diff options
Diffstat (limited to 'arch/x86/math-emu/errors.c')
-rw-r--r-- | arch/x86/math-emu/errors.c | 888 |
1 files changed, 419 insertions, 469 deletions
diff --git a/arch/x86/math-emu/errors.c b/arch/x86/math-emu/errors.c index a1b0d22f6978..7cb5bf3495b2 100644 --- a/arch/x86/math-emu/errors.c +++ b/arch/x86/math-emu/errors.c | |||
@@ -33,45 +33,41 @@ | |||
33 | #undef PRINT_MESSAGES | 33 | #undef PRINT_MESSAGES |
34 | /* */ | 34 | /* */ |
35 | 35 | ||
36 | |||
37 | #if 0 | 36 | #if 0 |
38 | void Un_impl(void) | 37 | void Un_impl(void) |
39 | { | 38 | { |
40 | u_char byte1, FPU_modrm; | 39 | u_char byte1, FPU_modrm; |
41 | unsigned long address = FPU_ORIG_EIP; | 40 | unsigned long address = FPU_ORIG_EIP; |
42 | 41 | ||
43 | RE_ENTRANT_CHECK_OFF; | 42 | RE_ENTRANT_CHECK_OFF; |
44 | /* No need to check access_ok(), we have previously fetched these bytes. */ | 43 | /* No need to check access_ok(), we have previously fetched these bytes. */ |
45 | printk("Unimplemented FPU Opcode at eip=%p : ", (void __user *) address); | 44 | printk("Unimplemented FPU Opcode at eip=%p : ", (void __user *)address); |
46 | if ( FPU_CS == __USER_CS ) | 45 | if (FPU_CS == __USER_CS) { |
47 | { | 46 | while (1) { |
48 | while ( 1 ) | 47 | FPU_get_user(byte1, (u_char __user *) address); |
49 | { | 48 | if ((byte1 & 0xf8) == 0xd8) |
50 | FPU_get_user(byte1, (u_char __user *) address); | 49 | break; |
51 | if ( (byte1 & 0xf8) == 0xd8 ) break; | 50 | printk("[%02x]", byte1); |
52 | printk("[%02x]", byte1); | 51 | address++; |
53 | address++; | 52 | } |
53 | printk("%02x ", byte1); | ||
54 | FPU_get_user(FPU_modrm, 1 + (u_char __user *) address); | ||
55 | |||
56 | if (FPU_modrm >= 0300) | ||
57 | printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, | ||
58 | FPU_modrm & 7); | ||
59 | else | ||
60 | printk("/%d\n", (FPU_modrm >> 3) & 7); | ||
61 | } else { | ||
62 | printk("cs selector = %04x\n", FPU_CS); | ||
54 | } | 63 | } |
55 | printk("%02x ", byte1); | ||
56 | FPU_get_user(FPU_modrm, 1 + (u_char __user *) address); | ||
57 | |||
58 | if (FPU_modrm >= 0300) | ||
59 | printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7); | ||
60 | else | ||
61 | printk("/%d\n", (FPU_modrm >> 3) & 7); | ||
62 | } | ||
63 | else | ||
64 | { | ||
65 | printk("cs selector = %04x\n", FPU_CS); | ||
66 | } | ||
67 | |||
68 | RE_ENTRANT_CHECK_ON; | ||
69 | |||
70 | EXCEPTION(EX_Invalid); | ||
71 | 64 | ||
72 | } | 65 | RE_ENTRANT_CHECK_ON; |
73 | #endif /* 0 */ | ||
74 | 66 | ||
67 | EXCEPTION(EX_Invalid); | ||
68 | |||
69 | } | ||
70 | #endif /* 0 */ | ||
75 | 71 | ||
76 | /* | 72 | /* |
77 | Called for opcodes which are illegal and which are known to result in a | 73 | Called for opcodes which are illegal and which are known to result in a |
@@ -79,139 +75,152 @@ void Un_impl(void) | |||
79 | */ | 75 | */ |
80 | void FPU_illegal(void) | 76 | void FPU_illegal(void) |
81 | { | 77 | { |
82 | math_abort(FPU_info,SIGILL); | 78 | math_abort(FPU_info, SIGILL); |
83 | } | 79 | } |
84 | 80 | ||
85 | |||
86 | |||
87 | void FPU_printall(void) | 81 | void FPU_printall(void) |
88 | { | 82 | { |
89 | int i; | 83 | int i; |
90 | static const char *tag_desc[] = { "Valid", "Zero", "ERROR", "Empty", | 84 | static const char *tag_desc[] = { "Valid", "Zero", "ERROR", "Empty", |
91 | "DeNorm", "Inf", "NaN" }; | 85 | "DeNorm", "Inf", "NaN" |
92 | u_char byte1, FPU_modrm; | 86 | }; |
93 | unsigned long address = FPU_ORIG_EIP; | 87 | u_char byte1, FPU_modrm; |
94 | 88 | unsigned long address = FPU_ORIG_EIP; | |
95 | RE_ENTRANT_CHECK_OFF; | 89 | |
96 | /* No need to check access_ok(), we have previously fetched these bytes. */ | 90 | RE_ENTRANT_CHECK_OFF; |
97 | printk("At %p:", (void *) address); | 91 | /* No need to check access_ok(), we have previously fetched these bytes. */ |
98 | if ( FPU_CS == __USER_CS ) | 92 | printk("At %p:", (void *)address); |
99 | { | 93 | if (FPU_CS == __USER_CS) { |
100 | #define MAX_PRINTED_BYTES 20 | 94 | #define MAX_PRINTED_BYTES 20 |
101 | for ( i = 0; i < MAX_PRINTED_BYTES; i++ ) | 95 | for (i = 0; i < MAX_PRINTED_BYTES; i++) { |
102 | { | 96 | FPU_get_user(byte1, (u_char __user *) address); |
103 | FPU_get_user(byte1, (u_char __user *) address); | 97 | if ((byte1 & 0xf8) == 0xd8) { |
104 | if ( (byte1 & 0xf8) == 0xd8 ) | 98 | printk(" %02x", byte1); |
105 | { | 99 | break; |
106 | printk(" %02x", byte1); | 100 | } |
107 | break; | 101 | printk(" [%02x]", byte1); |
108 | } | 102 | address++; |
109 | printk(" [%02x]", byte1); | 103 | } |
110 | address++; | 104 | if (i == MAX_PRINTED_BYTES) |
111 | } | 105 | printk(" [more..]\n"); |
