diff options
Diffstat (limited to 'arch/x86/kernel/apb_timer.c')
-rw-r--r-- | arch/x86/kernel/apb_timer.c | 785 |
1 files changed, 785 insertions, 0 deletions
diff --git a/arch/x86/kernel/apb_timer.c b/arch/x86/kernel/apb_timer.c new file mode 100644 index 000000000000..a35347501d36 --- /dev/null +++ b/arch/x86/kernel/apb_timer.c | |||
@@ -0,0 +1,785 @@ | |||
1 | /* | ||
2 | * apb_timer.c: Driver for Langwell APB timers | ||
3 | * | ||
4 | * (C) Copyright 2009 Intel Corporation | ||
5 | * Author: Jacob Pan (jacob.jun.pan@intel.com) | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or | ||
8 | * modify it under the terms of the GNU General Public License | ||
9 | * as published by the Free Software Foundation; version 2 | ||
10 | * of the License. | ||
11 | * | ||
12 | * Note: | ||
13 | * Langwell is the south complex of Intel Moorestown MID platform. There are | ||
14 | * eight external timers in total that can be used by the operating system. | ||
15 | * The timer information, such as frequency and addresses, is provided to the | ||
16 | * OS via SFI tables. | ||
17 | * Timer interrupts are routed via FW/HW emulated IOAPIC independently via | ||
18 | * individual redirection table entries (RTE). | ||
19 | * Unlike HPET, there is no master counter, therefore one of the timers are | ||
20 | * used as clocksource. The overall allocation looks like: | ||
21 | * - timer 0 - NR_CPUs for per cpu timer | ||
22 | * - one timer for clocksource | ||
23 | * - one timer for watchdog driver. | ||
24 | * It is also worth notice that APB timer does not support true one-shot mode, | ||
25 | * free-running mode will be used here to emulate one-shot mode. | ||
26 | * APB timer can also be used as broadcast timer along with per cpu local APIC | ||
27 | * timer, but by default APB timer has higher rating than local APIC timers. | ||
28 | */ | ||
29 | |||
30 | #include <linux/clocksource.h> | ||
31 | #include <linux/clockchips.h> | ||
32 | #include <linux/delay.h> | ||
33 | #include <linux/errno.h> | ||
34 | #include <linux/init.h> | ||
35 | #include <linux/sysdev.h> | ||
36 | #include <linux/slab.h> | ||
37 | #include <linux/pm.h> | ||
38 | #include <linux/pci.h> | ||
39 | #include <linux/sfi.h> | ||
40 | #include <linux/interrupt.h> | ||
41 | #include <linux/cpu.h> | ||
42 | #include <linux/irq.h> | ||
43 | |||
44 | #include <asm/fixmap.h> | ||
45 | #include <asm/apb_timer.h> | ||
46 | |||
47 | #define APBT_MASK CLOCKSOURCE_MASK(32) | ||
48 | #define APBT_SHIFT 22 | ||
49 | #define APBT_CLOCKEVENT_RATING 150 | ||
50 | #define APBT_CLOCKSOURCE_RATING 250 | ||
51 | #define APBT_MIN_DELTA_USEC 200 | ||
52 | |||
53 | #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt) | ||
54 | #define APBT_CLOCKEVENT0_NUM (0) | ||
55 | #define APBT_CLOCKEVENT1_NUM (1) | ||
56 | #define APBT_CLOCKSOURCE_NUM (2) | ||
57 | |||
58 | static unsigned long apbt_address; | ||
59 | static int apb_timer_block_enabled; | ||
60 | static void __iomem *apbt_virt_address; | ||
61 | static int phy_cs_timer_id; | ||
62 | |||
63 | /* | ||
64 | * Common DW APB timer info | ||
65 | */ | ||
66 | static uint64_t apbt_freq; | ||
67 | |||
68 | static void apbt_set_mode(enum clock_event_mode mode, | ||
69 | struct clock_event_device *evt); | ||
70 | static int apbt_next_event(unsigned long delta, | ||
71 | struct clock_event_device *evt); | ||
72 | static cycle_t apbt_read_clocksource(struct clocksource *cs); | ||
73 | static void apbt_restart_clocksource(struct clocksource *cs); | ||
74 | |||
75 | struct apbt_dev { | ||
76 | struct clock_event_device evt; | ||
77 | unsigned int num; | ||
78 | int cpu; | ||
79 | unsigned int irq; | ||
80 | unsigned int tick; | ||
