aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/platform/intel-quark
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/platform/intel-quark')
-rw-r--r--arch/x86/platform/intel-quark/Makefile2
-rw-r--r--arch/x86/platform/intel-quark/imr.c661
-rw-r--r--arch/x86/platform/intel-quark/imr_selftest.c129
3 files changed, 792 insertions, 0 deletions
diff --git a/arch/x86/platform/intel-quark/Makefile b/arch/x86/platform/intel-quark/Makefile
new file mode 100644
index 000000000000..9cc57ed36022
--- /dev/null
+++ b/arch/x86/platform/intel-quark/Makefile
@@ -0,0 +1,2 @@
1obj-$(CONFIG_INTEL_IMR) += imr.o
2obj-$(CONFIG_DEBUG_IMR_SELFTEST) += imr_selftest.o
diff --git a/arch/x86/platform/intel-quark/imr.c b/arch/x86/platform/intel-quark/imr.c
new file mode 100644
index 000000000000..0ee619f9fcb7
--- /dev/null
+++ b/arch/x86/platform/intel-quark/imr.c
@@ -0,0 +1,661 @@
1/**
2 * imr.c
3 *
4 * Copyright(c) 2013 Intel Corporation.
5 * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
6 *
7 * IMR registers define an isolated region of memory that can
8 * be masked to prohibit certain system agents from accessing memory.
9 * When a device behind a masked port performs an access - snooped or
10 * not, an IMR may optionally prevent that transaction from changing
11 * the state of memory or from getting correct data in response to the
12 * operation.
13 *
14 * Write data will be dropped and reads will return 0xFFFFFFFF, the
15 * system will reset and system BIOS will print out an error message to
16 * inform the user that an IMR has been violated.
17 *
18 * This code is based on the Linux MTRR code and reference code from
19 * Intel's Quark BSP EFI, Linux and grub code.
20 *
21 * See quark-x1000-datasheet.pdf for register definitions.
22 * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <asm-generic/sections.h>
28#include <asm/cpu_device_id.h>
29#include <asm/imr.h>
30#include <asm/iosf_mbi.h>
31#include <linux/debugfs.h>
32#include <linux/init.h>
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/types.h>
36
37struct imr_device {
38 struct dentry *file;
39 bool init;
40 struct mutex lock;
41 int max_imr;
42 int reg_base;
43};
44
45static struct imr_device imr_dev;
46
47/*
48 * IMR read/write mask control registers.
49 * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
50 * bit definitions.
51 *
52 * addr_hi
53 * 31 Lock bit
54 * 30:24 Reserved
55 * 23:2 1 KiB aligned lo address
56 * 1:0 Reserved
57 *
58 * addr_hi
59 * 31:24 Reserved
60 * 23:2 1 KiB aligned hi address
61 * 1:0 Reserved
62 */
63#define IMR_LOCK BIT(31)
64
65struct imr_regs {
66 u32 addr_lo;
67 u32 addr_hi;
68 u32 rmask;
69 u32 wmask;
70};
71
72#define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32))
73#define IMR_SHIFT 8
74#define imr_to_phys(x) ((x) << IMR_SHIFT)
75#define phys_to_imr(x) ((x) >> IMR_SHIFT)
76
77/**
78 * imr_is_enabled - true if an IMR is enabled false otherwise.
79 *
80 * Determines if an IMR is enabled based on address range and read/write
81 * mask. An IMR set with an address range set to zero and a read/write
82 * access mask set to all is considered to be disabled. An IMR in any
83 * other state - for example set to zero but without read/write access
84 * all is considered to be enabled. This definition of disabled is how
85 * firmware switches off an IMR and is maintained in kernel for
86 * consistency.
87 *
88 * @imr: pointer to IMR descriptor.
89 * @return: true if IMR enabled false if disabled.
90 */
91static inline int imr_is_enabled(struct imr_regs *imr)
92{
93 return !(imr->rmask == IMR_READ_ACCESS_ALL &&
94 imr->wmask == IMR_WRITE_ACCESS_ALL &&
95 imr_to_phys(imr->addr_lo) == 0 &&
96 imr_to_phys(imr->addr_hi) == 0);
97}
98
99/**
100 * imr_read - read an IMR at a given index.
101 *
102 * Requires caller to hold imr mutex.
