aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/char/istallion.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char/istallion.c')
-rw-r--r--drivers/char/istallion.c5276
1 files changed, 5276 insertions, 0 deletions
diff --git a/drivers/char/istallion.c b/drivers/char/istallion.c
new file mode 100644
index 000000000000..21aed0e8779d
--- /dev/null
+++ b/drivers/char/istallion.c
@@ -0,0 +1,5276 @@
1/*****************************************************************************/
2
3/*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27/*****************************************************************************/
28
29#include <linux/config.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/serial.h>
36#include <linux/cdk.h>
37#include <linux/comstats.h>
38#include <linux/istallion.h>
39#include <linux/ioport.h>
40#include <linux/delay.h>
41#include <linux/init.h>
42#include <linux/devfs_fs_kernel.h>
43#include <linux/device.h>
44#include <linux/wait.h>
45
46#include <asm/io.h>
47#include <asm/uaccess.h>
48
49#ifdef CONFIG_PCI
50#include <linux/pci.h>
51#endif
52
53/*****************************************************************************/
54
55/*
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
60 * STAL = Stallion.
61 */
62#define BRD_UNKNOWN 0
63#define BRD_STALLION 1
64#define BRD_BRUMBY4 2
65#define BRD_ONBOARD2 3
66#define BRD_ONBOARD 4
67#define BRD_BRUMBY8 5
68#define BRD_BRUMBY16 6
69#define BRD_ONBOARDE 7
70#define BRD_ONBOARD32 9
71#define BRD_ONBOARD2_32 10
72#define BRD_ONBOARDRS 11
73#define BRD_EASYIO 20
74#define BRD_ECH 21
75#define BRD_ECHMC 22
76#define BRD_ECP 23
77#define BRD_ECPE 24
78#define BRD_ECPMC 25
79#define BRD_ECHPCI 26
80#define BRD_ECH64PCI 27
81#define BRD_EASYIOPCI 28
82#define BRD_ECPPCI 29
83
84#define BRD_BRUMBY BRD_BRUMBY4
85
86/*
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
93 * Some examples:
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
99 * Another example:
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
105 * Another example:
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
110 * Another example:
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
116 * Another example:
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
123 */
124
125typedef struct {
126 int brdtype;
127 int ioaddr1;
128 int ioaddr2;
129 unsigned long memaddr;
130 int irq;
131 int irqtype;
132} stlconf_t;
133
134static stlconf_t stli_brdconf[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
136};
137
138static int stli_nrbrds = sizeof(stli_brdconf) / sizeof(stlconf_t);
139
140/*
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
144 */
145#define STLI_EISAPROBE 0
146
147/*****************************************************************************/
148
149/*
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
152 */
153#ifndef STL_SIOMEMMAJOR
154#define STL_SIOMEMMAJOR 28
155#endif
156#ifndef STL_SERIALMAJOR
157#define STL_SERIALMAJOR 24
158#endif
159#ifndef STL_CALLOUTMAJOR
160#define STL_CALLOUTMAJOR 25
161#endif
162
163/*****************************************************************************/
164
165/*
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
168 */
169static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
170static char *stli_drvname = "istallion";
171static char *stli_drvversion = "5.6.0";
172static char *stli_serialname = "ttyE";
173
174static struct tty_driver *stli_serial;
175
176/*
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
182 */
183static char *stli_tmpwritebuf;
184static DECLARE_MUTEX(stli_tmpwritesem);
185
186#define STLI_TXBUFSIZE 4096
187
188/*
189 * Use a fast local buffer for cooked characters. Typically a whole
190 * bunch of cooked characters come in for a port, 1 at a time. So we
191 * save those up into a local buffer, then write out the whole lot
192 * with a large memcpy. Just use 1 buffer for all ports, since its
193 * use it is only need for short periods of time by each port.
194 */
195static char *stli_txcookbuf;
196static int stli_txcooksize;
197static int stli_txcookrealsize;
198static struct tty_struct *stli_txcooktty;
199
200/*
201 * Define a local default termios struct. All ports will be created
202 * with this termios initially. Basically all it defines is a raw port
203 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
204 */
205static struct termios stli_deftermios = {
206 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
207 .c_cc = INIT_C_CC,
208};
209
210/*
211 * Define global stats structures. Not used often, and can be
212 * re-used for each stats call.
213 */
214static comstats_t stli_comstats;
215static combrd_t stli_brdstats;
216static asystats_t stli_cdkstats;
217static stlibrd_t stli_dummybrd;
218static stliport_t stli_dummyport;
219
220/*****************************************************************************/
221
222static stlibrd_t *stli_brds[STL_MAXBRDS];
223
224static int stli_shared;
225
226/*
227 * Per board state flags. Used with the state field of the board struct.
228 * Not really much here... All we need to do is keep track of whether
229 * the board has been detected, and whether it is actually running a slave
230 * or not.
231 */
232#define BST_FOUND 0x1
233#define BST_STARTED 0x2
234
235/*
236 * Define the set of port state flags. These are marked for internal
237 * state purposes only, usually to do with the state of communications
238 * with the slave. Most of them need to be updated atomically, so always
239 * use the bit setting operations (unless protected by cli/sti).
240 */
241#define ST_INITIALIZING 1
242#define ST_OPENING 2
243#define ST_CLOSING 3
244#define ST_CMDING 4
245#define ST_TXBUSY 5
246#define ST_RXING 6
247#define ST_DOFLUSHRX 7
248#define ST_DOFLUSHTX 8
249#define ST_DOSIGS 9
250#define ST_RXSTOP 10
251#define ST_GETSIGS 11
252
253/*
254 * Define an array of board names as printable strings. Handy for
255 * referencing boards when printing trace and stuff.
256 */
257static char *stli_brdnames[] = {
258 "Unknown",
259 "Stallion",
260 "Brumby",
261 "ONboard-MC",
262 "ONboard",
263 "Brumby",
264 "Brumby",
265 "ONboard-EI",
266 (char *) NULL,
267 "ONboard",
268 "ONboard-MC",
269 "ONboard-MC",
270 (char *) NULL,
271 (char *) NULL,
272 (char *) NULL,
273 (char *) NULL,
274 (char *) NULL,
275 (char *) NULL,
276 (char *) NULL,
277 (char *) NULL,
278 "EasyIO",
279 "EC8/32-AT",
280 "EC8/32-MC",
281 "EC8/64-AT",
282 "EC8/64-EI",
283 "EC8/64-MC",
284 "EC8/32-PCI",
285 "EC8/64-PCI",
286 "EasyIO-PCI",
287 "EC/RA-PCI",
288};
289
290/*****************************************************************************/
291
292#ifdef MODULE
293/*
294 * Define some string labels for arguments passed from the module
295 * load line. These allow for easy board definitions, and easy
296 * modification of the io, memory and irq resoucres.
297 */
298
299static char *board0[8];
300static char *board1[8];
301static char *board2[8];
302static char *board3[8];
303
304static char **stli_brdsp[] = {
305 (char **) &board0,
306 (char **) &board1,
307 (char **) &board2,
308 (char **) &board3
309};
310
311/*
312 * Define a set of common board names, and types. This is used to
313 * parse any module arguments.
314 */
315
316typedef struct stlibrdtype {
317 char *name;
318 int type;
319} stlibrdtype_t;
320
321static stlibrdtype_t stli_brdstr[] = {
322 { "stallion", BRD_STALLION },
323 { "1", BRD_STALLION },
324 { "brumby", BRD_BRUMBY },
325 { "brumby4", BRD_BRUMBY },
326 { "brumby/4", BRD_BRUMBY },
327 { "brumby-4", BRD_BRUMBY },
328 { "brumby8", BRD_BRUMBY },
329 { "brumby/8", BRD_BRUMBY },
330 { "brumby-8", BRD_BRUMBY },
331 { "brumby16", BRD_BRUMBY },
332 { "brumby/16", BRD_BRUMBY },
333 { "brumby-16", BRD_BRUMBY },
334 { "2", BRD_BRUMBY },
335 { "onboard2", BRD_ONBOARD2 },
336 { "onboard-2", BRD_ONBOARD2 },
337 { "onboard/2", BRD_ONBOARD2 },
338 { "onboard-mc", BRD_ONBOARD2 },
339 { "onboard/mc", BRD_ONBOARD2 },
340 { "onboard-mca", BRD_ONBOARD2 },
341 { "onboard/mca", BRD_ONBOARD2 },
342 { "3", BRD_ONBOARD2 },
343 { "onboard", BRD_ONBOARD },
344 { "onboardat", BRD_ONBOARD },
345 { "4", BRD_ONBOARD },
346 { "onboarde", BRD_ONBOARDE },
347 { "onboard-e", BRD_ONBOARDE },
348 { "onboard/e", BRD_ONBOARDE },
349 { "onboard-ei", BRD_ONBOARDE },
350 { "onboard/ei", BRD_ONBOARDE },
351 { "7", BRD_ONBOARDE },
352 { "ecp", BRD_ECP },
353 { "ecpat", BRD_ECP },
354 { "ec8/64", BRD_ECP },
355 { "ec8/64-at", BRD_ECP },
356 { "ec8/64-isa", BRD_ECP },
357 { "23", BRD_ECP },
358 { "ecpe", BRD_ECPE },
359 { "ecpei", BRD_ECPE },
360 { "ec8/64-e", BRD_ECPE },
361 { "ec8/64-ei", BRD_ECPE },
362 { "24", BRD_ECPE },
363 { "ecpmc", BRD_ECPMC },
364 { "ec8/64-mc", BRD_ECPMC },
365 { "ec8/64-mca", BRD_ECPMC },
366 { "25", BRD_ECPMC },
367 { "ecppci", BRD_ECPPCI },
368 { "ec/ra", BRD_ECPPCI },
369 { "ec/ra-pc", BRD_ECPPCI },
370 { "ec/ra-pci", BRD_ECPPCI },
371 { "29", BRD_ECPPCI },
372};
373
374/*
375 * Define the module agruments.
376 */
377MODULE_AUTHOR("Greg Ungerer");
378MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
379MODULE_LICENSE("GPL");
380
381
382MODULE_PARM(board0, "1-3s");
383MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
384MODULE_PARM(board1, "1-3s");
385MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
386MODULE_PARM(board2, "1-3s");
387MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
388MODULE_PARM(board3, "1-3s");
389MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
390
391#endif
392
393/*
394 * Set up a default memory address table for EISA board probing.
395 * The default addresses are all bellow 1Mbyte, which has to be the
396 * case anyway. They should be safe, since we only read values from
397 * them, and interrupts are disabled while we do it. If the higher
398 * memory support is compiled in then we also try probing around
399 * the 1Gb, 2Gb and 3Gb areas as well...
400 */
401static unsigned long stli_eisamemprobeaddrs[] = {
402 0xc0000, 0xd0000, 0xe0000, 0xf0000,
403 0x80000000, 0x80010000, 0x80020000, 0x80030000,
404 0x40000000, 0x40010000, 0x40020000, 0x40030000,
405 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
406 0xff000000, 0xff010000, 0xff020000, 0xff030000,
407};
408
409static int stli_eisamempsize = sizeof(stli_eisamemprobeaddrs) / sizeof(unsigned long);
410int stli_eisaprobe = STLI_EISAPROBE;
411
412/*
413 * Define the Stallion PCI vendor and device IDs.
414 */
415#ifdef CONFIG_PCI
416#ifndef PCI_VENDOR_ID_STALLION
417#define PCI_VENDOR_ID_STALLION 0x124d
418#endif
419#ifndef PCI_DEVICE_ID_ECRA
420#define PCI_DEVICE_ID_ECRA 0x0004
421#endif
422
423static struct pci_device_id istallion_pci_tbl[] = {
424 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
425 { 0 }
426};
427MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
428
429#endif /* CONFIG_PCI */
430
431/*****************************************************************************/
432
433/*
434 * Hardware configuration info for ECP boards. These defines apply
435 * to the directly accessible io ports of the ECP. There is a set of
436 * defines for each ECP board type, ISA, EISA, MCA and PCI.
437 */
438#define ECP_IOSIZE 4
439
440#define ECP_MEMSIZE (128 * 1024)
441#define ECP_PCIMEMSIZE (256 * 1024)
442
443#define ECP_ATPAGESIZE (4 * 1024)
444#define ECP_MCPAGESIZE (4 * 1024)
445#define ECP_EIPAGESIZE (64 * 1024)
446#define ECP_PCIPAGESIZE (64 * 1024)
447
448#define STL_EISAID 0x8c4e
449
450/*
451 * Important defines for the ISA class of ECP board.
452 */
453#define ECP_ATIREG 0
454#define ECP_ATCONFR 1
455#define ECP_ATMEMAR 2
456#define ECP_ATMEMPR 3
457#define ECP_ATSTOP 0x1
458#define ECP_ATINTENAB 0x10
459#define ECP_ATENABLE 0x20
460#define ECP_ATDISABLE 0x00
461#define ECP_ATADDRMASK 0x3f000
462#define ECP_ATADDRSHFT 12
463
464/*
465 * Important defines for the EISA class of ECP board.
466 */
467#define ECP_EIIREG 0
468#define ECP_EIMEMARL 1
469#define ECP_EICONFR 2
470#define ECP_EIMEMARH 3
471#define ECP_EIENABLE 0x1
472#define ECP_EIDISABLE 0x0
473#define ECP_EISTOP 0x4
474#define ECP_EIEDGE 0x00
475#define ECP_EILEVEL 0x80
476#define ECP_EIADDRMASKL 0x00ff0000
477#define ECP_EIADDRSHFTL 16
478#define ECP_EIADDRMASKH 0xff000000
479#define ECP_EIADDRSHFTH 24
480#define ECP_EIBRDENAB 0xc84
481
482#define ECP_EISAID 0x4
483
484/*
485 * Important defines for the Micro-channel class of ECP board.
486 * (It has a lot in common with the ISA boards.)
487 */
488#define ECP_MCIREG 0
489#define ECP_MCCONFR 1
490#define ECP_MCSTOP 0x20
491#define ECP_MCENABLE 0x80
492#define ECP_MCDISABLE 0x00
493
494/*
495 * Important defines for the PCI class of ECP board.
496 * (It has a lot in common with the other ECP boards.)
497 */
498#define ECP_PCIIREG 0
499#define ECP_PCICONFR 1
500#define ECP_PCISTOP 0x01
501
502/*
503 * Hardware configuration info for ONboard and Brumby boards. These
504 * defines apply to the directly accessible io ports of these boards.
505 */
506#define ONB_IOSIZE 16
507#define ONB_MEMSIZE (64 * 1024)
508#define ONB_ATPAGESIZE (64 * 1024)
509#define ONB_MCPAGESIZE (64 * 1024)
510#define ONB_EIMEMSIZE (128 * 1024)
511#define ONB_EIPAGESIZE (64 * 1024)
512
513/*
514 * Important defines for the ISA class of ONboard board.
515 */
516#define ONB_ATIREG 0
517#define ONB_ATMEMAR 1
518#define ONB_ATCONFR 2
519#define ONB_ATSTOP 0x4
520#define ONB_ATENABLE 0x01
521#define ONB_ATDISABLE 0x00
522#define ONB_ATADDRMASK 0xff0000
523#define ONB_ATADDRSHFT 16
524
525#define ONB_MEMENABLO 0
526#define ONB_MEMENABHI 0x02
527
528/*
529 * Important defines for the EISA class of ONboard board.
530 */
531#define ONB_EIIREG 0
532#define ONB_EIMEMARL 1
533#define ONB_EICONFR 2
534#define ONB_EIMEMARH 3
535#define ONB_EIENABLE 0x1
536#define ONB_EIDISABLE 0x0
537#define ONB_EISTOP 0x4
538#define ONB_EIEDGE 0x00
539#define ONB_EILEVEL 0x80
540#define ONB_EIADDRMASKL 0x00ff0000
541#define ONB_EIADDRSHFTL 16
542#define ONB_EIADDRMASKH 0xff000000
543#define ONB_EIADDRSHFTH 24
544#define ONB_EIBRDENAB 0xc84
545
546#define ONB_EISAID 0x1
547
548/*
549 * Important defines for the Brumby boards. They are pretty simple,
550 * there is not much that is programmably configurable.
551 */
552#define BBY_IOSIZE 16
553#define BBY_MEMSIZE (64 * 1024)
554#define BBY_PAGESIZE (16 * 1024)
555
556#define BBY_ATIREG 0
557#define BBY_ATCONFR 1
558#define BBY_ATSTOP 0x4
559
560/*
561 * Important defines for the Stallion boards. They are pretty simple,
562 * there is not much that is programmably configurable.
563 */
564#define STAL_IOSIZE 16
565#define STAL_MEMSIZE (64 * 1024)
566#define STAL_PAGESIZE (64 * 1024)
567
568/*
569 * Define the set of status register values for EasyConnection panels.
570 * The signature will return with the status value for each panel. From
571 * this we can determine what is attached to the board - before we have
572 * actually down loaded any code to it.
573 */
574#define ECH_PNLSTATUS 2
575#define ECH_PNL16PORT 0x20
576#define ECH_PNLIDMASK 0x07
577#define ECH_PNLXPID 0x40
578#define ECH_PNLINTRPEND 0x80
579
580/*
581 * Define some macros to do things to the board. Even those these boards
582 * are somewhat related there is often significantly different ways of
583 * doing some operation on it (like enable, paging, reset, etc). So each
584 * board class has a set of functions which do the commonly required
585 * operations. The macros below basically just call these functions,
586 * generally checking for a NULL function - which means that the board
587 * needs nothing done to it to achieve this operation!
588 */
589#define EBRDINIT(brdp) \
590 if (brdp->init != NULL) \
591 (* brdp->init)(brdp)
592
593#define EBRDENABLE(brdp) \
594 if (brdp->enable != NULL) \
595 (* brdp->enable)(brdp);
596
597#define EBRDDISABLE(brdp) \
598 if (brdp->disable != NULL) \
599 (* brdp->disable)(brdp);
600
601#define EBRDINTR(brdp) \
602 if (brdp->intr != NULL) \
603 (* brdp->intr)(brdp);
604
605#define EBRDRESET(brdp) \
606 if (brdp->reset != NULL) \
607 (* brdp->reset)(brdp);
608
609#define EBRDGETMEMPTR(brdp,offset) \
610 (* brdp->getmemptr)(brdp, offset, __LINE__)
611
612/*
613 * Define the maximal baud rate, and the default baud base for ports.
614 */
615#define STL_MAXBAUD 460800
616#define STL_BAUDBASE 115200
617#define STL_CLOSEDELAY (5 * HZ / 10)
618
619/*****************************************************************************/
620
621/*
622 * Define macros to extract a brd or port number from a minor number.
623 */
624#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
625#define MINOR2PORT(min) ((min) & 0x3f)
626
627/*
628 * Define a baud rate table that converts termios baud rate selector
629 * into the actual baud rate value. All baud rate calculations are based
630 * on the actual baud rate required.
631 */
632static unsigned int stli_baudrates[] = {
633 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
634 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
635};
636
637/*****************************************************************************/
638
639/*
640 * Define some handy local macros...
641 */
642#undef MIN
643#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
644
645#undef TOLOWER
646#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
647
648/*****************************************************************************/
649
650/*
651 * Prototype all functions in this driver!