81 | unsigned int count; | ||
82 | unsigned int flags; | ||
83 | char name[10]; | ||
84 | }; | ||
85 | |||
86 | int disable_apbt_percpu __cpuinitdata; | ||
87 | |||
88 | static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); | ||
89 | |||
90 | #ifdef CONFIG_SMP | ||
91 | static unsigned int apbt_num_timers_used; | ||
92 | static struct apbt_dev *apbt_devs; | ||
93 | #endif | ||
94 | |||
95 | static inline unsigned long apbt_readl_reg(unsigned long a) | ||
96 | { | ||
97 | return readl(apbt_virt_address + a); | ||
98 | } | ||
99 | |||
100 | static inline void apbt_writel_reg(unsigned long d, unsigned long a) | ||
101 | { | ||
102 | writel(d, apbt_virt_address + a); | ||
103 | } | ||
104 | |||
105 | static inline unsigned long apbt_readl(int n, unsigned long a) | ||
106 | { | ||
107 | return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE); | ||
108 | } | ||
109 | |||
110 | static inline void apbt_writel(int n, unsigned long d, unsigned long a) | ||
111 | { | ||
112 | writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE); | ||
113 | } | ||
114 | |||
115 | static inline void apbt_set_mapping(void) | ||
116 | { | ||
117 | struct sfi_timer_table_entry *mtmr; | ||
118 | |||
119 | if (apbt_virt_address) { | ||
120 | pr_debug("APBT base already mapped\n"); | ||
121 | return; | ||
122 | } | ||
123 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | ||
124 | if (mtmr == NULL) { | ||
125 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | ||
126 | APBT_CLOCKEVENT0_NUM); | ||
127 | return; | ||
128 | } | ||
129 | apbt_address = (unsigned long)mtmr->phys_addr; | ||
130 | if (!apbt_address) { | ||
131 | printk(KERN_WARNING "No timer base from SFI, use default\n"); | ||
132 | apbt_address = APBT_DEFAULT_BASE; | ||
133 | } | ||
134 | apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); | ||
135 | if (apbt_virt_address) { | ||
136 | pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\ | ||
137 | (void *)apbt_address, (void *)apbt_virt_address); | ||
138 | } else { | ||
139 | pr_debug("Failed mapping APBT phy address at %p\n",\ | ||
140 | (void *)apbt_address); | ||
141 | goto panic_noapbt; | ||
142 | } | ||
143 | apbt_freq = mtmr->freq_hz / USEC_PER_SEC; | ||
144 | sfi_free_mtmr(mtmr); | ||
145 | |||
146 | /* Now figure out the physical timer id for clocksource device */ | ||
147 | mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); | ||
148 | if (mtmr == NULL) | ||
149 | goto panic_noapbt; | ||
150 | |||
151 | /* Now figure out the physical timer id */ | ||
152 | phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) | ||
153 | / APBTMRS_REG_SIZE; | ||
154 | pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id); | ||
155 | return; | ||
156 | |||
157 | panic_noapbt: | ||
158 | panic("Failed to setup APB system timer\n"); | ||
159 | |||
160 | } | ||
161 | |||
162 | static inline void apbt_clear_mapping(void) | ||
163 | { | ||
164 | iounmap(apbt_virt_address); | ||
165 | apbt_virt_address = NULL; | ||
166 | } | ||
167 | |||
168 | /* | ||
169 | * APBT timer interrupt enable / disable | ||
170 | */ | ||
171 | static inline int is_apbt_capable(void) | ||
172 | { | ||
173 | return apbt_virt_address ? 1 : 0; | ||
174 | } | ||
175 | |||
176 | static struct clocksource clocksource_apbt = { | ||
177 | .name = "apbt", | ||
178 | .rating = APBT_CLOCKSOURCE_RATING, | ||
179 | .read = apbt_read_clocksource, | ||
180 | .mask = APBT_MASK, | ||
181 | .shift = APBT_SHIFT, | ||
182 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
183 | .resume = apbt_restart_clocksource, | ||
184 | }; | ||
185 | |||
186 | /* boot APB clock event device */ | ||
187 | static struct clock_event_device apbt_clockevent = { | ||
