diff options
Diffstat (limited to 'arch/x86_64/kernel/hpet.c')
-rw-r--r-- | arch/x86_64/kernel/hpet.c | 511 |
1 files changed, 511 insertions, 0 deletions
diff --git a/arch/x86_64/kernel/hpet.c b/arch/x86_64/kernel/hpet.c new file mode 100644 index 000000000000..65a0edd71a17 --- /dev/null +++ b/arch/x86_64/kernel/hpet.c | |||
@@ -0,0 +1,511 @@ | |||
1 | #include <linux/kernel.h> | ||
2 | #include <linux/sched.h> | ||
3 | #include <linux/init.h> | ||
4 | #include <linux/mc146818rtc.h> | ||
5 | #include <linux/time.h> | ||
6 | #include <linux/clocksource.h> | ||
7 | #include <linux/ioport.h> | ||
8 | #include <linux/acpi.h> | ||
9 | #include <linux/hpet.h> | ||
10 | #include <asm/pgtable.h> | ||
11 | #include <asm/vsyscall.h> | ||
12 | #include <asm/timex.h> | ||
13 | #include <asm/hpet.h> | ||
14 | |||
15 | int nohpet __initdata; | ||
16 | |||
17 | unsigned long hpet_address; | ||
18 | unsigned long hpet_period; /* fsecs / HPET clock */ | ||
19 | unsigned long hpet_tick; /* HPET clocks / interrupt */ | ||
20 | |||
21 | int hpet_use_timer; /* Use counter of hpet for time keeping, | ||
22 | * otherwise PIT | ||
23 | */ | ||
24 | |||
25 | #ifdef CONFIG_HPET | ||
26 | static __init int late_hpet_init(void) | ||
27 | { | ||
28 | struct hpet_data hd; | ||
29 | unsigned int ntimer; | ||
30 | |||
31 | if (!hpet_address) | ||
32 | return 0; | ||
33 | |||
34 | memset(&hd, 0, sizeof(hd)); | ||
35 | |||
36 | ntimer = hpet_readl(HPET_ID); | ||
37 | ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; | ||
38 | ntimer++; | ||
39 | |||
40 | /* | ||
41 | * Register with driver. | ||
42 | * Timer0 and Timer1 is used by platform. | ||
43 | */ | ||
44 | hd.hd_phys_address = hpet_address; | ||
45 | hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE); | ||
46 | hd.hd_nirqs = ntimer; | ||
47 | hd.hd_flags = HPET_DATA_PLATFORM; | ||
48 | hpet_reserve_timer(&hd, 0); | ||
49 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
50 | hpet_reserve_timer(&hd, 1); | ||
51 | #endif | ||
52 | hd.hd_irq[0] = HPET_LEGACY_8254; | ||
53 | hd.hd_irq[1] = HPET_LEGACY_RTC; | ||
54 | if (ntimer > 2) { | ||
55 | struct hpet *hpet; | ||
56 | struct hpet_timer *timer; | ||
57 | int i; | ||
58 | |||
59 | hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE); | ||
60 | timer = &hpet->hpet_timers[2]; | ||
61 | for (i = 2; i < ntimer; timer++, i++) | ||
62 | hd.hd_irq[i] = (timer->hpet_config & | ||
63 | Tn_INT_ROUTE_CNF_MASK) >> | ||
64 | Tn_INT_ROUTE_CNF_SHIFT; | ||
65 | |||
66 | } | ||
67 | |||
68 | hpet_alloc(&hd); | ||
69 | return 0; | ||
70 | } | ||
71 | fs_initcall(late_hpet_init); | ||
72 | #endif | ||
73 | |||
74 | int hpet_timer_stop_set_go(unsigned long tick) | ||
75 | { | ||
76 | unsigned int cfg; | ||
77 | |||
78 | /* | ||
79 | * Stop the timers and reset the main counter. | ||
80 | */ | ||
81 | |||
82 | cfg = hpet_readl(HPET_CFG); | ||
83 | cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); | ||
84 | hpet_writel(cfg, HPET_CFG); | ||
85 | hpet_writel(0, HPET_COUNTER); | ||
86 | hpet_writel(0, HPET_COUNTER + 4); | ||
87 | |||
88 | /* | ||
89 | * Set up timer 0, as periodic with first interrupt to happen at hpet_tick, | ||
90 | * and period also hpet_tick. | ||
91 | */ | ||
92 | if (hpet_use_timer) { | ||
93 | hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | | ||
94 | HPET_TN_32BIT, HPET_T0_CFG); | ||
95 | hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */ | ||
