diff options
Diffstat (limited to 'arch/x86')
-rw-r--r-- | arch/x86/include/asm/mwait.h | 43 | ||||
-rw-r--r-- | arch/x86/include/asm/processor.h | 23 | ||||
-rw-r--r-- | arch/x86/include/asm/timer.h | 77 | ||||
-rw-r--r-- | arch/x86/kernel/acpi/cstate.c | 23 | ||||
-rw-r--r-- | arch/x86/kernel/cpu/amd.c | 2 | ||||
-rw-r--r-- | arch/x86/kernel/cpu/intel.c | 2 | ||||
-rw-r--r-- | arch/x86/kernel/cpu/perf_event.c | 16 | ||||
-rw-r--r-- | arch/x86/kernel/smpboot.c | 2 | ||||
-rw-r--r-- | arch/x86/kernel/tsc.c | 318 | ||||
-rw-r--r-- | arch/x86/platform/uv/tlb_uv.c | 66 | ||||
-rw-r--r-- | arch/x86/syscalls/syscall_32.tbl | 2 | ||||
-rw-r--r-- | arch/x86/syscalls/syscall_64.tbl | 2 |
12 files changed, 377 insertions, 199 deletions
diff --git a/arch/x86/include/asm/mwait.h b/arch/x86/include/asm/mwait.h index 2f366d0ac6b4..1da25a5f96f9 100644 --- a/arch/x86/include/asm/mwait.h +++ b/arch/x86/include/asm/mwait.h | |||
@@ -1,6 +1,8 @@ | |||
1 | #ifndef _ASM_X86_MWAIT_H | 1 | #ifndef _ASM_X86_MWAIT_H |
2 | #define _ASM_X86_MWAIT_H | 2 | #define _ASM_X86_MWAIT_H |
3 | 3 | ||
4 | #include <linux/sched.h> | ||
5 | |||
4 | #define MWAIT_SUBSTATE_MASK 0xf | 6 | #define MWAIT_SUBSTATE_MASK 0xf |
5 | #define MWAIT_CSTATE_MASK 0xf | 7 | #define MWAIT_CSTATE_MASK 0xf |
6 | #define MWAIT_SUBSTATE_SIZE 4 | 8 | #define MWAIT_SUBSTATE_SIZE 4 |
@@ -13,4 +15,45 @@ | |||
13 | 15 | ||
14 | #define MWAIT_ECX_INTERRUPT_BREAK 0x1 | 16 | #define MWAIT_ECX_INTERRUPT_BREAK 0x1 |
15 | 17 | ||
18 | static inline void __monitor(const void *eax, unsigned long ecx, | ||
19 | unsigned long edx) | ||
20 | { | ||
21 | /* "monitor %eax, %ecx, %edx;" */ | ||
22 | asm volatile(".byte 0x0f, 0x01, 0xc8;" | ||
23 | :: "a" (eax), "c" (ecx), "d"(edx)); | ||
24 | } | ||
25 | |||
26 | static inline void __mwait(unsigned long eax, unsigned long ecx) | ||
27 | { | ||
28 | /* "mwait %eax, %ecx;" */ | ||
29 | asm volatile(".byte 0x0f, 0x01, 0xc9;" | ||
30 | :: "a" (eax), "c" (ecx)); | ||
31 | } | ||
32 | |||
33 | /* | ||
34 | * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, | ||
35 | * which can obviate IPI to trigger checking of need_resched. | ||
36 | * We execute MONITOR against need_resched and enter optimized wait state | ||
37 | * through MWAIT. Whenever someone changes need_resched, we would be woken | ||
38 | * up from MWAIT (without an IPI). | ||
39 | * | ||
40 | * New with Core Duo processors, MWAIT can take some hints based on CPU | ||
41 | * capability. | ||
42 | */ | ||
43 | static inline void mwait_idle_with_hints(unsigned long eax, unsigned long ecx) | ||
44 | { | ||
45 | if (!current_set_polling_and_test()) { | ||
46 | if (static_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) { | ||
47 | mb(); | ||
48 | clflush((void *)¤t_thread_info()->flags); | ||
49 | mb(); | ||
50 | } | ||
51 | |||
52 | __monitor((void *)¤t_thread_info()->flags, 0, 0); | ||
53 | if (!need_resched()) | ||
54 | __mwait(eax, ecx); | ||
55 | } | ||
56 | current_clr_polling(); | ||
57 | } | ||
58 | |||
16 | #endif /* _ASM_X86_MWAIT_H */ | 59 | #endif /* _ASM_X86_MWAIT_H */ |
diff --git a/arch/x86/include/asm/processor.h b/arch/x86/include/asm/processor.h index 7b034a4057f9..24821f5768bc 100644 --- a/arch/x86/include/asm/processor.h +++ b/arch/x86/include/asm/processor.h | |||
@@ -700,29 +700,6 @@ static inline void sync_core(void) | |||
700 | #endif | 700 | #endif |
701 | } | 701 | } |
702 | 702 | ||
703 | static inline void __monitor(const void *eax, unsigned long ecx, | ||
704 | unsigned long edx) | ||
705 | { | ||
706 | /* "monitor %eax, %ecx, %edx;" */ | ||
707 | asm volatile(".byte 0x0f, 0x01, 0xc8;" | ||
708 | :: "a" (eax), "c" (ecx), "d"(edx)); | ||
709 | } | ||
710 | |||
711 | static inline void __mwait(unsigned long eax, unsigned long ecx) | ||
712 | { | ||
713 | /* "mwait %eax, %ecx;" */ | ||
714 | asm volatile(".byte 0x0f, 0x01, 0xc9;" | ||
715 | :: "a" (eax), "c" (ecx)); | ||
716 | } | ||
717 | |||
718 | static inline void __sti_mwait(unsigned long eax, unsigned long ecx) | ||
719 | { | ||
720 | trace_hardirqs_on(); | ||
721 | /* "mwait %eax, %ecx;" */ | ||
722 | asm volatile("sti; .byte 0x0f, 0x01, 0xc9;" | ||
723 | :: "a" (eax), "c" (ecx)); | ||
724 | } | ||
725 | |||
726 | extern void select_idle_routine(const struct cpuinfo_x86 *c); | 703 | extern void select_idle_routine(const struct cpuinfo_x86 *c); |
727 | extern void init_amd_e400_c1e_mask(void); | 704 | extern void init_amd_e400_c1e_mask(void); |