188 | .name = "apbt0", | ||
189 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | ||
190 | .set_mode = apbt_set_mode, | ||
191 | .set_next_event = apbt_next_event, | ||
192 | .shift = APBT_SHIFT, | ||
193 | .irq = 0, | ||
194 | .rating = APBT_CLOCKEVENT_RATING, | ||
195 | }; | ||
196 | |||
197 | /* | ||
198 | * if user does not want to use per CPU apb timer, just give it a lower rating | ||
199 | * than local apic timer and skip the late per cpu timer init. | ||
200 | */ | ||
201 | static inline int __init setup_x86_mrst_timer(char *arg) | ||
202 | { | ||
203 | if (!arg) | ||
204 | return -EINVAL; | ||
205 | |||
206 | if (strcmp("apbt_only", arg) == 0) | ||
207 | disable_apbt_percpu = 0; | ||
208 | else if (strcmp("lapic_and_apbt", arg) == 0) | ||
209 | disable_apbt_percpu = 1; | ||
210 | else { | ||
211 | pr_warning("X86 MRST timer option %s not recognised" | ||
212 | " use x86_mrst_timer=apbt_only or lapic_and_apbt\n", | ||
213 | arg); | ||
214 | return -EINVAL; | ||
215 | } | ||
216 | return 0; | ||
217 | } | ||
218 | __setup("x86_mrst_timer=", setup_x86_mrst_timer); | ||
219 | |||
220 | /* | ||
221 | * start count down from 0xffff_ffff. this is done by toggling the enable bit | ||
222 | * then load initial load count to ~0. | ||
223 | */ | ||
224 | static void apbt_start_counter(int n) | ||
225 | { | ||
226 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
227 | |||
228 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
229 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
230 | apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT); | ||
231 | /* enable, mask interrupt */ | ||
232 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | ||
233 | ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); | ||
234 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
235 | /* read it once to get cached counter value initialized */ | ||
236 | apbt_read_clocksource(&clocksource_apbt); | ||
237 | } | ||
238 | |||
239 | static irqreturn_t apbt_interrupt_handler(int irq, void *data) | ||
240 | { | ||
241 | struct apbt_dev *dev = (struct apbt_dev *)data; | ||
242 | struct clock_event_device *aevt = &dev->evt; | ||
243 | |||
244 | if (!aevt->event_handler) { | ||
245 | printk(KERN_INFO "Spurious APBT timer interrupt on %d\n", | ||
246 | dev->num); | ||
247 | return IRQ_NONE; | ||
248 | } | ||
249 | aevt->event_handler(aevt); | ||
250 | return IRQ_HANDLED; | ||
251 | } | ||
252 | |||
253 | static void apbt_restart_clocksource(struct clocksource *cs) | ||
254 | { | ||
255 | apbt_start_counter(phy_cs_timer_id); | ||
256 | } | ||
257 | |||
258 | /* Setup IRQ routing via IOAPIC */ | ||
259 | #ifdef CONFIG_SMP | ||
260 | static void apbt_setup_irq(struct apbt_dev *adev) | ||
261 | { | ||
262 | struct irq_chip *chip; | ||
263 | struct irq_desc *desc; | ||
264 | |||
265 | /* timer0 irq has been setup early */ | ||
266 | if (adev->irq == 0) | ||
267 | return; | ||
268 | desc = irq_to_desc(adev->irq); | ||
269 | chip = get_irq_chip(adev->irq); | ||
270 | disable_irq(adev->irq); | ||
271 | desc->status |= IRQ_MOVE_PCNTXT; | ||
272 | irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); | ||
273 | /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */ | ||
274 | set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge"); | ||
275 | enable_irq(adev->irq); | ||
276 | if (system_state == SYSTEM_BOOTING) | ||
277 | if (request_irq(adev->irq, apbt_interrupt_handler, | ||
278 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | ||
279 | adev->name, adev)) { | ||
280 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | ||
281 | adev->num); | ||
282 | } | ||
283 | } | ||
284 | #endif | ||
285 | |||
