aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/platform/uv
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/platform/uv')
-rw-r--r--arch/x86/platform/uv/Makefile1
-rw-r--r--arch/x86/platform/uv/bios_uv.c215
-rw-r--r--arch/x86/platform/uv/tlb_uv.c1857
-rw-r--r--arch/x86/platform/uv/uv_irq.c285
-rw-r--r--arch/x86/platform/uv/uv_sysfs.c76
-rw-r--r--arch/x86/platform/uv/uv_time.c429
6 files changed, 2863 insertions, 0 deletions
diff --git a/arch/x86/platform/uv/Makefile b/arch/x86/platform/uv/Makefile
new file mode 100644
index 000000000000..6c40995fefb8
--- /dev/null
+++ b/arch/x86/platform/uv/Makefile
@@ -0,0 +1 @@
obj-$(CONFIG_X86_UV) += tlb_uv.o bios_uv.o uv_irq.o uv_sysfs.o uv_time.o
diff --git a/arch/x86/platform/uv/bios_uv.c b/arch/x86/platform/uv/bios_uv.c
new file mode 100644
index 000000000000..8bc57baaa9ad
--- /dev/null
+++ b/arch/x86/platform/uv/bios_uv.c
@@ -0,0 +1,215 @@
1/*
2 * BIOS run time interface routines.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Russ Anderson <rja@sgi.com>
20 */
21
22#include <linux/efi.h>
23#include <asm/efi.h>
24#include <linux/io.h>
25#include <asm/uv/bios.h>
26#include <asm/uv/uv_hub.h>
27
28static struct uv_systab uv_systab;
29
30s64 uv_bios_call(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3, u64 a4, u64 a5)
31{
32 struct uv_systab *tab = &uv_systab;
33 s64 ret;
34
35 if (!tab->function)
36 /*
37 * BIOS does not support UV systab
38 */
39 return BIOS_STATUS_UNIMPLEMENTED;
40
41 ret = efi_call6((void *)__va(tab->function), (u64)which,
42 a1, a2, a3, a4, a5);
43 return ret;
44}
45EXPORT_SYMBOL_GPL(uv_bios_call);
46
47s64 uv_bios_call_irqsave(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3,
48 u64 a4, u64 a5)
49{
50 unsigned long bios_flags;
51 s64 ret;
52
53 local_irq_save(bios_flags);
54 ret = uv_bios_call(which, a1, a2, a3, a4, a5);
55 local_irq_restore(bios_flags);
56
57 return ret;
58}
59
60s64 uv_bios_call_reentrant(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3,
61 u64 a4, u64 a5)
62{
63 s64 ret;
64
65 preempt_disable();
66 ret = uv_bios_call(which, a1, a2, a3, a4, a5);
67 preempt_enable();
68
69 return ret;
70}
71
72
73long sn_partition_id;
74EXPORT_SYMBOL_GPL(sn_partition_id);
75long sn_coherency_id;
76EXPORT_SYMBOL_GPL(sn_coherency_id);
77long sn_region_size;
78EXPORT_SYMBOL_GPL(sn_region_size);
79long system_serial_number;
80EXPORT_SYMBOL_GPL(system_serial_number);
81int uv_type;
82EXPORT_SYMBOL_GPL(uv_type);
83
84
85s64 uv_bios_get_sn_info(int fc, int *uvtype, long *partid, long *coher,
86 long *region, long *ssn)
87{
88 s64 ret;
89 u64 v0, v1;
90 union partition_info_u part;
91
92 ret = uv_bios_call_irqsave(UV_BIOS_GET_SN_INFO, fc,
93 (u64)(&v0), (u64)(&v1), 0, 0);
94 if (ret != BIOS_STATUS_SUCCESS)
95 return ret;
96
97 part.val = v0;
98 if (uvtype)
99 *uvtype = part.hub_version;
100 if (partid)
101 *partid = part.partition_id;
102 if (coher)
103 *coher = part.coherence_id;
104 if (region)
105 *region = part.region_size;
106 if (ssn)
107 *ssn = v1;
108 return ret;
109}
110EXPORT_SYMBOL_GPL(uv_bios_get_sn_info);
111
112int
113uv_bios_mq_watchlist_alloc(unsigned long addr, unsigned int mq_size,
114 unsigned long *intr_mmr_offset)
115{
116 u64 watchlist;
117 s64 ret;
118
119 /*
120 * bios returns watchlist number or negative error number.
121 */
122 ret = (int)uv_bios_call_irqsave(UV_BIOS_WATCHLIST_ALLOC, addr,
123 mq_size, (u64)intr_mmr_offset,
124 (u64)&watchlist, 0);
125 if (ret < BIOS_STATUS_SUCCESS)
126 return ret;
127
128 return watchlist;
129}
130EXPORT_SYMBOL_GPL(uv_bios_mq_watchlist_alloc);
131
132int
133uv_bios_mq_watchlist_free(int blade, int watchlist_num)
134{
135 return (int)uv_bios_call_irqsave(UV_BIOS_WATCHLIST_FREE,
136 blade, watchlist_num, 0, 0, 0);
137}
138EXPORT_SYMBOL_GPL(uv_bios_mq_watchlist_free);
139
140s64
141uv_bios_change_memprotect(u64 paddr, u64 len, enum uv_memprotect perms)
142{
143 return uv_bios_call_irqsave(UV_BIOS_MEMPROTECT, paddr, len,
144 perms, 0, 0);
145}
146EXPORT_SYMBOL_GPL(uv_bios_change_memprotect);
147
148s64
149uv_bios_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
150{
151 s64 ret;
152
153 ret = uv_bios_call_irqsave(UV_BIOS_GET_PARTITION_ADDR, (u64)cookie,
154 (u64)addr, buf, (u64)len, 0);
155 return ret;
156}
157EXPORT_SYMBOL_GPL(uv_bios_reserved_page_pa);
158
159s64 uv_bios_freq_base(u64 clock_type, u64 *ticks_per_second)
160{
161 return uv_bios_call(UV_BIOS_FREQ_BASE, clock_type,
162 (u64)ticks_per_second, 0, 0, 0);
163}
164EXPORT_SYMBOL_GPL(uv_bios_freq_base);
165
166/*
167 * uv_bios_set_legacy_vga_target - Set Legacy VGA I/O Target
168 * @decode: true to enable target, false to disable target
169 * @domain: PCI domain number
170 * @bus: PCI bus number
171 *
172 * Returns:
173 * 0: Success
174 * -EINVAL: Invalid domain or bus number
175 * -ENOSYS: Capability not available
176 * -EBUSY: Legacy VGA I/O cannot be retargeted at this time
177 */
178int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus)
179{
180 return uv_bios_call(UV_BIOS_SET_LEGACY_VGA_TARGET,
181 (u64)decode, (u64)domain, (u64)bus, 0, 0);
182}
183EXPORT_SYMBOL_GPL(uv_bios_set_legacy_vga_target);
184
185
186#ifdef CONFIG_EFI
187void uv_bios_init(void)
188{
189 struct uv_systab *tab;
190
191 if ((efi.uv_systab == EFI_INVALID_TABLE_ADDR) ||
192 (efi.uv_systab == (unsigned long)NULL)) {
193 printk(KERN_CRIT "No EFI UV System Table.\n");
194 uv_systab.function = (unsigned long)NULL;
195 return;
196 }
197
198 tab = (struct uv_systab *)ioremap(efi.uv_systab,
199 sizeof(struct uv_systab));
200 if (strncmp(tab->signature, "UVST", 4) != 0)
201 printk(KERN_ERR "bad signature in UV system table!");
202
203 /*
204 * Copy table to permanent spot for later use.
205 */
206 memcpy(&uv_systab, tab, sizeof(struct uv_systab));
207 iounmap(tab);
208
209 printk(KERN_INFO "EFI UV System Table Revision %d\n",
210 uv_systab.revision);
211}
212#else /* !CONFIG_EFI */
213
214void uv_bios_init(void) { }
215#endif
diff --git a/arch/x86/platform/uv/tlb_uv.c b/arch/x86/platform/uv/tlb_uv.c
new file mode 100644
index 000000000000..68e467f69fec
--- /dev/null
+++ b/arch/x86/platform/uv/tlb_uv.c
@@ -0,0 +1,1857 @@
1/*
2 * SGI UltraViolet TLB flush routines.
3 *
4 * (c) 2008-2011 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9#include <linux/seq_file.h>
10#include <linux/proc_fs.h>
11#include <linux/debugfs.h>
12#include <linux/kernel.h>
13#include <linux/slab.h>
14#include <linux/delay.h>
15
16#include <asm/mmu_context.h>
17#include <asm/uv/uv.h>
18#include <asm/uv/uv_mmrs.h>
19#include <asm/uv/uv_hub.h>
20#include <asm/uv/uv_bau.h>
21#include <asm/apic.h>
22#include <asm/idle.h>
23#include <asm/tsc.h>
24#include <asm/irq_vectors.h>
25#include <asm/timer.h>
26
27/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28static int timeout_base_ns[] = {
29 20,
30 160,
31 1280,
32 10240,
33 81920,
34 655360,
35 5242880,
36 167772160
37};
38
39static int timeout_us;
40static int nobau;
41static int baudisabled;
42static spinlock_t disable_lock;
43static cycles_t congested_cycles;
44
45/* tunables: */
46static int max_concurr = MAX_BAU_CONCURRENT;
47static int max_concurr_const = MAX_BAU_CONCURRENT;
48static int plugged_delay = PLUGGED_DELAY;
49static int plugsb4reset = PLUGSB4RESET;
50static int timeoutsb4reset = TIMEOUTSB4RESET;
51static int ipi_reset_limit = IPI_RESET_LIMIT;
52static int complete_threshold = COMPLETE_THRESHOLD;
53static int congested_respns_us = CONGESTED_RESPONSE_US;
54static int congested_reps = CONGESTED_REPS;
55static int congested_period = CONGESTED_PERIOD;
56
57static struct tunables tunables[] = {
58 {&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
59 {&plugged_delay, PLUGGED_DELAY},
60 {&plugsb4reset, PLUGSB4RESET},
61 {&timeoutsb4reset, TIMEOUTSB4RESET},
62 {&ipi_reset_limit, IPI_RESET_LIMIT},
63 {&complete_threshold, COMPLETE_THRESHOLD},
64 {&congested_respns_us, CONGESTED_RESPONSE_US},
65 {&congested_reps, CONGESTED_REPS},
66 {&congested_period, CONGESTED_PERIOD}
67};
68
69static struct dentry *tunables_dir;
70static struct dentry *tunables_file;
71
72/* these correspond to the statistics printed by ptc_seq_show() */
73static char *stat_description[] = {
74 "sent: number of shootdown messages sent",
75 "stime: time spent sending messages",
76 "numuvhubs: number of hubs targeted with shootdown",
77 "numuvhubs16: number times 16 or more hubs targeted",
78 "numuvhubs8: number times 8 or more hubs targeted",
79 "numuvhubs4: number times 4 or more hubs targeted",
80 "numuvhubs2: number times 2 or more hubs targeted",
81 "numuvhubs1: number times 1 hub targeted",
82 "numcpus: number of cpus targeted with shootdown",
83 "dto: number of destination timeouts",
84 "retries: destination timeout retries sent",
85 "rok: : destination timeouts successfully retried",
86 "resetp: ipi-style resource resets for plugs",
87 "resett: ipi-style resource resets for timeouts",
88 "giveup: fall-backs to ipi-style shootdowns",
89 "sto: number of source timeouts",
90 "bz: number of stay-busy's",
91 "throt: number times spun in throttle",
92 "swack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
93 "recv: shootdown messages received",
94 "rtime: time spent processing messages",
95 "all: shootdown all-tlb messages",
96 "one: shootdown one-tlb messages",
97 "mult: interrupts that found multiple messages",
98 "none: interrupts that found no messages",
99 "retry: number of retry messages processed",
100 "canc: number messages canceled by retries",
101 "nocan: number retries that found nothing to cancel",
102 "reset: number of ipi-style reset requests processed",
103 "rcan: number messages canceled by reset requests",
104 "disable: number times use of the BAU was disabled",
105 "enable: number times use of the BAU was re-enabled"
106};
107
108static int __init
109setup_nobau(char *arg)
110{
111 nobau = 1;
112 return 0;
113}
114early_param("nobau", setup_nobau);
115
116/* base pnode in this partition */
117static int uv_base_pnode __read_mostly;
118/* position of pnode (which is nasid>>1): */
119static int uv_nshift __read_mostly;
120static unsigned long uv_mmask __read_mostly;
121
122static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
123static DEFINE_PER_CPU(struct bau_control, bau_control);
124static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
125
126/*
127 * Determine the first node on a uvhub. 'Nodes' are used for kernel
128 * memory allocation.
