aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/vm
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/vm')
-rw-r--r--Documentation/vm/00-INDEX16
-rw-r--r--Documentation/vm/Makefile2
-rw-r--r--Documentation/vm/hugepage-mmap.c91
-rw-r--r--Documentation/vm/hugepage-shm.c98
-rw-r--r--Documentation/vm/hugetlbpage.txt405
-rw-r--r--Documentation/vm/hwpoison.txt52
-rw-r--r--Documentation/vm/ksm.txt22
-rw-r--r--Documentation/vm/map_hugetlb.c6
-rw-r--r--Documentation/vm/page-types.c85
-rw-r--r--Documentation/vm/slub.txt3
10 files changed, 488 insertions, 292 deletions
diff --git a/Documentation/vm/00-INDEX b/Documentation/vm/00-INDEX
index e57d6a9dd32b..dca82d7c83d8 100644
--- a/Documentation/vm/00-INDEX
+++ b/Documentation/vm/00-INDEX
@@ -4,23 +4,35 @@ active_mm.txt
4 - An explanation from Linus about tsk->active_mm vs tsk->mm. 4 - An explanation from Linus about tsk->active_mm vs tsk->mm.
5balance 5balance
6 - various information on memory balancing. 6 - various information on memory balancing.
7hugepage-mmap.c
8 - Example app using huge page memory with the mmap system call.
9hugepage-shm.c
10 - Example app using huge page memory with Sys V shared memory system calls.
7hugetlbpage.txt 11hugetlbpage.txt
8 - a brief summary of hugetlbpage support in the Linux kernel. 12 - a brief summary of hugetlbpage support in the Linux kernel.
13hwpoison.txt
14 - explains what hwpoison is
9ksm.txt 15ksm.txt
10 - how to use the Kernel Samepage Merging feature. 16 - how to use the Kernel Samepage Merging feature.
11locking 17locking
12 - info on how locking and synchronization is done in the Linux vm code. 18 - info on how locking and synchronization is done in the Linux vm code.
19map_hugetlb.c
20 - an example program that uses the MAP_HUGETLB mmap flag.
13numa 21numa
14 - information about NUMA specific code in the Linux vm. 22 - information about NUMA specific code in the Linux vm.
15numa_memory_policy.txt 23numa_memory_policy.txt
16 - documentation of concepts and APIs of the 2.6 memory policy support. 24 - documentation of concepts and APIs of the 2.6 memory policy support.
17overcommit-accounting 25overcommit-accounting
18 - description of the Linux kernels overcommit handling modes. 26 - description of the Linux kernels overcommit handling modes.
27page-types.c
28 - Tool for querying page flags
19page_migration 29page_migration
20 - description of page migration in NUMA systems. 30 - description of page migration in NUMA systems.
31pagemap.txt
32 - pagemap, from the userspace perspective
21slabinfo.c 33slabinfo.c
22 - source code for a tool to get reports about slabs. 34 - source code for a tool to get reports about slabs.
23slub.txt 35slub.txt
24 - a short users guide for SLUB. 36 - a short users guide for SLUB.
25map_hugetlb.c 37unevictable-lru.txt
26 - an example program that uses the MAP_HUGETLB mmap flag. 38 - Unevictable LRU infrastructure
diff --git a/Documentation/vm/Makefile b/Documentation/vm/Makefile
index 5bd269b3731a..9dcff328b964 100644
--- a/Documentation/vm/Makefile
+++ b/Documentation/vm/Makefile
@@ -2,7 +2,7 @@
2obj- := dummy.o 2obj- := dummy.o
3 3
4# List of programs to build 4# List of programs to build
5hostprogs-y := slabinfo page-types 5hostprogs-y := slabinfo page-types hugepage-mmap hugepage-shm map_hugetlb
6 6
7# Tell kbuild to always build the programs 7# Tell kbuild to always build the programs
8always := $(hostprogs-y) 8always := $(hostprogs-y)
diff --git a/Documentation/vm/hugepage-mmap.c b/Documentation/vm/hugepage-mmap.c
new file mode 100644
index 000000000000..db0dd9a33d54
--- /dev/null
+++ b/Documentation/vm/hugepage-mmap.c
@@ -0,0 +1,91 @@
1/*
2 * hugepage-mmap:
3 *
4 * Example of using huge page memory in a user application using the mmap
5 * system call. Before running this application, make sure that the
6 * administrator has mounted the hugetlbfs filesystem (on some directory
7 * like /mnt) using the command mount -t hugetlbfs nodev /mnt. In this
8 * example, the app is requesting memory of size 256MB that is backed by
9 * huge pages.
10 *
11 * For the ia64 architecture, the Linux kernel reserves Region number 4 for
12 * huge pages. That means that if one requires a fixed address, a huge page
13 * aligned address starting with 0x800000... will be required. If a fixed
14 * address is not required, the kernel will select an address in the proper
15 * range.
16 * Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
17 */
18
19#include <stdlib.h>
20#include <stdio.h>
21#include <unistd.h>
22#include <sys/mman.h>
23#include <fcntl.h>
24
25#define FILE_NAME "/mnt/hugepagefile"
26#define LENGTH (256UL*1024*1024)
27#define PROTECTION (PROT_READ | PROT_WRITE)
28
29/* Only ia64 requires this */
30#ifdef __ia64__
31#define ADDR (void *)(0x8000000000000000UL)
32#define FLAGS (MAP_SHARED | MAP_FIXED)
33#else
34#define ADDR (void *)(0x0UL)
35#define FLAGS (MAP_SHARED)
36#endif
37
38static void check_bytes(char *addr)
39{
40 printf("First hex is %x\n", *((unsigned int *)addr));
41}
42
43static void write_bytes(char *addr)
44{
45 unsigned long i;
46
47 for (i = 0; i < LENGTH; i++)
48 *(addr + i) = (char)i;
49}
50
51static void read_bytes(char *addr)
52{
53 unsigned long i;
54
55 check_bytes(addr);
56 for (i = 0; i < LENGTH; i++)
57 if (*(addr + i) != (char)i) {
58 printf("Mismatch at %lu\n", i);
59 break;
60 }
61}
62
63int main(void)
64{
65 void *addr;
66 int fd;
67
68 fd = open(FILE_NAME, O_CREAT | O_RDWR, 0755);
69 if (fd < 0) {
70 perror("Open failed");
71 exit(1);
72 }
73
74 addr = mmap(ADDR, LENGTH, PROTECTION, FLAGS, fd, 0);
75 if (addr == MAP_FAILED) {
76 perror("mmap");
77 unlink(FILE_NAME);
78 exit(1);
79 }
80
81 printf("Returned address is %p\n", addr);
82 check_bytes(addr);
83 write_bytes(addr);
84 read_bytes(addr);
85
86 munmap(addr, LENGTH);
87 close(fd);
88 unlink(FILE_NAME);
89
90 return 0;
91}
diff --git a/Documentation/vm/hugepage-shm.c b/Documentation/vm/hugepage-shm.c
new file mode 100644
index 000000000000..07956d8592c9
--- /dev/null
+++ b/Documentation/vm/hugepage-shm.c
@@ -0,0 +1,98 @@
1/*
2 * hugepage-shm:
3 *
4 * Example of using huge page memory in a user application using Sys V shared
5 * memory system calls. In this example the app is requesting 256MB of
6 * memory that is backed by huge pages. The application uses the flag
7 * SHM_HUGETLB in the shmget system call to inform the kernel that it is
8 * requesting huge pages.