112 | if ( i == MAX_PRINTED_BYTES ) | 106 | else { |
113 | printk(" [more..]\n"); | 107 | FPU_get_user(FPU_modrm, 1 + (u_char __user *) address); |
114 | else | 108 | |
115 | { | 109 | if (FPU_modrm >= 0300) |
116 | FPU_get_user(FPU_modrm, 1 + (u_char __user *) address); | 110 | printk(" %02x (%02x+%d)\n", FPU_modrm, |
117 | 111 | FPU_modrm & 0xf8, FPU_modrm & 7); | |
118 | if (FPU_modrm >= 0300) | 112 | else |
119 | printk(" %02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7); | 113 | printk(" /%d, mod=%d rm=%d\n", |
120 | else | 114 | (FPU_modrm >> 3) & 7, |
121 | printk(" /%d, mod=%d rm=%d\n", | 115 | (FPU_modrm >> 6) & 3, FPU_modrm & 7); |
122 | (FPU_modrm >> 3) & 7, (FPU_modrm >> 6) & 3, FPU_modrm & 7); | 116 | } |
117 | } else { | ||
118 | printk("%04x\n", FPU_CS); | ||
123 | } | 119 | } |
124 | } | ||
125 | else | ||
126 | { | ||
127 | printk("%04x\n", FPU_CS); | ||
128 | } | ||
129 | 120 | ||
130 | partial_status = status_word(); | 121 | partial_status = status_word(); |
131 | 122 | ||
132 | #ifdef DEBUGGING | 123 | #ifdef DEBUGGING |
133 | if ( partial_status & SW_Backward ) printk("SW: backward compatibility\n"); | 124 | if (partial_status & SW_Backward) |
134 | if ( partial_status & SW_C3 ) printk("SW: condition bit 3\n"); | 125 | printk("SW: backward compatibility\n"); |
135 | if ( partial_status & SW_C2 ) printk("SW: condition bit 2\n"); | 126 | if (partial_status & SW_C3) |
136 | if ( partial_status & SW_C1 ) printk("SW: condition bit 1\n"); | 127 | printk("SW: condition bit 3\n"); |
137 | if ( partial_status & SW_C0 ) printk("SW: condition bit 0\n"); | 128 | if (partial_status & SW_C2) |
138 | if ( partial_status & SW_Summary ) printk("SW: exception summary\n"); | 129 | printk("SW: condition bit 2\n"); |
139 | if ( partial_status & SW_Stack_Fault ) printk("SW: stack fault\n"); | 130 | if (partial_status & SW_C1) |
140 | if ( partial_status & SW_Precision ) printk("SW: loss of precision\n"); | 131 | printk("SW: condition bit 1\n"); |
141 | if ( partial_status & SW_Underflow ) printk("SW: underflow\n"); | 132 | if (partial_status & SW_C0) |
142 | if ( partial_status & SW_Overflow ) printk("SW: overflow\n"); | 133 | printk("SW: condition bit 0\n"); |
143 | if ( partial_status & SW_Zero_Div ) printk("SW: divide by zero\n"); | 134 | if (partial_status & SW_Summary) |
144 | if ( partial_status & SW_Denorm_Op ) printk("SW: denormalized operand\n"); | 135 | printk("SW: exception summary\n"); |
145 | if ( partial_status & SW_Invalid ) printk("SW: invalid operation\n"); | 136 | if (partial_status & SW_Stack_Fault) |
137 | printk("SW: stack fault\n"); | ||
138 | if (partial_status & SW_Precision) | ||
139 | printk("SW: loss of precision\n"); | ||
140 | if (partial_status & SW_Underflow) | ||
141 | printk("SW: underflow\n"); | ||
142 | if (partial_status & SW_Overflow) | ||
143 | printk("SW: overflow\n"); | ||
144 | if (partial_status & SW_Zero_Div) | ||
145 | printk("SW: divide by zero\n"); | ||
146 | if (partial_status & SW_Denorm_Op) | ||
147 | printk("SW: denormalized operand\n"); | ||
148 | if (partial_status & SW_Invalid) | ||
149 | printk("SW: invalid operation\n"); | ||
146 | #endif /* DEBUGGING */ | 150 | #endif /* DEBUGGING */ |
147 | 151 | ||
148 | printk(" SW: b=%d st=%ld es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n", | 152 | printk(" SW: b=%d st=%ld es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n", partial_status & 0x8000 ? 1 : 0, /* busy */ |
149 | partial_status & 0x8000 ? 1 : 0, /* busy */ | 153 | (partial_status & 0x3800) >> 11, /* stack top pointer */ |
150 | (partial_status & 0x3800) >> 11, /* stack top pointer */ | 154 | partial_status & 0x80 ? 1 : 0, /* Error summary status */ |
151 | partial_status & 0x80 ? 1 : 0, /* Error summary status */ | 155 | partial_status & 0x40 ? 1 : 0, /* Stack flag */ |
152 | partial_status & 0x40 ? 1 : 0, /* Stack flag */ | 156 | partial_status & SW_C3 ? 1 : 0, partial_status & SW_C2 ? 1 : 0, /* cc */ |
153 | partial_status & SW_C3?1:0, partial_status & SW_C2?1:0, /* cc */ | 157 | partial_status & SW_C1 ? 1 : 0, partial_status & SW_C0 ? 1 : 0, /* cc */ |
154 | partial_status & SW_C1?1:0, partial_status & SW_C0?1:0, /* cc */ | 158 | partial_status & SW_Precision ? 1 : 0, |
155 | partial_status & SW_Precision?1:0, partial_status & SW_Underflow?1:0, | 159 | partial_status & SW_Underflow ? 1 : 0, |
156 | partial_status & SW_Overflow?1:0, partial_status & SW_Zero_Div?1:0, | 160 | partial_status & SW_Overflow ? 1 : 0, |
157 | partial_status & SW_Denorm_Op?1:0, partial_status & SW_Invalid?1:0); | 161 | partial_status & SW_Zero_Div ? 1 : 0, |
