diff options
Diffstat (limited to 'arch/alpha/kernel/pci_iommu.c')
-rw-r--r-- | arch/alpha/kernel/pci_iommu.c | 971 |
1 files changed, 971 insertions, 0 deletions
diff --git a/arch/alpha/kernel/pci_iommu.c b/arch/alpha/kernel/pci_iommu.c new file mode 100644 index 000000000000..7cb23f12ecbd --- /dev/null +++ b/arch/alpha/kernel/pci_iommu.c | |||
@@ -0,0 +1,971 @@ | |||
1 | /* | ||
2 | * linux/arch/alpha/kernel/pci_iommu.c | ||
3 | */ | ||
4 | |||
5 | #include <linux/kernel.h> | ||
6 | #include <linux/mm.h> | ||
7 | #include <linux/pci.h> | ||
8 | #include <linux/slab.h> | ||
9 | #include <linux/bootmem.h> | ||
10 | |||
11 | #include <asm/io.h> | ||
12 | #include <asm/hwrpb.h> | ||
13 | |||
14 | #include "proto.h" | ||
15 | #include "pci_impl.h" | ||
16 | |||
17 | |||
18 | #define DEBUG_ALLOC 0 | ||
19 | #if DEBUG_ALLOC > 0 | ||
20 | # define DBGA(args...) printk(KERN_DEBUG args) | ||
21 | #else | ||
22 | # define DBGA(args...) | ||
23 | #endif | ||
24 | #if DEBUG_ALLOC > 1 | ||
25 | # define DBGA2(args...) printk(KERN_DEBUG args) | ||
26 | #else | ||
27 | # define DBGA2(args...) | ||
28 | #endif | ||
29 | |||
30 | #define DEBUG_NODIRECT 0 | ||
31 | #define DEBUG_FORCEDAC 0 | ||
32 | |||
33 | #define ISA_DMA_MASK 0x00ffffff | ||
34 | |||
35 | static inline unsigned long | ||
36 | mk_iommu_pte(unsigned long paddr) | ||
37 | { | ||
38 | return (paddr >> (PAGE_SHIFT-1)) | 1; | ||
39 | } | ||
40 | |||
41 | static inline long | ||
42 | calc_npages(long bytes) | ||
43 | { | ||
44 | return (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
45 | } | ||
46 | |||
47 | |||
48 | /* Return the minimum of MAX or the first power of two larger | ||
49 | than main memory. */ | ||
50 | |||
51 | unsigned long | ||
52 | size_for_memory(unsigned long max) | ||
53 | { | ||
54 | unsigned long mem = max_low_pfn << PAGE_SHIFT; | ||
55 | if (mem < max) | ||
56 | max = 1UL << ceil_log2(mem); | ||
57 | return max; | ||
58 | } | ||
59 | |||
60 | struct pci_iommu_arena * | ||
61 | iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base, | ||
62 | unsigned long window_size, unsigned long align) | ||
63 | { | ||
64 | unsigned long mem_size; | ||
65 | struct pci_iommu_arena *arena; | ||
66 | |||
67 | mem_size = window_size / (PAGE_SIZE / sizeof(unsigned long)); | ||
68 | |||
69 | /* Note that the TLB lookup logic uses bitwise concatenation, | ||
70 | not addition, so the required arena alignment is based on | ||
71 | the size of the window. Retain the align parameter so that | ||
72 | particular systems can over-align the arena. */ | ||
73 | if (align < mem_size) | ||
74 | align = mem_size; | ||
75 | |||
76 | |||
77 | #ifdef CONFIG_DISCONTIGMEM | ||
78 | |||
79 | if (!NODE_DATA(nid) || | ||
80 | (NULL == (arena = alloc_bootmem_node(NODE_DATA(nid), | ||
81 | sizeof(*arena))))) { | ||
82 | printk("%s: couldn't allocate arena from node %d\n" | ||
83 | " falling back to system-wide allocation\n", | ||
84 | __FUNCTION__, nid); | ||
85 | arena = alloc_bootmem(sizeof(*arena)); | ||
86 | } | ||
87 | |||
88 | if (!NODE_DATA(nid) || | ||
89 | (NULL == (arena->ptes = __alloc_bootmem_node(NODE_DATA(nid), | ||
90 | mem_size, | ||
91 | align, | ||
92 | 0)))) { | ||
93 | printk("%s: couldn't allocate arena ptes from node %d\n" | ||
94 | " falling back to system-wide allocation\n", | ||
95 | __FUNCTION__, nid); | ||
96 | arena->ptes = __alloc_bootmem(mem_size, align, 0); | ||
97 | } | ||
98 | |||
99 | #else /* CONFIG_DISCONTIGMEM */ | ||
100 | |||
101 | arena = alloc_bootmem(sizeof(*arena)); | ||
102 | arena->ptes = __alloc_bootmem(mem_size, align, 0); | ||
103 | |||
104 | #endif /* CONFIG_DISCONTIGMEM */ | ||
105 | |||
106 | spin_lock_init(&arena->lock); | ||
107 | arena->hose = hose; | ||
108 | arena->dma_base = base; | ||
109 | arena->size = window_size; | ||
110 | arena->next_entry = 0; | ||
111 | |||
112 | /* Align allocations to a multiple of a page size. Not needed | ||
113 | unless there are chip bugs. */ | ||
114 | arena->align_entry = 1; | ||
115 | |||
116 | return arena; | ||
117 | } | ||
118 | |||
119 | struct pci_iommu_arena * | ||
120 | iommu_arena_new(struct pci_controller *hose, dma_addr_t base, | ||
121 | unsigned long window_size, unsigned long align) | ||
122 | { | ||
