diff options
Diffstat (limited to 'arch/x86/mm/srat_64.c')
-rw-r--r-- | arch/x86/mm/srat_64.c | 564 |
1 files changed, 0 insertions, 564 deletions
diff --git a/arch/x86/mm/srat_64.c b/arch/x86/mm/srat_64.c deleted file mode 100644 index 9c0d0d399c30..000000000000 --- a/arch/x86/mm/srat_64.c +++ /dev/null | |||
@@ -1,564 +0,0 @@ | |||
1 | /* | ||
2 | * ACPI 3.0 based NUMA setup | ||
3 | * Copyright 2004 Andi Kleen, SuSE Labs. | ||
4 | * | ||
5 | * Reads the ACPI SRAT table to figure out what memory belongs to which CPUs. | ||
6 | * | ||
7 | * Called from acpi_numa_init while reading the SRAT and SLIT tables. | ||
8 | * Assumes all memory regions belonging to a single proximity domain | ||
9 | * are in one chunk. Holes between them will be included in the node. | ||
10 | */ | ||
11 | |||
12 | #include <linux/kernel.h> | ||
13 | #include <linux/acpi.h> | ||
14 | #include <linux/mmzone.h> | ||
15 | #include <linux/bitmap.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/topology.h> | ||
18 | #include <linux/bootmem.h> | ||
19 | #include <linux/mm.h> | ||
20 | #include <asm/proto.h> | ||
21 | #include <asm/numa.h> | ||
22 | #include <asm/e820.h> | ||
23 | #include <asm/apic.h> | ||
24 | #include <asm/uv/uv.h> | ||
25 | |||
26 | int acpi_numa __initdata; | ||
27 | |||
28 | static struct acpi_table_slit *acpi_slit; | ||
29 | |||
30 | static nodemask_t nodes_parsed __initdata; | ||
31 | static nodemask_t cpu_nodes_parsed __initdata; | ||
32 | static struct bootnode nodes[MAX_NUMNODES] __initdata; | ||
33 | static struct bootnode nodes_add[MAX_NUMNODES]; | ||
34 | |||
35 | static int num_node_memblks __initdata; | ||
36 | static struct bootnode node_memblk_range[NR_NODE_MEMBLKS] __initdata; | ||
37 | static int memblk_nodeid[NR_NODE_MEMBLKS] __initdata; | ||
38 | |||
39 | static __init int setup_node(int pxm) | ||
40 | { | ||
41 | return acpi_map_pxm_to_node(pxm); | ||
42 | } | ||
43 | |||
44 | static __init int conflicting_memblks(unsigned long start, unsigned long end) | ||
45 | { | ||
46 | int i; | ||
47 | for (i = 0; i < num_node_memblks; i++) { | ||
48 | struct bootnode *nd = &node_memblk_range[i]; | ||
49 | if (nd->start == nd->end) | ||
50 | continue; | ||
51 | if (nd->end > start && nd->start < end) | ||
52 | return memblk_nodeid[i]; | ||
53 | if (nd->end == end && nd->start == start) | ||
54 | return memblk_nodeid[i]; | ||
55 | } | ||
56 | return -1; | ||
57 | } | ||
58 | |||
59 | static __init void cutoff_node(int i, unsigned long start, unsigned long end) | ||
60 | { | ||
61 | struct bootnode *nd = &nodes[i]; | ||
62 | |||
63 | if (nd->start < start) { | ||
64 | nd->start = start; | ||
65 | if (nd->end < nd->start) | ||
66 | nd->start = nd->end; | ||
67 | } | ||
68 | if (nd->end > end) { | ||
69 | nd->end = end; | ||
70 | if (nd->start > nd->end) | ||
71 | nd->start = nd->end; | ||
72 | } | ||
73 | } | ||
74 | |||
75 | static __init void bad_srat(void) | ||
76 | { | ||
77 | int i; | ||
78 | printk(KERN_ERR "SRAT: SRAT not used.\n"); | ||
79 | acpi_numa = -1; | ||
80 | for (i = 0; i < MAX_LOCAL_APIC; i++) | ||
81 | apicid_to_node[i] = NUMA_NO_NODE; | ||
82 | for (i = 0; i < MAX_NUMNODES; i++) { | ||
83 | nodes[i].start = nodes[i].end = 0; | ||
84 | nodes_add[i].start = nodes_add[i].end = 0; | ||
85 | } | ||
86 | remove_all_active_ranges(); | ||
87 | } | ||
88 | |||
89 | static __init inline int srat_disabled(void) | ||