286 | static void apbt_enable_int(int n) | ||
287 | { | ||
288 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
289 | /* clear pending intr */ | ||
290 | apbt_readl(n, APBTMR_N_EOI); | ||
291 | ctrl &= ~APBTMR_CONTROL_INT; | ||
292 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
293 | } | ||
294 | |||
295 | static void apbt_disable_int(int n) | ||
296 | { | ||
297 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
298 | |||
299 | ctrl |= APBTMR_CONTROL_INT; | ||
300 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
301 | } | ||
302 | |||
303 | |||
304 | static int __init apbt_clockevent_register(void) | ||
305 | { | ||
306 | struct sfi_timer_table_entry *mtmr; | ||
307 | struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); | ||
308 | |||
309 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | ||
310 | if (mtmr == NULL) { | ||
311 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | ||
312 | APBT_CLOCKEVENT0_NUM); | ||
313 | return -ENODEV; | ||
314 | } | ||
315 | |||
316 | /* | ||
317 | * We need to calculate the scaled math multiplication factor for | ||
318 | * nanosecond to apbt tick conversion. | ||
319 | * mult = (nsec/cycle)*2^APBT_SHIFT | ||
320 | */ | ||
321 | apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz | ||
322 | , NSEC_PER_SEC, APBT_SHIFT); | ||
323 | |||
324 | /* Calculate the min / max delta */ | ||
325 | apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, | ||
326 | &apbt_clockevent); | ||
327 | apbt_clockevent.min_delta_ns = clockevent_delta2ns( | ||
328 | APBT_MIN_DELTA_USEC*apbt_freq, | ||
329 | &apbt_clockevent); | ||
330 | /* | ||
331 | * Start apbt with the boot cpu mask and make it | ||
332 | * global if not used for per cpu timer. | ||
333 | */ | ||
334 | apbt_clockevent.cpumask = cpumask_of(smp_processor_id()); | ||
335 | adev->num = smp_processor_id(); | ||
336 | memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device)); | ||
337 | |||
338 | if (disable_apbt_percpu) { | ||
339 | apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100; | ||
340 | global_clock_event = &adev->evt; | ||
341 | printk(KERN_DEBUG "%s clockevent registered as global\n", | ||
342 | global_clock_event->name); | ||
343 | } | ||
344 | |||
345 | if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler, | ||
346 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | ||
347 | apbt_clockevent.name, adev)) { | ||
348 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | ||
349 | apbt_clockevent.irq); | ||
350 | } | ||
351 | |||
352 | clockevents_register_device(&adev->evt); | ||
353 | /* Start APBT 0 interrupts */ | ||
354 | apbt_enable_int(APBT_CLOCKEVENT0_NUM); | ||
355 | |||
356 | sfi_free_mtmr(mtmr); | ||
357 | return 0; | ||
358 | } | ||
359 | |||
360 | #ifdef CONFIG_SMP | ||
361 | /* Should be called with per cpu */ | ||
362 | void apbt_setup_secondary_clock(void) | ||
363 | { | ||
364 | struct apbt_dev *adev; | ||
365 | struct clock_event_device *aevt; | ||
366 | int cpu; | ||
367 | |||
368 | /* Don't register boot CPU clockevent */ | ||
369 | cpu = smp_processor_id(); | ||
370 | if (cpu == boot_cpu_id) | ||
371 | return; | ||
372 | /* | ||
373 | * We need to calculate the scaled math multiplication factor for | ||
374 | * nanosecond to apbt tick conversion. | ||
375 | * mult = (nsec/cycle)*2^APBT_SHIFT | ||
376 | */ | ||
377 | printk(KERN_INFO "Init per CPU clockevent %d\n", cpu); | ||
378 | adev = &per_cpu(cpu_apbt_dev, cpu); | ||
379 | aevt = &adev->evt; | ||
380 | |||
381 | memcpy(aevt, &apbt_clockevent, sizeof(*aevt)); | ||
382 | aevt->cpumask = cpumask_of(cpu); | ||
383 | aevt->name = adev->name; | ||
384 | aevt->mode = CLOCK_EVT_MODE_UNUSED; | ||
385 | |||