123 | return iommu_arena_new_node(0, hose, base, window_size, align); | ||
124 | } | ||
125 | |||
126 | /* Must be called with the arena lock held */ | ||
127 | static long | ||
128 | iommu_arena_find_pages(struct pci_iommu_arena *arena, long n, long mask) | ||
129 | { | ||
130 | unsigned long *ptes; | ||
131 | long i, p, nent; | ||
132 | |||
133 | /* Search forward for the first mask-aligned sequence of N free ptes */ | ||
134 | ptes = arena->ptes; | ||
135 | nent = arena->size >> PAGE_SHIFT; | ||
136 | p = (arena->next_entry + mask) & ~mask; | ||
137 | i = 0; | ||
138 | while (i < n && p+i < nent) { | ||
139 | if (ptes[p+i]) | ||
140 | p = (p + i + 1 + mask) & ~mask, i = 0; | ||
141 | else | ||
142 | i = i + 1; | ||
143 | } | ||
144 | |||
145 | if (i < n) { | ||
146 | /* Reached the end. Flush the TLB and restart the | ||
147 | search from the beginning. */ | ||
148 | alpha_mv.mv_pci_tbi(arena->hose, 0, -1); | ||
149 | |||
150 | p = 0, i = 0; | ||
151 | while (i < n && p+i < nent) { | ||
152 | if (ptes[p+i]) | ||
153 | p = (p + i + 1 + mask) & ~mask, i = 0; | ||
154 | else | ||
155 | i = i + 1; | ||
156 | } | ||
157 | |||
158 | if (i < n) | ||
159 | return -1; | ||
160 | } | ||
161 | |||
162 | /* Success. It's the responsibility of the caller to mark them | ||
163 | in use before releasing the lock */ | ||
164 | return p; | ||
165 | } | ||
166 | |||
167 | static long | ||
168 | iommu_arena_alloc(struct pci_iommu_arena *arena, long n, unsigned int align) | ||
169 | { | ||
170 | unsigned long flags; | ||
171 | unsigned long *ptes; | ||
172 | long i, p, mask; | ||
173 | |||
174 | spin_lock_irqsave(&arena->lock, flags); | ||
175 | |||
176 | /* Search for N empty ptes */ | ||
177 | ptes = arena->ptes; | ||
178 | mask = max(align, arena->align_entry) - 1; | ||
179 | p = iommu_arena_find_pages(arena, n, mask); | ||
180 | if (p < 0) { | ||
181 | spin_unlock_irqrestore(&arena->lock, flags); | ||
182 | return -1; | ||
183 | } | ||
184 | |||
185 | /* Success. Mark them all in use, ie not zero and invalid | ||
186 | for the iommu tlb that could load them from under us. | ||
187 | The chip specific bits will fill this in with something | ||
188 | kosher when we return. */ | ||
189 | for (i = 0; i < n; ++i) | ||
190 | ptes[p+i] = IOMMU_INVALID_PTE; | ||
191 | |||
192 | arena->next_entry = p + n; | ||
193 | spin_unlock_irqrestore(&arena->lock, flags); | ||
194 | |||
195 | return p; | ||
196 | } | ||
197 | |||
198 | static void | ||
199 | iommu_arena_free(struct pci_iommu_arena *arena, long ofs, long n) | ||
200 | { | ||
201 | unsigned long *p; | ||
202 | long i; | ||
203 | |||
204 | p = arena->ptes + ofs; | ||
205 | for (i = 0; i < n; ++i) | ||
206 | p[i] = 0; | ||
207 | } | ||
208 | |||
209 | /* Map a single buffer of the indicated size for PCI DMA in streaming | ||
210 | mode. The 32-bit PCI bus mastering address to use is returned. | ||
211 | Once the device is given the dma address, the device owns this memory | ||
212 | until either pci_unmap_single or pci_dma_sync_single is performed. */ | ||
213 | |||
214 | static dma_addr_t | ||
215 | pci_map_single_1(struct pci_dev *pdev, void *cpu_addr, size_t size, | ||
216 | int dac_allowed) | ||
217 | { | ||
218 | struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; | ||
219 | dma_addr_t max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; | ||
220 | struct pci_iommu_arena *arena; | ||
221 | long npages, dma_ofs, i; | ||
222 | unsigned long paddr; | ||
223 | dma_addr_t ret; | ||
224 | unsigned int align = 0; | ||
225 | |||
226 | paddr = __pa(cpu_addr); | ||
227 | |||
228 | #if !DEBUG_NODIRECT | ||
229 | /* First check to see if we can use the direct map window. */ | ||
230 | if (paddr + size + __direct_map_base - 1 <= max_dma | ||
231 | && paddr + size <= __direct_map_size) { | ||
232 | ret = paddr + __direct_map_base; | ||
233 | |||
234 | DBGA2("pci_map_single: [%p,%lx] -> direct %lx from %p\n", | ||
235 | cpu_addr, size, ret, __builtin_return_address(0)); | ||
236 | |||
237 | return ret; | ||
238 | } | ||
239 | #endif | ||
240 | |||
241 | /* Next, use DAC if selected earlier. */ | ||
242 | if (dac_allowed) { | ||
243 | ret = paddr + alpha_mv.pci_dac_offset; | ||
244 | |||
245 | DBGA2("pci_map_single: [%p,%lx] -> DAC %lx from %p\n", | ||