158 | 162 | partial_status & SW_Denorm_Op ? 1 : 0, | |
159 | printk(" CW: ic=%d rc=%ld%ld pc=%ld%ld iem=%d ef=%d%d%d%d%d%d\n", | 163 | partial_status & SW_Invalid ? 1 : 0); |
160 | control_word & 0x1000 ? 1 : 0, | 164 | |
161 | (control_word & 0x800) >> 11, (control_word & 0x400) >> 10, | 165 | printk(" CW: ic=%d rc=%ld%ld pc=%ld%ld iem=%d ef=%d%d%d%d%d%d\n", |
162 | (control_word & 0x200) >> 9, (control_word & 0x100) >> 8, | 166 | control_word & 0x1000 ? 1 : 0, |
163 | control_word & 0x80 ? 1 : 0, | 167 | (control_word & 0x800) >> 11, (control_word & 0x400) >> 10, |
164 | control_word & SW_Precision?1:0, control_word & SW_Underflow?1:0, | 168 | (control_word & 0x200) >> 9, (control_word & 0x100) >> 8, |
165 | control_word & SW_Overflow?1:0, control_word & SW_Zero_Div?1:0, | 169 | control_word & 0x80 ? 1 : 0, |
166 | control_word & SW_Denorm_Op?1:0, control_word & SW_Invalid?1:0); | 170 | control_word & SW_Precision ? 1 : 0, |
167 | 171 | control_word & SW_Underflow ? 1 : 0, | |
168 | for ( i = 0; i < 8; i++ ) | 172 | control_word & SW_Overflow ? 1 : 0, |
169 | { | 173 | control_word & SW_Zero_Div ? 1 : 0, |
170 | FPU_REG *r = &st(i); | 174 | control_word & SW_Denorm_Op ? 1 : 0, |
171 | u_char tagi = FPU_gettagi(i); | 175 | control_word & SW_Invalid ? 1 : 0); |
172 | switch (tagi) | 176 | |
173 | { | 177 | for (i = 0; i < 8; i++) { |
174 | case TAG_Empty: | 178 | FPU_REG *r = &st(i); |
175 | continue; | 179 | u_char tagi = FPU_gettagi(i); |
176 | break; | 180 | switch (tagi) { |
177 | case TAG_Zero: | 181 | case TAG_Empty: |
178 | case TAG_Special: | 182 | continue; |
179 | tagi = FPU_Special(r); | 183 | break; |
180 | case TAG_Valid: | 184 | case TAG_Zero: |
181 | printk("st(%d) %c .%04lx %04lx %04lx %04lx e%+-6d ", i, | 185 | case TAG_Special: |
182 | getsign(r) ? '-' : '+', | 186 | tagi = FPU_Special(r); |
183 | (long)(r->sigh >> 16), | 187 | case TAG_Valid: |
184 | (long)(r->sigh & 0xFFFF), | 188 | printk("st(%d) %c .%04lx %04lx %04lx %04lx e%+-6d ", i, |
185 | (long)(r->sigl >> 16), | 189 | getsign(r) ? '-' : '+', |
186 | (long)(r->sigl & 0xFFFF), | 190 | (long)(r->sigh >> 16), |
187 | exponent(r) - EXP_BIAS + 1); | 191 | (long)(r->sigh & 0xFFFF), |
188 | break; | 192 | (long)(r->sigl >> 16), |
189 | default: | 193 | (long)(r->sigl & 0xFFFF), |
190 | printk("Whoops! Error in errors.c: tag%d is %d ", i, tagi); | 194 | exponent(r) - EXP_BIAS + 1); |
191 | continue; | 195 | break; |
192 | break; | 196 | default: |
197 | printk("Whoops! Error in errors.c: tag%d is %d ", i, | ||
198 | tagi); | ||
199 | continue; | ||
200 | break; | ||
201 | } | ||
202 | printk("%s\n", tag_desc[(int)(unsigned)tagi]); | ||
193 | } | 203 | } |
194 | printk("%s\n", tag_desc[(int) (unsigned) tagi]); | ||
195 | } | ||
196 | 204 | ||
197 | RE_ENTRANT_CHECK_ON; | 205 | RE_ENTRANT_CHECK_ON; |
198 | 206 | ||
199 | } | 207 | } |
200 | 208 | ||
201 | static struct { | 209 | static struct { |
202 | int type; | 210 | int type; |
203 | const char *name; | 211 | const char *name; |
204 | } exception_names[] = { | 212 | } exception_names[] = { |
205 | { EX_StackOver, "stack overflow" }, | 213 | { |
206 | { EX_StackUnder, "stack underflow" }, | 214 | EX_StackOver, "stack overflow"}, { |
207 | { EX_Precision, "loss of precision" }, | 215 | EX_StackUnder, "stack underflow"}, { |
208 | { EX_Underflow, "underflow" }, | 216 | EX_Precision, "loss of precision"}, { |
209 | { EX_Overflow, "overflow" }, | 217 | EX_Underflow, "underflow"}, { |
210 | { EX_ZeroDiv, "divide by zero" }, | 218 | EX_Overflow, "overflow"}, { |
211 | { EX_Denormal, "denormalized operand" }, | 219 | EX_ZeroDiv, "divide by zero"}, { |
212 | { EX_Invalid, "invalid operation" }, | 220 | EX_Denormal, "denormalized operand"}, { |
213 | { EX_INTERNAL, "INTERNAL BUG in "FPU_VERSION }, | 221 | EX_Invalid, "invalid operation"}, { |
214 | { 0, NULL } | 222 | EX_INTERNAL, "INTERNAL BUG in " FPU_VERSION}, { |
223 | 0, NULL} | ||
215 | }; | 224 | }; |
216 | 225 | ||
217 | /* | 226 | /* |
@@ -295,445 +304,386 @@ static struct { | |||
295 | 304 | ||
296 | asmlinkage void FPU_exception(int n) | 305 | asmlinkage void FPU_exception(int n) |
297 | { | 306 | { |
298 | int i, int_type; | 307 | int i, int_type; |
299 | 308 | ||
300 | int_type = 0; /* Needed only to stop compiler warnings */ | 309 | int_type = 0; /* Needed only to stop compiler warnings */ |
301 | if ( n & EX_INTERNAL ) | 310 | if (n & EX_INTERNAL) { |
302 | { | 311 | int_type = n - EX_INTERNAL; |
303 | int_type = n - EX_INTERNAL; | 312 | n = EX_INTERNAL; |
304 | n = EX_INTERNAL; | 313 | /* Set lots of exception bits! */ |