96 | hpet_writel(hpet_tick, HPET_T0_CMP); /* period */ | ||
97 | cfg |= HPET_CFG_LEGACY; | ||
98 | } | ||
99 | /* | ||
100 | * Go! | ||
101 | */ | ||
102 | |||
103 | cfg |= HPET_CFG_ENABLE; | ||
104 | hpet_writel(cfg, HPET_CFG); | ||
105 | |||
106 | return 0; | ||
107 | } | ||
108 | |||
109 | int hpet_arch_init(void) | ||
110 | { | ||
111 | unsigned int id; | ||
112 | |||
113 | if (!hpet_address) | ||
114 | return -1; | ||
115 | set_fixmap_nocache(FIX_HPET_BASE, hpet_address); | ||
116 | __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); | ||
117 | |||
118 | /* | ||
119 | * Read the period, compute tick and quotient. | ||
120 | */ | ||
121 | |||
122 | id = hpet_readl(HPET_ID); | ||
123 | |||
124 | if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER)) | ||
125 | return -1; | ||
126 | |||
127 | hpet_period = hpet_readl(HPET_PERIOD); | ||
128 | if (hpet_period < 100000 || hpet_period > 100000000) | ||
129 | return -1; | ||
130 | |||
131 | hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period; | ||
132 | |||
133 | hpet_use_timer = (id & HPET_ID_LEGSUP); | ||
134 | |||
135 | return hpet_timer_stop_set_go(hpet_tick); | ||
136 | } | ||
137 | |||
138 | int hpet_reenable(void) | ||
139 | { | ||
140 | return hpet_timer_stop_set_go(hpet_tick); | ||
141 | } | ||
142 | |||
143 | /* | ||
144 | * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing | ||
145 | * it to the HPET timer of known frequency. | ||
146 | */ | ||
147 | |||
148 | #define TICK_COUNT 100000000 | ||
149 | #define TICK_MIN 5000 | ||
150 | |||
151 | /* | ||
152 | * Some platforms take periodic SMI interrupts with 5ms duration. Make sure none | ||
153 | * occurs between the reads of the hpet & TSC. | ||
154 | */ | ||
155 | static void __init read_hpet_tsc(int *hpet, int *tsc) | ||
156 | { | ||
157 | int tsc1, tsc2, hpet1; | ||
158 | |||
159 | do { | ||
160 | tsc1 = get_cycles_sync(); | ||
161 | hpet1 = hpet_readl(HPET_COUNTER); | ||
162 | tsc2 = get_cycles_sync(); | ||
163 | } while (tsc2 - tsc1 > TICK_MIN); | ||
164 | *hpet = hpet1; | ||
165 | *tsc = tsc2; | ||
166 | } | ||
167 | |||
168 | unsigned int __init hpet_calibrate_tsc(void) | ||
169 | { | ||
170 | int tsc_start, hpet_start; | ||
171 | int tsc_now, hpet_now; | ||
172 | unsigned long flags; | ||
173 | |||
174 | local_irq_save(flags); | ||
175 | |||
176 | read_hpet_tsc(&hpet_start, &tsc_start); | ||
177 | |||
178 | do { | ||
179 | local_irq_disable(); | ||
180 | read_hpet_tsc(&hpet_now, &tsc_now); | ||
181 | local_irq_restore(flags); | ||
182 | } while ((tsc_now - tsc_start) < TICK_COUNT && | ||
183 | (hpet_now - hpet_start) < TICK_COUNT); | ||
184 | |||
185 | return (tsc_now - tsc_start) * 1000000000L | ||
186 | / ((hpet_now - hpet_start) * hpet_period / 1000); | ||
187 | } | ||
188 | |||
189 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
190 | /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET | ||
191 | * is enabled, we support RTC interrupt functionality in software. | ||
192 | * RTC has 3 kinds of interrupts: | ||
193 | * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock | ||
194 | * is updated | ||
195 | * 2) Alarm Interrupt - generate an interrupt at a specific time of day | ||
196 | * 3) Periodic Interrupt - generate periodic interrupt, with frequencies | ||
197 | * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) | ||
198 | * (1) and (2) above are implemented using polling at a frequency of | ||
199 | * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt | ||