728 | 705 | ||
diff --git a/arch/x86/include/asm/timer.h b/arch/x86/include/asm/timer.h index 34baa0eb5d0c..3de54ef0aea5 100644 --- a/arch/x86/include/asm/timer.h +++ b/arch/x86/include/asm/timer.h | |||
@@ -4,6 +4,7 @@ | |||
4 | #include <linux/pm.h> | 4 | #include <linux/pm.h> |
5 | #include <linux/percpu.h> | 5 | #include <linux/percpu.h> |
6 | #include <linux/interrupt.h> | 6 | #include <linux/interrupt.h> |
7 | #include <linux/math64.h> | ||
7 | 8 | ||
8 | #define TICK_SIZE (tick_nsec / 1000) | 9 | #define TICK_SIZE (tick_nsec / 1000) |
9 | 10 | ||
@@ -12,68 +13,26 @@ extern int recalibrate_cpu_khz(void); | |||
12 | 13 | ||
13 | extern int no_timer_check; | 14 | extern int no_timer_check; |
14 | 15 | ||
15 | /* Accelerators for sched_clock() | 16 | /* |
16 | * convert from cycles(64bits) => nanoseconds (64bits) | 17 | * We use the full linear equation: f(x) = a + b*x, in order to allow |
17 | * basic equation: | 18 | * a continuous function in the face of dynamic freq changes. |
18 | * ns = cycles / (freq / ns_per_sec) | ||
19 | * ns = cycles * (ns_per_sec / freq) | ||
20 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) | ||
21 | * ns = cycles * (10^6 / cpu_khz) | ||
22 | * | 19 | * |
23 | * Then we use scaling math (suggested by george@mvista.com) to get: | 20 | * Continuity means that when our frequency changes our slope (b); we want to |
24 | * ns = cycles * (10^6 * SC / cpu_khz) / SC | 21 | * ensure that: f(t) == f'(t), which gives: a + b*t == a' + b'*t. |
25 | * ns = cycles * cyc2ns_scale / SC | ||
26 | * | 22 | * |
27 | * And since SC is a constant power of two, we can convert the div | 23 | * Without an offset (a) the above would not be possible. |
28 | * into a shift. | ||
29 | * | 24 | * |
30 | * We can use khz divisor instead of mhz to keep a better precision, since | 25 | * See the comment near cycles_2_ns() for details on how we compute (b). |
31 | * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. | ||
32 | * (mathieu.desnoyers@polymtl.ca) | ||
33 | * | ||
34 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" | ||
35 | * | ||
36 | * In: | ||
37 | * | ||
38 | * ns = cycles * cyc2ns_scale / SC | ||
39 | * | ||
40 | * Although we may still have enough bits to store the value of ns, | ||
41 | * in some cases, we may not have enough bits to store cycles * cyc2ns_scale, | ||
42 | * leading to an incorrect result. | ||
43 | * | ||
44 | * To avoid this, we can decompose 'cycles' into quotient and remainder | ||
45 | * of division by SC. Then, | ||
46 | * | ||
47 | * ns = (quot * SC + rem) * cyc2ns_scale / SC | ||
48 | * = quot * cyc2ns_scale + (rem * cyc2ns_scale) / SC | ||
49 | * | ||
50 | * - sqazi@google.com | ||
51 | */ | 26 | */ |
52 | 27 | struct cyc2ns_data { | |
53 | DECLARE_PER_CPU(unsigned long, cyc2ns); | 28 | u32 cyc2ns_mul; |
54 | DECLARE_PER_CPU(unsigned long long, cyc2ns_offset); | 29 | u32 cyc2ns_shift; |
55 | 30 | u64 cyc2ns_offset; | |
56 | #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ | 31 | u32 __count; |
57 | 32 | /* u32 hole */ | |
58 | static inline unsigned long long __cycles_2_ns(unsigned long long cyc) | 33 | }; /* 24 bytes -- do not grow */ |
59 | { | 34 | |
60 | int cpu = smp_processor_id(); | 35 | extern struct cyc2ns_data *cyc2ns_read_begin(void); |
61 | unsigned long long ns = per_cpu(cyc2ns_offset, cpu); | 36 | extern void cyc2ns_read_end(struct cyc2ns_data *); |
62 | ns += mult_frac(cyc, per_cpu(cyc2ns, cpu), | ||
63 | (1UL << CYC2NS_SCALE_FACTOR)); | ||
64 | return ns; | ||
65 | } | ||
66 | |||
67 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) | ||
68 | { | ||
69 | unsigned long long ns; | ||
70 | unsigned long flags; | ||
71 | |||
72 | local_irq_save(flags); | ||
73 | ns = __cycles_2_ns(cyc); | ||
74 | local_irq_restore(flags); | ||
75 | |||
76 | return ns; | ||
77 | } | ||
78 | 37 | ||
79 | #endif /* _ASM_X86_TIMER_H */ | 38 | #endif /* _ASM_X86_TIMER_H */ |
diff --git a/arch/x86/kernel/acpi/cstate.c b/arch/x86/kernel/acpi/cstate.c index d2b7f27781bc..e69182fd01cf 100644 --- a/arch/x86/kernel/acpi/cstate.c +++ b/arch/x86/kernel/acpi/cstate.c | |||
@@ -150,29 +150,6 @@ int acpi_processor_ffh_cstate_probe(unsigned int cpu, | |||
150 | } | 150 | } |
151 | EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_probe); | 151 | EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_probe); |
152 | 152 | ||
153 | /* | ||