103 *
104 * @idev: pointer to imr_device structure.
105 * @imr_id: IMR entry to read.
106 * @imr: IMR structure representing address and access masks.
107 * @return: 0 on success or error code passed from mbi_iosf on failure.
108 */
109static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
110{
111 u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
112 int ret;
113
114 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
115 reg++, &imr->addr_lo);
116 if (ret)
117 return ret;
118
119 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
120 reg++, &imr->addr_hi);
121 if (ret)
122 return ret;
123
124 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
125 reg++, &imr->rmask);
126 if (ret)
127 return ret;
128
129 return iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
130 reg++, &imr->wmask);
131}
132
133/**
134 * imr_write - write an IMR at a given index.
135 *
136 * Requires caller to hold imr mutex.
137 * Note lock bits need to be written independently of address bits.
138 *
139 * @idev: pointer to imr_device structure.
140 * @imr_id: IMR entry to write.
141 * @imr: IMR structure representing address and access masks.
142 * @lock: indicates if the IMR lock bit should be applied.
143 * @return: 0 on success or error code passed from mbi_iosf on failure.
144 */
145static int imr_write(struct imr_device *idev, u32 imr_id,
146 struct imr_regs *imr, bool lock)
147{
148 unsigned long flags;
149 u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
150 int ret;
151
152 local_irq_save(flags);
153
154 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, reg++,
155 imr->addr_lo);
156 if (ret)
157 goto failed;
158
159 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
160 reg++, imr->addr_hi);
161 if (ret)
162 goto failed;
163
164 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
165 reg++, imr->rmask);
166 if (ret)
167 goto failed;
168
169 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
170 reg++, imr->wmask);
171 if (ret)
172 goto failed;
173
174 /* Lock bit must be set separately to addr_lo address bits. */
175 if (lock) {
176 imr->addr_lo |= IMR_LOCK;
177 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
178 reg - IMR_NUM_REGS, imr->addr_lo);
179 if (ret)
180 goto failed;
181 }
182
183 local_irq_restore(flags);
184 return 0;
185failed:
186 /*
187 * If writing to the IOSF failed then we're in an unknown state,
188 * likely a very bad state. An IMR in an invalid state will almost
189 * certainly lead to a memory access violation.
190 */
191 local_irq_restore(flags);
192 WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
193 imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
194
195 return ret;
196}
197
198/**
199 * imr_dbgfs_state_show - print state of IMR registers.
200 *
201 * @s: pointer to seq_file for output.
202 * @unused: unused parameter.
203 * @return: 0 on success or error code passed from mbi_iosf on failure.
204 */
205static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
206{
207 phys_addr_t base;
208 phys_addr_t end;
209 int i;
210 struct imr_device *idev = s->private;
211 struct imr_regs imr;
212 size_t size;
213 int ret = -ENODEV;
214
215 mutex_lock(&idev->lock);
216
217 for (i = 0; i < idev->max_imr; i++) {
218
219 ret = imr_read(idev, i, &imr);
220 if (ret)
221 break;
222
223 /*
224 * Remember to add IMR_ALIGN bytes to size to indicate the
225 * inherent IMR_ALIGN size bytes contained in the masked away
226 * lower ten bits.
227 */
228 if (imr_is_enabled(&imr)) {
229 base = imr_to_phys(imr.addr_lo);
230 end = imr_to_phys(imr.addr_hi) + IMR_MASK;
231 } else {
232 base = 0;
233 end = 0;
234 }
235 size = end - base;
236 seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
237 "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
238 &base, &end, size, imr.rmask, imr.wmask,
239 imr_is_enabled(&imr) ? "enabled " : "disabled",
240 imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
241 }
242
243 mutex_unlock(&idev->lock);
244 return ret;
245}
246
247/**
248 * imr_state_open - debugfs open callback.
249 *
250 * @inode: pointer to struct inode.
251 * @file: pointer to struct file.
252 * @return: result of single open.
253 */
254static int imr_state_open(struct inode *inode, struct file *file)
255{
256 return single_open(file, imr_dbgfs_state_show, inode->i_private);
257}
258
259static const struct file_operations imr_state_ops = {
260 .open = imr_state_open,
261 .read = seq_read,
262 .llseek = seq_lseek,
263 .release = single_release,
264};
265
266/**
267 * imr_debugfs_register - register debugfs hooks.