90 | { | ||
91 | return numa_off || acpi_numa < 0; | ||
92 | } | ||
93 | |||
94 | /* Callback for SLIT parsing */ | ||
95 | void __init acpi_numa_slit_init(struct acpi_table_slit *slit) | ||
96 | { | ||
97 | unsigned length; | ||
98 | unsigned long phys; | ||
99 | |||
100 | length = slit->header.length; | ||
101 | phys = find_e820_area(0, max_pfn_mapped<<PAGE_SHIFT, length, | ||
102 | PAGE_SIZE); | ||
103 | |||
104 | if (phys == -1L) | ||
105 | panic(" Can not save slit!\n"); | ||
106 | |||
107 | acpi_slit = __va(phys); | ||
108 | memcpy(acpi_slit, slit, length); | ||
109 | reserve_early(phys, phys + length, "ACPI SLIT"); | ||
110 | } | ||
111 | |||
112 | /* Callback for Proximity Domain -> x2APIC mapping */ | ||
113 | void __init | ||
114 | acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa) | ||
115 | { | ||
116 | int pxm, node; | ||
117 | int apic_id; | ||
118 | |||
119 | if (srat_disabled()) | ||
120 | return; | ||
121 | if (pa->header.length < sizeof(struct acpi_srat_x2apic_cpu_affinity)) { | ||
122 | bad_srat(); | ||
123 | return; | ||
124 | } | ||
125 | if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0) | ||
126 | return; | ||
127 | pxm = pa->proximity_domain; | ||
128 | node = setup_node(pxm); | ||
129 | if (node < 0) { | ||
130 | printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); | ||
131 | bad_srat(); | ||
132 | return; | ||
133 | } | ||
134 | |||
135 | apic_id = pa->apic_id; | ||
136 | apicid_to_node[apic_id] = node; | ||
137 | node_set(node, cpu_nodes_parsed); | ||
138 | acpi_numa = 1; | ||
139 | printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%04x -> Node %u\n", | ||
140 | pxm, apic_id, node); | ||
141 | } | ||
142 | |||
143 | /* Callback for Proximity Domain -> LAPIC mapping */ | ||
144 | void __init | ||
145 | acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) | ||
146 | { | ||
147 | int pxm, node; | ||
148 | int apic_id; | ||
149 | |||
150 | if (srat_disabled()) | ||
151 | return; | ||
152 | if (pa->header.length != sizeof(struct acpi_srat_cpu_affinity)) { | ||
153 | bad_srat(); | ||
154 | return; | ||
155 | } | ||
156 | if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0) | ||
157 | return; | ||
158 | pxm = pa->proximity_domain_lo; | ||
159 | node = setup_node(pxm); | ||
160 | if (node < 0) { | ||
161 | printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); | ||
162 | bad_srat(); | ||
163 | return; | ||
164 | } | ||
165 | |||
166 | if (get_uv_system_type() >= UV_X2APIC) | ||
167 | apic_id = (pa->apic_id << 8) | pa->local_sapic_eid; | ||
168 | else | ||
169 | apic_id = pa->apic_id; | ||
170 | apicid_to_node[apic_id] = node; | ||
171 | node_set(node, cpu_nodes_parsed); | ||
172 | acpi_numa = 1; | ||
173 | printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%02x -> Node %u\n", | ||
174 | pxm, apic_id, node); | ||
175 | } | ||
176 | |||
177 | #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE | ||
178 | static inline int save_add_info(void) {return 1;} | ||
179 | #else | ||
180 | static inline int save_add_info(void) {return 0;} | ||
181 | #endif | ||
182 | /* | ||
183 | * Update nodes_add[] | ||
184 | * This code supports one contiguous hot add area per node | ||
185 | */ | ||
186 | static void __init | ||
187 | update_nodes_add(int node, unsigned long start, unsigned long end) | ||
188 | { | ||