154 | * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, | ||
155 | * which can obviate IPI to trigger checking of need_resched. | ||
156 | * We execute MONITOR against need_resched and enter optimized wait state | ||
157 | * through MWAIT. Whenever someone changes need_resched, we would be woken | ||
158 | * up from MWAIT (without an IPI). | ||
159 | * | ||
160 | * New with Core Duo processors, MWAIT can take some hints based on CPU | ||
161 | * capability. | ||
162 | */ | ||
163 | void mwait_idle_with_hints(unsigned long ax, unsigned long cx) | ||
164 | { | ||
165 | if (!need_resched()) { | ||
166 | if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) | ||
167 | clflush((void *)¤t_thread_info()->flags); | ||
168 | |||
169 | __monitor((void *)¤t_thread_info()->flags, 0, 0); | ||
170 | smp_mb(); | ||
171 | if (!need_resched()) | ||
172 | __mwait(ax, cx); | ||
173 | } | ||
174 | } | ||
175 | |||
176 | void acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx) | 153 | void acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx) |
177 | { | 154 | { |
178 | unsigned int cpu = smp_processor_id(); | 155 | unsigned int cpu = smp_processor_id(); |
diff --git a/arch/x86/kernel/cpu/amd.c b/arch/x86/kernel/cpu/amd.c index bca023bdd6b2..8bc79cddd9a2 100644 --- a/arch/x86/kernel/cpu/amd.c +++ b/arch/x86/kernel/cpu/amd.c | |||
@@ -487,7 +487,7 @@ static void early_init_amd(struct cpuinfo_x86 *c) | |||
487 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); | 487 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
488 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); | 488 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); |
489 | if (!check_tsc_unstable()) | 489 | if (!check_tsc_unstable()) |
490 | sched_clock_stable = 1; | 490 | set_sched_clock_stable(); |
491 | } | 491 | } |
492 | 492 | ||
493 | #ifdef CONFIG_X86_64 | 493 | #ifdef CONFIG_X86_64 |
diff --git a/arch/x86/kernel/cpu/intel.c b/arch/x86/kernel/cpu/intel.c index ea04b342c026..1a439c047ff3 100644 --- a/arch/x86/kernel/cpu/intel.c +++ b/arch/x86/kernel/cpu/intel.c | |||
@@ -93,7 +93,7 @@ static void early_init_intel(struct cpuinfo_x86 *c) | |||
93 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); | 93 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
94 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); | 94 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); |
95 | if (!check_tsc_unstable()) | 95 | if (!check_tsc_unstable()) |
96 | sched_clock_stable = 1; | 96 | set_sched_clock_stable(); |
97 | } | 97 | } |
98 | 98 | ||
99 | /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ | 99 | /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ |
diff --git a/arch/x86/kernel/cpu/perf_event.c b/arch/x86/kernel/cpu/perf_event.c index 8e132931614d..b88645191fe5 100644 --- a/arch/x86/kernel/cpu/perf_event.c +++ b/arch/x86/kernel/cpu/perf_event.c | |||
@@ -1883,21 +1883,27 @@ static struct pmu pmu = { | |||
1883 | 1883 | ||
1884 | void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) | 1884 | void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) |
1885 | { | 1885 | { |
1886 | struct cyc2ns_data *data; | ||
1887 | |||
1886 | userpg->cap_user_time = 0; | 1888 | userpg->cap_user_time = 0; |
1887 | userpg->cap_user_time_zero = 0; | 1889 | userpg->cap_user_time_zero = 0; |
1888 | userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc; | 1890 | userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc; |
1889 | userpg->pmc_width = x86_pmu.cntval_bits; | 1891 | userpg->pmc_width = x86_pmu.cntval_bits; |
1890 | 1892 | ||
1891 | if (!sched_clock_stable) | 1893 | if (!sched_clock_stable()) |
1892 | return; | 1894 | return; |
1893 | 1895 | ||
1896 | data = cyc2ns_read_begin(); | ||
1897 | |||
1894 | userpg->cap_user_time = 1; | 1898 | userpg->cap_user_time = 1; |
1895 | userpg->time_mult = this_cpu_read(cyc2ns); | 1899 | userpg->time_mult = data->cyc2ns_mul; |
1896 | userpg->time_shift = CYC2NS_SCALE_FACTOR; | 1900 | userpg->time_shift = data->cyc2ns_shift; |
1897 | userpg->time_offset = this_cpu_read(cyc2ns_offset) - now; | 1901 | userpg->time_offset = data->cyc2ns_offset - now; |
1898 | 1902 | ||
1899 | userpg->cap_user_time_zero = 1; | 1903 | userpg->cap_user_time_zero = 1; |
1900 | userpg->time_zero = this_cpu_read(cyc2ns_offset); | 1904 | userpg->time_zero = data->cyc2ns_offset; |
1905 | |||
1906 | cyc2ns_read_end(data); | ||
1901 | } | 1907 | } |
1902 | 1908 | ||
1903 | /* | 1909 | /* |
diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c index 85dc05a3aa02..f5252c4eec8c 100644 --- a/arch/x86/kernel/smpboot.c +++ b/arch/x86/kernel/smpboot.c | |||
@@ -1417,7 +1417,9 @@ static inline void mwait_play_dead(void) | |||
1417 | * The WBINVD is insufficient due to the spurious-wakeup | 1417 | * The WBINVD is insufficient due to the spurious-wakeup |
1418 | * case where we return around the loop. | 1418 | * case where we return around the loop. |
1419 | */ | 1419 | */ |
1420 | mb(); | ||
1420 | clflush(mwait_ptr); | 1421 | clflush(mwait_ptr); |
1422 | mb(); | ||
1421 | __monitor(mwait_ptr, 0, 0); | 1423 | __monitor(mwait_ptr, 0, 0); |
1422 | mb(); | 1424 | mb(); |
1423 | __mwait(eax, 0); | 1425 | __mwait(eax, 0); |
diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c index 930e5d48f560..6377fb28b958 100644 --- a/arch/x86/kernel/tsc.c +++ b/arch/x86/kernel/tsc.c | |||
@@ -11,6 +11,7 @@ | |||
11 | #include <linux/clocksource.h> | 11 | #include <linux/clocksource.h> |
12 | #include <linux/percpu.h> | 12 | #include <linux/percpu.h> |
13 | #include <linux/timex.h> | 13 | #include <linux/timex.h> |
14 | #include <linux/static_key.h> | ||
14 | 15 | ||
15 | #include <asm/hpet.h> | 16 | #include <asm/hpet.h> |
16 | #include <asm/timer.h> | 17 | #include <asm/timer.h> |
@@ -37,13 +38,244 @@ static int __read_mostly tsc_unstable; | |||
37 | erroneous rdtsc usage on !cpu_has_tsc processors */ | 38 | erroneous rdtsc usage on !cpu_has_tsc processors */ |
38 | static int __read_mostly tsc_disabled = -1; | 39 | static int __read_mostly tsc_disabled = -1; |
39 | 40 | ||
41 | static struct static_key __use_tsc = STATIC_KEY_INIT; | ||
42 | |||
40 | int tsc_clocksource_reliable; | 43 | int tsc_clocksource_reliable; |
44 | |||
45 | /* | ||
46 | * Use a ring-buffer like data structure, where a writer advances the head by | ||
47 | * writing a new data entry and a reader advances the tail when it observes a | ||
48 | * new entry. | ||
49 | * | ||
50 | * Writers are made to wait on readers until there's space to write a new | ||
51 | * entry. | ||
52 | * | ||
53 | * This means that we can always use an {offset, mul} pair to compute a ns | ||
54 | * value that is 'roughly' in the right direction, even if we're writing a new | ||
55 | * {offset, mul} pair during the clock read. | ||
56 | * | ||
57 | * The down-side is that we can no longer guarantee strict monotonicity anymore | ||
58 | * (assuming the TSC was that to begin with), because while we compute the | ||
59 | * intersection point of the two clock slopes and make sure the time is | ||
60 | * continuous at the point of switching; we can no longer guarantee a reader is | ||
61 | * strictly before or after the switch point. | ||
62 | * | ||
63 | * It does mean a reader no longer needs to disable IRQs in order to avoid | ||
64 | * CPU-Freq updates messing with his times, and similarly an NMI reader will | ||
65 | * no longer run the risk of hitting half-written state. | ||
66 | */ | ||
67 | |||
68 | struct cyc2ns { | ||
69 | struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ | ||
70 | struct cyc2ns_data *head; /* 48 + 8 = 56 */ | ||
71 | struct cyc2ns_data *tail; /* 56 + 8 = 64 */ | ||
72 | }; /* exactly fits one cacheline */ | ||
73 | |||
74 | static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); | ||
75 | |||
76 | struct cyc2ns_data *cyc2ns_read_begin(void) | ||
77 | { | ||
78 | struct cyc2ns_data *head; | ||
79 | |||
80 | preempt_disable(); | ||
81 | |||
82 | head = this_cpu_read(cyc2ns.head); | ||
83 | /* | ||
84 | * Ensure we observe the entry when we observe the pointer to it. | ||
85 | * matches the wmb from cyc2ns_write_end(). | ||
86 | */ | ||
87 | smp_read_barrier_depends(); | ||
88 | head->__count++; | ||
89 | barrier(); | ||
90 | |||
91 | return head; | ||
92 | } | ||
93 | |||
94 | void cyc2ns_read_end(struct cyc2ns_data *head) | ||
95 | { | ||
96 | barrier(); | ||
97 | /* | ||
98 | * If we're the outer most nested read; update the tail pointer | ||
99 | * when we're done. This notifies possible pending writers | ||
100 | * that we've observed the head pointer and that the other | ||
101 | * entry is now free. | ||
102 | */ | ||
103 | if (!--head->__count) { | ||
104 | /* | ||
105 | * x86-TSO does not reorder writes with older reads; | ||
106 | * therefore once this write becomes visible to another | ||
107 | * cpu, we must be finished reading the cyc2ns_data. | ||