652 */
653
654#ifdef MODULE
655static void stli_argbrds(void);
656static int stli_parsebrd(stlconf_t *confp, char **argp);
657
658static unsigned long stli_atol(char *str);
659#endif
660
661int stli_init(void);
662static int stli_open(struct tty_struct *tty, struct file *filp);
663static void stli_close(struct tty_struct *tty, struct file *filp);
664static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
665static void stli_putchar(struct tty_struct *tty, unsigned char ch);
666static void stli_flushchars(struct tty_struct *tty);
667static int stli_writeroom(struct tty_struct *tty);
668static int stli_charsinbuffer(struct tty_struct *tty);
669static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
670static void stli_settermios(struct tty_struct *tty, struct termios *old);
671static void stli_throttle(struct tty_struct *tty);
672static void stli_unthrottle(struct tty_struct *tty);
673static void stli_stop(struct tty_struct *tty);
674static void stli_start(struct tty_struct *tty);
675static void stli_flushbuffer(struct tty_struct *tty);
676static void stli_breakctl(struct tty_struct *tty, int state);
677static void stli_waituntilsent(struct tty_struct *tty, int timeout);
678static void stli_sendxchar(struct tty_struct *tty, char ch);
679static void stli_hangup(struct tty_struct *tty);
680static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
681
682static int stli_brdinit(stlibrd_t *brdp);
683static int stli_startbrd(stlibrd_t *brdp);
684static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
685static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
686static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
687static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
688static void stli_poll(unsigned long arg);
689static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
690static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
691static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
692static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
693static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
694static void stli_dohangup(void *arg);
695static int stli_setport(stliport_t *portp);
696static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
697static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
698static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
699static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
700static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
701static long stli_mktiocm(unsigned long sigvalue);
702static void stli_read(stlibrd_t *brdp, stliport_t *portp);
703static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
704static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
705static int stli_getbrdstats(combrd_t __user *bp);
706static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
707static int stli_portcmdstats(stliport_t *portp);
708static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
709static int stli_getportstruct(stliport_t __user *arg);
710static int stli_getbrdstruct(stlibrd_t __user *arg);
711static void *stli_memalloc(int len);
712static stlibrd_t *stli_allocbrd(void);
713
714static void stli_ecpinit(stlibrd_t *brdp);
715static void stli_ecpenable(stlibrd_t *brdp);
716static void stli_ecpdisable(stlibrd_t *brdp);
717static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
718static void stli_ecpreset(stlibrd_t *brdp);
719static void stli_ecpintr(stlibrd_t *brdp);
720static void stli_ecpeiinit(stlibrd_t *brdp);
721static void stli_ecpeienable(stlibrd_t *brdp);
722static void stli_ecpeidisable(stlibrd_t *brdp);
723static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
724static void stli_ecpeireset(stlibrd_t *brdp);
725static void stli_ecpmcenable(stlibrd_t *brdp);
726static void stli_ecpmcdisable(stlibrd_t *brdp);
727static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
728static void stli_ecpmcreset(stlibrd_t *brdp);
729static void stli_ecppciinit(stlibrd_t *brdp);
730static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
731static void stli_ecppcireset(stlibrd_t *brdp);
732
733static void stli_onbinit(stlibrd_t *brdp);
734static void stli_onbenable(stlibrd_t *brdp);
735static void stli_onbdisable(stlibrd_t *brdp);
736static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
737static void stli_onbreset(stlibrd_t *brdp);
738static void stli_onbeinit(stlibrd_t *brdp);
739static void stli_onbeenable(stlibrd_t *brdp);
740static void stli_onbedisable(stlibrd_t *brdp);
741static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
742static void stli_onbereset(stlibrd_t *brdp);
743static void stli_bbyinit(stlibrd_t *brdp);
744static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
745static void stli_bbyreset(stlibrd_t *brdp);
746static void stli_stalinit(stlibrd_t *brdp);
747static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
748static void stli_stalreset(stlibrd_t *brdp);
749
750static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
751
752static int stli_initecp(stlibrd_t *brdp);
753static int stli_initonb(stlibrd_t *brdp);
754static int stli_eisamemprobe(stlibrd_t *brdp);
755static int stli_initports(stlibrd_t *brdp);
756
757#ifdef CONFIG_PCI
758static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
759#endif
760
761/*****************************************************************************/
762
763/*
764 * Define the driver info for a user level shared memory device. This
765 * device will work sort of like the /dev/kmem device - except that it
766 * will give access to the shared memory on the Stallion intelligent
767 * board. This is also a very useful debugging tool.
768 */
769static struct file_operations stli_fsiomem = {
770 .owner = THIS_MODULE,
771 .read = stli_memread,
772 .write = stli_memwrite,
773 .ioctl = stli_memioctl,
774};
775
776/*****************************************************************************/
777
778/*
779 * Define a timer_list entry for our poll routine. The slave board
780 * is polled every so often to see if anything needs doing. This is
781 * much cheaper on host cpu than using interrupts. It turns out to
782 * not increase character latency by much either...
783 */
784static struct timer_list stli_timerlist = TIMER_INITIALIZER(stli_poll, 0, 0);
785
786static int stli_timeron;
787
788/*
789 * Define the calculation for the timeout routine.
790 */
791#define STLI_TIMEOUT (jiffies + 1)
792
793/*****************************************************************************/
794
795static struct class_simple *istallion_class;
796
797#ifdef MODULE
798
799/*
800 * Loadable module initialization stuff.
801 */
802
803static int __init istallion_module_init(void)
804{
805 unsigned long flags;
806
807#ifdef DEBUG
808 printk("init_module()\n");
809#endif
810
811 save_flags(flags);
812 cli();
813 stli_init();
814 restore_flags(flags);
815
816 return(0);
817}
818
819/*****************************************************************************/
820
821static void __exit istallion_module_exit(void)
822{
823 stlibrd_t *brdp;
824 stliport_t *portp;
825 unsigned long flags;
826 int i, j;
827
828#ifdef DEBUG
829 printk("cleanup_module()\n");
830#endif
831
832 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
833 stli_drvversion);
834
835 save_flags(flags);
836 cli();
837
838/*
839 * Free up all allocated resources used by the ports. This includes
840 * memory and interrupts.
841 */
842 if (stli_timeron) {
843 stli_timeron = 0;
844 del_timer(&stli_timerlist);
845 }
846
847 i = tty_unregister_driver(stli_serial);
848 if (i) {
849 printk("STALLION: failed to un-register tty driver, "
850 "errno=%d\n", -i);
851 restore_flags(flags);
852 return;
853 }
854 put_tty_driver(stli_serial);
855 for (i = 0; i < 4; i++) {
856 devfs_remove("staliomem/%d", i);
857 class_simple_device_remove(MKDEV(STL_SIOMEMMAJOR, i));
858 }
859 devfs_remove("staliomem");
860 class_simple_destroy(istallion_class);
861 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
862 printk("STALLION: failed to un-register serial memory device, "
863 "errno=%d\n", -i);
864 if (stli_tmpwritebuf != (char *) NULL)
865 kfree(stli_tmpwritebuf);
866 if (stli_txcookbuf != (char *) NULL)
867 kfree(stli_txcookbuf);
868
869 for (i = 0; (i < stli_nrbrds); i++) {
870 if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
871 continue;
872 for (j = 0; (j < STL_MAXPORTS); j++) {
873 portp = brdp->ports[j];
874 if (portp != (stliport_t *) NULL) {
875 if (portp->tty != (struct tty_struct *) NULL)
876 tty_hangup(portp->tty);
877 kfree(portp);
878 }
879 }
880
881 iounmap(brdp->membase);
882 if (brdp->iosize > 0)
883 release_region(brdp->iobase, brdp->iosize);
884 kfree(brdp);
885 stli_brds[i] = (stlibrd_t *) NULL;
886 }
887
888 restore_flags(flags);
889}
890
891module_init(istallion_module_init);
892module_exit(istallion_module_exit);
893
894/*****************************************************************************/
895
896/*
897 * Check for any arguments passed in on the module load command line.
898 */
899
900static void stli_argbrds(void)
901{
902 stlconf_t conf;
903 stlibrd_t *brdp;
904 int nrargs, i;
905
906#ifdef DEBUG
907 printk("stli_argbrds()\n");
908#endif
909
910 nrargs = sizeof(stli_brdsp) / sizeof(char **);
911
912 for (i = stli_nrbrds; (i < nrargs); i++) {
913 memset(&conf, 0, sizeof(conf));
914 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
915 continue;
916 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
917 continue;
918 stli_nrbrds = i + 1;
919 brdp->brdnr = i;
920 brdp->brdtype = conf.brdtype;
921 brdp->iobase = conf.ioaddr1;
922 brdp->memaddr = conf.memaddr;
923 stli_brdinit(brdp);
924 }
925}
926
927/*****************************************************************************/
928
929/*
930 * Convert an ascii string number into an unsigned long.
931 */
932
933static unsigned long stli_atol(char *str)
934{
935 unsigned long val;
936 int base, c;
937 char *sp;
938
939 val = 0;
940 sp = str;
941 if ((*sp == '0') && (*(sp+1) == 'x')) {
942 base = 16;
943 sp += 2;
944 } else if (*sp == '0') {
945 base = 8;
946 sp++;
947 } else {
948 base = 10;
949 }
950
951 for (; (*sp != 0); sp++) {
952 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
953 if ((c < 0) || (c >= base)) {
954 printk("STALLION: invalid argument %s\n", str);
955 val = 0;
956 break;
957 }
958 val = (val * base) + c;
959 }
960 return(val);
961}
962
963/*****************************************************************************/
964
965/*
966 * Parse the supplied argument string, into the board conf struct.
967 */
968
969static int stli_parsebrd(stlconf_t *confp, char **argp)
970{
971 char *sp;
972 int nrbrdnames, i;
973
974#ifdef DEBUG
975 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
976#endif
977
978 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
979 return(0);
980
981 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
982 *sp = TOLOWER(*sp);
983
984 nrbrdnames = sizeof(stli_brdstr) / sizeof(stlibrdtype_t);
985 for (i = 0; (i < nrbrdnames); i++) {
986 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
987 break;
988 }
989 if (i >= nrbrdnames) {
990 printk("STALLION: unknown board name, %s?\n", argp[0]);
991 return(0);
992 }
993
994 confp->brdtype = stli_brdstr[i].type;
995 if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
996 confp->ioaddr1 = stli_atol(argp[1]);
997 if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
998 confp->memaddr = stli_atol(argp[2]);
999 return(1);
1000}
1001
1002#endif
1003
1004/*****************************************************************************/
1005
1006/*
1007 * Local driver kernel malloc routine.
1008 */
1009
1010static void *stli_memalloc(int len)
1011{
1012 return((void *) kmalloc(len, GFP_KERNEL));
1013}
1014
1015/*****************************************************************************/
1016
1017static int stli_open(struct tty_struct *tty, struct file *filp)
1018{
1019 stlibrd_t *brdp;
1020 stliport_t *portp;
1021 unsigned int minordev;
1022 int brdnr, portnr, rc;
1023
1024#ifdef DEBUG
1025 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
1026 (int) filp, tty->name);
1027#endif
1028
1029 minordev = tty->index;
1030 brdnr = MINOR2BRD(minordev);
1031 if (brdnr >= stli_nrbrds)
1032 return(-ENODEV);
1033 brdp = stli_brds[brdnr];
1034 if (brdp == (stlibrd_t *) NULL)
1035 return(-ENODEV);
1036 if ((brdp->state & BST_STARTED) == 0)
1037 return(-ENODEV);
1038 portnr = MINOR2PORT(minordev);
1039 if ((portnr < 0) || (portnr > brdp->nrports))
1040 return(-ENODEV);
1041
1042 portp = brdp->ports[portnr];
1043 if (portp == (stliport_t *) NULL)
1044 return(-ENODEV);
1045 if (portp->devnr < 1)
1046 return(-ENODEV);
1047
1048
1049/*
1050 * Check if this port is in the middle of closing. If so then wait
1051 * until it is closed then return error status based on flag settings.
1052 * The sleep here does not need interrupt protection since the wakeup
1053 * for it is done with the same context.
1054 */
1055 if (portp->flags & ASYNC_CLOSING) {
1056 interruptible_sleep_on(&portp->close_wait);
1057 if (portp->flags & ASYNC_HUP_NOTIFY)
1058 return(-EAGAIN);
1059 return(-ERESTARTSYS);
1060 }
1061
1062/*
1063 * On the first open of the device setup the port hardware, and
1064 * initialize the per port data structure. Since initializing the port
1065 * requires several commands to the board we will need to wait for any
1066 * other open that is already initializing the port.
1067 */
1068 portp->tty = tty;
1069 tty->driver_data = portp;
1070 portp->refcount++;
1071
1072 wait_event_interruptible(portp->raw_wait,
1073 !test_bit(ST_INITIALIZING, &portp->state));
1074 if (signal_pending(current))
1075 return(-ERESTARTSYS);
1076
1077 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1078 set_bit(ST_INITIALIZING, &portp->state);
1079 if ((rc = stli_initopen(brdp, portp)) >= 0) {
1080 portp->flags |= ASYNC_INITIALIZED;
1081 clear_bit(TTY_IO_ERROR, &tty->flags);
1082 }
1083 clear_bit(ST_INITIALIZING, &portp->state);
1084 wake_up_interruptible(&portp->raw_wait);
1085 if (rc < 0)
1086 return(rc);
1087 }
1088
1089/*
1090 * Check if this port is in the middle of closing. If so then wait
1091 * until it is closed then return error status, based on flag settings.
1092 * The sleep here does not need interrupt protection since the wakeup
1093 * for it is done with the same context.
1094 */
1095 if (portp->flags & ASYNC_CLOSING) {
1096 interruptible_sleep_on(&portp->close_wait);
1097 if (portp->flags & ASYNC_HUP_NOTIFY)
1098 return(-EAGAIN);
1099 return(-ERESTARTSYS);
1100 }
1101
1102/*
1103 * Based on type of open being done check if it can overlap with any
1104 * previous opens still in effect. If we are a normal serial device
1105 * then also we might have to wait for carrier.
1106 */
1107 if (!(filp->f_flags & O_NONBLOCK)) {
1108 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1109 return(rc);
1110 }
1111 portp->flags |= ASYNC_NORMAL_ACTIVE;
1112 return(0);
1113}
1114
1115/*****************************************************************************/
1116
1117static void stli_close(struct tty_struct *tty, struct file *filp)
1118{
1119 stlibrd_t *brdp;
1120 stliport_t *portp;
1121 unsigned long flags;
1122
1123#ifdef DEBUG
1124 printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1125#endif
1126
1127 portp = tty->driver_data;
1128 if (portp == (stliport_t *) NULL)
1129 return;
1130
1131 save_flags(flags);
1132 cli();
1133 if (tty_hung_up_p(filp)) {
1134 restore_flags(flags);
1135 return;
1136 }
1137 if ((tty->count == 1) && (portp->refcount != 1))
1138 portp->refcount = 1;
1139 if (portp->refcount-- > 1) {
1140 restore_flags(flags);
1141 return;
1142 }
1143
1144 portp->flags |= ASYNC_CLOSING;
1145
1146/*
1147 * May want to wait for data to drain before closing. The BUSY flag
1148 * keeps track of whether we are still transmitting or not. It is
1149 * updated by messages from the slave - indicating when all chars
1150 * really have drained.
1151 */
1152 if (tty == stli_txcooktty)
1153 stli_flushchars(tty);
1154 tty->closing = 1;
1155 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1156 tty_wait_until_sent(tty, portp->closing_wait);
1157
1158 portp->flags &= ~ASYNC_INITIALIZED;
1159 brdp = stli_brds[portp->brdnr];
1160 stli_rawclose(brdp, portp, 0, 0);
1161 if (tty->termios->c_cflag & HUPCL) {
1162 stli_mkasysigs(&portp->asig, 0, 0);
1163 if (test_bit(ST_CMDING, &portp->state))
1164 set_bit(ST_DOSIGS, &portp->state);
1165 else
1166 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1167 sizeof(asysigs_t), 0);
1168 }
1169 clear_bit(ST_TXBUSY, &portp->state);
1170 clear_bit(ST_RXSTOP, &portp->state);
1171 set_bit(TTY_IO_ERROR, &tty->flags);
1172 if (tty->ldisc.flush_buffer)
1173 (tty->ldisc.flush_buffer)(tty);
1174 set_bit(ST_DOFLUSHRX, &portp->state);
1175 stli_flushbuffer(tty);
1176
1177 tty->closing = 0;
1178 portp->tty = (struct tty_struct *) NULL;
1179
1180 if (portp->openwaitcnt) {
1181 if (portp->close_delay)
1182 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1183 wake_up_interruptible(&portp->open_wait);
1184 }
1185
1186 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1187 wake_up_interruptible(&portp->close_wait);
1188 restore_flags(flags);
1189}
1190
1191/*****************************************************************************/
1192
1193/*
1194 * Carry out first open operations on a port. This involves a number of
1195 * commands to be sent to the slave. We need to open the port, set the
1196 * notification events, set the initial port settings, get and set the
1197 * initial signal values. We sleep and wait in between each one. But
1198 * this still all happens pretty quickly.
1199 */
1200
1201static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1202{
1203 struct tty_struct *tty;
1204 asynotify_t nt;
1205 asyport_t aport;
1206 int rc;
1207
1208#ifdef DEBUG
1209 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1210#endif
1211
1212 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1213 return(rc);
1214
1215 memset(&nt, 0, sizeof(asynotify_t));
1216 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1217 nt.signal = SG_DCD;
1218 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1219 sizeof(asynotify_t), 0)) < 0)
1220 return(rc);
1221
1222 tty = portp->tty;
1223 if (tty == (struct tty_struct *) NULL)
1224 return(-ENODEV);
1225 stli_mkasyport(portp, &aport, tty->termios);
1226 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1227 sizeof(asyport_t), 0)) < 0)
1228 return(rc);
1229
1230 set_bit(ST_GETSIGS, &portp->state);
1231 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1232 sizeof(asysigs_t), 1)) < 0)
1233 return(rc);
1234 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1235 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1236 stli_mkasysigs(&portp->asig, 1, 1);
1237 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1238 sizeof(asysigs_t), 0)) < 0)
1239 return(rc);
1240
1241 return(0);
1242}
1243
1244/*****************************************************************************/
1245
1246/*
1247 * Send an open message to the slave. This will sleep waiting for the
1248 * acknowledgement, so must have user context. We need to co-ordinate
1249 * with close events here, since we don't want open and close events
1250 * to overlap.
1251 */
1252
1253static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1254{
1255 volatile cdkhdr_t *hdrp;
1256 volatile cdkctrl_t *cp;
1257 volatile unsigned char *bits;
1258 unsigned long flags;
1259 int rc;
1260
1261#ifdef DEBUG
1262 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1263 (int) brdp, (int) portp, (int) arg, wait);
1264#endif
1265
1266/*
1267 * Send a message to the slave to open this port.
1268 */
1269 save_flags(flags);
1270 cli();
1271
1272/*
1273 * Slave is already closing this port. This can happen if a hangup
1274 * occurs on this port. So we must wait until it is complete. The
1275 * order of opens and closes may not be preserved across shared
1276 * memory, so we must wait until it is complete.
1277 */
1278 wait_event_interruptible(portp->raw_wait,
1279 !test_bit(ST_CLOSING, &portp->state));
1280 if (signal_pending(current)) {
1281 restore_flags(flags);
1282 return -ERESTARTSYS;
1283 }
1284
1285/*
1286 * Everything is ready now, so write the open message into shared
1287 * memory. Once the message is in set the service bits to say that
1288 * this port wants service.