189 | unsigned long s_pfn = start >> PAGE_SHIFT; | ||
190 | unsigned long e_pfn = end >> PAGE_SHIFT; | ||
191 | int changed = 0; | ||
192 | struct bootnode *nd = &nodes_add[node]; | ||
193 | |||
194 | /* I had some trouble with strange memory hotadd regions breaking | ||
195 | the boot. Be very strict here and reject anything unexpected. | ||
196 | If you want working memory hotadd write correct SRATs. | ||
197 | |||
198 | The node size check is a basic sanity check to guard against | ||
199 | mistakes */ | ||
200 | if ((signed long)(end - start) < NODE_MIN_SIZE) { | ||
201 | printk(KERN_ERR "SRAT: Hotplug area too small\n"); | ||
202 | return; | ||
203 | } | ||
204 | |||
205 | /* This check might be a bit too strict, but I'm keeping it for now. */ | ||
206 | if (absent_pages_in_range(s_pfn, e_pfn) != e_pfn - s_pfn) { | ||
207 | printk(KERN_ERR | ||
208 | "SRAT: Hotplug area %lu -> %lu has existing memory\n", | ||
209 | s_pfn, e_pfn); | ||
210 | return; | ||
211 | } | ||
212 | |||
213 | /* Looks good */ | ||
214 | |||
215 | if (nd->start == nd->end) { | ||
216 | nd->start = start; | ||
217 | nd->end = end; | ||
218 | changed = 1; | ||
219 | } else { | ||
220 | if (nd->start == end) { | ||
221 | nd->start = start; | ||
222 | changed = 1; | ||
223 | } | ||
224 | if (nd->end == start) { | ||
225 | nd->end = end; | ||
226 | changed = 1; | ||
227 | } | ||
228 | if (!changed) | ||
229 | printk(KERN_ERR "SRAT: Hotplug zone not continuous. Partly ignored\n"); | ||
230 | } | ||
231 | |||
232 | if (changed) { | ||
233 | node_set(node, cpu_nodes_parsed); | ||
234 | printk(KERN_INFO "SRAT: hot plug zone found %Lx - %Lx\n", | ||
235 | nd->start, nd->end); | ||
236 | } | ||
237 | } | ||
238 | |||
239 | /* Callback for parsing of the Proximity Domain <-> Memory Area mappings */ | ||
240 | void __init | ||
241 | acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma) | ||
242 | { | ||
243 | struct bootnode *nd, oldnode; | ||
244 | unsigned long start, end; | ||
245 | int node, pxm; | ||
246 | int i; | ||
247 | |||
248 | if (srat_disabled()) | ||
249 | return; | ||
250 | if (ma->header.length != sizeof(struct acpi_srat_mem_affinity)) { | ||
251 | bad_srat(); | ||
252 | return; | ||
253 | } | ||
254 | if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0) | ||
255 | return; | ||
256 | |||
257 | if ((ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && !save_add_info()) | ||
258 | return; | ||
259 | start = ma->base_address; | ||
260 | end = start + ma->length; | ||
261 | pxm = ma->proximity_domain; | ||
262 | node = setup_node(pxm); | ||
263 | if (node < 0) { | ||
264 | printk(KERN_ERR "SRAT: Too many proximity domains.\n"); | ||
265 | bad_srat(); | ||
266 | return; | ||
267 | } | ||
268 | i = conflicting_memblks(start, end); | ||
269 | if (i == node) { | ||
270 | printk(KERN_WARNING | ||
271 | "SRAT: Warning: PXM %d (%lx-%lx) overlaps with itself (%Lx-%Lx)\n", | ||
272 | pxm, start, end, nodes[i].start, nodes[i].end); | ||
273 | } else if (i >= 0) { | ||
274 | printk(KERN_ERR | ||
275 | "SRAT: PXM %d (%lx-%lx) overlaps with PXM %d (%Lx-%Lx)\n", | ||
276 | pxm, start, end, node_to_pxm(i), | ||
277 | nodes[i].start, nodes[i].end); | ||
278 | bad_srat(); | ||
279 | return; | ||
280 | } | ||
281 | nd = &nodes[node]; | ||
282 | oldnode = *nd; | ||
283 | if (!node_test_and_set(node, nodes_parsed)) { | ||
284 | nd->start = start; | ||