129 */
130static int __init uvhub_to_first_node(int uvhub)
131{
132 int node, b;
133
134 for_each_online_node(node) {
135 b = uv_node_to_blade_id(node);
136 if (uvhub == b)
137 return node;
138 }
139 return -1;
140}
141
142/*
143 * Determine the apicid of the first cpu on a uvhub.
144 */
145static int __init uvhub_to_first_apicid(int uvhub)
146{
147 int cpu;
148
149 for_each_present_cpu(cpu)
150 if (uvhub == uv_cpu_to_blade_id(cpu))
151 return per_cpu(x86_cpu_to_apicid, cpu);
152 return -1;
153}
154
155/*
156 * Free a software acknowledge hardware resource by clearing its Pending
157 * bit. This will return a reply to the sender.
158 * If the message has timed out, a reply has already been sent by the
159 * hardware but the resource has not been released. In that case our
160 * clear of the Timeout bit (as well) will free the resource. No reply will
161 * be sent (the hardware will only do one reply per message).
162 */
163static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp)
164{
165 unsigned long dw;
166 struct bau_pq_entry *msg;
167
168 msg = mdp->msg;
169 if (!msg->canceled) {
170 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
171 write_mmr_sw_ack(dw);
172 }
173 msg->replied_to = 1;
174 msg->swack_vec = 0;
175}
176
177/*
178 * Process the receipt of a RETRY message
179 */
180static void bau_process_retry_msg(struct msg_desc *mdp,
181 struct bau_control *bcp)
182{
183 int i;
184 int cancel_count = 0;
185 unsigned long msg_res;
186 unsigned long mmr = 0;
187 struct bau_pq_entry *msg = mdp->msg;
188 struct bau_pq_entry *msg2;
189 struct ptc_stats *stat = bcp->statp;
190
191 stat->d_retries++;
192 /*
193 * cancel any message from msg+1 to the retry itself
194 */
195 for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
196 if (msg2 > mdp->queue_last)
197 msg2 = mdp->queue_first;
198 if (msg2 == msg)
199 break;
200
201 /* same conditions for cancellation as do_reset */
202 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
203 (msg2->swack_vec) && ((msg2->swack_vec &
204 msg->swack_vec) == 0) &&
205 (msg2->sending_cpu == msg->sending_cpu) &&
206 (msg2->msg_type != MSG_NOOP)) {
207 mmr = read_mmr_sw_ack();
208 msg_res = msg2->swack_vec;
209 /*
210 * This is a message retry; clear the resources held
211 * by the previous message only if they timed out.
212 * If it has not timed out we have an unexpected
213 * situation to report.
214 */
215 if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
216 unsigned long mr;
217 /*
218 * is the resource timed out?
219 * make everyone ignore the cancelled message.
220 */
221 msg2->canceled = 1;
222 stat->d_canceled++;
223 cancel_count++;
224 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
225 write_mmr_sw_ack(mr);
226 }
227 }
228 }
229 if (!cancel_count)
230 stat->d_nocanceled++;
231}
232
233/*
234 * Do all the things a cpu should do for a TLB shootdown message.
235 * Other cpu's may come here at the same time for this message.
236 */
237static void bau_process_message(struct msg_desc *mdp,
238 struct bau_control *bcp)
239{
240 short socket_ack_count = 0;
241 short *sp;
242 struct atomic_short *asp;
243 struct ptc_stats *stat = bcp->statp;
244 struct bau_pq_entry *msg = mdp->msg;
245 struct bau_control *smaster = bcp->socket_master;
246
247 /*
248 * This must be a normal message, or retry of a normal message
249 */
250 if (msg->address == TLB_FLUSH_ALL) {
251 local_flush_tlb();
252 stat->d_alltlb++;
253 } else {
254 __flush_tlb_one(msg->address);
255 stat->d_onetlb++;
256 }
257 stat->d_requestee++;
258
259 /*
260 * One cpu on each uvhub has the additional job on a RETRY
261 * of releasing the resource held by the message that is
262 * being retried. That message is identified by sending
263 * cpu number.
264 */
265 if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
266 bau_process_retry_msg(mdp, bcp);
267
268 /*
269 * This is a swack message, so we have to reply to it.
270 * Count each responding cpu on the socket. This avoids
271 * pinging the count's cache line back and forth between
272 * the sockets.
273 */
274 sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
275 asp = (struct atomic_short *)sp;
276 socket_ack_count = atom_asr(1, asp);
277 if (socket_ack_count == bcp->cpus_in_socket) {
278 int msg_ack_count;
279 /*
280 * Both sockets dump their completed count total into
281 * the message's count.
282 */
283 smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
284 asp = (struct atomic_short *)&msg->acknowledge_count;
285 msg_ack_count = atom_asr(socket_ack_count, asp);
286
287 if (msg_ack_count == bcp->cpus_in_uvhub) {
288 /*
289 * All cpus in uvhub saw it; reply
290 */
291 reply_to_message(mdp, bcp);
292 }
293 }
294
295 return;
296}
297
298/*
299 * Determine the first cpu on a uvhub.
300 */
301static int uvhub_to_first_cpu(int uvhub)
302{
303 int cpu;
304 for_each_present_cpu(cpu)
305 if (uvhub == uv_cpu_to_blade_id(cpu))
306 return cpu;
307 return -1;
308}
309
310/*
311 * Last resort when we get a large number of destination timeouts is
312 * to clear resources held by a given cpu.
313 * Do this with IPI so that all messages in the BAU message queue
314 * can be identified by their nonzero swack_vec field.
315 *
316 * This is entered for a single cpu on the uvhub.
317 * The sender want's this uvhub to free a specific message's
318 * swack resources.
319 */
320static void do_reset(void *ptr)
321{
322 int i;
323 struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
324 struct reset_args *rap = (struct reset_args *)ptr;
325 struct bau_pq_entry *msg;
326 struct ptc_stats *stat = bcp->statp;
327
328 stat->d_resets++;
329 /*
330 * We're looking for the given sender, and
331 * will free its swack resource.
332 * If all cpu's finally responded after the timeout, its
333 * message 'replied_to' was set.
334 */
335 for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
336 unsigned long msg_res;
337 /* do_reset: same conditions for cancellation as
338 bau_process_retry_msg() */
339 if ((msg->replied_to == 0) &&
340 (msg->canceled == 0) &&
341 (msg->sending_cpu == rap->sender) &&
342 (msg->swack_vec) &&
343 (msg->msg_type != MSG_NOOP)) {
344 unsigned long mmr;
345 unsigned long mr;
346 /*
347 * make everyone else ignore this message
348 */
349 msg->canceled = 1;
350 /*
351 * only reset the resource if it is still pending
352 */
353 mmr = read_mmr_sw_ack();
354 msg_res = msg->swack_vec;
355 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
356 if (mmr & msg_res) {
357 stat->d_rcanceled++;
358 write_mmr_sw_ack(mr);
359 }
360 }
361 }
362 return;
363}
364
365/*
366 * Use IPI to get all target uvhubs to release resources held by
367 * a given sending cpu number.
368 */
369static void reset_with_ipi(struct bau_targ_hubmask *distribution, int sender)
370{
371 int uvhub;
372 int maskbits;
373 cpumask_t mask;
374 struct reset_args reset_args;
375
376 reset_args.sender = sender;
377 cpus_clear(mask);
378 /* find a single cpu for each uvhub in this distribution mask */
379 maskbits = sizeof(struct bau_targ_hubmask) * BITSPERBYTE;
380 for (uvhub = 0; uvhub < maskbits; uvhub++) {
381 int cpu;
382 if (!bau_uvhub_isset(uvhub, distribution))
383 continue;
384 /* find a cpu for this uvhub */
385 cpu = uvhub_to_first_cpu(uvhub);
386 cpu_set(cpu, mask);
387 }
388
389 /* IPI all cpus; preemption is already disabled */
390 smp_call_function_many(&mask, do_reset, (void *)&reset_args, 1);
391 return;
392}
393
394static inline unsigned long cycles_2_us(unsigned long long cyc)
395{
396 unsigned long long ns;
397 unsigned long us;
398 int cpu = smp_processor_id();
399
400 ns = (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR;
401 us = ns / 1000;
402 return us;
403}
404
405/*
406 * wait for all cpus on this hub to finish their sends and go quiet
407 * leaves uvhub_quiesce set so that no new broadcasts are started by
408 * bau_flush_send_and_wait()
409 */
410static inline void quiesce_local_uvhub(struct bau_control *hmaster)
411{
412 atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
413}
414
415/*
416 * mark this quiet-requestor as done
417 */
418static inline void end_uvhub_quiesce(struct bau_control *hmaster)
419{
420 atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
421}
422
423static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
424{
425 unsigned long descriptor_status;
426
427 descriptor_status = uv_read_local_mmr(mmr_offset);
428 descriptor_status >>= right_shift;
429 descriptor_status &= UV_ACT_STATUS_MASK;
430 return descriptor_status;
431}
432
433/*
434 * Wait for completion of a broadcast software ack message
435 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
436 */
437static int uv1_wait_completion(struct bau_desc *bau_desc,
438 unsigned long mmr_offset, int right_shift,
439 struct bau_control *bcp, long try)
440{
441 unsigned long descriptor_status;
442 cycles_t ttm;
443 struct ptc_stats *stat = bcp->statp;
444
445 descriptor_status = uv1_read_status(mmr_offset, right_shift);
446 /* spin on the status MMR, waiting for it to go idle */
447 while ((descriptor_status != DS_IDLE)) {
448 /*
449 * Our software ack messages may be blocked because
450 * there are no swack resources available. As long
451 * as none of them has timed out hardware will NACK
452 * our message and its state will stay IDLE.