305 | /* Set lots of exception bits! */ | 314 | partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward); |
306 | partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward); | 315 | } else { |
307 | } | 316 | /* Extract only the bits which we use to set the status word */ |
308 | else | 317 | n &= (SW_Exc_Mask); |
309 | { | 318 | /* Set the corresponding exception bit */ |
310 | /* Extract only the bits which we use to set the status word */ | 319 | partial_status |= n; |
311 | n &= (SW_Exc_Mask); | 320 | /* Set summary bits iff exception isn't masked */ |
312 | /* Set the corresponding exception bit */ | 321 | if (partial_status & ~control_word & CW_Exceptions) |
313 | partial_status |= n; | 322 | partial_status |= (SW_Summary | SW_Backward); |
314 | /* Set summary bits iff exception isn't masked */ | 323 | if (n & (SW_Stack_Fault | EX_Precision)) { |
315 | if ( partial_status & ~control_word & CW_Exceptions ) | 324 | if (!(n & SW_C1)) |
316 | partial_status |= (SW_Summary | SW_Backward); | 325 | /* This bit distinguishes over- from underflow for a stack fault, |
317 | if ( n & (SW_Stack_Fault | EX_Precision) ) | 326 | and roundup from round-down for precision loss. */ |
318 | { | 327 | partial_status &= ~SW_C1; |
319 | if ( !(n & SW_C1) ) | 328 | } |
320 | /* This bit distinguishes over- from underflow for a stack fault, | ||
321 | and roundup from round-down for precision loss. */ | ||
322 | partial_status &= ~SW_C1; | ||
323 | } | 329 | } |
324 | } | ||
325 | 330 | ||
326 | RE_ENTRANT_CHECK_OFF; | 331 | RE_ENTRANT_CHECK_OFF; |
327 | if ( (~control_word & n & CW_Exceptions) || (n == EX_INTERNAL) ) | 332 | if ((~control_word & n & CW_Exceptions) || (n == EX_INTERNAL)) { |
328 | { | ||
329 | #ifdef PRINT_MESSAGES | 333 | #ifdef PRINT_MESSAGES |
330 | /* My message from the sponsor */ | 334 | /* My message from the sponsor */ |
331 | printk(FPU_VERSION" "__DATE__" (C) W. Metzenthen.\n"); | 335 | printk(FPU_VERSION " " __DATE__ " (C) W. Metzenthen.\n"); |
332 | #endif /* PRINT_MESSAGES */ | 336 | #endif /* PRINT_MESSAGES */ |
333 | 337 | ||
334 | /* Get a name string for error reporting */ | 338 | /* Get a name string for error reporting */ |
335 | for (i=0; exception_names[i].type; i++) | 339 | for (i = 0; exception_names[i].type; i++) |
336 | if ( (exception_names[i].type & n) == exception_names[i].type ) | 340 | if ((exception_names[i].type & n) == |
337 | break; | 341 | exception_names[i].type) |
338 | 342 | break; | |
339 | if (exception_names[i].type) | 343 | |
340 | { | 344 | if (exception_names[i].type) { |
341 | #ifdef PRINT_MESSAGES | 345 | #ifdef PRINT_MESSAGES |
342 | printk("FP Exception: %s!\n", exception_names[i].name); | 346 | printk("FP Exception: %s!\n", exception_names[i].name); |
343 | #endif /* PRINT_MESSAGES */ | 347 | #endif /* PRINT_MESSAGES */ |
344 | } | 348 | } else |
345 | else | 349 | printk("FPU emulator: Unknown Exception: 0x%04x!\n", n); |
346 | printk("FPU emulator: Unknown Exception: 0x%04x!\n", n); | 350 | |
347 | 351 | if (n == EX_INTERNAL) { | |
348 | if ( n == EX_INTERNAL ) | 352 | printk("FPU emulator: Internal error type 0x%04x\n", |
349 | { | 353 | int_type); |
350 | printk("FPU emulator: Internal error type 0x%04x\n", int_type); | 354 | FPU_printall(); |
351 | FPU_printall(); | 355 | } |
352 | } | ||
353 | #ifdef PRINT_MESSAGES | 356 | #ifdef PRINT_MESSAGES |
354 | else | 357 | else |
355 | FPU_printall(); | 358 | FPU_printall(); |
356 | #endif /* PRINT_MESSAGES */ | 359 | #endif /* PRINT_MESSAGES */ |
357 | 360 | ||
358 | /* | 361 | /* |
359 | * The 80486 generates an interrupt on the next non-control FPU | 362 | * The 80486 generates an interrupt on the next non-control FPU |
360 | * instruction. So we need some means of flagging it. | 363 | * instruction. So we need some means of flagging it. |
361 | * We use the ES (Error Summary) bit for this. | 364 | * We use the ES (Error Summary) bit for this. |
362 | */ | 365 | */ |
363 | } | 366 | } |
364 | RE_ENTRANT_CHECK_ON; | 367 | RE_ENTRANT_CHECK_ON; |
365 | 368 | ||
366 | #ifdef __DEBUG__ | 369 | #ifdef __DEBUG__ |
367 | math_abort(FPU_info,SIGFPE); | 370 | math_abort(FPU_info, SIGFPE); |
368 | #endif /* __DEBUG__ */ | 371 | #endif /* __DEBUG__ */ |
369 | 372 | ||
370 | } | 373 | } |
371 | 374 | ||
372 | |||
373 | /* Real operation attempted on a NaN. */ | 375 | /* Real operation attempted on a NaN. */ |
374 | /* Returns < 0 if the exception is unmasked */ | 376 | /* Returns < 0 if the exception is unmasked */ |
375 | int real_1op_NaN(FPU_REG *a) | 377 | int real_1op_NaN(FPU_REG * a) |
376 | { | 378 | { |