9 *
10 * For the ia64 architecture, the Linux kernel reserves Region number 4 for
11 * huge pages. That means that if one requires a fixed address, a huge page
12 * aligned address starting with 0x800000... will be required. If a fixed
13 * address is not required, the kernel will select an address in the proper
14 * range.
15 * Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
16 *
17 * Note: The default shared memory limit is quite low on many kernels,
18 * you may need to increase it via:
19 *
20 * echo 268435456 > /proc/sys/kernel/shmmax
21 *
22 * This will increase the maximum size per shared memory segment to 256MB.
23 * The other limit that you will hit eventually is shmall which is the
24 * total amount of shared memory in pages. To set it to 16GB on a system
25 * with a 4kB pagesize do:
26 *
27 * echo 4194304 > /proc/sys/kernel/shmall
28 */
29
30#include <stdlib.h>
31#include <stdio.h>
32#include <sys/types.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#ifndef SHM_HUGETLB
38#define SHM_HUGETLB 04000
39#endif
40
41#define LENGTH (256UL*1024*1024)
42
43#define dprintf(x) printf(x)
44
45/* Only ia64 requires this */
46#ifdef __ia64__
47#define ADDR (void *)(0x8000000000000000UL)
48#define SHMAT_FLAGS (SHM_RND)
49#else
50#define ADDR (void *)(0x0UL)
51#define SHMAT_FLAGS (0)
52#endif
53
54int main(void)
55{
56 int shmid;
57 unsigned long i;
58 char *shmaddr;
59
60 if ((shmid = shmget(2, LENGTH,
61 SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
62 perror("shmget");
63 exit(1);
64 }
65 printf("shmid: 0x%x\n", shmid);
66
67 shmaddr = shmat(shmid, ADDR, SHMAT_FLAGS);
68 if (shmaddr == (char *)-1) {
69 perror("Shared memory attach failure");
70 shmctl(shmid, IPC_RMID, NULL);
71 exit(2);
72 }
73 printf("shmaddr: %p\n", shmaddr);
74
75 dprintf("Starting the writes:\n");
76 for (i = 0; i < LENGTH; i++) {
77 shmaddr[i] = (char)(i);
78 if (!(i % (1024 * 1024)))
79 dprintf(".");
80 }
81 dprintf("\n");
82
83 dprintf("Starting the Check...");
84 for (i = 0; i < LENGTH; i++)
85 if (shmaddr[i] != (char)i)
86 printf("\nIndex %lu mismatched\n", i);
87 dprintf("Done.\n");
88
89 if (shmdt((const void *)shmaddr) != 0) {
90 perror("Detach failure");
91 shmctl(shmid, IPC_RMID, NULL);
92 exit(3);
93 }
94
95 shmctl(shmid, IPC_RMID, NULL);
96
97 return 0;
98}
diff --git a/Documentation/vm/hugetlbpage.txt b/Documentation/vm/hugetlbpage.txt
index 82a7bd1800b2..457634c1e03e 100644
--- a/Documentation/vm/hugetlbpage.txt
+++ b/Documentation/vm/hugetlbpage.txt
@@ -11,23 +11,21 @@ This optimization is more critical now as bigger and bigger physical memories
11(several GBs) are more readily available. 11(several GBs) are more readily available.
12 12
13Users can use the huge page support in Linux kernel by either using the mmap 13Users can use the huge page support in Linux kernel by either using the mmap
14system call or standard SYSv shared memory system calls (shmget, shmat). 14system call or standard SYSV shared memory system calls (shmget, shmat).
15 15
16First the Linux kernel needs to be built with the CONFIG_HUGETLBFS 16First the Linux kernel needs to be built with the CONFIG_HUGETLBFS
17(present under "File systems") and CONFIG_HUGETLB_PAGE (selected 17(present under "File systems") and CONFIG_HUGETLB_PAGE (selected
18automatically when CONFIG_HUGETLBFS is selected) configuration 18automatically when CONFIG_HUGETLBFS is selected) configuration
19options. 19options.
20 20
21The kernel built with huge page support should show the number of configured 21The /proc/meminfo file provides information about the total number of
22huge pages in the system by running the "cat /proc/meminfo" command. 22persistent hugetlb pages in the kernel's huge page pool. It also displays
23information about the number of free, reserved and surplus huge pages and the
24default huge page size. The huge page size is needed for generating the
25proper alignment and size of the arguments to system calls that map huge page
26regions.
23 27
24/proc/meminfo also provides information about the total number of hugetlb 28The output of "cat /proc/meminfo" will include lines like:
25pages configured in the kernel. It also displays information about the
26number of free hugetlb pages at any time. It also displays information about
27the configured huge page size - this is needed for generating the proper
28alignment and size of the arguments to the above system calls.
29
30The output of "cat /proc/meminfo" will have lines like:
31 29
32..... 30.....
33HugePages_Total: vvv 31HugePages_Total: vvv
@@ -53,59 +51,63 @@ HugePages_Surp is short for "surplus," and is the number of huge pages in
53/proc/filesystems should also show a filesystem of type "hugetlbfs" configured 51/proc/filesystems should also show a filesystem of type "hugetlbfs" configured
54in the kernel. 52in the kernel.
