||
307 | |||
308 | /* | ||
309 | ** We now need to insert a short boot section into | ||
310 | ** the memory at the end of Sram2. This is normally (de)composed | ||
311 | ** of the last eight bytes of the download code. The | ||
312 | ** download has been assembled/compiled to expect to be | ||
313 | ** loaded from 0x7FFF downwards. We have loaded it | ||
314 | ** at some other address. The startup code goes into the small | ||
315 | ** ram window at Sram2, in the last 8 bytes, which are really | ||
316 | ** at addresses 0x7FF8-0x7FFF. | ||
317 | ** | ||
318 | ** If the loadbase is, say, 0x7C00, then we need to branch to | ||
319 | ** address 0x7BFE to run the host.bin startup code. We assemble | ||
320 | ** this jump manually. | ||
321 | ** | ||
322 | ** The two byte sequence 60 08 is loaded into memory at address | ||
323 | ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0, | ||
324 | ** which adds '0' to the .O register, complements .O, and then shifts | ||
325 | ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will | ||
326 | ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new | ||
327 | ** location. Now, the branch starts from the value of .PC (or .IP or | ||
328 | ** whatever the bloody register is called on this chip), and the .PC | ||
329 | ** will be pointing to the location AFTER the branch, in this case | ||
330 | ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8. | ||
331 | ** | ||
332 | ** A long branch is coded at 0x7FF8. This consists of loading a four | ||
333 | ** byte offset into .O using nfix (as above) and pfix operators. The | ||
334 | ** pfix operates in exactly the same way as the nfix operator, but | ||
335 | ** without the complement operation. The offset, of course, must be | ||
336 | ** relative to the address of the byte AFTER the branch instruction, | ||
337 | ** which will be (urm) 0x7FFC, so, our final destination of the branch | ||
338 | ** (loadbase-2), has to be reached from here. Imagine that the loadbase | ||
339 | ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which | ||
340 | ** is the first byte of the initial two byte short local branch of the | ||
341 | ** download code). | ||
342 | ** | ||
343 | ** To code a jump from 0x7FFC (which is where the branch will start | ||
344 | ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)= | ||
345 | ** 0x7BFE. | ||
346 | ** This will be coded as four bytes: | ||
347 | ** 60 2C 20 02 | ||
348 | ** being nfix .O+0 | ||
349 | ** pfix .O+C | ||
350 | ** pfix .O+0 | ||
351 | ** jump .O+2 | ||
352 | ** | ||
353 | ** The nfix operator is used, so that the startup code will be | ||
354 | ** compatible with the whole Tp family. (lies, damn lies, it'll never | ||
355 | ** work in a month of Sundays). | ||
356 | ** | ||
357 | ** The nfix nyble is the 1s complement of the nyble value you | ||
358 | ** want to load - in this case we wanted 'F' so we nfix loaded '0'. | ||
359 | */ | ||
360 | |||
361 | |||
362 | /* | ||
363 | ** Dest points to the top 8 bytes of Sram2. The Tp jumps | ||
364 | ** to 0x7FFE at reset time, and starts executing. This is | ||
365 | ** a short branch to 0x7FF8, where a long branch is coded. | ||
366 | */ | ||
367 | |||
368 | DestP = &Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */ | ||
369 | |||
370 | #define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */ | ||
371 | #define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */ | ||
372 | #define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */ | ||
373 | |||
374 | /* | ||
375 | ** 0x7FFC is the address of the location following the last byte of | ||
376 | ** the four byte jump instruction. | ||
377 | ** READ THE ABOVE COMMENTS | ||
378 | ** | ||
379 | ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about. | ||
380 | ** Memsize is 64K for this range of Tp, so offset is a short (unsigned, | ||
381 | ** cos I don't understand 2's complement). | ||
382 | */ | ||
383 | offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC; | ||
384 | |||
385 | writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP); | ||
386 | writeb(PFIX((offset >> 8) & 0xF), DestP + 1); | ||
387 | writeb(PFIX((offset >> 4) & 0xF), DestP + 2); | ||