200 | * overhead. (DEFAULT_RTC_INT_FREQ) | ||
201 | * For (3), we use interrupts at 64Hz or user specified periodic | ||
202 | * frequency, whichever is higher. | ||
203 | */ | ||
204 | #include <linux/rtc.h> | ||
205 | |||
206 | #define DEFAULT_RTC_INT_FREQ 64 | ||
207 | #define RTC_NUM_INTS 1 | ||
208 | |||
209 | static unsigned long UIE_on; | ||
210 | static unsigned long prev_update_sec; | ||
211 | |||
212 | static unsigned long AIE_on; | ||
213 | static struct rtc_time alarm_time; | ||
214 | |||
215 | static unsigned long PIE_on; | ||
216 | static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ; | ||
217 | static unsigned long PIE_count; | ||
218 | |||
219 | static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */ | ||
220 | static unsigned int hpet_t1_cmp; /* cached comparator register */ | ||
221 | |||
222 | int is_hpet_enabled(void) | ||
223 | { | ||
224 | return hpet_address != 0; | ||
225 | } | ||
226 | |||
227 | /* | ||
228 | * Timer 1 for RTC, we do not use periodic interrupt feature, | ||
229 | * even if HPET supports periodic interrupts on Timer 1. | ||
230 | * The reason being, to set up a periodic interrupt in HPET, we need to | ||
231 | * stop the main counter. And if we do that everytime someone diables/enables | ||
232 | * RTC, we will have adverse effect on main kernel timer running on Timer 0. | ||
233 | * So, for the time being, simulate the periodic interrupt in software. | ||
234 | * | ||
235 | * hpet_rtc_timer_init() is called for the first time and during subsequent | ||
236 | * interuppts reinit happens through hpet_rtc_timer_reinit(). | ||
237 | */ | ||
238 | int hpet_rtc_timer_init(void) | ||
239 | { | ||
240 | unsigned int cfg, cnt; | ||
241 | unsigned long flags; | ||
242 | |||
243 | if (!is_hpet_enabled()) | ||
244 | return 0; | ||
245 | /* | ||
246 | * Set the counter 1 and enable the interrupts. | ||
247 | */ | ||
248 | if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) | ||
249 | hpet_rtc_int_freq = PIE_freq; | ||
250 | else | ||
251 | hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; | ||
252 | |||
253 | local_irq_save(flags); | ||
254 | |||
255 | cnt = hpet_readl(HPET_COUNTER); | ||
256 | cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq); | ||
257 | hpet_writel(cnt, HPET_T1_CMP); | ||
258 | hpet_t1_cmp = cnt; | ||
259 | |||
260 | cfg = hpet_readl(HPET_T1_CFG); | ||
261 | cfg &= ~HPET_TN_PERIODIC; | ||
262 | cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | ||
263 | hpet_writel(cfg, HPET_T1_CFG); | ||
264 | |||
265 | local_irq_restore(flags); | ||
266 | |||
267 | return 1; | ||
268 | } | ||
269 | |||
270 | static void hpet_rtc_timer_reinit(void) | ||
271 | { | ||
272 | unsigned int cfg, cnt, ticks_per_int, lost_ints; | ||
273 | |||
274 | if (unlikely(!(PIE_on | AIE_on | UIE_on))) { | ||
275 | cfg = hpet_readl(HPET_T1_CFG); | ||
276 | cfg &= ~HPET_TN_ENABLE; | ||
277 | hpet_writel(cfg, HPET_T1_CFG); | ||
278 | return; | ||
279 | } | ||
280 | |||
281 | if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) | ||
282 | hpet_rtc_int_freq = PIE_freq; | ||
283 | else | ||
284 | hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; | ||
285 | |||
286 | /* It is more accurate to use the comparator value than current count.*/ | ||
287 | ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq; | ||
288 | hpet_t1_cmp += ticks_per_int; | ||
289 | hpet_writel(hpet_t1_cmp, HPET_T1_CMP); | ||
290 | |||