55 53
56/proc/sys/vm/nr_hugepages indicates the current number of configured hugetlb 54/proc/sys/vm/nr_hugepages indicates the current number of "persistent" huge
57pages in the kernel. Super user can dynamically request more (or free some 55pages in the kernel's huge page pool. "Persistent" huge pages will be
58pre-configured) huge pages. 56returned to the huge page pool when freed by a task. A user with root
59The allocation (or deallocation) of hugetlb pages is possible only if there are 57privileges can dynamically allocate more or free some persistent huge pages
60enough physically contiguous free pages in system (freeing of huge pages is 58by increasing or decreasing the value of 'nr_hugepages'.
61possible only if there are enough hugetlb pages free that can be transferred
62back to regular memory pool).
63 59
64Pages that are used as hugetlb pages are reserved inside the kernel and cannot 60Pages that are used as huge pages are reserved inside the kernel and cannot
65be used for other purposes. 61be used for other purposes. Huge pages cannot be swapped out under
62memory pressure.
66 63
67Once the kernel with Hugetlb page support is built and running, a user can 64Once a number of huge pages have been pre-allocated to the kernel huge page
68use either the mmap system call or shared memory system calls to start using 65pool, a user with appropriate privilege can use either the mmap system call
69the huge pages. It is required that the system administrator preallocate 66or shared memory system calls to use the huge pages. See the discussion of
70enough memory for huge page purposes. 67Using Huge Pages, below.
71 68
72The administrator can preallocate huge pages on the kernel boot command line by 69The administrator can allocate persistent huge pages on the kernel boot
73specifying the "hugepages=N" parameter, where 'N' = the number of huge pages 70command line by specifying the "hugepages=N" parameter, where 'N' = the
74requested. This is the most reliable method for preallocating huge pages as 71number of huge pages requested. This is the most reliable method of
75memory has not yet become fragmented. 72allocating huge pages as memory has not yet become fragmented.
76 73
77Some platforms support multiple huge page sizes. To preallocate huge pages 74Some platforms support multiple huge page sizes. To allocate huge pages
78of a specific size, one must preceed the huge pages boot command parameters 75of a specific size, one must preceed the huge pages boot command parameters
79with a huge page size selection parameter "hugepagesz=<size>". <size> must 76with a huge page size selection parameter "hugepagesz=<size>". <size> must
80be specified in bytes with optional scale suffix [kKmMgG]. The default huge 77be specified in bytes with optional scale suffix [kKmMgG]. The default huge
81page size may be selected with the "default_hugepagesz=<size>" boot parameter. 78page size may be selected with the "default_hugepagesz=<size>" boot parameter.
82 79
83/proc/sys/vm/nr_hugepages indicates the current number of configured [default 80When multiple huge page sizes are supported, /proc/sys/vm/nr_hugepages
84size] hugetlb pages in the kernel. Super user can dynamically request more 81indicates the current number of pre-allocated huge pages of the default size.
85(or free some pre-configured) huge pages. 82Thus, one can use the following command to dynamically allocate/deallocate
86 83default sized persistent huge pages:
87Use the following command to dynamically allocate/deallocate default sized
88huge pages:
89 84
90 echo 20 > /proc/sys/vm/nr_hugepages 85 echo 20 > /proc/sys/vm/nr_hugepages
91 86
92This command will try to configure 20 default sized huge pages in the system. 87This command will try to adjust the number of default sized huge pages in the
88huge page pool to 20, allocating or freeing huge pages, as required.
89
93On a NUMA platform, the kernel will attempt to distribute the huge page pool 90On a NUMA platform, the kernel will attempt to distribute the huge page pool
94over the all on-line nodes. These huge pages, allocated when nr_hugepages 91over all the set of allowed nodes specified by the NUMA memory policy of the
95is increased, are called "persistent huge pages". 92task that modifies nr_hugepages. The default for the allowed nodes--when the
93task has default memory policy--is all on-line nodes with memory. Allowed
94nodes with insufficient available, contiguous memory for a huge page will be
95silently skipped when allocating persistent huge pages. See the discussion
96below of the interaction of task memory policy, cpusets and per node attributes
97with the allocation and freeing of persistent huge pages.
96 98
97The success or failure of huge page allocation depends on the amount of 99The success or failure of huge page allocation depends on the amount of
98physically contiguous memory that is preset in system at the time of the 100physically contiguous memory that is present in system at the time of the
99allocation attempt. If the kernel is unable to allocate huge pages from 101allocation attempt. If the kernel is unable to allocate huge pages from
100some nodes in a NUMA system, it will attempt to make up the difference by 102some nodes in a NUMA system, it will attempt to make up the difference by
101allocating extra pages on other nodes with sufficient available contiguous 103allocating extra pages on other nodes with sufficient available contiguous
102memory, if any. 104memory, if any.
103 105
104System administrators may want to put this command in one of the local rc init 106System administrators may want to put this command in one of the local rc
105files. This will enable the kernel to request huge pages early in the boot 107init files. This will enable the kernel to allocate huge pages early in
106process when the possibility of getting physical contiguous pages is still 108the boot process when the possibility of getting physical contiguous pages
107very high. Administrators can verify the number of huge pages actually 109is still very high. Administrators can verify the number of huge pages
108allocated by checking the sysctl or meminfo. To check the per node 110actually allocated by checking the sysctl or meminfo. To check the per node
109distribution of huge pages in a NUMA system, use: 111distribution of huge pages in a NUMA system, use:
110 112
111 cat /sys/devices/system/node/node*/meminfo | fgrep Huge 113 cat /sys/devices/system/node/node*/meminfo | fgrep Huge
@@ -113,45 +115,47 @@ distribution of huge pages in a NUMA system, use:
113/proc/sys/vm/nr_overcommit_hugepages specifies how large the pool of 115/proc/sys/vm/nr_overcommit_hugepages specifies how large the pool of
114huge pages can grow, if more huge pages than /proc/sys/vm/nr_hugepages are 116huge pages can grow, if more huge pages than /proc/sys/vm/nr_hugepages are
115requested by applications. Writing any non-zero value into this file 117requested by applications. Writing any non-zero value into this file
116indicates that the hugetlb subsystem is allowed to try to obtain "surplus" 118indicates that the hugetlb subsystem is allowed to try to obtain that
117huge pages from the buddy allocator, when the normal pool is exhausted. As 119number of "surplus" huge pages from the kernel's normal page pool, when the
118these surplus huge pages go out of use, they are freed back to the buddy 120persistent huge page pool is exhausted. As these surplus huge pages become
119allocator. 121unused, they are freed back to the kernel's normal page pool.