386 | printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n", | ||
387 | cpu, aevt->name, *(u32 *)aevt->cpumask); | ||
388 | |||
389 | apbt_setup_irq(adev); | ||
390 | |||
391 | clockevents_register_device(aevt); | ||
392 | |||
393 | apbt_enable_int(cpu); | ||
394 | |||
395 | return; | ||
396 | } | ||
397 | |||
398 | /* | ||
399 | * this notify handler process CPU hotplug events. in case of S0i3, nonboot | ||
400 | * cpus are disabled/enabled frequently, for performance reasons, we keep the | ||
401 | * per cpu timer irq registered so that we do need to do free_irq/request_irq. | ||
402 | * | ||
403 | * TODO: it might be more reliable to directly disable percpu clockevent device | ||
404 | * without the notifier chain. currently, cpu 0 may get interrupts from other | ||
405 | * cpu timers during the offline process due to the ordering of notification. | ||
406 | * the extra interrupt is harmless. | ||
407 | */ | ||
408 | static int apbt_cpuhp_notify(struct notifier_block *n, | ||
409 | unsigned long action, void *hcpu) | ||
410 | { | ||
411 | unsigned long cpu = (unsigned long)hcpu; | ||
412 | struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); | ||
413 | |||
414 | switch (action & 0xf) { | ||
415 | case CPU_DEAD: | ||
416 | apbt_disable_int(cpu); | ||
417 | if (system_state == SYSTEM_RUNNING) | ||
418 | pr_debug("skipping APBT CPU %lu offline\n", cpu); | ||
419 | else if (adev) { | ||
420 | pr_debug("APBT clockevent for cpu %lu offline\n", cpu); | ||
421 | free_irq(adev->irq, adev); | ||
422 | } | ||
423 | break; | ||
424 | default: | ||
425 | pr_debug(KERN_INFO "APBT notified %lu, no action\n", action); | ||
426 | } | ||
427 | return NOTIFY_OK; | ||
428 | } | ||
429 | |||
430 | static __init int apbt_late_init(void) | ||
431 | { | ||
432 | if (disable_apbt_percpu || !apb_timer_block_enabled) | ||
433 | return 0; | ||
434 | /* This notifier should be called after workqueue is ready */ | ||
435 | hotcpu_notifier(apbt_cpuhp_notify, -20); | ||
436 | return 0; | ||
437 | } | ||
438 | fs_initcall(apbt_late_init); | ||
439 | #else | ||
440 | |||
441 | void apbt_setup_secondary_clock(void) {} | ||
442 | |||
443 | #endif /* CONFIG_SMP */ | ||
444 | |||
445 | static void apbt_set_mode(enum clock_event_mode mode, | ||
446 | struct clock_event_device *evt) | ||
447 | { | ||
448 | unsigned long ctrl; | ||
449 | uint64_t delta; | ||
450 | int timer_num; | ||
451 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | ||
452 | |||
453 | timer_num = adev->num; | ||
454 | pr_debug("%s CPU %d timer %d mode=%d\n", | ||
455 | __func__, first_cpu(*evt->cpumask), timer_num, mode); | ||
456 | |||
457 | switch (mode) { | ||
458 | case CLOCK_EVT_MODE_PERIODIC: | ||
459 | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult; | ||
460 | delta >>= apbt_clockevent.shift; | ||
461 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
462 | ctrl |= APBTMR_CONTROL_MODE_PERIODIC; | ||
463 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
464 | /* | ||
465 | * DW APB p. 46, have to disable timer before load counter, | ||
466 | * may cause sync problem. | ||
467 | */ | ||
468 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
469 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
470 | udelay(1); | ||
471 | pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ); | ||
472 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | ||
473 | ctrl |= APBTMR_CONTROL_ENABLE; | ||
474 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
475 | break; | ||
476 | /* APB timer does not have one-shot mode, use free running mode */ | ||
477 | case CLOCK_EVT_MODE_ONESHOT: | ||
478 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