246 | cpu_addr, size, ret, __builtin_return_address(0)); | ||
247 | |||
248 | return ret; | ||
249 | } | ||
250 | |||
251 | /* If the machine doesn't define a pci_tbi routine, we have to | ||
252 | assume it doesn't support sg mapping, and, since we tried to | ||
253 | use direct_map above, it now must be considered an error. */ | ||
254 | if (! alpha_mv.mv_pci_tbi) { | ||
255 | static int been_here = 0; /* Only print the message once. */ | ||
256 | if (!been_here) { | ||
257 | printk(KERN_WARNING "pci_map_single: no HW sg\n"); | ||
258 | been_here = 1; | ||
259 | } | ||
260 | return 0; | ||
261 | } | ||
262 | |||
263 | arena = hose->sg_pci; | ||
264 | if (!arena || arena->dma_base + arena->size - 1 > max_dma) | ||
265 | arena = hose->sg_isa; | ||
266 | |||
267 | npages = calc_npages((paddr & ~PAGE_MASK) + size); | ||
268 | |||
269 | /* Force allocation to 64KB boundary for ISA bridges. */ | ||
270 | if (pdev && pdev == isa_bridge) | ||
271 | align = 8; | ||
272 | dma_ofs = iommu_arena_alloc(arena, npages, align); | ||
273 | if (dma_ofs < 0) { | ||
274 | printk(KERN_WARNING "pci_map_single failed: " | ||
275 | "could not allocate dma page tables\n"); | ||
276 | return 0; | ||
277 | } | ||
278 | |||
279 | paddr &= PAGE_MASK; | ||
280 | for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) | ||
281 | arena->ptes[i + dma_ofs] = mk_iommu_pte(paddr); | ||
282 | |||
283 | ret = arena->dma_base + dma_ofs * PAGE_SIZE; | ||
284 | ret += (unsigned long)cpu_addr & ~PAGE_MASK; | ||
285 | |||
286 | DBGA2("pci_map_single: [%p,%lx] np %ld -> sg %lx from %p\n", | ||
287 | cpu_addr, size, npages, ret, __builtin_return_address(0)); | ||
288 | |||
289 | return ret; | ||
290 | } | ||
291 | |||
292 | dma_addr_t | ||
293 | pci_map_single(struct pci_dev *pdev, void *cpu_addr, size_t size, int dir) | ||
294 | { | ||
295 | int dac_allowed; | ||
296 | |||
297 | if (dir == PCI_DMA_NONE) | ||
298 | BUG(); | ||
299 | |||
300 | dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; | ||
301 | return pci_map_single_1(pdev, cpu_addr, size, dac_allowed); | ||
302 | } | ||
303 | |||
304 | dma_addr_t | ||
305 | pci_map_page(struct pci_dev *pdev, struct page *page, unsigned long offset, | ||
306 | size_t size, int dir) | ||
307 | { | ||
308 | int dac_allowed; | ||
309 | |||
310 | if (dir == PCI_DMA_NONE) | ||
311 | BUG(); | ||
312 | |||
313 | dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; | ||
314 | return pci_map_single_1(pdev, (char *)page_address(page) + offset, | ||
315 | size, dac_allowed); | ||
316 | } | ||
317 | |||
318 | /* Unmap a single streaming mode DMA translation. The DMA_ADDR and | ||
319 | SIZE must match what was provided for in a previous pci_map_single | ||
320 | call. All other usages are undefined. After this call, reads by | ||
321 | the cpu to the buffer are guaranteed to see whatever the device | ||
322 | wrote there. */ | ||
323 | |||
324 | void | ||
325 | pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr, size_t size, | ||
326 | int direction) | ||
327 | { | ||
328 | unsigned long flags; | ||
329 | struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; | ||
330 | struct pci_iommu_arena *arena; | ||
331 | long dma_ofs, npages; | ||
332 | |||
333 | if (direction == PCI_DMA_NONE) | ||
334 | BUG(); | ||
335 | |||
336 | if (dma_addr >= __direct_map_base | ||
337 | && dma_addr < __direct_map_base + __direct_map_size) { | ||
338 | /* Nothing to do. */ | ||
339 | |||
340 | DBGA2("pci_unmap_single: direct [%lx,%lx] from %p\n", | ||
341 | dma_addr, size, __builtin_return_address(0)); | ||
342 | |||
343 | return; | ||
344 | } | ||
345 | |||
346 | if (dma_addr > 0xffffffff) { | ||
347 | DBGA2("pci64_unmap_single: DAC [%lx,%lx] from %p\n", | ||
348 | dma_addr, size, __builtin_return_address(0)); | ||
349 | return; | ||
350 | } | ||
351 | |||
352 | arena = hose->sg_pci; | ||
353 | if (!arena || dma_addr < arena->dma_base) | ||
354 | arena = hose->sg_isa; | ||
355 | |||
356 | dma_ofs = (dma_addr - arena->dma_base) >> PAGE_SHIFT; | ||
357 | if (dma_ofs * PAGE_SIZE >= arena->size) { | ||
358 | printk(KERN_ERR "Bogus pci_unmap_single: dma_addr %lx " | ||
359 | " base %lx size %x\n", dma_addr, arena->dma_base, | ||
360 | arena->size); | ||
361 | return; | ||
362 | BUG(); | ||
363 | } | ||
364 | |||