453 */
454 if (descriptor_status == DS_SOURCE_TIMEOUT) {
455 stat->s_stimeout++;
456 return FLUSH_GIVEUP;
457 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
458 stat->s_dtimeout++;
459 ttm = get_cycles();
460
461 /*
462 * Our retries may be blocked by all destination
463 * swack resources being consumed, and a timeout
464 * pending. In that case hardware returns the
465 * ERROR that looks like a destination timeout.
466 */
467 if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
468 bcp->conseccompletes = 0;
469 return FLUSH_RETRY_PLUGGED;
470 }
471
472 bcp->conseccompletes = 0;
473 return FLUSH_RETRY_TIMEOUT;
474 } else {
475 /*
476 * descriptor_status is still BUSY
477 */
478 cpu_relax();
479 }
480 descriptor_status = uv1_read_status(mmr_offset, right_shift);
481 }
482 bcp->conseccompletes++;
483 return FLUSH_COMPLETE;
484}
485
486/*
487 * UV2 has an extra bit of status in the ACTIVATION_STATUS_2 register.
488 */
489static unsigned long uv2_read_status(unsigned long offset, int rshft, int cpu)
490{
491 unsigned long descriptor_status;
492 unsigned long descriptor_status2;
493
494 descriptor_status = ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK);
495 descriptor_status2 = (read_mmr_uv2_status() >> cpu) & 0x1UL;
496 descriptor_status = (descriptor_status << 1) | descriptor_status2;
497 return descriptor_status;
498}
499
500static int uv2_wait_completion(struct bau_desc *bau_desc,
501 unsigned long mmr_offset, int right_shift,
502 struct bau_control *bcp, long try)
503{
504 unsigned long descriptor_stat;
505 cycles_t ttm;
506 int cpu = bcp->uvhub_cpu;
507 struct ptc_stats *stat = bcp->statp;
508
509 descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu);
510
511 /* spin on the status MMR, waiting for it to go idle */
512 while (descriptor_stat != UV2H_DESC_IDLE) {
513 /*
514 * Our software ack messages may be blocked because
515 * there are no swack resources available. As long
516 * as none of them has timed out hardware will NACK
517 * our message and its state will stay IDLE.
518 */
519 if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) ||
520 (descriptor_stat == UV2H_DESC_DEST_STRONG_NACK) ||
521 (descriptor_stat == UV2H_DESC_DEST_PUT_ERR)) {
522 stat->s_stimeout++;
523 return FLUSH_GIVEUP;
524 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
525 stat->s_dtimeout++;
526 ttm = get_cycles();
527 /*
528 * Our retries may be blocked by all destination
529 * swack resources being consumed, and a timeout
530 * pending. In that case hardware returns the
531 * ERROR that looks like a destination timeout.
532 */
533 if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
534 bcp->conseccompletes = 0;
535 return FLUSH_RETRY_PLUGGED;
536 }
537 bcp->conseccompletes = 0;
538 return FLUSH_RETRY_TIMEOUT;
539 } else {
540 /*
541 * descriptor_stat is still BUSY
542 */
543 cpu_relax();
544 }
545 descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu);
546 }
547 bcp->conseccompletes++;
548 return FLUSH_COMPLETE;
549}
550
551/*
552 * There are 2 status registers; each and array[32] of 2 bits. Set up for
553 * which register to read and position in that register based on cpu in
554 * current hub.
555 */
556static int wait_completion(struct bau_desc *bau_desc,
557 struct bau_control *bcp, long try)
558{
559 int right_shift;
560 unsigned long mmr_offset;
561 int cpu = bcp->uvhub_cpu;
562
563 if (cpu < UV_CPUS_PER_AS) {
564 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
565 right_shift = cpu * UV_ACT_STATUS_SIZE;
566 } else {
567 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
568 right_shift = ((cpu - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
569 }
570
571 if (is_uv1_hub())
572 return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
573 bcp, try);
574 else
575 return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
576 bcp, try);
577}
578
579static inline cycles_t sec_2_cycles(unsigned long sec)
580{
581 unsigned long ns;
582 cycles_t cyc;
583
584 ns = sec * 1000000000;
585 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
586 return cyc;
587}
588
589/*
590 * Our retries are blocked by all destination sw ack resources being
591 * in use, and a timeout is pending. In that case hardware immediately
592 * returns the ERROR that looks like a destination timeout.
593 */
594static void destination_plugged(struct bau_desc *bau_desc,
595 struct bau_control *bcp,
596 struct bau_control *hmaster, struct ptc_stats *stat)
597{
598 udelay(bcp->plugged_delay);
599 bcp->plugged_tries++;
600
601 if (bcp->plugged_tries >= bcp->plugsb4reset) {
602 bcp->plugged_tries = 0;
603
604 quiesce_local_uvhub(hmaster);
605
606 spin_lock(&hmaster->queue_lock);
607 reset_with_ipi(&bau_desc->distribution, bcp->cpu);
608 spin_unlock(&hmaster->queue_lock);
609
610 end_uvhub_quiesce(hmaster);
611
612 bcp->ipi_attempts++;
613 stat->s_resets_plug++;
614 }
615}
616
617static void destination_timeout(struct bau_desc *bau_desc,
618 struct bau_control *bcp, struct bau_control *hmaster,
619 struct ptc_stats *stat)
620{
621 hmaster->max_concurr = 1;
622 bcp->timeout_tries++;
623 if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
624 bcp->timeout_tries = 0;
625
626 quiesce_local_uvhub(hmaster);
627
628 spin_lock(&hmaster->queue_lock);
629 reset_with_ipi(&bau_desc->distribution, bcp->cpu);
630 spin_unlock(&hmaster->queue_lock);
631
632 end_uvhub_quiesce(hmaster);
633
634 bcp->ipi_attempts++;
635 stat->s_resets_timeout++;
636 }
637}
638
639/*
640 * Completions are taking a very long time due to a congested numalink
641 * network.
642 */
643static void disable_for_congestion(struct bau_control *bcp,
644 struct ptc_stats *stat)
645{
646 /* let only one cpu do this disabling */
647 spin_lock(&disable_lock);
648
649 if (!baudisabled && bcp->period_requests &&
650 ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
651 int tcpu;
652 struct bau_control *tbcp;
653 /* it becomes this cpu's job to turn on the use of the
654 BAU again */
655 baudisabled = 1;
656 bcp->set_bau_off = 1;
657 bcp->set_bau_on_time = get_cycles();
658 bcp->set_bau_on_time += sec_2_cycles(bcp->cong_period);
659 stat->s_bau_disabled++;
660 for_each_present_cpu(tcpu) {
661 tbcp = &per_cpu(bau_control, tcpu);
662 tbcp->baudisabled = 1;
663 }
664 }
665
666 spin_unlock(&disable_lock);
667}
668
669static void count_max_concurr(int stat, struct bau_control *bcp,
670 struct bau_control *hmaster)
671{
672 bcp->plugged_tries = 0;
673 bcp->timeout_tries = 0;
674 if (stat != FLUSH_COMPLETE)
675 return;
676 if (bcp->conseccompletes <= bcp->complete_threshold)
677 return;
678 if (hmaster->max_concurr >= hmaster->max_concurr_const)
679 return;
680 hmaster->max_concurr++;
681}
682
683static void record_send_stats(cycles_t time1, cycles_t time2,
684 struct bau_control *bcp, struct ptc_stats *stat,
685 int completion_status, int try)
686{
687 cycles_t elapsed;
688
689 if (time2 > time1) {
690 elapsed = time2 - time1;
691 stat->s_time += elapsed;
692
693 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
694 bcp->period_requests++;
695 bcp->period_time += elapsed;
696 if ((elapsed > congested_cycles) &&
697 (bcp->period_requests > bcp->cong_reps))
698 disable_for_congestion(bcp, stat);
699 }
700 } else
701 stat->s_requestor--;
702
703 if (completion_status == FLUSH_COMPLETE && try > 1)
704 stat->s_retriesok++;
705 else if (completion_status == FLUSH_GIVEUP)
706 stat->s_giveup++;
707}
708
709/*
710 * Because of a uv1 hardware bug only a limited number of concurrent
711 * requests can be made.
712 */
713static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
714{
715 spinlock_t *lock = &hmaster->uvhub_lock;
716 atomic_t *v;
717
718 v = &hmaster->active_descriptor_count;
719 if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
720 stat->s_throttles++;
721 do {
722 cpu_relax();
723 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
724 }
725}
726
727/*
728 * Handle the completion status of a message send.
729 */
730static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
731 struct bau_control *bcp, struct bau_control *hmaster,
732 struct ptc_stats *stat)
733{
734 if (completion_status == FLUSH_RETRY_PLUGGED)
735 destination_plugged(bau_desc, bcp, hmaster, stat);
736 else if (completion_status == FLUSH_RETRY_TIMEOUT)
737 destination_timeout(bau_desc, bcp, hmaster, stat);
738}
739
740/*
741 * Send a broadcast and wait for it to complete.
742 *
743 * The flush_mask contains the cpus the broadcast is to be sent to including
744 * cpus that are on the local uvhub.
745 *
746 * Returns 0 if all flushing represented in the mask was done.
747 * Returns 1 if it gives up entirely and the original cpu mask is to be
748 * returned to the kernel.
749 */
750int uv_flush_send_and_wait(struct bau_desc *bau_desc,
751 struct cpumask *flush_mask, struct bau_control *bcp)
752{
753 int seq_number = 0;
754 int completion_stat = 0;
755 long try = 0;
756 unsigned long index;
757 cycles_t time1;
758 cycles_t time2;
759 struct ptc_stats *stat = bcp->statp;
760 struct bau_control *hmaster = bcp->uvhub_master;
761
762 if (is_uv1_hub())
763 uv1_throttle(hmaster, stat);
764
765 while (hmaster->uvhub_quiesce)
766 cpu_relax();
767
768 time1 = get_cycles();
769 do {
770 if (try == 0) {
771 bau_desc->header.msg_type = MSG_REGULAR;
772 seq_number = bcp->message_number++;
773 } else {
774 bau_desc->header.msg_type = MSG_RETRY;
775 stat->s_retry_messages++;
776 }
777
778 bau_desc->header.sequence = seq_number;
779 index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
780 bcp->send_message = get_cycles();
781
782 write_mmr_activation(index);
783
784 try++;
785 completion_stat = wait_completion(bau_desc, bcp, try);
786
787 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
788
789 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
790 bcp->ipi_attempts = 0;
791 completion_stat = FLUSH_GIVEUP;
792 break;
793 }
794 cpu_relax();
795 } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
796 (completion_stat == FLUSH_RETRY_TIMEOUT));
797
798 time2 = get_cycles();
799
800 count_max_concurr(completion_stat, bcp, hmaster);
801
802 while (hmaster->uvhub_quiesce)
803 cpu_relax();
804
805 atomic_dec(&hmaster->active_descriptor_count);
806
807 record_send_stats(time1, time2, bcp, stat, completion_stat, try);
808
809 if (completion_stat == FLUSH_GIVEUP)
810 return 1;
811 return 0;
812}
813
814/*
815 * The BAU is disabled. When the disabled time period has expired, the cpu
816 * that disabled it must re-enable it.
817 * Return 0 if it is re-enabled for all cpus.