108 | * | ||
109 | * matches with cyc2ns_write_begin(). | ||
110 | */ | ||
111 | this_cpu_write(cyc2ns.tail, head); | ||
112 | } | ||
113 | preempt_enable(); | ||
114 | } | ||
115 | |||
116 | /* | ||
117 | * Begin writing a new @data entry for @cpu. | ||
118 | * | ||
119 | * Assumes some sort of write side lock; currently 'provided' by the assumption | ||
120 | * that cpufreq will call its notifiers sequentially. | ||
121 | */ | ||
122 | static struct cyc2ns_data *cyc2ns_write_begin(int cpu) | ||
123 | { | ||
124 | struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); | ||
125 | struct cyc2ns_data *data = c2n->data; | ||
126 | |||
127 | if (data == c2n->head) | ||
128 | data++; | ||
129 | |||
130 | /* XXX send an IPI to @cpu in order to guarantee a read? */ | ||
131 | |||
132 | /* | ||
133 | * When we observe the tail write from cyc2ns_read_end(), | ||
134 | * the cpu must be done with that entry and its safe | ||
135 | * to start writing to it. | ||
136 | */ | ||
137 | while (c2n->tail == data) | ||
138 | cpu_relax(); | ||
139 | |||
140 | return data; | ||
141 | } | ||
142 | |||
143 | static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) | ||
144 | { | ||
145 | struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); | ||
146 | |||
147 | /* | ||
148 | * Ensure the @data writes are visible before we publish the | ||
149 | * entry. Matches the data-depencency in cyc2ns_read_begin(). | ||
150 | */ | ||
151 | smp_wmb(); | ||
152 | |||
153 | ACCESS_ONCE(c2n->head) = data; | ||
154 | } | ||
155 | |||
156 | /* | ||
157 | * Accelerators for sched_clock() | ||
158 | * convert from cycles(64bits) => nanoseconds (64bits) | ||
159 | * basic equation: | ||
160 | * ns = cycles / (freq / ns_per_sec) | ||
161 | * ns = cycles * (ns_per_sec / freq) | ||
162 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) | ||
163 | * ns = cycles * (10^6 / cpu_khz) | ||
164 | * | ||
165 | * Then we use scaling math (suggested by george@mvista.com) to get: | ||
166 | * ns = cycles * (10^6 * SC / cpu_khz) / SC | ||
167 | * ns = cycles * cyc2ns_scale / SC | ||
168 | * | ||
169 | * And since SC is a constant power of two, we can convert the div | ||
170 | * into a shift. | ||
171 | * | ||
172 | * We can use khz divisor instead of mhz to keep a better precision, since | ||
173 | * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. | ||
174 | * (mathieu.desnoyers@polymtl.ca) | ||
175 | * | ||
176 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" | ||
177 | */ | ||
178 | |||
179 | #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ | ||
180 | |||
181 | static void cyc2ns_data_init(struct cyc2ns_data *data) | ||
182 | { | ||
183 | data->cyc2ns_mul = 1U << CYC2NS_SCALE_FACTOR; | ||
184 | data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; | ||
185 | data->cyc2ns_offset = 0; | ||
186 | data->__count = 0; | ||
187 | } | ||
188 | |||
189 | static void cyc2ns_init(int cpu) | ||
190 | { | ||
191 | struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); | ||
192 | |||
193 | cyc2ns_data_init(&c2n->data[0]); | ||
194 | cyc2ns_data_init(&c2n->data[1]); | ||
195 | |||
196 | c2n->head = c2n->data; | ||
197 | c2n->tail = c2n->data; | ||
198 | } | ||
199 | |||
200 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) | ||
201 | { | ||
202 | struct cyc2ns_data *data, *tail; | ||
203 | unsigned long long ns; | ||
204 | |||
205 | /* | ||
206 | * See cyc2ns_read_*() for details; replicated in order to avoid | ||
207 | * an extra few instructions that came with the abstraction. | ||
208 | * Notable, it allows us to only do the __count and tail update | ||
209 | * dance when its actually needed. | ||
210 | */ | ||
211 | |||
212 | preempt_disable(); | ||
213 | data = this_cpu_read(cyc2ns.head); | ||
214 | tail = this_cpu_read(cyc2ns.tail); | ||
215 | |||
216 | if (likely(data == tail)) { | ||
217 | ns = data->cyc2ns_offset; | ||
218 | ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); | ||
219 | } else { | ||
220 | data->__count++; | ||
221 | |||
222 | barrier(); | ||
223 | |||
224 | ns = data->cyc2ns_offset; | ||
225 | ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); | ||
226 | |||
227 | barrier(); | ||
228 | |||
229 | if (!--data->__count) | ||
230 | this_cpu_write(cyc2ns.tail, data); | ||
231 | } | ||
232 | preempt_enable(); | ||
233 | |||
234 | return ns; | ||
235 | } | ||
236 | |||
237 | /* XXX surely we already have this someplace in the kernel?! */ | ||