365 | npages = calc_npages((dma_addr & ~PAGE_MASK) + size); | ||
366 | |||
367 | spin_lock_irqsave(&arena->lock, flags); | ||
368 | |||
369 | iommu_arena_free(arena, dma_ofs, npages); | ||
370 | |||
371 | /* If we're freeing ptes above the `next_entry' pointer (they | ||
372 | may have snuck back into the TLB since the last wrap flush), | ||
373 | we need to flush the TLB before reallocating the latter. */ | ||
374 | if (dma_ofs >= arena->next_entry) | ||
375 | alpha_mv.mv_pci_tbi(hose, dma_addr, dma_addr + size - 1); | ||
376 | |||
377 | spin_unlock_irqrestore(&arena->lock, flags); | ||
378 | |||
379 | DBGA2("pci_unmap_single: sg [%lx,%lx] np %ld from %p\n", | ||
380 | dma_addr, size, npages, __builtin_return_address(0)); | ||
381 | } | ||
382 | |||
383 | void | ||
384 | pci_unmap_page(struct pci_dev *pdev, dma_addr_t dma_addr, | ||
385 | size_t size, int direction) | ||
386 | { | ||
387 | pci_unmap_single(pdev, dma_addr, size, direction); | ||
388 | } | ||
389 | |||
390 | /* Allocate and map kernel buffer using consistent mode DMA for PCI | ||
391 | device. Returns non-NULL cpu-view pointer to the buffer if | ||
392 | successful and sets *DMA_ADDRP to the pci side dma address as well, | ||
393 | else DMA_ADDRP is undefined. */ | ||
394 | |||
395 | void * | ||
396 | pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp) | ||
397 | { | ||
398 | void *cpu_addr; | ||
399 | long order = get_order(size); | ||
400 | int gfp = GFP_ATOMIC; | ||
401 | |||
402 | try_again: | ||
403 | cpu_addr = (void *)__get_free_pages(gfp, order); | ||
404 | if (! cpu_addr) { | ||
405 | printk(KERN_INFO "pci_alloc_consistent: " | ||
406 | "get_free_pages failed from %p\n", | ||
407 | __builtin_return_address(0)); | ||
408 | /* ??? Really atomic allocation? Otherwise we could play | ||
409 | with vmalloc and sg if we can't find contiguous memory. */ | ||
410 | return NULL; | ||
411 | } | ||
412 | memset(cpu_addr, 0, size); | ||
413 | |||
414 | *dma_addrp = pci_map_single_1(pdev, cpu_addr, size, 0); | ||
415 | if (*dma_addrp == 0) { | ||
416 | free_pages((unsigned long)cpu_addr, order); | ||
417 | if (alpha_mv.mv_pci_tbi || (gfp & GFP_DMA)) | ||
418 | return NULL; | ||
419 | /* The address doesn't fit required mask and we | ||
420 | do not have iommu. Try again with GFP_DMA. */ | ||
421 | gfp |= GFP_DMA; | ||
422 | goto try_again; | ||
423 | } | ||
424 | |||
425 | DBGA2("pci_alloc_consistent: %lx -> [%p,%x] from %p\n", | ||
426 | size, cpu_addr, *dma_addrp, __builtin_return_address(0)); | ||
427 | |||
428 | return cpu_addr; | ||
429 | } | ||
430 | |||
431 | /* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must | ||
432 | be values that were returned from pci_alloc_consistent. SIZE must | ||
433 | be the same as what as passed into pci_alloc_consistent. | ||
434 | References to the memory and mappings associated with CPU_ADDR or | ||
435 | DMA_ADDR past this call are illegal. */ | ||
436 | |||
437 | void | ||
438 | pci_free_consistent(struct pci_dev *pdev, size_t size, void *cpu_addr, | ||
439 | dma_addr_t dma_addr) | ||
440 | { | ||
441 | pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL); | ||
442 | free_pages((unsigned long)cpu_addr, get_order(size)); | ||
443 | |||
444 | DBGA2("pci_free_consistent: [%x,%lx] from %p\n", | ||
445 | dma_addr, size, __builtin_return_address(0)); | ||
446 | } | ||
447 | |||
448 | |||
449 | /* Classify the elements of the scatterlist. Write dma_address | ||
450 | of each element with: | ||
451 | 0 : Followers all physically adjacent. | ||
452 | 1 : Followers all virtually adjacent. | ||
453 | -1 : Not leader, physically adjacent to previous. | ||
454 | -2 : Not leader, virtually adjacent to previous. | ||
455 | Write dma_length of each leader with the combined lengths of | ||
456 | the mergable followers. */ | ||
457 | |||
458 | #define SG_ENT_VIRT_ADDRESS(SG) (page_address((SG)->page) + (SG)->offset) | ||
459 | #define SG_ENT_PHYS_ADDRESS(SG) __pa(SG_ENT_VIRT_ADDRESS(SG)) | ||
460 | |||
461 | static void | ||
462 | sg_classify(struct scatterlist *sg, struct scatterlist *end, int virt_ok) | ||
463 | { | ||
464 | unsigned long next_paddr; | ||
465 | struct scatterlist *leader; | ||
466 | long leader_flag, leader_length; | ||
467 | |||
468 | leader = sg; | ||