1289 */
1290 EBRDENABLE(brdp);
1291 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1292 cp->openarg = arg;
1293 cp->open = 1;
1294 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1295 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1296 portp->portidx;
1297 *bits |= portp->portbit;
1298 EBRDDISABLE(brdp);
1299
1300 if (wait == 0) {
1301 restore_flags(flags);
1302 return(0);
1303 }
1304
1305/*
1306 * Slave is in action, so now we must wait for the open acknowledgment
1307 * to come back.
1308 */
1309 rc = 0;
1310 set_bit(ST_OPENING, &portp->state);
1311 wait_event_interruptible(portp->raw_wait,
1312 !test_bit(ST_OPENING, &portp->state));
1313 if (signal_pending(current))
1314 rc = -ERESTARTSYS;
1315 restore_flags(flags);
1316
1317 if ((rc == 0) && (portp->rc != 0))
1318 rc = -EIO;
1319 return(rc);
1320}
1321
1322/*****************************************************************************/
1323
1324/*
1325 * Send a close message to the slave. Normally this will sleep waiting
1326 * for the acknowledgement, but if wait parameter is 0 it will not. If
1327 * wait is true then must have user context (to sleep).
1328 */
1329
1330static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1331{
1332 volatile cdkhdr_t *hdrp;
1333 volatile cdkctrl_t *cp;
1334 volatile unsigned char *bits;
1335 unsigned long flags;
1336 int rc;
1337
1338#ifdef DEBUG
1339 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1340 (int) brdp, (int) portp, (int) arg, wait);
1341#endif
1342
1343 save_flags(flags);
1344 cli();
1345
1346/*
1347 * Slave is already closing this port. This can happen if a hangup
1348 * occurs on this port.
1349 */
1350 if (wait) {
1351 wait_event_interruptible(portp->raw_wait,
1352 !test_bit(ST_CLOSING, &portp->state));
1353 if (signal_pending(current)) {
1354 restore_flags(flags);
1355 return -ERESTARTSYS;
1356 }
1357 }
1358
1359/*
1360 * Write the close command into shared memory.
1361 */
1362 EBRDENABLE(brdp);
1363 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1364 cp->closearg = arg;
1365 cp->close = 1;
1366 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1367 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1368 portp->portidx;
1369 *bits |= portp->portbit;
1370 EBRDDISABLE(brdp);
1371
1372 set_bit(ST_CLOSING, &portp->state);
1373 if (wait == 0) {
1374 restore_flags(flags);
1375 return(0);
1376 }
1377
1378/*
1379 * Slave is in action, so now we must wait for the open acknowledgment
1380 * to come back.
1381 */
1382 rc = 0;
1383 wait_event_interruptible(portp->raw_wait,
1384 !test_bit(ST_CLOSING, &portp->state));
1385 if (signal_pending(current))
1386 rc = -ERESTARTSYS;
1387 restore_flags(flags);
1388
1389 if ((rc == 0) && (portp->rc != 0))
1390 rc = -EIO;
1391 return(rc);
1392}
1393
1394/*****************************************************************************/
1395
1396/*
1397 * Send a command to the slave and wait for the response. This must
1398 * have user context (it sleeps). This routine is generic in that it
1399 * can send any type of command. Its purpose is to wait for that command
1400 * to complete (as opposed to initiating the command then returning).
1401 */
1402
1403static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1404{
1405 unsigned long flags;
1406
1407#ifdef DEBUG
1408 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1409 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1410 (int) arg, size, copyback);
1411#endif
1412
1413 save_flags(flags);
1414 cli();
1415 wait_event_interruptible(portp->raw_wait,
1416 !test_bit(ST_CMDING, &portp->state));
1417 if (signal_pending(current)) {
1418 restore_flags(flags);
1419 return -ERESTARTSYS;
1420 }
1421
1422 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1423
1424 wait_event_interruptible(portp->raw_wait,
1425 !test_bit(ST_CMDING, &portp->state));
1426 if (signal_pending(current)) {
1427 restore_flags(flags);
1428 return -ERESTARTSYS;
1429 }
1430 restore_flags(flags);
1431
1432 if (portp->rc != 0)
1433 return(-EIO);
1434 return(0);
1435}
1436
1437/*****************************************************************************/
1438
1439/*
1440 * Send the termios settings for this port to the slave. This sleeps
1441 * waiting for the command to complete - so must have user context.
1442 */
1443
1444static int stli_setport(stliport_t *portp)
1445{
1446 stlibrd_t *brdp;
1447 asyport_t aport;
1448
1449#ifdef DEBUG
1450 printk("stli_setport(portp=%x)\n", (int) portp);
1451#endif
1452
1453 if (portp == (stliport_t *) NULL)
1454 return(-ENODEV);
1455 if (portp->tty == (struct tty_struct *) NULL)
1456 return(-ENODEV);
1457 if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1458 return(-ENODEV);
1459 brdp = stli_brds[portp->brdnr];
1460 if (brdp == (stlibrd_t *) NULL)
1461 return(-ENODEV);
1462
1463 stli_mkasyport(portp, &aport, portp->tty->termios);
1464 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1465}
1466
1467/*****************************************************************************/
1468
1469/*
1470 * Possibly need to wait for carrier (DCD signal) to come high. Say
1471 * maybe because if we are clocal then we don't need to wait...
1472 */
1473
1474static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1475{
1476 unsigned long flags;
1477 int rc, doclocal;
1478
1479#ifdef DEBUG
1480 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1481 (int) brdp, (int) portp, (int) filp);
1482#endif
1483
1484 rc = 0;
1485 doclocal = 0;
1486
1487 if (portp->tty->termios->c_cflag & CLOCAL)
1488 doclocal++;
1489
1490 save_flags(flags);
1491 cli();
1492 portp->openwaitcnt++;
1493 if (! tty_hung_up_p(filp))
1494 portp->refcount--;
1495
1496 for (;;) {
1497 stli_mkasysigs(&portp->asig, 1, 1);
1498 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1499 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1500 break;
1501 if (tty_hung_up_p(filp) ||
1502 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1503 if (portp->flags & ASYNC_HUP_NOTIFY)
1504 rc = -EBUSY;
1505 else
1506 rc = -ERESTARTSYS;
1507 break;
1508 }
1509 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1510 (doclocal || (portp->sigs & TIOCM_CD))) {
1511 break;
1512 }
1513 if (signal_pending(current)) {
1514 rc = -ERESTARTSYS;
1515 break;
1516 }
1517 interruptible_sleep_on(&portp->open_wait);
1518 }
1519
1520 if (! tty_hung_up_p(filp))
1521 portp->refcount++;
1522 portp->openwaitcnt--;
1523 restore_flags(flags);
1524
1525 return(rc);
1526}
1527
1528/*****************************************************************************/
1529
1530/*
1531 * Write routine. Take the data and put it in the shared memory ring
1532 * queue. If port is not already sending chars then need to mark the
1533 * service bits for this port.
1534 */
1535
1536static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1537{
1538 volatile cdkasy_t *ap;
1539 volatile cdkhdr_t *hdrp;
1540 volatile unsigned char *bits;
1541 unsigned char *shbuf, *chbuf;
1542 stliport_t *portp;
1543 stlibrd_t *brdp;
1544 unsigned int len, stlen, head, tail, size;
1545 unsigned long flags;
1546
1547#ifdef DEBUG
1548 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1549 (int) tty, (int) buf, count);
1550#endif
1551
1552 if ((tty == (struct tty_struct *) NULL) ||
1553 (stli_tmpwritebuf == (char *) NULL))
1554 return(0);
1555 if (tty == stli_txcooktty)
1556 stli_flushchars(tty);
1557 portp = tty->driver_data;
1558 if (portp == (stliport_t *) NULL)
1559 return(0);
1560 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1561 return(0);
1562 brdp = stli_brds[portp->brdnr];
1563 if (brdp == (stlibrd_t *) NULL)
1564 return(0);
1565 chbuf = (unsigned char *) buf;
1566
1567/*
1568 * All data is now local, shove as much as possible into shared memory.
1569 */
1570 save_flags(flags);
1571 cli();
1572 EBRDENABLE(brdp);
1573 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1574 head = (unsigned int) ap->txq.head;
1575 tail = (unsigned int) ap->txq.tail;
1576 if (tail != ((unsigned int) ap->txq.tail))
1577 tail = (unsigned int) ap->txq.tail;
1578 size = portp->txsize;
1579 if (head >= tail) {
1580 len = size - (head - tail) - 1;
1581 stlen = size - head;
1582 } else {
1583 len = tail - head - 1;
1584 stlen = len;
1585 }
1586
1587 len = MIN(len, count);
1588 count = 0;
1589 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1590
1591 while (len > 0) {
1592 stlen = MIN(len, stlen);
1593 memcpy((shbuf + head), chbuf, stlen);
1594 chbuf += stlen;
1595 len -= stlen;
1596 count += stlen;
1597 head += stlen;
1598 if (head >= size) {
1599 head = 0;
1600 stlen = tail;
1601 }
1602 }
1603
1604 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1605 ap->txq.head = head;
1606 if (test_bit(ST_TXBUSY, &portp->state)) {
1607 if (ap->changed.data & DT_TXEMPTY)
1608 ap->changed.data &= ~DT_TXEMPTY;
1609 }
1610 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1611 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1612 portp->portidx;
1613 *bits |= portp->portbit;
1614 set_bit(ST_TXBUSY, &portp->state);
1615 EBRDDISABLE(brdp);
1616
1617 restore_flags(flags);
1618
1619 return(count);
1620}
1621
1622/*****************************************************************************/
1623
1624/*
1625 * Output a single character. We put it into a temporary local buffer
1626 * (for speed) then write out that buffer when the flushchars routine
1627 * is called. There is a safety catch here so that if some other port
1628 * writes chars before the current buffer has been, then we write them
1629 * first them do the new ports.
1630 */
1631
1632static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1633{
1634#ifdef DEBUG
1635 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1636#endif
1637
1638 if (tty == (struct tty_struct *) NULL)
1639 return;
1640 if (tty != stli_txcooktty) {
1641 if (stli_txcooktty != (struct tty_struct *) NULL)
1642 stli_flushchars(stli_txcooktty);
1643 stli_txcooktty = tty;
1644 }
1645
1646 stli_txcookbuf[stli_txcooksize++] = ch;
1647}
1648
1649/*****************************************************************************/
1650
1651/*
1652 * Transfer characters from the local TX cooking buffer to the board.
1653 * We sort of ignore the tty that gets passed in here. We rely on the
1654 * info stored with the TX cook buffer to tell us which port to flush
1655 * the data on. In any case we clean out the TX cook buffer, for re-use
1656 * by someone else.
1657 */
1658
1659static void stli_flushchars(struct tty_struct *tty)
1660{
1661 volatile cdkhdr_t *hdrp;
1662 volatile unsigned char *bits;
1663 volatile cdkasy_t *ap;
1664 struct tty_struct *cooktty;
1665 stliport_t *portp;
1666 stlibrd_t *brdp;
1667 unsigned int len, stlen, head, tail, size, count, cooksize;
1668 unsigned char *buf, *shbuf;
1669 unsigned long flags;
1670
1671#ifdef DEBUG
1672 printk("stli_flushchars(tty=%x)\n", (int) tty);
1673#endif
1674
1675 cooksize = stli_txcooksize;
1676 cooktty = stli_txcooktty;
1677 stli_txcooksize = 0;
1678 stli_txcookrealsize = 0;
1679 stli_txcooktty = (struct tty_struct *) NULL;
1680
1681 if (tty == (struct tty_struct *) NULL)
1682 return;
1683 if (cooktty == (struct tty_struct *) NULL)
1684 return;
1685 if (tty != cooktty)
1686 tty = cooktty;
1687 if (cooksize == 0)
1688 return;
1689
1690 portp = tty->driver_data;
1691 if (portp == (stliport_t *) NULL)
1692 return;
1693 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1694 return;
1695 brdp = stli_brds[portp->brdnr];
1696 if (brdp == (stlibrd_t *) NULL)
1697 return;
1698
1699 save_flags(flags);
1700 cli();
1701 EBRDENABLE(brdp);
1702
1703 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1704 head = (unsigned int) ap->txq.head;
1705 tail = (unsigned int) ap->txq.tail;
1706 if (tail != ((unsigned int) ap->txq.tail))
1707 tail = (unsigned int) ap->txq.tail;
1708 size = portp->txsize;
1709 if (head >= tail) {
1710 len = size - (head - tail) - 1;
1711 stlen = size - head;
1712 } else {
1713 len = tail - head - 1;
1714 stlen = len;
1715 }
1716
1717 len = MIN(len, cooksize);
1718 count = 0;
1719 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1720 buf = stli_txcookbuf;
1721
1722 while (len > 0) {
1723 stlen = MIN(len, stlen);
1724 memcpy((shbuf + head), buf, stlen);
1725 buf += stlen;
1726 len -= stlen;
1727 count += stlen;
1728 head += stlen;
1729 if (head >= size) {
1730 head = 0;
1731 stlen = tail;
1732 }
1733 }
1734
1735 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1736 ap->txq.head = head;
1737
1738 if (test_bit(ST_TXBUSY, &portp->state)) {
1739 if (ap->changed.data & DT_TXEMPTY)
1740 ap->changed.data &= ~DT_TXEMPTY;
1741 }
1742 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1743 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1744 portp->portidx;
1745 *bits |= portp->portbit;
1746 set_bit(ST_TXBUSY, &portp->state);
1747
1748 EBRDDISABLE(brdp);
1749 restore_flags(flags);
1750}
1751
1752/*****************************************************************************/
1753
1754static int stli_writeroom(struct tty_struct *tty)
1755{
1756 volatile cdkasyrq_t *rp;
1757 stliport_t *portp;
1758 stlibrd_t *brdp;
1759 unsigned int head, tail, len;
1760 unsigned long flags;
1761
1762#ifdef DEBUG
1763 printk("stli_writeroom(tty=%x)\n", (int) tty);
1764#endif
1765
1766 if (tty == (struct tty_struct *) NULL)
1767 return(0);
1768 if (tty == stli_txcooktty) {
1769 if (stli_txcookrealsize != 0) {
1770 len = stli_txcookrealsize - stli_txcooksize;
1771 return(len);
1772 }
1773 }
1774
1775 portp = tty->driver_data;
1776 if (portp == (stliport_t *) NULL)
1777 return(0);
1778 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1779 return(0);
1780 brdp = stli_brds[portp->brdnr];
1781 if (brdp == (stlibrd_t *) NULL)
1782 return(0);
1783
1784 save_flags(flags);
1785 cli();
1786 EBRDENABLE(brdp);
1787 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1788 head = (unsigned int) rp->head;
1789 tail = (unsigned int) rp->tail;
1790 if (tail != ((unsigned int) rp->tail))
1791 tail = (unsigned int) rp->tail;
1792 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1793 len--;
1794 EBRDDISABLE(brdp);
1795 restore_flags(flags);
1796
1797 if (tty == stli_txcooktty) {
1798 stli_txcookrealsize = len;
1799 len -= stli_txcooksize;
1800 }
1801 return(len);
1802}
1803
1804/*****************************************************************************/
1805
1806/*
1807 * Return the number of characters in the transmit buffer. Normally we
1808 * will return the number of chars in the shared memory ring queue.
1809 * We need to kludge around the case where the shared memory buffer is
1810 * empty but not all characters have drained yet, for this case just
1811 * return that there is 1 character in the buffer!
1812 */
1813
1814static int stli_charsinbuffer(struct tty_struct *tty)
1815{
1816 volatile cdkasyrq_t *rp;
1817 stliport_t *portp;
1818 stlibrd_t *brdp;
1819 unsigned int head, tail, len;
1820 unsigned long flags;
1821
1822#ifdef DEBUG
1823 printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1824#endif
1825
1826 if (tty == (struct tty_struct *) NULL)
1827 return(0);
1828 if (tty == stli_txcooktty)
1829 stli_flushchars(tty);
1830 portp = tty->driver_data;
1831 if (portp == (stliport_t *) NULL)
1832 return(0);
1833 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1834 return(0);
1835 brdp = stli_brds[portp->brdnr];
1836 if (brdp == (stlibrd_t *) NULL)
1837 return(0);
1838
1839 save_flags(flags);
1840 cli();
1841 EBRDENABLE(brdp);
1842 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1843 head = (unsigned int) rp->head;
1844 tail = (unsigned int) rp->tail;
1845 if (tail != ((unsigned int) rp->tail))
1846 tail = (unsigned int) rp->tail;
1847 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1848 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1849 len = 1;
1850 EBRDDISABLE(brdp);
1851 restore_flags(flags);
1852
1853 return(len);
1854}
1855
1856/*****************************************************************************/
1857
1858/*
1859 * Generate the serial struct info.
1860 */
1861
1862static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1863{
1864 struct serial_struct sio;
1865 stlibrd_t *brdp;
1866
1867#ifdef DEBUG
1868 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1869#endif
1870
1871 memset(&sio, 0, sizeof(struct serial_struct));
1872 sio.type = PORT_UNKNOWN;
1873 sio.line = portp->portnr;
1874 sio.irq = 0;
1875 sio.flags = portp->flags;
1876 sio.baud_base = portp->baud_base;
1877 sio.close_delay = portp->close_delay;
1878 sio.closing_wait = portp->closing_wait;
1879 sio.custom_divisor = portp->custom_divisor;
1880 sio.xmit_fifo_size = 0;
1881 sio.hub6 = 0;
1882
1883 brdp = stli_brds[portp->brdnr];
1884 if (brdp != (stlibrd_t *) NULL)
1885 sio.port = brdp->iobase;
1886
1887 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1888 -EFAULT : 0;
1889}
1890
1891/*****************************************************************************/
1892
1893/*
1894 * Set port according to the serial struct info.
1895 * At this point we do not do any auto-configure stuff, so we will
1896 * just quietly ignore any requests to change irq, etc.