388 | writeb(JUMP(offset & 0xF), DestP + 3); | ||
389 | |||
390 | writeb(NFIX(0), DestP + 6); | ||
391 | writeb(JUMP(8), DestP + 7); | ||
392 | |||
393 | rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase); | ||
394 | rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset); | ||
395 | |||
396 | /* | ||
397 | ** Flag what is going on | ||
398 | */ | ||
399 | HostP->Flags &= ~RUN_STATE; | ||
400 | HostP->Flags |= RC_STARTUP; | ||
401 | |||
402 | /* | ||
403 | ** Grab a copy of the current ParmMap pointer, so we | ||
404 | ** can tell when it has changed. | ||
405 | */ | ||
406 | OldParmMap = readw(&HostP->__ParmMapR); | ||
407 | |||
408 | rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap); | ||
409 | |||
410 | /* | ||
411 | ** And start it running (I hope). | ||
412 | ** As there is nothing dodgy or obscure about the | ||
413 | ** above code, this is guaranteed to work every time. | ||
414 | */ | ||
415 | rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec); | ||
416 | |||
417 | rio_start_card_running(HostP); | ||
418 | |||
419 | rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n"); | ||
420 | |||
421 | /* | ||
422 | ** Now, wait for upto five seconds for the Tp to setup the parmmap | ||
423 | ** pointer: | ||
424 | */ | ||
425 | for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) { | ||
426 | rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR)); | ||
427 | mdelay(100); | ||
428 | |||
429 | } | ||
430 | |||
431 | /* | ||
432 | ** If the parmmap pointer is unchanged, then the host code | ||
433 | ** has crashed & burned in a really spectacular way | ||
434 | */ | ||
435 | if (readw(&HostP->__ParmMapR) == OldParmMap) { | ||
436 | rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR)); | ||
437 | rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n"); | ||
438 | HostP->Flags &= ~RUN_STATE; | ||
439 | HostP->Flags |= RC_STUFFED; | ||
440 | RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot ); | ||
441 | continue; | ||
442 | } | ||
443 | |||
444 | rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR)); | ||
445 | |||
446 | /* | ||
447 | ** Well, the board thought it was OK, and setup its parmmap | ||
448 | ** pointer. For the time being, we will pretend that this | ||
449 | ** board is running, and check out what the error flag says. | ||
450 | */ | ||
451 | |||
452 | /* | ||
453 | ** Grab a 32 bit pointer to the parmmap structure | ||
454 | */ | ||
455 | ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR)); | ||
456 | rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP); | ||
457 | ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR)); | ||
458 | rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP); | ||
459 | |||
460 | /* | ||
461 | ** The links entry should be 0xFFFF; we set it up | ||
462 | ** with a mask to say how many PHBs to use, and | ||
463 | ** which links to use. | ||
464 | */ | ||
465 | if (readw(&ParmMapP->links) != 0xFFFF) { | ||
466 | rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); | ||
467 | rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links)); | ||
468 | HostP->Flags &= ~RUN_STATE; | ||
469 | HostP->Flags |= RC_STUFFED; | ||
470 | RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot ); | ||
471 | continue; | ||
472 | } | ||
473 | |||
474 | writew(RIO_LINK_ENABLE, &ParmMapP->links); | ||
475 | |||
476 | /* | ||
477 | ** now wait for the card to set all the parmmap->XXX stuff | ||
478 | ** this is a wait of upto two seconds.... | ||
479 | */ | ||
480 | rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime); | ||
481 | HostP->timeout_id = 0; | ||
482 | for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) { | ||
483 | rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n"); | ||
484 | mdelay(100); | ||
485 | } | ||
486 | rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n"); | ||
487 | |||
488 | if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) { | ||
489 | rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); | ||
490 | rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n"); | ||
491 | HostP->Flags &= ~RUN_STATE; | ||
492 | HostP->Flags |= RC_STUFFED; | ||
493 | RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot ); | ||