818 */
819static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
820{
821 int tcpu;
822 struct bau_control *tbcp;
823
824 if (bcp->set_bau_off) {
825 if (get_cycles() >= bcp->set_bau_on_time) {
826 stat->s_bau_reenabled++;
827 baudisabled = 0;
828 for_each_present_cpu(tcpu) {
829 tbcp = &per_cpu(bau_control, tcpu);
830 tbcp->baudisabled = 0;
831 tbcp->period_requests = 0;
832 tbcp->period_time = 0;
833 }
834 return 0;
835 }
836 }
837 return -1;
838}
839
840static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
841 int remotes, struct bau_desc *bau_desc)
842{
843 stat->s_requestor++;
844 stat->s_ntargcpu += remotes + locals;
845 stat->s_ntargremotes += remotes;
846 stat->s_ntarglocals += locals;
847
848 /* uvhub statistics */
849 hubs = bau_uvhub_weight(&bau_desc->distribution);
850 if (locals) {
851 stat->s_ntarglocaluvhub++;
852 stat->s_ntargremoteuvhub += (hubs - 1);
853 } else
854 stat->s_ntargremoteuvhub += hubs;
855
856 stat->s_ntarguvhub += hubs;
857
858 if (hubs >= 16)
859 stat->s_ntarguvhub16++;
860 else if (hubs >= 8)
861 stat->s_ntarguvhub8++;
862 else if (hubs >= 4)
863 stat->s_ntarguvhub4++;
864 else if (hubs >= 2)
865 stat->s_ntarguvhub2++;
866 else
867 stat->s_ntarguvhub1++;
868}
869
870/*
871 * Translate a cpu mask to the uvhub distribution mask in the BAU
872 * activation descriptor.
873 */
874static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
875 struct bau_desc *bau_desc, int *localsp, int *remotesp)
876{
877 int cpu;
878 int pnode;
879 int cnt = 0;
880 struct hub_and_pnode *hpp;
881
882 for_each_cpu(cpu, flush_mask) {
883 /*
884 * The distribution vector is a bit map of pnodes, relative
885 * to the partition base pnode (and the partition base nasid
886 * in the header).
887 * Translate cpu to pnode and hub using a local memory array.
888 */
889 hpp = &bcp->socket_master->thp[cpu];
890 pnode = hpp->pnode - bcp->partition_base_pnode;
891 bau_uvhub_set(pnode, &bau_desc->distribution);
892 cnt++;
893 if (hpp->uvhub == bcp->uvhub)
894 (*localsp)++;
895 else
896 (*remotesp)++;
897 }
898 if (!cnt)
899 return 1;
900 return 0;
901}
902
903/*
904 * globally purge translation cache of a virtual address or all TLB's
905 * @cpumask: mask of all cpu's in which the address is to be removed
906 * @mm: mm_struct containing virtual address range
907 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
908 * @cpu: the current cpu
909 *
910 * This is the entry point for initiating any UV global TLB shootdown.
911 *
912 * Purges the translation caches of all specified processors of the given
913 * virtual address, or purges all TLB's on specified processors.
914 *
915 * The caller has derived the cpumask from the mm_struct. This function
916 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
917 *
918 * The cpumask is converted into a uvhubmask of the uvhubs containing
919 * those cpus.
920 *
921 * Note that this function should be called with preemption disabled.
922 *
923 * Returns NULL if all remote flushing was done.
924 * Returns pointer to cpumask if some remote flushing remains to be
925 * done. The returned pointer is valid till preemption is re-enabled.
926 */
927const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
928 struct mm_struct *mm, unsigned long va,
929 unsigned int cpu)
930{
931 int locals = 0;
932 int remotes = 0;
933 int hubs = 0;
934 struct bau_desc *bau_desc;
935 struct cpumask *flush_mask;
936 struct ptc_stats *stat;
937 struct bau_control *bcp;
938
939 /* kernel was booted 'nobau' */
940 if (nobau)
941 return cpumask;
942
943 bcp = &per_cpu(bau_control, cpu);
944 stat = bcp->statp;
945
946 /* bau was disabled due to slow response */
947 if (bcp->baudisabled) {
948 if (check_enable(bcp, stat))
949 return cpumask;
950 }
951
952 /*
953 * Each sending cpu has a per-cpu mask which it fills from the caller's
954 * cpu mask. All cpus are converted to uvhubs and copied to the
955 * activation descriptor.
956 */
957 flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
958 /* don't actually do a shootdown of the local cpu */
959 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
960
961 if (cpu_isset(cpu, *cpumask))
962 stat->s_ntargself++;
963
964 bau_desc = bcp->descriptor_base;
965 bau_desc += ITEMS_PER_DESC * bcp->uvhub_cpu;
966 bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
967 if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
968 return NULL;
969
970 record_send_statistics(stat, locals, hubs, remotes, bau_desc);
971
972 bau_desc->payload.address = va;
973 bau_desc->payload.sending_cpu = cpu;
974 /*
975 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
976 * or 1 if it gave up and the original cpumask should be returned.
977 */
978 if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
979 return NULL;
980 else
981 return cpumask;
982}
983
984/*
985 * The BAU message interrupt comes here. (registered by set_intr_gate)
986 * See entry_64.S
987 *
988 * We received a broadcast assist message.
989 *
990 * Interrupts are disabled; this interrupt could represent
991 * the receipt of several messages.
992 *
993 * All cores/threads on this hub get this interrupt.
994 * The last one to see it does the software ack.
995 * (the resource will not be freed until noninterruptable cpus see this
996 * interrupt; hardware may timeout the s/w ack and reply ERROR)
997 */
998void uv_bau_message_interrupt(struct pt_regs *regs)
999{
1000 int count = 0;
1001 cycles_t time_start;
1002 struct bau_pq_entry *msg;
1003 struct bau_control *bcp;
1004 struct ptc_stats *stat;
1005 struct msg_desc msgdesc;
1006
1007 time_start = get_cycles();
1008
1009 bcp = &per_cpu(bau_control, smp_processor_id());
1010 stat = bcp->statp;
1011
1012 msgdesc.queue_first = bcp->queue_first;
1013 msgdesc.queue_last = bcp->queue_last;
1014
1015 msg = bcp->bau_msg_head;
1016 while (msg->swack_vec) {
1017 count++;
1018
1019 msgdesc.msg_slot = msg - msgdesc.queue_first;
1020 msgdesc.swack_slot = ffs(msg->swack_vec) - 1;
1021 msgdesc.msg = msg;
1022 bau_process_message(&msgdesc, bcp);
1023
1024 msg++;
1025 if (msg > msgdesc.queue_last)
1026 msg = msgdesc.queue_first;
1027 bcp->bau_msg_head = msg;
1028 }
1029 stat->d_time += (get_cycles() - time_start);
1030 if (!count)
1031 stat->d_nomsg++;
1032 else if (count > 1)
1033 stat->d_multmsg++;
1034
1035 ack_APIC_irq();
1036}
1037
1038/*
1039 * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1040 * shootdown message timeouts enabled. The timeout does not cause
1041 * an interrupt, but causes an error message to be returned to
1042 * the sender.
1043 */
1044static void __init enable_timeouts(void)
1045{
1046 int uvhub;
1047 int nuvhubs;
1048 int pnode;
1049 unsigned long mmr_image;
1050
1051 nuvhubs = uv_num_possible_blades();
1052
1053 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1054 if (!uv_blade_nr_possible_cpus(uvhub))
1055 continue;
1056
1057 pnode = uv_blade_to_pnode(uvhub);
1058 mmr_image = read_mmr_misc_control(pnode);
1059 /*
1060 * Set the timeout period and then lock it in, in three
1061 * steps; captures and locks in the period.
1062 *
1063 * To program the period, the SOFT_ACK_MODE must be off.
1064 */
1065 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1066 write_mmr_misc_control(pnode, mmr_image);
1067 /*
1068 * Set the 4-bit period.
1069 */
1070 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1071 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1072 write_mmr_misc_control(pnode, mmr_image);
1073 /*
1074 * UV1:
1075 * Subsequent reversals of the timebase bit (3) cause an
1076 * immediate timeout of one or all INTD resources as
1077 * indicated in bits 2:0 (7 causes all of them to timeout).
1078 */
1079 mmr_image |= (1L << SOFTACK_MSHIFT);
1080 if (is_uv2_hub()) {
1081 mmr_image |= (1L << UV2_LEG_SHFT);
1082 mmr_image |= (1L << UV2_EXT_SHFT);
1083 }
1084 write_mmr_misc_control(pnode, mmr_image);
1085 }
1086}
1087
1088static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1089{
1090 if (*offset < num_possible_cpus())
1091 return offset;
1092 return NULL;
1093}
1094
1095static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1096{
1097 (*offset)++;
1098 if (*offset < num_possible_cpus())
1099 return offset;
1100 return NULL;
1101}
1102
1103static void ptc_seq_stop(struct seq_file *file, void *data)
1104{
1105}
1106
1107static inline unsigned long long usec_2_cycles(unsigned long microsec)
1108{
1109 unsigned long ns;
1110 unsigned long long cyc;
1111
1112 ns = microsec * 1000;
1113 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
1114 return cyc;
1115}
1116
1117/*
1118 * Display the statistics thru /proc/sgi_uv/ptc_statistics
1119 * 'data' points to the cpu number
1120 * Note: see the descriptions in stat_description[].