1897 */
1898
1899static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1900{
1901 struct serial_struct sio;
1902 int rc;
1903
1904#ifdef DEBUG
1905 printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
1906#endif
1907
1908 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1909 return -EFAULT;
1910 if (!capable(CAP_SYS_ADMIN)) {
1911 if ((sio.baud_base != portp->baud_base) ||
1912 (sio.close_delay != portp->close_delay) ||
1913 ((sio.flags & ~ASYNC_USR_MASK) !=
1914 (portp->flags & ~ASYNC_USR_MASK)))
1915 return(-EPERM);
1916 }
1917
1918 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1919 (sio.flags & ASYNC_USR_MASK);
1920 portp->baud_base = sio.baud_base;
1921 portp->close_delay = sio.close_delay;
1922 portp->closing_wait = sio.closing_wait;
1923 portp->custom_divisor = sio.custom_divisor;
1924
1925 if ((rc = stli_setport(portp)) < 0)
1926 return(rc);
1927 return(0);
1928}
1929
1930/*****************************************************************************/
1931
1932static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1933{
1934 stliport_t *portp = tty->driver_data;
1935 stlibrd_t *brdp;
1936 int rc;
1937
1938 if (portp == (stliport_t *) NULL)
1939 return(-ENODEV);
1940 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1941 return(0);
1942 brdp = stli_brds[portp->brdnr];
1943 if (brdp == (stlibrd_t *) NULL)
1944 return(0);
1945 if (tty->flags & (1 << TTY_IO_ERROR))
1946 return(-EIO);
1947
1948 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1949 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1950 return(rc);
1951
1952 return stli_mktiocm(portp->asig.sigvalue);
1953}
1954
1955static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1956 unsigned int set, unsigned int clear)
1957{
1958 stliport_t *portp = tty->driver_data;
1959 stlibrd_t *brdp;
1960 int rts = -1, dtr = -1;
1961
1962 if (portp == (stliport_t *) NULL)
1963 return(-ENODEV);
1964 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1965 return(0);
1966 brdp = stli_brds[portp->brdnr];
1967 if (brdp == (stlibrd_t *) NULL)
1968 return(0);
1969 if (tty->flags & (1 << TTY_IO_ERROR))
1970 return(-EIO);
1971
1972 if (set & TIOCM_RTS)
1973 rts = 1;
1974 if (set & TIOCM_DTR)
1975 dtr = 1;
1976 if (clear & TIOCM_RTS)
1977 rts = 0;
1978 if (clear & TIOCM_DTR)
1979 dtr = 0;
1980
1981 stli_mkasysigs(&portp->asig, dtr, rts);
1982
1983 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1984 sizeof(asysigs_t), 0);
1985}
1986
1987static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1988{
1989 stliport_t *portp;
1990 stlibrd_t *brdp;
1991 unsigned int ival;
1992 int rc;
1993 void __user *argp = (void __user *)arg;
1994
1995#ifdef DEBUG
1996 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1997 (int) tty, (int) file, cmd, (int) arg);
1998#endif
1999
2000 if (tty == (struct tty_struct *) NULL)
2001 return(-ENODEV);
2002 portp = tty->driver_data;
2003 if (portp == (stliport_t *) NULL)
2004 return(-ENODEV);
2005 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2006 return(0);
2007 brdp = stli_brds[portp->brdnr];
2008 if (brdp == (stlibrd_t *) NULL)
2009 return(0);
2010
2011 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
2012 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
2013 if (tty->flags & (1 << TTY_IO_ERROR))
2014 return(-EIO);
2015 }
2016
2017 rc = 0;
2018
2019 switch (cmd) {
2020 case TIOCGSOFTCAR:
2021 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2022 (unsigned __user *) arg);
2023 break;
2024 case TIOCSSOFTCAR:
2025 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
2026 tty->termios->c_cflag =
2027 (tty->termios->c_cflag & ~CLOCAL) |
2028 (ival ? CLOCAL : 0);
2029 break;
2030 case TIOCGSERIAL:
2031 rc = stli_getserial(portp, argp);
2032 break;
2033 case TIOCSSERIAL:
2034 rc = stli_setserial(portp, argp);
2035 break;
2036 case STL_GETPFLAG:
2037 rc = put_user(portp->pflag, (unsigned __user *)argp);
2038 break;
2039 case STL_SETPFLAG:
2040 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
2041 stli_setport(portp);
2042 break;
2043 case COM_GETPORTSTATS:
2044 rc = stli_getportstats(portp, argp);
2045 break;
2046 case COM_CLRPORTSTATS:
2047 rc = stli_clrportstats(portp, argp);
2048 break;
2049 case TIOCSERCONFIG:
2050 case TIOCSERGWILD:
2051 case TIOCSERSWILD:
2052 case TIOCSERGETLSR:
2053 case TIOCSERGSTRUCT:
2054 case TIOCSERGETMULTI:
2055 case TIOCSERSETMULTI:
2056 default:
2057 rc = -ENOIOCTLCMD;
2058 break;
2059 }
2060
2061 return(rc);
2062}
2063
2064/*****************************************************************************/
2065
2066/*
2067 * This routine assumes that we have user context and can sleep.
2068 * Looks like it is true for the current ttys implementation..!!
2069 */
2070
2071static void stli_settermios(struct tty_struct *tty, struct termios *old)
2072{
2073 stliport_t *portp;
2074 stlibrd_t *brdp;
2075 struct termios *tiosp;
2076 asyport_t aport;
2077
2078#ifdef DEBUG
2079 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2080#endif
2081
2082 if (tty == (struct tty_struct *) NULL)
2083 return;
2084 portp = tty->driver_data;
2085 if (portp == (stliport_t *) NULL)
2086 return;
2087 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2088 return;
2089 brdp = stli_brds[portp->brdnr];
2090 if (brdp == (stlibrd_t *) NULL)
2091 return;
2092
2093 tiosp = tty->termios;
2094 if ((tiosp->c_cflag == old->c_cflag) &&
2095 (tiosp->c_iflag == old->c_iflag))
2096 return;
2097
2098 stli_mkasyport(portp, &aport, tiosp);
2099 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2100 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2101 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2102 sizeof(asysigs_t), 0);
2103 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2104 tty->hw_stopped = 0;
2105 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2106 wake_up_interruptible(&portp->open_wait);
2107}
2108
2109/*****************************************************************************/
2110
2111/*
2112 * Attempt to flow control who ever is sending us data. We won't really
2113 * do any flow control action here. We can't directly, and even if we
2114 * wanted to we would have to send a command to the slave. The slave
2115 * knows how to flow control, and will do so when its buffers reach its
2116 * internal high water marks. So what we will do is set a local state
2117 * bit that will stop us sending any RX data up from the poll routine
2118 * (which is the place where RX data from the slave is handled).
2119 */
2120
2121static void stli_throttle(struct tty_struct *tty)
2122{
2123 stliport_t *portp;
2124
2125#ifdef DEBUG
2126 printk("stli_throttle(tty=%x)\n", (int) tty);
2127#endif
2128
2129 if (tty == (struct tty_struct *) NULL)
2130 return;
2131 portp = tty->driver_data;
2132 if (portp == (stliport_t *) NULL)
2133 return;
2134
2135 set_bit(ST_RXSTOP, &portp->state);
2136}
2137
2138/*****************************************************************************/
2139
2140/*
2141 * Unflow control the device sending us data... That means that all
2142 * we have to do is clear the RXSTOP state bit. The next poll call
2143 * will then be able to pass the RX data back up.
2144 */
2145
2146static void stli_unthrottle(struct tty_struct *tty)
2147{
2148 stliport_t *portp;
2149
2150#ifdef DEBUG
2151 printk("stli_unthrottle(tty=%x)\n", (int) tty);
2152#endif
2153
2154 if (tty == (struct tty_struct *) NULL)
2155 return;
2156 portp = tty->driver_data;
2157 if (portp == (stliport_t *) NULL)
2158 return;
2159
2160 clear_bit(ST_RXSTOP, &portp->state);
2161}
2162
2163/*****************************************************************************/
2164
2165/*
2166 * Stop the transmitter. Basically to do this we will just turn TX
2167 * interrupts off.
2168 */
2169
2170static void stli_stop(struct tty_struct *tty)
2171{
2172 stlibrd_t *brdp;
2173 stliport_t *portp;
2174 asyctrl_t actrl;
2175
2176#ifdef DEBUG
2177 printk("stli_stop(tty=%x)\n", (int) tty);
2178#endif
2179
2180 if (tty == (struct tty_struct *) NULL)
2181 return;
2182 portp = tty->driver_data;
2183 if (portp == (stliport_t *) NULL)
2184 return;
2185 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2186 return;
2187 brdp = stli_brds[portp->brdnr];
2188 if (brdp == (stlibrd_t *) NULL)
2189 return;
2190
2191 memset(&actrl, 0, sizeof(asyctrl_t));
2192 actrl.txctrl = CT_STOPFLOW;
2193#if 0
2194 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2195#endif
2196}
2197
2198/*****************************************************************************/
2199
2200/*
2201 * Start the transmitter again. Just turn TX interrupts back on.
2202 */
2203
2204static void stli_start(struct tty_struct *tty)
2205{
2206 stliport_t *portp;
2207 stlibrd_t *brdp;
2208 asyctrl_t actrl;
2209
2210#ifdef DEBUG
2211 printk("stli_start(tty=%x)\n", (int) tty);
2212#endif
2213
2214 if (tty == (struct tty_struct *) NULL)
2215 return;
2216 portp = tty->driver_data;
2217 if (portp == (stliport_t *) NULL)
2218 return;
2219 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2220 return;
2221 brdp = stli_brds[portp->brdnr];
2222 if (brdp == (stlibrd_t *) NULL)
2223 return;
2224
2225 memset(&actrl, 0, sizeof(asyctrl_t));
2226 actrl.txctrl = CT_STARTFLOW;
2227#if 0
2228 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2229#endif
2230}
2231
2232/*****************************************************************************/
2233
2234/*
2235 * Scheduler called hang up routine. This is called from the scheduler,
2236 * not direct from the driver "poll" routine. We can't call it there
2237 * since the real local hangup code will enable/disable the board and
2238 * other things that we can't do while handling the poll. Much easier
2239 * to deal with it some time later (don't really care when, hangups
2240 * aren't that time critical).
2241 */
2242
2243static void stli_dohangup(void *arg)
2244{
2245 stliport_t *portp;
2246
2247#ifdef DEBUG
2248 printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2249#endif
2250
2251 /*
2252 * FIXME: There's a module removal race here: tty_hangup
2253 * calls schedule_work which will call into this
2254 * driver later.
2255 */
2256 portp = (stliport_t *) arg;
2257 if (portp != (stliport_t *) NULL) {
2258 if (portp->tty != (struct tty_struct *) NULL) {
2259 tty_hangup(portp->tty);
2260 }
2261 }
2262}
2263
2264/*****************************************************************************/
2265
2266/*
2267 * Hangup this port. This is pretty much like closing the port, only
2268 * a little more brutal. No waiting for data to drain. Shutdown the
2269 * port and maybe drop signals. This is rather tricky really. We want
2270 * to close the port as well.
2271 */
2272
2273static void stli_hangup(struct tty_struct *tty)
2274{
2275 stliport_t *portp;
2276 stlibrd_t *brdp;
2277 unsigned long flags;
2278
2279#ifdef DEBUG
2280 printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2281#endif
2282
2283 if (tty == (struct tty_struct *) NULL)
2284 return;
2285 portp = tty->driver_data;
2286 if (portp == (stliport_t *) NULL)
2287 return;
2288 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2289 return;
2290 brdp = stli_brds[portp->brdnr];
2291 if (brdp == (stlibrd_t *) NULL)
2292 return;
2293
2294 portp->flags &= ~ASYNC_INITIALIZED;
2295
2296 save_flags(flags);
2297 cli();
2298 if (! test_bit(ST_CLOSING, &portp->state))
2299 stli_rawclose(brdp, portp, 0, 0);
2300 if (tty->termios->c_cflag & HUPCL) {
2301 stli_mkasysigs(&portp->asig, 0, 0);
2302 if (test_bit(ST_CMDING, &portp->state)) {
2303 set_bit(ST_DOSIGS, &portp->state);
2304 set_bit(ST_DOFLUSHTX, &portp->state);
2305 set_bit(ST_DOFLUSHRX, &portp->state);
2306 } else {
2307 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2308 &portp->asig, sizeof(asysigs_t), 0);
2309 }
2310 }
2311 restore_flags(flags);
2312
2313 clear_bit(ST_TXBUSY, &portp->state);
2314 clear_bit(ST_RXSTOP, &portp->state);
2315 set_bit(TTY_IO_ERROR, &tty->flags);
2316 portp->tty = (struct tty_struct *) NULL;
2317 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2318 portp->refcount = 0;
2319 wake_up_interruptible(&portp->open_wait);
2320}
2321
2322/*****************************************************************************/
2323
2324/*
2325 * Flush characters from the lower buffer. We may not have user context
2326 * so we cannot sleep waiting for it to complete. Also we need to check
2327 * if there is chars for this port in the TX cook buffer, and flush them
2328 * as well.
2329 */
2330
2331static void stli_flushbuffer(struct tty_struct *tty)
2332{
2333 stliport_t *portp;
2334 stlibrd_t *brdp;
2335 unsigned long ftype, flags;
2336
2337#ifdef DEBUG
2338 printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2339#endif
2340
2341 if (tty == (struct tty_struct *) NULL)
2342 return;
2343 portp = tty->driver_data;
2344 if (portp == (stliport_t *) NULL)
2345 return;
2346 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2347 return;
2348 brdp = stli_brds[portp->brdnr];
2349 if (brdp == (stlibrd_t *) NULL)
2350 return;
2351
2352 save_flags(flags);
2353 cli();
2354 if (tty == stli_txcooktty) {
2355 stli_txcooktty = (struct tty_struct *) NULL;
2356 stli_txcooksize = 0;
2357 stli_txcookrealsize = 0;
2358 }
2359 if (test_bit(ST_CMDING, &portp->state)) {
2360 set_bit(ST_DOFLUSHTX, &portp->state);
2361 } else {
2362 ftype = FLUSHTX;
2363 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2364 ftype |= FLUSHRX;
2365 clear_bit(ST_DOFLUSHRX, &portp->state);
2366 }
2367 stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2368 sizeof(unsigned long), 0);
2369 }
2370 restore_flags(flags);
2371
2372 wake_up_interruptible(&tty->write_wait);
2373 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2374 tty->ldisc.write_wakeup)
2375 (tty->ldisc.write_wakeup)(tty);
2376}
2377
2378/*****************************************************************************/
2379
2380static void stli_breakctl(struct tty_struct *tty, int state)
2381{
2382 stlibrd_t *brdp;
2383 stliport_t *portp;
2384 long arg;
2385 /* long savestate, savetime; */
2386
2387#ifdef DEBUG
2388 printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2389#endif
2390
2391 if (tty == (struct tty_struct *) NULL)
2392 return;
2393 portp = tty->driver_data;
2394 if (portp == (stliport_t *) NULL)
2395 return;
2396 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2397 return;
2398 brdp = stli_brds[portp->brdnr];
2399 if (brdp == (stlibrd_t *) NULL)
2400 return;
2401
2402/*
2403 * Due to a bug in the tty send_break() code we need to preserve
2404 * the current process state and timeout...
2405 savetime = current->timeout;
2406 savestate = current->state;
2407 */
2408
2409 arg = (state == -1) ? BREAKON : BREAKOFF;
2410 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2411
2412/*
2413 *
2414 current->timeout = savetime;
2415 current->state = savestate;
2416 */
2417}
2418
2419/*****************************************************************************/
2420
2421static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2422{
2423 stliport_t *portp;
2424 unsigned long tend;
2425
2426#ifdef DEBUG
2427 printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2428#endif
2429
2430 if (tty == (struct tty_struct *) NULL)
2431 return;
2432 portp = tty->driver_data;
2433 if (portp == (stliport_t *) NULL)
2434 return;
2435
2436 if (timeout == 0)
2437 timeout = HZ;
2438 tend = jiffies + timeout;
2439
2440 while (test_bit(ST_TXBUSY, &portp->state)) {
2441 if (signal_pending(current))
2442 break;
2443 msleep_interruptible(20);
2444 if (time_after_eq(jiffies, tend))
2445 break;
2446 }
2447}
2448
2449/*****************************************************************************/
2450
2451static void stli_sendxchar(struct tty_struct *tty, char ch)
2452{
2453 stlibrd_t *brdp;
2454 stliport_t *portp;
2455 asyctrl_t actrl;
2456
2457#ifdef DEBUG
2458 printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2459#endif
2460
2461 if (tty == (struct tty_struct *) NULL)
2462 return;
2463 portp = tty->driver_data;
2464 if (portp == (stliport_t *) NULL)
2465 return;
2466 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2467 return;
2468 brdp = stli_brds[portp->brdnr];
2469 if (brdp == (stlibrd_t *) NULL)
2470 return;
2471
2472 memset(&actrl, 0, sizeof(asyctrl_t));
2473 if (ch == STOP_CHAR(tty)) {
2474 actrl.rxctrl = CT_STOPFLOW;
2475 } else if (ch == START_CHAR(tty)) {
2476 actrl.rxctrl = CT_STARTFLOW;
2477 } else {
2478 actrl.txctrl = CT_SENDCHR;
2479 actrl.tximdch = ch;
2480 }
2481
2482 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2483}
2484
2485/*****************************************************************************/
2486
2487#define MAXLINE 80
2488
2489/*
2490 * Format info for a specified port. The line is deliberately limited
2491 * to 80 characters. (If it is too long it will be truncated, if too
2492 * short then padded with spaces).
2493 */
2494
2495static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2496{
2497 char *sp, *uart;
2498 int rc, cnt;
2499
2500 rc = stli_portcmdstats(portp);
2501
2502 uart = "UNKNOWN";
2503 if (brdp->state & BST_STARTED) {
2504 switch (stli_comstats.hwid) {
2505 case 0: uart = "2681"; break;
2506 case 1: uart = "SC26198"; break;
2507 default: uart = "CD1400"; break;
2508 }
2509 }
2510
2511 sp = pos;
2512 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2513
2514 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2515 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2516 (int) stli_comstats.rxtotal);
2517
2518 if (stli_comstats.rxframing)
2519 sp += sprintf(sp, " fe:%d",
2520 (int) stli_comstats.rxframing);
2521 if (stli_comstats.rxparity)
2522 sp += sprintf(sp, " pe:%d",
2523 (int) stli_comstats.rxparity);
2524 if (stli_comstats.rxbreaks)
2525 sp += sprintf(sp, " brk:%d",
2526 (int) stli_comstats.rxbreaks);
2527 if (stli_comstats.rxoverrun)
2528 sp += sprintf(sp, " oe:%d",
2529 (int) stli_comstats.rxoverrun);
2530
2531 cnt = sprintf(sp, "%s%s%s%s%s ",
2532 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2533 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2534 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2535 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2536 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2537 *sp = ' ';
2538 sp += cnt;
2539 }
2540
2541 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2542 *sp++ = ' ';
2543 if (cnt >= MAXLINE)
2544 pos[(MAXLINE - 2)] = '+';
2545 pos[(MAXLINE - 1)] = '\n';
2546
2547 return(MAXLINE);
2548}
2549
2550/*****************************************************************************/
2551
2552/*
2553 * Port info, read from the /proc file system.
2554 */
2555
2556static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2557{
2558 stlibrd_t *brdp;
2559 stliport_t *portp;
2560 int brdnr, portnr, totalport;
2561 int curoff, maxoff;
2562 char *pos;
2563
2564#ifdef DEBUG
2565 printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2566 "data=%x\n", (int) page, (int) start, (int) off, count,
2567 (int) eof, (int) data);
2568#endif
2569
2570 pos = page;
2571 totalport = 0;
2572 curoff = 0;
2573
2574 if (off == 0) {
2575 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2576 stli_drvversion);
2577 while (pos < (page + MAXLINE - 1))
2578 *pos++ = ' ';
2579 *pos++ = '\n';
2580 }
2581 curoff = MAXLINE;
2582
2583/*
2584 * We scan through for each board, panel and port. The offset is
2585 * calculated on the fly, and irrelevant ports are skipped.
2586 */
2587 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2588 brdp = stli_brds[brdnr];
2589 if (brdp == (stlibrd_t *) NULL)
2590 continue;
2591 if (brdp->state == 0)
2592 continue;
2593
2594 maxoff = curoff + (brdp->nrports * MAXLINE);
2595 if (off >= maxoff) {
2596 curoff = maxoff;
2597 continue;
2598 }
2599
2600 totalport = brdnr * STL_MAXPORTS;
2601 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2602 totalport++) {
2603 portp = brdp->ports[portnr];
2604 if (portp == (stliport_t *) NULL)
2605 continue;
2606 if (off >= (curoff += MAXLINE))
2607 continue;
2608 if ((pos - page + MAXLINE) > count)
2609 goto stli_readdone;
2610 pos += stli_portinfo(brdp, portp, totalport, pos);
2611 }
2612 }
2613
2614 *eof = 1;
2615
2616stli_readdone:
2617 *start = page;
2618 return(pos - page);
2619}
2620
2621/*****************************************************************************/
2622
2623/*
2624 * Generic send command routine. This will send a message to the slave,
2625 * of the specified type with the specified argument. Must be very
2626 * careful of data that will be copied out from shared memory -
2627 * containing command results. The command completion is all done from
2628 * a poll routine that does not have user context. Therefore you cannot
2629 * copy back directly into user space, or to the kernel stack of a
2630 * process. This routine does not sleep, so can be called from anywhere.