268 *
269 * @idev: pointer to imr_device structure.
270 * @return: 0 on success - errno on failure.
271 */
272static int imr_debugfs_register(struct imr_device *idev)
273{
274 idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
275 idev, &imr_state_ops);
276 return PTR_ERR_OR_ZERO(idev->file);
277}
278
279/**
280 * imr_debugfs_unregister - unregister debugfs hooks.
281 *
282 * @idev: pointer to imr_device structure.
283 * @return:
284 */
285static void imr_debugfs_unregister(struct imr_device *idev)
286{
287 debugfs_remove(idev->file);
288}
289
290/**
291 * imr_check_params - check passed address range IMR alignment and non-zero size
292 *
293 * @base: base address of intended IMR.
294 * @size: size of intended IMR.
295 * @return: zero on valid range -EINVAL on unaligned base/size.
296 */
297static int imr_check_params(phys_addr_t base, size_t size)
298{
299 if ((base & IMR_MASK) || (size & IMR_MASK)) {
300 pr_err("base %pa size 0x%08zx must align to 1KiB\n",
301 &base, size);
302 return -EINVAL;
303 }
304 if (size == 0)
305 return -EINVAL;
306
307 return 0;
308}
309
310/**
311 * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
312 *
313 * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
314 * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
315 * as a result.
316 *
317 * @size: input size bytes.
318 * @return: reduced size.
319 */
320static inline size_t imr_raw_size(size_t size)
321{
322 return size - IMR_ALIGN;
323}
324
325/**
326 * imr_address_overlap - detects an address overlap.
327 *
328 * @addr: address to check against an existing IMR.
329 * @imr: imr being checked.
330 * @return: true for overlap false for no overlap.
331 */
332static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
333{
334 return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
335}
336
337/**
338 * imr_add_range - add an Isolated Memory Region.
339 *
340 * @base: physical base address of region aligned to 1KiB.
341 * @size: physical size of region in bytes must be aligned to 1KiB.
342 * @read_mask: read access mask.
343 * @write_mask: write access mask.
344 * @lock: indicates whether or not to permanently lock this region.
345 * @return: zero on success or negative value indicating error.
346 */
347int imr_add_range(phys_addr_t base, size_t size,
348 unsigned int rmask, unsigned int wmask, bool lock)
349{
350 phys_addr_t end;
351 unsigned int i;
352 struct imr_device *idev = &imr_dev;
353 struct imr_regs imr;
354 size_t raw_size;
355 int reg;
356 int ret;
357
358 if (WARN_ONCE(idev->init == false, "driver not initialized"))
359 return -ENODEV;
360
361 ret = imr_check_params(base, size);
362 if (ret)
363 return ret;
364
365 /* Tweak the size value. */
366 raw_size = imr_raw_size(size);
367 end = base + raw_size;
368
369 /*
370 * Check for reserved IMR value common to firmware, kernel and grub
371 * indicating a disabled IMR.
372 */
373 imr.addr_lo = phys_to_imr(base);
374 imr.addr_hi = phys_to_imr(end);
375 imr.rmask = rmask;
376 imr.wmask = wmask;
377 if (!imr_is_enabled(&imr))
378 return -ENOTSUPP;
379
380 mutex_lock(&idev->lock);
381
382 /*
383 * Find a free IMR while checking for an existing overlapping range.
384 * Note there's no restriction in silicon to prevent IMR overlaps.
385 * For the sake of simplicity and ease in defining/debugging an IMR
386 * memory map we exclude IMR overlaps.
387 */
388 reg = -1;
389 for (i = 0; i < idev->max_imr; i++) {
390 ret = imr_read(idev, i, &imr);
391 if (ret)
392 goto failed;
393
394 /* Find overlap @ base or end of requested range. */
395 ret = -EINVAL;
396 if (imr_is_enabled(&imr)) {
397 if (imr_address_overlap(base, &imr))
398 goto failed;
399 if (imr_address_overlap(end, &imr))
400 goto failed;
401 } else {
402 reg = i;
403 }
404 }
405
406 /* Error out if we have no free IMR entries. */
407 if (reg == -1) {
408 ret = -ENOMEM;
409 goto failed;
410 }
411
412 pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
413 reg, &base, &end, raw_size, rmask, wmask);
414
415 /* Enable IMR at specified range and access mask. */
416 imr.addr_lo = phys_to_imr(base);
417 imr.addr_hi = phys_to_imr(end);
418 imr.rmask = rmask;
419 imr.wmask = wmask;
420
421 ret = imr_write(idev, reg, &imr, lock);
422 if (ret < 0) {
423 /*
424 * In the highly unlikely event iosf_mbi_write failed
425 * attempt to rollback the IMR setup skipping the trapping
426 * of further IOSF write failures.