120 122
121When increasing the huge page pool size via nr_hugepages, any surplus 123When increasing the huge page pool size via nr_hugepages, any existing surplus
122pages will first be promoted to persistent huge pages. Then, additional 124pages will first be promoted to persistent huge pages. Then, additional
123huge pages will be allocated, if necessary and if possible, to fulfill 125huge pages will be allocated, if necessary and if possible, to fulfill
124the new huge page pool size. 126the new persistent huge page pool size.
125 127
126The administrator may shrink the pool of preallocated huge pages for 128The administrator may shrink the pool of persistent huge pages for
127the default huge page size by setting the nr_hugepages sysctl to a 129the default huge page size by setting the nr_hugepages sysctl to a
128smaller value. The kernel will attempt to balance the freeing of huge pages 130smaller value. The kernel will attempt to balance the freeing of huge pages
129across all on-line nodes. Any free huge pages on the selected nodes will 131across all nodes in the memory policy of the task modifying nr_hugepages.
130be freed back to the buddy allocator. 132Any free huge pages on the selected nodes will be freed back to the kernel's
131 133normal page pool.
132Caveat: Shrinking the pool via nr_hugepages such that it becomes less 134
133than the number of huge pages in use will convert the balance to surplus 135Caveat: Shrinking the persistent huge page pool via nr_hugepages such that
134huge pages even if it would exceed the overcommit value. As long as 136it becomes less than the number of huge pages in use will convert the balance
135this condition holds, however, no more surplus huge pages will be 137of the in-use huge pages to surplus huge pages. This will occur even if
136allowed on the system until one of the two sysctls are increased 138the number of surplus pages it would exceed the overcommit value. As long as
137sufficiently, or the surplus huge pages go out of use and are freed. 139this condition holds--that is, until nr_hugepages+nr_overcommit_hugepages is
140increased sufficiently, or the surplus huge pages go out of use and are freed--
141no more surplus huge pages will be allowed to be allocated.
138 142
139With support for multiple huge page pools at run-time available, much of 143With support for multiple huge page pools at run-time available, much of
140the huge page userspace interface has been duplicated in sysfs. The above 144the huge page userspace interface in /proc/sys/vm has been duplicated in sysfs.
141information applies to the default huge page size which will be 145The /proc interfaces discussed above have been retained for backwards
142controlled by the /proc interfaces for backwards compatibility. The root 146compatibility. The root huge page control directory in sysfs is:
143huge page control directory in sysfs is:
144 147
145 /sys/kernel/mm/hugepages 148 /sys/kernel/mm/hugepages
146 149
147For each huge page size supported by the running kernel, a subdirectory 150For each huge page size supported by the running kernel, a subdirectory
148will exist, of the form 151will exist, of the form:
149 152
150 hugepages-${size}kB 153 hugepages-${size}kB
151 154
152Inside each of these directories, the same set of files will exist: 155Inside each of these directories, the same set of files will exist:
153 156
154 nr_hugepages 157 nr_hugepages
158 nr_hugepages_mempolicy
155 nr_overcommit_hugepages 159 nr_overcommit_hugepages
156 free_hugepages 160 free_hugepages
157 resv_hugepages 161 resv_hugepages
@@ -159,6 +163,102 @@ Inside each of these directories, the same set of files will exist:
159 163
160which function as described above for the default huge page-sized case. 164which function as described above for the default huge page-sized case.
161 165
166
167Interaction of Task Memory Policy with Huge Page Allocation/Freeing
168
169Whether huge pages are allocated and freed via the /proc interface or
170the /sysfs interface using the nr_hugepages_mempolicy attribute, the NUMA
171nodes from which huge pages are allocated or freed are controlled by the
172NUMA memory policy of the task that modifies the nr_hugepages_mempolicy
173sysctl or attribute. When the nr_hugepages attribute is used, mempolicy
174is ignored.
175
176The recommended method to allocate or free huge pages to/from the kernel
177huge page pool, using the nr_hugepages example above, is:
178
179 numactl --interleave <node-list> echo 20 \
180 >/proc/sys/vm/nr_hugepages_mempolicy
181
182or, more succinctly:
183
184 numactl -m <node-list> echo 20 >/proc/sys/vm/nr_hugepages_mempolicy
185
186This will allocate or free abs(20 - nr_hugepages) to or from the nodes
187specified in <node-list>, depending on whether number of persistent huge pages
188is initially less than or greater than 20, respectively. No huge pages will be
189allocated nor freed on any node not included in the specified <node-list>.
190
191When adjusting the persistent hugepage count via nr_hugepages_mempolicy, any
192memory policy mode--bind, preferred, local or interleave--may be used. The
193resulting effect on persistent huge page allocation is as follows:
194
1951) Regardless of mempolicy mode [see Documentation/vm/numa_memory_policy.txt],
196 persistent huge pages will be distributed across the node or nodes
197 specified in the mempolicy as if "interleave" had been specified.
198 However, if a node in the policy does not contain sufficient contiguous
199 memory for a huge page, the allocation will not "fallback" to the nearest
200 neighbor node with sufficient contiguous memory. To do this would cause
201 undesirable imbalance in the distribution of the huge page pool, or
202 possibly, allocation of persistent huge pages on nodes not allowed by
203 the task's memory policy.
204
2052) One or more nodes may be specified with the bind or interleave policy.
206 If more than one node is specified with the preferred policy, only the
207 lowest numeric id will be used. Local policy will select the node where
208 the task is running at the time the nodes_allowed mask is constructed.
209 For local policy to be deterministic, the task must be bound to a cpu or
210 cpus in a single node. Otherwise, the task could be migrated to some
211 other node at any time after launch and the resulting node will be
212 indeterminate. Thus, local policy is not very useful for this purpose.
213 Any of the other mempolicy modes may be used to specify a single node.
214
2153) The nodes allowed mask will be derived from any non-default task mempolicy,
216 whether this policy was set explicitly by the task itself or one of its
217 ancestors, such as numactl. This means that if the task is invoked from a
218 shell with non-default policy, that policy will be used. One can specify a
219 node list of "all" with numactl --interleave or --membind [-m] to achieve
220 interleaving over all nodes in the system or cpuset.
221
2224) Any task mempolicy specifed--e.g., using numactl--will be constrained by
223 the resource limits of any cpuset in which the task runs. Thus, there will
224 be no way for a task with non-default policy running in a cpuset with a
225 subset of the system nodes to allocate huge pages outside the cpuset
226 without first moving to a cpuset that contains all of the desired nodes.