494 | continue; | ||
495 | } | ||
496 | |||
497 | rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n"); | ||
498 | |||
499 | /* | ||
500 | ** It runs! It runs! | ||
501 | */ | ||
502 | rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum); | ||
503 | |||
504 | /* | ||
505 | ** set the time period between interrupts. | ||
506 | */ | ||
507 | writew(p->RIOConf.Timer, &ParmMapP->timer); | ||
508 | |||
509 | /* | ||
510 | ** Translate all the 16 bit pointers in the __ParmMapR into | ||
511 | ** 32 bit pointers for the driver in ioremap space. | ||
512 | */ | ||
513 | HostP->ParmMapP = ParmMapP; | ||
514 | HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr)); | ||
515 | HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups)); | ||
516 | HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr)); | ||
517 | HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr)); | ||
518 | |||
519 | /* | ||
520 | ** point the UnixRups at the real Rups | ||
521 | */ | ||
522 | for (RupN = 0; RupN < MAX_RUP; RupN++) { | ||
523 | HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN]; | ||
524 | HostP->UnixRups[RupN].Id = RupN + 1; | ||
525 | HostP->UnixRups[RupN].BaseSysPort = NO_PORT; | ||
526 | spin_lock_init(&HostP->UnixRups[RupN].RupLock); | ||
527 | } | ||
528 | |||
529 | for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) { | ||
530 | HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup; | ||
531 | HostP->UnixRups[RupN + MAX_RUP].Id = 0; | ||
532 | HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT; | ||
533 | spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock); | ||
534 | } | ||
535 | |||
536 | /* | ||
537 | ** point the PortP->Phbs at the real Phbs | ||
538 | */ | ||
539 | for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) { | ||
540 | if (p->RIOPortp[PortN]->HostP == HostP) { | ||
541 | struct Port *PortP = p->RIOPortp[PortN]; | ||
542 | struct PHB __iomem *PhbP; | ||
543 | /* int oldspl; */ | ||
544 | |||
545 | if (!PortP->Mapped) | ||
546 | continue; | ||
547 | |||
548 | PhbP = &HostP->PhbP[PortP->HostPort]; | ||
549 | rio_spin_lock_irqsave(&PortP->portSem, flags); | ||
550 | |||
551 | PortP->PhbP = PhbP; | ||
552 | |||
553 | PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add)); | ||
554 | PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start)); | ||
555 | PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end)); | ||
556 | PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove)); | ||
557 | PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start)); | ||
558 | PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end)); | ||
559 | |||
560 | rio_spin_unlock_irqrestore(&PortP->portSem, flags); | ||
561 | /* | ||
562 | ** point the UnixRup at the base SysPort | ||
563 | */ | ||
564 | if (!(PortN % PORTS_PER_RTA)) | ||
565 | HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN; | ||
566 | } | ||
567 | } | ||
568 | |||
569 | rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n"); | ||
570 | /* | ||
571 | ** last thing - show the world that everything is in place | ||
572 | */ | ||
573 | HostP->Flags &= ~RUN_STATE; | ||
574 | HostP->Flags |= RC_RUNNING; | ||
575 | } | ||
576 | /* | ||
577 | ** MPX always uses a poller. This is actually patched into the system | ||
578 | ** configuration and called directly from each clock tick. | ||
579 | ** | ||
580 | */ | ||
581 | p->RIOPolling = 1; | ||
582 | |||
583 | p->RIOSystemUp++; | ||
584 | |||
585 | rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec); | ||
586 | func_exit(); | ||
587 | return 0; | ||
588 | } | ||
589 | |||
590 | |||
591 | |||
592 | /** | ||
593 | * RIOBootRup - Boot an RTA | ||
594 | * @p: rio we are working with | ||
595 | * @Rup: Rup number | ||
596 | * @HostP: host object | ||
597 | * @PacketP: packet to use | ||
598 | * | ||
599 | * If we have successfully processed this boot, then | ||
600 | * return 1. If we havent, then return 0. | ||
601 | */ | ||
602 | |||
603 | int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP) | ||
604 | { | ||
605 | struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data; | ||
606 | struct PktCmd_M *PktReplyP; | ||
607 | struct CmdBlk *CmdBlkP; | ||