427 */
428 imr.addr_lo = 0;
429 imr.addr_hi = 0;
430 imr.rmask = IMR_READ_ACCESS_ALL;
431 imr.wmask = IMR_WRITE_ACCESS_ALL;
432 imr_write(idev, reg, &imr, false);
433 }
434failed:
435 mutex_unlock(&idev->lock);
436 return ret;
437}
438EXPORT_SYMBOL_GPL(imr_add_range);
439
440/**
441 * __imr_remove_range - delete an Isolated Memory Region.
442 *
443 * This function allows you to delete an IMR by its index specified by reg or
444 * by address range specified by base and size respectively. If you specify an
445 * index on its own the base and size parameters are ignored.
446 * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
447 * imr_remove_range(-1, base, size); delete IMR from base to base+size.
448 *
449 * @reg: imr index to remove.
450 * @base: physical base address of region aligned to 1 KiB.
451 * @size: physical size of region in bytes aligned to 1 KiB.
452 * @return: -EINVAL on invalid range or out or range id
453 * -ENODEV if reg is valid but no IMR exists or is locked
454 * 0 on success.
455 */
456static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
457{
458 phys_addr_t end;
459 bool found = false;
460 unsigned int i;
461 struct imr_device *idev = &imr_dev;
462 struct imr_regs imr;
463 size_t raw_size;
464 int ret = 0;
465
466 if (WARN_ONCE(idev->init == false, "driver not initialized"))
467 return -ENODEV;
468
469 /*
470 * Validate address range if deleting by address, else we are
471 * deleting by index where base and size will be ignored.
472 */
473 if (reg == -1) {
474 ret = imr_check_params(base, size);
475 if (ret)
476 return ret;
477 }
478
479 /* Tweak the size value. */
480 raw_size = imr_raw_size(size);
481 end = base + raw_size;
482
483 mutex_lock(&idev->lock);
484
485 if (reg >= 0) {
486 /* If a specific IMR is given try to use it. */
487 ret = imr_read(idev, reg, &imr);
488 if (ret)
489 goto failed;
490
491 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
492 ret = -ENODEV;
493 goto failed;
494 }
495 found = true;
496 } else {
497 /* Search for match based on address range. */
498 for (i = 0; i < idev->max_imr; i++) {
499 ret = imr_read(idev, i, &imr);
500 if (ret)
501 goto failed;
502
503 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
504 continue;
505
506 if ((imr_to_phys(imr.addr_lo) == base) &&
507 (imr_to_phys(imr.addr_hi) == end)) {
508 found = true;
509 reg = i;
510 break;
511 }
512 }
513 }
514
515 if (!found) {
516 ret = -ENODEV;
517 goto failed;
518 }
519
520 pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
521
522 /* Tear down the IMR. */
523 imr.addr_lo = 0;
524 imr.addr_hi = 0;
525 imr.rmask = IMR_READ_ACCESS_ALL;
526 imr.wmask = IMR_WRITE_ACCESS_ALL;
527
528 ret = imr_write(idev, reg, &imr, false);
529
530failed:
531 mutex_unlock(&idev->lock);
532 return ret;
533}
534
535/**
536 * imr_remove_range - delete an Isolated Memory Region by address
537 *
538 * This function allows you to delete an IMR by an address range specified
539 * by base and size respectively.
540 * imr_remove_range(base, size); delete IMR from base to base+size.
541 *
542 * @base: physical base address of region aligned to 1 KiB.
543 * @size: physical size of region in bytes aligned to 1 KiB.
544 * @return: -EINVAL on invalid range or out or range id
545 * -ENODEV if reg is valid but no IMR exists or is locked
546 * 0 on success.
547 */
548int imr_remove_range(phys_addr_t base, size_t size)
549{
550 return __imr_remove_range(-1, base, size);
551}
552EXPORT_SYMBOL_GPL(imr_remove_range);
553
554/**
555 * imr_clear - delete an Isolated Memory Region by index
556 *
557 * This function allows you to delete an IMR by an address range specified
558 * by the index of the IMR. Useful for initial sanitization of the IMR
559 * address map.
560 * imr_ge(base, size); delete IMR from base to base+size.
561 *
562 * @reg: imr index to remove.
563 * @return: -EINVAL on invalid range or out or range id
564 * -ENODEV if reg is valid but no IMR exists or is locked
565 * 0 on success.
566 */
567static inline int imr_clear(int reg)
568{
569 return __imr_remove_range(reg, 0, 0);
570}
571
572/**
573 * imr_fixup_memmap - Tear down IMRs used during bootup.
574 *
575 * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
576 * that need to be removed before the kernel hands out one of the IMR
577 * encased addresses to a downstream DMA agent such as the SD or Ethernet.
578 * IMRs on Galileo are setup to immediately reset the system on violation.
579 * As a result if you're running a root filesystem from SD - you'll need
580 * the boot-time IMRs torn down or you'll find seemingly random resets when
581 * using your filesystem.
582 *
583 * @idev: pointer to imr_device structure.
584 * @return:
585 */
586static void __init imr_fixup_memmap(struct imr_device *idev)
587{
588 phys_addr_t base = virt_to_phys(&_text);
589 size_t size = virt_to_phys(&__end_rodata) - base;
590 int i;
591 int ret;
592
593 /* Tear down all existing unlocked IMRs. */
594 for (i = 0; i < idev->max_imr; i++)
595 imr_clear(i);
596
597 /*
598 * Setup a locked IMR around the physical extent of the kernel
599 * from the beginning of the .text secton to the end of the
600 * .rodata section as one physically contiguous block.
601 */
602 ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true);
603 if (ret < 0) {
604 pr_err("unable to setup IMR for kernel: (%p - %p)\n",
605 &_text, &__end_rodata);
606 } else {
607 pr_info("protecting kernel .text - .rodata: %zu KiB (%p - %p)\n",
608 size / 1024, &_text, &__end_rodata);
609 }
610
611}
612
613static const struct x86_cpu_id imr_ids[] __initconst = {
614 { X86_VENDOR_INTEL, 5, 9 }, /* Intel Quark SoC X1000. */
615 {}
616};
617MODULE_DEVICE_TABLE(x86cpu, imr_ids);
618
619/**
620 * imr_init - entry point for IMR driver.
621 *
622 * return: -ENODEV for no IMR support 0 if good to go.
623 */
624static int __init imr_init(void)
625{
626 struct imr_device *idev = &imr_dev;
627 int ret;
628
629 if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
630 return -ENODEV;
631
632 idev->max_imr = QUARK_X1000_IMR_MAX;
633 idev->reg_base = QUARK_X1000_IMR_REGBASE;
634 idev->init = true;
635
636 mutex_init(&idev->lock);
637 ret = imr_debugfs_register(idev);
638 if (ret != 0)
639 pr_warn("debugfs register failed!\n");
640 imr_fixup_memmap(idev);
641 return 0;
642}
643
644/**
645 * imr_exit - exit point for IMR code.
646 *
647 * Deregisters debugfs, leave IMR state as-is.
648 *
649 * return:
650 */
651static void __exit imr_exit(void)
652{
653 imr_debugfs_unregister(&imr_dev);
654}
655
656module_init(imr_init);
657module_exit(imr_exit);
658
659MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>");
660MODULE_DESCRIPTION("Intel Isolated Memory Region driver");
661MODULE_LICENSE("Dual BSD/GPL");
diff --git a/arch/x86/platform/intel-quark/imr_selftest.c b/arch/x86/platform/intel-quark/imr_selftest.c
new file mode 100644
index 000000000000..c9a0838890e2
--- /dev/null
+++ b/arch/x86/platform/intel-quark/imr_selftest.c
@@ -0,0 +1,129 @@
1/**
2 * imr_selftest.c
3 *
4 * Copyright(c) 2013 Intel Corporation.