238 | #define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d)) | ||
239 | |||
240 | static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) | ||
241 | { | ||
242 | unsigned long long tsc_now, ns_now; | ||
243 | struct cyc2ns_data *data; | ||
244 | unsigned long flags; | ||
245 | |||
246 | local_irq_save(flags); | ||
247 | sched_clock_idle_sleep_event(); | ||
248 | |||
249 | if (!cpu_khz) | ||
250 | goto done; | ||
251 | |||
252 | data = cyc2ns_write_begin(cpu); | ||
253 | |||
254 | rdtscll(tsc_now); | ||
255 | ns_now = cycles_2_ns(tsc_now); | ||
256 | |||
257 | /* | ||
258 | * Compute a new multiplier as per the above comment and ensure our | ||
259 | * time function is continuous; see the comment near struct | ||
260 | * cyc2ns_data. | ||
261 | */ | ||
262 | data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz); | ||
263 | data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; | ||
264 | data->cyc2ns_offset = ns_now - | ||
265 | mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); | ||
266 | |||
267 | cyc2ns_write_end(cpu, data); | ||
268 | |||
269 | done: | ||
270 | sched_clock_idle_wakeup_event(0); | ||
271 | local_irq_restore(flags); | ||
272 | } | ||
41 | /* | 273 | /* |
42 | * Scheduler clock - returns current time in nanosec units. | 274 | * Scheduler clock - returns current time in nanosec units. |
43 | */ | 275 | */ |
44 | u64 native_sched_clock(void) | 276 | u64 native_sched_clock(void) |
45 | { | 277 | { |
46 | u64 this_offset; | 278 | u64 tsc_now; |
47 | 279 | ||
48 | /* | 280 | /* |
49 | * Fall back to jiffies if there's no TSC available: | 281 | * Fall back to jiffies if there's no TSC available: |
@@ -53,16 +285,16 @@ u64 native_sched_clock(void) | |||
53 | * very important for it to be as fast as the platform | 285 | * very important for it to be as fast as the platform |
54 | * can achieve it. ) | 286 | * can achieve it. ) |
55 | */ | 287 | */ |
56 | if (unlikely(tsc_disabled)) { | 288 | if (!static_key_false(&__use_tsc)) { |
57 | /* No locking but a rare wrong value is not a big deal: */ | 289 | /* No locking but a rare wrong value is not a big deal: */ |
58 | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); | 290 | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); |
59 | } | 291 | } |
60 | 292 | ||
61 | /* read the Time Stamp Counter: */ | 293 | /* read the Time Stamp Counter: */ |
62 | rdtscll(this_offset); | 294 | rdtscll(tsc_now); |
63 | 295 | ||
64 | /* return the value in ns */ | 296 | /* return the value in ns */ |
65 | return __cycles_2_ns(this_offset); | 297 | return cycles_2_ns(tsc_now); |
66 | } | 298 | } |
67 | 299 | ||
68 | /* We need to define a real function for sched_clock, to override the | 300 | /* We need to define a real function for sched_clock, to override the |
@@ -589,61 +821,11 @@ int recalibrate_cpu_khz(void) | |||
589 | EXPORT_SYMBOL(recalibrate_cpu_khz); | 821 | EXPORT_SYMBOL(recalibrate_cpu_khz); |
590 | 822 | ||
591 | 823 | ||
592 | /* Accelerators for sched_clock() | ||
593 | * convert from cycles(64bits) => nanoseconds (64bits) | ||
594 | * basic equation: | ||
595 | * ns = cycles / (freq / ns_per_sec) | ||
596 | * ns = cycles * (ns_per_sec / freq) | ||
597 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) | ||
598 | * ns = cycles * (10^6 / cpu_khz) | ||
599 | * | ||
600 | * Then we use scaling math (suggested by george@mvista.com) to get: | ||
601 | * ns = cycles * (10^6 * SC / cpu_khz) / SC | ||
602 | * ns = cycles * cyc2ns_scale / SC | ||
603 | * | ||
604 | * And since SC is a constant power of two, we can convert the div | ||
605 | * into a shift. | ||
606 | * | ||
607 | * We can use khz divisor instead of mhz to keep a better precision, since | ||
608 | * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. | ||
609 | * (mathieu.desnoyers@polymtl.ca) | ||
610 | * | ||
611 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" | ||
612 | */ | ||
613 | |||
614 | DEFINE_PER_CPU(unsigned long, cyc2ns); | ||
615 | DEFINE_PER_CPU(unsigned long long, cyc2ns_offset); | ||
616 | |||
617 | static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) | ||
618 | { | ||
619 | unsigned long long tsc_now, ns_now, *offset; | ||
620 | unsigned long flags, *scale; | ||
621 | |||
622 | local_irq_save(flags); | ||
623 | sched_clock_idle_sleep_event(); | ||
624 | |||
625 | scale = &per_cpu(cyc2ns, cpu); | ||
626 | offset = &per_cpu(cyc2ns_offset, cpu); | ||