469 | leader_flag = 0; | ||
470 | leader_length = leader->length; | ||
471 | next_paddr = SG_ENT_PHYS_ADDRESS(leader) + leader_length; | ||
472 | |||
473 | for (++sg; sg < end; ++sg) { | ||
474 | unsigned long addr, len; | ||
475 | addr = SG_ENT_PHYS_ADDRESS(sg); | ||
476 | len = sg->length; | ||
477 | |||
478 | if (next_paddr == addr) { | ||
479 | sg->dma_address = -1; | ||
480 | leader_length += len; | ||
481 | } else if (((next_paddr | addr) & ~PAGE_MASK) == 0 && virt_ok) { | ||
482 | sg->dma_address = -2; | ||
483 | leader_flag = 1; | ||
484 | leader_length += len; | ||
485 | } else { | ||
486 | leader->dma_address = leader_flag; | ||
487 | leader->dma_length = leader_length; | ||
488 | leader = sg; | ||
489 | leader_flag = 0; | ||
490 | leader_length = len; | ||
491 | } | ||
492 | |||
493 | next_paddr = addr + len; | ||
494 | } | ||
495 | |||
496 | leader->dma_address = leader_flag; | ||
497 | leader->dma_length = leader_length; | ||
498 | } | ||
499 | |||
500 | /* Given a scatterlist leader, choose an allocation method and fill | ||
501 | in the blanks. */ | ||
502 | |||
503 | static int | ||
504 | sg_fill(struct scatterlist *leader, struct scatterlist *end, | ||
505 | struct scatterlist *out, struct pci_iommu_arena *arena, | ||
506 | dma_addr_t max_dma, int dac_allowed) | ||
507 | { | ||
508 | unsigned long paddr = SG_ENT_PHYS_ADDRESS(leader); | ||
509 | long size = leader->dma_length; | ||
510 | struct scatterlist *sg; | ||
511 | unsigned long *ptes; | ||
512 | long npages, dma_ofs, i; | ||
513 | |||
514 | #if !DEBUG_NODIRECT | ||
515 | /* If everything is physically contiguous, and the addresses | ||
516 | fall into the direct-map window, use it. */ | ||
517 | if (leader->dma_address == 0 | ||
518 | && paddr + size + __direct_map_base - 1 <= max_dma | ||
519 | && paddr + size <= __direct_map_size) { | ||
520 | out->dma_address = paddr + __direct_map_base; | ||
521 | out->dma_length = size; | ||
522 | |||
523 | DBGA(" sg_fill: [%p,%lx] -> direct %lx\n", | ||
524 | __va(paddr), size, out->dma_address); | ||
525 | |||
526 | return 0; | ||
527 | } | ||
528 | #endif | ||
529 | |||
530 | /* If physically contiguous and DAC is available, use it. */ | ||
531 | if (leader->dma_address == 0 && dac_allowed) { | ||
532 | out->dma_address = paddr + alpha_mv.pci_dac_offset; | ||
533 | out->dma_length = size; | ||
534 | |||
535 | DBGA(" sg_fill: [%p,%lx] -> DAC %lx\n", | ||
536 | __va(paddr), size, out->dma_address); | ||
537 | |||
538 | return 0; | ||
539 | } | ||
540 | |||
541 | /* Otherwise, we'll use the iommu to make the pages virtually | ||
542 | contiguous. */ | ||
543 | |||
544 | paddr &= ~PAGE_MASK; | ||
545 | npages = calc_npages(paddr + size); | ||
546 | dma_ofs = iommu_arena_alloc(arena, npages, 0); | ||
547 | if (dma_ofs < 0) { | ||
548 | /* If we attempted a direct map above but failed, die. */ | ||
549 | if (leader->dma_address == 0) | ||
550 | return -1; | ||
551 | |||
552 | /* Otherwise, break up the remaining virtually contiguous | ||
553 | hunks into individual direct maps and retry. */ | ||
554 | sg_classify(leader, end, 0); | ||
555 | return sg_fill(leader, end, out, arena, max_dma, dac_allowed); | ||
556 | } | ||
557 | |||
558 | out->dma_address = arena->dma_base + dma_ofs*PAGE_SIZE + paddr; | ||
559 | out->dma_length = size; | ||
560 | |||
561 | DBGA(" sg_fill: [%p,%lx] -> sg %lx np %ld\n", | ||
562 | __va(paddr), size, out->dma_address, npages); | ||
563 | |||
564 | /* All virtually contiguous. We need to find the length of each | ||
565 | physically contiguous subsegment to fill in the ptes. */ | ||
566 | ptes = &arena->ptes[dma_ofs]; | ||
567 | sg = leader; | ||
568 | do { | ||
569 | #if DEBUG_ALLOC > 0 | ||
570 | struct scatterlist *last_sg = sg; | ||
571 | #endif | ||
572 | |||
573 | size = sg->length; | ||
574 | paddr = SG_ENT_PHYS_ADDRESS(sg); | ||
575 | |||
576 | while (sg+1 < end && (int) sg[1].dma_address == -1) { | ||
577 | size += sg[1].length; | ||
578 | sg++; | ||
579 | } | ||
580 | |||
581 | npages = calc_npages((paddr & ~PAGE_MASK) + size); | ||
582 | |||
583 | paddr &= PAGE_MASK; | ||
584 | for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) | ||
585 | *ptes++ = mk_iommu_pte(paddr); | ||
586 | |||
587 | #if DEBUG_ALLOC > 0 | ||