1121 */
1122static int ptc_seq_show(struct seq_file *file, void *data)
1123{
1124 struct ptc_stats *stat;
1125 int cpu;
1126
1127 cpu = *(loff_t *)data;
1128 if (!cpu) {
1129 seq_printf(file,
1130 "# cpu sent stime self locals remotes ncpus localhub ");
1131 seq_printf(file,
1132 "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1133 seq_printf(file,
1134 "numuvhubs4 numuvhubs2 numuvhubs1 dto retries rok ");
1135 seq_printf(file,
1136 "resetp resett giveup sto bz throt swack recv rtime ");
1137 seq_printf(file,
1138 "all one mult none retry canc nocan reset rcan ");
1139 seq_printf(file,
1140 "disable enable\n");
1141 }
1142 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1143 stat = &per_cpu(ptcstats, cpu);
1144 /* source side statistics */
1145 seq_printf(file,
1146 "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1147 cpu, stat->s_requestor, cycles_2_us(stat->s_time),
1148 stat->s_ntargself, stat->s_ntarglocals,
1149 stat->s_ntargremotes, stat->s_ntargcpu,
1150 stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1151 stat->s_ntarguvhub, stat->s_ntarguvhub16);
1152 seq_printf(file, "%ld %ld %ld %ld %ld ",
1153 stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1154 stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1155 stat->s_dtimeout);
1156 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1157 stat->s_retry_messages, stat->s_retriesok,
1158 stat->s_resets_plug, stat->s_resets_timeout,
1159 stat->s_giveup, stat->s_stimeout,
1160 stat->s_busy, stat->s_throttles);
1161
1162 /* destination side statistics */
1163 seq_printf(file,
1164 "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1165 read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)),
1166 stat->d_requestee, cycles_2_us(stat->d_time),
1167 stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1168 stat->d_nomsg, stat->d_retries, stat->d_canceled,
1169 stat->d_nocanceled, stat->d_resets,
1170 stat->d_rcanceled);
1171 seq_printf(file, "%ld %ld\n",
1172 stat->s_bau_disabled, stat->s_bau_reenabled);
1173 }
1174 return 0;
1175}
1176
1177/*
1178 * Display the tunables thru debugfs
1179 */
1180static ssize_t tunables_read(struct file *file, char __user *userbuf,
1181 size_t count, loff_t *ppos)
1182{
1183 char *buf;
1184 int ret;
1185
1186 buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1187 "max_concur plugged_delay plugsb4reset",
1188 "timeoutsb4reset ipi_reset_limit complete_threshold",
1189 "congested_response_us congested_reps congested_period",
1190 max_concurr, plugged_delay, plugsb4reset,
1191 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1192 congested_respns_us, congested_reps, congested_period);
1193
1194 if (!buf)
1195 return -ENOMEM;
1196
1197 ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1198 kfree(buf);
1199 return ret;
1200}
1201
1202/*
1203 * handle a write to /proc/sgi_uv/ptc_statistics
1204 * -1: reset the statistics
1205 * 0: display meaning of the statistics
1206 */
1207static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1208 size_t count, loff_t *data)
1209{
1210 int cpu;
1211 int i;
1212 int elements;
1213 long input_arg;
1214 char optstr[64];
1215 struct ptc_stats *stat;
1216
1217 if (count == 0 || count > sizeof(optstr))
1218 return -EINVAL;
1219 if (copy_from_user(optstr, user, count))
1220 return -EFAULT;
1221 optstr[count - 1] = '\0';
1222
1223 if (strict_strtol(optstr, 10, &input_arg) < 0) {
1224 printk(KERN_DEBUG "%s is invalid\n", optstr);
1225 return -EINVAL;
1226 }
1227
1228 if (input_arg == 0) {
1229 elements = sizeof(stat_description)/sizeof(*stat_description);
1230 printk(KERN_DEBUG "# cpu: cpu number\n");
1231 printk(KERN_DEBUG "Sender statistics:\n");
1232 for (i = 0; i < elements; i++)
1233 printk(KERN_DEBUG "%s\n", stat_description[i]);
1234 } else if (input_arg == -1) {
1235 for_each_present_cpu(cpu) {
1236 stat = &per_cpu(ptcstats, cpu);
1237 memset(stat, 0, sizeof(struct ptc_stats));
1238 }
1239 }
1240
1241 return count;
1242}
1243
1244static int local_atoi(const char *name)
1245{
1246 int val = 0;
1247
1248 for (;; name++) {
1249 switch (*name) {
1250 case '0' ... '9':
1251 val = 10*val+(*name-'0');
1252 break;
1253 default:
1254 return val;
1255 }
1256 }
1257}
1258
1259/*
1260 * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1261 * Zero values reset them to defaults.
1262 */
1263static int parse_tunables_write(struct bau_control *bcp, char *instr,
1264 int count)
1265{
1266 char *p;
1267 char *q;
1268 int cnt = 0;
1269 int val;
1270 int e = sizeof(tunables) / sizeof(*tunables);
1271
1272 p = instr + strspn(instr, WHITESPACE);
1273 q = p;
1274 for (; *p; p = q + strspn(q, WHITESPACE)) {
1275 q = p + strcspn(p, WHITESPACE);
1276 cnt++;
1277 if (q == p)
1278 break;
1279 }
1280 if (cnt != e) {
1281 printk(KERN_INFO "bau tunable error: should be %d values\n", e);
1282 return -EINVAL;
1283 }
1284
1285 p = instr + strspn(instr, WHITESPACE);
1286 q = p;
1287 for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1288 q = p + strcspn(p, WHITESPACE);
1289 val = local_atoi(p);
1290 switch (cnt) {
1291 case 0:
1292 if (val == 0) {
1293 max_concurr = MAX_BAU_CONCURRENT;
1294 max_concurr_const = MAX_BAU_CONCURRENT;
1295 continue;
1296 }
1297 if (val < 1 || val > bcp->cpus_in_uvhub) {
1298 printk(KERN_DEBUG
1299 "Error: BAU max concurrent %d is invalid\n",
1300 val);
1301 return -EINVAL;
1302 }
1303 max_concurr = val;
1304 max_concurr_const = val;
1305 continue;
1306 default:
1307 if (val == 0)
1308 *tunables[cnt].tunp = tunables[cnt].deflt;
1309 else
1310 *tunables[cnt].tunp = val;
1311 continue;
1312 }
1313 if (q == p)
1314 break;
1315 }
1316 return 0;
1317}
1318
1319/*
1320 * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1321 */
1322static ssize_t tunables_write(struct file *file, const char __user *user,
1323 size_t count, loff_t *data)
1324{
1325 int cpu;
1326 int ret;
1327 char instr[100];
1328 struct bau_control *bcp;
1329
1330 if (count == 0 || count > sizeof(instr)-1)
1331 return -EINVAL;
1332 if (copy_from_user(instr, user, count))
1333 return -EFAULT;
1334
1335 instr[count] = '\0';
1336
1337 bcp = &per_cpu(bau_control, smp_processor_id());
1338
1339 ret = parse_tunables_write(bcp, instr, count);
1340 if (ret)
1341 return ret;
1342
1343 for_each_present_cpu(cpu) {
1344 bcp = &per_cpu(bau_control, cpu);
1345 bcp->max_concurr = max_concurr;
1346 bcp->max_concurr_const = max_concurr;
1347 bcp->plugged_delay = plugged_delay;
1348 bcp->plugsb4reset = plugsb4reset;
1349 bcp->timeoutsb4reset = timeoutsb4reset;
1350 bcp->ipi_reset_limit = ipi_reset_limit;
1351 bcp->complete_threshold = complete_threshold;
1352 bcp->cong_response_us = congested_respns_us;
1353 bcp->cong_reps = congested_reps;
1354 bcp->cong_period = congested_period;
1355 }
1356 return count;
1357}
1358
1359static const struct seq_operations uv_ptc_seq_ops = {
1360 .start = ptc_seq_start,
1361 .next = ptc_seq_next,
1362 .stop = ptc_seq_stop,
1363 .show = ptc_seq_show
1364};
1365
1366static int ptc_proc_open(struct inode *inode, struct file *file)
1367{
1368 return seq_open(file, &uv_ptc_seq_ops);
1369}
1370
1371static int tunables_open(struct inode *inode, struct file *file)
1372{
1373 return 0;
1374}
1375
1376static const struct file_operations proc_uv_ptc_operations = {
1377 .open = ptc_proc_open,
1378 .read = seq_read,
1379 .write = ptc_proc_write,
1380 .llseek = seq_lseek,
1381 .release = seq_release,
1382};
1383
1384static const struct file_operations tunables_fops = {
1385 .open = tunables_open,
1386 .read = tunables_read,
1387 .write = tunables_write,
1388 .llseek = default_llseek,
1389};
1390
1391static int __init uv_ptc_init(void)
1392{
1393 struct proc_dir_entry *proc_uv_ptc;
1394
1395 if (!is_uv_system())
1396 return 0;
1397
1398 proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1399 &proc_uv_ptc_operations);
1400 if (!proc_uv_ptc) {
1401 printk(KERN_ERR "unable to create %s proc entry\n",
1402 UV_PTC_BASENAME);
1403 return -EINVAL;
1404 }
1405
1406 tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1407 if (!tunables_dir) {
1408 printk(KERN_ERR "unable to create debugfs directory %s\n",
1409 UV_BAU_TUNABLES_DIR);
1410 return -EINVAL;
1411 }
1412 tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1413 tunables_dir, NULL, &tunables_fops);
1414 if (!tunables_file) {
1415 printk(KERN_ERR "unable to create debugfs file %s\n",
1416 UV_BAU_TUNABLES_FILE);
1417 return -EINVAL;
1418 }
1419 return 0;
1420}
1421
1422/*
1423 * Initialize the sending side's sending buffers.
1424 */
1425static void activation_descriptor_init(int node, int pnode, int base_pnode)
1426{
1427 int i;
1428 int cpu;
1429 unsigned long pa;
1430 unsigned long m;
1431 unsigned long n;
1432 size_t dsize;
1433 struct bau_desc *bau_desc;
1434 struct bau_desc *bd2;
1435 struct bau_control *bcp;
1436
1437 /*
1438 * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1439 * per cpu; and one per cpu on the uvhub (ADP_SZ)
1440 */
1441 dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1442 bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1443 BUG_ON(!bau_desc);
1444
1445 pa = uv_gpa(bau_desc); /* need the real nasid*/
1446 n = pa >> uv_nshift;
1447 m = pa & uv_mmask;
1448
1449 /* the 14-bit pnode */
1450 write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
1451 /*
1452 * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1453 * cpu even though we only use the first one; one descriptor can
1454 * describe a broadcast to 256 uv hubs.
1455 */
1456 for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1457 memset(bd2, 0, sizeof(struct bau_desc));
1458 bd2->header.swack_flag = 1;
1459 /*
1460 * The base_dest_nasid set in the message header is the nasid
1461 * of the first uvhub in the partition. The bit map will
1462 * indicate destination pnode numbers relative to that base.
1463 * They may not be consecutive if nasid striding is being used.
1464 */
1465 bd2->header.base_dest_nasid = UV_PNODE_TO_NASID(base_pnode);
1466 bd2->header.dest_subnodeid = UV_LB_SUBNODEID;
1467 bd2->header.command = UV_NET_ENDPOINT_INTD;
1468 bd2->header.int_both = 1;
1469 /*
1470 * all others need to be set to zero:
1471 * fairness chaining multilevel count replied_to
1472 */
1473 }
1474 for_each_present_cpu(cpu) {
1475 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1476 continue;
1477 bcp = &per_cpu(bau_control, cpu);
1478 bcp->descriptor_base = bau_desc;
1479 }
1480}
1481
1482/*
1483 * initialize the destination side's receiving buffers
1484 * entered for each uvhub in the partition
1485 * - node is first node (kernel memory notion) on the uvhub
1486 * - pnode is the uvhub's physical identifier
1487 */
1488static void pq_init(int node, int pnode)
1489{
1490 int cpu;
1491 size_t plsize;
1492 char *cp;
1493 void *vp;
1494 unsigned long pn;
1495 unsigned long first;
1496 unsigned long pn_first;
1497 unsigned long last;
1498 struct bau_pq_entry *pqp;
1499 struct bau_control *bcp;
1500
1501 plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1502 vp = kmalloc_node(plsize, GFP_KERNEL, node);
1503 pqp = (struct bau_pq_entry *)vp;
1504 BUG_ON(!pqp);
1505
1506 cp = (char *)pqp + 31;
1507 pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1508
1509 for_each_present_cpu(cpu) {
1510 if (pnode != uv_cpu_to_pnode(cpu))
1511 continue;
1512 /* for every cpu on this pnode: */
1513 bcp = &per_cpu(bau_control, cpu);
1514 bcp->queue_first = pqp;
1515 bcp->bau_msg_head = pqp;
1516 bcp->queue_last = pqp + (DEST_Q_SIZE - 1);
1517 }
1518 /*
1519 * need the pnode of where the memory was really allocated
1520 */
1521 pn = uv_gpa(pqp) >> uv_nshift;
1522 first = uv_physnodeaddr(pqp);
1523 pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first;
1524 last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1));
1525 write_mmr_payload_first(pnode, pn_first);
1526 write_mmr_payload_tail(pnode, first);
1527 write_mmr_payload_last(pnode, last);
1528
1529 /* in effect, all msg_type's are set to MSG_NOOP */
1530 memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1531}
1532
1533/*
1534 * Initialization of each UV hub's structures
1535 */
1536static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1537{
1538 int node;
1539 int pnode;
1540 unsigned long apicid;
1541
1542 node = uvhub_to_first_node(uvhub);
1543 pnode = uv_blade_to_pnode(uvhub);
1544
1545 activation_descriptor_init(node, pnode, base_pnode);
1546
1547 pq_init(node, pnode);
1548 /*
1549 * The below initialization can't be in firmware because the
1550 * messaging IRQ will be determined by the OS.
1551 */
1552 apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1553 write_mmr_data_config(pnode, ((apicid << 32) | vector));
1554}
1555
1556/*
1557 * We will set BAU_MISC_CONTROL with a timeout period.
1558 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1559 * So the destination timeout period has to be calculated from them.
1560 */
1561static int calculate_destination_timeout(void)
1562{
1563 unsigned long mmr_image;
1564 int mult1;
1565 int mult2;
1566 int index;
1567 int base;
1568 int ret;
1569 unsigned long ts_ns;
1570
1571 if (is_uv1_hub()) {
1572 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1573 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1574 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1575 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1576 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1577 base = timeout_base_ns[index];
1578 ts_ns = base * mult1 * mult2;
1579 ret = ts_ns / 1000;
1580 } else {
1581 /* 4 bits 0/1 for 10/80us, 3 bits of multiplier */
1582 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1583 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1584 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1585 mult1 = 80;
1586 else
1587 mult1 = 10;
1588 base = mmr_image & UV2_ACK_MASK;
1589 ret = mult1 * base;
1590 }
1591 return ret;
1592}
1593
1594static void __init init_per_cpu_tunables(void)
1595{
1596 int cpu;
1597 struct bau_control *bcp;
1598
1599 for_each_present_cpu(cpu) {
1600 bcp = &per_cpu(bau_control, cpu);
1601 bcp->baudisabled = 0;
1602 bcp->statp = &per_cpu(ptcstats, cpu);
1603 /* time interval to catch a hardware stay-busy bug */
1604 bcp->timeout_interval = usec_2_cycles(2*timeout_us);
1605 bcp->max_concurr = max_concurr;
1606 bcp->max_concurr_const = max_concurr;
1607 bcp->plugged_delay = plugged_delay;
1608 bcp->plugsb4reset = plugsb4reset;
1609 bcp->timeoutsb4reset = timeoutsb4reset;
1610 bcp->ipi_reset_limit = ipi_reset_limit;
1611 bcp->complete_threshold = complete_threshold;
1612 bcp->cong_response_us = congested_respns_us;
1613 bcp->cong_reps = congested_reps;
1614 bcp->cong_period = congested_period;
1615 }
1616}
1617
1618/*
1619 * Scan all cpus to collect blade and socket summaries.
1620 */
1621static int __init get_cpu_topology(int base_pnode,
1622 struct uvhub_desc *uvhub_descs,
1623 unsigned char *uvhub_mask)
1624{
1625 int cpu;
1626 int pnode;
1627 int uvhub;
1628 int socket;
1629 struct bau_control *bcp;
1630 struct uvhub_desc *bdp;
1631 struct socket_desc *sdp;
1632
1633 for_each_present_cpu(cpu) {
1634 bcp = &per_cpu(bau_control, cpu);
1635
1636 memset(bcp, 0, sizeof(struct bau_control));
1637
1638 pnode = uv_cpu_hub_info(cpu)->pnode;
1639 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1640 printk(KERN_EMERG
1641 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1642 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1643 return 1;
1644 }
1645
1646 bcp->osnode = cpu_to_node(cpu);
1647 bcp->partition_base_pnode = base_pnode;
1648
1649 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1650 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1651 bdp = &uvhub_descs[uvhub];
1652
1653 bdp->num_cpus++;
1654 bdp->uvhub = uvhub;
1655 bdp->pnode = pnode;
1656
1657 /* kludge: 'assuming' one node per socket, and assuming that
1658 disabling a socket just leaves a gap in node numbers */
1659 socket = bcp->osnode & 1;
1660 bdp->socket_mask |= (1 << socket);
1661 sdp = &bdp->socket[socket];
1662 sdp->cpu_number[sdp->num_cpus] = cpu;
1663 sdp->num_cpus++;
1664 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1665 printk(KERN_EMERG "%d cpus per socket invalid\n",
1666 sdp->num_cpus);
1667 return 1;
1668 }
1669 }
1670 return 0;
1671}
1672
1673/*
1674 * Each socket is to get a local array of pnodes/hubs.
1675 */
1676static void make_per_cpu_thp(struct bau_control *smaster)
1677{
1678 int cpu;
1679 size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1680
1681 smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
1682 memset(smaster->thp, 0, hpsz);
1683 for_each_present_cpu(cpu) {
1684 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
1685 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1686 }
1687}
1688
1689/*
1690 * Initialize all the per_cpu information for the cpu's on a given socket,
1691 * given what has been gathered into the socket_desc struct.
1692 * And reports the chosen hub and socket masters back to the caller.
1693 */
1694static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
1695 struct bau_control **smasterp,
1696 struct bau_control **hmasterp)
1697{
1698 int i;
1699 int cpu;
1700 struct bau_control *bcp;
1701
1702 for (i = 0; i < sdp->num_cpus; i++) {
1703 cpu = sdp->cpu_number[i];
1704 bcp = &per_cpu(bau_control, cpu);
1705 bcp->cpu = cpu;
1706 if (i == 0) {
1707 *smasterp = bcp;
1708 if (!(*hmasterp))
1709 *hmasterp = bcp;
1710 }
1711 bcp->cpus_in_uvhub = bdp->num_cpus;
1712 bcp->cpus_in_socket = sdp->num_cpus;
1713 bcp->socket_master = *smasterp;
1714 bcp->uvhub = bdp->uvhub;
1715 bcp->uvhub_master = *hmasterp;
1716 bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id;
1717 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
1718 printk(KERN_EMERG "%d cpus per uvhub invalid\n",
1719 bcp->uvhub_cpu);
1720 return 1;
1721 }
1722 }
1723 return 0;
1724}
1725
1726/*
1727 * Summarize the blade and socket topology into the per_cpu structures.
1728 */
1729static int __init summarize_uvhub_sockets(int nuvhubs,
1730 struct uvhub_desc *uvhub_descs,
1731 unsigned char *uvhub_mask)
1732{
1733 int socket;
1734 int uvhub;
1735 unsigned short socket_mask;
1736
1737 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1738 struct uvhub_desc *bdp;
1739 struct bau_control *smaster = NULL;
1740 struct bau_control *hmaster = NULL;
1741
1742 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
1743 continue;
1744
1745 bdp = &uvhub_descs[uvhub];
1746 socket_mask = bdp->socket_mask;
1747 socket = 0;
1748 while (socket_mask) {
1749 struct socket_desc *sdp;
1750 if ((socket_mask & 1)) {
1751 sdp = &bdp->socket[socket];
1752 if (scan_sock(sdp, bdp, &smaster, &hmaster))
1753 return 1;
1754 }
1755 socket++;
1756 socket_mask = (socket_mask >> 1);
1757 make_per_cpu_thp(smaster);
1758 }
1759 }
1760 return 0;
1761}
1762
1763/*
1764 * initialize the bau_control structure for each cpu
1765 */
1766static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
1767{
1768 unsigned char *uvhub_mask;
1769 void *vp;
1770 struct uvhub_desc *uvhub_descs;
1771
1772 timeout_us = calculate_destination_timeout();
1773
1774 vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1775 uvhub_descs = (struct uvhub_desc *)vp;
1776 memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
1777 uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
1778
1779 if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
1780 return 1;
1781
1782 if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
1783 return 1;
1784
1785 kfree(uvhub_descs);
1786 kfree(uvhub_mask);
1787 init_per_cpu_tunables();
1788 return 0;
1789}
1790
1791/*
1792 * Initialization of BAU-related structures
1793 */
1794static int __init uv_bau_init(void)
1795{
1796 int uvhub;
1797 int pnode;
1798 int nuvhubs;
1799 int cur_cpu;
1800 int cpus;
1801 int vector;
1802 cpumask_var_t *mask;
1803
1804 if (!is_uv_system())
1805 return 0;
1806
1807 if (nobau)
1808 return 0;
1809
1810 for_each_possible_cpu(cur_cpu) {
1811 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
1812 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
1813 }
1814
1815 uv_nshift = uv_hub_info->m_val;
1816 uv_mmask = (1UL << uv_hub_info->m_val) - 1;
1817 nuvhubs = uv_num_possible_blades();
1818 spin_lock_init(&disable_lock);
1819 congested_cycles = usec_2_cycles(congested_respns_us);
1820
1821 uv_base_pnode = 0x7fffffff;
1822 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1823 cpus = uv_blade_nr_possible_cpus(uvhub);
1824 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
1825 uv_base_pnode = uv_blade_to_pnode(uvhub);
1826 }
1827
1828 if (init_per_cpu(nuvhubs, uv_base_pnode)) {
1829 nobau = 1;
1830 return 0;
1831 }
1832
1833 vector = UV_BAU_MESSAGE;
1834 for_each_possible_blade(uvhub)
1835 if (uv_blade_nr_possible_cpus(uvhub))
1836 init_uvhub(uvhub, vector, uv_base_pnode);
1837
1838 enable_timeouts();
1839 alloc_intr_gate(vector, uv_bau_message_intr1);
1840
1841 for_each_possible_blade(uvhub) {
1842 if (uv_blade_nr_possible_cpus(uvhub)) {
1843 unsigned long val;
1844 unsigned long mmr;
1845 pnode = uv_blade_to_pnode(uvhub);
1846 /* INIT the bau */
1847 val = 1L << 63;
1848 write_gmmr_activation(pnode, val);
1849 mmr = 1; /* should be 1 to broadcast to both sockets */
1850 write_mmr_data_broadcast(pnode, mmr);
1851 }
1852 }
1853
1854 return 0;
1855}
1856core_initcall(uv_bau_init);
1857fs_initcall(uv_ptc_init);
diff --git a/arch/x86/platform/uv/uv_irq.c b/arch/x86/platform/uv/uv_irq.c
new file mode 100644
index 000000000000..374a05d8ad22
--- /dev/null
+++ b/arch/x86/platform/uv/uv_irq.c
@@ -0,0 +1,285 @@
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV IRQ functions
7 *
8 * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
9 */
10
11#include <linux/module.h>
12#include <linux/rbtree.h>
13#include <linux/slab.h>
14#include <linux/irq.h>
15
16#include <asm/apic.h>
17#include <asm/uv/uv_irq.h>
18#include <asm/uv/uv_hub.h>
19
20/* MMR offset and pnode of hub sourcing interrupts for a given irq */
21struct uv_irq_2_mmr_pnode{
22 struct rb_node list;
23 unsigned long offset;
24 int pnode;
25 int irq;
26};
27
28static spinlock_t uv_irq_lock;
29static struct rb_root uv_irq_root;
30
31static int uv_set_irq_affinity(struct irq_data *, const struct cpumask *, bool);
32
33static void uv_noop(struct irq_data *data) { }
34
35static void uv_ack_apic(struct irq_data *data)
36{
37 ack_APIC_irq();
38}
39
40static struct irq_chip uv_irq_chip = {
41 .name = "UV-CORE",
42 .irq_mask = uv_noop,
43 .irq_unmask = uv_noop,
44 .irq_eoi = uv_ack_apic,
45 .irq_set_affinity = uv_set_irq_affinity,
46};
47
48/*
49 * Add offset and pnode information of the hub sourcing interrupts to the
50 * rb tree for a specific irq.