227
2285) Boot-time huge page allocation attempts to distribute the requested number
229 of huge pages over all on-lines nodes with memory.
230
231Per Node Hugepages Attributes
232
233A subset of the contents of the root huge page control directory in sysfs,
234described above, will be replicated under each the system device of each
235NUMA node with memory in:
236
237 /sys/devices/system/node/node[0-9]*/hugepages/
238
239Under this directory, the subdirectory for each supported huge page size
240contains the following attribute files:
241
242 nr_hugepages
243 free_hugepages
244 surplus_hugepages
245
246The free_' and surplus_' attribute files are read-only. They return the number
247of free and surplus [overcommitted] huge pages, respectively, on the parent
248node.
249
250The nr_hugepages attribute returns the total number of huge pages on the
251specified node. When this attribute is written, the number of persistent huge
252pages on the parent node will be adjusted to the specified value, if sufficient
253resources exist, regardless of the task's mempolicy or cpuset constraints.
254
255Note that the number of overcommit and reserve pages remain global quantities,
256as we don't know until fault time, when the faulting task's mempolicy is
257applied, from which node the huge page allocation will be attempted.
258
259
260Using Huge Pages
261
162If the user applications are going to request huge pages using mmap system 262If the user applications are going to request huge pages using mmap system
163call, then it is required that system administrator mount a file system of 263call, then it is required that system administrator mount a file system of
164type hugetlbfs: 264type hugetlbfs:
@@ -199,184 +299,11 @@ map_hugetlb.c.
199******************************************************************* 299*******************************************************************
200 300
201/* 301/*
202 * Example of using huge page memory in a user application using Sys V shared 302 * hugepage-shm: see Documentation/vm/hugepage-shm.c
203 * memory system calls. In this example the app is requesting 256MB of
204 * memory that is backed by huge pages. The application uses the flag
205 * SHM_HUGETLB in the shmget system call to inform the kernel that it is
206 * requesting huge pages.
207 *
208 * For the ia64 architecture, the Linux kernel reserves Region number 4 for
209 * huge pages. That means the addresses starting with 0x800000... will need
210 * to be specified. Specifying a fixed address is not required on ppc64,
211 * i386 or x86_64.
212 *
213 * Note: The default shared memory limit is quite low on many kernels,
214 * you may need to increase it via:
215 *
216 * echo 268435456 > /proc/sys/kernel/shmmax
217 *
218 * This will increase the maximum size per shared memory segment to 256MB.
219 * The other limit that you will hit eventually is shmall which is the
220 * total amount of shared memory in pages. To set it to 16GB on a system
221 * with a 4kB pagesize do:
222 *
223 * echo 4194304 > /proc/sys/kernel/shmall
224 */ 303 */
225#include <stdlib.h>
226#include <stdio.h>
227#include <sys/types.h>
228#include <sys/ipc.h>
229#include <sys/shm.h>
230#include <sys/mman.h>
231
232#ifndef SHM_HUGETLB
233#define SHM_HUGETLB 04000
234#endif
235
236#define LENGTH (256UL*1024*1024)
237
238#define dprintf(x) printf(x)
239
240/* Only ia64 requires this */
241#ifdef __ia64__
242#define ADDR (void *)(0x8000000000000000UL)
243#define SHMAT_FLAGS (SHM_RND)
244#else
245#define ADDR (void *)(0x0UL)
246#define SHMAT_FLAGS (0)
247#endif
248
249int main(void)
250{
251 int shmid;
252 unsigned long i;
253 char *shmaddr;
254
255 if ((shmid = shmget(2, LENGTH,
256 SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
257 perror("shmget");
258 exit(1);
259 }
260 printf("shmid: 0x%x\n", shmid);
261
262 shmaddr = shmat(shmid, ADDR, SHMAT_FLAGS);
263 if (shmaddr == (char *)-1) {
264 perror("Shared memory attach failure");
265 shmctl(shmid, IPC_RMID, NULL);
266 exit(2);
267 }
268 printf("shmaddr: %p\n", shmaddr);
269
270 dprintf("Starting the writes:\n");
271 for (i = 0; i < LENGTH; i++) {
272 shmaddr[i] = (char)(i);
273 if (!(i % (1024 * 1024)))
274 dprintf(".");
275 }
276 dprintf("\n");
277
278 dprintf("Starting the Check...");
279 for (i = 0; i < LENGTH; i++)
280 if (shmaddr[i] != (char)i)
281 printf("\nIndex %lu mismatched\n", i);
282 dprintf("Done.\n");
283
284 if (shmdt((const void *)shmaddr) != 0) {
285 perror("Detach failure");
286 shmctl(shmid, IPC_RMID, NULL);
287 exit(3);
288 }
289
290 shmctl(shmid, IPC_RMID, NULL);
291
292 return 0;
293}
294 304
295******************************************************************* 305*******************************************************************
296 306
297/* 307/*
298 * Example of using huge page memory in a user application using the mmap 308 * hugepage-mmap: see Documentation/vm/hugepage-mmap.c
299 * system call. Before running this application, make sure that the
300 * administrator has mounted the hugetlbfs filesystem (on some directory
301 * like /mnt) using the command mount -t hugetlbfs nodev /mnt. In this
302 * example, the app is requesting memory of size 256MB that is backed by
303 * huge pages.
304 *
305 * For ia64 architecture, Linux kernel reserves Region number 4 for huge pages.
306 * That means the addresses starting with 0x800000... will need to be
307 * specified. Specifying a fixed address is not required on ppc64, i386
308 * or x86_64.