588 | DBGA(" (%ld) [%p,%x] np %ld\n", | ||
589 | last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), | ||
590 | last_sg->length, npages); | ||
591 | while (++last_sg <= sg) { | ||
592 | DBGA(" (%ld) [%p,%x] cont\n", | ||
593 | last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), | ||
594 | last_sg->length); | ||
595 | } | ||
596 | #endif | ||
597 | } while (++sg < end && (int) sg->dma_address < 0); | ||
598 | |||
599 | return 1; | ||
600 | } | ||
601 | |||
602 | int | ||
603 | pci_map_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, | ||
604 | int direction) | ||
605 | { | ||
606 | struct scatterlist *start, *end, *out; | ||
607 | struct pci_controller *hose; | ||
608 | struct pci_iommu_arena *arena; | ||
609 | dma_addr_t max_dma; | ||
610 | int dac_allowed; | ||
611 | |||
612 | if (direction == PCI_DMA_NONE) | ||
613 | BUG(); | ||
614 | |||
615 | dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; | ||
616 | |||
617 | /* Fast path single entry scatterlists. */ | ||
618 | if (nents == 1) { | ||
619 | sg->dma_length = sg->length; | ||
620 | sg->dma_address | ||
621 | = pci_map_single_1(pdev, SG_ENT_VIRT_ADDRESS(sg), | ||
622 | sg->length, dac_allowed); | ||
623 | return sg->dma_address != 0; | ||
624 | } | ||
625 | |||
626 | start = sg; | ||
627 | end = sg + nents; | ||
628 | |||
629 | /* First, prepare information about the entries. */ | ||
630 | sg_classify(sg, end, alpha_mv.mv_pci_tbi != 0); | ||
631 | |||
632 | /* Second, figure out where we're going to map things. */ | ||
633 | if (alpha_mv.mv_pci_tbi) { | ||
634 | hose = pdev ? pdev->sysdata : pci_isa_hose; | ||
635 | max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; | ||
636 | arena = hose->sg_pci; | ||
637 | if (!arena || arena->dma_base + arena->size - 1 > max_dma) | ||
638 | arena = hose->sg_isa; | ||
639 | } else { | ||
640 | max_dma = -1; | ||
641 | arena = NULL; | ||
642 | hose = NULL; | ||
643 | } | ||
644 | |||
645 | /* Third, iterate over the scatterlist leaders and allocate | ||
646 | dma space as needed. */ | ||
647 | for (out = sg; sg < end; ++sg) { | ||
648 | if ((int) sg->dma_address < 0) | ||
649 | continue; | ||
650 | if (sg_fill(sg, end, out, arena, max_dma, dac_allowed) < 0) | ||
651 | goto error; | ||
652 | out++; | ||
653 | } | ||
654 | |||
655 | /* Mark the end of the list for pci_unmap_sg. */ | ||
656 | if (out < end) | ||
657 | out->dma_length = 0; | ||
658 | |||
659 | if (out - start == 0) | ||
660 | printk(KERN_WARNING "pci_map_sg failed: no entries?\n"); | ||
661 | DBGA("pci_map_sg: %ld entries\n", out - start); | ||
662 | |||
663 | return out - start; | ||
664 | |||
665 | error: | ||
666 | printk(KERN_WARNING "pci_map_sg failed: " | ||
667 | "could not allocate dma page tables\n"); | ||
668 | |||
669 | /* Some allocation failed while mapping the scatterlist | ||
670 | entries. Unmap them now. */ | ||
671 | if (out > start) | ||
672 | pci_unmap_sg(pdev, start, out - start, direction); | ||
673 | return 0; | ||
674 | } | ||
675 | |||
676 | /* Unmap a set of streaming mode DMA translations. Again, cpu read | ||
677 | rules concerning calls here are the same as for pci_unmap_single() | ||
678 | above. */ | ||
679 | |||
680 | void | ||
681 | pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, | ||
682 | int direction) | ||
683 | { | ||
684 | unsigned long flags; | ||
685 | struct pci_controller *hose; | ||
686 | struct pci_iommu_arena *arena; | ||
687 | struct scatterlist *end; | ||
688 | dma_addr_t max_dma; | ||
689 | dma_addr_t fbeg, fend; | ||
690 | |||
691 | if (direction == PCI_DMA_NONE) | ||
692 | BUG(); | ||
693 | |||
694 | if (! alpha_mv.mv_pci_tbi) | ||
695 | return; | ||
696 | |||
697 | hose = pdev ? pdev->sysdata : pci_isa_hose; | ||
698 | max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; | ||
699 | arena = hose->sg_pci; | ||
700 | if (!arena || arena->dma_base + arena->size - 1 > max_dma) | ||
701 | arena = hose->sg_isa; | ||
702 | |||
703 | fbeg = -1, fend = 0; | ||
704 | |||
705 | spin_lock_irqsave(&arena->lock, flags); | ||
706 | |||
707 | for (end = sg + nents; sg < end; ++sg) { | ||
708 | dma64_addr_t addr; | ||
709 | size_t size; | ||
710 | long npages, ofs; | ||
711 | dma_addr_t tend; | ||
712 | |||
713 | addr = sg->dma_address; | ||
714 | size = sg->dma_length; | ||