291 | /* | ||
292 | * If the interrupt handler was delayed too long, the write above tries | ||
293 | * to schedule the next interrupt in the past and the hardware would | ||
294 | * not interrupt until the counter had wrapped around. | ||
295 | * So we have to check that the comparator wasn't set to a past time. | ||
296 | */ | ||
297 | cnt = hpet_readl(HPET_COUNTER); | ||
298 | if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) { | ||
299 | lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1; | ||
300 | /* Make sure that, even with the time needed to execute | ||
301 | * this code, the next scheduled interrupt has been moved | ||
302 | * back to the future: */ | ||
303 | lost_ints++; | ||
304 | |||
305 | hpet_t1_cmp += lost_ints * ticks_per_int; | ||
306 | hpet_writel(hpet_t1_cmp, HPET_T1_CMP); | ||
307 | |||
308 | if (PIE_on) | ||
309 | PIE_count += lost_ints; | ||
310 | |||
311 | if (printk_ratelimit()) | ||
312 | printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", | ||
313 | hpet_rtc_int_freq); | ||
314 | } | ||
315 | } | ||
316 | |||
317 | /* | ||
318 | * The functions below are called from rtc driver. | ||
319 | * Return 0 if HPET is not being used. | ||
320 | * Otherwise do the necessary changes and return 1. | ||
321 | */ | ||
322 | int hpet_mask_rtc_irq_bit(unsigned long bit_mask) | ||
323 | { | ||
324 | if (!is_hpet_enabled()) | ||
325 | return 0; | ||
326 | |||
327 | if (bit_mask & RTC_UIE) | ||
328 | UIE_on = 0; | ||
329 | if (bit_mask & RTC_PIE) | ||
330 | PIE_on = 0; | ||
331 | if (bit_mask & RTC_AIE) | ||
332 | AIE_on = 0; | ||
333 | |||
334 | return 1; | ||
335 | } | ||
336 | |||
337 | int hpet_set_rtc_irq_bit(unsigned long bit_mask) | ||
338 | { | ||
339 | int timer_init_reqd = 0; | ||
340 | |||
341 | if (!is_hpet_enabled()) | ||
342 | return 0; | ||
343 | |||
344 | if (!(PIE_on | AIE_on | UIE_on)) | ||
345 | timer_init_reqd = 1; | ||
346 | |||
347 | if (bit_mask & RTC_UIE) { | ||
348 | UIE_on = 1; | ||
349 | } | ||
350 | if (bit_mask & RTC_PIE) { | ||
351 | PIE_on = 1; | ||
352 | PIE_count = 0; | ||
353 | } | ||
354 | if (bit_mask & RTC_AIE) { | ||
355 | AIE_on = 1; | ||
356 | } | ||
357 | |||
358 | if (timer_init_reqd) | ||
359 | hpet_rtc_timer_init(); | ||
360 | |||
361 | return 1; | ||
362 | } | ||
363 | |||
364 | int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) | ||
365 | { | ||
366 | if (!is_hpet_enabled()) | ||
367 | return 0; | ||
368 | |||
369 | alarm_time.tm_hour = hrs; | ||
370 | alarm_time.tm_min = min; | ||
371 | alarm_time.tm_sec = sec; | ||
372 | |||
373 | return 1; | ||
374 | } | ||
375 | |||
376 | int hpet_set_periodic_freq(unsigned long freq) | ||
377 | { | ||
378 | if (!is_hpet_enabled()) | ||
379 | return 0; | ||
380 | |||
381 | PIE_freq = freq; | ||
382 | PIE_count = 0; | ||
383 | |||
384 | return 1; | ||
385 | } | ||
386 | |||
387 | int hpet_rtc_dropped_irq(void) | ||
388 | { | ||
389 | if (!is_hpet_enabled()) | ||
390 | return 0; | ||
391 | |||
392 | return 1; | ||
393 | } | ||
394 | |||
395 | irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
396 | { | ||
397 | struct rtc_time curr_time; | ||
398 | unsigned long rtc_int_flag = 0; | ||
399 | int call_rtc_interrupt = 0; | ||
400 | |||
401 | hpet_rtc_timer_reinit(); | ||
402 | |||
403 | if (UIE_on | AIE_on) { | ||
404 | rtc_get_rtc_time(&curr_time); | ||
405 | } | ||
406 | if (UIE_on) { | ||
407 | if (curr_time.tm_sec != prev_update_sec) { | ||
