diff options
Diffstat (limited to 'arch/mips/kernel/cevt-smtc.c')
-rw-r--r-- | arch/mips/kernel/cevt-smtc.c | 324 |
1 files changed, 0 insertions, 324 deletions
diff --git a/arch/mips/kernel/cevt-smtc.c b/arch/mips/kernel/cevt-smtc.c deleted file mode 100644 index b6cf0a60d896..000000000000 --- a/arch/mips/kernel/cevt-smtc.c +++ /dev/null | |||
@@ -1,324 +0,0 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 2007 MIPS Technologies, Inc. | ||
7 | * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org> | ||
8 | * Copyright (C) 2008 Kevin D. Kissell, Paralogos sarl | ||
9 | */ | ||
10 | #include <linux/clockchips.h> | ||
11 | #include <linux/interrupt.h> | ||
12 | #include <linux/percpu.h> | ||
13 | #include <linux/smp.h> | ||
14 | #include <linux/irq.h> | ||
15 | |||
16 | #include <asm/smtc_ipi.h> | ||
17 | #include <asm/time.h> | ||
18 | #include <asm/cevt-r4k.h> | ||
19 | |||
20 | /* | ||
21 | * Variant clock event timer support for SMTC on MIPS 34K, 1004K | ||
22 | * or other MIPS MT cores. | ||
23 | * | ||
24 | * Notes on SMTC Support: | ||
25 | * | ||
26 | * SMTC has multiple microthread TCs pretending to be Linux CPUs. | ||
27 | * But there's only one Count/Compare pair per VPE, and Compare | ||
28 | * interrupts are taken opportunisitically by available TCs | ||
29 | * bound to the VPE with the Count register. The new timer | ||
30 | * framework provides for global broadcasts, but we really | ||
31 | * want VPE-level multicasts for best behavior. So instead | ||
32 | * of invoking the high-level clock-event broadcast code, | ||
33 | * this version of SMTC support uses the historical SMTC | ||
34 | * multicast mechanisms "under the hood", appearing to the | ||
35 | * generic clock layer as if the interrupts are per-CPU. | ||
36 | * | ||
37 | * The approach taken here is to maintain a set of NR_CPUS | ||
38 | * virtual timers, and track which "CPU" needs to be alerted | ||
39 | * at each event. | ||
40 | * | ||
41 | * It's unlikely that we'll see a MIPS MT core with more than | ||
42 | * 2 VPEs, but we *know* that we won't need to handle more | ||
43 | * VPEs than we have "CPUs". So NCPUs arrays of NCPUs elements | ||
44 | * is always going to be overkill, but always going to be enough. | ||
45 | */ | ||
46 | |||
47 | unsigned long smtc_nexttime[NR_CPUS][NR_CPUS]; | ||
48 | static int smtc_nextinvpe[NR_CPUS]; | ||
49 | |||
50 | /* | ||
51 | * Timestamps stored are absolute values to be programmed | ||
52 | * into Count register. Valid timestamps will never be zero. | ||
53 | * If a Zero Count value is actually calculated, it is converted | ||
54 | * to be a 1, which will introduce 1 or two CPU cycles of error | ||
55 | * roughly once every four billion events, which at 1000 HZ means | ||
56 | * about once every 50 days. If that's actually a problem, one | ||
57 | * could alternate squashing 0 to 1 and to -1. | ||
58 | */ | ||
59 | |||
60 | #define MAKEVALID(x) (((x) == 0L) ? 1L : (x)) | ||
61 | #define ISVALID(x) ((x) != 0L) | ||
62 | |||
63 | /* | ||
64 | * Time comparison is subtle, as it's really truncated | ||
65 | * modular arithmetic. | ||
66 | */ | ||
67 | |||
68 | #define IS_SOONER(a, b, reference) \ | ||
69 | (((a) - (unsigned long)(reference)) < ((b) - (unsigned long)(reference))) | ||
70 | |||
71 | /* | ||
72 | * CATCHUP_INCREMENT, used when the function falls behind the counter. | ||
73 | * Could be an increasing function instead of a constant; | ||
74 | */ | ||
75 | |||
76 | #define CATCHUP_INCREMENT 64 | ||
77 | |||
78 | static int mips_next_event(unsigned long delta, | ||
79 | struct clock_event_device *evt) | ||
80 | { | ||
81 | unsigned long flags; | ||
82 | unsigned int mtflags; | ||
83 | unsigned long timestamp, reference, previous; | ||
84 | unsigned long nextcomp = 0L; | ||
85 | int vpe = current_cpu_data.vpe_id; | ||
86 | int cpu = smp_processor_id(); | ||
87 | local_irq_save(flags); | ||
88 | mtflags = dmt(); | ||
89 | |||
90 | /* | ||
91 | * Maintain the per-TC virtual timer | ||