715 | if (!size) | ||
716 | break; | ||
717 | |||
718 | if (addr > 0xffffffff) { | ||
719 | /* It's a DAC address -- nothing to do. */ | ||
720 | DBGA(" (%ld) DAC [%lx,%lx]\n", | ||
721 | sg - end + nents, addr, size); | ||
722 | continue; | ||
723 | } | ||
724 | |||
725 | if (addr >= __direct_map_base | ||
726 | && addr < __direct_map_base + __direct_map_size) { | ||
727 | /* Nothing to do. */ | ||
728 | DBGA(" (%ld) direct [%lx,%lx]\n", | ||
729 | sg - end + nents, addr, size); | ||
730 | continue; | ||
731 | } | ||
732 | |||
733 | DBGA(" (%ld) sg [%lx,%lx]\n", | ||
734 | sg - end + nents, addr, size); | ||
735 | |||
736 | npages = calc_npages((addr & ~PAGE_MASK) + size); | ||
737 | ofs = (addr - arena->dma_base) >> PAGE_SHIFT; | ||
738 | iommu_arena_free(arena, ofs, npages); | ||
739 | |||
740 | tend = addr + size - 1; | ||
741 | if (fbeg > addr) fbeg = addr; | ||
742 | if (fend < tend) fend = tend; | ||
743 | } | ||
744 | |||
745 | /* If we're freeing ptes above the `next_entry' pointer (they | ||
746 | may have snuck back into the TLB since the last wrap flush), | ||
747 | we need to flush the TLB before reallocating the latter. */ | ||
748 | if ((fend - arena->dma_base) >> PAGE_SHIFT >= arena->next_entry) | ||
749 | alpha_mv.mv_pci_tbi(hose, fbeg, fend); | ||
750 | |||
751 | spin_unlock_irqrestore(&arena->lock, flags); | ||
752 | |||
753 | DBGA("pci_unmap_sg: %ld entries\n", nents - (end - sg)); | ||
754 | } | ||
755 | |||
756 | |||
757 | /* Return whether the given PCI device DMA address mask can be | ||
758 | supported properly. */ | ||
759 | |||
760 | int | ||
761 | pci_dma_supported(struct pci_dev *pdev, u64 mask) | ||
762 | { | ||
763 | struct pci_controller *hose; | ||
764 | struct pci_iommu_arena *arena; | ||
765 | |||
766 | /* If there exists a direct map, and the mask fits either | ||
767 | the entire direct mapped space or the total system memory as | ||
768 | shifted by the map base */ | ||
769 | if (__direct_map_size != 0 | ||
770 | && (__direct_map_base + __direct_map_size - 1 <= mask || | ||
771 | __direct_map_base + (max_low_pfn << PAGE_SHIFT) - 1 <= mask)) | ||
772 | return 1; | ||
773 | |||
774 | /* Check that we have a scatter-gather arena that fits. */ | ||
775 | hose = pdev ? pdev->sysdata : pci_isa_hose; | ||
776 | arena = hose->sg_isa; | ||
777 | if (arena && arena->dma_base + arena->size - 1 <= mask) | ||
778 | return 1; | ||
779 | arena = hose->sg_pci; | ||
780 | if (arena && arena->dma_base + arena->size - 1 <= mask) | ||
781 | return 1; | ||
782 | |||
783 | /* As last resort try ZONE_DMA. */ | ||
784 | if (!__direct_map_base && MAX_DMA_ADDRESS - IDENT_ADDR - 1 <= mask) | ||
785 | return 1; | ||
786 | |||
787 | return 0; | ||
788 | } | ||
789 | |||
790 | |||
791 | /* | ||
792 | * AGP GART extensions to the IOMMU | ||
793 | */ | ||
794 | int | ||
795 | iommu_reserve(struct pci_iommu_arena *arena, long pg_count, long align_mask) | ||
796 | { | ||
797 | unsigned long flags; | ||
798 | unsigned long *ptes; | ||
799 | long i, p; | ||
800 | |||
801 | if (!arena) return -EINVAL; | ||
802 | |||
803 | spin_lock_irqsave(&arena->lock, flags); | ||
804 | |||
805 | /* Search for N empty ptes. */ | ||
806 | ptes = arena->ptes; | ||
807 | p = iommu_arena_find_pages(arena, pg_count, align_mask); | ||
808 | if (p < 0) { | ||
809 | spin_unlock_irqrestore(&arena->lock, flags); | ||
810 | return -1; | ||
811 | } | ||
812 | |||
813 | /* Success. Mark them all reserved (ie not zero and invalid) | ||
814 | for the iommu tlb that could load them from under us. | ||
815 | They will be filled in with valid bits by _bind() */ | ||
816 | for (i = 0; i < pg_count; ++i) | ||
817 | ptes[p+i] = IOMMU_RESERVED_PTE; | ||
818 | |||
819 | arena->next_entry = p + pg_count; | ||
820 | spin_unlock_irqrestore(&arena->lock, flags); | ||
821 | |||
822 | return p; | ||
823 | } | ||
824 | |||
825 | int | ||
826 | iommu_release(struct pci_iommu_arena *arena, long pg_start, long pg_count) | ||
827 | { | ||
828 | unsigned long *ptes; | ||
829 | long i; | ||
830 | |||
831 | if (!arena) return -EINVAL; | ||
832 | |||
833 | ptes = arena->ptes; | ||
834 | |||
835 | /* Make sure they're all reserved first... */ | ||
836 | for(i = pg_start; i < pg_start + pg_count; i++) | ||