377 | int signalling, isNaN; | 379 | int signalling, isNaN; |
378 | 380 | ||
379 | isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000); | 381 | isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000); |
380 | 382 | ||
381 | /* The default result for the case of two "equal" NaNs (signs may | 383 | /* The default result for the case of two "equal" NaNs (signs may |
382 | differ) is chosen to reproduce 80486 behaviour */ | 384 | differ) is chosen to reproduce 80486 behaviour */ |
383 | signalling = isNaN && !(a->sigh & 0x40000000); | 385 | signalling = isNaN && !(a->sigh & 0x40000000); |
384 | 386 | ||
385 | if ( !signalling ) | 387 | if (!signalling) { |
386 | { | 388 | if (!isNaN) { /* pseudo-NaN, or other unsupported? */ |
387 | if ( !isNaN ) /* pseudo-NaN, or other unsupported? */ | 389 | if (control_word & CW_Invalid) { |
388 | { | 390 | /* Masked response */ |
389 | if ( control_word & CW_Invalid ) | 391 | reg_copy(&CONST_QNaN, a); |
390 | { | 392 | } |
391 | /* Masked response */ | 393 | EXCEPTION(EX_Invalid); |
392 | reg_copy(&CONST_QNaN, a); | 394 | return (!(control_word & CW_Invalid) ? FPU_Exception : |
393 | } | 395 | 0) | TAG_Special; |
394 | EXCEPTION(EX_Invalid); | 396 | } |
395 | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 397 | return TAG_Special; |
396 | } | 398 | } |
397 | return TAG_Special; | ||
398 | } | ||
399 | 399 | ||
400 | if ( control_word & CW_Invalid ) | 400 | if (control_word & CW_Invalid) { |
401 | { | 401 | /* The masked response */ |
402 | /* The masked response */ | 402 | if (!(a->sigh & 0x80000000)) { /* pseudo-NaN ? */ |
403 | if ( !(a->sigh & 0x80000000) ) /* pseudo-NaN ? */ | 403 | reg_copy(&CONST_QNaN, a); |
404 | { | 404 | } |
405 | reg_copy(&CONST_QNaN, a); | 405 | /* ensure a Quiet NaN */ |
406 | a->sigh |= 0x40000000; | ||
406 | } | 407 | } |
407 | /* ensure a Quiet NaN */ | ||
408 | a->sigh |= 0x40000000; | ||
409 | } | ||
410 | 408 | ||
411 | EXCEPTION(EX_Invalid); | 409 | EXCEPTION(EX_Invalid); |
412 | 410 | ||
413 | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 411 | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; |
414 | } | 412 | } |
415 | 413 | ||
416 | |||
417 | /* Real operation attempted on two operands, one a NaN. */ | 414 | /* Real operation attempted on two operands, one a NaN. */ |
418 | /* Returns < 0 if the exception is unmasked */ | 415 | /* Returns < 0 if the exception is unmasked */ |
419 | int real_2op_NaN(FPU_REG const *b, u_char tagb, | 416 | int real_2op_NaN(FPU_REG const *b, u_char tagb, |
420 | int deststnr, | 417 | int deststnr, FPU_REG const *defaultNaN) |
421 | FPU_REG const *defaultNaN) | ||
422 | { | 418 | { |
423 | FPU_REG *dest = &st(deststnr); | 419 | FPU_REG *dest = &st(deststnr); |
424 | FPU_REG const *a = dest; | 420 | FPU_REG const *a = dest; |
425 | u_char taga = FPU_gettagi(deststnr); | 421 | u_char taga = FPU_gettagi(deststnr); |
426 | FPU_REG const *x; | 422 | FPU_REG const *x; |
427 | int signalling, unsupported; | 423 | int signalling, unsupported; |
428 | 424 | ||
429 | if ( taga == TAG_Special ) | 425 | if (taga == TAG_Special) |
430 | taga = FPU_Special(a); | 426 | taga = FPU_Special(a); |
431 | if ( tagb == TAG_Special ) | 427 | if (tagb == TAG_Special) |
432 | tagb = FPU_Special(b); | 428 | tagb = FPU_Special(b); |
433 | 429 | ||
434 | /* TW_NaN is also used for unsupported data types. */ | 430 | /* TW_NaN is also used for unsupported data types. */ |
435 | unsupported = ((taga == TW_NaN) | 431 | unsupported = ((taga == TW_NaN) |
436 | && !((exponent(a) == EXP_OVER) && (a->sigh & 0x80000000))) | 432 | && !((exponent(a) == EXP_OVER) |
437 | || ((tagb == TW_NaN) | 433 | && (a->sigh & 0x80000000))) |
438 | && !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000))); | 434 | || ((tagb == TW_NaN) |
439 | if ( unsupported ) | 435 | && !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000))); |
440 | { | 436 | if (unsupported) { |
441 | if ( control_word & CW_Invalid ) | 437 | if (control_word & CW_Invalid) { |
442 | { | 438 | /* Masked response */ |
443 | /* Masked response */ | 439 | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr); |
444 | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr); | 440 | } |
445 | } | 441 | EXCEPTION(EX_Invalid); |
446 | EXCEPTION(EX_Invalid); | 442 | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | |
447 | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 443 | TAG_Special; |
448 | } | ||
449 | |||
450 | if (taga == TW_NaN) | ||
451 | { | ||
452 | x = a; | ||
453 | if (tagb == TW_NaN) | ||
454 | { | ||
455 | signalling = !(a->sigh & b->sigh & 0x40000000); | ||