92 | * and program the per-VPE shared Count register | ||
93 | * as appropriate here... | ||
94 | */ | ||
95 | reference = (unsigned long)read_c0_count(); | ||
96 | timestamp = MAKEVALID(reference + delta); | ||
97 | /* | ||
98 | * To really model the clock, we have to catch the case | ||
99 | * where the current next-in-VPE timestamp is the old | ||
100 | * timestamp for the calling CPE, but the new value is | ||
101 | * in fact later. In that case, we have to do a full | ||
102 | * scan and discover the new next-in-VPE CPU id and | ||
103 | * timestamp. | ||
104 | */ | ||
105 | previous = smtc_nexttime[vpe][cpu]; | ||
106 | if (cpu == smtc_nextinvpe[vpe] && ISVALID(previous) | ||
107 | && IS_SOONER(previous, timestamp, reference)) { | ||
108 | int i; | ||
109 | int soonest = cpu; | ||
110 | |||
111 | /* | ||
112 | * Update timestamp array here, so that new | ||
113 | * value gets considered along with those of | ||
114 | * other virtual CPUs on the VPE. | ||
115 | */ | ||
116 | smtc_nexttime[vpe][cpu] = timestamp; | ||
117 | for_each_online_cpu(i) { | ||
118 | if (ISVALID(smtc_nexttime[vpe][i]) | ||
119 | && IS_SOONER(smtc_nexttime[vpe][i], | ||
120 | smtc_nexttime[vpe][soonest], reference)) { | ||
121 | soonest = i; | ||
122 | } | ||
123 | } | ||
124 | smtc_nextinvpe[vpe] = soonest; | ||
125 | nextcomp = smtc_nexttime[vpe][soonest]; | ||
126 | /* | ||
127 | * Otherwise, we don't have to process the whole array rank, | ||
128 | * we just have to see if the event horizon has gotten closer. | ||
129 | */ | ||
130 | } else { | ||
131 | if (!ISVALID(smtc_nexttime[vpe][smtc_nextinvpe[vpe]]) || | ||
132 | IS_SOONER(timestamp, | ||
133 | smtc_nexttime[vpe][smtc_nextinvpe[vpe]], reference)) { | ||
134 | smtc_nextinvpe[vpe] = cpu; | ||
135 | nextcomp = timestamp; | ||
136 | } | ||
137 | /* | ||
138 | * Since next-in-VPE may me the same as the executing | ||
139 | * virtual CPU, we update the array *after* checking | ||
140 | * its value. | ||
141 | */ | ||
142 | smtc_nexttime[vpe][cpu] = timestamp; | ||
143 | } | ||
144 | |||
145 | /* | ||
146 | * It may be that, in fact, we don't need to update Compare, | ||
147 | * but if we do, we want to make sure we didn't fall into | ||
148 | * a crack just behind Count. | ||
149 | */ | ||
150 | if (ISVALID(nextcomp)) { | ||
151 | write_c0_compare(nextcomp); | ||
152 | ehb(); | ||
153 | /* | ||
154 | * We never return an error, we just make sure | ||
155 | * that we trigger the handlers as quickly as | ||
156 | * we can if we fell behind. | ||
157 | */ | ||
158 | while ((nextcomp - (unsigned long)read_c0_count()) | ||
159 | > (unsigned long)LONG_MAX) { | ||
160 | nextcomp += CATCHUP_INCREMENT; | ||
161 | write_c0_compare(nextcomp); | ||
162 | ehb(); | ||
163 | } | ||
164 | } | ||
165 | emt(mtflags); | ||
166 | local_irq_restore(flags); | ||
167 | return 0; | ||
168 | } | ||
169 | |||
170 | |||
171 | void smtc_distribute_timer(int vpe) | ||
172 | { | ||
173 | unsigned long flags; | ||
174 | unsigned int mtflags; | ||
175 | int cpu; | ||
176 | struct clock_event_device *cd; | ||
177 | unsigned long nextstamp; | ||
178 | unsigned long reference; | ||
179 | |||
180 | |||
181 | repeat: | ||
182 | nextstamp = 0L; | ||
183 | for_each_online_cpu(cpu) { | ||
184 | /* | ||
185 | * Find virtual CPUs within the current VPE who have | ||
186 | * unserviced timer requests whose time is now past. | ||
187 | */ | ||
188 | local_irq_save(flags); | ||
189 | mtflags = dmt(); | ||
190 | if (cpu_data[cpu].vpe_id == vpe && | ||
191 | ISVALID(smtc_nexttime[vpe][cpu])) { | ||
192 | reference = (unsigned long)read_c0_count(); | ||
193 | if ((smtc_nexttime[vpe][cpu] - reference) | ||
194 | > (unsigned long)LONG_MAX) { | ||
195 | smtc_nexttime[vpe][cpu] = 0L; | ||
196 | emt(mtflags); | ||
197 | local_irq_restore(flags); | ||
198 | /* | ||
199 | * We don't send IPIs to ourself. | ||
200 | */ | ||
201 | if (cpu != smp_processor_id()) { | ||
202 | smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0); | ||
203 | } else { | ||