837 | if (ptes[i] != IOMMU_RESERVED_PTE) | ||
838 | return -EBUSY; | ||
839 | |||
840 | iommu_arena_free(arena, pg_start, pg_count); | ||
841 | return 0; | ||
842 | } | ||
843 | |||
844 | int | ||
845 | iommu_bind(struct pci_iommu_arena *arena, long pg_start, long pg_count, | ||
846 | unsigned long *physaddrs) | ||
847 | { | ||
848 | unsigned long flags; | ||
849 | unsigned long *ptes; | ||
850 | long i, j; | ||
851 | |||
852 | if (!arena) return -EINVAL; | ||
853 | |||
854 | spin_lock_irqsave(&arena->lock, flags); | ||
855 | |||
856 | ptes = arena->ptes; | ||
857 | |||
858 | for(j = pg_start; j < pg_start + pg_count; j++) { | ||
859 | if (ptes[j] != IOMMU_RESERVED_PTE) { | ||
860 | spin_unlock_irqrestore(&arena->lock, flags); | ||
861 | return -EBUSY; | ||
862 | } | ||
863 | } | ||
864 | |||
865 | for(i = 0, j = pg_start; i < pg_count; i++, j++) | ||
866 | ptes[j] = mk_iommu_pte(physaddrs[i]); | ||
867 | |||
868 | spin_unlock_irqrestore(&arena->lock, flags); | ||
869 | |||
870 | return 0; | ||
871 | } | ||
872 | |||
873 | int | ||
874 | iommu_unbind(struct pci_iommu_arena *arena, long pg_start, long pg_count) | ||
875 | { | ||
876 | unsigned long *p; | ||
877 | long i; | ||
878 | |||
879 | if (!arena) return -EINVAL; | ||
880 | |||
881 | p = arena->ptes + pg_start; | ||
882 | for(i = 0; i < pg_count; i++) | ||
883 | p[i] = IOMMU_RESERVED_PTE; | ||
884 | |||
885 | return 0; | ||
886 | } | ||
887 | |||
888 | /* True if the machine supports DAC addressing, and DEV can | ||
889 | make use of it given MASK. */ | ||
890 | |||
891 | int | ||
892 | pci_dac_dma_supported(struct pci_dev *dev, u64 mask) | ||
893 | { | ||
894 | dma64_addr_t dac_offset = alpha_mv.pci_dac_offset; | ||
895 | int ok = 1; | ||
896 | |||
897 | /* If this is not set, the machine doesn't support DAC at all. */ | ||
898 | if (dac_offset == 0) | ||
899 | ok = 0; | ||
900 | |||
901 | /* The device has to be able to address our DAC bit. */ | ||
902 | if ((dac_offset & dev->dma_mask) != dac_offset) | ||
903 | ok = 0; | ||
904 | |||
905 | /* If both conditions above are met, we are fine. */ | ||
906 | DBGA("pci_dac_dma_supported %s from %p\n", | ||
907 | ok ? "yes" : "no", __builtin_return_address(0)); | ||
908 | |||
909 | return ok; | ||
910 | } | ||
911 | |||
912 | dma64_addr_t | ||
913 | pci_dac_page_to_dma(struct pci_dev *pdev, struct page *page, | ||
914 | unsigned long offset, int direction) | ||
915 | { | ||
916 | return (alpha_mv.pci_dac_offset | ||
917 | + __pa(page_address(page)) | ||
918 | + (dma64_addr_t) offset); | ||
919 | } | ||
920 | |||
921 | struct page * | ||
922 | pci_dac_dma_to_page(struct pci_dev *pdev, dma64_addr_t dma_addr) | ||
923 | { | ||
924 | unsigned long paddr = (dma_addr & PAGE_MASK) - alpha_mv.pci_dac_offset; | ||
925 | return virt_to_page(__va(paddr)); | ||
926 | } | ||
927 | |||
928 | unsigned long | ||
929 | pci_dac_dma_to_offset(struct pci_dev *pdev, dma64_addr_t dma_addr) | ||
930 | { | ||
931 | return (dma_addr & ~PAGE_MASK); | ||
932 | } | ||
933 | |||
934 | |||
935 | /* Helper for generic DMA-mapping functions. */ | ||
936 | |||
937 | struct pci_dev * | ||
938 | alpha_gendev_to_pci(struct device *dev) | ||
939 | { | ||
940 | if (dev && dev->bus == &pci_bus_type) | ||
941 | return to_pci_dev(dev); | ||
942 | |||
943 | /* Assume that non-PCI devices asking for DMA are either ISA or EISA, | ||
944 | BUG() otherwise. */ | ||
945 | BUG_ON(!isa_bridge); | ||
946 | |||
947 | /* Assume non-busmaster ISA DMA when dma_mask is not set (the ISA | ||
948 | bridge is bus master then). */ | ||
949 | if (!dev || !dev->dma_mask || !*dev->dma_mask) | ||
950 | return isa_bridge; | ||
951 | |||
952 | /* For EISA bus masters, return isa_bridge (it might have smaller | ||
953 | dma_mask due to wiring limitations). */ | ||
954 | if (*dev->dma_mask >= isa_bridge->dma_mask) | ||
955 | return isa_bridge; | ||
956 | |||
957 | /* This assumes ISA bus master with dma_mask 0xffffff. */ | ||
958 | return NULL; | ||
959 | } | ||
960 | |||
961 | int | ||
962 | dma_set_mask(struct device *dev, u64 mask) | ||
963 | { | ||
964 | if (!dev->dma_mask || | ||
965 | !pci_dma_supported(alpha_gendev_to_pci(dev), mask)) | ||
966 | return -EIO; | ||
967 | |||
968 | *dev->dma_mask = mask; | ||
969 | |||
970 | return 0; | ||
971 | } | ||