456 | if ( significand(b) > significand(a) ) | ||
457 | x = b; | ||
458 | else if ( significand(b) == significand(a) ) | ||
459 | { | ||
460 | /* The default result for the case of two "equal" NaNs (signs may | ||
461 | differ) is chosen to reproduce 80486 behaviour */ | ||
462 | x = defaultNaN; | ||
463 | } | ||
464 | } | ||
465 | else | ||
466 | { | ||
467 | /* return the quiet version of the NaN in a */ | ||
468 | signalling = !(a->sigh & 0x40000000); | ||
469 | } | 444 | } |
470 | } | 445 | |
471 | else | 446 | if (taga == TW_NaN) { |
447 | x = a; | ||
448 | if (tagb == TW_NaN) { | ||
449 | signalling = !(a->sigh & b->sigh & 0x40000000); | ||
450 | if (significand(b) > significand(a)) | ||
451 | x = b; | ||
452 | else if (significand(b) == significand(a)) { | ||
453 | /* The default result for the case of two "equal" NaNs (signs may | ||
454 | differ) is chosen to reproduce 80486 behaviour */ | ||
455 | x = defaultNaN; | ||
456 | } | ||
457 | } else { | ||
458 | /* return the quiet version of the NaN in a */ | ||
459 | signalling = !(a->sigh & 0x40000000); | ||
460 | } | ||
461 | } else | ||
472 | #ifdef PARANOID | 462 | #ifdef PARANOID |
473 | if (tagb == TW_NaN) | 463 | if (tagb == TW_NaN) |
474 | #endif /* PARANOID */ | 464 | #endif /* PARANOID */ |
475 | { | 465 | { |
476 | signalling = !(b->sigh & 0x40000000); | 466 | signalling = !(b->sigh & 0x40000000); |
477 | x = b; | 467 | x = b; |
478 | } | 468 | } |
479 | #ifdef PARANOID | 469 | #ifdef PARANOID |
480 | else | 470 | else { |
481 | { | 471 | signalling = 0; |
482 | signalling = 0; | 472 | EXCEPTION(EX_INTERNAL | 0x113); |
483 | EXCEPTION(EX_INTERNAL|0x113); | 473 | x = &CONST_QNaN; |
484 | x = &CONST_QNaN; | 474 | } |
485 | } | ||
486 | #endif /* PARANOID */ | 475 | #endif /* PARANOID */ |
487 | 476 | ||
488 | if ( (!signalling) || (control_word & CW_Invalid) ) | 477 | if ((!signalling) || (control_word & CW_Invalid)) { |
489 | { | 478 | if (!x) |
490 | if ( ! x ) | 479 | x = b; |
491 | x = b; | ||
492 | 480 | ||
493 | if ( !(x->sigh & 0x80000000) ) /* pseudo-NaN ? */ | 481 | if (!(x->sigh & 0x80000000)) /* pseudo-NaN ? */ |
494 | x = &CONST_QNaN; | 482 | x = &CONST_QNaN; |
495 | 483 | ||
496 | FPU_copy_to_regi(x, TAG_Special, deststnr); | 484 | FPU_copy_to_regi(x, TAG_Special, deststnr); |
497 | 485 | ||
498 | if ( !signalling ) | 486 | if (!signalling) |
499 | return TAG_Special; | 487 | return TAG_Special; |
500 | 488 | ||
501 | /* ensure a Quiet NaN */ | 489 | /* ensure a Quiet NaN */ |
502 | dest->sigh |= 0x40000000; | 490 | dest->sigh |= 0x40000000; |
503 | } | 491 | } |
504 | 492 | ||
505 | EXCEPTION(EX_Invalid); | 493 | EXCEPTION(EX_Invalid); |
506 | 494 | ||
507 | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 495 | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; |
508 | } | 496 | } |
509 | 497 | ||
510 | |||
511 | /* Invalid arith operation on Valid registers */ | 498 | /* Invalid arith operation on Valid registers */ |
512 | /* Returns < 0 if the exception is unmasked */ | 499 | /* Returns < 0 if the exception is unmasked */ |
513 | asmlinkage int arith_invalid(int deststnr) | 500 | asmlinkage int arith_invalid(int deststnr) |
514 | { | 501 | { |
515 | 502 | ||
516 | EXCEPTION(EX_Invalid); | 503 | EXCEPTION(EX_Invalid); |
517 | |||
518 | if ( control_word & CW_Invalid ) | ||
519 | { | ||
520 | /* The masked response */ | ||
521 | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr); | ||
522 | } | ||
523 | |||
524 | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid; | ||
525 | 504 | ||
526 | } | 505 | if (control_word & CW_Invalid) { |
506 | /* The masked response */ | ||
507 | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr); | ||
508 | } | ||
527 | 509 | ||
510 | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid; | ||
511 | |||
512 | } | ||
528 | 513 | ||
529 | /* Divide a finite number by zero */ | 514 | /* Divide a finite number by zero */ |
530 | asmlinkage int FPU_divide_by_zero(int deststnr, u_char sign) | 515 | asmlinkage int FPU_divide_by_zero(int deststnr, u_char sign) |
531 | { | 516 | { |
532 | FPU_REG *dest = &st(deststnr); | 517 | FPU_REG *dest = &st(deststnr); |
533 | int tag = TAG_Valid; | 518 | int tag = TAG_Valid; |
519 | |||
520 | if (control_word & CW_ZeroDiv) { | ||
521 | /* The masked response */ | ||
522 | FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr); | ||
523 | setsign(dest, sign); | ||
524 | tag = TAG_Special; | ||
525 | } | ||
534 | 526 | ||
535 | if ( control_word & CW_ZeroDiv ) | 527 | EXCEPTION(EX_ZeroDiv); |
536 | { | ||
537 | /* The masked response */ | ||