2631 */
2632
2633static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2634{
2635 volatile cdkhdr_t *hdrp;
2636 volatile cdkctrl_t *cp;
2637 volatile unsigned char *bits;
2638 unsigned long flags;
2639
2640#ifdef DEBUG
2641 printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2642 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2643 (int) arg, size, copyback);
2644#endif
2645
2646 save_flags(flags);
2647 cli();
2648
2649 if (test_bit(ST_CMDING, &portp->state)) {
2650 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2651 (int) cmd);
2652 restore_flags(flags);
2653 return;
2654 }
2655
2656 EBRDENABLE(brdp);
2657 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2658 if (size > 0) {
2659 memcpy((void *) &(cp->args[0]), arg, size);
2660 if (copyback) {
2661 portp->argp = arg;
2662 portp->argsize = size;
2663 }
2664 }
2665 cp->status = 0;
2666 cp->cmd = cmd;
2667 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2668 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2669 portp->portidx;
2670 *bits |= portp->portbit;
2671 set_bit(ST_CMDING, &portp->state);
2672 EBRDDISABLE(brdp);
2673 restore_flags(flags);
2674}
2675
2676/*****************************************************************************/
2677
2678/*
2679 * Read data from shared memory. This assumes that the shared memory
2680 * is enabled and that interrupts are off. Basically we just empty out
2681 * the shared memory buffer into the tty buffer. Must be careful to
2682 * handle the case where we fill up the tty buffer, but still have
2683 * more chars to unload.
2684 */
2685
2686static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2687{
2688 volatile cdkasyrq_t *rp;
2689 volatile char *shbuf;
2690 struct tty_struct *tty;
2691 unsigned int head, tail, size;
2692 unsigned int len, stlen;
2693
2694#ifdef DEBUG
2695 printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2696 (int) brdp, (int) portp);
2697#endif
2698
2699 if (test_bit(ST_RXSTOP, &portp->state))
2700 return;
2701 tty = portp->tty;
2702 if (tty == (struct tty_struct *) NULL)
2703 return;
2704
2705 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2706 head = (unsigned int) rp->head;
2707 if (head != ((unsigned int) rp->head))
2708 head = (unsigned int) rp->head;
2709 tail = (unsigned int) rp->tail;
2710 size = portp->rxsize;
2711 if (head >= tail) {
2712 len = head - tail;
2713 stlen = len;
2714 } else {
2715 len = size - (tail - head);
2716 stlen = size - tail;
2717 }
2718
2719 len = MIN(len, (TTY_FLIPBUF_SIZE - tty->flip.count));
2720 shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2721
2722 while (len > 0) {
2723 stlen = MIN(len, stlen);
2724 memcpy(tty->flip.char_buf_ptr, (char *) (shbuf + tail), stlen);
2725 memset(tty->flip.flag_buf_ptr, 0, stlen);
2726 tty->flip.char_buf_ptr += stlen;
2727 tty->flip.flag_buf_ptr += stlen;
2728 tty->flip.count += stlen;
2729
2730 len -= stlen;
2731 tail += stlen;
2732 if (tail >= size) {
2733 tail = 0;
2734 stlen = head;
2735 }
2736 }
2737 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2738 rp->tail = tail;
2739
2740 if (head != tail)
2741 set_bit(ST_RXING, &portp->state);
2742
2743 tty_schedule_flip(tty);
2744}
2745
2746/*****************************************************************************/
2747
2748/*
2749 * Set up and carry out any delayed commands. There is only a small set
2750 * of slave commands that can be done "off-level". So it is not too
2751 * difficult to deal with them here.
2752 */
2753
2754static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2755{
2756 int cmd;
2757
2758 if (test_bit(ST_DOSIGS, &portp->state)) {
2759 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2760 test_bit(ST_DOFLUSHRX, &portp->state))
2761 cmd = A_SETSIGNALSF;
2762 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2763 cmd = A_SETSIGNALSFTX;
2764 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2765 cmd = A_SETSIGNALSFRX;
2766 else
2767 cmd = A_SETSIGNALS;
2768 clear_bit(ST_DOFLUSHTX, &portp->state);
2769 clear_bit(ST_DOFLUSHRX, &portp->state);
2770 clear_bit(ST_DOSIGS, &portp->state);
2771 memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2772 sizeof(asysigs_t));
2773 cp->status = 0;
2774 cp->cmd = cmd;
2775 set_bit(ST_CMDING, &portp->state);
2776 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2777 test_bit(ST_DOFLUSHRX, &portp->state)) {
2778 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2779 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2780 clear_bit(ST_DOFLUSHTX, &portp->state);
2781 clear_bit(ST_DOFLUSHRX, &portp->state);
2782 memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2783 cp->status = 0;
2784 cp->cmd = A_FLUSH;
2785 set_bit(ST_CMDING, &portp->state);
2786 }
2787}
2788
2789/*****************************************************************************/
2790
2791/*
2792 * Host command service checking. This handles commands or messages
2793 * coming from the slave to the host. Must have board shared memory
2794 * enabled and interrupts off when called. Notice that by servicing the
2795 * read data last we don't need to change the shared memory pointer
2796 * during processing (which is a slow IO operation).
2797 * Return value indicates if this port is still awaiting actions from
2798 * the slave (like open, command, or even TX data being sent). If 0
2799 * then port is still busy, otherwise no longer busy.
2800 */
2801
2802static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2803{
2804 volatile cdkasy_t *ap;
2805 volatile cdkctrl_t *cp;
2806 struct tty_struct *tty;
2807 asynotify_t nt;
2808 unsigned long oldsigs;
2809 int rc, donerx;
2810
2811#ifdef DEBUG
2812 printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2813 (int) brdp, channr);
2814#endif
2815
2816 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2817 cp = &ap->ctrl;
2818
2819/*
2820 * Check if we are waiting for an open completion message.
2821 */
2822 if (test_bit(ST_OPENING, &portp->state)) {
2823 rc = (int) cp->openarg;
2824 if ((cp->open == 0) && (rc != 0)) {
2825 if (rc > 0)
2826 rc--;
2827 cp->openarg = 0;
2828 portp->rc = rc;
2829 clear_bit(ST_OPENING, &portp->state);
2830 wake_up_interruptible(&portp->raw_wait);
2831 }
2832 }
2833
2834/*
2835 * Check if we are waiting for a close completion message.
2836 */
2837 if (test_bit(ST_CLOSING, &portp->state)) {
2838 rc = (int) cp->closearg;
2839 if ((cp->close == 0) && (rc != 0)) {
2840 if (rc > 0)
2841 rc--;
2842 cp->closearg = 0;
2843 portp->rc = rc;
2844 clear_bit(ST_CLOSING, &portp->state);
2845 wake_up_interruptible(&portp->raw_wait);
2846 }
2847 }
2848
2849/*
2850 * Check if we are waiting for a command completion message. We may
2851 * need to copy out the command results associated with this command.
2852 */
2853 if (test_bit(ST_CMDING, &portp->state)) {
2854 rc = cp->status;
2855 if ((cp->cmd == 0) && (rc != 0)) {
2856 if (rc > 0)
2857 rc--;
2858 if (portp->argp != (void *) NULL) {
2859 memcpy(portp->argp, (void *) &(cp->args[0]),
2860 portp->argsize);
2861 portp->argp = (void *) NULL;
2862 }
2863 cp->status = 0;
2864 portp->rc = rc;
2865 clear_bit(ST_CMDING, &portp->state);
2866 stli_dodelaycmd(portp, cp);
2867 wake_up_interruptible(&portp->raw_wait);
2868 }
2869 }
2870
2871/*
2872 * Check for any notification messages ready. This includes lots of
2873 * different types of events - RX chars ready, RX break received,
2874 * TX data low or empty in the slave, modem signals changed state.
2875 */
2876 donerx = 0;
2877
2878 if (ap->notify) {
2879 nt = ap->changed;
2880 ap->notify = 0;
2881 tty = portp->tty;
2882
2883 if (nt.signal & SG_DCD) {
2884 oldsigs = portp->sigs;
2885 portp->sigs = stli_mktiocm(nt.sigvalue);
2886 clear_bit(ST_GETSIGS, &portp->state);
2887 if ((portp->sigs & TIOCM_CD) &&
2888 ((oldsigs & TIOCM_CD) == 0))
2889 wake_up_interruptible(&portp->open_wait);
2890 if ((oldsigs & TIOCM_CD) &&
2891 ((portp->sigs & TIOCM_CD) == 0)) {
2892 if (portp->flags & ASYNC_CHECK_CD) {
2893 if (tty)
2894 schedule_work(&portp->tqhangup);
2895 }
2896 }
2897 }
2898
2899 if (nt.data & DT_TXEMPTY)
2900 clear_bit(ST_TXBUSY, &portp->state);
2901 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2902 if (tty != (struct tty_struct *) NULL) {
2903 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2904 tty->ldisc.write_wakeup) {
2905 (tty->ldisc.write_wakeup)(tty);
2906 EBRDENABLE(brdp);
2907 }
2908 wake_up_interruptible(&tty->write_wait);
2909 }
2910 }
2911
2912 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2913 if (tty != (struct tty_struct *) NULL) {
2914 if (tty->flip.count < TTY_FLIPBUF_SIZE) {
2915 tty->flip.count++;
2916 *tty->flip.flag_buf_ptr++ = TTY_BREAK;
2917 *tty->flip.char_buf_ptr++ = 0;
2918 if (portp->flags & ASYNC_SAK) {
2919 do_SAK(tty);
2920 EBRDENABLE(brdp);
2921 }
2922 tty_schedule_flip(tty);
2923 }
2924 }
2925 }
2926
2927 if (nt.data & DT_RXBUSY) {
2928 donerx++;
2929 stli_read(brdp, portp);
2930 }
2931 }
2932
2933/*
2934 * It might seem odd that we are checking for more RX chars here.
2935 * But, we need to handle the case where the tty buffer was previously
2936 * filled, but we had more characters to pass up. The slave will not
2937 * send any more RX notify messages until the RX buffer has been emptied.
2938 * But it will leave the service bits on (since the buffer is not empty).
2939 * So from here we can try to process more RX chars.
2940 */
2941 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2942 clear_bit(ST_RXING, &portp->state);
2943 stli_read(brdp, portp);
2944 }
2945
2946 return((test_bit(ST_OPENING, &portp->state) ||
2947 test_bit(ST_CLOSING, &portp->state) ||
2948 test_bit(ST_CMDING, &portp->state) ||
2949 test_bit(ST_TXBUSY, &portp->state) ||
2950 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2951}
2952
2953/*****************************************************************************/
2954
2955/*
2956 * Service all ports on a particular board. Assumes that the boards
2957 * shared memory is enabled, and that the page pointer is pointed
2958 * at the cdk header structure.
2959 */
2960
2961static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
2962{
2963 stliport_t *portp;
2964 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2965 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2966 unsigned char *slavep;
2967 int bitpos, bitat, bitsize;
2968 int channr, nrdevs, slavebitchange;
2969
2970 bitsize = brdp->bitsize;
2971 nrdevs = brdp->nrdevs;
2972
2973/*
2974 * Check if slave wants any service. Basically we try to do as
2975 * little work as possible here. There are 2 levels of service
2976 * bits. So if there is nothing to do we bail early. We check
2977 * 8 service bits at a time in the inner loop, so we can bypass
2978 * the lot if none of them want service.
2979 */
2980 memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
2981 bitsize);
2982
2983 memset(&slavebits[0], 0, bitsize);
2984 slavebitchange = 0;
2985
2986 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2987 if (hostbits[bitpos] == 0)
2988 continue;
2989 channr = bitpos * 8;
2990 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2991 if (hostbits[bitpos] & bitat) {
2992 portp = brdp->ports[(channr - 1)];
2993 if (stli_hostcmd(brdp, portp)) {
2994 slavebitchange++;
2995 slavebits[bitpos] |= bitat;
2996 }
2997 }
2998 }
2999 }
3000
3001/*
3002 * If any of the ports are no longer busy then update them in the
3003 * slave request bits. We need to do this after, since a host port
3004 * service may initiate more slave requests.
3005 */
3006 if (slavebitchange) {
3007 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3008 slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
3009 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
3010 if (slavebits[bitpos])
3011 slavep[bitpos] &= ~slavebits[bitpos];
3012 }
3013 }
3014}
3015
3016/*****************************************************************************/
3017
3018/*
3019 * Driver poll routine. This routine polls the boards in use and passes
3020 * messages back up to host when necessary. This is actually very
3021 * CPU efficient, since we will always have the kernel poll clock, it
3022 * adds only a few cycles when idle (since board service can be
3023 * determined very easily), but when loaded generates no interrupts
3024 * (with their expensive associated context change).
3025 */
3026
3027static void stli_poll(unsigned long arg)
3028{
3029 volatile cdkhdr_t *hdrp;
3030 stlibrd_t *brdp;
3031 int brdnr;
3032
3033 stli_timerlist.expires = STLI_TIMEOUT;
3034 add_timer(&stli_timerlist);
3035
3036/*
3037 * Check each board and do any servicing required.
3038 */
3039 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3040 brdp = stli_brds[brdnr];
3041 if (brdp == (stlibrd_t *) NULL)
3042 continue;
3043 if ((brdp->state & BST_STARTED) == 0)
3044 continue;
3045
3046 EBRDENABLE(brdp);
3047 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3048 if (hdrp->hostreq)
3049 stli_brdpoll(brdp, hdrp);
3050 EBRDDISABLE(brdp);
3051 }
3052}
3053
3054/*****************************************************************************/
3055
3056/*
3057 * Translate the termios settings into the port setting structure of
3058 * the slave.
3059 */
3060
3061static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3062{
3063#ifdef DEBUG
3064 printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3065 (int) portp, (int) pp, (int) tiosp);
3066#endif
3067
3068 memset(pp, 0, sizeof(asyport_t));
3069
3070/*
3071 * Start of by setting the baud, char size, parity and stop bit info.
3072 */
3073 pp->baudout = tiosp->c_cflag & CBAUD;
3074 if (pp->baudout & CBAUDEX) {
3075 pp->baudout &= ~CBAUDEX;
3076 if ((pp->baudout < 1) || (pp->baudout > 4))
3077 tiosp->c_cflag &= ~CBAUDEX;
3078 else
3079 pp->baudout += 15;
3080 }
3081 pp->baudout = stli_baudrates[pp->baudout];
3082 if ((tiosp->c_cflag & CBAUD) == B38400) {
3083 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3084 pp->baudout = 57600;
3085 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3086 pp->baudout = 115200;
3087 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3088 pp->baudout = 230400;
3089 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3090 pp->baudout = 460800;
3091 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3092 pp->baudout = (portp->baud_base / portp->custom_divisor);
3093 }
3094 if (pp->baudout > STL_MAXBAUD)
3095 pp->baudout = STL_MAXBAUD;
3096 pp->baudin = pp->baudout;
3097
3098 switch (tiosp->c_cflag & CSIZE) {
3099 case CS5:
3100 pp->csize = 5;
3101 break;
3102 case CS6:
3103 pp->csize = 6;
3104 break;
3105 case CS7:
3106 pp->csize = 7;
3107 break;
3108 default:
3109 pp->csize = 8;
3110 break;
3111 }
3112
3113 if (tiosp->c_cflag & CSTOPB)
3114 pp->stopbs = PT_STOP2;
3115 else
3116 pp->stopbs = PT_STOP1;
3117
3118 if (tiosp->c_cflag & PARENB) {
3119 if (tiosp->c_cflag & PARODD)
3120 pp->parity = PT_ODDPARITY;
3121 else
3122 pp->parity = PT_EVENPARITY;
3123 } else {
3124 pp->parity = PT_NOPARITY;
3125 }
3126
3127/*
3128 * Set up any flow control options enabled.
3129 */
3130 if (tiosp->c_iflag & IXON) {
3131 pp->flow |= F_IXON;
3132 if (tiosp->c_iflag & IXANY)
3133 pp->flow |= F_IXANY;
3134 }
3135 if (tiosp->c_cflag & CRTSCTS)
3136 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3137
3138 pp->startin = tiosp->c_cc[VSTART];
3139 pp->stopin = tiosp->c_cc[VSTOP];
3140 pp->startout = tiosp->c_cc[VSTART];
3141 pp->stopout = tiosp->c_cc[VSTOP];
3142
3143/*
3144 * Set up the RX char marking mask with those RX error types we must
3145 * catch. We can get the slave to help us out a little here, it will
3146 * ignore parity errors and breaks for us, and mark parity errors in
3147 * the data stream.
3148 */
3149 if (tiosp->c_iflag & IGNPAR)
3150 pp->iflag |= FI_IGNRXERRS;
3151 if (tiosp->c_iflag & IGNBRK)
3152 pp->iflag |= FI_IGNBREAK;
3153
3154 portp->rxmarkmsk = 0;
3155 if (tiosp->c_iflag & (INPCK | PARMRK))
3156 pp->iflag |= FI_1MARKRXERRS;
3157 if (tiosp->c_iflag & BRKINT)
3158 portp->rxmarkmsk |= BRKINT;
3159
3160/*
3161 * Set up clocal processing as required.
3162 */
3163 if (tiosp->c_cflag & CLOCAL)
3164 portp->flags &= ~ASYNC_CHECK_CD;
3165 else
3166 portp->flags |= ASYNC_CHECK_CD;
3167
3168/*
3169 * Transfer any persistent flags into the asyport structure.
3170 */
3171 pp->pflag = (portp->pflag & 0xffff);
3172 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3173 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3174 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3175}
3176
3177/*****************************************************************************/
3178
3179/*
3180 * Construct a slave signals structure for setting the DTR and RTS
3181 * signals as specified.
3182 */
3183
3184static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3185{
3186#ifdef DEBUG
3187 printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3188 (int) sp, dtr, rts);
3189#endif
3190
3191 memset(sp, 0, sizeof(asysigs_t));
3192 if (dtr >= 0) {
3193 sp->signal |= SG_DTR;
3194 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3195 }
3196 if (rts >= 0) {
3197 sp->signal |= SG_RTS;
3198 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3199 }
3200}
3201
3202/*****************************************************************************/
3203
3204/*
3205 * Convert the signals returned from the slave into a local TIOCM type
3206 * signals value. We keep them locally in TIOCM format.
3207 */
3208
3209static long stli_mktiocm(unsigned long sigvalue)
3210{
3211 long tiocm;
3212
3213#ifdef DEBUG
3214 printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3215#endif
3216
3217 tiocm = 0;
3218 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3219 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3220 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3221 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3222 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3223 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3224 return(tiocm);
3225}
3226
3227/*****************************************************************************/
3228
3229/*
3230 * All panels and ports actually attached have been worked out. All
3231 * we need to do here is set up the appropriate per port data structures.