285 | nd->end = end; | ||
286 | } else { | ||
287 | if (start < nd->start) | ||
288 | nd->start = start; | ||
289 | if (nd->end < end) | ||
290 | nd->end = end; | ||
291 | } | ||
292 | |||
293 | printk(KERN_INFO "SRAT: Node %u PXM %u %lx-%lx\n", node, pxm, | ||
294 | start, end); | ||
295 | |||
296 | if (ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) { | ||
297 | update_nodes_add(node, start, end); | ||
298 | /* restore nodes[node] */ | ||
299 | *nd = oldnode; | ||
300 | if ((nd->start | nd->end) == 0) | ||
301 | node_clear(node, nodes_parsed); | ||
302 | } | ||
303 | |||
304 | node_memblk_range[num_node_memblks].start = start; | ||
305 | node_memblk_range[num_node_memblks].end = end; | ||
306 | memblk_nodeid[num_node_memblks] = node; | ||
307 | num_node_memblks++; | ||
308 | } | ||
309 | |||
310 | /* Sanity check to catch more bad SRATs (they are amazingly common). | ||
311 | Make sure the PXMs cover all memory. */ | ||
312 | static int __init nodes_cover_memory(const struct bootnode *nodes) | ||
313 | { | ||
314 | int i; | ||
315 | unsigned long pxmram, e820ram; | ||
316 | |||
317 | pxmram = 0; | ||
318 | for_each_node_mask(i, nodes_parsed) { | ||
319 | unsigned long s = nodes[i].start >> PAGE_SHIFT; | ||
320 | unsigned long e = nodes[i].end >> PAGE_SHIFT; | ||
321 | pxmram += e - s; | ||
322 | pxmram -= __absent_pages_in_range(i, s, e); | ||
323 | if ((long)pxmram < 0) | ||
324 | pxmram = 0; | ||
325 | } | ||
326 | |||
327 | e820ram = max_pfn - (e820_hole_size(0, max_pfn<<PAGE_SHIFT)>>PAGE_SHIFT); | ||
328 | /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ | ||
329 | if ((long)(e820ram - pxmram) >= (1<<(20 - PAGE_SHIFT))) { | ||
330 | printk(KERN_ERR | ||
331 | "SRAT: PXMs only cover %luMB of your %luMB e820 RAM. Not used.\n", | ||
332 | (pxmram << PAGE_SHIFT) >> 20, | ||
333 | (e820ram << PAGE_SHIFT) >> 20); | ||
334 | return 0; | ||
335 | } | ||
336 | return 1; | ||
337 | } | ||
338 | |||
339 | void __init acpi_numa_arch_fixup(void) {} | ||
340 | |||
341 | int __init acpi_get_nodes(struct bootnode *physnodes) | ||
342 | { | ||
343 | int i; | ||
344 | int ret = 0; | ||
345 | |||
346 | for_each_node_mask(i, nodes_parsed) { | ||
347 | physnodes[ret].start = nodes[i].start; | ||
348 | physnodes[ret].end = nodes[i].end; | ||
349 | ret++; | ||
350 | } | ||
351 | return ret; | ||
352 | } | ||
353 | |||
354 | /* Use the information discovered above to actually set up the nodes. */ | ||
355 | int __init acpi_scan_nodes(unsigned long start, unsigned long end) | ||
356 | { | ||
357 | int i; | ||
358 | |||
359 | if (acpi_numa <= 0) | ||
360 | return -1; | ||
361 | |||
362 | /* First clean up the node list */ | ||
363 | for (i = 0; i < MAX_NUMNODES; i++) | ||
364 | cutoff_node(i, start, end); | ||
365 | |||
366 | /* | ||
367 | * Join together blocks on the same node, holes between | ||
368 | * which don't overlap with memory on other nodes. | ||
369 | */ | ||
370 | for (i = 0; i < num_node_memblks; ++i) { | ||
371 | int j, k; | ||
372 | |||
373 | for (j = i + 1; j < num_node_memblks; ++j) { | ||
374 | unsigned long start, end; | ||
375 | |||
376 | if (memblk_nodeid[i] != memblk_nodeid[j]) | ||
377 | continue; | ||
378 | start = min(node_memblk_range[i].end, | ||
379 | node_memblk_range[j].end); | ||
380 | end = max(node_memblk_range[i].start, | ||
381 | node_memblk_range[j].start); | ||