51 */
52static int uv_set_irq_2_mmr_info(int irq, unsigned long offset, unsigned blade)
53{
54 struct rb_node **link = &uv_irq_root.rb_node;
55 struct rb_node *parent = NULL;
56 struct uv_irq_2_mmr_pnode *n;
57 struct uv_irq_2_mmr_pnode *e;
58 unsigned long irqflags;
59
60 n = kmalloc_node(sizeof(struct uv_irq_2_mmr_pnode), GFP_KERNEL,
61 uv_blade_to_memory_nid(blade));
62 if (!n)
63 return -ENOMEM;
64
65 n->irq = irq;
66 n->offset = offset;
67 n->pnode = uv_blade_to_pnode(blade);
68 spin_lock_irqsave(&uv_irq_lock, irqflags);
69 /* Find the right place in the rbtree: */
70 while (*link) {
71 parent = *link;
72 e = rb_entry(parent, struct uv_irq_2_mmr_pnode, list);
73
74 if (unlikely(irq == e->irq)) {
75 /* irq entry exists */
76 e->pnode = uv_blade_to_pnode(blade);
77 e->offset = offset;
78 spin_unlock_irqrestore(&uv_irq_lock, irqflags);
79 kfree(n);
80 return 0;
81 }
82
83 if (irq < e->irq)
84 link = &(*link)->rb_left;
85 else
86 link = &(*link)->rb_right;
87 }
88
89 /* Insert the node into the rbtree. */
90 rb_link_node(&n->list, parent, link);
91 rb_insert_color(&n->list, &uv_irq_root);
92
93 spin_unlock_irqrestore(&uv_irq_lock, irqflags);
94 return 0;
95}
96
97/* Retrieve offset and pnode information from the rb tree for a specific irq */
98int uv_irq_2_mmr_info(int irq, unsigned long *offset, int *pnode)
99{
100 struct uv_irq_2_mmr_pnode *e;
101 struct rb_node *n;
102 unsigned long irqflags;
103
104 spin_lock_irqsave(&uv_irq_lock, irqflags);
105 n = uv_irq_root.rb_node;
106 while (n) {
107 e = rb_entry(n, struct uv_irq_2_mmr_pnode, list);
108
109 if (e->irq == irq) {
110 *offset = e->offset;
111 *pnode = e->pnode;
112 spin_unlock_irqrestore(&uv_irq_lock, irqflags);
113 return 0;
114 }
115
116 if (irq < e->irq)
117 n = n->rb_left;
118 else
119 n = n->rb_right;
120 }
121 spin_unlock_irqrestore(&uv_irq_lock, irqflags);
122 return -1;
123}
124
125/*
126 * Re-target the irq to the specified CPU and enable the specified MMR located
127 * on the specified blade to allow the sending of MSIs to the specified CPU.
128 */
129static int
130arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
131 unsigned long mmr_offset, int limit)
132{
133 const struct cpumask *eligible_cpu = cpumask_of(cpu);
134 struct irq_cfg *cfg = irq_get_chip_data(irq);
135 unsigned long mmr_value;
136 struct uv_IO_APIC_route_entry *entry;
137 int mmr_pnode, err;
138
139 BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) !=
140 sizeof(unsigned long));
141
142 err = assign_irq_vector(irq, cfg, eligible_cpu);
143 if (err != 0)
144 return err;
145
146 if (limit == UV_AFFINITY_CPU)
147 irq_set_status_flags(irq, IRQ_NO_BALANCING);
148 else
149 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
150
151 irq_set_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
152 irq_name);
153
154 mmr_value = 0;
155 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
156 entry->vector = cfg->vector;
157 entry->delivery_mode = apic->irq_delivery_mode;
158 entry->dest_mode = apic->irq_dest_mode;
159 entry->polarity = 0;
160 entry->trigger = 0;
161 entry->mask = 0;
162 entry->dest = apic->cpu_mask_to_apicid(eligible_cpu);
163
164 mmr_pnode = uv_blade_to_pnode(mmr_blade);
165 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
166
167 if (cfg->move_in_progress)
168 send_cleanup_vector(cfg);
169
170 return irq;
171}
172
173/*
174 * Disable the specified MMR located on the specified blade so that MSIs are
175 * longer allowed to be sent.
176 */
177static void arch_disable_uv_irq(int mmr_pnode, unsigned long mmr_offset)
178{
179 unsigned long mmr_value;
180 struct uv_IO_APIC_route_entry *entry;
181
182 BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) !=
183 sizeof(unsigned long));
184
185 mmr_value = 0;
186 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
187 entry->mask = 1;
188
189 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
190}
191
192static int
193uv_set_irq_affinity(struct irq_data *data, const struct cpumask *mask,
194 bool force)
195{
196 struct irq_cfg *cfg = data->chip_data;
197 unsigned int dest;
198 unsigned long mmr_value, mmr_offset;
199 struct uv_IO_APIC_route_entry *entry;
200 int mmr_pnode;
201
202 if (__ioapic_set_affinity(data, mask, &dest))
203 return -1;
204
205 mmr_value = 0;
206 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
207
208 entry->vector = cfg->vector;
209 entry->delivery_mode = apic->irq_delivery_mode;
210 entry->dest_mode = apic->irq_dest_mode;
211 entry->polarity = 0;
212 entry->trigger = 0;
213 entry->mask = 0;
214 entry->dest = dest;
215
216 /* Get previously stored MMR and pnode of hub sourcing interrupts */
217 if (uv_irq_2_mmr_info(data->irq, &mmr_offset, &mmr_pnode))
218 return -1;
219
220 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
221
222 if (cfg->move_in_progress)
223 send_cleanup_vector(cfg);
224
225 return 0;
226}
227
228/*
229 * Set up a mapping of an available irq and vector, and enable the specified
230 * MMR that defines the MSI that is to be sent to the specified CPU when an
231 * interrupt is raised.
232 */
233int uv_setup_irq(char *irq_name, int cpu, int mmr_blade,
234 unsigned long mmr_offset, int limit)
235{
236 int irq, ret;
237
238 irq = create_irq_nr(NR_IRQS_LEGACY, uv_blade_to_memory_nid(mmr_blade));
239
240 if (irq <= 0)
241 return -EBUSY;
242
243 ret = arch_enable_uv_irq(irq_name, irq, cpu, mmr_blade, mmr_offset,
244 limit);
245 if (ret == irq)
246 uv_set_irq_2_mmr_info(irq, mmr_offset, mmr_blade);
247 else
248 destroy_irq(irq);
249
250 return ret;
251}
252EXPORT_SYMBOL_GPL(uv_setup_irq);
253
254/*
255 * Tear down a mapping of an irq and vector, and disable the specified MMR that
256 * defined the MSI that was to be sent to the specified CPU when an interrupt
257 * was raised.
258 *
259 * Set mmr_blade and mmr_offset to what was passed in on uv_setup_irq().
260 */
261void uv_teardown_irq(unsigned int irq)
262{
263 struct uv_irq_2_mmr_pnode *e;
264 struct rb_node *n;
265 unsigned long irqflags;
266
267 spin_lock_irqsave(&uv_irq_lock, irqflags);
268 n = uv_irq_root.rb_node;
269 while (n) {
270 e = rb_entry(n, struct uv_irq_2_mmr_pnode, list);
271 if (e->irq == irq) {
272 arch_disable_uv_irq(e->pnode, e->offset);
273 rb_erase(n, &uv_irq_root);
274 kfree(e);
275 break;
276 }
277 if (irq < e->irq)
278 n = n->rb_left;
279 else
280 n = n->rb_right;
281 }
282 spin_unlock_irqrestore(&uv_irq_lock, irqflags);
283 destroy_irq(irq);
284}
285EXPORT_SYMBOL_GPL(uv_teardown_irq);
diff --git a/arch/x86/platform/uv/uv_sysfs.c b/arch/x86/platform/uv/uv_sysfs.c
new file mode 100644
index 000000000000..309c70fb7759
--- /dev/null
+++ b/arch/x86/platform/uv/uv_sysfs.c
@@ -0,0 +1,76 @@
1/*
2 * This file supports the /sys/firmware/sgi_uv interfaces for SGI UV.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Russ Anderson
20 */
21
22#include <linux/sysdev.h>
23#include <asm/uv/bios.h>
24#include <asm/uv/uv.h>
25
26struct kobject *sgi_uv_kobj;
27
28static ssize_t partition_id_show(struct kobject *kobj,
29 struct kobj_attribute *attr, char *buf)
30{
31 return snprintf(buf, PAGE_SIZE, "%ld\n", sn_partition_id);
32}
33
34static ssize_t coherence_id_show(struct kobject *kobj,
35 struct kobj_attribute *attr, char *buf)
36{
37 return snprintf(buf, PAGE_SIZE, "%ld\n", partition_coherence_id());
38}
39
40static struct kobj_attribute partition_id_attr =
41 __ATTR(partition_id, S_IRUGO, partition_id_show, NULL);
42
43static struct kobj_attribute coherence_id_attr =
44 __ATTR(coherence_id, S_IRUGO, coherence_id_show, NULL);
45
46
47static int __init sgi_uv_sysfs_init(void)
48{
49 unsigned long ret;
50
51 if (!is_uv_system())
52 return -ENODEV;
53
54 if (!sgi_uv_kobj)
55 sgi_uv_kobj = kobject_create_and_add("sgi_uv", firmware_kobj);
56 if (!sgi_uv_kobj) {
57 printk(KERN_WARNING "kobject_create_and_add sgi_uv failed\n");
58 return -EINVAL;
59 }
60
61 ret = sysfs_create_file(sgi_uv_kobj, &partition_id_attr.attr);
62 if (ret) {
63 printk(KERN_WARNING "sysfs_create_file partition_id failed\n");
64 return ret;
65 }
66
67 ret = sysfs_create_file(sgi_uv_kobj, &coherence_id_attr.attr);
68 if (ret) {
69 printk(KERN_WARNING "sysfs_create_file coherence_id failed\n");
70 return ret;
71 }
72
73 return 0;
74}
75
76device_initcall(sgi_uv_sysfs_init);
diff --git a/arch/x86/platform/uv/uv_time.c b/arch/x86/platform/uv/uv_time.c
new file mode 100644
index 000000000000..9f29a01ee1b3
--- /dev/null
+++ b/arch/x86/platform/uv/uv_time.c
@@ -0,0 +1,429 @@
1/*
2 * SGI RTC clock/timer routines.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
20 */
21#include <linux/clockchips.h>
22#include <linux/slab.h>
23
24#include <asm/uv/uv_mmrs.h>
25#include <asm/uv/uv_hub.h>
26#include <asm/uv/bios.h>
27#include <asm/uv/uv.h>
28#include <asm/apic.h>
29#include <asm/cpu.h>
30
31#define RTC_NAME "sgi_rtc"
32
33static cycle_t uv_read_rtc(struct clocksource *cs);
34static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35static void uv_rtc_timer_setup(enum clock_event_mode,
36 struct clock_event_device *);
37
38static struct clocksource clocksource_uv = {
39 .name = RTC_NAME,
40 .rating = 400,
41 .read = uv_read_rtc,
42 .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
43 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
44};
45
46static struct clock_event_device clock_event_device_uv = {
47 .name = RTC_NAME,
48 .features = CLOCK_EVT_FEAT_ONESHOT,
49 .shift = 20,
50 .rating = 400,
51 .irq = -1,
52 .set_next_event = uv_rtc_next_event,
53 .set_mode = uv_rtc_timer_setup,
54 .event_handler = NULL,
55};
56
57static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
58
59/* There is one of these allocated per node */
60struct uv_rtc_timer_head {
61 spinlock_t lock;
62 /* next cpu waiting for timer, local node relative: */
63 int next_cpu;
64 /* number of cpus on this node: */
65 int ncpus;
66 struct {
67 int lcpu; /* systemwide logical cpu number */
68 u64 expires; /* next timer expiration for this cpu */
69 } cpu[1];
70};
71
72/*
73 * Access to uv_rtc_timer_head via blade id.