608 | unsigned int sequence; | ||
609 | |||
610 | /* | ||
611 | ** If we haven't been told what to boot, we can't boot it. | ||
612 | */ | ||
613 | if (p->RIONumBootPkts == 0) { | ||
614 | rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n"); | ||
615 | return 0; | ||
616 | } | ||
617 | |||
618 | /* | ||
619 | ** Special case of boot completed - if we get one of these then we | ||
620 | ** don't need a command block. For all other cases we do, so handle | ||
621 | ** this first and then get a command block, then handle every other | ||
622 | ** case, relinquishing the command block if disaster strikes! | ||
623 | */ | ||
624 | if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED)) | ||
625 | return RIOBootComplete(p, HostP, Rup, PktCmdP); | ||
626 | |||
627 | /* | ||
628 | ** Try to allocate a command block. This is in kernel space | ||
629 | */ | ||
630 | if (!(CmdBlkP = RIOGetCmdBlk())) { | ||
631 | rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n"); | ||
632 | return 0; | ||
633 | } | ||
634 | |||
635 | /* | ||
636 | ** Fill in the default info on the command block | ||
637 | */ | ||
638 | CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0; | ||
639 | CmdBlkP->Packet.dest_port = BOOT_RUP; | ||
640 | CmdBlkP->Packet.src_unit = 0; | ||
641 | CmdBlkP->Packet.src_port = BOOT_RUP; | ||
642 | |||
643 | CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL; | ||
644 | PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data; | ||
645 | |||
646 | /* | ||
647 | ** process COMMANDS on the boot rup! | ||
648 | */ | ||
649 | if (readb(&PacketP->len) & PKT_CMD_BIT) { | ||
650 | /* | ||
651 | ** We only expect one type of command - a BOOT_REQUEST! | ||
652 | */ | ||
653 | if (readb(&PktCmdP->Command) != BOOT_REQUEST) { | ||
654 | rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts); | ||
655 | RIOFreeCmdBlk(CmdBlkP); | ||
656 | return 1; | ||
657 | } | ||
658 | |||
659 | /* | ||
660 | ** Build a Boot Sequence command block | ||
661 | ** | ||
662 | ** We no longer need to use "Boot Mode", we'll always allow | ||
663 | ** boot requests - the boot will not complete if the device | ||
664 | ** appears in the bindings table. | ||
665 | ** | ||
666 | ** We'll just (always) set the command field in packet reply | ||
667 | ** to allow an attempted boot sequence : | ||
668 | */ | ||
669 | PktReplyP->Command = BOOT_SEQUENCE; | ||
670 | |||
671 | PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts; | ||
672 | PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase; | ||
673 | PktReplyP->BootSequence.CodeSize = p->RIOBootCount; | ||
674 | |||
675 | CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT; | ||
676 | |||
677 | memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4); | ||
678 | |||
679 | rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase); | ||
680 | |||
681 | /* | ||
682 | ** If this host is in slave mode, send the RTA an invalid boot | ||
683 | ** sequence command block to force it to kill the boot. We wait | ||
684 | ** for half a second before sending this packet to prevent the RTA | ||
685 | ** attempting to boot too often. The master host should then grab | ||
686 | ** the RTA and make it its own. | ||
687 | */ | ||
688 | p->RIOBooting++; | ||
689 | RIOQueueCmdBlk(HostP, Rup, CmdBlkP); | ||
690 | return 1; | ||
691 | } | ||
692 | |||
693 | /* | ||
694 | ** It is a request for boot data. | ||
695 | */ | ||
696 | sequence = readw(&PktCmdP->Sequence); | ||
697 | |||
698 | rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup); | ||
699 | |||
700 | if (sequence >= p->RIONumBootPkts) { | ||
701 | rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts); | ||
702 | } | ||
703 | |||
704 | PktReplyP->Sequence = sequence; | ||
705 | memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE); | ||
706 | CmdBlkP->Packet.len = PKT_MAX_DATA_LEN; | ||
707 | RIOQueueCmdBlk(HostP, Rup, CmdBlkP); | ||
708 | return 1; | ||
709 | } | ||
710 | |||
711 | /** | ||
712 | * RIOBootComplete - RTA boot is done | ||
713 | * @p: RIO we are working with | ||
714 | * @HostP: Host structure | ||
715 | * @Rup: RUP being used | ||
716 | * @PktCmdP: Packet command that was used | ||
717 | * | ||