382 | for (k = 0; k < num_node_memblks; ++k) { | ||
383 | if (memblk_nodeid[i] == memblk_nodeid[k]) | ||
384 | continue; | ||
385 | if (start < node_memblk_range[k].end && | ||
386 | end > node_memblk_range[k].start) | ||
387 | break; | ||
388 | } | ||
389 | if (k < num_node_memblks) | ||
390 | continue; | ||
391 | start = min(node_memblk_range[i].start, | ||
392 | node_memblk_range[j].start); | ||
393 | end = max(node_memblk_range[i].end, | ||
394 | node_memblk_range[j].end); | ||
395 | printk(KERN_INFO "SRAT: Node %d " | ||
396 | "[%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n", | ||
397 | memblk_nodeid[i], | ||
398 | node_memblk_range[i].start, | ||
399 | node_memblk_range[i].end, | ||
400 | node_memblk_range[j].start, | ||
401 | node_memblk_range[j].end, | ||
402 | start, end); | ||
403 | node_memblk_range[i].start = start; | ||
404 | node_memblk_range[i].end = end; | ||
405 | k = --num_node_memblks - j; | ||
406 | memmove(memblk_nodeid + j, memblk_nodeid + j+1, | ||
407 | k * sizeof(*memblk_nodeid)); | ||
408 | memmove(node_memblk_range + j, node_memblk_range + j+1, | ||
409 | k * sizeof(*node_memblk_range)); | ||
410 | --j; | ||
411 | } | ||
412 | } | ||
413 | |||
414 | memnode_shift = compute_hash_shift(node_memblk_range, num_node_memblks, | ||
415 | memblk_nodeid); | ||
416 | if (memnode_shift < 0) { | ||
417 | printk(KERN_ERR | ||
418 | "SRAT: No NUMA node hash function found. Contact maintainer\n"); | ||
419 | bad_srat(); | ||
420 | return -1; | ||
421 | } | ||
422 | |||
423 | for (i = 0; i < num_node_memblks; i++) | ||
424 | e820_register_active_regions(memblk_nodeid[i], | ||
425 | node_memblk_range[i].start >> PAGE_SHIFT, | ||
426 | node_memblk_range[i].end >> PAGE_SHIFT); | ||
427 | |||
428 | /* for out of order entries in SRAT */ | ||
429 | sort_node_map(); | ||
430 | if (!nodes_cover_memory(nodes)) { | ||
431 | bad_srat(); | ||
432 | return -1; | ||
433 | } | ||
434 | |||
435 | /* Account for nodes with cpus and no memory */ | ||
436 | nodes_or(node_possible_map, nodes_parsed, cpu_nodes_parsed); | ||
437 | |||
438 | /* Finally register nodes */ | ||
439 | for_each_node_mask(i, node_possible_map) | ||
440 | setup_node_bootmem(i, nodes[i].start, nodes[i].end); | ||
441 | /* Try again in case setup_node_bootmem missed one due | ||
442 | to missing bootmem */ | ||
443 | for_each_node_mask(i, node_possible_map) | ||
444 | if (!node_online(i)) | ||
445 | setup_node_bootmem(i, nodes[i].start, nodes[i].end); | ||
446 | |||
447 | for (i = 0; i < nr_cpu_ids; i++) { | ||
448 | int node = early_cpu_to_node(i); | ||
449 | |||
450 | if (node == NUMA_NO_NODE) | ||
451 | continue; | ||
452 | if (!node_online(node)) | ||
453 | numa_clear_node(i); | ||
454 | } | ||
455 | numa_init_array(); | ||
456 | return 0; | ||
457 | } | ||
458 | |||
459 | #ifdef CONFIG_NUMA_EMU | ||
460 | static int fake_node_to_pxm_map[MAX_NUMNODES] __initdata = { | ||
461 | [0 ... MAX_NUMNODES-1] = PXM_INVAL | ||
462 | }; | ||
463 | static s16 fake_apicid_to_node[MAX_LOCAL_APIC] __initdata = { | ||
464 | [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE | ||
465 | }; | ||
466 | static int __init find_node_by_addr(unsigned long addr) | ||
467 | { | ||
468 | int ret = NUMA_NO_NODE; | ||
469 | int i; | ||
470 | |||
471 | for_each_node_mask(i, nodes_parsed) { | ||
472 | /* | ||
473 | * Find the real node that this emulated node appears on. For | ||