309 */ 309 */
310#include <stdlib.h>
311#include <stdio.h>
312#include <unistd.h>
313#include <sys/mman.h>
314#include <fcntl.h>
315
316#define FILE_NAME "/mnt/hugepagefile"
317#define LENGTH (256UL*1024*1024)
318#define PROTECTION (PROT_READ | PROT_WRITE)
319
320/* Only ia64 requires this */
321#ifdef __ia64__
322#define ADDR (void *)(0x8000000000000000UL)
323#define FLAGS (MAP_SHARED | MAP_FIXED)
324#else
325#define ADDR (void *)(0x0UL)
326#define FLAGS (MAP_SHARED)
327#endif
328
329void check_bytes(char *addr)
330{
331 printf("First hex is %x\n", *((unsigned int *)addr));
332}
333
334void write_bytes(char *addr)
335{
336 unsigned long i;
337
338 for (i = 0; i < LENGTH; i++)
339 *(addr + i) = (char)i;
340}
341
342void read_bytes(char *addr)
343{
344 unsigned long i;
345
346 check_bytes(addr);
347 for (i = 0; i < LENGTH; i++)
348 if (*(addr + i) != (char)i) {
349 printf("Mismatch at %lu\n", i);
350 break;
351 }
352}
353
354int main(void)
355{
356 void *addr;
357 int fd;
358
359 fd = open(FILE_NAME, O_CREAT | O_RDWR, 0755);
360 if (fd < 0) {
361 perror("Open failed");
362 exit(1);
363 }
364
365 addr = mmap(ADDR, LENGTH, PROTECTION, FLAGS, fd, 0);
366 if (addr == MAP_FAILED) {
367 perror("mmap");
368 unlink(FILE_NAME);
369 exit(1);
370 }
371
372 printf("Returned address is %p\n", addr);
373 check_bytes(addr);
374 write_bytes(addr);
375 read_bytes(addr);
376
377 munmap(addr, LENGTH);
378 close(fd);
379 unlink(FILE_NAME);
380
381 return 0;
382}
diff --git a/Documentation/vm/hwpoison.txt b/Documentation/vm/hwpoison.txt
index 3ffadf8da61f..12f9ba20ccb7 100644
--- a/Documentation/vm/hwpoison.txt
+++ b/Documentation/vm/hwpoison.txt
@@ -92,16 +92,62 @@ PR_MCE_KILL_GET
92 92
93Testing: 93Testing:
94 94
95madvise(MADV_POISON, ....) 95madvise(MADV_HWPOISON, ....)
96 (as root) 96 (as root)
97 Poison a page in the process for testing 97 Poison a page in the process for testing
98 98
99 99
100hwpoison-inject module through debugfs 100hwpoison-inject module through debugfs
101 /sys/debug/hwpoison/corrupt-pfn
102 101
103Inject hwpoison fault at PFN echoed into this file 102/sys/debug/hwpoison/
104 103
104corrupt-pfn
105
106Inject hwpoison fault at PFN echoed into this file. This does
107some early filtering to avoid corrupted unintended pages in test suites.
108
109unpoison-pfn
110
111Software-unpoison page at PFN echoed into this file. This
112way a page can be reused again.
113This only works for Linux injected failures, not for real
114memory failures.
115
116Note these injection interfaces are not stable and might change between
117kernel versions
118
119corrupt-filter-dev-major
120corrupt-filter-dev-minor
121
122Only handle memory failures to pages associated with the file system defined
123by block device major/minor. -1U is the wildcard value.
124This should be only used for testing with artificial injection.
125
126corrupt-filter-memcg
127
128Limit injection to pages owned by memgroup. Specified by inode number
129of the memcg.
130
131Example:
132 mkdir /cgroup/hwpoison
133
134 usemem -m 100 -s 1000 &
135 echo `jobs -p` > /cgroup/hwpoison/tasks
136
137 memcg_ino=$(ls -id /cgroup/hwpoison | cut -f1 -d' ')
138 echo $memcg_ino > /debug/hwpoison/corrupt-filter-memcg
139
140 page-types -p `pidof init` --hwpoison # shall do nothing
141 page-types -p `pidof usemem` --hwpoison # poison its pages
142
143corrupt-filter-flags-mask
144corrupt-filter-flags-value
145
146When specified, only poison pages if ((page_flags & mask) == value).
147This allows stress testing of many kinds of pages. The page_flags
148are the same as in /proc/kpageflags. The flag bits are defined in
149include/linux/kernel-page-flags.h and documented in
150Documentation/vm/pagemap.txt
105 151
106Architecture specific MCE injector 152Architecture specific MCE injector
107 153
diff --git a/Documentation/vm/ksm.txt b/Documentation/vm/ksm.txt
index 262d8e6793a3..b392e496f816 100644
--- a/Documentation/vm/ksm.txt
+++ b/Documentation/vm/ksm.txt
@@ -16,9 +16,9 @@ by sharing the data common between them. But it can be useful to any
16application which generates many instances of the same data. 16application which generates many instances of the same data.
17 17
18KSM only merges anonymous (private) pages, never pagecache (file) pages. 18KSM only merges anonymous (private) pages, never pagecache (file) pages.
19KSM's merged pages are at present locked into kernel memory for as long 19KSM's merged pages were originally locked into kernel memory, but can now
20as they are shared: so cannot be swapped out like the user pages they 20be swapped out just like other user pages (but sharing is broken when they
21replace (but swapping KSM pages should follow soon in a later release). 21are swapped back in: ksmd must rediscover their identity and merge again).
22 22
23KSM only operates on those areas of address space which an application 23KSM only operates on those areas of address space which an application
24has advised to be likely candidates for merging, by using the madvise(2) 24has advised to be likely candidates for merging, by using the madvise(2)
@@ -44,20 +44,12 @@ includes unmapped gaps (though working on the intervening mapped areas),
44and might fail with EAGAIN if not enough memory for internal structures. 44and might fail with EAGAIN if not enough memory for internal structures.
45 45
46Applications should be considerate in their use of MADV_MERGEABLE, 46Applications should be considerate in their use of MADV_MERGEABLE,
47restricting its use to areas likely to benefit. KSM's scans may use 47restricting its use to areas likely to benefit. KSM's scans may use a lot
48a lot of processing power, and its kernel-resident pages are a limited 48of processing power: some installations will disable KSM for that reason.
49resource. Some installations will disable KSM for these reasons.