479 | /* | ||
480 | * set free running mode, this mode will let timer reload max | ||
481 | * timeout which will give time (3min on 25MHz clock) to rearm | ||
482 | * the next event, therefore emulate the one-shot mode. | ||
483 | */ | ||
484 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
485 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | ||
486 | |||
487 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
488 | /* write again to set free running mode */ | ||
489 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
490 | |||
491 | /* | ||
492 | * DW APB p. 46, load counter with all 1s before starting free | ||
493 | * running mode. | ||
494 | */ | ||
495 | apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT); | ||
496 | ctrl &= ~APBTMR_CONTROL_INT; | ||
497 | ctrl |= APBTMR_CONTROL_ENABLE; | ||
498 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
499 | break; | ||
500 | |||
501 | case CLOCK_EVT_MODE_UNUSED: | ||
502 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
503 | apbt_disable_int(timer_num); | ||
504 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
505 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
506 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
507 | break; | ||
508 | |||
509 | case CLOCK_EVT_MODE_RESUME: | ||
510 | apbt_enable_int(timer_num); | ||
511 | break; | ||
512 | } | ||
513 | } | ||
514 | |||
515 | static int apbt_next_event(unsigned long delta, | ||
516 | struct clock_event_device *evt) | ||
517 | { | ||
518 | unsigned long ctrl; | ||
519 | int timer_num; | ||
520 | |||
521 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | ||
522 | |||
523 | timer_num = adev->num; | ||
524 | /* Disable timer */ | ||
525 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
526 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
527 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
528 | /* write new count */ | ||
529 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | ||
530 | ctrl |= APBTMR_CONTROL_ENABLE; | ||
531 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
532 | return 0; | ||
533 | } | ||
534 | |||
535 | /* | ||
536 | * APB timer clock is not in sync with pclk on Langwell, which translates to | ||
537 | * unreliable read value caused by sampling error. the error does not add up | ||
538 | * overtime and only happens when sampling a 0 as a 1 by mistake. so the time | ||
539 | * would go backwards. the following code is trying to prevent time traveling | ||
540 | * backwards. little bit paranoid. | ||
541 | */ | ||
542 | static cycle_t apbt_read_clocksource(struct clocksource *cs) | ||
543 | { | ||
544 | unsigned long t0, t1, t2; | ||
545 | static unsigned long last_read; | ||
546 | |||
547 | bad_count: | ||
548 | t1 = apbt_readl(phy_cs_timer_id, | ||
549 | APBTMR_N_CURRENT_VALUE); | ||
550 | t2 = apbt_readl(phy_cs_timer_id, | ||
551 | APBTMR_N_CURRENT_VALUE); | ||
552 | if (unlikely(t1 < t2)) { | ||
553 | pr_debug("APBT: read current count error %lx:%lx:%lx\n", | ||
554 | t1, t2, t2 - t1); | ||
555 | goto bad_count; | ||
556 | } | ||
557 | /* | ||
558 | * check against cached last read, makes sure time does not go back. | ||
559 | * it could be a normal rollover but we will do tripple check anyway | ||
560 | */ | ||
561 | if (unlikely(t2 > last_read)) { | ||
562 | /* check if we have a normal rollover */ | ||
563 | unsigned long raw_intr_status = | ||
564 | apbt_readl_reg(APBTMRS_RAW_INT_STATUS); | ||
565 | /* | ||
566 | * cs timer interrupt is masked but raw intr bit is set if | ||
567 | * rollover occurs. then we read EOI reg to clear it. | ||
568 | */ | ||
569 | if (raw_intr_status & (1 << phy_cs_timer_id)) { | ||
570 | apbt_readl(phy_cs_timer_id, APBTMR_N_EOI); | ||
571 | goto out; | ||
572 | } | ||
573 | pr_debug("APB CS going back %lx:%lx:%lx ", | ||
574 | t2, last_read, t2 - last_read); | ||
575 | bad_count_x3: | ||
576 | pr_debug(KERN_INFO "tripple check enforced\n"); | ||
577 | t0 = apbt_readl(phy_cs_timer_id, | ||
578 | APBTMR_N_CURRENT_VALUE); | ||
579 | udelay(1); | ||
580 | t1 = apbt_readl(phy_cs_timer_id, | ||
581 | APBTMR_N_CURRENT_VALUE); | ||
582 | udelay(1); | ||
583 | t2 = apbt_readl(phy_cs_timer_id, | ||
584 | APBTMR_N_CURRENT_VALUE); | ||
585 | if ((t2 > t1) || (t1 > t0)) { | ||
586 | printk(KERN_ERR "Error: APB CS tripple check failed\n"); | ||
587 | goto bad_count_x3; | ||
588 | } | ||
589 | } | ||
590 | out: | ||
591 | last_read = t2; | ||
592 | return (cycle_t)~t2; | ||
593 | } | ||
594 | |||
595 | static int apbt_clocksource_register(void) | ||
596 | { | ||
597 | u64 start, now; | ||
598 | cycle_t t1; | ||
599 | |||
600 | /* Start the counter, use timer 2 as source, timer 0/1 for event */ | ||
601 | apbt_start_counter(phy_cs_timer_id); | ||
602 | |||
603 | /* Verify whether apbt counter works */ | ||
604 | t1 = apbt_read_clocksource(&clocksource_apbt); | ||
605 | rdtscll(start); | ||
606 | |||
607 | /* | ||
608 | * We don't know the TSC frequency yet, but waiting for | ||
609 | * 200000 TSC cycles is safe: | ||
610 | * 4 GHz == 50us | ||
611 | * 1 GHz == 200us | ||
612 | */ | ||
613 | do { | ||
614 | rep_nop(); | ||
615 | rdtscll(now); | ||
616 | } while ((now - start) < 200000UL); | ||
617 | |||
618 | /* APBT is the only always on clocksource, it has to work! */ | ||
619 | if (t1 == apbt_read_clocksource(&clocksource_apbt)) | ||
620 | panic("APBT counter not counting. APBT disabled\n"); | ||
621 | |||
622 | /* | ||
623 | * initialize and register APBT clocksource | ||
624 | * convert that to ns/clock cycle | ||
625 | * mult = (ns/c) * 2^APBT_SHIFT | ||
626 | */ | ||
627 | clocksource_apbt.mult = div_sc(MSEC_PER_SEC, | ||
628 | (unsigned long) apbt_freq, APBT_SHIFT); | ||
629 | clocksource_register(&clocksource_apbt); | ||
630 | |||
631 | return 0; | ||
632 | } | ||
633 | |||
634 | /* | ||
635 | * Early setup the APBT timer, only use timer 0 for booting then switch to | ||
636 | * per CPU timer if possible. | ||
637 | * returns 1 if per cpu apbt is setup | ||
638 | * returns 0 if no per cpu apbt is chosen | ||
639 | * panic if set up failed, this is the only platform timer on Moorestown. | ||
640 | */ | ||
641 | void __init apbt_time_init(void) | ||
642 | { | ||
643 | #ifdef CONFIG_SMP | ||
644 | int i; | ||
645 | struct sfi_timer_table_entry *p_mtmr; | ||
646 | unsigned int percpu_timer; | ||
647 | struct apbt_dev *adev; | ||
648 | #endif | ||
649 | |||
650 | if (apb_timer_block_enabled) | ||
651 | return; | ||
652 | apbt_set_mapping(); | ||
653 | if (apbt_virt_address) { | ||
654 | pr_debug("Found APBT version 0x%lx\n",\ | ||
655 | apbt_readl_reg(APBTMRS_COMP_VERSION)); | ||
656 | } else | ||
657 | goto out_noapbt; | ||
658 | /* | ||
659 | * Read the frequency and check for a sane value, for ESL model | ||
660 | * we extend the possible clock range to allow time scaling. | ||
661 | */ | ||
662 | |||
663 | if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { | ||
664 | pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq); | ||
665 | goto out_noapbt; | ||
666 | } | ||
667 | if (apbt_clocksource_register()) { | ||
668 | pr_debug("APBT has failed to register clocksource\n"); | ||
669 | goto out_noapbt; | ||
670 | } | ||
671 | if (!apbt_clockevent_register()) | ||
672 | apb_timer_block_enabled = 1; | ||
673 | else { | ||
674 | pr_debug("APBT has failed to register clockevent\n"); | ||
675 | goto out_noapbt; | ||