474 | * the sake of simplicity, we only use a real node's starting | ||
475 | * address to determine which emulated node it appears on. | ||
476 | */ | ||
477 | if (addr >= nodes[i].start && addr < nodes[i].end) { | ||
478 | ret = i; | ||
479 | break; | ||
480 | } | ||
481 | } | ||
482 | return ret; | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | * In NUMA emulation, we need to setup proximity domain (_PXM) to node ID | ||
487 | * mappings that respect the real ACPI topology but reflect our emulated | ||
488 | * environment. For each emulated node, we find which real node it appears on | ||
489 | * and create PXM to NID mappings for those fake nodes which mirror that | ||
490 | * locality. SLIT will now represent the correct distances between emulated | ||
491 | * nodes as a result of the real topology. | ||
492 | */ | ||
493 | void __init acpi_fake_nodes(const struct bootnode *fake_nodes, int num_nodes) | ||
494 | { | ||
495 | int i, j; | ||
496 | |||
497 | printk(KERN_INFO "Faking PXM affinity for fake nodes on real " | ||
498 | "topology.\n"); | ||
499 | for (i = 0; i < num_nodes; i++) { | ||
500 | int nid, pxm; | ||
501 | |||
502 | nid = find_node_by_addr(fake_nodes[i].start); | ||
503 | if (nid == NUMA_NO_NODE) | ||
504 | continue; | ||
505 | pxm = node_to_pxm(nid); | ||
506 | if (pxm == PXM_INVAL) | ||
507 | continue; | ||
508 | fake_node_to_pxm_map[i] = pxm; | ||
509 | /* | ||
510 | * For each apicid_to_node mapping that exists for this real | ||
511 | * node, it must now point to the fake node ID. | ||
512 | */ | ||
513 | for (j = 0; j < MAX_LOCAL_APIC; j++) | ||
514 | if (apicid_to_node[j] == nid && | ||
515 | fake_apicid_to_node[j] == NUMA_NO_NODE) | ||
516 | fake_apicid_to_node[j] = i; | ||
517 | } | ||
518 | for (i = 0; i < num_nodes; i++) | ||
519 | __acpi_map_pxm_to_node(fake_node_to_pxm_map[i], i); | ||
520 | memcpy(apicid_to_node, fake_apicid_to_node, sizeof(apicid_to_node)); | ||
521 | |||
522 | nodes_clear(nodes_parsed); | ||
523 | for (i = 0; i < num_nodes; i++) | ||
524 | if (fake_nodes[i].start != fake_nodes[i].end) | ||
525 | node_set(i, nodes_parsed); | ||
526 | } | ||
527 | |||
528 | static int null_slit_node_compare(int a, int b) | ||
529 | { | ||
530 | return node_to_pxm(a) == node_to_pxm(b); | ||
531 | } | ||
532 | #else | ||
533 | static int null_slit_node_compare(int a, int b) | ||
534 | { | ||
535 | return a == b; | ||
536 | } | ||
537 | #endif /* CONFIG_NUMA_EMU */ | ||
538 | |||
539 | int __node_distance(int a, int b) | ||
540 | { | ||
541 | int index; | ||
542 | |||
543 | if (!acpi_slit) | ||
544 | return null_slit_node_compare(a, b) ? LOCAL_DISTANCE : | ||
545 | REMOTE_DISTANCE; | ||
546 | index = acpi_slit->locality_count * node_to_pxm(a); | ||
547 | return acpi_slit->entry[index + node_to_pxm(b)]; | ||
548 | } | ||
549 | |||
550 | EXPORT_SYMBOL(__node_distance); | ||
551 | |||
552 | #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || defined(CONFIG_ACPI_HOTPLUG_MEMORY) | ||
553 | int memory_add_physaddr_to_nid(u64 start) | ||
554 | { | ||
555 | int i, ret = 0; | ||
556 | |||
557 | for_each_node(i) | ||
558 | if (nodes_add[i].start <= start && nodes_add[i].end > start) | ||
559 | ret = i; | ||
560 | |||
561 | return ret; | ||
562 | } | ||
563 | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); | ||
564 | #endif | ||