538 | FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr); | ||
539 | setsign(dest, sign); | ||
540 | tag = TAG_Special; | ||
541 | } | ||
542 | |||
543 | EXCEPTION(EX_ZeroDiv); | ||
544 | 528 | ||
545 | return (!(control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag; | 529 | return (!(control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag; |
546 | 530 | ||
547 | } | 531 | } |
548 | 532 | ||
549 | |||
550 | /* This may be called often, so keep it lean */ | 533 | /* This may be called often, so keep it lean */ |
551 | int set_precision_flag(int flags) | 534 | int set_precision_flag(int flags) |
552 | { | 535 | { |
553 | if ( control_word & CW_Precision ) | 536 | if (control_word & CW_Precision) { |
554 | { | 537 | partial_status &= ~(SW_C1 & flags); |
555 | partial_status &= ~(SW_C1 & flags); | 538 | partial_status |= flags; /* The masked response */ |
556 | partial_status |= flags; /* The masked response */ | 539 | return 0; |
557 | return 0; | 540 | } else { |
558 | } | 541 | EXCEPTION(flags); |
559 | else | 542 | return 1; |
560 | { | 543 | } |
561 | EXCEPTION(flags); | ||
562 | return 1; | ||
563 | } | ||
564 | } | 544 | } |
565 | 545 | ||
566 | |||
567 | /* This may be called often, so keep it lean */ | 546 | /* This may be called often, so keep it lean */ |
568 | asmlinkage void set_precision_flag_up(void) | 547 | asmlinkage void set_precision_flag_up(void) |
569 | { | 548 | { |
570 | if ( control_word & CW_Precision ) | 549 | if (control_word & CW_Precision) |
571 | partial_status |= (SW_Precision | SW_C1); /* The masked response */ | 550 | partial_status |= (SW_Precision | SW_C1); /* The masked response */ |
572 | else | 551 | else |
573 | EXCEPTION(EX_Precision | SW_C1); | 552 | EXCEPTION(EX_Precision | SW_C1); |
574 | } | 553 | } |
575 | 554 | ||
576 | |||
577 | /* This may be called often, so keep it lean */ | 555 | /* This may be called often, so keep it lean */ |
578 | asmlinkage void set_precision_flag_down(void) | 556 | asmlinkage void set_precision_flag_down(void) |
579 | { | 557 | { |
580 | if ( control_word & CW_Precision ) | 558 | if (control_word & CW_Precision) { /* The masked response */ |
581 | { /* The masked response */ | 559 | partial_status &= ~SW_C1; |
582 | partial_status &= ~SW_C1; | 560 | partial_status |= SW_Precision; |
583 | partial_status |= SW_Precision; | 561 | } else |
584 | } | 562 | EXCEPTION(EX_Precision); |
585 | else | ||
586 | EXCEPTION(EX_Precision); | ||
587 | } | 563 | } |
588 | 564 | ||
589 | |||
590 | asmlinkage int denormal_operand(void) | 565 | asmlinkage int denormal_operand(void) |
591 | { | 566 | { |
592 | if ( control_word & CW_Denormal ) | 567 | if (control_word & CW_Denormal) { /* The masked response */ |
593 | { /* The masked response */ | 568 | partial_status |= SW_Denorm_Op; |
594 | partial_status |= SW_Denorm_Op; | 569 | return TAG_Special; |
595 | return TAG_Special; | 570 | } else { |
596 | } | 571 | EXCEPTION(EX_Denormal); |
597 | else | 572 | return TAG_Special | FPU_Exception; |
598 | { | 573 | } |
599 | EXCEPTION(EX_Denormal); | ||
600 | return TAG_Special | FPU_Exception; | ||
601 | } | ||
602 | } | 574 | } |
603 | 575 | ||
604 | 576 | asmlinkage int arith_overflow(FPU_REG * dest) | |
605 | asmlinkage int arith_overflow(FPU_REG *dest) | ||
606 | { | 577 | { |
607 | int tag = TAG_Valid; | 578 | int tag = TAG_Valid; |
608 | 579 | ||
609 | if ( control_word & CW_Overflow ) | 580 | if (control_word & CW_Overflow) { |
610 | { | 581 | /* The masked response */ |
611 | /* The masked response */ | ||
612 | /* ###### The response here depends upon the rounding mode */ | 582 | /* ###### The response here depends upon the rounding mode */ |
613 | reg_copy(&CONST_INF, dest); | 583 | reg_copy(&CONST_INF, dest); |
614 | tag = TAG_Special; | 584 | tag = TAG_Special; |
615 | } | 585 | } else { |
616 | else | 586 | /* Subtract the magic number from the exponent */ |
617 | { | 587 | addexponent(dest, (-3 * (1 << 13))); |
618 | /* Subtract the magic number from the exponent */ | 588 | } |
619 | addexponent(dest, (-3 * (1 << 13))); | ||
620 | } | ||
621 | |||
622 | EXCEPTION(EX_Overflow); | ||
623 | if ( control_word & CW_Overflow ) | ||
624 | { | ||
625 | /* The overflow exception is masked. */ | ||
626 | /* By definition, precision is lost. | ||
627 | The roundup bit (C1) is also set because we have | ||
628 | "rounded" upwards to Infinity. */ | ||
629 | EXCEPTION(EX_Precision | SW_C1); | ||
630 | return tag; | ||
631 | } | ||
632 | |||
633 | return tag; | ||
634 | 589 | ||
635 | } | 590 | EXCEPTION(EX_Overflow); |
591 | if (control_word & CW_Overflow) { | ||