5 * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
6 *
7 * IMR self test. The purpose of this module is to run a set of tests on the
8 * IMR API to validate it's sanity. We check for overlapping, reserved
9 * addresses and setup/teardown sanity.
10 *
11 */
12
13#include <asm-generic/sections.h>
14#include <asm/imr.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/types.h>
19
20#define SELFTEST KBUILD_MODNAME ": "
21/**
22 * imr_self_test_result - Print result string for self test.
23 *
24 * @res: result code - true if test passed false otherwise.
25 * @fmt: format string.
26 * ... variadic argument list.
27 */
28static void __init imr_self_test_result(int res, const char *fmt, ...)
29{
30 va_list vlist;
31
32 /* Print pass/fail. */
33 if (res)
34 pr_info(SELFTEST "pass ");
35 else
36 pr_info(SELFTEST "fail ");
37
38 /* Print variable string. */
39 va_start(vlist, fmt);
40 vprintk(fmt, vlist);
41 va_end(vlist);
42
43 /* Optional warning. */
44 WARN(res == 0, "test failed");
45}
46#undef SELFTEST
47
48/**
49 * imr_self_test
50 *
51 * Verify IMR self_test with some simple tests to verify overlap,
52 * zero sized allocations and 1 KiB sized areas.
53 *
54 */
55static void __init imr_self_test(void)
56{
57 phys_addr_t base = virt_to_phys(&_text);
58 size_t size = virt_to_phys(&__end_rodata) - base;
59 const char *fmt_over = "overlapped IMR @ (0x%08lx - 0x%08lx)\n";
60 int ret;
61
62 /* Test zero zero. */
63 ret = imr_add_range(0, 0, 0, 0, false);
64 imr_self_test_result(ret < 0, "zero sized IMR\n");
65
66 /* Test exact overlap. */
67 ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, false);
68 imr_self_test_result(ret < 0, fmt_over, __va(base), __va(base + size));
69
70 /* Test overlap with base inside of existing. */
71 base += size - IMR_ALIGN;
72 ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, false);
73 imr_self_test_result(ret < 0, fmt_over, __va(base), __va(base + size));
74
75 /* Test overlap with end inside of existing. */
76 base -= size + IMR_ALIGN * 2;
77 ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, false);
78 imr_self_test_result(ret < 0, fmt_over, __va(base), __va(base + size));
79
80 /* Test that a 1 KiB IMR @ zero with read/write all will bomb out. */
81 ret = imr_add_range(0, IMR_ALIGN, IMR_READ_ACCESS_ALL,
82 IMR_WRITE_ACCESS_ALL, false);
83 imr_self_test_result(ret < 0, "1KiB IMR @ 0x00000000 - access-all\n");
84
85 /* Test that a 1 KiB IMR @ zero with CPU only will work. */
86 ret = imr_add_range(0, IMR_ALIGN, IMR_CPU, IMR_CPU, false);
87 imr_self_test_result(ret >= 0, "1KiB IMR @ 0x00000000 - cpu-access\n");
88 if (ret >= 0) {
89 ret = imr_remove_range(0, IMR_ALIGN);
90 imr_self_test_result(ret == 0, "teardown - cpu-access\n");
91 }
92
93 /* Test 2 KiB works. */
94 size = IMR_ALIGN * 2;
95 ret = imr_add_range(0, size, IMR_READ_ACCESS_ALL,
96 IMR_WRITE_ACCESS_ALL, false);
97 imr_self_test_result(ret >= 0, "2KiB IMR @ 0x00000000\n");
98 if (ret >= 0) {
99 ret = imr_remove_range(0, size);
100 imr_self_test_result(ret == 0, "teardown 2KiB\n");
101 }
102}
103
104/**
105 * imr_self_test_init - entry point for IMR driver.
106 *
107 * return: -ENODEV for no IMR support 0 if good to go.
108 */
109static int __init imr_self_test_init(void)
110{
111 imr_self_test();
112 return 0;
113}
114
115/**
116 * imr_self_test_exit - exit point for IMR code.
117 *
118 * return:
119 */
120static void __exit imr_self_test_exit(void)
121{
122}
123
124module_init(imr_self_test_init);
125module_exit(imr_self_test_exit);
126
127MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>");
128MODULE_DESCRIPTION("Intel Isolated Memory Region self-test driver");
129MODULE_LICENSE("Dual BSD/GPL");