718 | * This function is called when an RTA been booted. | ||
719 | * If booted by a host, HostP->HostUniqueNum is the booting host. | ||
720 | * If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA. | ||
721 | * RtaUniq is the booted RTA. | ||
722 | */ | ||
723 | |||
724 | static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP) | ||
725 | { | ||
726 | struct Map *MapP = NULL; | ||
727 | struct Map *MapP2 = NULL; | ||
728 | int Flag; | ||
729 | int found; | ||
730 | int host, rta; | ||
731 | int EmptySlot = -1; | ||
732 | int entry, entry2; | ||
733 | char *MyType, *MyName; | ||
734 | unsigned int MyLink; | ||
735 | unsigned short RtaType; | ||
736 | u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24); | ||
737 | |||
738 | p->RIOBooting = 0; | ||
739 | |||
740 | rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting); | ||
741 | |||
742 | /* | ||
743 | ** Determine type of unit (16/8 port RTA). | ||
744 | */ | ||
745 | |||
746 | RtaType = GetUnitType(RtaUniq); | ||
747 | if (Rup >= (unsigned short) MAX_RUP) | ||
748 | rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A'); | ||
749 | else | ||
750 | rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A'); | ||
751 | |||
752 | rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq); | ||
753 | |||
754 | if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) { | ||
755 | rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n"); | ||
756 | return 1; | ||
757 | } | ||
758 | |||
759 | /* | ||
760 | ** If this RTA has just booted an RTA which doesn't belong to this | ||
761 | ** system, or the system is in slave mode, do not attempt to create | ||
762 | ** a new table entry for it. | ||
763 | */ | ||
764 | |||
765 | if (!RIOBootOk(p, HostP, RtaUniq)) { | ||
766 | MyLink = readb(&PktCmdP->LinkNum); | ||
767 | if (Rup < (unsigned short) MAX_RUP) { | ||
768 | /* | ||
769 | ** RtaUniq was clone booted (by this RTA). Instruct this RTA | ||
770 | ** to hold off further attempts to boot on this link for 30 | ||
771 | ** seconds. | ||
772 | */ | ||
773 | if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) { | ||
774 | rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink); | ||
775 | } | ||
776 | } else | ||
777 | /* | ||
778 | ** RtaUniq was booted by this host. Set the booting link | ||
779 | ** to hold off for 30 seconds to give another unit a | ||
780 | ** chance to boot it. | ||
781 | */ | ||
782 | writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot); | ||
783 | rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum); | ||
784 | return 1; | ||
785 | } | ||
786 | |||
787 | /* | ||
788 | ** Check for a SLOT_IN_USE entry for this RTA attached to the | ||
789 | ** current host card in the driver table. | ||
790 | ** | ||
791 | ** If it exists, make a note that we have booted it. Other parts of | ||
792 | ** the driver are interested in this information at a later date, | ||
793 | ** in particular when the booting RTA asks for an ID for this unit, | ||
794 | ** we must have set the BOOTED flag, and the NEWBOOT flag is used | ||
795 | ** to force an open on any ports that where previously open on this | ||
796 | ** unit. | ||
797 | */ | ||
798 | for (entry = 0; entry < MAX_RUP; entry++) { | ||
799 | unsigned int sysport; | ||
800 | |||
801 | if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) { | ||
802 | HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT; | ||
803 | if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) { | ||
804 | if (sysport < p->RIOFirstPortsBooted) | ||
805 | p->RIOFirstPortsBooted = sysport; | ||
806 | if (sysport > p->RIOLastPortsBooted) | ||
807 | p->RIOLastPortsBooted = sysport; | ||
808 | /* | ||
809 | ** For a 16 port RTA, check the second bank of 8 ports | ||
810 | */ | ||
811 | if (RtaType == TYPE_RTA16) { | ||
812 | entry2 = HostP->Mapping[entry].ID2 - 1; | ||
813 | HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT; | ||
814 | sysport = HostP->Mapping[entry2].SysPort; | ||
815 | if (sysport < p->RIOFirstPortsBooted) | ||
816 | p->RIOFirstPortsBooted = sysport; | ||
817 | if (sysport > p->RIOLastPortsBooted) | ||
818 | p->RIOLastPortsBooted = sysport; | ||
819 | } | ||
820 | } | ||
821 | if (RtaType == TYPE_RTA16) | ||
822 | rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1); | ||
823 | else | ||
824 | rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1); | ||
825 | return 1; | ||
826 | } | ||
827 | } | ||
828 | |||
829 | rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n"); | ||
830 | |||
831 | if (Rup >= (unsigned short) MAX_RUP) { | ||
832 | /* | ||
833 | ** It was a host that did the booting | ||
834 | */ | ||
835 | MyType = "Host"; | ||
836 | MyName = HostP->Name; | ||
837 | } else { | ||
838 | /* | ||
839 | ** It was an RTA that did the booting | ||
840 | */ | ||
841 | MyType = "RTA"; | ||
842 | MyName = HostP->Mapping[Rup].Name; | ||
843 | } | ||
844 | MyLink = readb(&PktCmdP->LinkNum); | ||
845 | |||
846 | /* | ||
847 | ** There is no SLOT_IN_USE entry for this RTA attached to the current | ||
848 | ** host card in the driver table. | ||
849 | ** | ||
850 | ** Check for a SLOT_TENTATIVE entry for this RTA attached to the | ||
851 | ** current host card in the driver table. | ||
852 | ** | ||
853 | ** If we find one, then we re-use that slot. | ||
854 | */ | ||
855 | for (entry = 0; entry < MAX_RUP; entry++) { | ||
856 | if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) { | ||
857 | if (RtaType == TYPE_RTA16) { | ||
858 | entry2 = HostP->Mapping[entry].ID2 - 1; | ||
859 | if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq)) | ||
860 | rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2); | ||
861 | else | ||
862 | continue; | ||
863 | } else | ||
864 | rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry); | ||
865 | if (!p->RIONoMessage) | ||
866 | printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A'); | ||
867 | return 1; | ||
868 | } | ||
869 | } | ||
870 | |||
871 | /* | ||
872 | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA | ||
873 | ** attached to the current host card in the driver table. | ||
874 | ** | ||
875 | ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another | ||
876 | ** host for this RTA in the driver table. | ||
877 | ** | ||
878 | ** For a SLOT_IN_USE entry on another host, we need to delete the RTA | ||
879 | ** entry from the other host and add it to this host (using some of | ||
880 | ** the functions from table.c which do this). | ||
881 | ** For a SLOT_TENTATIVE entry on another host, we must cope with the | ||
882 | ** following scenario: | ||
883 | ** | ||
884 | ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry | ||
885 | ** in table) | ||
886 | ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE | ||
887 | ** entries) | ||
888 | ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE) | ||
889 | ** + Unplug RTA and plug back into host A. | ||
890 | ** + Configure RTA on host A. We now have the same RTA configured | ||
891 | ** with different ports on two different hosts. | ||
892 | */ | ||
893 | rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq); | ||
894 | found = 0; | ||
895 | Flag = 0; /* Convince the compiler this variable is initialized */ | ||
896 | for (host = 0; !found && (host < p->RIONumHosts); host++) { | ||
897 | for (rta = 0; rta < MAX_RUP; rta++) { | ||
898 | if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) { | ||
899 | Flag = p->RIOHosts[host].Mapping[rta].Flags; | ||
900 | MapP = &p->RIOHosts[host].Mapping[rta]; | ||
901 | if (RtaType == TYPE_RTA16) { | ||
902 | MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1]; | ||
903 | rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name); | ||
904 | } else | ||
905 | rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name); | ||
906 | found = 1; | ||
907 | break; | ||
908 | } | ||
909 | } | ||
910 | } | ||
911 | |||
912 | /* | ||
913 | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA | ||
914 | ** attached to the current host card in the driver table. | ||
915 | ** | ||
916 | ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on | ||
917 | ** another host for this RTA in the driver table... | ||
918 | ** | ||
919 | ** Check for a SLOT_IN_USE entry for this RTA in the config table. | ||
920 | */ | ||
921 | if (!MapP) { | ||
922 | rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq); | ||