592 | /* The overflow exception is masked. */ | ||
593 | /* By definition, precision is lost. | ||
594 | The roundup bit (C1) is also set because we have | ||
595 | "rounded" upwards to Infinity. */ | ||
596 | EXCEPTION(EX_Precision | SW_C1); | ||
597 | return tag; | ||
598 | } | ||
636 | 599 | ||
600 | return tag; | ||
637 | 601 | ||
638 | asmlinkage int arith_underflow(FPU_REG *dest) | 602 | } |
639 | { | ||
640 | int tag = TAG_Valid; | ||
641 | 603 | ||
642 | if ( control_word & CW_Underflow ) | 604 | asmlinkage int arith_underflow(FPU_REG * dest) |
643 | { | 605 | { |
644 | /* The masked response */ | 606 | int tag = TAG_Valid; |
645 | if ( exponent16(dest) <= EXP_UNDER - 63 ) | 607 | |
646 | { | 608 | if (control_word & CW_Underflow) { |
647 | reg_copy(&CONST_Z, dest); | 609 | /* The masked response */ |
648 | partial_status &= ~SW_C1; /* Round down. */ | 610 | if (exponent16(dest) <= EXP_UNDER - 63) { |
649 | tag = TAG_Zero; | 611 | reg_copy(&CONST_Z, dest); |
612 | partial_status &= ~SW_C1; /* Round down. */ | ||
613 | tag = TAG_Zero; | ||
614 | } else { | ||
615 | stdexp(dest); | ||
616 | } | ||
617 | } else { | ||
618 | /* Add the magic number to the exponent. */ | ||
619 | addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias); | ||
650 | } | 620 | } |
651 | else | 621 | |
652 | { | 622 | EXCEPTION(EX_Underflow); |
653 | stdexp(dest); | 623 | if (control_word & CW_Underflow) { |
624 | /* The underflow exception is masked. */ | ||
625 | EXCEPTION(EX_Precision); | ||
626 | return tag; | ||
654 | } | 627 | } |
655 | } | ||
656 | else | ||
657 | { | ||
658 | /* Add the magic number to the exponent. */ | ||
659 | addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias); | ||
660 | } | ||
661 | |||
662 | EXCEPTION(EX_Underflow); | ||
663 | if ( control_word & CW_Underflow ) | ||
664 | { | ||
665 | /* The underflow exception is masked. */ | ||
666 | EXCEPTION(EX_Precision); | ||
667 | return tag; | ||
668 | } | ||
669 | |||
670 | return tag; | ||
671 | 628 | ||
672 | } | 629 | return tag; |
673 | 630 | ||
631 | } | ||
674 | 632 | ||
675 | void FPU_stack_overflow(void) | 633 | void FPU_stack_overflow(void) |
676 | { | 634 | { |
677 | 635 | ||
678 | if ( control_word & CW_Invalid ) | 636 | if (control_word & CW_Invalid) { |
679 | { | 637 | /* The masked response */ |
680 | /* The masked response */ | 638 | top--; |
681 | top--; | 639 | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); |
682 | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 640 | } |
683 | } | ||
684 | 641 | ||
685 | EXCEPTION(EX_StackOver); | 642 | EXCEPTION(EX_StackOver); |
686 | 643 | ||
687 | return; | 644 | return; |
688 | 645 | ||
689 | } | 646 | } |
690 | 647 | ||
691 | |||
692 | void FPU_stack_underflow(void) | 648 | void FPU_stack_underflow(void) |
693 | { | 649 | { |
694 | 650 | ||
695 | if ( control_word & CW_Invalid ) | 651 | if (control_word & CW_Invalid) { |
696 | { | 652 | /* The masked response */ |
697 | /* The masked response */ | 653 | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); |
698 | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 654 | } |
699 | } | ||
700 | 655 | ||
701 | EXCEPTION(EX_StackUnder); | 656 | EXCEPTION(EX_StackUnder); |
702 | 657 | ||
703 | return; | 658 | return; |
704 | 659 | ||
705 | } | 660 | } |
706 | 661 | ||
707 | |||
708 | void FPU_stack_underflow_i(int i) | 662 | void FPU_stack_underflow_i(int i) |
709 | { | 663 | { |
710 | 664 | ||
711 | if ( control_word & CW_Invalid ) | 665 | if (control_word & CW_Invalid) { |
712 | { | 666 | /* The masked response */ |
713 | /* The masked response */ | 667 | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i); |
714 | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i); | 668 | } |
715 | } | ||
716 | 669 | ||
717 | EXCEPTION(EX_StackUnder); | 670 | EXCEPTION(EX_StackUnder); |
718 | 671 | ||
719 | return; | 672 | return; |
720 | 673 | ||
721 | } | 674 | } |
722 | 675 | ||
723 | |||
724 | void FPU_stack_underflow_pop(int i) | 676 | void FPU_stack_underflow_pop(int i) |
725 | { | 677 | { |
726 | 678 | ||
727 | if ( control_word & CW_Invalid ) | 679 | if (control_word & CW_Invalid) { |
728 | { | 680 | /* The masked response */ |
729 | /* The masked response */ | 681 | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i); |
730 | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i); | 682 | FPU_pop(); |
731 | FPU_pop(); | 683 | } |
732 | } | ||
733 | 684 | ||
734 | EXCEPTION(EX_StackUnder); | 685 | EXCEPTION(EX_StackUnder); |
735 | 686 | ||
736 | return; | 687 | return; |
737 | 688 | ||
738 | } | 689 | } |
739 | |||