3232 */
3233
3234static int stli_initports(stlibrd_t *brdp)
3235{
3236 stliport_t *portp;
3237 int i, panelnr, panelport;
3238
3239#ifdef DEBUG
3240 printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3241#endif
3242
3243 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
3244 portp = (stliport_t *) stli_memalloc(sizeof(stliport_t));
3245 if (portp == (stliport_t *) NULL) {
3246 printk("STALLION: failed to allocate port structure\n");
3247 continue;
3248 }
3249
3250 memset(portp, 0, sizeof(stliport_t));
3251 portp->magic = STLI_PORTMAGIC;
3252 portp->portnr = i;
3253 portp->brdnr = brdp->brdnr;
3254 portp->panelnr = panelnr;
3255 portp->baud_base = STL_BAUDBASE;
3256 portp->close_delay = STL_CLOSEDELAY;
3257 portp->closing_wait = 30 * HZ;
3258 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
3259 init_waitqueue_head(&portp->open_wait);
3260 init_waitqueue_head(&portp->close_wait);
3261 init_waitqueue_head(&portp->raw_wait);
3262 panelport++;
3263 if (panelport >= brdp->panels[panelnr]) {
3264 panelport = 0;
3265 panelnr++;
3266 }
3267 brdp->ports[i] = portp;
3268 }
3269
3270 return(0);
3271}
3272
3273/*****************************************************************************/
3274
3275/*
3276 * All the following routines are board specific hardware operations.
3277 */
3278
3279static void stli_ecpinit(stlibrd_t *brdp)
3280{
3281 unsigned long memconf;
3282
3283#ifdef DEBUG
3284 printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3285#endif
3286
3287 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3288 udelay(10);
3289 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3290 udelay(100);
3291
3292 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3293 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3294}
3295
3296/*****************************************************************************/
3297
3298static void stli_ecpenable(stlibrd_t *brdp)
3299{
3300#ifdef DEBUG
3301 printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3302#endif
3303 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3304}
3305
3306/*****************************************************************************/
3307
3308static void stli_ecpdisable(stlibrd_t *brdp)
3309{
3310#ifdef DEBUG
3311 printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3312#endif
3313 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3314}
3315
3316/*****************************************************************************/
3317
3318static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3319{
3320 void *ptr;
3321 unsigned char val;
3322
3323#ifdef DEBUG
3324 printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3325 (int) offset);
3326#endif
3327
3328 if (offset > brdp->memsize) {
3329 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3330 "range at line=%d(%d), brd=%d\n",
3331 (int) offset, line, __LINE__, brdp->brdnr);
3332 ptr = NULL;
3333 val = 0;
3334 } else {
3335 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3336 val = (unsigned char) (offset / ECP_ATPAGESIZE);
3337 }
3338 outb(val, (brdp->iobase + ECP_ATMEMPR));
3339 return(ptr);
3340}
3341
3342/*****************************************************************************/
3343
3344static void stli_ecpreset(stlibrd_t *brdp)
3345{
3346#ifdef DEBUG
3347 printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3348#endif
3349
3350 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3351 udelay(10);
3352 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3353 udelay(500);
3354}
3355
3356/*****************************************************************************/
3357
3358static void stli_ecpintr(stlibrd_t *brdp)
3359{
3360#ifdef DEBUG
3361 printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3362#endif
3363 outb(0x1, brdp->iobase);
3364}
3365
3366/*****************************************************************************/
3367
3368/*
3369 * The following set of functions act on ECP EISA boards.
3370 */
3371
3372static void stli_ecpeiinit(stlibrd_t *brdp)
3373{
3374 unsigned long memconf;
3375
3376#ifdef DEBUG
3377 printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3378#endif
3379
3380 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3381 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3382 udelay(10);
3383 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3384 udelay(500);
3385
3386 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3387 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3388 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3389 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3390}
3391
3392/*****************************************************************************/
3393
3394static void stli_ecpeienable(stlibrd_t *brdp)
3395{
3396 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3397}
3398
3399/*****************************************************************************/
3400
3401static void stli_ecpeidisable(stlibrd_t *brdp)
3402{
3403 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3404}
3405
3406/*****************************************************************************/
3407
3408static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3409{
3410 void *ptr;
3411 unsigned char val;
3412
3413#ifdef DEBUG
3414 printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3415 (int) brdp, (int) offset, line);
3416#endif
3417
3418 if (offset > brdp->memsize) {
3419 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3420 "range at line=%d(%d), brd=%d\n",
3421 (int) offset, line, __LINE__, brdp->brdnr);
3422 ptr = NULL;
3423 val = 0;
3424 } else {
3425 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3426 if (offset < ECP_EIPAGESIZE)
3427 val = ECP_EIENABLE;
3428 else
3429 val = ECP_EIENABLE | 0x40;
3430 }
3431 outb(val, (brdp->iobase + ECP_EICONFR));
3432 return(ptr);
3433}
3434
3435/*****************************************************************************/
3436
3437static void stli_ecpeireset(stlibrd_t *brdp)
3438{
3439 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3440 udelay(10);
3441 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3442 udelay(500);
3443}
3444
3445/*****************************************************************************/
3446
3447/*
3448 * The following set of functions act on ECP MCA boards.
3449 */
3450
3451static void stli_ecpmcenable(stlibrd_t *brdp)
3452{
3453 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3454}
3455
3456/*****************************************************************************/
3457
3458static void stli_ecpmcdisable(stlibrd_t *brdp)
3459{
3460 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3461}
3462
3463/*****************************************************************************/
3464
3465static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3466{
3467 void *ptr;
3468 unsigned char val;
3469
3470 if (offset > brdp->memsize) {
3471 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3472 "range at line=%d(%d), brd=%d\n",
3473 (int) offset, line, __LINE__, brdp->brdnr);
3474 ptr = NULL;
3475 val = 0;
3476 } else {
3477 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3478 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3479 }
3480 outb(val, (brdp->iobase + ECP_MCCONFR));
3481 return(ptr);
3482}
3483
3484/*****************************************************************************/
3485
3486static void stli_ecpmcreset(stlibrd_t *brdp)
3487{
3488 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3489 udelay(10);
3490 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3491 udelay(500);
3492}
3493
3494/*****************************************************************************/
3495
3496/*
3497 * The following set of functions act on ECP PCI boards.
3498 */
3499
3500static void stli_ecppciinit(stlibrd_t *brdp)
3501{
3502#ifdef DEBUG
3503 printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3504#endif
3505
3506 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3507 udelay(10);
3508 outb(0, (brdp->iobase + ECP_PCICONFR));
3509 udelay(500);
3510}
3511
3512/*****************************************************************************/
3513
3514static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3515{
3516 void *ptr;
3517 unsigned char val;
3518
3519#ifdef DEBUG
3520 printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3521 (int) brdp, (int) offset, line);
3522#endif
3523
3524 if (offset > brdp->memsize) {
3525 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3526 "range at line=%d(%d), board=%d\n",
3527 (int) offset, line, __LINE__, brdp->brdnr);
3528 ptr = NULL;
3529 val = 0;
3530 } else {
3531 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3532 val = (offset / ECP_PCIPAGESIZE) << 1;
3533 }
3534 outb(val, (brdp->iobase + ECP_PCICONFR));
3535 return(ptr);
3536}
3537
3538/*****************************************************************************/
3539
3540static void stli_ecppcireset(stlibrd_t *brdp)
3541{
3542 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3543 udelay(10);
3544 outb(0, (brdp->iobase + ECP_PCICONFR));
3545 udelay(500);
3546}
3547
3548/*****************************************************************************/
3549
3550/*
3551 * The following routines act on ONboards.
3552 */
3553
3554static void stli_onbinit(stlibrd_t *brdp)
3555{
3556 unsigned long memconf;
3557
3558#ifdef DEBUG
3559 printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3560#endif
3561
3562 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3563 udelay(10);
3564 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3565 mdelay(1000);
3566
3567 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3568 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3569 outb(0x1, brdp->iobase);
3570 mdelay(1);
3571}
3572
3573/*****************************************************************************/
3574
3575static void stli_onbenable(stlibrd_t *brdp)
3576{
3577#ifdef DEBUG
3578 printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3579#endif
3580 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3581}
3582
3583/*****************************************************************************/
3584
3585static void stli_onbdisable(stlibrd_t *brdp)
3586{
3587#ifdef DEBUG
3588 printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3589#endif
3590 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3591}
3592
3593/*****************************************************************************/
3594
3595static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3596{
3597 void *ptr;
3598
3599#ifdef DEBUG
3600 printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3601 (int) offset);
3602#endif
3603
3604 if (offset > brdp->memsize) {
3605 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3606 "range at line=%d(%d), brd=%d\n",
3607 (int) offset, line, __LINE__, brdp->brdnr);
3608 ptr = NULL;
3609 } else {
3610 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3611 }
3612 return(ptr);
3613}
3614
3615/*****************************************************************************/
3616
3617static void stli_onbreset(stlibrd_t *brdp)
3618{
3619
3620#ifdef DEBUG
3621 printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3622#endif
3623
3624 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3625 udelay(10);
3626 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3627 mdelay(1000);
3628}
3629
3630/*****************************************************************************/
3631
3632/*
3633 * The following routines act on ONboard EISA.
3634 */
3635
3636static void stli_onbeinit(stlibrd_t *brdp)
3637{
3638 unsigned long memconf;
3639
3640#ifdef DEBUG
3641 printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3642#endif
3643
3644 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3645 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3646 udelay(10);
3647 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3648 mdelay(1000);
3649
3650 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3651 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3652 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3653 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3654 outb(0x1, brdp->iobase);
3655 mdelay(1);
3656}
3657
3658/*****************************************************************************/
3659
3660static void stli_onbeenable(stlibrd_t *brdp)
3661{
3662#ifdef DEBUG
3663 printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3664#endif
3665 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3666}
3667
3668/*****************************************************************************/
3669
3670static void stli_onbedisable(stlibrd_t *brdp)
3671{
3672#ifdef DEBUG
3673 printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3674#endif
3675 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3676}
3677
3678/*****************************************************************************/
3679
3680static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3681{
3682 void *ptr;
3683 unsigned char val;
3684
3685#ifdef DEBUG
3686 printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3687 (int) brdp, (int) offset, line);
3688#endif
3689
3690 if (offset > brdp->memsize) {
3691 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3692 "range at line=%d(%d), brd=%d\n",
3693 (int) offset, line, __LINE__, brdp->brdnr);
3694 ptr = NULL;
3695 val = 0;
3696 } else {
3697 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3698 if (offset < ONB_EIPAGESIZE)
3699 val = ONB_EIENABLE;
3700 else
3701 val = ONB_EIENABLE | 0x40;
3702 }
3703 outb(val, (brdp->iobase + ONB_EICONFR));
3704 return(ptr);
3705}
3706
3707/*****************************************************************************/
3708
3709static void stli_onbereset(stlibrd_t *brdp)
3710{
3711
3712#ifdef DEBUG
3713 printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3714#endif
3715
3716 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3717 udelay(10);
3718 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3719 mdelay(1000);
3720}
3721
3722/*****************************************************************************/
3723
3724/*
3725 * The following routines act on Brumby boards.
3726 */
3727
3728static void stli_bbyinit(stlibrd_t *brdp)
3729{
3730
3731#ifdef DEBUG
3732 printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3733#endif
3734
3735 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3736 udelay(10);
3737 outb(0, (brdp->iobase + BBY_ATCONFR));
3738 mdelay(1000);
3739 outb(0x1, brdp->iobase);
3740 mdelay(1);
3741}
3742
3743/*****************************************************************************/
3744
3745static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3746{
3747 void *ptr;
3748 unsigned char val;
3749
3750#ifdef DEBUG
3751 printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3752 (int) offset);
3753#endif
3754
3755 if (offset > brdp->memsize) {
3756 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3757 "range at line=%d(%d), brd=%d\n",
3758 (int) offset, line, __LINE__, brdp->brdnr);
3759 ptr = NULL;
3760 val = 0;
3761 } else {
3762 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3763 val = (unsigned char) (offset / BBY_PAGESIZE);
3764 }
3765 outb(val, (brdp->iobase + BBY_ATCONFR));
3766 return(ptr);
3767}
3768
3769/*****************************************************************************/
3770
3771static void stli_bbyreset(stlibrd_t *brdp)
3772{
3773
3774#ifdef DEBUG
3775 printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3776#endif
3777
3778 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3779 udelay(10);
3780 outb(0, (brdp->iobase + BBY_ATCONFR));
3781 mdelay(1000);
3782}
3783
3784/*****************************************************************************/
3785
3786/*
3787 * The following routines act on original old Stallion boards.
3788 */
3789
3790static void stli_stalinit(stlibrd_t *brdp)
3791{
3792
3793#ifdef DEBUG
3794 printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3795#endif
3796
3797 outb(0x1, brdp->iobase);
3798 mdelay(1000);
3799}
3800
3801/*****************************************************************************/
3802
3803static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3804{
3805 void *ptr;
3806
3807#ifdef DEBUG
3808 printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3809 (int) offset);
3810#endif
3811
3812 if (offset > brdp->memsize) {
3813 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3814 "range at line=%d(%d), brd=%d\n",
3815 (int) offset, line, __LINE__, brdp->brdnr);
3816 ptr = NULL;
3817 } else {
3818 ptr = brdp->membase + (offset % STAL_PAGESIZE);
3819 }
3820 return(ptr);
3821}
3822
3823/*****************************************************************************/
3824
3825static void stli_stalreset(stlibrd_t *brdp)
3826{
3827 volatile unsigned long *vecp;
3828
3829#ifdef DEBUG
3830 printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3831#endif
3832
3833 vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3834 *vecp = 0xffff0000;
3835 outb(0, brdp->iobase);
3836 mdelay(1000);
3837}
3838
3839/*****************************************************************************/
3840
3841/*
3842 * Try to find an ECP board and initialize it. This handles only ECP
3843 * board types.
3844 */
3845
3846static int stli_initecp(stlibrd_t *brdp)
3847{
3848 cdkecpsig_t sig;
3849 cdkecpsig_t *sigsp;
3850 unsigned int status, nxtid;
3851 char *name;
3852 int panelnr, nrports;
3853
3854#ifdef DEBUG
3855 printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3856#endif
3857
3858 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3859 return -EIO;
3860
3861 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3862 {
3863 release_region(brdp->iobase, brdp->iosize);
3864 return(-ENODEV);
3865 }
3866
3867 brdp->iosize = ECP_IOSIZE;
3868
3869/*
3870 * Based on the specific board type setup the common vars to access
3871 * and enable shared memory. Set all board specific information now
3872 * as well.
3873 */
3874 switch (brdp->brdtype) {
3875 case BRD_ECP:
3876 brdp->membase = (void *) brdp->memaddr;
3877 brdp->memsize = ECP_MEMSIZE;
3878 brdp->pagesize = ECP_ATPAGESIZE;
3879 brdp->init = stli_ecpinit;
3880 brdp->enable = stli_ecpenable;
3881 brdp->reenable = stli_ecpenable;
3882 brdp->disable = stli_ecpdisable;
3883 brdp->getmemptr = stli_ecpgetmemptr;
3884 brdp->intr = stli_ecpintr;
3885 brdp->reset = stli_ecpreset;
3886 name = "serial(EC8/64)";
3887 break;
3888
3889 case BRD_ECPE:
3890 brdp->membase = (void *) brdp->memaddr;
3891 brdp->memsize = ECP_MEMSIZE;
3892 brdp->pagesize = ECP_EIPAGESIZE;
3893 brdp->init = stli_ecpeiinit;
3894 brdp->enable = stli_ecpeienable;
3895 brdp->reenable = stli_ecpeienable;
3896 brdp->disable = stli_ecpeidisable;
3897 brdp->getmemptr = stli_ecpeigetmemptr;
3898 brdp->intr = stli_ecpintr;
3899 brdp->reset = stli_ecpeireset;
3900 name = "serial(EC8/64-EI)";
3901 break;
3902
3903 case BRD_ECPMC:
3904 brdp->membase = (void *) brdp->memaddr;
3905 brdp->memsize = ECP_MEMSIZE;
3906 brdp->pagesize = ECP_MCPAGESIZE;
3907 brdp->init = NULL;
3908 brdp->enable = stli_ecpmcenable;
3909 brdp->reenable = stli_ecpmcenable;
3910 brdp->disable = stli_ecpmcdisable;
3911 brdp->getmemptr = stli_ecpmcgetmemptr;
3912 brdp->intr = stli_ecpintr;
3913 brdp->reset = stli_ecpmcreset;
3914 name = "serial(EC8/64-MCA)";
3915 break;
3916
3917 case BRD_ECPPCI:
3918 brdp->membase = (void *) brdp->memaddr;
3919 brdp->memsize = ECP_PCIMEMSIZE;
3920 brdp->pagesize = ECP_PCIPAGESIZE;
3921 brdp->init = stli_ecppciinit;
3922 brdp->enable = NULL;
3923 brdp->reenable = NULL;
3924 brdp->disable = NULL;
3925 brdp->getmemptr = stli_ecppcigetmemptr;
3926 brdp->intr = stli_ecpintr;
3927 brdp->reset = stli_ecppcireset;
3928 name = "serial(EC/RA-PCI)";
3929 break;
3930
3931 default:
3932 release_region(brdp->iobase, brdp->iosize);
3933 return(-EINVAL);
3934 }
3935
3936/*
3937 * The per-board operations structure is all set up, so now let's go
3938 * and get the board operational. Firstly initialize board configuration
3939 * registers. Set the memory mapping info so we can get at the boards
3940 * shared memory.
3941 */
3942 EBRDINIT(brdp);
3943
3944 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3945 if (brdp->membase == (void *) NULL)
3946 {
3947 release_region(brdp->iobase, brdp->iosize);
3948 return(-ENOMEM);
3949 }
3950
3951/*
3952 * Now that all specific code is set up, enable the shared memory and
3953 * look for the a signature area that will tell us exactly what board
3954 * this is, and what it is connected to it.
3955 */
3956 EBRDENABLE(brdp);
3957 sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3958 memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3959 EBRDDISABLE(brdp);
3960
3961#if 0
3962 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3963 __FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
3964 (int) sig.panelid[1], (int) sig.panelid[2],
3965 (int) sig.panelid[3], (int) sig.panelid[4],
3966 (int) sig.panelid[5], (int) sig.panelid[6],
3967 (int) sig.panelid[7]);
3968#endif
3969
3970 if (sig.magic != ECP_MAGIC)
3971 {
3972 release_region(brdp->iobase, brdp->iosize);
3973 return(-ENODEV);
3974 }
3975
3976/*
3977 * Scan through the signature looking at the panels connected to the
3978 * board. Calculate the total number of ports as we go.
3979 */
3980 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3981 status = sig.panelid[nxtid];
3982 if ((status & ECH_PNLIDMASK) != nxtid)
3983 break;
3984
3985 brdp->panelids[panelnr] = status;
3986 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3987 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3988 nxtid++;
3989 brdp->panels[panelnr] = nrports;
3990 brdp->nrports += nrports;
3991 nxtid++;
3992 brdp->nrpanels++;
3993 }
3994
3995
3996 brdp->state |= BST_FOUND;
3997 return(0);
3998}
3999
4000/*****************************************************************************/
4001
4002/*
4003 * Try to find an ONboard, Brumby or Stallion board and initialize it.
4004 * This handles only these board types.
4005 */
4006
4007static int stli_initonb(stlibrd_t *brdp)
4008{
4009 cdkonbsig_t sig;
4010 cdkonbsig_t *sigsp;
4011 char *name;
4012 int i;
4013
4014#ifdef DEBUG
4015 printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
4016#endif
4017
4018/*
4019 * Do a basic sanity check on the IO and memory addresses.