627 | |||
628 | rdtscll(tsc_now); | ||
629 | ns_now = __cycles_2_ns(tsc_now); | ||
630 | |||
631 | if (cpu_khz) { | ||
632 | *scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) + | ||
633 | cpu_khz / 2) / cpu_khz; | ||
634 | *offset = ns_now - mult_frac(tsc_now, *scale, | ||
635 | (1UL << CYC2NS_SCALE_FACTOR)); | ||
636 | } | ||
637 | |||
638 | sched_clock_idle_wakeup_event(0); | ||
639 | local_irq_restore(flags); | ||
640 | } | ||
641 | |||
642 | static unsigned long long cyc2ns_suspend; | 824 | static unsigned long long cyc2ns_suspend; |
643 | 825 | ||
644 | void tsc_save_sched_clock_state(void) | 826 | void tsc_save_sched_clock_state(void) |
645 | { | 827 | { |
646 | if (!sched_clock_stable) | 828 | if (!sched_clock_stable()) |
647 | return; | 829 | return; |
648 | 830 | ||
649 | cyc2ns_suspend = sched_clock(); | 831 | cyc2ns_suspend = sched_clock(); |
@@ -663,16 +845,26 @@ void tsc_restore_sched_clock_state(void) | |||
663 | unsigned long flags; | 845 | unsigned long flags; |
664 | int cpu; | 846 | int cpu; |
665 | 847 | ||
666 | if (!sched_clock_stable) | 848 | if (!sched_clock_stable()) |
667 | return; | 849 | return; |
668 | 850 | ||
669 | local_irq_save(flags); | 851 | local_irq_save(flags); |
670 | 852 | ||
671 | __this_cpu_write(cyc2ns_offset, 0); | 853 | /* |
854 | * We're comming out of suspend, there's no concurrency yet; don't | ||
855 | * bother being nice about the RCU stuff, just write to both | ||
856 | * data fields. | ||
857 | */ | ||
858 | |||
859 | this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); | ||
860 | this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); | ||
861 | |||
672 | offset = cyc2ns_suspend - sched_clock(); | 862 | offset = cyc2ns_suspend - sched_clock(); |
673 | 863 | ||
674 | for_each_possible_cpu(cpu) | 864 | for_each_possible_cpu(cpu) { |
675 | per_cpu(cyc2ns_offset, cpu) = offset; | 865 | per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; |
866 | per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; | ||
867 | } | ||
676 | 868 | ||
677 | local_irq_restore(flags); | 869 | local_irq_restore(flags); |
678 | } | 870 | } |
@@ -795,7 +987,7 @@ void mark_tsc_unstable(char *reason) | |||
795 | { | 987 | { |
796 | if (!tsc_unstable) { | 988 | if (!tsc_unstable) { |
797 | tsc_unstable = 1; | 989 | tsc_unstable = 1; |
798 | sched_clock_stable = 0; | 990 | clear_sched_clock_stable(); |
799 | disable_sched_clock_irqtime(); | 991 | disable_sched_clock_irqtime(); |
800 | pr_info("Marking TSC unstable due to %s\n", reason); | 992 | pr_info("Marking TSC unstable due to %s\n", reason); |
801 | /* Change only the rating, when not registered */ | 993 | /* Change only the rating, when not registered */ |
@@ -995,14 +1187,18 @@ void __init tsc_init(void) | |||
995 | * speed as the bootup CPU. (cpufreq notifiers will fix this | 1187 | * speed as the bootup CPU. (cpufreq notifiers will fix this |
996 | * up if their speed diverges) | 1188 | * up if their speed diverges) |
997 | */ | 1189 | */ |
998 | for_each_possible_cpu(cpu) | 1190 | for_each_possible_cpu(cpu) { |
1191 | cyc2ns_init(cpu); | ||
999 | set_cyc2ns_scale(cpu_khz, cpu); | 1192 | set_cyc2ns_scale(cpu_khz, cpu); |
1193 | } | ||
1000 | 1194 | ||
1001 | if (tsc_disabled > 0) | 1195 | if (tsc_disabled > 0) |
1002 | return; | 1196 | return; |
1003 | 1197 | ||
1004 | /* now allow native_sched_clock() to use rdtsc */ | 1198 | /* now allow native_sched_clock() to use rdtsc */ |
1199 | |||
1005 | tsc_disabled = 0; | 1200 | tsc_disabled = 0; |
1201 | static_key_slow_inc(&__use_tsc); | ||
1006 | 1202 | ||
1007 | if (!no_sched_irq_time) | 1203 | if (!no_sched_irq_time) |
1008 | enable_sched_clock_irqtime(); | 1204 | enable_sched_clock_irqtime(); |
diff --git a/arch/x86/platform/uv/tlb_uv.c b/arch/x86/platform/uv/tlb_uv.c index efe4d7220397..dfe605ac1bcd 100644 --- a/arch/x86/platform/uv/tlb_uv.c +++ b/arch/x86/platform/uv/tlb_uv.c | |||
@@ -433,15 +433,49 @@ static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp) | |||
433 | return; | 433 | return; |
434 | } | 434 | } |
435 | 435 | ||
436 | static inline unsigned long cycles_2_us(unsigned long long cyc) | 436 | /* |
437 | * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative | ||
438 | * number, not an absolute. It converts a duration in cycles to a duration in | ||
439 | * ns. | ||
440 | */ | ||
441 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) | ||
437 | { | 442 | { |