408 | /* Set update int info, call real rtc int routine */ | ||
409 | call_rtc_interrupt = 1; | ||
410 | rtc_int_flag = RTC_UF; | ||
411 | prev_update_sec = curr_time.tm_sec; | ||
412 | } | ||
413 | } | ||
414 | if (PIE_on) { | ||
415 | PIE_count++; | ||
416 | if (PIE_count >= hpet_rtc_int_freq/PIE_freq) { | ||
417 | /* Set periodic int info, call real rtc int routine */ | ||
418 | call_rtc_interrupt = 1; | ||
419 | rtc_int_flag |= RTC_PF; | ||
420 | PIE_count = 0; | ||
421 | } | ||
422 | } | ||
423 | if (AIE_on) { | ||
424 | if ((curr_time.tm_sec == alarm_time.tm_sec) && | ||
425 | (curr_time.tm_min == alarm_time.tm_min) && | ||
426 | (curr_time.tm_hour == alarm_time.tm_hour)) { | ||
427 | /* Set alarm int info, call real rtc int routine */ | ||
428 | call_rtc_interrupt = 1; | ||
429 | rtc_int_flag |= RTC_AF; | ||
430 | } | ||
431 | } | ||
432 | if (call_rtc_interrupt) { | ||
433 | rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); | ||
434 | rtc_interrupt(rtc_int_flag, dev_id); | ||
435 | } | ||
436 | return IRQ_HANDLED; | ||
437 | } | ||
438 | #endif | ||
439 | |||
440 | static int __init nohpet_setup(char *s) | ||
441 | { | ||
442 | nohpet = 1; | ||
443 | return 1; | ||
444 | } | ||
445 | |||
446 | __setup("nohpet", nohpet_setup); | ||
447 | |||
448 | #define HPET_MASK 0xFFFFFFFF | ||
449 | #define HPET_SHIFT 22 | ||
450 | |||
451 | /* FSEC = 10^-15 NSEC = 10^-9 */ | ||
452 | #define FSEC_PER_NSEC 1000000 | ||
453 | |||
454 | static void *hpet_ptr; | ||
455 | |||
456 | static cycle_t read_hpet(void) | ||
457 | { | ||
458 | return (cycle_t)readl(hpet_ptr); | ||
459 | } | ||
460 | |||
461 | static cycle_t __vsyscall_fn vread_hpet(void) | ||
462 | { | ||
463 | return readl((void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); | ||
464 | } | ||
465 | |||
466 | struct clocksource clocksource_hpet = { | ||
467 | .name = "hpet", | ||
468 | .rating = 250, | ||
469 | .read = read_hpet, | ||
470 | .mask = (cycle_t)HPET_MASK, | ||
471 | .mult = 0, /* set below */ | ||
472 | .shift = HPET_SHIFT, | ||
473 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
474 | .vread = vread_hpet, | ||
475 | }; | ||
476 | |||
477 | static int __init init_hpet_clocksource(void) | ||
478 | { | ||
479 | unsigned long hpet_period; | ||
480 | void __iomem *hpet_base; | ||
481 | u64 tmp; | ||
482 | |||
483 | if (!hpet_address) | ||
484 | return -ENODEV; | ||
485 | |||
486 | /* calculate the hpet address: */ | ||
487 | hpet_base = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); | ||
488 | hpet_ptr = hpet_base + HPET_COUNTER; | ||
489 | |||
490 | /* calculate the frequency: */ | ||
491 | hpet_period = readl(hpet_base + HPET_PERIOD); | ||
492 | |||
493 | /* | ||
494 | * hpet period is in femto seconds per cycle | ||
495 | * so we need to convert this to ns/cyc units | ||
496 | * aproximated by mult/2^shift | ||
497 | * | ||
498 | * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift | ||
499 | * fsec/cyc * 1ns/1000000fsec * 2^shift = mult | ||
500 | * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult | ||
501 | * (fsec/cyc << shift)/1000000 = mult | ||
502 | * (hpet_period << shift)/FSEC_PER_NSEC = mult | ||
503 | */ | ||
504 | tmp = (u64)hpet_period << HPET_SHIFT; | ||
505 | do_div(tmp, FSEC_PER_NSEC); | ||
506 | clocksource_hpet.mult = (u32)tmp; | ||
507 | |||
508 | return clocksource_register(&clocksource_hpet); | ||
509 | } | ||
510 | |||
511 | module_init(init_hpet_clocksource); | ||