923 | for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) { | ||
924 | rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum); | ||
925 | |||
926 | if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) { | ||
927 | MapP = &p->RIOSavedTable[rta]; | ||
928 | Flag = p->RIOSavedTable[rta].Flags; | ||
929 | if (RtaType == TYPE_RTA16) { | ||
930 | for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) { | ||
931 | if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq) | ||
932 | break; | ||
933 | } | ||
934 | MapP2 = &p->RIOSavedTable[entry2]; | ||
935 | rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2); | ||
936 | } else | ||
937 | rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta); | ||
938 | break; | ||
939 | } | ||
940 | } | ||
941 | } | ||
942 | |||
943 | /* | ||
944 | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA | ||
945 | ** attached to the current host card in the driver table. | ||
946 | ** | ||
947 | ** We may have found a SLOT_IN_USE entry on another host for this | ||
948 | ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry | ||
949 | ** on another host for this RTA in the driver table. | ||
950 | ** | ||
951 | ** Check the driver table for room to fit this newly discovered RTA. | ||
952 | ** RIOFindFreeID() first looks for free slots and if it does not | ||
953 | ** find any free slots it will then attempt to oust any | ||
954 | ** tentative entry in the table. | ||
955 | */ | ||
956 | EmptySlot = 1; | ||
957 | if (RtaType == TYPE_RTA16) { | ||
958 | if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) { | ||
959 | RIODefaultName(p, HostP, entry); | ||
960 | rio_fill_host_slot(entry, entry2, RtaUniq, HostP); | ||
961 | EmptySlot = 0; | ||
962 | } | ||
963 | } else { | ||
964 | if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) { | ||
965 | RIODefaultName(p, HostP, entry); | ||
966 | rio_fill_host_slot(entry, 0, RtaUniq, HostP); | ||
967 | EmptySlot = 0; | ||
968 | } | ||
969 | } | ||
970 | |||
971 | /* | ||
972 | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA | ||
973 | ** attached to the current host card in the driver table. | ||
974 | ** | ||
975 | ** If we found a SLOT_IN_USE entry on another host for this | ||
976 | ** RTA in the config or driver table, and there are enough free | ||
977 | ** slots in the driver table, then we need to move it over and | ||
978 | ** delete it from the other host. | ||
979 | ** If we found a SLOT_TENTATIVE entry on another host for this | ||
980 | ** RTA in the driver table, just delete the other host entry. | ||
981 | */ | ||
982 | if (EmptySlot == 0) { | ||
983 | if (MapP) { | ||
984 | if (Flag & SLOT_IN_USE) { | ||
985 | rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n"); | ||
986 | HostP->Mapping[entry].SysPort = MapP->SysPort; | ||
987 | memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN); | ||
988 | HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT; | ||
989 | RIOReMapPorts(p, HostP, &HostP->Mapping[entry]); | ||
990 | if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted) | ||
991 | p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort; | ||
992 | if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted) | ||
993 | p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort; | ||
994 | rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name); | ||
995 | } else { | ||
996 | rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n"); | ||
997 | HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT; | ||
998 | } | ||
999 | if (RtaType == TYPE_RTA16) { | ||
1000 | if (Flag & SLOT_IN_USE) { | ||
1001 | HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; | ||
1002 | HostP->Mapping[entry2].SysPort = MapP2->SysPort; | ||
1003 | /* | ||
1004 | ** Map second block of ttys for 16 port RTA | ||
1005 | */ | ||
1006 | RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]); | ||
1007 | if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted) | ||
1008 | p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort; | ||
1009 | if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted) | ||
1010 | p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort; | ||
1011 | rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name); | ||