676 | } | ||
677 | #ifdef CONFIG_SMP | ||
678 | /* kernel cmdline disable apb timer, so we will use lapic timers */ | ||
679 | if (disable_apbt_percpu) { | ||
680 | printk(KERN_INFO "apbt: disabled per cpu timer\n"); | ||
681 | return; | ||
682 | } | ||
683 | pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); | ||
684 | if (num_possible_cpus() <= sfi_mtimer_num) { | ||
685 | percpu_timer = 1; | ||
686 | apbt_num_timers_used = num_possible_cpus(); | ||
687 | } else { | ||
688 | percpu_timer = 0; | ||
689 | apbt_num_timers_used = 1; | ||
690 | adev = &per_cpu(cpu_apbt_dev, 0); | ||
691 | adev->flags &= ~APBT_DEV_USED; | ||
692 | } | ||
693 | pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); | ||
694 | |||
695 | /* here we set up per CPU timer data structure */ | ||
696 | apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used, | ||
697 | GFP_KERNEL); | ||
698 | if (!apbt_devs) { | ||
699 | printk(KERN_ERR "Failed to allocate APB timer devices\n"); | ||
700 | return; | ||
701 | } | ||
702 | for (i = 0; i < apbt_num_timers_used; i++) { | ||
703 | adev = &per_cpu(cpu_apbt_dev, i); | ||
704 | adev->num = i; | ||
705 | adev->cpu = i; | ||
706 | p_mtmr = sfi_get_mtmr(i); | ||
707 | if (p_mtmr) { | ||
708 | adev->tick = p_mtmr->freq_hz; | ||
709 | adev->irq = p_mtmr->irq; | ||
710 | } else | ||
711 | printk(KERN_ERR "Failed to get timer for cpu %d\n", i); | ||
712 | adev->count = 0; | ||
713 | sprintf(adev->name, "apbt%d", i); | ||
714 | } | ||
715 | #endif | ||
716 | |||
717 | return; | ||
718 | |||
719 | out_noapbt: | ||
720 | apbt_clear_mapping(); | ||
721 | apb_timer_block_enabled = 0; | ||
722 | panic("failed to enable APB timer\n"); | ||
723 | } | ||
724 | |||
725 | static inline void apbt_disable(int n) | ||
726 | { | ||
727 | if (is_apbt_capable()) { | ||
728 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
729 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
730 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
731 | } | ||
732 | } | ||
733 | |||
734 | /* called before apb_timer_enable, use early map */ | ||
735 | unsigned long apbt_quick_calibrate() | ||
736 | { | ||
737 | int i, scale; | ||
738 | u64 old, new; | ||
739 | cycle_t t1, t2; | ||
740 | unsigned long khz = 0; | ||
741 | u32 loop, shift; | ||
742 | |||
743 | apbt_set_mapping(); | ||
744 | apbt_start_counter(phy_cs_timer_id); | ||
745 | |||
746 | /* check if the timer can count down, otherwise return */ | ||
747 | old = apbt_read_clocksource(&clocksource_apbt); | ||
748 | i = 10000; | ||
749 | while (--i) { | ||
750 | if (old != apbt_read_clocksource(&clocksource_apbt)) | ||
751 | break; | ||
752 | } | ||
753 | if (!i) | ||
754 | goto failed; | ||
755 | |||
756 | /* count 16 ms */ | ||
757 | loop = (apbt_freq * 1000) << 4; | ||
758 | |||
759 | /* restart the timer to ensure it won't get to 0 in the calibration */ | ||
760 | apbt_start_counter(phy_cs_timer_id); | ||
761 | |||
762 | old = apbt_read_clocksource(&clocksource_apbt); | ||
763 | old += loop; | ||
764 | |||
765 | t1 = __native_read_tsc(); | ||
766 | |||
767 | do { | ||
768 | new = apbt_read_clocksource(&clocksource_apbt); | ||
769 | } while (new < old); | ||
770 | |||
771 | t2 = __native_read_tsc(); | ||
772 | |||
773 | shift = 5; | ||
774 | if (unlikely(loop >> shift == 0)) { | ||
775 | printk(KERN_INFO | ||
776 | "APBT TSC calibration failed, not enough resolution\n"); | ||
777 | return 0; | ||
778 | } | ||
779 | scale = (int)div_u64((t2 - t1), loop >> shift); | ||
780 | khz = (scale * apbt_freq * 1000) >> shift; | ||
781 | printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); | ||
782 | return khz; | ||
783 | failed: | ||
784 | return 0; | ||
785 | } | ||