4020 */
4021 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
4022 return(-ENODEV);
4023
4024 brdp->iosize = ONB_IOSIZE;
4025
4026 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
4027 return -EIO;
4028
4029/*
4030 * Based on the specific board type setup the common vars to access
4031 * and enable shared memory. Set all board specific information now
4032 * as well.
4033 */
4034 switch (brdp->brdtype) {
4035 case BRD_ONBOARD:
4036 case BRD_ONBOARD32:
4037 case BRD_ONBOARD2:
4038 case BRD_ONBOARD2_32:
4039 case BRD_ONBOARDRS:
4040 brdp->membase = (void *) brdp->memaddr;
4041 brdp->memsize = ONB_MEMSIZE;
4042 brdp->pagesize = ONB_ATPAGESIZE;
4043 brdp->init = stli_onbinit;
4044 brdp->enable = stli_onbenable;
4045 brdp->reenable = stli_onbenable;
4046 brdp->disable = stli_onbdisable;
4047 brdp->getmemptr = stli_onbgetmemptr;
4048 brdp->intr = stli_ecpintr;
4049 brdp->reset = stli_onbreset;
4050 if (brdp->memaddr > 0x100000)
4051 brdp->enabval = ONB_MEMENABHI;
4052 else
4053 brdp->enabval = ONB_MEMENABLO;
4054 name = "serial(ONBoard)";
4055 break;
4056
4057 case BRD_ONBOARDE:
4058 brdp->membase = (void *) brdp->memaddr;
4059 brdp->memsize = ONB_EIMEMSIZE;
4060 brdp->pagesize = ONB_EIPAGESIZE;
4061 brdp->init = stli_onbeinit;
4062 brdp->enable = stli_onbeenable;
4063 brdp->reenable = stli_onbeenable;
4064 brdp->disable = stli_onbedisable;
4065 brdp->getmemptr = stli_onbegetmemptr;
4066 brdp->intr = stli_ecpintr;
4067 brdp->reset = stli_onbereset;
4068 name = "serial(ONBoard/E)";
4069 break;
4070
4071 case BRD_BRUMBY4:
4072 case BRD_BRUMBY8:
4073 case BRD_BRUMBY16:
4074 brdp->membase = (void *) brdp->memaddr;
4075 brdp->memsize = BBY_MEMSIZE;
4076 brdp->pagesize = BBY_PAGESIZE;
4077 brdp->init = stli_bbyinit;
4078 brdp->enable = NULL;
4079 brdp->reenable = NULL;
4080 brdp->disable = NULL;
4081 brdp->getmemptr = stli_bbygetmemptr;
4082 brdp->intr = stli_ecpintr;
4083 brdp->reset = stli_bbyreset;
4084 name = "serial(Brumby)";
4085 break;
4086
4087 case BRD_STALLION:
4088 brdp->membase = (void *) brdp->memaddr;
4089 brdp->memsize = STAL_MEMSIZE;
4090 brdp->pagesize = STAL_PAGESIZE;
4091 brdp->init = stli_stalinit;
4092 brdp->enable = NULL;
4093 brdp->reenable = NULL;
4094 brdp->disable = NULL;
4095 brdp->getmemptr = stli_stalgetmemptr;
4096 brdp->intr = stli_ecpintr;
4097 brdp->reset = stli_stalreset;
4098 name = "serial(Stallion)";
4099 break;
4100
4101 default:
4102 release_region(brdp->iobase, brdp->iosize);
4103 return(-EINVAL);
4104 }
4105
4106/*
4107 * The per-board operations structure is all set up, so now let's go
4108 * and get the board operational. Firstly initialize board configuration
4109 * registers. Set the memory mapping info so we can get at the boards
4110 * shared memory.
4111 */
4112 EBRDINIT(brdp);
4113
4114 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4115 if (brdp->membase == (void *) NULL)
4116 {
4117 release_region(brdp->iobase, brdp->iosize);
4118 return(-ENOMEM);
4119 }
4120
4121/*
4122 * Now that all specific code is set up, enable the shared memory and
4123 * look for the a signature area that will tell us exactly what board
4124 * this is, and how many ports.
4125 */
4126 EBRDENABLE(brdp);
4127 sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4128 memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4129 EBRDDISABLE(brdp);
4130
4131#if 0
4132 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4133 __FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4134 sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4135#endif
4136
4137 if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4138 (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4139 {
4140 release_region(brdp->iobase, brdp->iosize);
4141 return(-ENODEV);
4142 }
4143
4144/*
4145 * Scan through the signature alive mask and calculate how many ports
4146 * there are on this board.
4147 */
4148 brdp->nrpanels = 1;
4149 if (sig.amask1) {
4150 brdp->nrports = 32;
4151 } else {
4152 for (i = 0; (i < 16); i++) {
4153 if (((sig.amask0 << i) & 0x8000) == 0)
4154 break;
4155 }
4156 brdp->nrports = i;
4157 }
4158 brdp->panels[0] = brdp->nrports;
4159
4160
4161 brdp->state |= BST_FOUND;
4162 return(0);
4163}
4164
4165/*****************************************************************************/
4166
4167/*
4168 * Start up a running board. This routine is only called after the
4169 * code has been down loaded to the board and is operational. It will
4170 * read in the memory map, and get the show on the road...
4171 */
4172
4173static int stli_startbrd(stlibrd_t *brdp)
4174{
4175 volatile cdkhdr_t *hdrp;
4176 volatile cdkmem_t *memp;
4177 volatile cdkasy_t *ap;
4178 unsigned long flags;
4179 stliport_t *portp;
4180 int portnr, nrdevs, i, rc;
4181
4182#ifdef DEBUG
4183 printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4184#endif
4185
4186 rc = 0;
4187
4188 save_flags(flags);
4189 cli();
4190 EBRDENABLE(brdp);
4191 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4192 nrdevs = hdrp->nrdevs;
4193
4194#if 0
4195 printk("%s(%d): CDK version %d.%d.%d --> "
4196 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4197 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4198 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4199 (int) hdrp->slavep);
4200#endif
4201
4202 if (nrdevs < (brdp->nrports + 1)) {
4203 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4204 "all devices, devices=%d\n", nrdevs);
4205 brdp->nrports = nrdevs - 1;
4206 }
4207 brdp->nrdevs = nrdevs;
4208 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4209 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4210 brdp->bitsize = (nrdevs + 7) / 8;
4211 memp = (volatile cdkmem_t *) hdrp->memp;
4212 if (((unsigned long) memp) > brdp->memsize) {
4213 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4214 rc = -EIO;
4215 goto stli_donestartup;
4216 }
4217 memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4218 if (memp->dtype != TYP_ASYNCTRL) {
4219 printk(KERN_ERR "STALLION: no slave control device found\n");
4220 goto stli_donestartup;
4221 }
4222 memp++;
4223
4224/*
4225 * Cycle through memory allocation of each port. We are guaranteed to
4226 * have all ports inside the first page of slave window, so no need to
4227 * change pages while reading memory map.
4228 */
4229 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4230 if (memp->dtype != TYP_ASYNC)
4231 break;
4232 portp = brdp->ports[portnr];
4233 if (portp == (stliport_t *) NULL)
4234 break;
4235 portp->devnr = i;
4236 portp->addr = memp->offset;
4237 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4238 portp->portidx = (unsigned char) (i / 8);
4239 portp->portbit = (unsigned char) (0x1 << (i % 8));
4240 }
4241
4242 hdrp->slavereq = 0xff;
4243
4244/*
4245 * For each port setup a local copy of the RX and TX buffer offsets
4246 * and sizes. We do this separate from the above, because we need to
4247 * move the shared memory page...
4248 */
4249 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4250 portp = brdp->ports[portnr];
4251 if (portp == (stliport_t *) NULL)
4252 break;
4253 if (portp->addr == 0)
4254 break;
4255 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4256 if (ap != (volatile cdkasy_t *) NULL) {
4257 portp->rxsize = ap->rxq.size;
4258 portp->txsize = ap->txq.size;
4259 portp->rxoffset = ap->rxq.offset;
4260 portp->txoffset = ap->txq.offset;
4261 }
4262 }
4263
4264stli_donestartup:
4265 EBRDDISABLE(brdp);
4266 restore_flags(flags);
4267
4268 if (rc == 0)
4269 brdp->state |= BST_STARTED;
4270
4271 if (! stli_timeron) {
4272 stli_timeron++;
4273 stli_timerlist.expires = STLI_TIMEOUT;
4274 add_timer(&stli_timerlist);
4275 }
4276
4277 return(rc);
4278}
4279
4280/*****************************************************************************/
4281
4282/*
4283 * Probe and initialize the specified board.
4284 */
4285
4286static int __init stli_brdinit(stlibrd_t *brdp)
4287{
4288#ifdef DEBUG
4289 printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4290#endif
4291
4292 stli_brds[brdp->brdnr] = brdp;
4293
4294 switch (brdp->brdtype) {
4295 case BRD_ECP:
4296 case BRD_ECPE:
4297 case BRD_ECPMC:
4298 case BRD_ECPPCI:
4299 stli_initecp(brdp);
4300 break;
4301 case BRD_ONBOARD:
4302 case BRD_ONBOARDE:
4303 case BRD_ONBOARD2:
4304 case BRD_ONBOARD32:
4305 case BRD_ONBOARD2_32:
4306 case BRD_ONBOARDRS:
4307 case BRD_BRUMBY4:
4308 case BRD_BRUMBY8:
4309 case BRD_BRUMBY16:
4310 case BRD_STALLION:
4311 stli_initonb(brdp);
4312 break;
4313 case BRD_EASYIO:
4314 case BRD_ECH:
4315 case BRD_ECHMC:
4316 case BRD_ECHPCI:
4317 printk(KERN_ERR "STALLION: %s board type not supported in "
4318 "this driver\n", stli_brdnames[brdp->brdtype]);
4319 return(ENODEV);
4320 default:
4321 printk(KERN_ERR "STALLION: board=%d is unknown board "
4322 "type=%d\n", brdp->brdnr, brdp->brdtype);
4323 return(ENODEV);
4324 }
4325
4326 if ((brdp->state & BST_FOUND) == 0) {
4327 printk(KERN_ERR "STALLION: %s board not found, board=%d "
4328 "io=%x mem=%x\n",
4329 stli_brdnames[brdp->brdtype], brdp->brdnr,
4330 brdp->iobase, (int) brdp->memaddr);
4331 return(ENODEV);
4332 }
4333
4334 stli_initports(brdp);
4335 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4336 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4337 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4338 brdp->nrpanels, brdp->nrports);
4339 return(0);
4340}
4341
4342/*****************************************************************************/
4343
4344/*
4345 * Probe around trying to find where the EISA boards shared memory
4346 * might be. This is a bit if hack, but it is the best we can do.
4347 */
4348
4349static int stli_eisamemprobe(stlibrd_t *brdp)
4350{
4351 cdkecpsig_t ecpsig, *ecpsigp;
4352 cdkonbsig_t onbsig, *onbsigp;
4353 int i, foundit;
4354
4355#ifdef DEBUG
4356 printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4357#endif
4358
4359/*
4360 * First up we reset the board, to get it into a known state. There
4361 * is only 2 board types here we need to worry about. Don;t use the
4362 * standard board init routine here, it programs up the shared
4363 * memory address, and we don't know it yet...
4364 */
4365 if (brdp->brdtype == BRD_ECPE) {
4366 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4367 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4368 udelay(10);
4369 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4370 udelay(500);
4371 stli_ecpeienable(brdp);
4372 } else if (brdp->brdtype == BRD_ONBOARDE) {
4373 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4374 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4375 udelay(10);
4376 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4377 mdelay(100);
4378 outb(0x1, brdp->iobase);
4379 mdelay(1);
4380 stli_onbeenable(brdp);
4381 } else {
4382 return(-ENODEV);
4383 }
4384
4385 foundit = 0;
4386 brdp->memsize = ECP_MEMSIZE;
4387
4388/*
4389 * Board shared memory is enabled, so now we have a poke around and
4390 * see if we can find it.
4391 */
4392 for (i = 0; (i < stli_eisamempsize); i++) {
4393 brdp->memaddr = stli_eisamemprobeaddrs[i];
4394 brdp->membase = (void *) brdp->memaddr;
4395 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4396 if (brdp->membase == (void *) NULL)
4397 continue;
4398
4399 if (brdp->brdtype == BRD_ECPE) {
4400 ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4401 CDK_SIGADDR, __LINE__);
4402 memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4403 if (ecpsig.magic == ECP_MAGIC)
4404 foundit = 1;
4405 } else {
4406 onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4407 CDK_SIGADDR, __LINE__);
4408 memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4409 if ((onbsig.magic0 == ONB_MAGIC0) &&
4410 (onbsig.magic1 == ONB_MAGIC1) &&
4411 (onbsig.magic2 == ONB_MAGIC2) &&
4412 (onbsig.magic3 == ONB_MAGIC3))
4413 foundit = 1;
4414 }
4415
4416 iounmap(brdp->membase);
4417 if (foundit)
4418 break;
4419 }
4420
4421/*
4422 * Regardless of whether we found the shared memory or not we must
4423 * disable the region. After that return success or failure.
4424 */
4425 if (brdp->brdtype == BRD_ECPE)
4426 stli_ecpeidisable(brdp);
4427 else
4428 stli_onbedisable(brdp);
4429
4430 if (! foundit) {
4431 brdp->memaddr = 0;
4432 brdp->membase = NULL;
4433 printk(KERN_ERR "STALLION: failed to probe shared memory "
4434 "region for %s in EISA slot=%d\n",
4435 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4436 return(-ENODEV);
4437 }
4438 return(0);
4439}
4440
4441static int stli_getbrdnr(void)
4442{
4443 int i;
4444
4445 for (i = 0; i < STL_MAXBRDS; i++) {
4446 if (!stli_brds[i]) {
4447 if (i >= stli_nrbrds)
4448 stli_nrbrds = i + 1;
4449 return i;
4450 }
4451 }
4452 return -1;
4453}
4454
4455/*****************************************************************************/
4456
4457/*
4458 * Probe around and try to find any EISA boards in system. The biggest
4459 * problem here is finding out what memory address is associated with
4460 * an EISA board after it is found. The registers of the ECPE and
4461 * ONboardE are not readable - so we can't read them from there. We
4462 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4463 * actually have any way to find out the real value. The best we can
4464 * do is go probing around in the usual places hoping we can find it.
4465 */
4466
4467static int stli_findeisabrds(void)
4468{
4469 stlibrd_t *brdp;
4470 unsigned int iobase, eid;
4471 int i;
4472
4473#ifdef DEBUG
4474 printk(KERN_DEBUG "stli_findeisabrds()\n");
4475#endif
4476
4477/*
4478 * Firstly check if this is an EISA system. Do this by probing for
4479 * the system board EISA ID. If this is not an EISA system then
4480 * don't bother going any further!
4481 */
4482 outb(0xff, 0xc80);
4483 if (inb(0xc80) == 0xff)
4484 return(0);
4485
4486/*
4487 * Looks like an EISA system, so go searching for EISA boards.
4488 */
4489 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4490 outb(0xff, (iobase + 0xc80));
4491 eid = inb(iobase + 0xc80);
4492 eid |= inb(iobase + 0xc81) << 8;
4493 if (eid != STL_EISAID)
4494 continue;
4495
4496/*
4497 * We have found a board. Need to check if this board was
4498 * statically configured already (just in case!).
4499 */
4500 for (i = 0; (i < STL_MAXBRDS); i++) {
4501 brdp = stli_brds[i];
4502 if (brdp == (stlibrd_t *) NULL)
4503 continue;
4504 if (brdp->iobase == iobase)
4505 break;
4506 }
4507 if (i < STL_MAXBRDS)
4508 continue;
4509
4510/*
4511 * We have found a Stallion board and it is not configured already.
4512 * Allocate a board structure and initialize it.
4513 */
4514 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4515 return(-ENOMEM);
4516 if ((brdp->brdnr = stli_getbrdnr()) < 0)
4517 return(-ENOMEM);
4518 eid = inb(iobase + 0xc82);
4519 if (eid == ECP_EISAID)
4520 brdp->brdtype = BRD_ECPE;
4521 else if (eid == ONB_EISAID)
4522 brdp->brdtype = BRD_ONBOARDE;
4523 else
4524 brdp->brdtype = BRD_UNKNOWN;
4525 brdp->iobase = iobase;
4526 outb(0x1, (iobase + 0xc84));
4527 if (stli_eisamemprobe(brdp))
4528 outb(0, (iobase + 0xc84));
4529 stli_brdinit(brdp);
4530 }
4531
4532 return(0);
4533}
4534
4535/*****************************************************************************/
4536
4537/*
4538 * Find the next available board number that is free.
4539 */
4540
4541/*****************************************************************************/
4542
4543#ifdef CONFIG_PCI
4544
4545/*
4546 * We have a Stallion board. Allocate a board structure and
4547 * initialize it. Read its IO and MEMORY resources from PCI
4548 * configuration space.
4549 */
4550
4551static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4552{
4553 stlibrd_t *brdp;
4554
4555#ifdef DEBUG
4556 printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4557 brdtype, dev->bus->number, dev->devfn);
4558#endif
4559
4560 if (pci_enable_device(devp))
4561 return(-EIO);
4562 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4563 return(-ENOMEM);
4564 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4565 printk(KERN_INFO "STALLION: too many boards found, "
4566 "maximum supported %d\n", STL_MAXBRDS);
4567 return(0);
4568 }
4569 brdp->brdtype = brdtype;
4570
4571#ifdef DEBUG
4572 printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4573 pci_resource_start(devp, 0),
4574 pci_resource_start(devp, 1),
4575 pci_resource_start(devp, 2),
4576 pci_resource_start(devp, 3));
4577#endif
4578
4579/*
4580 * We have all resources from the board, so lets setup the actual
4581 * board structure now.
4582 */
4583 brdp->iobase = pci_resource_start(devp, 3);
4584 brdp->memaddr = pci_resource_start(devp, 2);
4585 stli_brdinit(brdp);
4586
4587 return(0);
4588}
4589
4590/*****************************************************************************/
4591
4592/*
4593 * Find all Stallion PCI boards that might be installed. Initialize each
4594 * one as it is found.
4595 */
4596
4597static int stli_findpcibrds(void)
4598{
4599 struct pci_dev *dev = NULL;
4600 int rc;
4601
4602#ifdef DEBUG
4603 printk("stli_findpcibrds()\n");
4604#endif
4605
4606 while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4607 PCI_DEVICE_ID_ECRA, dev))) {
4608 if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4609 return(rc);
4610 }
4611
4612 return(0);
4613}
4614
4615#endif
4616
4617/*****************************************************************************/
4618
4619/*
4620 * Allocate a new board structure. Fill out the basic info in it.
4621 */
4622
4623static stlibrd_t *stli_allocbrd(void)
4624{
4625 stlibrd_t *brdp;
4626
4627 brdp = (stlibrd_t *) stli_memalloc(sizeof(stlibrd_t));
4628 if (brdp == (stlibrd_t *) NULL) {
4629 printk(KERN_ERR "STALLION: failed to allocate memory "
4630 "(size=%d)\n", sizeof(stlibrd_t));
4631 return((stlibrd_t *) NULL);
4632 }
4633
4634 memset(brdp, 0, sizeof(stlibrd_t));
4635 brdp->magic = STLI_BOARDMAGIC;
4636 return(brdp);
4637}
4638
4639/*****************************************************************************/
4640
4641/*
4642 * Scan through all the boards in the configuration and see what we
4643 * can find.