1012 | } else | ||
1013 | HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; | ||
1014 | memset(MapP2, 0, sizeof(struct Map)); | ||
1015 | } | ||
1016 | memset(MapP, 0, sizeof(struct Map)); | ||
1017 | if (!p->RIONoMessage) | ||
1018 | printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A'); | ||
1019 | } else if (!p->RIONoMessage) | ||
1020 | printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A'); | ||
1021 | RIOSetChange(p); | ||
1022 | return 1; | ||
1023 | } | ||
1024 | |||
1025 | /* | ||
1026 | ** There is no room in the driver table to make an entry for the | ||
1027 | ** booted RTA. Keep a note of its Uniq Num in the overflow table, | ||
1028 | ** so we can ignore it's ID requests. | ||
1029 | */ | ||
1030 | if (!p->RIONoMessage) | ||
1031 | printk("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A'); | ||
1032 | for (entry = 0; entry < HostP->NumExtraBooted; entry++) { | ||
1033 | if (HostP->ExtraUnits[entry] == RtaUniq) { | ||
1034 | /* | ||
1035 | ** already got it! | ||
1036 | */ | ||
1037 | return 1; | ||
1038 | } | ||
1039 | } | ||
1040 | /* | ||
1041 | ** If there is room, add the unit to the list of extras | ||
1042 | */ | ||
1043 | if (HostP->NumExtraBooted < MAX_EXTRA_UNITS) | ||
1044 | HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq; | ||
1045 | return 1; | ||
1046 | } | ||
1047 | |||
1048 | |||
1049 | /* | ||
1050 | ** If the RTA or its host appears in the RIOBindTab[] structure then | ||
1051 | ** we mustn't boot the RTA and should return 0. | ||
1052 | ** This operation is slightly different from the other drivers for RIO | ||
1053 | ** in that this is designed to work with the new utilities | ||
1054 | ** not config.rio and is FAR SIMPLER. | ||
1055 | ** We no longer support the RIOBootMode variable. It is all done from the | ||
1056 | ** "boot/noboot" field in the rio.cf file. | ||
1057 | */ | ||
1058 | int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq) | ||
1059 | { | ||
1060 | int Entry; | ||
1061 | unsigned int HostUniq = HostP->UniqueNum; | ||
1062 | |||
1063 | /* | ||
1064 | ** Search bindings table for RTA or its parent. | ||
1065 | ** If it exists, return 0, else 1. | ||
1066 | */ | ||
1067 | for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) { | ||
1068 | if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq)) | ||
1069 | return 0; | ||
1070 | } | ||
1071 | return 1; | ||
1072 | } | ||
1073 | |||
1074 | /* | ||
1075 | ** Make an empty slot tentative. If this is a 16 port RTA, make both | ||
1076 | ** slots tentative, and the second one RTA_SECOND_SLOT as well. | ||
1077 | */ | ||
1078 | |||
1079 | void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host) | ||
1080 | { | ||
1081 | int link; | ||
1082 | |||
1083 | rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq); | ||
1084 | |||
1085 | host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE); | ||
1086 | host->Mapping[entry].SysPort = NO_PORT; | ||
1087 | host->Mapping[entry].RtaUniqueNum = rta_uniq; | ||
1088 | host->Mapping[entry].HostUniqueNum = host->UniqueNum; | ||
1089 | host->Mapping[entry].ID = entry + 1; | ||
1090 | host->Mapping[entry].ID2 = 0; | ||
1091 | if (entry2) { | ||
1092 | host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT); | ||
1093 | host->Mapping[entry2].SysPort = NO_PORT; | ||
1094 | host->Mapping[entry2].RtaUniqueNum = rta_uniq; | ||
1095 | host->Mapping[entry2].HostUniqueNum = host->UniqueNum; | ||
1096 | host->Mapping[entry2].Name[0] = '\0'; | ||
1097 | host->Mapping[entry2].ID = entry2 + 1; | ||
1098 | host->Mapping[entry2].ID2 = entry + 1; | ||
1099 | host->Mapping[entry].ID2 = entry2 + 1; | ||
1100 | } | ||
1101 | /* | ||
1102 | ** Must set these up, so that utilities show | ||
1103 | ** topology of 16 port RTAs correctly | ||
1104 | */ | ||
1105 | for (link = 0; link < LINKS_PER_UNIT; link++) { | ||
1106 | host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT; | ||
1107 | host->Mapping[entry].Topology[link].Link = NO_LINK; | ||
1108 | if (entry2) { | ||
1109 | host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT; | ||
1110 | host->Mapping[entry2].Topology[link].Link = NO_LINK; | ||
1111 | } | ||
1112 | } | ||
1113 | } | ||