74 */
75static struct uv_rtc_timer_head **blade_info __read_mostly;
76
77static int uv_rtc_evt_enable;
78
79/*
80 * Hardware interface routines
81 */
82
83/* Send IPIs to another node */
84static void uv_rtc_send_IPI(int cpu)
85{
86 unsigned long apicid, val;
87 int pnode;
88
89 apicid = cpu_physical_id(cpu);
90 pnode = uv_apicid_to_pnode(apicid);
91 apicid |= uv_apicid_hibits;
92 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
93 (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
94 (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
95
96 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
97}
98
99/* Check for an RTC interrupt pending */
100static int uv_intr_pending(int pnode)
101{
102 if (is_uv1_hub())
103 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
104 UV1H_EVENT_OCCURRED0_RTC1_MASK;
105 else
106 return uv_read_global_mmr64(pnode, UV2H_EVENT_OCCURRED2) &
107 UV2H_EVENT_OCCURRED2_RTC_1_MASK;
108}
109
110/* Setup interrupt and return non-zero if early expiration occurred. */
111static int uv_setup_intr(int cpu, u64 expires)
112{
113 u64 val;
114 unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
115 int pnode = uv_cpu_to_pnode(cpu);
116
117 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
118 UVH_RTC1_INT_CONFIG_M_MASK);
119 uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
120
121 if (is_uv1_hub())
122 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
123 UV1H_EVENT_OCCURRED0_RTC1_MASK);
124 else
125 uv_write_global_mmr64(pnode, UV2H_EVENT_OCCURRED2_ALIAS,
126 UV2H_EVENT_OCCURRED2_RTC_1_MASK);
127
128 val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
129 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
130
131 /* Set configuration */
132 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
133 /* Initialize comparator value */
134 uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
135
136 if (uv_read_rtc(NULL) <= expires)
137 return 0;
138
139 return !uv_intr_pending(pnode);
140}
141
142/*
143 * Per-cpu timer tracking routines
144 */
145
146static __init void uv_rtc_deallocate_timers(void)
147{
148 int bid;
149
150 for_each_possible_blade(bid) {
151 kfree(blade_info[bid]);
152 }
153 kfree(blade_info);
154}
155
156/* Allocate per-node list of cpu timer expiration times. */
157static __init int uv_rtc_allocate_timers(void)
158{
159 int cpu;
160
161 blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
162 if (!blade_info)
163 return -ENOMEM;
164 memset(blade_info, 0, uv_possible_blades * sizeof(void *));
165
166 for_each_present_cpu(cpu) {
167 int nid = cpu_to_node(cpu);
168 int bid = uv_cpu_to_blade_id(cpu);
169 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
170 struct uv_rtc_timer_head *head = blade_info[bid];
171
172 if (!head) {
173 head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
174 (uv_blade_nr_possible_cpus(bid) *
175 2 * sizeof(u64)),
176 GFP_KERNEL, nid);
177 if (!head) {
178 uv_rtc_deallocate_timers();
179 return -ENOMEM;
180 }
181 spin_lock_init(&head->lock);
182 head->ncpus = uv_blade_nr_possible_cpus(bid);
183 head->next_cpu = -1;
184 blade_info[bid] = head;
185 }
186
187 head->cpu[bcpu].lcpu = cpu;
188 head->cpu[bcpu].expires = ULLONG_MAX;
189 }
190
191 return 0;
192}
193
194/* Find and set the next expiring timer. */
195static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
196{
197 u64 lowest = ULLONG_MAX;
198 int c, bcpu = -1;
199
200 head->next_cpu = -1;
201 for (c = 0; c < head->ncpus; c++) {
202 u64 exp = head->cpu[c].expires;
203 if (exp < lowest) {
204 bcpu = c;
205 lowest = exp;
206 }
207 }
208 if (bcpu >= 0) {
209 head->next_cpu = bcpu;
210 c = head->cpu[bcpu].lcpu;
211 if (uv_setup_intr(c, lowest))
212 /* If we didn't set it up in time, trigger */
213 uv_rtc_send_IPI(c);
214 } else {
215 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
216 UVH_RTC1_INT_CONFIG_M_MASK);
217 }
218}
219
220/*
221 * Set expiration time for current cpu.
222 *
223 * Returns 1 if we missed the expiration time.
224 */
225static int uv_rtc_set_timer(int cpu, u64 expires)
226{
227 int pnode = uv_cpu_to_pnode(cpu);
228 int bid = uv_cpu_to_blade_id(cpu);
229 struct uv_rtc_timer_head *head = blade_info[bid];
230 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
231 u64 *t = &head->cpu[bcpu].expires;
232 unsigned long flags;
233 int next_cpu;
234
235 spin_lock_irqsave(&head->lock, flags);
236
237 next_cpu = head->next_cpu;
238 *t = expires;
239
240 /* Will this one be next to go off? */
241 if (next_cpu < 0 || bcpu == next_cpu ||
242 expires < head->cpu[next_cpu].expires) {
243 head->next_cpu = bcpu;
244 if (uv_setup_intr(cpu, expires)) {
245 *t = ULLONG_MAX;
246 uv_rtc_find_next_timer(head, pnode);
247 spin_unlock_irqrestore(&head->lock, flags);
248 return -ETIME;
249 }
250 }
251
252 spin_unlock_irqrestore(&head->lock, flags);
253 return 0;
254}
255
256/*
257 * Unset expiration time for current cpu.
258 *
259 * Returns 1 if this timer was pending.
260 */
261static int uv_rtc_unset_timer(int cpu, int force)
262{
263 int pnode = uv_cpu_to_pnode(cpu);
264 int bid = uv_cpu_to_blade_id(cpu);
265 struct uv_rtc_timer_head *head = blade_info[bid];
266 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
267 u64 *t = &head->cpu[bcpu].expires;
268 unsigned long flags;
269 int rc = 0;
270
271 spin_lock_irqsave(&head->lock, flags);
272
273 if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
274 rc = 1;
275
276 if (rc) {
277 *t = ULLONG_MAX;
278 /* Was the hardware setup for this timer? */
279 if (head->next_cpu == bcpu)
280 uv_rtc_find_next_timer(head, pnode);
281 }
282
283 spin_unlock_irqrestore(&head->lock, flags);
284
285 return rc;
286}
287
288
289/*
290 * Kernel interface routines.
291 */
292
293/*
294 * Read the RTC.
295 *
296 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
297 * cachelines of it's own page. This allows faster simultaneous reads
298 * from a given socket.
299 */
300static cycle_t uv_read_rtc(struct clocksource *cs)
301{
302 unsigned long offset;
303
304 if (uv_get_min_hub_revision_id() == 1)
305 offset = 0;
306 else
307 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
308
309 return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
310}
311
312/*
313 * Program the next event, relative to now
314 */
315static int uv_rtc_next_event(unsigned long delta,
316 struct clock_event_device *ced)
317{
318 int ced_cpu = cpumask_first(ced->cpumask);
319
320 return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
321}
322
323/*
324 * Setup the RTC timer in oneshot mode
325 */
326static void uv_rtc_timer_setup(enum clock_event_mode mode,
327 struct clock_event_device *evt)
328{
329 int ced_cpu = cpumask_first(evt->cpumask);
330
331 switch (mode) {
332 case CLOCK_EVT_MODE_PERIODIC:
333 case CLOCK_EVT_MODE_ONESHOT:
334 case CLOCK_EVT_MODE_RESUME:
335 /* Nothing to do here yet */
336 break;
337 case CLOCK_EVT_MODE_UNUSED:
338 case CLOCK_EVT_MODE_SHUTDOWN:
339 uv_rtc_unset_timer(ced_cpu, 1);
340 break;
341 }
342}
343
344static void uv_rtc_interrupt(void)
345{
346 int cpu = smp_processor_id();
347 struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
348
349 if (!ced || !ced->event_handler)
350 return;
351
352 if (uv_rtc_unset_timer(cpu, 0) != 1)
353 return;
354
355 ced->event_handler(ced);
356}
357
358static int __init uv_enable_evt_rtc(char *str)
359{
360 uv_rtc_evt_enable = 1;
361
362 return 1;
363}
364__setup("uvrtcevt", uv_enable_evt_rtc);
365
366static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
367{
368 struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
369
370 *ced = clock_event_device_uv;
371 ced->cpumask = cpumask_of(smp_processor_id());
372 clockevents_register_device(ced);
373}
374
375static __init int uv_rtc_setup_clock(void)
376{
377 int rc;
378
379 if (!is_uv_system())
380 return -ENODEV;
381
382 /* If single blade, prefer tsc */
383 if (uv_num_possible_blades() == 1)
384 clocksource_uv.rating = 250;
385
386 rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
387 if (rc)
388 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
389 else
390 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
391 sn_rtc_cycles_per_second/(unsigned long)1E6);
392
393 if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
394 return rc;
395
396 /* Setup and register clockevents */
397 rc = uv_rtc_allocate_timers();
398 if (rc)
399 goto error;
400
401 x86_platform_ipi_callback = uv_rtc_interrupt;
402
403 clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
404 NSEC_PER_SEC, clock_event_device_uv.shift);
405
406 clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
407 sn_rtc_cycles_per_second;
408
409 clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
410 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
411
412 rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
413 if (rc) {
414 x86_platform_ipi_callback = NULL;
415 uv_rtc_deallocate_timers();
416 goto error;
417 }
418
419 printk(KERN_INFO "UV RTC clockevents registered\n");
420
421 return 0;
422
423error:
424 clocksource_unregister(&clocksource_uv);
425 printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
426
427 return rc;
428}
429arch_initcall(uv_rtc_setup_clock);