50 49
51The KSM daemon is controlled by sysfs files in /sys/kernel/mm/ksm/, 50The KSM daemon is controlled by sysfs files in /sys/kernel/mm/ksm/,
52readable by all but writable only by root: 51readable by all but writable only by root:
53 52
54max_kernel_pages - set to maximum number of kernel pages that KSM may use
55 e.g. "echo 100000 > /sys/kernel/mm/ksm/max_kernel_pages"
56 Value 0 imposes no limit on the kernel pages KSM may use;
57 but note that any process using MADV_MERGEABLE can cause
58 KSM to allocate these pages, unswappable until it exits.
59 Default: quarter of memory (chosen to not pin too much)
60
61pages_to_scan - how many present pages to scan before ksmd goes to sleep 53pages_to_scan - how many present pages to scan before ksmd goes to sleep
62 e.g. "echo 100 > /sys/kernel/mm/ksm/pages_to_scan" 54 e.g. "echo 100 > /sys/kernel/mm/ksm/pages_to_scan"
63 Default: 100 (chosen for demonstration purposes) 55 Default: 100 (chosen for demonstration purposes)
@@ -75,7 +67,7 @@ run - set 0 to stop ksmd from running but keep merged pages,
75 67
76The effectiveness of KSM and MADV_MERGEABLE is shown in /sys/kernel/mm/ksm/: 68The effectiveness of KSM and MADV_MERGEABLE is shown in /sys/kernel/mm/ksm/:
77 69
78pages_shared - how many shared unswappable kernel pages KSM is using 70pages_shared - how many shared pages are being used
79pages_sharing - how many more sites are sharing them i.e. how much saved 71pages_sharing - how many more sites are sharing them i.e. how much saved
80pages_unshared - how many pages unique but repeatedly checked for merging 72pages_unshared - how many pages unique but repeatedly checked for merging
81pages_volatile - how many pages changing too fast to be placed in a tree 73pages_volatile - how many pages changing too fast to be placed in a tree
@@ -87,4 +79,4 @@ pages_volatile embraces several different kinds of activity, but a high
87proportion there would also indicate poor use of madvise MADV_MERGEABLE. 79proportion there would also indicate poor use of madvise MADV_MERGEABLE.
88 80
89Izik Eidus, 81Izik Eidus,
90Hugh Dickins, 24 Sept 2009 82Hugh Dickins, 17 Nov 2009
diff --git a/Documentation/vm/map_hugetlb.c b/Documentation/vm/map_hugetlb.c
index e2bdae37f499..9969c7d9f985 100644
--- a/Documentation/vm/map_hugetlb.c
+++ b/Documentation/vm/map_hugetlb.c
@@ -31,12 +31,12 @@
31#define FLAGS (MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB) 31#define FLAGS (MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB)
32#endif 32#endif
33 33
34void check_bytes(char *addr) 34static void check_bytes(char *addr)
35{ 35{
36 printf("First hex is %x\n", *((unsigned int *)addr)); 36 printf("First hex is %x\n", *((unsigned int *)addr));
37} 37}
38 38
39void write_bytes(char *addr) 39static void write_bytes(char *addr)
40{ 40{
41 unsigned long i; 41 unsigned long i;
42 42
@@ -44,7 +44,7 @@ void write_bytes(char *addr)
44 *(addr + i) = (char)i; 44 *(addr + i) = (char)i;
45} 45}
46 46
47void read_bytes(char *addr) 47static void read_bytes(char *addr)
48{ 48{
49 unsigned long i; 49 unsigned long i;
50 50
diff --git a/Documentation/vm/page-types.c b/Documentation/vm/page-types.c
index 4793c6aac733..66e9358e2144 100644
--- a/Documentation/vm/page-types.c
+++ b/Documentation/vm/page-types.c
@@ -1,11 +1,22 @@
1/* 1/*
2 * page-types: Tool for querying page flags 2 * page-types: Tool for querying page flags
3 * 3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should find a copy of v2 of the GNU General Public License somewhere on
14 * your Linux system; if not, write to the Free Software Foundation, Inc., 59
15 * Temple Place, Suite 330, Boston, MA 02111-1307 USA.
16 *
4 * Copyright (C) 2009 Intel corporation 17 * Copyright (C) 2009 Intel corporation
5 * 18 *
6 * Authors: Wu Fengguang <fengguang.wu@intel.com> 19 * Authors: Wu Fengguang <fengguang.wu@intel.com>
7 *
8 * Released under the General Public License (GPL).
9 */ 20 */
10 21
11#define _LARGEFILE64_SOURCE 22#define _LARGEFILE64_SOURCE
@@ -100,7 +111,7 @@
100#define BIT(name) (1ULL << KPF_##name) 111#define BIT(name) (1ULL << KPF_##name)
101#define BITS_COMPOUND (BIT(COMPOUND_HEAD) | BIT(COMPOUND_TAIL)) 112#define BITS_COMPOUND (BIT(COMPOUND_HEAD) | BIT(COMPOUND_TAIL))
102 113
103static char *page_flag_names[] = { 114static const char *page_flag_names[] = {
104 [KPF_LOCKED] = "L:locked", 115 [KPF_LOCKED] = "L:locked",
105 [KPF_ERROR] = "E:error", 116 [KPF_ERROR] = "E:error",
106 [KPF_REFERENCED] = "R:referenced", 117 [KPF_REFERENCED] = "R:referenced",
@@ -173,7 +184,7 @@ static int kpageflags_fd;
173static int opt_hwpoison; 184static int opt_hwpoison;
174static int opt_unpoison; 185static int opt_unpoison;
175 186
176static char *hwpoison_debug_fs = "/debug/hwpoison"; 187static const char hwpoison_debug_fs[] = "/debug/hwpoison";
177static int hwpoison_inject_fd; 188static int hwpoison_inject_fd;
178static int hwpoison_forget_fd; 189static int hwpoison_forget_fd;
179 190
@@ -301,7 +312,7 @@ static char *page_flag_name(uint64_t flags)
301 present = (flags >> i) & 1; 312 present = (flags >> i) & 1;
302 if (!page_flag_names[i]) { 313 if (!page_flag_names[i]) {
303 if (present) 314 if (present)
304 fatal("unkown flag bit %d\n", i); 315 fatal("unknown flag bit %d\n", i);
305 continue; 316 continue;
306 } 317 }
307 buf[j++] = present ? page_flag_names[i][0] : '_'; 318 buf[j++] = present ? page_flag_names[i][0] : '_';
@@ -560,7 +571,7 @@ static void walk_pfn(unsigned long voffset,
560{ 571{
561 uint64_t buf[KPAGEFLAGS_BATCH]; 572 uint64_t buf[KPAGEFLAGS_BATCH];
562 unsigned long batch; 573 unsigned long batch;
563 unsigned long pages; 574 long pages;
564 unsigned long i; 575 unsigned long i;
565 576