204 | cd = &per_cpu(mips_clockevent_device, cpu); | ||
205 | cd->event_handler(cd); | ||
206 | } | ||
207 | } else { | ||
208 | /* Local to VPE but Valid Time not yet reached. */ | ||
209 | if (!ISVALID(nextstamp) || | ||
210 | IS_SOONER(smtc_nexttime[vpe][cpu], nextstamp, | ||
211 | reference)) { | ||
212 | smtc_nextinvpe[vpe] = cpu; | ||
213 | nextstamp = smtc_nexttime[vpe][cpu]; | ||
214 | } | ||
215 | emt(mtflags); | ||
216 | local_irq_restore(flags); | ||
217 | } | ||
218 | } else { | ||
219 | emt(mtflags); | ||
220 | local_irq_restore(flags); | ||
221 | |||
222 | } | ||
223 | } | ||
224 | /* Reprogram for interrupt at next soonest timestamp for VPE */ | ||
225 | if (ISVALID(nextstamp)) { | ||
226 | write_c0_compare(nextstamp); | ||
227 | ehb(); | ||
228 | if ((nextstamp - (unsigned long)read_c0_count()) | ||
229 | > (unsigned long)LONG_MAX) | ||
230 | goto repeat; | ||
231 | } | ||
232 | } | ||
233 | |||
234 | |||
235 | irqreturn_t c0_compare_interrupt(int irq, void *dev_id) | ||
236 | { | ||
237 | int cpu = smp_processor_id(); | ||
238 | |||
239 | /* If we're running SMTC, we've got MIPS MT and therefore MIPS32R2 */ | ||
240 | handle_perf_irq(1); | ||
241 | |||
242 | if (read_c0_cause() & (1 << 30)) { | ||
243 | /* Clear Count/Compare Interrupt */ | ||
244 | write_c0_compare(read_c0_compare()); | ||
245 | smtc_distribute_timer(cpu_data[cpu].vpe_id); | ||
246 | } | ||
247 | return IRQ_HANDLED; | ||
248 | } | ||
249 | |||
250 | |||
251 | int smtc_clockevent_init(void) | ||
252 | { | ||
253 | uint64_t mips_freq = mips_hpt_frequency; | ||
254 | unsigned int cpu = smp_processor_id(); | ||
255 | struct clock_event_device *cd; | ||
256 | unsigned int irq; | ||
257 | int i; | ||
258 | int j; | ||
259 | |||
260 | if (!cpu_has_counter || !mips_hpt_frequency) | ||
261 | return -ENXIO; | ||
262 | if (cpu == 0) { | ||
263 | for (i = 0; i < num_possible_cpus(); i++) { | ||
264 | smtc_nextinvpe[i] = 0; | ||
265 | for (j = 0; j < num_possible_cpus(); j++) | ||
266 | smtc_nexttime[i][j] = 0L; | ||
267 | } | ||
268 | /* | ||
269 | * SMTC also can't have the usablility test | ||
270 | * run by secondary TCs once Compare is in use. | ||
271 | */ | ||
272 | if (!c0_compare_int_usable()) | ||
273 | return -ENXIO; | ||
274 | } | ||
275 | |||
276 | /* | ||
277 | * With vectored interrupts things are getting platform specific. | ||
278 | * get_c0_compare_int is a hook to allow a platform to return the | ||
279 | * interrupt number of it's liking. | ||
280 | */ | ||
281 | irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq; | ||
282 | if (get_c0_compare_int) | ||
283 | irq = get_c0_compare_int(); | ||
284 | |||
285 | cd = &per_cpu(mips_clockevent_device, cpu); | ||
286 | |||
287 | cd->name = "MIPS"; | ||
288 | cd->features = CLOCK_EVT_FEAT_ONESHOT; | ||
289 | |||
290 | /* Calculate the min / max delta */ | ||
291 | cd->mult = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32); | ||
292 | cd->shift = 32; | ||
293 | cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd); | ||
294 | cd->min_delta_ns = clockevent_delta2ns(0x300, cd); | ||
295 | |||
296 | cd->rating = 300; | ||
297 | cd->irq = irq; | ||
298 | cd->cpumask = cpumask_of(cpu); | ||
299 | cd->set_next_event = mips_next_event; | ||
300 | cd->set_mode = mips_set_clock_mode; | ||
301 | cd->event_handler = mips_event_handler; | ||
302 | |||
303 | clockevents_register_device(cd); | ||
304 | |||
305 | /* | ||
306 | * On SMTC we only want to do the data structure | ||
307 | * initialization and IRQ setup once. | ||
308 | */ | ||
309 | if (cpu) | ||
310 | return 0; | ||
311 | /* | ||
312 | * And we need the hwmask associated with the c0_compare | ||
313 | * vector to be initialized. | ||
314 | */ | ||
315 | irq_hwmask[irq] = (0x100 << cp0_compare_irq); | ||
316 | if (cp0_timer_irq_installed) | ||
317 | return 0; | ||
318 | |||
319 | cp0_timer_irq_installed = 1; | ||
320 | |||
321 | setup_irq(irq, &c0_compare_irqaction); | ||
322 | |||
323 | return 0; | ||
324 | } | ||