443 | struct cyc2ns_data *data = cyc2ns_read_begin(); | ||
438 | unsigned long long ns; | 444 | unsigned long long ns; |
439 | unsigned long us; | ||
440 | int cpu = smp_processor_id(); | ||
441 | 445 | ||
442 | ns = (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR; | 446 | ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); |
443 | us = ns / 1000; | 447 | |
444 | return us; | 448 | cyc2ns_read_end(data); |
449 | return ns; | ||
450 | } | ||
451 | |||
452 | /* | ||
453 | * The reverse of the above; converts a duration in ns to a duration in cycles. | ||
454 | */ | ||
455 | static inline unsigned long long ns_2_cycles(unsigned long long ns) | ||
456 | { | ||
457 | struct cyc2ns_data *data = cyc2ns_read_begin(); | ||
458 | unsigned long long cyc; | ||
459 | |||
460 | cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul; | ||
461 | |||
462 | cyc2ns_read_end(data); | ||
463 | return cyc; | ||
464 | } | ||
465 | |||
466 | static inline unsigned long cycles_2_us(unsigned long long cyc) | ||
467 | { | ||
468 | return cycles_2_ns(cyc) / NSEC_PER_USEC; | ||
469 | } | ||
470 | |||
471 | static inline cycles_t sec_2_cycles(unsigned long sec) | ||
472 | { | ||
473 | return ns_2_cycles(sec * NSEC_PER_SEC); | ||
474 | } | ||
475 | |||
476 | static inline unsigned long long usec_2_cycles(unsigned long usec) | ||
477 | { | ||
478 | return ns_2_cycles(usec * NSEC_PER_USEC); | ||
445 | } | 479 | } |
446 | 480 | ||
447 | /* | 481 | /* |
@@ -668,16 +702,6 @@ static int wait_completion(struct bau_desc *bau_desc, | |||
668 | bcp, try); | 702 | bcp, try); |
669 | } | 703 | } |
670 | 704 | ||
671 | static inline cycles_t sec_2_cycles(unsigned long sec) | ||
672 | { | ||
673 | unsigned long ns; | ||
674 | cycles_t cyc; | ||
675 | |||
676 | ns = sec * 1000000000; | ||
677 | cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); | ||
678 | return cyc; | ||
679 | } | ||
680 | |||
681 | /* | 705 | /* |
682 | * Our retries are blocked by all destination sw ack resources being | 706 | * Our retries are blocked by all destination sw ack resources being |
683 | * in use, and a timeout is pending. In that case hardware immediately | 707 | * in use, and a timeout is pending. In that case hardware immediately |
@@ -1327,16 +1351,6 @@ static void ptc_seq_stop(struct seq_file *file, void *data) | |||
1327 | { | 1351 | { |
1328 | } | 1352 | } |
1329 | 1353 | ||
1330 | static inline unsigned long long usec_2_cycles(unsigned long microsec) | ||
1331 | { | ||
1332 | unsigned long ns; | ||
1333 | unsigned long long cyc; | ||
1334 | |||
1335 | ns = microsec * 1000; | ||
1336 | cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); | ||
1337 | return cyc; | ||
1338 | } | ||
1339 | |||
1340 | /* | 1354 | /* |
1341 | * Display the statistics thru /proc/sgi_uv/ptc_statistics | 1355 | * Display the statistics thru /proc/sgi_uv/ptc_statistics |
1342 | * 'data' points to the cpu number | 1356 | * 'data' points to the cpu number |
diff --git a/arch/x86/syscalls/syscall_32.tbl b/arch/x86/syscalls/syscall_32.tbl index aabfb8380a1c..96bc506ac6de 100644 --- a/arch/x86/syscalls/syscall_32.tbl +++ b/arch/x86/syscalls/syscall_32.tbl | |||
@@ -357,3 +357,5 @@ | |||
357 | 348 i386 process_vm_writev sys_process_vm_writev compat_sys_process_vm_writev | 357 | 348 i386 process_vm_writev sys_process_vm_writev compat_sys_process_vm_writev |
358 | 349 i386 kcmp sys_kcmp | 358 | 349 i386 kcmp sys_kcmp |
359 | 350 i386 finit_module sys_finit_module | 359 | 350 i386 finit_module sys_finit_module |
360 | 351 i386 sched_setattr sys_sched_setattr | ||
361 | 352 i386 sched_getattr sys_sched_getattr | ||
diff --git a/arch/x86/syscalls/syscall_64.tbl b/arch/x86/syscalls/syscall_64.tbl index 38ae65dfd14f..a12bddc7ccea 100644 --- a/arch/x86/syscalls/syscall_64.tbl +++ b/arch/x86/syscalls/syscall_64.tbl | |||
@@ -320,6 +320,8 @@ | |||
320 | 311 64 process_vm_writev sys_process_vm_writev | 320 | 311 64 process_vm_writev sys_process_vm_writev |
321 | 312 common kcmp sys_kcmp | 321 | 312 common kcmp sys_kcmp |
322 | 313 common finit_module sys_finit_module | 322 | 313 common finit_module sys_finit_module |
323 | 314 common sched_setattr sys_sched_setattr | ||
324 | 315 common sched_getattr sys_sched_getattr | ||
323 | 325 | ||
324 | # | 326 | # |
325 | # x32-specific system call numbers start at 512 to avoid cache impact | 327 | # x32-specific system call numbers start at 512 to avoid cache impact |