4644 */
4645
4646static int stli_initbrds(void)
4647{
4648 stlibrd_t *brdp, *nxtbrdp;
4649 stlconf_t *confp;
4650 int i, j;
4651
4652#ifdef DEBUG
4653 printk(KERN_DEBUG "stli_initbrds()\n");
4654#endif
4655
4656 if (stli_nrbrds > STL_MAXBRDS) {
4657 printk(KERN_INFO "STALLION: too many boards in configuration "
4658 "table, truncating to %d\n", STL_MAXBRDS);
4659 stli_nrbrds = STL_MAXBRDS;
4660 }
4661
4662/*
4663 * Firstly scan the list of static boards configured. Allocate
4664 * resources and initialize the boards as found. If this is a
4665 * module then let the module args override static configuration.
4666 */
4667 for (i = 0; (i < stli_nrbrds); i++) {
4668 confp = &stli_brdconf[i];
4669#ifdef MODULE
4670 stli_parsebrd(confp, stli_brdsp[i]);
4671#endif
4672 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4673 return(-ENOMEM);
4674 brdp->brdnr = i;
4675 brdp->brdtype = confp->brdtype;
4676 brdp->iobase = confp->ioaddr1;
4677 brdp->memaddr = confp->memaddr;
4678 stli_brdinit(brdp);
4679 }
4680
4681/*
4682 * Static configuration table done, so now use dynamic methods to
4683 * see if any more boards should be configured.
4684 */
4685#ifdef MODULE
4686 stli_argbrds();
4687#endif
4688 if (stli_eisaprobe)
4689 stli_findeisabrds();
4690#ifdef CONFIG_PCI
4691 stli_findpcibrds();
4692#endif
4693
4694/*
4695 * All found boards are initialized. Now for a little optimization, if
4696 * no boards are sharing the "shared memory" regions then we can just
4697 * leave them all enabled. This is in fact the usual case.
4698 */
4699 stli_shared = 0;
4700 if (stli_nrbrds > 1) {
4701 for (i = 0; (i < stli_nrbrds); i++) {
4702 brdp = stli_brds[i];
4703 if (brdp == (stlibrd_t *) NULL)
4704 continue;
4705 for (j = i + 1; (j < stli_nrbrds); j++) {
4706 nxtbrdp = stli_brds[j];
4707 if (nxtbrdp == (stlibrd_t *) NULL)
4708 continue;
4709 if ((brdp->membase >= nxtbrdp->membase) &&
4710 (brdp->membase <= (nxtbrdp->membase +
4711 nxtbrdp->memsize - 1))) {
4712 stli_shared++;
4713 break;
4714 }
4715 }
4716 }
4717 }
4718
4719 if (stli_shared == 0) {
4720 for (i = 0; (i < stli_nrbrds); i++) {
4721 brdp = stli_brds[i];
4722 if (brdp == (stlibrd_t *) NULL)
4723 continue;
4724 if (brdp->state & BST_FOUND) {
4725 EBRDENABLE(brdp);
4726 brdp->enable = NULL;
4727 brdp->disable = NULL;
4728 }
4729 }
4730 }
4731
4732 return(0);
4733}
4734
4735/*****************************************************************************/
4736
4737/*
4738 * Code to handle an "staliomem" read operation. This device is the
4739 * contents of the board shared memory. It is used for down loading
4740 * the slave image (and debugging :-)
4741 */
4742
4743static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4744{
4745 unsigned long flags;
4746 void *memptr;
4747 stlibrd_t *brdp;
4748 int brdnr, size, n;
4749
4750#ifdef DEBUG
4751 printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4752 (int) fp, (int) buf, count, (int) offp);
4753#endif
4754
4755 brdnr = iminor(fp->f_dentry->d_inode);
4756 if (brdnr >= stli_nrbrds)
4757 return(-ENODEV);
4758 brdp = stli_brds[brdnr];
4759 if (brdp == (stlibrd_t *) NULL)
4760 return(-ENODEV);
4761 if (brdp->state == 0)
4762 return(-ENODEV);
4763 if (fp->f_pos >= brdp->memsize)
4764 return(0);
4765
4766 size = MIN(count, (brdp->memsize - fp->f_pos));
4767
4768 save_flags(flags);
4769 cli();
4770 EBRDENABLE(brdp);
4771 while (size > 0) {
4772 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4773 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4774 if (copy_to_user(buf, memptr, n)) {
4775 count = -EFAULT;
4776 goto out;
4777 }
4778 fp->f_pos += n;
4779 buf += n;
4780 size -= n;
4781 }
4782out:
4783 EBRDDISABLE(brdp);
4784 restore_flags(flags);
4785
4786 return(count);
4787}
4788
4789/*****************************************************************************/
4790
4791/*
4792 * Code to handle an "staliomem" write operation. This device is the
4793 * contents of the board shared memory. It is used for down loading
4794 * the slave image (and debugging :-)
4795 */
4796
4797static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4798{
4799 unsigned long flags;
4800 void *memptr;
4801 stlibrd_t *brdp;
4802 char __user *chbuf;
4803 int brdnr, size, n;
4804
4805#ifdef DEBUG
4806 printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4807 (int) fp, (int) buf, count, (int) offp);
4808#endif
4809
4810 brdnr = iminor(fp->f_dentry->d_inode);
4811 if (brdnr >= stli_nrbrds)
4812 return(-ENODEV);
4813 brdp = stli_brds[brdnr];
4814 if (brdp == (stlibrd_t *) NULL)
4815 return(-ENODEV);
4816 if (brdp->state == 0)
4817 return(-ENODEV);
4818 if (fp->f_pos >= brdp->memsize)
4819 return(0);
4820
4821 chbuf = (char __user *) buf;
4822 size = MIN(count, (brdp->memsize - fp->f_pos));
4823
4824 save_flags(flags);
4825 cli();
4826 EBRDENABLE(brdp);
4827 while (size > 0) {
4828 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4829 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4830 if (copy_from_user(memptr, chbuf, n)) {
4831 count = -EFAULT;
4832 goto out;
4833 }
4834 fp->f_pos += n;
4835 chbuf += n;
4836 size -= n;
4837 }
4838out:
4839 EBRDDISABLE(brdp);
4840 restore_flags(flags);
4841
4842 return(count);
4843}
4844
4845/*****************************************************************************/
4846
4847/*
4848 * Return the board stats structure to user app.
4849 */
4850
4851static int stli_getbrdstats(combrd_t __user *bp)
4852{
4853 stlibrd_t *brdp;
4854 int i;
4855
4856 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4857 return -EFAULT;
4858 if (stli_brdstats.brd >= STL_MAXBRDS)
4859 return(-ENODEV);
4860 brdp = stli_brds[stli_brdstats.brd];
4861 if (brdp == (stlibrd_t *) NULL)
4862 return(-ENODEV);
4863
4864 memset(&stli_brdstats, 0, sizeof(combrd_t));
4865 stli_brdstats.brd = brdp->brdnr;
4866 stli_brdstats.type = brdp->brdtype;
4867 stli_brdstats.hwid = 0;
4868 stli_brdstats.state = brdp->state;
4869 stli_brdstats.ioaddr = brdp->iobase;
4870 stli_brdstats.memaddr = brdp->memaddr;
4871 stli_brdstats.nrpanels = brdp->nrpanels;
4872 stli_brdstats.nrports = brdp->nrports;
4873 for (i = 0; (i < brdp->nrpanels); i++) {
4874 stli_brdstats.panels[i].panel = i;
4875 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4876 stli_brdstats.panels[i].nrports = brdp->panels[i];
4877 }
4878
4879 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4880 return -EFAULT;
4881 return(0);
4882}
4883
4884/*****************************************************************************/
4885
4886/*
4887 * Resolve the referenced port number into a port struct pointer.
4888 */
4889
4890static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4891{
4892 stlibrd_t *brdp;
4893 int i;
4894
4895 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
4896 return((stliport_t *) NULL);
4897 brdp = stli_brds[brdnr];
4898 if (brdp == (stlibrd_t *) NULL)
4899 return((stliport_t *) NULL);
4900 for (i = 0; (i < panelnr); i++)
4901 portnr += brdp->panels[i];
4902 if ((portnr < 0) || (portnr >= brdp->nrports))
4903 return((stliport_t *) NULL);
4904 return(brdp->ports[portnr]);
4905}
4906
4907/*****************************************************************************/
4908
4909/*
4910 * Return the port stats structure to user app. A NULL port struct
4911 * pointer passed in means that we need to find out from the app
4912 * what port to get stats for (used through board control device).
4913 */
4914
4915static int stli_portcmdstats(stliport_t *portp)
4916{
4917 unsigned long flags;
4918 stlibrd_t *brdp;
4919 int rc;
4920
4921 memset(&stli_comstats, 0, sizeof(comstats_t));
4922
4923 if (portp == (stliport_t *) NULL)
4924 return(-ENODEV);
4925 brdp = stli_brds[portp->brdnr];
4926 if (brdp == (stlibrd_t *) NULL)
4927 return(-ENODEV);
4928
4929 if (brdp->state & BST_STARTED) {
4930 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4931 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4932 return(rc);
4933 } else {
4934 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4935 }
4936
4937 stli_comstats.brd = portp->brdnr;
4938 stli_comstats.panel = portp->panelnr;
4939 stli_comstats.port = portp->portnr;
4940 stli_comstats.state = portp->state;
4941 stli_comstats.flags = portp->flags;
4942
4943 save_flags(flags);
4944 cli();
4945 if (portp->tty != (struct tty_struct *) NULL) {
4946 if (portp->tty->driver_data == portp) {
4947 stli_comstats.ttystate = portp->tty->flags;
4948 stli_comstats.rxbuffered = portp->tty->flip.count;
4949 if (portp->tty->termios != (struct termios *) NULL) {
4950 stli_comstats.cflags = portp->tty->termios->c_cflag;
4951 stli_comstats.iflags = portp->tty->termios->c_iflag;
4952 stli_comstats.oflags = portp->tty->termios->c_oflag;
4953 stli_comstats.lflags = portp->tty->termios->c_lflag;
4954 }
4955 }
4956 }
4957 restore_flags(flags);
4958
4959 stli_comstats.txtotal = stli_cdkstats.txchars;
4960 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4961 stli_comstats.txbuffered = stli_cdkstats.txringq;
4962 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4963 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4964 stli_comstats.rxparity = stli_cdkstats.parity;
4965 stli_comstats.rxframing = stli_cdkstats.framing;
4966 stli_comstats.rxlost = stli_cdkstats.ringover;
4967 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4968 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4969 stli_comstats.txxon = stli_cdkstats.txstart;
4970 stli_comstats.txxoff = stli_cdkstats.txstop;
4971 stli_comstats.rxxon = stli_cdkstats.rxstart;
4972 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4973 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4974 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4975 stli_comstats.modem = stli_cdkstats.dcdcnt;
4976 stli_comstats.hwid = stli_cdkstats.hwid;
4977 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4978
4979 return(0);
4980}
4981
4982/*****************************************************************************/
4983
4984/*
4985 * Return the port stats structure to user app. A NULL port struct
4986 * pointer passed in means that we need to find out from the app
4987 * what port to get stats for (used through board control device).
4988 */
4989
4990static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4991{
4992 stlibrd_t *brdp;
4993 int rc;
4994
4995 if (!portp) {
4996 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4997 return -EFAULT;
4998 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4999 stli_comstats.port);
5000 if (!portp)
5001 return -ENODEV;
5002 }
5003
5004 brdp = stli_brds[portp->brdnr];
5005 if (!brdp)
5006 return -ENODEV;
5007
5008 if ((rc = stli_portcmdstats(portp)) < 0)
5009 return rc;
5010
5011 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
5012 -EFAULT : 0;
5013}
5014
5015/*****************************************************************************/
5016
5017/*
5018 * Clear the port stats structure. We also return it zeroed out...
5019 */
5020
5021static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
5022{
5023 stlibrd_t *brdp;
5024 int rc;
5025
5026 if (!portp) {
5027 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5028 return -EFAULT;
5029 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5030 stli_comstats.port);
5031 if (!portp)
5032 return -ENODEV;
5033 }
5034
5035 brdp = stli_brds[portp->brdnr];
5036 if (!brdp)
5037 return -ENODEV;
5038
5039 if (brdp->state & BST_STARTED) {
5040 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
5041 return rc;
5042 }
5043
5044 memset(&stli_comstats, 0, sizeof(comstats_t));
5045 stli_comstats.brd = portp->brdnr;
5046 stli_comstats.panel = portp->panelnr;
5047 stli_comstats.port = portp->portnr;
5048
5049 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5050 return -EFAULT;
5051 return 0;
5052}
5053
5054/*****************************************************************************/
5055
5056/*
5057 * Return the entire driver ports structure to a user app.
5058 */
5059
5060static int stli_getportstruct(stliport_t __user *arg)
5061{
5062 stliport_t *portp;
5063
5064 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
5065 return -EFAULT;
5066 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5067 stli_dummyport.portnr);
5068 if (!portp)
5069 return -ENODEV;
5070 if (copy_to_user(arg, portp, sizeof(stliport_t)))
5071 return -EFAULT;
5072 return 0;
5073}
5074
5075/*****************************************************************************/
5076
5077/*
5078 * Return the entire driver board structure to a user app.
5079 */
5080
5081static int stli_getbrdstruct(stlibrd_t __user *arg)
5082{
5083 stlibrd_t *brdp;
5084
5085 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
5086 return -EFAULT;
5087 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5088 return -ENODEV;
5089 brdp = stli_brds[stli_dummybrd.brdnr];
5090 if (!brdp)
5091 return -ENODEV;
5092 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
5093 return -EFAULT;
5094 return 0;
5095}
5096
5097/*****************************************************************************/
5098
5099/*
5100 * The "staliomem" device is also required to do some special operations on
5101 * the board. We need to be able to send an interrupt to the board,
5102 * reset it, and start/stop it.
5103 */
5104
5105static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5106{
5107 stlibrd_t *brdp;
5108 int brdnr, rc, done;
5109 void __user *argp = (void __user *)arg;
5110
5111#ifdef DEBUG
5112 printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5113 (int) ip, (int) fp, cmd, (int) arg);
5114#endif
5115
5116/*
5117 * First up handle the board independent ioctls.
5118 */
5119 done = 0;
5120 rc = 0;
5121
5122 switch (cmd) {
5123 case COM_GETPORTSTATS:
5124 rc = stli_getportstats(NULL, argp);
5125 done++;
5126 break;
5127 case COM_CLRPORTSTATS:
5128 rc = stli_clrportstats(NULL, argp);
5129 done++;
5130 break;
5131 case COM_GETBRDSTATS:
5132 rc = stli_getbrdstats(argp);
5133 done++;
5134 break;
5135 case COM_READPORT:
5136 rc = stli_getportstruct(argp);
5137 done++;
5138 break;
5139 case COM_READBOARD:
5140 rc = stli_getbrdstruct(argp);
5141 done++;
5142 break;
5143 }
5144
5145 if (done)
5146 return(rc);
5147
5148/*
5149 * Now handle the board specific ioctls. These all depend on the
5150 * minor number of the device they were called from.
5151 */
5152 brdnr = iminor(ip);
5153 if (brdnr >= STL_MAXBRDS)
5154 return(-ENODEV);
5155 brdp = stli_brds[brdnr];
5156 if (!brdp)
5157 return(-ENODEV);
5158 if (brdp->state == 0)
5159 return(-ENODEV);
5160
5161 switch (cmd) {
5162 case STL_BINTR:
5163 EBRDINTR(brdp);
5164 break;
5165 case STL_BSTART:
5166 rc = stli_startbrd(brdp);
5167 break;
5168 case STL_BSTOP:
5169 brdp->state &= ~BST_STARTED;
5170 break;
5171 case STL_BRESET:
5172 brdp->state &= ~BST_STARTED;
5173 EBRDRESET(brdp);
5174 if (stli_shared == 0) {
5175 if (brdp->reenable != NULL)
5176 (* brdp->reenable)(brdp);
5177 }
5178 break;
5179 default:
5180 rc = -ENOIOCTLCMD;
5181 break;
5182 }
5183
5184 return(rc);
5185}
5186
5187static struct tty_operations stli_ops = {
5188 .open = stli_open,
5189 .close = stli_close,
5190 .write = stli_write,
5191 .put_char = stli_putchar,
5192 .flush_chars = stli_flushchars,
5193 .write_room = stli_writeroom,
5194 .chars_in_buffer = stli_charsinbuffer,
5195 .ioctl = stli_ioctl,
5196 .set_termios = stli_settermios,
5197 .throttle = stli_throttle,
5198 .unthrottle = stli_unthrottle,
5199 .stop = stli_stop,
5200 .start = stli_start,
5201 .hangup = stli_hangup,
5202 .flush_buffer = stli_flushbuffer,
5203 .break_ctl = stli_breakctl,
5204 .wait_until_sent = stli_waituntilsent,
5205 .send_xchar = stli_sendxchar,
5206 .read_proc = stli_readproc,
5207 .tiocmget = stli_tiocmget,
5208 .tiocmset = stli_tiocmset,
5209};
5210
5211/*****************************************************************************/
5212
5213int __init stli_init(void)
5214{
5215 int i;
5216 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5217
5218 stli_initbrds();
5219
5220 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
5221 if (!stli_serial)
5222 return -ENOMEM;
5223
5224/*
5225 * Allocate a temporary write buffer.
5226 */
5227 stli_tmpwritebuf = (char *) stli_memalloc(STLI_TXBUFSIZE);
5228 if (stli_tmpwritebuf == (char *) NULL)
5229 printk(KERN_ERR "STALLION: failed to allocate memory "
5230 "(size=%d)\n", STLI_TXBUFSIZE);
5231 stli_txcookbuf = stli_memalloc(STLI_TXBUFSIZE);
5232 if (stli_txcookbuf == (char *) NULL)
5233 printk(KERN_ERR "STALLION: failed to allocate memory "
5234 "(size=%d)\n", STLI_TXBUFSIZE);
5235
5236/*
5237 * Set up a character driver for the shared memory region. We need this
5238 * to down load the slave code image. Also it is a useful debugging tool.
5239 */
5240 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5241 printk(KERN_ERR "STALLION: failed to register serial memory "
5242 "device\n");
5243
5244 devfs_mk_dir("staliomem");
5245 istallion_class = class_simple_create(THIS_MODULE, "staliomem");
5246 for (i = 0; i < 4; i++) {
5247 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
5248 S_IFCHR | S_IRUSR | S_IWUSR,
5249 "staliomem/%d", i);
5250 class_simple_device_add(istallion_class, MKDEV(STL_SIOMEMMAJOR, i),
5251 NULL, "staliomem%d", i);
5252 }
5253
5254/*
5255 * Set up the tty driver structure and register us as a driver.
5256 */
5257 stli_serial->owner = THIS_MODULE;
5258 stli_serial->driver_name = stli_drvname;
5259 stli_serial->name = stli_serialname;
5260 stli_serial->major = STL_SERIALMAJOR;
5261 stli_serial->minor_start = 0;
5262 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
5263 stli_serial->subtype = SERIAL_TYPE_NORMAL;
5264 stli_serial->init_termios = stli_deftermios;
5265 stli_serial->flags = TTY_DRIVER_REAL_RAW;
5266 tty_set_operations(stli_serial, &stli_ops);
5267
5268 if (tty_register_driver(stli_serial)) {
5269 put_tty_driver(stli_serial);
5270 printk(KERN_ERR "STALLION: failed to register serial driver\n");
5271 return -EBUSY;
5272 }
5273 return(0);
5274}
5275
5276/*****************************************************************************/