566 while (count) { 577 while (count) {
@@ -673,30 +684,35 @@ static void usage(void)
673 684
674 printf( 685 printf(
675"page-types [options]\n" 686"page-types [options]\n"
676" -r|--raw Raw mode, for kernel developers\n" 687" -r|--raw Raw mode, for kernel developers\n"
677" -a|--addr addr-spec Walk a range of pages\n" 688" -d|--describe flags Describe flags\n"
678" -b|--bits bits-spec Walk pages with specified bits\n" 689" -a|--addr addr-spec Walk a range of pages\n"
679" -p|--pid pid Walk process address space\n" 690" -b|--bits bits-spec Walk pages with specified bits\n"
691" -p|--pid pid Walk process address space\n"
680#if 0 /* planned features */ 692#if 0 /* planned features */
681" -f|--file filename Walk file address space\n" 693" -f|--file filename Walk file address space\n"
682#endif 694#endif
683" -l|--list Show page details in ranges\n" 695" -l|--list Show page details in ranges\n"
684" -L|--list-each Show page details one by one\n" 696" -L|--list-each Show page details one by one\n"
685" -N|--no-summary Don't show summay info\n" 697" -N|--no-summary Don't show summay info\n"
686" -X|--hwpoison hwpoison pages\n" 698" -X|--hwpoison hwpoison pages\n"
687" -x|--unpoison unpoison pages\n" 699" -x|--unpoison unpoison pages\n"
688" -h|--help Show this usage message\n" 700" -h|--help Show this usage message\n"
701"flags:\n"
702" 0x10 bitfield format, e.g.\n"
703" anon bit-name, e.g.\n"
704" 0x10,anon comma-separated list, e.g.\n"
689"addr-spec:\n" 705"addr-spec:\n"
690" N one page at offset N (unit: pages)\n" 706" N one page at offset N (unit: pages)\n"
691" N+M pages range from N to N+M-1\n" 707" N+M pages range from N to N+M-1\n"
692" N,M pages range from N to M-1\n" 708" N,M pages range from N to M-1\n"
693" N, pages range from N to end\n" 709" N, pages range from N to end\n"
694" ,M pages range from 0 to M-1\n" 710" ,M pages range from 0 to M-1\n"
695"bits-spec:\n" 711"bits-spec:\n"
696" bit1,bit2 (flags & (bit1|bit2)) != 0\n" 712" bit1,bit2 (flags & (bit1|bit2)) != 0\n"
697" bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1\n" 713" bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1\n"
698" bit1,~bit2 (flags & (bit1|bit2)) == bit1\n" 714" bit1,~bit2 (flags & (bit1|bit2)) == bit1\n"
699" =bit1,bit2 flags == (bit1|bit2)\n" 715" =bit1,bit2 flags == (bit1|bit2)\n"
700"bit-names:\n" 716"bit-names:\n"
701 ); 717 );
702 718
@@ -884,13 +900,23 @@ static void parse_bits_mask(const char *optarg)
884 add_bits_filter(mask, bits); 900 add_bits_filter(mask, bits);
885} 901}
886 902
903static void describe_flags(const char *optarg)
904{
905 uint64_t flags = parse_flag_names(optarg, 0);
906
907 printf("0x%016llx\t%s\t%s\n",
908 (unsigned long long)flags,
909 page_flag_name(flags),
910 page_flag_longname(flags));
911}
887 912
888static struct option opts[] = { 913static const struct option opts[] = {
889 { "raw" , 0, NULL, 'r' }, 914 { "raw" , 0, NULL, 'r' },
890 { "pid" , 1, NULL, 'p' }, 915 { "pid" , 1, NULL, 'p' },
891 { "file" , 1, NULL, 'f' }, 916 { "file" , 1, NULL, 'f' },
892 { "addr" , 1, NULL, 'a' }, 917 { "addr" , 1, NULL, 'a' },
893 { "bits" , 1, NULL, 'b' }, 918 { "bits" , 1, NULL, 'b' },
919 { "describe" , 1, NULL, 'd' },
894 { "list" , 0, NULL, 'l' }, 920 { "list" , 0, NULL, 'l' },
895 { "list-each" , 0, NULL, 'L' }, 921 { "list-each" , 0, NULL, 'L' },
896 { "no-summary", 0, NULL, 'N' }, 922 { "no-summary", 0, NULL, 'N' },
@@ -907,7 +933,7 @@ int main(int argc, char *argv[])
907 page_size = getpagesize(); 933 page_size = getpagesize();
908 934
909 while ((c = getopt_long(argc, argv, 935 while ((c = getopt_long(argc, argv,
910 "rp:f:a:b:lLNXxh", opts, NULL)) != -1) { 936 "rp:f:a:b:d:lLNXxh", opts, NULL)) != -1) {
911 switch (c) { 937 switch (c) {
912 case 'r': 938 case 'r':
913 opt_raw = 1; 939 opt_raw = 1;
@@ -924,6 +950,9 @@ int main(int argc, char *argv[])
924 case 'b': 950 case 'b':
925 parse_bits_mask(optarg); 951 parse_bits_mask(optarg);
926 break; 952 break;
953 case 'd':
954 describe_flags(optarg);
955 exit(0);
927 case 'l': 956 case 'l':
928 opt_list = 1; 957 opt_list = 1;
929 break; 958 break;
diff --git a/Documentation/vm/slub.txt b/Documentation/vm/slub.txt
index 510917ff59ed..07375e73981a 100644
--- a/Documentation/vm/slub.txt
+++ b/Documentation/vm/slub.txt
@@ -41,6 +41,7 @@ Possible debug options are
41 P Poisoning (object and padding) 41 P Poisoning (object and padding)
42 U User tracking (free and alloc) 42 U User tracking (free and alloc)
43 T Trace (please only use on single slabs) 43 T Trace (please only use on single slabs)
44 A Toggle failslab filter mark for the cache
44 O Switch debugging off for caches that would have 45 O Switch debugging off for caches that would have
45 caused higher minimum slab orders 46 caused higher minimum slab orders
46 - Switch all debugging off (useful if the kernel is 47 - Switch all debugging off (useful if the kernel is
@@ -245,7 +246,7 @@ been overwritten. Here a string of 8 characters was written into a slab that
245has the length of 8 characters. However, a 8 character string needs a 246has the length of 8 characters. However, a 8 character string needs a
246terminating 0. That zero has overwritten the first byte of the Redzone field. 247terminating 0. That zero has overwritten the first byte of the Redzone field.
247After reporting the details of the issue encountered the FIX SLUB message 248After reporting the details of the issue encountered the FIX SLUB message
248tell us that SLUB has restored the Redzone to its proper value and then 249tells us that SLUB has restored the Redzone to its proper value and then
249system operations continue. 250system operations continue.
250 251
251Emergency operations: 252Emergency operations: