diff options
-rw-r--r-- | net/rds/iw.c | 333 | ||||
-rw-r--r-- | net/rds/iw.h | 395 | ||||
-rw-r--r-- | net/rds/iw_cm.c | 750 | ||||
-rw-r--r-- | net/rds/iw_rdma.c | 888 | ||||
-rw-r--r-- | net/rds/iw_recv.c | 869 | ||||
-rw-r--r-- | net/rds/iw_ring.c | 169 | ||||
-rw-r--r-- | net/rds/iw_send.c | 975 | ||||
-rw-r--r-- | net/rds/iw_stats.c | 95 | ||||
-rw-r--r-- | net/rds/iw_sysctl.c | 137 |
9 files changed, 4611 insertions, 0 deletions
diff --git a/net/rds/iw.c b/net/rds/iw.c new file mode 100644 index 000000000000..1b56905c4c08 --- /dev/null +++ b/net/rds/iw.c | |||
@@ -0,0 +1,333 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/in.h> | ||
35 | #include <linux/if.h> | ||
36 | #include <linux/netdevice.h> | ||
37 | #include <linux/inetdevice.h> | ||
38 | #include <linux/if_arp.h> | ||
39 | #include <linux/delay.h> | ||
40 | |||
41 | #include "rds.h" | ||
42 | #include "iw.h" | ||
43 | |||
44 | unsigned int fastreg_pool_size = RDS_FASTREG_POOL_SIZE; | ||
45 | unsigned int fastreg_message_size = RDS_FASTREG_SIZE + 1; /* +1 allows for unaligned MRs */ | ||
46 | |||
47 | module_param(fastreg_pool_size, int, 0444); | ||
48 | MODULE_PARM_DESC(fastreg_pool_size, " Max number of fastreg MRs per device"); | ||
49 | module_param(fastreg_message_size, int, 0444); | ||
50 | MODULE_PARM_DESC(fastreg_message_size, " Max size of a RDMA transfer (fastreg MRs)"); | ||
51 | |||
52 | struct list_head rds_iw_devices; | ||
53 | |||
54 | DEFINE_SPINLOCK(iw_nodev_conns_lock); | ||
55 | LIST_HEAD(iw_nodev_conns); | ||
56 | |||
57 | void rds_iw_add_one(struct ib_device *device) | ||
58 | { | ||
59 | struct rds_iw_device *rds_iwdev; | ||
60 | struct ib_device_attr *dev_attr; | ||
61 | |||
62 | /* Only handle iwarp devices */ | ||
63 | if (device->node_type != RDMA_NODE_RNIC) | ||
64 | return; | ||
65 | |||
66 | dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL); | ||
67 | if (!dev_attr) | ||
68 | return; | ||
69 | |||
70 | if (ib_query_device(device, dev_attr)) { | ||
71 | rdsdebug("Query device failed for %s\n", device->name); | ||
72 | goto free_attr; | ||
73 | } | ||
74 | |||
75 | rds_iwdev = kmalloc(sizeof *rds_iwdev, GFP_KERNEL); | ||
76 | if (!rds_iwdev) | ||
77 | goto free_attr; | ||
78 | |||
79 | spin_lock_init(&rds_iwdev->spinlock); | ||
80 | |||
81 | rds_iwdev->dma_local_lkey = !!(dev_attr->device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY); | ||
82 | rds_iwdev->max_wrs = dev_attr->max_qp_wr; | ||
83 | rds_iwdev->max_sge = min(dev_attr->max_sge, RDS_IW_MAX_SGE); | ||
84 | |||
85 | rds_iwdev->page_shift = max(PAGE_SHIFT, ffs(dev_attr->page_size_cap) - 1); | ||
86 | |||
87 | rds_iwdev->dev = device; | ||
88 | rds_iwdev->pd = ib_alloc_pd(device); | ||
89 | if (IS_ERR(rds_iwdev->pd)) | ||
90 | goto free_dev; | ||
91 | |||
92 | if (!rds_iwdev->dma_local_lkey) { | ||
93 | if (device->node_type != RDMA_NODE_RNIC) { | ||
94 | rds_iwdev->mr = ib_get_dma_mr(rds_iwdev->pd, | ||
95 | IB_ACCESS_LOCAL_WRITE); | ||
96 | } else { | ||
97 | rds_iwdev->mr = ib_get_dma_mr(rds_iwdev->pd, | ||
98 | IB_ACCESS_REMOTE_READ | | ||
99 | IB_ACCESS_REMOTE_WRITE | | ||
100 | IB_ACCESS_LOCAL_WRITE); | ||
101 | } | ||
102 | if (IS_ERR(rds_iwdev->mr)) | ||
103 | goto err_pd; | ||
104 | } else | ||
105 | rds_iwdev->mr = NULL; | ||
106 | |||
107 | rds_iwdev->mr_pool = rds_iw_create_mr_pool(rds_iwdev); | ||
108 | if (IS_ERR(rds_iwdev->mr_pool)) { | ||
109 | rds_iwdev->mr_pool = NULL; | ||
110 | goto err_mr; | ||
111 | } | ||
112 | |||
113 | INIT_LIST_HEAD(&rds_iwdev->cm_id_list); | ||
114 | INIT_LIST_HEAD(&rds_iwdev->conn_list); | ||
115 | list_add_tail(&rds_iwdev->list, &rds_iw_devices); | ||
116 | |||
117 | ib_set_client_data(device, &rds_iw_client, rds_iwdev); | ||
118 | |||
119 | goto free_attr; | ||
120 | |||
121 | err_mr: | ||
122 | if (rds_iwdev->mr) | ||
123 | ib_dereg_mr(rds_iwdev->mr); | ||
124 | err_pd: | ||
125 | ib_dealloc_pd(rds_iwdev->pd); | ||
126 | free_dev: | ||
127 | kfree(rds_iwdev); | ||
128 | free_attr: | ||
129 | kfree(dev_attr); | ||
130 | } | ||
131 | |||
132 | void rds_iw_remove_one(struct ib_device *device) | ||
133 | { | ||
134 | struct rds_iw_device *rds_iwdev; | ||
135 | struct rds_iw_cm_id *i_cm_id, *next; | ||
136 | |||
137 | rds_iwdev = ib_get_client_data(device, &rds_iw_client); | ||
138 | if (!rds_iwdev) | ||
139 | return; | ||
140 | |||
141 | spin_lock_irq(&rds_iwdev->spinlock); | ||
142 | list_for_each_entry_safe(i_cm_id, next, &rds_iwdev->cm_id_list, list) { | ||
143 | list_del(&i_cm_id->list); | ||
144 | kfree(i_cm_id); | ||
145 | } | ||
146 | spin_unlock_irq(&rds_iwdev->spinlock); | ||
147 | |||
148 | rds_iw_remove_conns(rds_iwdev); | ||
149 | |||
150 | if (rds_iwdev->mr_pool) | ||
151 | rds_iw_destroy_mr_pool(rds_iwdev->mr_pool); | ||
152 | |||
153 | if (rds_iwdev->mr) | ||
154 | ib_dereg_mr(rds_iwdev->mr); | ||
155 | |||
156 | while (ib_dealloc_pd(rds_iwdev->pd)) { | ||
157 | rdsdebug("Failed to dealloc pd %p\n", rds_iwdev->pd); | ||
158 | msleep(1); | ||
159 | } | ||
160 | |||
161 | list_del(&rds_iwdev->list); | ||
162 | kfree(rds_iwdev); | ||
163 | } | ||
164 | |||
165 | struct ib_client rds_iw_client = { | ||
166 | .name = "rds_iw", | ||
167 | .add = rds_iw_add_one, | ||
168 | .remove = rds_iw_remove_one | ||
169 | }; | ||
170 | |||
171 | static int rds_iw_conn_info_visitor(struct rds_connection *conn, | ||
172 | void *buffer) | ||
173 | { | ||
174 | struct rds_info_rdma_connection *iinfo = buffer; | ||
175 | struct rds_iw_connection *ic; | ||
176 | |||
177 | /* We will only ever look at IB transports */ | ||
178 | if (conn->c_trans != &rds_iw_transport) | ||
179 | return 0; | ||
180 | |||
181 | iinfo->src_addr = conn->c_laddr; | ||
182 | iinfo->dst_addr = conn->c_faddr; | ||
183 | |||
184 | memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); | ||
185 | memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); | ||
186 | if (rds_conn_state(conn) == RDS_CONN_UP) { | ||
187 | struct rds_iw_device *rds_iwdev; | ||
188 | struct rdma_dev_addr *dev_addr; | ||
189 | |||
190 | ic = conn->c_transport_data; | ||
191 | dev_addr = &ic->i_cm_id->route.addr.dev_addr; | ||
192 | |||
193 | ib_addr_get_sgid(dev_addr, (union ib_gid *) &iinfo->src_gid); | ||
194 | ib_addr_get_dgid(dev_addr, (union ib_gid *) &iinfo->dst_gid); | ||
195 | |||
196 | rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client); | ||
197 | iinfo->max_send_wr = ic->i_send_ring.w_nr; | ||
198 | iinfo->max_recv_wr = ic->i_recv_ring.w_nr; | ||
199 | iinfo->max_send_sge = rds_iwdev->max_sge; | ||
200 | rds_iw_get_mr_info(rds_iwdev, iinfo); | ||
201 | } | ||
202 | return 1; | ||
203 | } | ||
204 | |||
205 | static void rds_iw_ic_info(struct socket *sock, unsigned int len, | ||
206 | struct rds_info_iterator *iter, | ||
207 | struct rds_info_lengths *lens) | ||
208 | { | ||
209 | rds_for_each_conn_info(sock, len, iter, lens, | ||
210 | rds_iw_conn_info_visitor, | ||
211 | sizeof(struct rds_info_rdma_connection)); | ||
212 | } | ||
213 | |||
214 | |||
215 | /* | ||
216 | * Early RDS/IB was built to only bind to an address if there is an IPoIB | ||
217 | * device with that address set. | ||
218 | * | ||
219 | * If it were me, I'd advocate for something more flexible. Sending and | ||
220 | * receiving should be device-agnostic. Transports would try and maintain | ||
221 | * connections between peers who have messages queued. Userspace would be | ||
222 | * allowed to influence which paths have priority. We could call userspace | ||
223 | * asserting this policy "routing". | ||
224 | */ | ||
225 | static int rds_iw_laddr_check(__be32 addr) | ||
226 | { | ||
227 | int ret; | ||
228 | struct rdma_cm_id *cm_id; | ||
229 | struct sockaddr_in sin; | ||
230 | |||
231 | /* Create a CMA ID and try to bind it. This catches both | ||
232 | * IB and iWARP capable NICs. | ||
233 | */ | ||
234 | cm_id = rdma_create_id(NULL, NULL, RDMA_PS_TCP); | ||
235 | if (!cm_id) | ||
236 | return -EADDRNOTAVAIL; | ||
237 | |||
238 | memset(&sin, 0, sizeof(sin)); | ||
239 | sin.sin_family = AF_INET; | ||
240 | sin.sin_addr.s_addr = addr; | ||
241 | |||
242 | /* rdma_bind_addr will only succeed for IB & iWARP devices */ | ||
243 | ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin); | ||
244 | /* due to this, we will claim to support IB devices unless we | ||
245 | check node_type. */ | ||
246 | if (ret || cm_id->device->node_type != RDMA_NODE_RNIC) | ||
247 | ret = -EADDRNOTAVAIL; | ||
248 | |||
249 | rdsdebug("addr %pI4 ret %d node type %d\n", | ||
250 | &addr, ret, | ||
251 | cm_id->device ? cm_id->device->node_type : -1); | ||
252 | |||
253 | rdma_destroy_id(cm_id); | ||
254 | |||
255 | return ret; | ||
256 | } | ||
257 | |||
258 | void rds_iw_exit(void) | ||
259 | { | ||
260 | rds_info_deregister_func(RDS_INFO_IWARP_CONNECTIONS, rds_iw_ic_info); | ||
261 | rds_iw_remove_nodev_conns(); | ||
262 | ib_unregister_client(&rds_iw_client); | ||
263 | rds_iw_sysctl_exit(); | ||
264 | rds_iw_recv_exit(); | ||
265 | rds_trans_unregister(&rds_iw_transport); | ||
266 | } | ||
267 | |||
268 | struct rds_transport rds_iw_transport = { | ||
269 | .laddr_check = rds_iw_laddr_check, | ||
270 | .xmit_complete = rds_iw_xmit_complete, | ||
271 | .xmit = rds_iw_xmit, | ||
272 | .xmit_cong_map = NULL, | ||
273 | .xmit_rdma = rds_iw_xmit_rdma, | ||
274 | .recv = rds_iw_recv, | ||
275 | .conn_alloc = rds_iw_conn_alloc, | ||
276 | .conn_free = rds_iw_conn_free, | ||
277 | .conn_connect = rds_iw_conn_connect, | ||
278 | .conn_shutdown = rds_iw_conn_shutdown, | ||
279 | .inc_copy_to_user = rds_iw_inc_copy_to_user, | ||
280 | .inc_purge = rds_iw_inc_purge, | ||
281 | .inc_free = rds_iw_inc_free, | ||
282 | .cm_initiate_connect = rds_iw_cm_initiate_connect, | ||
283 | .cm_handle_connect = rds_iw_cm_handle_connect, | ||
284 | .cm_connect_complete = rds_iw_cm_connect_complete, | ||
285 | .stats_info_copy = rds_iw_stats_info_copy, | ||
286 | .exit = rds_iw_exit, | ||
287 | .get_mr = rds_iw_get_mr, | ||
288 | .sync_mr = rds_iw_sync_mr, | ||
289 | .free_mr = rds_iw_free_mr, | ||
290 | .flush_mrs = rds_iw_flush_mrs, | ||
291 | .t_owner = THIS_MODULE, | ||
292 | .t_name = "iwarp", | ||
293 | .t_prefer_loopback = 1, | ||
294 | }; | ||
295 | |||
296 | int __init rds_iw_init(void) | ||
297 | { | ||
298 | int ret; | ||
299 | |||
300 | INIT_LIST_HEAD(&rds_iw_devices); | ||
301 | |||
302 | ret = ib_register_client(&rds_iw_client); | ||
303 | if (ret) | ||
304 | goto out; | ||
305 | |||
306 | ret = rds_iw_sysctl_init(); | ||
307 | if (ret) | ||
308 | goto out_ibreg; | ||
309 | |||
310 | ret = rds_iw_recv_init(); | ||
311 | if (ret) | ||
312 | goto out_sysctl; | ||
313 | |||
314 | ret = rds_trans_register(&rds_iw_transport); | ||
315 | if (ret) | ||
316 | goto out_recv; | ||
317 | |||
318 | rds_info_register_func(RDS_INFO_IWARP_CONNECTIONS, rds_iw_ic_info); | ||
319 | |||
320 | goto out; | ||
321 | |||
322 | out_recv: | ||
323 | rds_iw_recv_exit(); | ||
324 | out_sysctl: | ||
325 | rds_iw_sysctl_exit(); | ||
326 | out_ibreg: | ||
327 | ib_unregister_client(&rds_iw_client); | ||
328 | out: | ||
329 | return ret; | ||
330 | } | ||
331 | |||
332 | MODULE_LICENSE("GPL"); | ||
333 | |||
diff --git a/net/rds/iw.h b/net/rds/iw.h new file mode 100644 index 000000000000..0ddda34f2a1c --- /dev/null +++ b/net/rds/iw.h | |||
@@ -0,0 +1,395 @@ | |||
1 | #ifndef _RDS_IW_H | ||
2 | #define _RDS_IW_H | ||
3 | |||
4 | #include <rdma/ib_verbs.h> | ||
5 | #include <rdma/rdma_cm.h> | ||
6 | #include "rds.h" | ||
7 | #include "rdma_transport.h" | ||
8 | |||
9 | #define RDS_FASTREG_SIZE 20 | ||
10 | #define RDS_FASTREG_POOL_SIZE 2048 | ||
11 | |||
12 | #define RDS_IW_MAX_SGE 8 | ||
13 | #define RDS_IW_RECV_SGE 2 | ||
14 | |||
15 | #define RDS_IW_DEFAULT_RECV_WR 1024 | ||
16 | #define RDS_IW_DEFAULT_SEND_WR 256 | ||
17 | |||
18 | #define RDS_IW_SUPPORTED_PROTOCOLS 0x00000003 /* minor versions supported */ | ||
19 | |||
20 | extern struct list_head rds_iw_devices; | ||
21 | |||
22 | /* | ||
23 | * IB posts RDS_FRAG_SIZE fragments of pages to the receive queues to | ||
24 | * try and minimize the amount of memory tied up both the device and | ||
25 | * socket receive queues. | ||
26 | */ | ||
27 | /* page offset of the final full frag that fits in the page */ | ||
28 | #define RDS_PAGE_LAST_OFF (((PAGE_SIZE / RDS_FRAG_SIZE) - 1) * RDS_FRAG_SIZE) | ||
29 | struct rds_page_frag { | ||
30 | struct list_head f_item; | ||
31 | struct page *f_page; | ||
32 | unsigned long f_offset; | ||
33 | dma_addr_t f_mapped; | ||
34 | }; | ||
35 | |||
36 | struct rds_iw_incoming { | ||
37 | struct list_head ii_frags; | ||
38 | struct rds_incoming ii_inc; | ||
39 | }; | ||
40 | |||
41 | struct rds_iw_connect_private { | ||
42 | /* Add new fields at the end, and don't permute existing fields. */ | ||
43 | __be32 dp_saddr; | ||
44 | __be32 dp_daddr; | ||
45 | u8 dp_protocol_major; | ||
46 | u8 dp_protocol_minor; | ||
47 | __be16 dp_protocol_minor_mask; /* bitmask */ | ||
48 | __be32 dp_reserved1; | ||
49 | __be64 dp_ack_seq; | ||
50 | __be32 dp_credit; /* non-zero enables flow ctl */ | ||
51 | }; | ||
52 | |||
53 | struct rds_iw_scatterlist { | ||
54 | struct scatterlist *list; | ||
55 | unsigned int len; | ||
56 | int dma_len; | ||
57 | unsigned int dma_npages; | ||
58 | unsigned int bytes; | ||
59 | }; | ||
60 | |||
61 | struct rds_iw_mapping { | ||
62 | spinlock_t m_lock; /* protect the mapping struct */ | ||
63 | struct list_head m_list; | ||
64 | struct rds_iw_mr *m_mr; | ||
65 | uint32_t m_rkey; | ||
66 | struct rds_iw_scatterlist m_sg; | ||
67 | }; | ||
68 | |||
69 | struct rds_iw_send_work { | ||
70 | struct rds_message *s_rm; | ||
71 | |||
72 | /* We should really put these into a union: */ | ||
73 | struct rds_rdma_op *s_op; | ||
74 | struct rds_iw_mapping *s_mapping; | ||
75 | struct ib_mr *s_mr; | ||
76 | struct ib_fast_reg_page_list *s_page_list; | ||
77 | unsigned char s_remap_count; | ||
78 | |||
79 | struct ib_send_wr s_wr; | ||
80 | struct ib_sge s_sge[RDS_IW_MAX_SGE]; | ||
81 | unsigned long s_queued; | ||
82 | }; | ||
83 | |||
84 | struct rds_iw_recv_work { | ||
85 | struct rds_iw_incoming *r_iwinc; | ||
86 | struct rds_page_frag *r_frag; | ||
87 | struct ib_recv_wr r_wr; | ||
88 | struct ib_sge r_sge[2]; | ||
89 | }; | ||
90 | |||
91 | struct rds_iw_work_ring { | ||
92 | u32 w_nr; | ||
93 | u32 w_alloc_ptr; | ||
94 | u32 w_alloc_ctr; | ||
95 | u32 w_free_ptr; | ||
96 | atomic_t w_free_ctr; | ||
97 | }; | ||
98 | |||
99 | struct rds_iw_device; | ||
100 | |||
101 | struct rds_iw_connection { | ||
102 | |||
103 | struct list_head iw_node; | ||
104 | struct rds_iw_device *rds_iwdev; | ||
105 | struct rds_connection *conn; | ||
106 | |||
107 | /* alphabet soup, IBTA style */ | ||
108 | struct rdma_cm_id *i_cm_id; | ||
109 | struct ib_pd *i_pd; | ||
110 | struct ib_mr *i_mr; | ||
111 | struct ib_cq *i_send_cq; | ||
112 | struct ib_cq *i_recv_cq; | ||
113 | |||
114 | /* tx */ | ||
115 | struct rds_iw_work_ring i_send_ring; | ||
116 | struct rds_message *i_rm; | ||
117 | struct rds_header *i_send_hdrs; | ||
118 | u64 i_send_hdrs_dma; | ||
119 | struct rds_iw_send_work *i_sends; | ||
120 | |||
121 | /* rx */ | ||
122 | struct mutex i_recv_mutex; | ||
123 | struct rds_iw_work_ring i_recv_ring; | ||
124 | struct rds_iw_incoming *i_iwinc; | ||
125 | u32 i_recv_data_rem; | ||
126 | struct rds_header *i_recv_hdrs; | ||
127 | u64 i_recv_hdrs_dma; | ||
128 | struct rds_iw_recv_work *i_recvs; | ||
129 | struct rds_page_frag i_frag; | ||
130 | u64 i_ack_recv; /* last ACK received */ | ||
131 | |||
132 | /* sending acks */ | ||
133 | unsigned long i_ack_flags; | ||
134 | u64 i_ack_next; /* next ACK to send */ | ||
135 | struct rds_header *i_ack; | ||
136 | struct ib_send_wr i_ack_wr; | ||
137 | struct ib_sge i_ack_sge; | ||
138 | u64 i_ack_dma; | ||
139 | unsigned long i_ack_queued; | ||
140 | |||
141 | /* Flow control related information | ||
142 | * | ||
143 | * Our algorithm uses a pair variables that we need to access | ||
144 | * atomically - one for the send credits, and one posted | ||
145 | * recv credits we need to transfer to remote. | ||
146 | * Rather than protect them using a slow spinlock, we put both into | ||
147 | * a single atomic_t and update it using cmpxchg | ||
148 | */ | ||
149 | atomic_t i_credits; | ||
150 | |||
151 | /* Protocol version specific information */ | ||
152 | unsigned int i_flowctl:1; /* enable/disable flow ctl */ | ||
153 | unsigned int i_dma_local_lkey:1; | ||
154 | unsigned int i_fastreg_posted:1; /* fastreg posted on this connection */ | ||
155 | /* Batched completions */ | ||
156 | unsigned int i_unsignaled_wrs; | ||
157 | long i_unsignaled_bytes; | ||
158 | }; | ||
159 | |||
160 | /* This assumes that atomic_t is at least 32 bits */ | ||
161 | #define IB_GET_SEND_CREDITS(v) ((v) & 0xffff) | ||
162 | #define IB_GET_POST_CREDITS(v) ((v) >> 16) | ||
163 | #define IB_SET_SEND_CREDITS(v) ((v) & 0xffff) | ||
164 | #define IB_SET_POST_CREDITS(v) ((v) << 16) | ||
165 | |||
166 | struct rds_iw_cm_id { | ||
167 | struct list_head list; | ||
168 | struct rdma_cm_id *cm_id; | ||
169 | }; | ||
170 | |||
171 | struct rds_iw_device { | ||
172 | struct list_head list; | ||
173 | struct list_head cm_id_list; | ||
174 | struct list_head conn_list; | ||
175 | struct ib_device *dev; | ||
176 | struct ib_pd *pd; | ||
177 | struct ib_mr *mr; | ||
178 | struct rds_iw_mr_pool *mr_pool; | ||
179 | int page_shift; | ||
180 | int max_sge; | ||
181 | unsigned int max_wrs; | ||
182 | unsigned int dma_local_lkey:1; | ||
183 | spinlock_t spinlock; /* protect the above */ | ||
184 | }; | ||
185 | |||
186 | /* bits for i_ack_flags */ | ||
187 | #define IB_ACK_IN_FLIGHT 0 | ||
188 | #define IB_ACK_REQUESTED 1 | ||
189 | |||
190 | /* Magic WR_ID for ACKs */ | ||
191 | #define RDS_IW_ACK_WR_ID ((u64)0xffffffffffffffffULL) | ||
192 | #define RDS_IW_FAST_REG_WR_ID ((u64)0xefefefefefefefefULL) | ||
193 | #define RDS_IW_LOCAL_INV_WR_ID ((u64)0xdfdfdfdfdfdfdfdfULL) | ||
194 | |||
195 | struct rds_iw_statistics { | ||
196 | uint64_t s_iw_connect_raced; | ||
197 | uint64_t s_iw_listen_closed_stale; | ||
198 | uint64_t s_iw_tx_cq_call; | ||
199 | uint64_t s_iw_tx_cq_event; | ||
200 | uint64_t s_iw_tx_ring_full; | ||
201 | uint64_t s_iw_tx_throttle; | ||
202 | uint64_t s_iw_tx_sg_mapping_failure; | ||
203 | uint64_t s_iw_tx_stalled; | ||
204 | uint64_t s_iw_tx_credit_updates; | ||
205 | uint64_t s_iw_rx_cq_call; | ||
206 | uint64_t s_iw_rx_cq_event; | ||
207 | uint64_t s_iw_rx_ring_empty; | ||
208 | uint64_t s_iw_rx_refill_from_cq; | ||
209 | uint64_t s_iw_rx_refill_from_thread; | ||
210 | uint64_t s_iw_rx_alloc_limit; | ||
211 | uint64_t s_iw_rx_credit_updates; | ||
212 | uint64_t s_iw_ack_sent; | ||
213 | uint64_t s_iw_ack_send_failure; | ||
214 | uint64_t s_iw_ack_send_delayed; | ||
215 | uint64_t s_iw_ack_send_piggybacked; | ||
216 | uint64_t s_iw_ack_received; | ||
217 | uint64_t s_iw_rdma_mr_alloc; | ||
218 | uint64_t s_iw_rdma_mr_free; | ||
219 | uint64_t s_iw_rdma_mr_used; | ||
220 | uint64_t s_iw_rdma_mr_pool_flush; | ||
221 | uint64_t s_iw_rdma_mr_pool_wait; | ||
222 | uint64_t s_iw_rdma_mr_pool_depleted; | ||
223 | }; | ||
224 | |||
225 | extern struct workqueue_struct *rds_iw_wq; | ||
226 | |||
227 | /* | ||
228 | * Fake ib_dma_sync_sg_for_{cpu,device} as long as ib_verbs.h | ||
229 | * doesn't define it. | ||
230 | */ | ||
231 | static inline void rds_iw_dma_sync_sg_for_cpu(struct ib_device *dev, | ||
232 | struct scatterlist *sg, unsigned int sg_dma_len, int direction) | ||
233 | { | ||
234 | unsigned int i; | ||
235 | |||
236 | for (i = 0; i < sg_dma_len; ++i) { | ||
237 | ib_dma_sync_single_for_cpu(dev, | ||
238 | ib_sg_dma_address(dev, &sg[i]), | ||
239 | ib_sg_dma_len(dev, &sg[i]), | ||
240 | direction); | ||
241 | } | ||
242 | } | ||
243 | #define ib_dma_sync_sg_for_cpu rds_iw_dma_sync_sg_for_cpu | ||
244 | |||
245 | static inline void rds_iw_dma_sync_sg_for_device(struct ib_device *dev, | ||
246 | struct scatterlist *sg, unsigned int sg_dma_len, int direction) | ||
247 | { | ||
248 | unsigned int i; | ||
249 | |||
250 | for (i = 0; i < sg_dma_len; ++i) { | ||
251 | ib_dma_sync_single_for_device(dev, | ||
252 | ib_sg_dma_address(dev, &sg[i]), | ||
253 | ib_sg_dma_len(dev, &sg[i]), | ||
254 | direction); | ||
255 | } | ||
256 | } | ||
257 | #define ib_dma_sync_sg_for_device rds_iw_dma_sync_sg_for_device | ||
258 | |||
259 | static inline u32 rds_iw_local_dma_lkey(struct rds_iw_connection *ic) | ||
260 | { | ||
261 | return ic->i_dma_local_lkey ? ic->i_cm_id->device->local_dma_lkey : ic->i_mr->lkey; | ||
262 | } | ||
263 | |||
264 | /* ib.c */ | ||
265 | extern struct rds_transport rds_iw_transport; | ||
266 | extern void rds_iw_add_one(struct ib_device *device); | ||
267 | extern void rds_iw_remove_one(struct ib_device *device); | ||
268 | extern struct ib_client rds_iw_client; | ||
269 | |||
270 | extern unsigned int fastreg_pool_size; | ||
271 | extern unsigned int fastreg_message_size; | ||
272 | |||
273 | extern spinlock_t iw_nodev_conns_lock; | ||
274 | extern struct list_head iw_nodev_conns; | ||
275 | |||
276 | /* ib_cm.c */ | ||
277 | int rds_iw_conn_alloc(struct rds_connection *conn, gfp_t gfp); | ||
278 | void rds_iw_conn_free(void *arg); | ||
279 | int rds_iw_conn_connect(struct rds_connection *conn); | ||
280 | void rds_iw_conn_shutdown(struct rds_connection *conn); | ||
281 | void rds_iw_state_change(struct sock *sk); | ||
282 | int __init rds_iw_listen_init(void); | ||
283 | void rds_iw_listen_stop(void); | ||
284 | void __rds_iw_conn_error(struct rds_connection *conn, const char *, ...); | ||
285 | int rds_iw_cm_handle_connect(struct rdma_cm_id *cm_id, | ||
286 | struct rdma_cm_event *event); | ||
287 | int rds_iw_cm_initiate_connect(struct rdma_cm_id *cm_id); | ||
288 | void rds_iw_cm_connect_complete(struct rds_connection *conn, | ||
289 | struct rdma_cm_event *event); | ||
290 | |||
291 | |||
292 | #define rds_iw_conn_error(conn, fmt...) \ | ||
293 | __rds_iw_conn_error(conn, KERN_WARNING "RDS/IW: " fmt) | ||
294 | |||
295 | /* ib_rdma.c */ | ||
296 | int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id); | ||
297 | int rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn); | ||
298 | void rds_iw_remove_nodev_conns(void); | ||
299 | void rds_iw_remove_conns(struct rds_iw_device *rds_iwdev); | ||
300 | struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *); | ||
301 | void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo); | ||
302 | void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *); | ||
303 | void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents, | ||
304 | struct rds_sock *rs, u32 *key_ret); | ||
305 | void rds_iw_sync_mr(void *trans_private, int dir); | ||
306 | void rds_iw_free_mr(void *trans_private, int invalidate); | ||
307 | void rds_iw_flush_mrs(void); | ||
308 | void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id); | ||
309 | |||
310 | /* ib_recv.c */ | ||
311 | int __init rds_iw_recv_init(void); | ||
312 | void rds_iw_recv_exit(void); | ||
313 | int rds_iw_recv(struct rds_connection *conn); | ||
314 | int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp, | ||
315 | gfp_t page_gfp, int prefill); | ||
316 | void rds_iw_inc_purge(struct rds_incoming *inc); | ||
317 | void rds_iw_inc_free(struct rds_incoming *inc); | ||
318 | int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iovec *iov, | ||
319 | size_t size); | ||
320 | void rds_iw_recv_cq_comp_handler(struct ib_cq *cq, void *context); | ||
321 | void rds_iw_recv_init_ring(struct rds_iw_connection *ic); | ||
322 | void rds_iw_recv_clear_ring(struct rds_iw_connection *ic); | ||
323 | void rds_iw_recv_init_ack(struct rds_iw_connection *ic); | ||
324 | void rds_iw_attempt_ack(struct rds_iw_connection *ic); | ||
325 | void rds_iw_ack_send_complete(struct rds_iw_connection *ic); | ||
326 | u64 rds_iw_piggyb_ack(struct rds_iw_connection *ic); | ||
327 | |||
328 | /* ib_ring.c */ | ||
329 | void rds_iw_ring_init(struct rds_iw_work_ring *ring, u32 nr); | ||
330 | void rds_iw_ring_resize(struct rds_iw_work_ring *ring, u32 nr); | ||
331 | u32 rds_iw_ring_alloc(struct rds_iw_work_ring *ring, u32 val, u32 *pos); | ||
332 | void rds_iw_ring_free(struct rds_iw_work_ring *ring, u32 val); | ||
333 | void rds_iw_ring_unalloc(struct rds_iw_work_ring *ring, u32 val); | ||
334 | int rds_iw_ring_empty(struct rds_iw_work_ring *ring); | ||
335 | int rds_iw_ring_low(struct rds_iw_work_ring *ring); | ||
336 | u32 rds_iw_ring_oldest(struct rds_iw_work_ring *ring); | ||
337 | u32 rds_iw_ring_completed(struct rds_iw_work_ring *ring, u32 wr_id, u32 oldest); | ||
338 | extern wait_queue_head_t rds_iw_ring_empty_wait; | ||
339 | |||
340 | /* ib_send.c */ | ||
341 | void rds_iw_xmit_complete(struct rds_connection *conn); | ||
342 | int rds_iw_xmit(struct rds_connection *conn, struct rds_message *rm, | ||
343 | unsigned int hdr_off, unsigned int sg, unsigned int off); | ||
344 | void rds_iw_send_cq_comp_handler(struct ib_cq *cq, void *context); | ||
345 | void rds_iw_send_init_ring(struct rds_iw_connection *ic); | ||
346 | void rds_iw_send_clear_ring(struct rds_iw_connection *ic); | ||
347 | int rds_iw_xmit_rdma(struct rds_connection *conn, struct rds_rdma_op *op); | ||
348 | void rds_iw_send_add_credits(struct rds_connection *conn, unsigned int credits); | ||
349 | void rds_iw_advertise_credits(struct rds_connection *conn, unsigned int posted); | ||
350 | int rds_iw_send_grab_credits(struct rds_iw_connection *ic, u32 wanted, | ||
351 | u32 *adv_credits, int need_posted); | ||
352 | |||
353 | /* ib_stats.c */ | ||
354 | DECLARE_PER_CPU(struct rds_iw_statistics, rds_iw_stats); | ||
355 | #define rds_iw_stats_inc(member) rds_stats_inc_which(rds_iw_stats, member) | ||
356 | unsigned int rds_iw_stats_info_copy(struct rds_info_iterator *iter, | ||
357 | unsigned int avail); | ||
358 | |||
359 | /* ib_sysctl.c */ | ||
360 | int __init rds_iw_sysctl_init(void); | ||
361 | void rds_iw_sysctl_exit(void); | ||
362 | extern unsigned long rds_iw_sysctl_max_send_wr; | ||
363 | extern unsigned long rds_iw_sysctl_max_recv_wr; | ||
364 | extern unsigned long rds_iw_sysctl_max_unsig_wrs; | ||
365 | extern unsigned long rds_iw_sysctl_max_unsig_bytes; | ||
366 | extern unsigned long rds_iw_sysctl_max_recv_allocation; | ||
367 | extern unsigned int rds_iw_sysctl_flow_control; | ||
368 | extern ctl_table rds_iw_sysctl_table[]; | ||
369 | |||
370 | /* | ||
371 | * Helper functions for getting/setting the header and data SGEs in | ||
372 | * RDS packets (not RDMA) | ||
373 | */ | ||
374 | static inline struct ib_sge * | ||
375 | rds_iw_header_sge(struct rds_iw_connection *ic, struct ib_sge *sge) | ||
376 | { | ||
377 | return &sge[0]; | ||
378 | } | ||
379 | |||
380 | static inline struct ib_sge * | ||
381 | rds_iw_data_sge(struct rds_iw_connection *ic, struct ib_sge *sge) | ||
382 | { | ||
383 | return &sge[1]; | ||
384 | } | ||
385 | |||
386 | static inline void rds_iw_set_64bit(u64 *ptr, u64 val) | ||
387 | { | ||
388 | #if BITS_PER_LONG == 64 | ||
389 | *ptr = val; | ||
390 | #else | ||
391 | set_64bit(ptr, val); | ||
392 | #endif | ||
393 | } | ||
394 | |||
395 | #endif | ||
diff --git a/net/rds/iw_cm.c b/net/rds/iw_cm.c new file mode 100644 index 000000000000..57ecb3d4b8a5 --- /dev/null +++ b/net/rds/iw_cm.c | |||
@@ -0,0 +1,750 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/in.h> | ||
35 | #include <linux/vmalloc.h> | ||
36 | |||
37 | #include "rds.h" | ||
38 | #include "iw.h" | ||
39 | |||
40 | /* | ||
41 | * Set the selected protocol version | ||
42 | */ | ||
43 | static void rds_iw_set_protocol(struct rds_connection *conn, unsigned int version) | ||
44 | { | ||
45 | conn->c_version = version; | ||
46 | } | ||
47 | |||
48 | /* | ||
49 | * Set up flow control | ||
50 | */ | ||
51 | static void rds_iw_set_flow_control(struct rds_connection *conn, u32 credits) | ||
52 | { | ||
53 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
54 | |||
55 | if (rds_iw_sysctl_flow_control && credits != 0) { | ||
56 | /* We're doing flow control */ | ||
57 | ic->i_flowctl = 1; | ||
58 | rds_iw_send_add_credits(conn, credits); | ||
59 | } else { | ||
60 | ic->i_flowctl = 0; | ||
61 | } | ||
62 | } | ||
63 | |||
64 | /* | ||
65 | * Connection established. | ||
66 | * We get here for both outgoing and incoming connection. | ||
67 | */ | ||
68 | void rds_iw_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event) | ||
69 | { | ||
70 | const struct rds_iw_connect_private *dp = NULL; | ||
71 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
72 | struct rds_iw_device *rds_iwdev; | ||
73 | int err; | ||
74 | |||
75 | if (event->param.conn.private_data_len) { | ||
76 | dp = event->param.conn.private_data; | ||
77 | |||
78 | rds_iw_set_protocol(conn, | ||
79 | RDS_PROTOCOL(dp->dp_protocol_major, | ||
80 | dp->dp_protocol_minor)); | ||
81 | rds_iw_set_flow_control(conn, be32_to_cpu(dp->dp_credit)); | ||
82 | } | ||
83 | |||
84 | /* update ib_device with this local ipaddr & conn */ | ||
85 | rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client); | ||
86 | err = rds_iw_update_cm_id(rds_iwdev, ic->i_cm_id); | ||
87 | if (err) | ||
88 | printk(KERN_ERR "rds_iw_update_ipaddr failed (%d)\n", err); | ||
89 | err = rds_iw_add_conn(rds_iwdev, conn); | ||
90 | if (err) | ||
91 | printk(KERN_ERR "rds_iw_add_conn failed (%d)\n", err); | ||
92 | |||
93 | /* If the peer gave us the last packet it saw, process this as if | ||
94 | * we had received a regular ACK. */ | ||
95 | if (dp && dp->dp_ack_seq) | ||
96 | rds_send_drop_acked(conn, be64_to_cpu(dp->dp_ack_seq), NULL); | ||
97 | |||
98 | printk(KERN_NOTICE "RDS/IW: connected to %pI4<->%pI4 version %u.%u%s\n", | ||
99 | &conn->c_laddr, &conn->c_faddr, | ||
100 | RDS_PROTOCOL_MAJOR(conn->c_version), | ||
101 | RDS_PROTOCOL_MINOR(conn->c_version), | ||
102 | ic->i_flowctl ? ", flow control" : ""); | ||
103 | |||
104 | rds_connect_complete(conn); | ||
105 | } | ||
106 | |||
107 | static void rds_iw_cm_fill_conn_param(struct rds_connection *conn, | ||
108 | struct rdma_conn_param *conn_param, | ||
109 | struct rds_iw_connect_private *dp, | ||
110 | u32 protocol_version) | ||
111 | { | ||
112 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
113 | |||
114 | memset(conn_param, 0, sizeof(struct rdma_conn_param)); | ||
115 | /* XXX tune these? */ | ||
116 | conn_param->responder_resources = 1; | ||
117 | conn_param->initiator_depth = 1; | ||
118 | |||
119 | if (dp) { | ||
120 | memset(dp, 0, sizeof(*dp)); | ||
121 | dp->dp_saddr = conn->c_laddr; | ||
122 | dp->dp_daddr = conn->c_faddr; | ||
123 | dp->dp_protocol_major = RDS_PROTOCOL_MAJOR(protocol_version); | ||
124 | dp->dp_protocol_minor = RDS_PROTOCOL_MINOR(protocol_version); | ||
125 | dp->dp_protocol_minor_mask = cpu_to_be16(RDS_IW_SUPPORTED_PROTOCOLS); | ||
126 | dp->dp_ack_seq = rds_iw_piggyb_ack(ic); | ||
127 | |||
128 | /* Advertise flow control */ | ||
129 | if (ic->i_flowctl) { | ||
130 | unsigned int credits; | ||
131 | |||
132 | credits = IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)); | ||
133 | dp->dp_credit = cpu_to_be32(credits); | ||
134 | atomic_sub(IB_SET_POST_CREDITS(credits), &ic->i_credits); | ||
135 | } | ||
136 | |||
137 | conn_param->private_data = dp; | ||
138 | conn_param->private_data_len = sizeof(*dp); | ||
139 | } | ||
140 | } | ||
141 | |||
142 | static void rds_iw_cq_event_handler(struct ib_event *event, void *data) | ||
143 | { | ||
144 | rdsdebug("event %u data %p\n", event->event, data); | ||
145 | } | ||
146 | |||
147 | static void rds_iw_qp_event_handler(struct ib_event *event, void *data) | ||
148 | { | ||
149 | struct rds_connection *conn = data; | ||
150 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
151 | |||
152 | rdsdebug("conn %p ic %p event %u\n", conn, ic, event->event); | ||
153 | |||
154 | switch (event->event) { | ||
155 | case IB_EVENT_COMM_EST: | ||
156 | rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST); | ||
157 | break; | ||
158 | case IB_EVENT_QP_REQ_ERR: | ||
159 | case IB_EVENT_QP_FATAL: | ||
160 | default: | ||
161 | rds_iw_conn_error(conn, "RDS/IW: Fatal QP Event %u - connection %pI4->%pI4...reconnecting\n", | ||
162 | event->event, &conn->c_laddr, | ||
163 | &conn->c_faddr); | ||
164 | break; | ||
165 | } | ||
166 | } | ||
167 | |||
168 | /* | ||
169 | * Create a QP | ||
170 | */ | ||
171 | static int rds_iw_init_qp_attrs(struct ib_qp_init_attr *attr, | ||
172 | struct rds_iw_device *rds_iwdev, | ||
173 | struct rds_iw_work_ring *send_ring, | ||
174 | void (*send_cq_handler)(struct ib_cq *, void *), | ||
175 | struct rds_iw_work_ring *recv_ring, | ||
176 | void (*recv_cq_handler)(struct ib_cq *, void *), | ||
177 | void *context) | ||
178 | { | ||
179 | struct ib_device *dev = rds_iwdev->dev; | ||
180 | unsigned int send_size, recv_size; | ||
181 | int ret; | ||
182 | |||
183 | /* The offset of 1 is to accomodate the additional ACK WR. */ | ||
184 | send_size = min_t(unsigned int, rds_iwdev->max_wrs, rds_iw_sysctl_max_send_wr + 1); | ||
185 | recv_size = min_t(unsigned int, rds_iwdev->max_wrs, rds_iw_sysctl_max_recv_wr + 1); | ||
186 | rds_iw_ring_resize(send_ring, send_size - 1); | ||
187 | rds_iw_ring_resize(recv_ring, recv_size - 1); | ||
188 | |||
189 | memset(attr, 0, sizeof(*attr)); | ||
190 | attr->event_handler = rds_iw_qp_event_handler; | ||
191 | attr->qp_context = context; | ||
192 | attr->cap.max_send_wr = send_size; | ||
193 | attr->cap.max_recv_wr = recv_size; | ||
194 | attr->cap.max_send_sge = rds_iwdev->max_sge; | ||
195 | attr->cap.max_recv_sge = RDS_IW_RECV_SGE; | ||
196 | attr->sq_sig_type = IB_SIGNAL_REQ_WR; | ||
197 | attr->qp_type = IB_QPT_RC; | ||
198 | |||
199 | attr->send_cq = ib_create_cq(dev, send_cq_handler, | ||
200 | rds_iw_cq_event_handler, | ||
201 | context, send_size, 0); | ||
202 | if (IS_ERR(attr->send_cq)) { | ||
203 | ret = PTR_ERR(attr->send_cq); | ||
204 | attr->send_cq = NULL; | ||
205 | rdsdebug("ib_create_cq send failed: %d\n", ret); | ||
206 | goto out; | ||
207 | } | ||
208 | |||
209 | attr->recv_cq = ib_create_cq(dev, recv_cq_handler, | ||
210 | rds_iw_cq_event_handler, | ||
211 | context, recv_size, 0); | ||
212 | if (IS_ERR(attr->recv_cq)) { | ||
213 | ret = PTR_ERR(attr->recv_cq); | ||
214 | attr->recv_cq = NULL; | ||
215 | rdsdebug("ib_create_cq send failed: %d\n", ret); | ||
216 | goto out; | ||
217 | } | ||
218 | |||
219 | ret = ib_req_notify_cq(attr->send_cq, IB_CQ_NEXT_COMP); | ||
220 | if (ret) { | ||
221 | rdsdebug("ib_req_notify_cq send failed: %d\n", ret); | ||
222 | goto out; | ||
223 | } | ||
224 | |||
225 | ret = ib_req_notify_cq(attr->recv_cq, IB_CQ_SOLICITED); | ||
226 | if (ret) { | ||
227 | rdsdebug("ib_req_notify_cq recv failed: %d\n", ret); | ||
228 | goto out; | ||
229 | } | ||
230 | |||
231 | out: | ||
232 | if (ret) { | ||
233 | if (attr->send_cq) | ||
234 | ib_destroy_cq(attr->send_cq); | ||
235 | if (attr->recv_cq) | ||
236 | ib_destroy_cq(attr->recv_cq); | ||
237 | } | ||
238 | return ret; | ||
239 | } | ||
240 | |||
241 | /* | ||
242 | * This needs to be very careful to not leave IS_ERR pointers around for | ||
243 | * cleanup to trip over. | ||
244 | */ | ||
245 | static int rds_iw_setup_qp(struct rds_connection *conn) | ||
246 | { | ||
247 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
248 | struct ib_device *dev = ic->i_cm_id->device; | ||
249 | struct ib_qp_init_attr attr; | ||
250 | struct rds_iw_device *rds_iwdev; | ||
251 | int ret; | ||
252 | |||
253 | /* rds_iw_add_one creates a rds_iw_device object per IB device, | ||
254 | * and allocates a protection domain, memory range and MR pool | ||
255 | * for each. If that fails for any reason, it will not register | ||
256 | * the rds_iwdev at all. | ||
257 | */ | ||
258 | rds_iwdev = ib_get_client_data(dev, &rds_iw_client); | ||
259 | if (rds_iwdev == NULL) { | ||
260 | if (printk_ratelimit()) | ||
261 | printk(KERN_NOTICE "RDS/IW: No client_data for device %s\n", | ||
262 | dev->name); | ||
263 | return -EOPNOTSUPP; | ||
264 | } | ||
265 | |||
266 | /* Protection domain and memory range */ | ||
267 | ic->i_pd = rds_iwdev->pd; | ||
268 | ic->i_mr = rds_iwdev->mr; | ||
269 | |||
270 | ret = rds_iw_init_qp_attrs(&attr, rds_iwdev, | ||
271 | &ic->i_send_ring, rds_iw_send_cq_comp_handler, | ||
272 | &ic->i_recv_ring, rds_iw_recv_cq_comp_handler, | ||
273 | conn); | ||
274 | if (ret < 0) | ||
275 | goto out; | ||
276 | |||
277 | ic->i_send_cq = attr.send_cq; | ||
278 | ic->i_recv_cq = attr.recv_cq; | ||
279 | |||
280 | /* | ||
281 | * XXX this can fail if max_*_wr is too large? Are we supposed | ||
282 | * to back off until we get a value that the hardware can support? | ||
283 | */ | ||
284 | ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr); | ||
285 | if (ret) { | ||
286 | rdsdebug("rdma_create_qp failed: %d\n", ret); | ||
287 | goto out; | ||
288 | } | ||
289 | |||
290 | ic->i_send_hdrs = ib_dma_alloc_coherent(dev, | ||
291 | ic->i_send_ring.w_nr * | ||
292 | sizeof(struct rds_header), | ||
293 | &ic->i_send_hdrs_dma, GFP_KERNEL); | ||
294 | if (ic->i_send_hdrs == NULL) { | ||
295 | ret = -ENOMEM; | ||
296 | rdsdebug("ib_dma_alloc_coherent send failed\n"); | ||
297 | goto out; | ||
298 | } | ||
299 | |||
300 | ic->i_recv_hdrs = ib_dma_alloc_coherent(dev, | ||
301 | ic->i_recv_ring.w_nr * | ||
302 | sizeof(struct rds_header), | ||
303 | &ic->i_recv_hdrs_dma, GFP_KERNEL); | ||
304 | if (ic->i_recv_hdrs == NULL) { | ||
305 | ret = -ENOMEM; | ||
306 | rdsdebug("ib_dma_alloc_coherent recv failed\n"); | ||
307 | goto out; | ||
308 | } | ||
309 | |||
310 | ic->i_ack = ib_dma_alloc_coherent(dev, sizeof(struct rds_header), | ||
311 | &ic->i_ack_dma, GFP_KERNEL); | ||
312 | if (ic->i_ack == NULL) { | ||
313 | ret = -ENOMEM; | ||
314 | rdsdebug("ib_dma_alloc_coherent ack failed\n"); | ||
315 | goto out; | ||
316 | } | ||
317 | |||
318 | ic->i_sends = vmalloc(ic->i_send_ring.w_nr * sizeof(struct rds_iw_send_work)); | ||
319 | if (ic->i_sends == NULL) { | ||
320 | ret = -ENOMEM; | ||
321 | rdsdebug("send allocation failed\n"); | ||
322 | goto out; | ||
323 | } | ||
324 | rds_iw_send_init_ring(ic); | ||
325 | |||
326 | ic->i_recvs = vmalloc(ic->i_recv_ring.w_nr * sizeof(struct rds_iw_recv_work)); | ||
327 | if (ic->i_recvs == NULL) { | ||
328 | ret = -ENOMEM; | ||
329 | rdsdebug("recv allocation failed\n"); | ||
330 | goto out; | ||
331 | } | ||
332 | |||
333 | rds_iw_recv_init_ring(ic); | ||
334 | rds_iw_recv_init_ack(ic); | ||
335 | |||
336 | /* Post receive buffers - as a side effect, this will update | ||
337 | * the posted credit count. */ | ||
338 | rds_iw_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 1); | ||
339 | |||
340 | rdsdebug("conn %p pd %p mr %p cq %p %p\n", conn, ic->i_pd, ic->i_mr, | ||
341 | ic->i_send_cq, ic->i_recv_cq); | ||
342 | |||
343 | out: | ||
344 | return ret; | ||
345 | } | ||
346 | |||
347 | static u32 rds_iw_protocol_compatible(const struct rds_iw_connect_private *dp) | ||
348 | { | ||
349 | u16 common; | ||
350 | u32 version = 0; | ||
351 | |||
352 | /* rdma_cm private data is odd - when there is any private data in the | ||
353 | * request, we will be given a pretty large buffer without telling us the | ||
354 | * original size. The only way to tell the difference is by looking at | ||
355 | * the contents, which are initialized to zero. | ||
356 | * If the protocol version fields aren't set, this is a connection attempt | ||
357 | * from an older version. This could could be 3.0 or 2.0 - we can't tell. | ||
358 | * We really should have changed this for OFED 1.3 :-( */ | ||
359 | if (dp->dp_protocol_major == 0) | ||
360 | return RDS_PROTOCOL_3_0; | ||
361 | |||
362 | common = be16_to_cpu(dp->dp_protocol_minor_mask) & RDS_IW_SUPPORTED_PROTOCOLS; | ||
363 | if (dp->dp_protocol_major == 3 && common) { | ||
364 | version = RDS_PROTOCOL_3_0; | ||
365 | while ((common >>= 1) != 0) | ||
366 | version++; | ||
367 | } else if (printk_ratelimit()) { | ||
368 | printk(KERN_NOTICE "RDS: Connection from %pI4 using " | ||
369 | "incompatible protocol version %u.%u\n", | ||
370 | &dp->dp_saddr, | ||
371 | dp->dp_protocol_major, | ||
372 | dp->dp_protocol_minor); | ||
373 | } | ||
374 | return version; | ||
375 | } | ||
376 | |||
377 | int rds_iw_cm_handle_connect(struct rdma_cm_id *cm_id, | ||
378 | struct rdma_cm_event *event) | ||
379 | { | ||
380 | const struct rds_iw_connect_private *dp = event->param.conn.private_data; | ||
381 | struct rds_iw_connect_private dp_rep; | ||
382 | struct rds_connection *conn = NULL; | ||
383 | struct rds_iw_connection *ic = NULL; | ||
384 | struct rdma_conn_param conn_param; | ||
385 | struct rds_iw_device *rds_iwdev; | ||
386 | u32 version; | ||
387 | int err, destroy = 1; | ||
388 | |||
389 | /* Check whether the remote protocol version matches ours. */ | ||
390 | version = rds_iw_protocol_compatible(dp); | ||
391 | if (!version) | ||
392 | goto out; | ||
393 | |||
394 | rdsdebug("saddr %pI4 daddr %pI4 RDSv%u.%u\n", | ||
395 | &dp->dp_saddr, &dp->dp_daddr, | ||
396 | RDS_PROTOCOL_MAJOR(version), RDS_PROTOCOL_MINOR(version)); | ||
397 | |||
398 | conn = rds_conn_create(dp->dp_daddr, dp->dp_saddr, &rds_iw_transport, | ||
399 | GFP_KERNEL); | ||
400 | if (IS_ERR(conn)) { | ||
401 | rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn)); | ||
402 | conn = NULL; | ||
403 | goto out; | ||
404 | } | ||
405 | |||
406 | /* | ||
407 | * The connection request may occur while the | ||
408 | * previous connection exist, e.g. in case of failover. | ||
409 | * But as connections may be initiated simultaneously | ||
410 | * by both hosts, we have a random backoff mechanism - | ||
411 | * see the comment above rds_queue_reconnect() | ||
412 | */ | ||
413 | mutex_lock(&conn->c_cm_lock); | ||
414 | if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) { | ||
415 | if (rds_conn_state(conn) == RDS_CONN_UP) { | ||
416 | rdsdebug("incoming connect while connecting\n"); | ||
417 | rds_conn_drop(conn); | ||
418 | rds_iw_stats_inc(s_iw_listen_closed_stale); | ||
419 | } else | ||
420 | if (rds_conn_state(conn) == RDS_CONN_CONNECTING) { | ||
421 | /* Wait and see - our connect may still be succeeding */ | ||
422 | rds_iw_stats_inc(s_iw_connect_raced); | ||
423 | } | ||
424 | mutex_unlock(&conn->c_cm_lock); | ||
425 | goto out; | ||
426 | } | ||
427 | |||
428 | ic = conn->c_transport_data; | ||
429 | |||
430 | rds_iw_set_protocol(conn, version); | ||
431 | rds_iw_set_flow_control(conn, be32_to_cpu(dp->dp_credit)); | ||
432 | |||
433 | /* If the peer gave us the last packet it saw, process this as if | ||
434 | * we had received a regular ACK. */ | ||
435 | if (dp->dp_ack_seq) | ||
436 | rds_send_drop_acked(conn, be64_to_cpu(dp->dp_ack_seq), NULL); | ||
437 | |||
438 | BUG_ON(cm_id->context); | ||
439 | BUG_ON(ic->i_cm_id); | ||
440 | |||
441 | ic->i_cm_id = cm_id; | ||
442 | cm_id->context = conn; | ||
443 | |||
444 | rds_iwdev = ib_get_client_data(cm_id->device, &rds_iw_client); | ||
445 | ic->i_dma_local_lkey = rds_iwdev->dma_local_lkey; | ||
446 | |||
447 | /* We got halfway through setting up the ib_connection, if we | ||
448 | * fail now, we have to take the long route out of this mess. */ | ||
449 | destroy = 0; | ||
450 | |||
451 | err = rds_iw_setup_qp(conn); | ||
452 | if (err) { | ||
453 | rds_iw_conn_error(conn, "rds_iw_setup_qp failed (%d)\n", err); | ||
454 | goto out; | ||
455 | } | ||
456 | |||
457 | rds_iw_cm_fill_conn_param(conn, &conn_param, &dp_rep, version); | ||
458 | |||
459 | /* rdma_accept() calls rdma_reject() internally if it fails */ | ||
460 | err = rdma_accept(cm_id, &conn_param); | ||
461 | mutex_unlock(&conn->c_cm_lock); | ||
462 | if (err) { | ||
463 | rds_iw_conn_error(conn, "rdma_accept failed (%d)\n", err); | ||
464 | goto out; | ||
465 | } | ||
466 | |||
467 | return 0; | ||
468 | |||
469 | out: | ||
470 | rdma_reject(cm_id, NULL, 0); | ||
471 | return destroy; | ||
472 | } | ||
473 | |||
474 | |||
475 | int rds_iw_cm_initiate_connect(struct rdma_cm_id *cm_id) | ||
476 | { | ||
477 | struct rds_connection *conn = cm_id->context; | ||
478 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
479 | struct rdma_conn_param conn_param; | ||
480 | struct rds_iw_connect_private dp; | ||
481 | int ret; | ||
482 | |||
483 | /* If the peer doesn't do protocol negotiation, we must | ||
484 | * default to RDSv3.0 */ | ||
485 | rds_iw_set_protocol(conn, RDS_PROTOCOL_3_0); | ||
486 | ic->i_flowctl = rds_iw_sysctl_flow_control; /* advertise flow control */ | ||
487 | |||
488 | ret = rds_iw_setup_qp(conn); | ||
489 | if (ret) { | ||
490 | rds_iw_conn_error(conn, "rds_iw_setup_qp failed (%d)\n", ret); | ||
491 | goto out; | ||
492 | } | ||
493 | |||
494 | rds_iw_cm_fill_conn_param(conn, &conn_param, &dp, RDS_PROTOCOL_VERSION); | ||
495 | |||
496 | ret = rdma_connect(cm_id, &conn_param); | ||
497 | if (ret) | ||
498 | rds_iw_conn_error(conn, "rdma_connect failed (%d)\n", ret); | ||
499 | |||
500 | out: | ||
501 | /* Beware - returning non-zero tells the rdma_cm to destroy | ||
502 | * the cm_id. We should certainly not do it as long as we still | ||
503 | * "own" the cm_id. */ | ||
504 | if (ret) { | ||
505 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
506 | |||
507 | if (ic->i_cm_id == cm_id) | ||
508 | ret = 0; | ||
509 | } | ||
510 | return ret; | ||
511 | } | ||
512 | |||
513 | int rds_iw_conn_connect(struct rds_connection *conn) | ||
514 | { | ||
515 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
516 | struct rds_iw_device *rds_iwdev; | ||
517 | struct sockaddr_in src, dest; | ||
518 | int ret; | ||
519 | |||
520 | /* XXX I wonder what affect the port space has */ | ||
521 | /* delegate cm event handler to rdma_transport */ | ||
522 | ic->i_cm_id = rdma_create_id(rds_rdma_cm_event_handler, conn, | ||
523 | RDMA_PS_TCP); | ||
524 | if (IS_ERR(ic->i_cm_id)) { | ||
525 | ret = PTR_ERR(ic->i_cm_id); | ||
526 | ic->i_cm_id = NULL; | ||
527 | rdsdebug("rdma_create_id() failed: %d\n", ret); | ||
528 | goto out; | ||
529 | } | ||
530 | |||
531 | rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn); | ||
532 | |||
533 | src.sin_family = AF_INET; | ||
534 | src.sin_addr.s_addr = (__force u32)conn->c_laddr; | ||
535 | src.sin_port = (__force u16)htons(0); | ||
536 | |||
537 | /* First, bind to the local address and device. */ | ||
538 | ret = rdma_bind_addr(ic->i_cm_id, (struct sockaddr *) &src); | ||
539 | if (ret) { | ||
540 | rdsdebug("rdma_bind_addr(%pI4) failed: %d\n", | ||
541 | &conn->c_laddr, ret); | ||
542 | rdma_destroy_id(ic->i_cm_id); | ||
543 | ic->i_cm_id = NULL; | ||
544 | goto out; | ||
545 | } | ||
546 | |||
547 | rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client); | ||
548 | ic->i_dma_local_lkey = rds_iwdev->dma_local_lkey; | ||
549 | |||
550 | dest.sin_family = AF_INET; | ||
551 | dest.sin_addr.s_addr = (__force u32)conn->c_faddr; | ||
552 | dest.sin_port = (__force u16)htons(RDS_PORT); | ||
553 | |||
554 | ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src, | ||
555 | (struct sockaddr *)&dest, | ||
556 | RDS_RDMA_RESOLVE_TIMEOUT_MS); | ||
557 | if (ret) { | ||
558 | rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id, | ||
559 | ret); | ||
560 | rdma_destroy_id(ic->i_cm_id); | ||
561 | ic->i_cm_id = NULL; | ||
562 | } | ||
563 | |||
564 | out: | ||
565 | return ret; | ||
566 | } | ||
567 | |||
568 | /* | ||
569 | * This is so careful about only cleaning up resources that were built up | ||
570 | * so that it can be called at any point during startup. In fact it | ||
571 | * can be called multiple times for a given connection. | ||
572 | */ | ||
573 | void rds_iw_conn_shutdown(struct rds_connection *conn) | ||
574 | { | ||
575 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
576 | int err = 0; | ||
577 | struct ib_qp_attr qp_attr; | ||
578 | |||
579 | rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id, | ||
580 | ic->i_pd, ic->i_send_cq, ic->i_recv_cq, | ||
581 | ic->i_cm_id ? ic->i_cm_id->qp : NULL); | ||
582 | |||
583 | if (ic->i_cm_id) { | ||
584 | struct ib_device *dev = ic->i_cm_id->device; | ||
585 | |||
586 | rdsdebug("disconnecting cm %p\n", ic->i_cm_id); | ||
587 | err = rdma_disconnect(ic->i_cm_id); | ||
588 | if (err) { | ||
589 | /* Actually this may happen quite frequently, when | ||
590 | * an outgoing connect raced with an incoming connect. | ||
591 | */ | ||
592 | rdsdebug("rds_iw_conn_shutdown: failed to disconnect," | ||
593 | " cm: %p err %d\n", ic->i_cm_id, err); | ||
594 | } | ||
595 | |||
596 | if (ic->i_cm_id->qp) { | ||
597 | qp_attr.qp_state = IB_QPS_ERR; | ||
598 | ib_modify_qp(ic->i_cm_id->qp, &qp_attr, IB_QP_STATE); | ||
599 | } | ||
600 | |||
601 | wait_event(rds_iw_ring_empty_wait, | ||
602 | rds_iw_ring_empty(&ic->i_send_ring) && | ||
603 | rds_iw_ring_empty(&ic->i_recv_ring)); | ||
604 | |||
605 | if (ic->i_send_hdrs) | ||
606 | ib_dma_free_coherent(dev, | ||
607 | ic->i_send_ring.w_nr * | ||
608 | sizeof(struct rds_header), | ||
609 | ic->i_send_hdrs, | ||
610 | ic->i_send_hdrs_dma); | ||
611 | |||
612 | if (ic->i_recv_hdrs) | ||
613 | ib_dma_free_coherent(dev, | ||
614 | ic->i_recv_ring.w_nr * | ||
615 | sizeof(struct rds_header), | ||
616 | ic->i_recv_hdrs, | ||
617 | ic->i_recv_hdrs_dma); | ||
618 | |||
619 | if (ic->i_ack) | ||
620 | ib_dma_free_coherent(dev, sizeof(struct rds_header), | ||
621 | ic->i_ack, ic->i_ack_dma); | ||
622 | |||
623 | if (ic->i_sends) | ||
624 | rds_iw_send_clear_ring(ic); | ||
625 | if (ic->i_recvs) | ||
626 | rds_iw_recv_clear_ring(ic); | ||
627 | |||
628 | if (ic->i_cm_id->qp) | ||
629 | rdma_destroy_qp(ic->i_cm_id); | ||
630 | if (ic->i_send_cq) | ||
631 | ib_destroy_cq(ic->i_send_cq); | ||
632 | if (ic->i_recv_cq) | ||
633 | ib_destroy_cq(ic->i_recv_cq); | ||
634 | |||
635 | /* | ||
636 | * If associated with an rds_iw_device: | ||
637 | * Move connection back to the nodev list. | ||
638 | * Remove cm_id from the device cm_id list. | ||
639 | */ | ||
640 | if (ic->rds_iwdev) { | ||
641 | |||
642 | spin_lock_irq(&ic->rds_iwdev->spinlock); | ||
643 | BUG_ON(list_empty(&ic->iw_node)); | ||
644 | list_del(&ic->iw_node); | ||
645 | spin_unlock_irq(&ic->rds_iwdev->spinlock); | ||
646 | |||
647 | spin_lock_irq(&iw_nodev_conns_lock); | ||
648 | list_add_tail(&ic->iw_node, &iw_nodev_conns); | ||
649 | spin_unlock_irq(&iw_nodev_conns_lock); | ||
650 | rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id); | ||
651 | ic->rds_iwdev = NULL; | ||
652 | } | ||
653 | |||
654 | rdma_destroy_id(ic->i_cm_id); | ||
655 | |||
656 | ic->i_cm_id = NULL; | ||
657 | ic->i_pd = NULL; | ||
658 | ic->i_mr = NULL; | ||
659 | ic->i_send_cq = NULL; | ||
660 | ic->i_recv_cq = NULL; | ||
661 | ic->i_send_hdrs = NULL; | ||
662 | ic->i_recv_hdrs = NULL; | ||
663 | ic->i_ack = NULL; | ||
664 | } | ||
665 | BUG_ON(ic->rds_iwdev); | ||
666 | |||
667 | /* Clear pending transmit */ | ||
668 | if (ic->i_rm) { | ||
669 | rds_message_put(ic->i_rm); | ||
670 | ic->i_rm = NULL; | ||
671 | } | ||
672 | |||
673 | /* Clear the ACK state */ | ||
674 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | ||
675 | rds_iw_set_64bit(&ic->i_ack_next, 0); | ||
676 | ic->i_ack_recv = 0; | ||
677 | |||
678 | /* Clear flow control state */ | ||
679 | ic->i_flowctl = 0; | ||
680 | atomic_set(&ic->i_credits, 0); | ||
681 | |||
682 | rds_iw_ring_init(&ic->i_send_ring, rds_iw_sysctl_max_send_wr); | ||
683 | rds_iw_ring_init(&ic->i_recv_ring, rds_iw_sysctl_max_recv_wr); | ||
684 | |||
685 | if (ic->i_iwinc) { | ||
686 | rds_inc_put(&ic->i_iwinc->ii_inc); | ||
687 | ic->i_iwinc = NULL; | ||
688 | } | ||
689 | |||
690 | vfree(ic->i_sends); | ||
691 | ic->i_sends = NULL; | ||
692 | vfree(ic->i_recvs); | ||
693 | ic->i_recvs = NULL; | ||
694 | rdsdebug("shutdown complete\n"); | ||
695 | } | ||
696 | |||
697 | int rds_iw_conn_alloc(struct rds_connection *conn, gfp_t gfp) | ||
698 | { | ||
699 | struct rds_iw_connection *ic; | ||
700 | unsigned long flags; | ||
701 | |||
702 | /* XXX too lazy? */ | ||
703 | ic = kzalloc(sizeof(struct rds_iw_connection), GFP_KERNEL); | ||
704 | if (ic == NULL) | ||
705 | return -ENOMEM; | ||
706 | |||
707 | INIT_LIST_HEAD(&ic->iw_node); | ||
708 | mutex_init(&ic->i_recv_mutex); | ||
709 | |||
710 | /* | ||
711 | * rds_iw_conn_shutdown() waits for these to be emptied so they | ||
712 | * must be initialized before it can be called. | ||
713 | */ | ||
714 | rds_iw_ring_init(&ic->i_send_ring, rds_iw_sysctl_max_send_wr); | ||
715 | rds_iw_ring_init(&ic->i_recv_ring, rds_iw_sysctl_max_recv_wr); | ||
716 | |||
717 | ic->conn = conn; | ||
718 | conn->c_transport_data = ic; | ||
719 | |||
720 | spin_lock_irqsave(&iw_nodev_conns_lock, flags); | ||
721 | list_add_tail(&ic->iw_node, &iw_nodev_conns); | ||
722 | spin_unlock_irqrestore(&iw_nodev_conns_lock, flags); | ||
723 | |||
724 | |||
725 | rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data); | ||
726 | return 0; | ||
727 | } | ||
728 | |||
729 | void rds_iw_conn_free(void *arg) | ||
730 | { | ||
731 | struct rds_iw_connection *ic = arg; | ||
732 | rdsdebug("ic %p\n", ic); | ||
733 | list_del(&ic->iw_node); | ||
734 | kfree(ic); | ||
735 | } | ||
736 | |||
737 | /* | ||
738 | * An error occurred on the connection | ||
739 | */ | ||
740 | void | ||
741 | __rds_iw_conn_error(struct rds_connection *conn, const char *fmt, ...) | ||
742 | { | ||
743 | va_list ap; | ||
744 | |||
745 | rds_conn_drop(conn); | ||
746 | |||
747 | va_start(ap, fmt); | ||
748 | vprintk(fmt, ap); | ||
749 | va_end(ap); | ||
750 | } | ||
diff --git a/net/rds/iw_rdma.c b/net/rds/iw_rdma.c new file mode 100644 index 000000000000..1c02a8f952d0 --- /dev/null +++ b/net/rds/iw_rdma.c | |||
@@ -0,0 +1,888 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | |||
35 | #include "rds.h" | ||
36 | #include "rdma.h" | ||
37 | #include "iw.h" | ||
38 | |||
39 | |||
40 | /* | ||
41 | * This is stored as mr->r_trans_private. | ||
42 | */ | ||
43 | struct rds_iw_mr { | ||
44 | struct rds_iw_device *device; | ||
45 | struct rds_iw_mr_pool *pool; | ||
46 | struct rdma_cm_id *cm_id; | ||
47 | |||
48 | struct ib_mr *mr; | ||
49 | struct ib_fast_reg_page_list *page_list; | ||
50 | |||
51 | struct rds_iw_mapping mapping; | ||
52 | unsigned char remap_count; | ||
53 | }; | ||
54 | |||
55 | /* | ||
56 | * Our own little MR pool | ||
57 | */ | ||
58 | struct rds_iw_mr_pool { | ||
59 | struct rds_iw_device *device; /* back ptr to the device that owns us */ | ||
60 | |||
61 | struct mutex flush_lock; /* serialize fmr invalidate */ | ||
62 | struct work_struct flush_worker; /* flush worker */ | ||
63 | |||
64 | spinlock_t list_lock; /* protect variables below */ | ||
65 | atomic_t item_count; /* total # of MRs */ | ||
66 | atomic_t dirty_count; /* # dirty of MRs */ | ||
67 | struct list_head dirty_list; /* dirty mappings */ | ||
68 | struct list_head clean_list; /* unused & unamapped MRs */ | ||
69 | atomic_t free_pinned; /* memory pinned by free MRs */ | ||
70 | unsigned long max_message_size; /* in pages */ | ||
71 | unsigned long max_items; | ||
72 | unsigned long max_items_soft; | ||
73 | unsigned long max_free_pinned; | ||
74 | int max_pages; | ||
75 | }; | ||
76 | |||
77 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all); | ||
78 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work); | ||
79 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | ||
80 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | ||
81 | struct rds_iw_mr *ibmr, | ||
82 | struct scatterlist *sg, unsigned int nents); | ||
83 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | ||
84 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | ||
85 | struct list_head *unmap_list, | ||
86 | struct list_head *kill_list); | ||
87 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | ||
88 | |||
89 | static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id) | ||
90 | { | ||
91 | struct rds_iw_device *iwdev; | ||
92 | struct rds_iw_cm_id *i_cm_id; | ||
93 | |||
94 | *rds_iwdev = NULL; | ||
95 | *cm_id = NULL; | ||
96 | |||
97 | list_for_each_entry(iwdev, &rds_iw_devices, list) { | ||
98 | spin_lock_irq(&iwdev->spinlock); | ||
99 | list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) { | ||
100 | struct sockaddr_in *src_addr, *dst_addr; | ||
101 | |||
102 | src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr; | ||
103 | dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr; | ||
104 | |||
105 | rdsdebug("local ipaddr = %x port %d, " | ||
106 | "remote ipaddr = %x port %d" | ||
107 | "..looking for %x port %d, " | ||
108 | "remote ipaddr = %x port %d\n", | ||
109 | src_addr->sin_addr.s_addr, | ||
110 | src_addr->sin_port, | ||
111 | dst_addr->sin_addr.s_addr, | ||
112 | dst_addr->sin_port, | ||
113 | rs->rs_bound_addr, | ||
114 | rs->rs_bound_port, | ||
115 | rs->rs_conn_addr, | ||
116 | rs->rs_conn_port); | ||
117 | #ifdef WORKING_TUPLE_DETECTION | ||
118 | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr && | ||
119 | src_addr->sin_port == rs->rs_bound_port && | ||
120 | dst_addr->sin_addr.s_addr == rs->rs_conn_addr && | ||
121 | dst_addr->sin_port == rs->rs_conn_port) { | ||
122 | #else | ||
123 | /* FIXME - needs to compare the local and remote | ||
124 | * ipaddr/port tuple, but the ipaddr is the only | ||
125 | * available infomation in the rds_sock (as the rest are | ||
126 | * zero'ed. It doesn't appear to be properly populated | ||
127 | * during connection setup... | ||
128 | */ | ||
129 | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) { | ||
130 | #endif | ||
131 | spin_unlock_irq(&iwdev->spinlock); | ||
132 | *rds_iwdev = iwdev; | ||
133 | *cm_id = i_cm_id->cm_id; | ||
134 | return 0; | ||
135 | } | ||
136 | } | ||
137 | spin_unlock_irq(&iwdev->spinlock); | ||
138 | } | ||
139 | |||
140 | return 1; | ||
141 | } | ||
142 | |||
143 | static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | ||
144 | { | ||
145 | struct rds_iw_cm_id *i_cm_id; | ||
146 | |||
147 | i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL); | ||
148 | if (!i_cm_id) | ||
149 | return -ENOMEM; | ||
150 | |||
151 | i_cm_id->cm_id = cm_id; | ||
152 | |||
153 | spin_lock_irq(&rds_iwdev->spinlock); | ||
154 | list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list); | ||
155 | spin_unlock_irq(&rds_iwdev->spinlock); | ||
156 | |||
157 | return 0; | ||
158 | } | ||
159 | |||
160 | void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | ||
161 | { | ||
162 | struct rds_iw_cm_id *i_cm_id; | ||
163 | |||
164 | spin_lock_irq(&rds_iwdev->spinlock); | ||
165 | list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) { | ||
166 | if (i_cm_id->cm_id == cm_id) { | ||
167 | list_del(&i_cm_id->list); | ||
168 | kfree(i_cm_id); | ||
169 | break; | ||
170 | } | ||
171 | } | ||
172 | spin_unlock_irq(&rds_iwdev->spinlock); | ||
173 | } | ||
174 | |||
175 | |||
176 | int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | ||
177 | { | ||
178 | struct sockaddr_in *src_addr, *dst_addr; | ||
179 | struct rds_iw_device *rds_iwdev_old; | ||
180 | struct rds_sock rs; | ||
181 | struct rdma_cm_id *pcm_id; | ||
182 | int rc; | ||
183 | |||
184 | src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr; | ||
185 | dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr; | ||
186 | |||
187 | rs.rs_bound_addr = src_addr->sin_addr.s_addr; | ||
188 | rs.rs_bound_port = src_addr->sin_port; | ||
189 | rs.rs_conn_addr = dst_addr->sin_addr.s_addr; | ||
190 | rs.rs_conn_port = dst_addr->sin_port; | ||
191 | |||
192 | rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id); | ||
193 | if (rc) | ||
194 | rds_iw_remove_cm_id(rds_iwdev, cm_id); | ||
195 | |||
196 | return rds_iw_add_cm_id(rds_iwdev, cm_id); | ||
197 | } | ||
198 | |||
199 | int rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) | ||
200 | { | ||
201 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
202 | |||
203 | /* conn was previously on the nodev_conns_list */ | ||
204 | spin_lock_irq(&iw_nodev_conns_lock); | ||
205 | BUG_ON(list_empty(&iw_nodev_conns)); | ||
206 | BUG_ON(list_empty(&ic->iw_node)); | ||
207 | list_del(&ic->iw_node); | ||
208 | spin_unlock_irq(&iw_nodev_conns_lock); | ||
209 | |||
210 | spin_lock_irq(&rds_iwdev->spinlock); | ||
211 | list_add_tail(&ic->iw_node, &rds_iwdev->conn_list); | ||
212 | spin_unlock_irq(&rds_iwdev->spinlock); | ||
213 | |||
214 | ic->rds_iwdev = rds_iwdev; | ||
215 | |||
216 | return 0; | ||
217 | } | ||
218 | |||
219 | void rds_iw_remove_nodev_conns(void) | ||
220 | { | ||
221 | struct rds_iw_connection *ic, *_ic; | ||
222 | LIST_HEAD(tmp_list); | ||
223 | |||
224 | /* avoid calling conn_destroy with irqs off */ | ||
225 | spin_lock_irq(&iw_nodev_conns_lock); | ||
226 | list_splice(&iw_nodev_conns, &tmp_list); | ||
227 | INIT_LIST_HEAD(&iw_nodev_conns); | ||
228 | spin_unlock_irq(&iw_nodev_conns_lock); | ||
229 | |||
230 | list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) { | ||
231 | if (ic->conn->c_passive) | ||
232 | rds_conn_destroy(ic->conn->c_passive); | ||
233 | rds_conn_destroy(ic->conn); | ||
234 | } | ||
235 | } | ||
236 | |||
237 | void rds_iw_remove_conns(struct rds_iw_device *rds_iwdev) | ||
238 | { | ||
239 | struct rds_iw_connection *ic, *_ic; | ||
240 | LIST_HEAD(tmp_list); | ||
241 | |||
242 | /* avoid calling conn_destroy with irqs off */ | ||
243 | spin_lock_irq(&rds_iwdev->spinlock); | ||
244 | list_splice(&rds_iwdev->conn_list, &tmp_list); | ||
245 | INIT_LIST_HEAD(&rds_iwdev->conn_list); | ||
246 | spin_unlock_irq(&rds_iwdev->spinlock); | ||
247 | |||
248 | list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) { | ||
249 | if (ic->conn->c_passive) | ||
250 | rds_conn_destroy(ic->conn->c_passive); | ||
251 | rds_conn_destroy(ic->conn); | ||
252 | } | ||
253 | } | ||
254 | |||
255 | static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg, | ||
256 | struct scatterlist *list, unsigned int sg_len) | ||
257 | { | ||
258 | sg->list = list; | ||
259 | sg->len = sg_len; | ||
260 | sg->dma_len = 0; | ||
261 | sg->dma_npages = 0; | ||
262 | sg->bytes = 0; | ||
263 | } | ||
264 | |||
265 | static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev, | ||
266 | struct rds_iw_scatterlist *sg, | ||
267 | unsigned int dma_page_shift) | ||
268 | { | ||
269 | struct ib_device *dev = rds_iwdev->dev; | ||
270 | u64 *dma_pages = NULL; | ||
271 | u64 dma_mask; | ||
272 | unsigned int dma_page_size; | ||
273 | int i, j, ret; | ||
274 | |||
275 | dma_page_size = 1 << dma_page_shift; | ||
276 | dma_mask = dma_page_size - 1; | ||
277 | |||
278 | WARN_ON(sg->dma_len); | ||
279 | |||
280 | sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | ||
281 | if (unlikely(!sg->dma_len)) { | ||
282 | printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n"); | ||
283 | return ERR_PTR(-EBUSY); | ||
284 | } | ||
285 | |||
286 | sg->bytes = 0; | ||
287 | sg->dma_npages = 0; | ||
288 | |||
289 | ret = -EINVAL; | ||
290 | for (i = 0; i < sg->dma_len; ++i) { | ||
291 | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | ||
292 | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | ||
293 | u64 end_addr; | ||
294 | |||
295 | sg->bytes += dma_len; | ||
296 | |||
297 | end_addr = dma_addr + dma_len; | ||
298 | if (dma_addr & dma_mask) { | ||
299 | if (i > 0) | ||
300 | goto out_unmap; | ||
301 | dma_addr &= ~dma_mask; | ||
302 | } | ||
303 | if (end_addr & dma_mask) { | ||
304 | if (i < sg->dma_len - 1) | ||
305 | goto out_unmap; | ||
306 | end_addr = (end_addr + dma_mask) & ~dma_mask; | ||
307 | } | ||
308 | |||
309 | sg->dma_npages += (end_addr - dma_addr) >> dma_page_shift; | ||
310 | } | ||
311 | |||
312 | /* Now gather the dma addrs into one list */ | ||
313 | if (sg->dma_npages > fastreg_message_size) | ||
314 | goto out_unmap; | ||
315 | |||
316 | dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC); | ||
317 | if (!dma_pages) { | ||
318 | ret = -ENOMEM; | ||
319 | goto out_unmap; | ||
320 | } | ||
321 | |||
322 | for (i = j = 0; i < sg->dma_len; ++i) { | ||
323 | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | ||
324 | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | ||
325 | u64 end_addr; | ||
326 | |||
327 | end_addr = dma_addr + dma_len; | ||
328 | dma_addr &= ~dma_mask; | ||
329 | for (; dma_addr < end_addr; dma_addr += dma_page_size) | ||
330 | dma_pages[j++] = dma_addr; | ||
331 | BUG_ON(j > sg->dma_npages); | ||
332 | } | ||
333 | |||
334 | return dma_pages; | ||
335 | |||
336 | out_unmap: | ||
337 | ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | ||
338 | sg->dma_len = 0; | ||
339 | kfree(dma_pages); | ||
340 | return ERR_PTR(ret); | ||
341 | } | ||
342 | |||
343 | |||
344 | struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev) | ||
345 | { | ||
346 | struct rds_iw_mr_pool *pool; | ||
347 | |||
348 | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | ||
349 | if (!pool) { | ||
350 | printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n"); | ||
351 | return ERR_PTR(-ENOMEM); | ||
352 | } | ||
353 | |||
354 | pool->device = rds_iwdev; | ||
355 | INIT_LIST_HEAD(&pool->dirty_list); | ||
356 | INIT_LIST_HEAD(&pool->clean_list); | ||
357 | mutex_init(&pool->flush_lock); | ||
358 | spin_lock_init(&pool->list_lock); | ||
359 | INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker); | ||
360 | |||
361 | pool->max_message_size = fastreg_message_size; | ||
362 | pool->max_items = fastreg_pool_size; | ||
363 | pool->max_free_pinned = pool->max_items * pool->max_message_size / 4; | ||
364 | pool->max_pages = fastreg_message_size; | ||
365 | |||
366 | /* We never allow more than max_items MRs to be allocated. | ||
367 | * When we exceed more than max_items_soft, we start freeing | ||
368 | * items more aggressively. | ||
369 | * Make sure that max_items > max_items_soft > max_items / 2 | ||
370 | */ | ||
371 | pool->max_items_soft = pool->max_items * 3 / 4; | ||
372 | |||
373 | return pool; | ||
374 | } | ||
375 | |||
376 | void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo) | ||
377 | { | ||
378 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | ||
379 | |||
380 | iinfo->rdma_mr_max = pool->max_items; | ||
381 | iinfo->rdma_mr_size = pool->max_pages; | ||
382 | } | ||
383 | |||
384 | void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool) | ||
385 | { | ||
386 | flush_workqueue(rds_wq); | ||
387 | rds_iw_flush_mr_pool(pool, 1); | ||
388 | BUG_ON(atomic_read(&pool->item_count)); | ||
389 | BUG_ON(atomic_read(&pool->free_pinned)); | ||
390 | kfree(pool); | ||
391 | } | ||
392 | |||
393 | static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool) | ||
394 | { | ||
395 | struct rds_iw_mr *ibmr = NULL; | ||
396 | unsigned long flags; | ||
397 | |||
398 | spin_lock_irqsave(&pool->list_lock, flags); | ||
399 | if (!list_empty(&pool->clean_list)) { | ||
400 | ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list); | ||
401 | list_del_init(&ibmr->mapping.m_list); | ||
402 | } | ||
403 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
404 | |||
405 | return ibmr; | ||
406 | } | ||
407 | |||
408 | static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev) | ||
409 | { | ||
410 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | ||
411 | struct rds_iw_mr *ibmr = NULL; | ||
412 | int err = 0, iter = 0; | ||
413 | |||
414 | while (1) { | ||
415 | ibmr = rds_iw_reuse_fmr(pool); | ||
416 | if (ibmr) | ||
417 | return ibmr; | ||
418 | |||
419 | /* No clean MRs - now we have the choice of either | ||
420 | * allocating a fresh MR up to the limit imposed by the | ||
421 | * driver, or flush any dirty unused MRs. | ||
422 | * We try to avoid stalling in the send path if possible, | ||
423 | * so we allocate as long as we're allowed to. | ||
424 | * | ||
425 | * We're fussy with enforcing the FMR limit, though. If the driver | ||
426 | * tells us we can't use more than N fmrs, we shouldn't start | ||
427 | * arguing with it */ | ||
428 | if (atomic_inc_return(&pool->item_count) <= pool->max_items) | ||
429 | break; | ||
430 | |||
431 | atomic_dec(&pool->item_count); | ||
432 | |||
433 | if (++iter > 2) { | ||
434 | rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted); | ||
435 | return ERR_PTR(-EAGAIN); | ||
436 | } | ||
437 | |||
438 | /* We do have some empty MRs. Flush them out. */ | ||
439 | rds_iw_stats_inc(s_iw_rdma_mr_pool_wait); | ||
440 | rds_iw_flush_mr_pool(pool, 0); | ||
441 | } | ||
442 | |||
443 | ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); | ||
444 | if (!ibmr) { | ||
445 | err = -ENOMEM; | ||
446 | goto out_no_cigar; | ||
447 | } | ||
448 | |||
449 | spin_lock_init(&ibmr->mapping.m_lock); | ||
450 | INIT_LIST_HEAD(&ibmr->mapping.m_list); | ||
451 | ibmr->mapping.m_mr = ibmr; | ||
452 | |||
453 | err = rds_iw_init_fastreg(pool, ibmr); | ||
454 | if (err) | ||
455 | goto out_no_cigar; | ||
456 | |||
457 | rds_iw_stats_inc(s_iw_rdma_mr_alloc); | ||
458 | return ibmr; | ||
459 | |||
460 | out_no_cigar: | ||
461 | if (ibmr) { | ||
462 | rds_iw_destroy_fastreg(pool, ibmr); | ||
463 | kfree(ibmr); | ||
464 | } | ||
465 | atomic_dec(&pool->item_count); | ||
466 | return ERR_PTR(err); | ||
467 | } | ||
468 | |||
469 | void rds_iw_sync_mr(void *trans_private, int direction) | ||
470 | { | ||
471 | struct rds_iw_mr *ibmr = trans_private; | ||
472 | struct rds_iw_device *rds_iwdev = ibmr->device; | ||
473 | |||
474 | switch (direction) { | ||
475 | case DMA_FROM_DEVICE: | ||
476 | ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list, | ||
477 | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | ||
478 | break; | ||
479 | case DMA_TO_DEVICE: | ||
480 | ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list, | ||
481 | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | ||
482 | break; | ||
483 | } | ||
484 | } | ||
485 | |||
486 | static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all) | ||
487 | { | ||
488 | unsigned int item_count; | ||
489 | |||
490 | item_count = atomic_read(&pool->item_count); | ||
491 | if (free_all) | ||
492 | return item_count; | ||
493 | |||
494 | return 0; | ||
495 | } | ||
496 | |||
497 | /* | ||
498 | * Flush our pool of MRs. | ||
499 | * At a minimum, all currently unused MRs are unmapped. | ||
500 | * If the number of MRs allocated exceeds the limit, we also try | ||
501 | * to free as many MRs as needed to get back to this limit. | ||
502 | */ | ||
503 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all) | ||
504 | { | ||
505 | struct rds_iw_mr *ibmr, *next; | ||
506 | LIST_HEAD(unmap_list); | ||
507 | LIST_HEAD(kill_list); | ||
508 | unsigned long flags; | ||
509 | unsigned int nfreed = 0, ncleaned = 0, free_goal; | ||
510 | int ret = 0; | ||
511 | |||
512 | rds_iw_stats_inc(s_iw_rdma_mr_pool_flush); | ||
513 | |||
514 | mutex_lock(&pool->flush_lock); | ||
515 | |||
516 | spin_lock_irqsave(&pool->list_lock, flags); | ||
517 | /* Get the list of all mappings to be destroyed */ | ||
518 | list_splice_init(&pool->dirty_list, &unmap_list); | ||
519 | if (free_all) | ||
520 | list_splice_init(&pool->clean_list, &kill_list); | ||
521 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
522 | |||
523 | free_goal = rds_iw_flush_goal(pool, free_all); | ||
524 | |||
525 | /* Batched invalidate of dirty MRs. | ||
526 | * For FMR based MRs, the mappings on the unmap list are | ||
527 | * actually members of an ibmr (ibmr->mapping). They either | ||
528 | * migrate to the kill_list, or have been cleaned and should be | ||
529 | * moved to the clean_list. | ||
530 | * For fastregs, they will be dynamically allocated, and | ||
531 | * will be destroyed by the unmap function. | ||
532 | */ | ||
533 | if (!list_empty(&unmap_list)) { | ||
534 | ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list); | ||
535 | /* If we've been asked to destroy all MRs, move those | ||
536 | * that were simply cleaned to the kill list */ | ||
537 | if (free_all) | ||
538 | list_splice_init(&unmap_list, &kill_list); | ||
539 | } | ||
540 | |||
541 | /* Destroy any MRs that are past their best before date */ | ||
542 | list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) { | ||
543 | rds_iw_stats_inc(s_iw_rdma_mr_free); | ||
544 | list_del(&ibmr->mapping.m_list); | ||
545 | rds_iw_destroy_fastreg(pool, ibmr); | ||
546 | kfree(ibmr); | ||
547 | nfreed++; | ||
548 | } | ||
549 | |||
550 | /* Anything that remains are laundered ibmrs, which we can add | ||
551 | * back to the clean list. */ | ||
552 | if (!list_empty(&unmap_list)) { | ||
553 | spin_lock_irqsave(&pool->list_lock, flags); | ||
554 | list_splice(&unmap_list, &pool->clean_list); | ||
555 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
556 | } | ||
557 | |||
558 | atomic_sub(ncleaned, &pool->dirty_count); | ||
559 | atomic_sub(nfreed, &pool->item_count); | ||
560 | |||
561 | mutex_unlock(&pool->flush_lock); | ||
562 | return ret; | ||
563 | } | ||
564 | |||
565 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work) | ||
566 | { | ||
567 | struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker); | ||
568 | |||
569 | rds_iw_flush_mr_pool(pool, 0); | ||
570 | } | ||
571 | |||
572 | void rds_iw_free_mr(void *trans_private, int invalidate) | ||
573 | { | ||
574 | struct rds_iw_mr *ibmr = trans_private; | ||
575 | struct rds_iw_mr_pool *pool = ibmr->device->mr_pool; | ||
576 | |||
577 | rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len); | ||
578 | if (!pool) | ||
579 | return; | ||
580 | |||
581 | /* Return it to the pool's free list */ | ||
582 | rds_iw_free_fastreg(pool, ibmr); | ||
583 | |||
584 | /* If we've pinned too many pages, request a flush */ | ||
585 | if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned | ||
586 | || atomic_read(&pool->dirty_count) >= pool->max_items / 10) | ||
587 | queue_work(rds_wq, &pool->flush_worker); | ||
588 | |||
589 | if (invalidate) { | ||
590 | if (likely(!in_interrupt())) { | ||
591 | rds_iw_flush_mr_pool(pool, 0); | ||
592 | } else { | ||
593 | /* We get here if the user created a MR marked | ||
594 | * as use_once and invalidate at the same time. */ | ||
595 | queue_work(rds_wq, &pool->flush_worker); | ||
596 | } | ||
597 | } | ||
598 | } | ||
599 | |||
600 | void rds_iw_flush_mrs(void) | ||
601 | { | ||
602 | struct rds_iw_device *rds_iwdev; | ||
603 | |||
604 | list_for_each_entry(rds_iwdev, &rds_iw_devices, list) { | ||
605 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | ||
606 | |||
607 | if (pool) | ||
608 | rds_iw_flush_mr_pool(pool, 0); | ||
609 | } | ||
610 | } | ||
611 | |||
612 | void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents, | ||
613 | struct rds_sock *rs, u32 *key_ret) | ||
614 | { | ||
615 | struct rds_iw_device *rds_iwdev; | ||
616 | struct rds_iw_mr *ibmr = NULL; | ||
617 | struct rdma_cm_id *cm_id; | ||
618 | int ret; | ||
619 | |||
620 | ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id); | ||
621 | if (ret || !cm_id) { | ||
622 | ret = -ENODEV; | ||
623 | goto out; | ||
624 | } | ||
625 | |||
626 | if (!rds_iwdev->mr_pool) { | ||
627 | ret = -ENODEV; | ||
628 | goto out; | ||
629 | } | ||
630 | |||
631 | ibmr = rds_iw_alloc_mr(rds_iwdev); | ||
632 | if (IS_ERR(ibmr)) | ||
633 | return ibmr; | ||
634 | |||
635 | ibmr->cm_id = cm_id; | ||
636 | ibmr->device = rds_iwdev; | ||
637 | |||
638 | ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents); | ||
639 | if (ret == 0) | ||
640 | *key_ret = ibmr->mr->rkey; | ||
641 | else | ||
642 | printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret); | ||
643 | |||
644 | out: | ||
645 | if (ret) { | ||
646 | if (ibmr) | ||
647 | rds_iw_free_mr(ibmr, 0); | ||
648 | ibmr = ERR_PTR(ret); | ||
649 | } | ||
650 | return ibmr; | ||
651 | } | ||
652 | |||
653 | /* | ||
654 | * iWARP fastreg handling | ||
655 | * | ||
656 | * The life cycle of a fastreg registration is a bit different from | ||
657 | * FMRs. | ||
658 | * The idea behind fastreg is to have one MR, to which we bind different | ||
659 | * mappings over time. To avoid stalling on the expensive map and invalidate | ||
660 | * operations, these operations are pipelined on the same send queue on | ||
661 | * which we want to send the message containing the r_key. | ||
662 | * | ||
663 | * This creates a bit of a problem for us, as we do not have the destination | ||
664 | * IP in GET_MR, so the connection must be setup prior to the GET_MR call for | ||
665 | * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit | ||
666 | * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request | ||
667 | * before queuing the SEND. When completions for these arrive, they are | ||
668 | * dispatched to the MR has a bit set showing that RDMa can be performed. | ||
669 | * | ||
670 | * There is another interesting aspect that's related to invalidation. | ||
671 | * The application can request that a mapping is invalidated in FREE_MR. | ||
672 | * The expectation there is that this invalidation step includes ALL | ||
673 | * PREVIOUSLY FREED MRs. | ||
674 | */ | ||
675 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, | ||
676 | struct rds_iw_mr *ibmr) | ||
677 | { | ||
678 | struct rds_iw_device *rds_iwdev = pool->device; | ||
679 | struct ib_fast_reg_page_list *page_list = NULL; | ||
680 | struct ib_mr *mr; | ||
681 | int err; | ||
682 | |||
683 | mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size); | ||
684 | if (IS_ERR(mr)) { | ||
685 | err = PTR_ERR(mr); | ||
686 | |||
687 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err); | ||
688 | return err; | ||
689 | } | ||
690 | |||
691 | /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages | ||
692 | * is not filled in. | ||
693 | */ | ||
694 | page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size); | ||
695 | if (IS_ERR(page_list)) { | ||
696 | err = PTR_ERR(page_list); | ||
697 | |||
698 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err); | ||
699 | ib_dereg_mr(mr); | ||
700 | return err; | ||
701 | } | ||
702 | |||
703 | ibmr->page_list = page_list; | ||
704 | ibmr->mr = mr; | ||
705 | return 0; | ||
706 | } | ||
707 | |||
708 | static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping) | ||
709 | { | ||
710 | struct rds_iw_mr *ibmr = mapping->m_mr; | ||
711 | struct ib_send_wr f_wr, *failed_wr; | ||
712 | int ret; | ||
713 | |||
714 | /* | ||
715 | * Perform a WR for the fast_reg_mr. Each individual page | ||
716 | * in the sg list is added to the fast reg page list and placed | ||
717 | * inside the fast_reg_mr WR. The key used is a rolling 8bit | ||
718 | * counter, which should guarantee uniqueness. | ||
719 | */ | ||
720 | ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++); | ||
721 | mapping->m_rkey = ibmr->mr->rkey; | ||
722 | |||
723 | memset(&f_wr, 0, sizeof(f_wr)); | ||
724 | f_wr.wr_id = RDS_IW_FAST_REG_WR_ID; | ||
725 | f_wr.opcode = IB_WR_FAST_REG_MR; | ||
726 | f_wr.wr.fast_reg.length = mapping->m_sg.bytes; | ||
727 | f_wr.wr.fast_reg.rkey = mapping->m_rkey; | ||
728 | f_wr.wr.fast_reg.page_list = ibmr->page_list; | ||
729 | f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len; | ||
730 | f_wr.wr.fast_reg.page_shift = ibmr->device->page_shift; | ||
731 | f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE | | ||
732 | IB_ACCESS_REMOTE_READ | | ||
733 | IB_ACCESS_REMOTE_WRITE; | ||
734 | f_wr.wr.fast_reg.iova_start = 0; | ||
735 | f_wr.send_flags = IB_SEND_SIGNALED; | ||
736 | |||
737 | failed_wr = &f_wr; | ||
738 | ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr); | ||
739 | BUG_ON(failed_wr != &f_wr); | ||
740 | if (ret && printk_ratelimit()) | ||
741 | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | ||
742 | __func__, __LINE__, ret); | ||
743 | return ret; | ||
744 | } | ||
745 | |||
746 | static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr) | ||
747 | { | ||
748 | struct ib_send_wr s_wr, *failed_wr; | ||
749 | int ret = 0; | ||
750 | |||
751 | if (!ibmr->cm_id->qp || !ibmr->mr) | ||
752 | goto out; | ||
753 | |||
754 | memset(&s_wr, 0, sizeof(s_wr)); | ||
755 | s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID; | ||
756 | s_wr.opcode = IB_WR_LOCAL_INV; | ||
757 | s_wr.ex.invalidate_rkey = ibmr->mr->rkey; | ||
758 | s_wr.send_flags = IB_SEND_SIGNALED; | ||
759 | |||
760 | failed_wr = &s_wr; | ||
761 | ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr); | ||
762 | if (ret && printk_ratelimit()) { | ||
763 | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | ||
764 | __func__, __LINE__, ret); | ||
765 | goto out; | ||
766 | } | ||
767 | out: | ||
768 | return ret; | ||
769 | } | ||
770 | |||
771 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | ||
772 | struct rds_iw_mr *ibmr, | ||
773 | struct scatterlist *sg, | ||
774 | unsigned int sg_len) | ||
775 | { | ||
776 | struct rds_iw_device *rds_iwdev = pool->device; | ||
777 | struct rds_iw_mapping *mapping = &ibmr->mapping; | ||
778 | u64 *dma_pages; | ||
779 | int i, ret = 0; | ||
780 | |||
781 | rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len); | ||
782 | |||
783 | dma_pages = rds_iw_map_scatterlist(rds_iwdev, | ||
784 | &mapping->m_sg, | ||
785 | rds_iwdev->page_shift); | ||
786 | if (IS_ERR(dma_pages)) { | ||
787 | ret = PTR_ERR(dma_pages); | ||
788 | dma_pages = NULL; | ||
789 | goto out; | ||
790 | } | ||
791 | |||
792 | if (mapping->m_sg.dma_len > pool->max_message_size) { | ||
793 | ret = -EMSGSIZE; | ||
794 | goto out; | ||
795 | } | ||
796 | |||
797 | for (i = 0; i < mapping->m_sg.dma_npages; ++i) | ||
798 | ibmr->page_list->page_list[i] = dma_pages[i]; | ||
799 | |||
800 | ret = rds_iw_rdma_build_fastreg(mapping); | ||
801 | if (ret) | ||
802 | goto out; | ||
803 | |||
804 | rds_iw_stats_inc(s_iw_rdma_mr_used); | ||
805 | |||
806 | out: | ||
807 | kfree(dma_pages); | ||
808 | |||
809 | return ret; | ||
810 | } | ||
811 | |||
812 | /* | ||
813 | * "Free" a fastreg MR. | ||
814 | */ | ||
815 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, | ||
816 | struct rds_iw_mr *ibmr) | ||
817 | { | ||
818 | unsigned long flags; | ||
819 | int ret; | ||
820 | |||
821 | if (!ibmr->mapping.m_sg.dma_len) | ||
822 | return; | ||
823 | |||
824 | ret = rds_iw_rdma_fastreg_inv(ibmr); | ||
825 | if (ret) | ||
826 | return; | ||
827 | |||
828 | /* Try to post the LOCAL_INV WR to the queue. */ | ||
829 | spin_lock_irqsave(&pool->list_lock, flags); | ||
830 | |||
831 | list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list); | ||
832 | atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned); | ||
833 | atomic_inc(&pool->dirty_count); | ||
834 | |||
835 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
836 | } | ||
837 | |||
838 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | ||
839 | struct list_head *unmap_list, | ||
840 | struct list_head *kill_list) | ||
841 | { | ||
842 | struct rds_iw_mapping *mapping, *next; | ||
843 | unsigned int ncleaned = 0; | ||
844 | LIST_HEAD(laundered); | ||
845 | |||
846 | /* Batched invalidation of fastreg MRs. | ||
847 | * Why do we do it this way, even though we could pipeline unmap | ||
848 | * and remap? The reason is the application semantics - when the | ||
849 | * application requests an invalidation of MRs, it expects all | ||
850 | * previously released R_Keys to become invalid. | ||
851 | * | ||
852 | * If we implement MR reuse naively, we risk memory corruption | ||
853 | * (this has actually been observed). So the default behavior | ||
854 | * requires that a MR goes through an explicit unmap operation before | ||
855 | * we can reuse it again. | ||
856 | * | ||
857 | * We could probably improve on this a little, by allowing immediate | ||
858 | * reuse of a MR on the same socket (eg you could add small | ||
859 | * cache of unused MRs to strct rds_socket - GET_MR could grab one | ||
860 | * of these without requiring an explicit invalidate). | ||
861 | */ | ||
862 | while (!list_empty(unmap_list)) { | ||
863 | unsigned long flags; | ||
864 | |||
865 | spin_lock_irqsave(&pool->list_lock, flags); | ||
866 | list_for_each_entry_safe(mapping, next, unmap_list, m_list) { | ||
867 | list_move(&mapping->m_list, &laundered); | ||
868 | ncleaned++; | ||
869 | } | ||
870 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
871 | } | ||
872 | |||
873 | /* Move all laundered mappings back to the unmap list. | ||
874 | * We do not kill any WRs right now - it doesn't seem the | ||
875 | * fastreg API has a max_remap limit. */ | ||
876 | list_splice_init(&laundered, unmap_list); | ||
877 | |||
878 | return ncleaned; | ||
879 | } | ||
880 | |||
881 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, | ||
882 | struct rds_iw_mr *ibmr) | ||
883 | { | ||
884 | if (ibmr->page_list) | ||
885 | ib_free_fast_reg_page_list(ibmr->page_list); | ||
886 | if (ibmr->mr) | ||
887 | ib_dereg_mr(ibmr->mr); | ||
888 | } | ||
diff --git a/net/rds/iw_recv.c b/net/rds/iw_recv.c new file mode 100644 index 000000000000..a1931f0027a2 --- /dev/null +++ b/net/rds/iw_recv.c | |||
@@ -0,0 +1,869 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/pci.h> | ||
35 | #include <linux/dma-mapping.h> | ||
36 | #include <rdma/rdma_cm.h> | ||
37 | |||
38 | #include "rds.h" | ||
39 | #include "iw.h" | ||
40 | |||
41 | static struct kmem_cache *rds_iw_incoming_slab; | ||
42 | static struct kmem_cache *rds_iw_frag_slab; | ||
43 | static atomic_t rds_iw_allocation = ATOMIC_INIT(0); | ||
44 | |||
45 | static void rds_iw_frag_drop_page(struct rds_page_frag *frag) | ||
46 | { | ||
47 | rdsdebug("frag %p page %p\n", frag, frag->f_page); | ||
48 | __free_page(frag->f_page); | ||
49 | frag->f_page = NULL; | ||
50 | } | ||
51 | |||
52 | static void rds_iw_frag_free(struct rds_page_frag *frag) | ||
53 | { | ||
54 | rdsdebug("frag %p page %p\n", frag, frag->f_page); | ||
55 | BUG_ON(frag->f_page != NULL); | ||
56 | kmem_cache_free(rds_iw_frag_slab, frag); | ||
57 | } | ||
58 | |||
59 | /* | ||
60 | * We map a page at a time. Its fragments are posted in order. This | ||
61 | * is called in fragment order as the fragments get send completion events. | ||
62 | * Only the last frag in the page performs the unmapping. | ||
63 | * | ||
64 | * It's OK for ring cleanup to call this in whatever order it likes because | ||
65 | * DMA is not in flight and so we can unmap while other ring entries still | ||
66 | * hold page references in their frags. | ||
67 | */ | ||
68 | static void rds_iw_recv_unmap_page(struct rds_iw_connection *ic, | ||
69 | struct rds_iw_recv_work *recv) | ||
70 | { | ||
71 | struct rds_page_frag *frag = recv->r_frag; | ||
72 | |||
73 | rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page); | ||
74 | if (frag->f_mapped) | ||
75 | ib_dma_unmap_page(ic->i_cm_id->device, | ||
76 | frag->f_mapped, | ||
77 | RDS_FRAG_SIZE, DMA_FROM_DEVICE); | ||
78 | frag->f_mapped = 0; | ||
79 | } | ||
80 | |||
81 | void rds_iw_recv_init_ring(struct rds_iw_connection *ic) | ||
82 | { | ||
83 | struct rds_iw_recv_work *recv; | ||
84 | u32 i; | ||
85 | |||
86 | for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { | ||
87 | struct ib_sge *sge; | ||
88 | |||
89 | recv->r_iwinc = NULL; | ||
90 | recv->r_frag = NULL; | ||
91 | |||
92 | recv->r_wr.next = NULL; | ||
93 | recv->r_wr.wr_id = i; | ||
94 | recv->r_wr.sg_list = recv->r_sge; | ||
95 | recv->r_wr.num_sge = RDS_IW_RECV_SGE; | ||
96 | |||
97 | sge = rds_iw_data_sge(ic, recv->r_sge); | ||
98 | sge->addr = 0; | ||
99 | sge->length = RDS_FRAG_SIZE; | ||
100 | sge->lkey = 0; | ||
101 | |||
102 | sge = rds_iw_header_sge(ic, recv->r_sge); | ||
103 | sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); | ||
104 | sge->length = sizeof(struct rds_header); | ||
105 | sge->lkey = 0; | ||
106 | } | ||
107 | } | ||
108 | |||
109 | static void rds_iw_recv_clear_one(struct rds_iw_connection *ic, | ||
110 | struct rds_iw_recv_work *recv) | ||
111 | { | ||
112 | if (recv->r_iwinc) { | ||
113 | rds_inc_put(&recv->r_iwinc->ii_inc); | ||
114 | recv->r_iwinc = NULL; | ||
115 | } | ||
116 | if (recv->r_frag) { | ||
117 | rds_iw_recv_unmap_page(ic, recv); | ||
118 | if (recv->r_frag->f_page) | ||
119 | rds_iw_frag_drop_page(recv->r_frag); | ||
120 | rds_iw_frag_free(recv->r_frag); | ||
121 | recv->r_frag = NULL; | ||
122 | } | ||
123 | } | ||
124 | |||
125 | void rds_iw_recv_clear_ring(struct rds_iw_connection *ic) | ||
126 | { | ||
127 | u32 i; | ||
128 | |||
129 | for (i = 0; i < ic->i_recv_ring.w_nr; i++) | ||
130 | rds_iw_recv_clear_one(ic, &ic->i_recvs[i]); | ||
131 | |||
132 | if (ic->i_frag.f_page) | ||
133 | rds_iw_frag_drop_page(&ic->i_frag); | ||
134 | } | ||
135 | |||
136 | static int rds_iw_recv_refill_one(struct rds_connection *conn, | ||
137 | struct rds_iw_recv_work *recv, | ||
138 | gfp_t kptr_gfp, gfp_t page_gfp) | ||
139 | { | ||
140 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
141 | dma_addr_t dma_addr; | ||
142 | struct ib_sge *sge; | ||
143 | int ret = -ENOMEM; | ||
144 | |||
145 | if (recv->r_iwinc == NULL) { | ||
146 | if (atomic_read(&rds_iw_allocation) >= rds_iw_sysctl_max_recv_allocation) { | ||
147 | rds_iw_stats_inc(s_iw_rx_alloc_limit); | ||
148 | goto out; | ||
149 | } | ||
150 | recv->r_iwinc = kmem_cache_alloc(rds_iw_incoming_slab, | ||
151 | kptr_gfp); | ||
152 | if (recv->r_iwinc == NULL) | ||
153 | goto out; | ||
154 | atomic_inc(&rds_iw_allocation); | ||
155 | INIT_LIST_HEAD(&recv->r_iwinc->ii_frags); | ||
156 | rds_inc_init(&recv->r_iwinc->ii_inc, conn, conn->c_faddr); | ||
157 | } | ||
158 | |||
159 | if (recv->r_frag == NULL) { | ||
160 | recv->r_frag = kmem_cache_alloc(rds_iw_frag_slab, kptr_gfp); | ||
161 | if (recv->r_frag == NULL) | ||
162 | goto out; | ||
163 | INIT_LIST_HEAD(&recv->r_frag->f_item); | ||
164 | recv->r_frag->f_page = NULL; | ||
165 | } | ||
166 | |||
167 | if (ic->i_frag.f_page == NULL) { | ||
168 | ic->i_frag.f_page = alloc_page(page_gfp); | ||
169 | if (ic->i_frag.f_page == NULL) | ||
170 | goto out; | ||
171 | ic->i_frag.f_offset = 0; | ||
172 | } | ||
173 | |||
174 | dma_addr = ib_dma_map_page(ic->i_cm_id->device, | ||
175 | ic->i_frag.f_page, | ||
176 | ic->i_frag.f_offset, | ||
177 | RDS_FRAG_SIZE, | ||
178 | DMA_FROM_DEVICE); | ||
179 | if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr)) | ||
180 | goto out; | ||
181 | |||
182 | /* | ||
183 | * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap() | ||
184 | * must be called on this recv. This happens as completions hit | ||
185 | * in order or on connection shutdown. | ||
186 | */ | ||
187 | recv->r_frag->f_page = ic->i_frag.f_page; | ||
188 | recv->r_frag->f_offset = ic->i_frag.f_offset; | ||
189 | recv->r_frag->f_mapped = dma_addr; | ||
190 | |||
191 | sge = rds_iw_data_sge(ic, recv->r_sge); | ||
192 | sge->addr = dma_addr; | ||
193 | sge->length = RDS_FRAG_SIZE; | ||
194 | |||
195 | sge = rds_iw_header_sge(ic, recv->r_sge); | ||
196 | sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); | ||
197 | sge->length = sizeof(struct rds_header); | ||
198 | |||
199 | get_page(recv->r_frag->f_page); | ||
200 | |||
201 | if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) { | ||
202 | ic->i_frag.f_offset += RDS_FRAG_SIZE; | ||
203 | } else { | ||
204 | put_page(ic->i_frag.f_page); | ||
205 | ic->i_frag.f_page = NULL; | ||
206 | ic->i_frag.f_offset = 0; | ||
207 | } | ||
208 | |||
209 | ret = 0; | ||
210 | out: | ||
211 | return ret; | ||
212 | } | ||
213 | |||
214 | /* | ||
215 | * This tries to allocate and post unused work requests after making sure that | ||
216 | * they have all the allocations they need to queue received fragments into | ||
217 | * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc | ||
218 | * pairs don't go unmatched. | ||
219 | * | ||
220 | * -1 is returned if posting fails due to temporary resource exhaustion. | ||
221 | */ | ||
222 | int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp, | ||
223 | gfp_t page_gfp, int prefill) | ||
224 | { | ||
225 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
226 | struct rds_iw_recv_work *recv; | ||
227 | struct ib_recv_wr *failed_wr; | ||
228 | unsigned int posted = 0; | ||
229 | int ret = 0; | ||
230 | u32 pos; | ||
231 | |||
232 | while ((prefill || rds_conn_up(conn)) | ||
233 | && rds_iw_ring_alloc(&ic->i_recv_ring, 1, &pos)) { | ||
234 | if (pos >= ic->i_recv_ring.w_nr) { | ||
235 | printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", | ||
236 | pos); | ||
237 | ret = -EINVAL; | ||
238 | break; | ||
239 | } | ||
240 | |||
241 | recv = &ic->i_recvs[pos]; | ||
242 | ret = rds_iw_recv_refill_one(conn, recv, kptr_gfp, page_gfp); | ||
243 | if (ret) { | ||
244 | ret = -1; | ||
245 | break; | ||
246 | } | ||
247 | |||
248 | /* XXX when can this fail? */ | ||
249 | ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); | ||
250 | rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv, | ||
251 | recv->r_iwinc, recv->r_frag->f_page, | ||
252 | (long) recv->r_frag->f_mapped, ret); | ||
253 | if (ret) { | ||
254 | rds_iw_conn_error(conn, "recv post on " | ||
255 | "%pI4 returned %d, disconnecting and " | ||
256 | "reconnecting\n", &conn->c_faddr, | ||
257 | ret); | ||
258 | ret = -1; | ||
259 | break; | ||
260 | } | ||
261 | |||
262 | posted++; | ||
263 | } | ||
264 | |||
265 | /* We're doing flow control - update the window. */ | ||
266 | if (ic->i_flowctl && posted) | ||
267 | rds_iw_advertise_credits(conn, posted); | ||
268 | |||
269 | if (ret) | ||
270 | rds_iw_ring_unalloc(&ic->i_recv_ring, 1); | ||
271 | return ret; | ||
272 | } | ||
273 | |||
274 | void rds_iw_inc_purge(struct rds_incoming *inc) | ||
275 | { | ||
276 | struct rds_iw_incoming *iwinc; | ||
277 | struct rds_page_frag *frag; | ||
278 | struct rds_page_frag *pos; | ||
279 | |||
280 | iwinc = container_of(inc, struct rds_iw_incoming, ii_inc); | ||
281 | rdsdebug("purging iwinc %p inc %p\n", iwinc, inc); | ||
282 | |||
283 | list_for_each_entry_safe(frag, pos, &iwinc->ii_frags, f_item) { | ||
284 | list_del_init(&frag->f_item); | ||
285 | rds_iw_frag_drop_page(frag); | ||
286 | rds_iw_frag_free(frag); | ||
287 | } | ||
288 | } | ||
289 | |||
290 | void rds_iw_inc_free(struct rds_incoming *inc) | ||
291 | { | ||
292 | struct rds_iw_incoming *iwinc; | ||
293 | |||
294 | iwinc = container_of(inc, struct rds_iw_incoming, ii_inc); | ||
295 | |||
296 | rds_iw_inc_purge(inc); | ||
297 | rdsdebug("freeing iwinc %p inc %p\n", iwinc, inc); | ||
298 | BUG_ON(!list_empty(&iwinc->ii_frags)); | ||
299 | kmem_cache_free(rds_iw_incoming_slab, iwinc); | ||
300 | atomic_dec(&rds_iw_allocation); | ||
301 | BUG_ON(atomic_read(&rds_iw_allocation) < 0); | ||
302 | } | ||
303 | |||
304 | int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov, | ||
305 | size_t size) | ||
306 | { | ||
307 | struct rds_iw_incoming *iwinc; | ||
308 | struct rds_page_frag *frag; | ||
309 | struct iovec *iov = first_iov; | ||
310 | unsigned long to_copy; | ||
311 | unsigned long frag_off = 0; | ||
312 | unsigned long iov_off = 0; | ||
313 | int copied = 0; | ||
314 | int ret; | ||
315 | u32 len; | ||
316 | |||
317 | iwinc = container_of(inc, struct rds_iw_incoming, ii_inc); | ||
318 | frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item); | ||
319 | len = be32_to_cpu(inc->i_hdr.h_len); | ||
320 | |||
321 | while (copied < size && copied < len) { | ||
322 | if (frag_off == RDS_FRAG_SIZE) { | ||
323 | frag = list_entry(frag->f_item.next, | ||
324 | struct rds_page_frag, f_item); | ||
325 | frag_off = 0; | ||
326 | } | ||
327 | while (iov_off == iov->iov_len) { | ||
328 | iov_off = 0; | ||
329 | iov++; | ||
330 | } | ||
331 | |||
332 | to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off); | ||
333 | to_copy = min_t(size_t, to_copy, size - copied); | ||
334 | to_copy = min_t(unsigned long, to_copy, len - copied); | ||
335 | |||
336 | rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag " | ||
337 | "[%p, %lu] + %lu\n", | ||
338 | to_copy, iov->iov_base, iov->iov_len, iov_off, | ||
339 | frag->f_page, frag->f_offset, frag_off); | ||
340 | |||
341 | /* XXX needs + offset for multiple recvs per page */ | ||
342 | ret = rds_page_copy_to_user(frag->f_page, | ||
343 | frag->f_offset + frag_off, | ||
344 | iov->iov_base + iov_off, | ||
345 | to_copy); | ||
346 | if (ret) { | ||
347 | copied = ret; | ||
348 | break; | ||
349 | } | ||
350 | |||
351 | iov_off += to_copy; | ||
352 | frag_off += to_copy; | ||
353 | copied += to_copy; | ||
354 | } | ||
355 | |||
356 | return copied; | ||
357 | } | ||
358 | |||
359 | /* ic starts out kzalloc()ed */ | ||
360 | void rds_iw_recv_init_ack(struct rds_iw_connection *ic) | ||
361 | { | ||
362 | struct ib_send_wr *wr = &ic->i_ack_wr; | ||
363 | struct ib_sge *sge = &ic->i_ack_sge; | ||
364 | |||
365 | sge->addr = ic->i_ack_dma; | ||
366 | sge->length = sizeof(struct rds_header); | ||
367 | sge->lkey = rds_iw_local_dma_lkey(ic); | ||
368 | |||
369 | wr->sg_list = sge; | ||
370 | wr->num_sge = 1; | ||
371 | wr->opcode = IB_WR_SEND; | ||
372 | wr->wr_id = RDS_IW_ACK_WR_ID; | ||
373 | wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; | ||
374 | } | ||
375 | |||
376 | /* | ||
377 | * You'd think that with reliable IB connections you wouldn't need to ack | ||
378 | * messages that have been received. The problem is that IB hardware generates | ||
379 | * an ack message before it has DMAed the message into memory. This creates a | ||
380 | * potential message loss if the HCA is disabled for any reason between when it | ||
381 | * sends the ack and before the message is DMAed and processed. This is only a | ||
382 | * potential issue if another HCA is available for fail-over. | ||
383 | * | ||
384 | * When the remote host receives our ack they'll free the sent message from | ||
385 | * their send queue. To decrease the latency of this we always send an ack | ||
386 | * immediately after we've received messages. | ||
387 | * | ||
388 | * For simplicity, we only have one ack in flight at a time. This puts | ||
389 | * pressure on senders to have deep enough send queues to absorb the latency of | ||
390 | * a single ack frame being in flight. This might not be good enough. | ||
391 | * | ||
392 | * This is implemented by have a long-lived send_wr and sge which point to a | ||
393 | * statically allocated ack frame. This ack wr does not fall under the ring | ||
394 | * accounting that the tx and rx wrs do. The QP attribute specifically makes | ||
395 | * room for it beyond the ring size. Send completion notices its special | ||
396 | * wr_id and avoids working with the ring in that case. | ||
397 | */ | ||
398 | static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq, | ||
399 | int ack_required) | ||
400 | { | ||
401 | rds_iw_set_64bit(&ic->i_ack_next, seq); | ||
402 | if (ack_required) { | ||
403 | smp_mb__before_clear_bit(); | ||
404 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | ||
405 | } | ||
406 | } | ||
407 | |||
408 | static u64 rds_iw_get_ack(struct rds_iw_connection *ic) | ||
409 | { | ||
410 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | ||
411 | smp_mb__after_clear_bit(); | ||
412 | |||
413 | return ic->i_ack_next; | ||
414 | } | ||
415 | |||
416 | static void rds_iw_send_ack(struct rds_iw_connection *ic, unsigned int adv_credits) | ||
417 | { | ||
418 | struct rds_header *hdr = ic->i_ack; | ||
419 | struct ib_send_wr *failed_wr; | ||
420 | u64 seq; | ||
421 | int ret; | ||
422 | |||
423 | seq = rds_iw_get_ack(ic); | ||
424 | |||
425 | rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); | ||
426 | rds_message_populate_header(hdr, 0, 0, 0); | ||
427 | hdr->h_ack = cpu_to_be64(seq); | ||
428 | hdr->h_credit = adv_credits; | ||
429 | rds_message_make_checksum(hdr); | ||
430 | ic->i_ack_queued = jiffies; | ||
431 | |||
432 | ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); | ||
433 | if (unlikely(ret)) { | ||
434 | /* Failed to send. Release the WR, and | ||
435 | * force another ACK. | ||
436 | */ | ||
437 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | ||
438 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | ||
439 | |||
440 | rds_iw_stats_inc(s_iw_ack_send_failure); | ||
441 | /* Need to finesse this later. */ | ||
442 | BUG(); | ||
443 | } else | ||
444 | rds_iw_stats_inc(s_iw_ack_sent); | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * There are 3 ways of getting acknowledgements to the peer: | ||
449 | * 1. We call rds_iw_attempt_ack from the recv completion handler | ||
450 | * to send an ACK-only frame. | ||
451 | * However, there can be only one such frame in the send queue | ||
452 | * at any time, so we may have to postpone it. | ||
453 | * 2. When another (data) packet is transmitted while there's | ||
454 | * an ACK in the queue, we piggyback the ACK sequence number | ||
455 | * on the data packet. | ||
456 | * 3. If the ACK WR is done sending, we get called from the | ||
457 | * send queue completion handler, and check whether there's | ||
458 | * another ACK pending (postponed because the WR was on the | ||
459 | * queue). If so, we transmit it. | ||
460 | * | ||
461 | * We maintain 2 variables: | ||
462 | * - i_ack_flags, which keeps track of whether the ACK WR | ||
463 | * is currently in the send queue or not (IB_ACK_IN_FLIGHT) | ||
464 | * - i_ack_next, which is the last sequence number we received | ||
465 | * | ||
466 | * Potentially, send queue and receive queue handlers can run concurrently. | ||
467 | * | ||
468 | * Reconnecting complicates this picture just slightly. When we | ||
469 | * reconnect, we may be seeing duplicate packets. The peer | ||
470 | * is retransmitting them, because it hasn't seen an ACK for | ||
471 | * them. It is important that we ACK these. | ||
472 | * | ||
473 | * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with | ||
474 | * this flag set *MUST* be acknowledged immediately. | ||
475 | */ | ||
476 | |||
477 | /* | ||
478 | * When we get here, we're called from the recv queue handler. | ||
479 | * Check whether we ought to transmit an ACK. | ||
480 | */ | ||
481 | void rds_iw_attempt_ack(struct rds_iw_connection *ic) | ||
482 | { | ||
483 | unsigned int adv_credits; | ||
484 | |||
485 | if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | ||
486 | return; | ||
487 | |||
488 | if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { | ||
489 | rds_iw_stats_inc(s_iw_ack_send_delayed); | ||
490 | return; | ||
491 | } | ||
492 | |||
493 | /* Can we get a send credit? */ | ||
494 | if (!rds_iw_send_grab_credits(ic, 1, &adv_credits, 0)) { | ||
495 | rds_iw_stats_inc(s_iw_tx_throttle); | ||
496 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | ||
497 | return; | ||
498 | } | ||
499 | |||
500 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | ||
501 | rds_iw_send_ack(ic, adv_credits); | ||
502 | } | ||
503 | |||
504 | /* | ||
505 | * We get here from the send completion handler, when the | ||
506 | * adapter tells us the ACK frame was sent. | ||
507 | */ | ||
508 | void rds_iw_ack_send_complete(struct rds_iw_connection *ic) | ||
509 | { | ||
510 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | ||
511 | rds_iw_attempt_ack(ic); | ||
512 | } | ||
513 | |||
514 | /* | ||
515 | * This is called by the regular xmit code when it wants to piggyback | ||
516 | * an ACK on an outgoing frame. | ||
517 | */ | ||
518 | u64 rds_iw_piggyb_ack(struct rds_iw_connection *ic) | ||
519 | { | ||
520 | if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | ||
521 | rds_iw_stats_inc(s_iw_ack_send_piggybacked); | ||
522 | return rds_iw_get_ack(ic); | ||
523 | } | ||
524 | |||
525 | /* | ||
526 | * It's kind of lame that we're copying from the posted receive pages into | ||
527 | * long-lived bitmaps. We could have posted the bitmaps and rdma written into | ||
528 | * them. But receiving new congestion bitmaps should be a *rare* event, so | ||
529 | * hopefully we won't need to invest that complexity in making it more | ||
530 | * efficient. By copying we can share a simpler core with TCP which has to | ||
531 | * copy. | ||
532 | */ | ||
533 | static void rds_iw_cong_recv(struct rds_connection *conn, | ||
534 | struct rds_iw_incoming *iwinc) | ||
535 | { | ||
536 | struct rds_cong_map *map; | ||
537 | unsigned int map_off; | ||
538 | unsigned int map_page; | ||
539 | struct rds_page_frag *frag; | ||
540 | unsigned long frag_off; | ||
541 | unsigned long to_copy; | ||
542 | unsigned long copied; | ||
543 | uint64_t uncongested = 0; | ||
544 | void *addr; | ||
545 | |||
546 | /* catch completely corrupt packets */ | ||
547 | if (be32_to_cpu(iwinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) | ||
548 | return; | ||
549 | |||
550 | map = conn->c_fcong; | ||
551 | map_page = 0; | ||
552 | map_off = 0; | ||
553 | |||
554 | frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item); | ||
555 | frag_off = 0; | ||
556 | |||
557 | copied = 0; | ||
558 | |||
559 | while (copied < RDS_CONG_MAP_BYTES) { | ||
560 | uint64_t *src, *dst; | ||
561 | unsigned int k; | ||
562 | |||
563 | to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); | ||
564 | BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ | ||
565 | |||
566 | addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0); | ||
567 | |||
568 | src = addr + frag_off; | ||
569 | dst = (void *)map->m_page_addrs[map_page] + map_off; | ||
570 | for (k = 0; k < to_copy; k += 8) { | ||
571 | /* Record ports that became uncongested, ie | ||
572 | * bits that changed from 0 to 1. */ | ||
573 | uncongested |= ~(*src) & *dst; | ||
574 | *dst++ = *src++; | ||
575 | } | ||
576 | kunmap_atomic(addr, KM_SOFTIRQ0); | ||
577 | |||
578 | copied += to_copy; | ||
579 | |||
580 | map_off += to_copy; | ||
581 | if (map_off == PAGE_SIZE) { | ||
582 | map_off = 0; | ||
583 | map_page++; | ||
584 | } | ||
585 | |||
586 | frag_off += to_copy; | ||
587 | if (frag_off == RDS_FRAG_SIZE) { | ||
588 | frag = list_entry(frag->f_item.next, | ||
589 | struct rds_page_frag, f_item); | ||
590 | frag_off = 0; | ||
591 | } | ||
592 | } | ||
593 | |||
594 | /* the congestion map is in little endian order */ | ||
595 | uncongested = le64_to_cpu(uncongested); | ||
596 | |||
597 | rds_cong_map_updated(map, uncongested); | ||
598 | } | ||
599 | |||
600 | /* | ||
601 | * Rings are posted with all the allocations they'll need to queue the | ||
602 | * incoming message to the receiving socket so this can't fail. | ||
603 | * All fragments start with a header, so we can make sure we're not receiving | ||
604 | * garbage, and we can tell a small 8 byte fragment from an ACK frame. | ||
605 | */ | ||
606 | struct rds_iw_ack_state { | ||
607 | u64 ack_next; | ||
608 | u64 ack_recv; | ||
609 | unsigned int ack_required:1; | ||
610 | unsigned int ack_next_valid:1; | ||
611 | unsigned int ack_recv_valid:1; | ||
612 | }; | ||
613 | |||
614 | static void rds_iw_process_recv(struct rds_connection *conn, | ||
615 | struct rds_iw_recv_work *recv, u32 byte_len, | ||
616 | struct rds_iw_ack_state *state) | ||
617 | { | ||
618 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
619 | struct rds_iw_incoming *iwinc = ic->i_iwinc; | ||
620 | struct rds_header *ihdr, *hdr; | ||
621 | |||
622 | /* XXX shut down the connection if port 0,0 are seen? */ | ||
623 | |||
624 | rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic, iwinc, recv, | ||
625 | byte_len); | ||
626 | |||
627 | if (byte_len < sizeof(struct rds_header)) { | ||
628 | rds_iw_conn_error(conn, "incoming message " | ||
629 | "from %pI4 didn't inclue a " | ||
630 | "header, disconnecting and " | ||
631 | "reconnecting\n", | ||
632 | &conn->c_faddr); | ||
633 | return; | ||
634 | } | ||
635 | byte_len -= sizeof(struct rds_header); | ||
636 | |||
637 | ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; | ||
638 | |||
639 | /* Validate the checksum. */ | ||
640 | if (!rds_message_verify_checksum(ihdr)) { | ||
641 | rds_iw_conn_error(conn, "incoming message " | ||
642 | "from %pI4 has corrupted header - " | ||
643 | "forcing a reconnect\n", | ||
644 | &conn->c_faddr); | ||
645 | rds_stats_inc(s_recv_drop_bad_checksum); | ||
646 | return; | ||
647 | } | ||
648 | |||
649 | /* Process the ACK sequence which comes with every packet */ | ||
650 | state->ack_recv = be64_to_cpu(ihdr->h_ack); | ||
651 | state->ack_recv_valid = 1; | ||
652 | |||
653 | /* Process the credits update if there was one */ | ||
654 | if (ihdr->h_credit) | ||
655 | rds_iw_send_add_credits(conn, ihdr->h_credit); | ||
656 | |||
657 | if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) { | ||
658 | /* This is an ACK-only packet. The fact that it gets | ||
659 | * special treatment here is that historically, ACKs | ||
660 | * were rather special beasts. | ||
661 | */ | ||
662 | rds_iw_stats_inc(s_iw_ack_received); | ||
663 | |||
664 | /* | ||
665 | * Usually the frags make their way on to incs and are then freed as | ||
666 | * the inc is freed. We don't go that route, so we have to drop the | ||
667 | * page ref ourselves. We can't just leave the page on the recv | ||
668 | * because that confuses the dma mapping of pages and each recv's use | ||
669 | * of a partial page. We can leave the frag, though, it will be | ||
670 | * reused. | ||
671 | * | ||
672 | * FIXME: Fold this into the code path below. | ||
673 | */ | ||
674 | rds_iw_frag_drop_page(recv->r_frag); | ||
675 | return; | ||
676 | } | ||
677 | |||
678 | /* | ||
679 | * If we don't already have an inc on the connection then this | ||
680 | * fragment has a header and starts a message.. copy its header | ||
681 | * into the inc and save the inc so we can hang upcoming fragments | ||
682 | * off its list. | ||
683 | */ | ||
684 | if (iwinc == NULL) { | ||
685 | iwinc = recv->r_iwinc; | ||
686 | recv->r_iwinc = NULL; | ||
687 | ic->i_iwinc = iwinc; | ||
688 | |||
689 | hdr = &iwinc->ii_inc.i_hdr; | ||
690 | memcpy(hdr, ihdr, sizeof(*hdr)); | ||
691 | ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); | ||
692 | |||
693 | rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic, iwinc, | ||
694 | ic->i_recv_data_rem, hdr->h_flags); | ||
695 | } else { | ||
696 | hdr = &iwinc->ii_inc.i_hdr; | ||
697 | /* We can't just use memcmp here; fragments of a | ||
698 | * single message may carry different ACKs */ | ||
699 | if (hdr->h_sequence != ihdr->h_sequence | ||
700 | || hdr->h_len != ihdr->h_len | ||
701 | || hdr->h_sport != ihdr->h_sport | ||
702 | || hdr->h_dport != ihdr->h_dport) { | ||
703 | rds_iw_conn_error(conn, | ||
704 | "fragment header mismatch; forcing reconnect\n"); | ||
705 | return; | ||
706 | } | ||
707 | } | ||
708 | |||
709 | list_add_tail(&recv->r_frag->f_item, &iwinc->ii_frags); | ||
710 | recv->r_frag = NULL; | ||
711 | |||
712 | if (ic->i_recv_data_rem > RDS_FRAG_SIZE) | ||
713 | ic->i_recv_data_rem -= RDS_FRAG_SIZE; | ||
714 | else { | ||
715 | ic->i_recv_data_rem = 0; | ||
716 | ic->i_iwinc = NULL; | ||
717 | |||
718 | if (iwinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) | ||
719 | rds_iw_cong_recv(conn, iwinc); | ||
720 | else { | ||
721 | rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, | ||
722 | &iwinc->ii_inc, GFP_ATOMIC, | ||
723 | KM_SOFTIRQ0); | ||
724 | state->ack_next = be64_to_cpu(hdr->h_sequence); | ||
725 | state->ack_next_valid = 1; | ||
726 | } | ||
727 | |||
728 | /* Evaluate the ACK_REQUIRED flag *after* we received | ||
729 | * the complete frame, and after bumping the next_rx | ||
730 | * sequence. */ | ||
731 | if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { | ||
732 | rds_stats_inc(s_recv_ack_required); | ||
733 | state->ack_required = 1; | ||
734 | } | ||
735 | |||
736 | rds_inc_put(&iwinc->ii_inc); | ||
737 | } | ||
738 | } | ||
739 | |||
740 | /* | ||
741 | * Plucking the oldest entry from the ring can be done concurrently with | ||
742 | * the thread refilling the ring. Each ring operation is protected by | ||
743 | * spinlocks and the transient state of refilling doesn't change the | ||
744 | * recording of which entry is oldest. | ||
745 | * | ||
746 | * This relies on IB only calling one cq comp_handler for each cq so that | ||
747 | * there will only be one caller of rds_recv_incoming() per RDS connection. | ||
748 | */ | ||
749 | void rds_iw_recv_cq_comp_handler(struct ib_cq *cq, void *context) | ||
750 | { | ||
751 | struct rds_connection *conn = context; | ||
752 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
753 | struct ib_wc wc; | ||
754 | struct rds_iw_ack_state state = { 0, }; | ||
755 | struct rds_iw_recv_work *recv; | ||
756 | |||
757 | rdsdebug("conn %p cq %p\n", conn, cq); | ||
758 | |||
759 | rds_iw_stats_inc(s_iw_rx_cq_call); | ||
760 | |||
761 | ib_req_notify_cq(cq, IB_CQ_SOLICITED); | ||
762 | |||
763 | while (ib_poll_cq(cq, 1, &wc) > 0) { | ||
764 | rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", | ||
765 | (unsigned long long)wc.wr_id, wc.status, wc.byte_len, | ||
766 | be32_to_cpu(wc.ex.imm_data)); | ||
767 | rds_iw_stats_inc(s_iw_rx_cq_event); | ||
768 | |||
769 | recv = &ic->i_recvs[rds_iw_ring_oldest(&ic->i_recv_ring)]; | ||
770 | |||
771 | rds_iw_recv_unmap_page(ic, recv); | ||
772 | |||
773 | /* | ||
774 | * Also process recvs in connecting state because it is possible | ||
775 | * to get a recv completion _before_ the rdmacm ESTABLISHED | ||
776 | * event is processed. | ||
777 | */ | ||
778 | if (rds_conn_up(conn) || rds_conn_connecting(conn)) { | ||
779 | /* We expect errors as the qp is drained during shutdown */ | ||
780 | if (wc.status == IB_WC_SUCCESS) { | ||
781 | rds_iw_process_recv(conn, recv, wc.byte_len, &state); | ||
782 | } else { | ||
783 | rds_iw_conn_error(conn, "recv completion on " | ||
784 | "%pI4 had status %u, disconnecting and " | ||
785 | "reconnecting\n", &conn->c_faddr, | ||
786 | wc.status); | ||
787 | } | ||
788 | } | ||
789 | |||
790 | rds_iw_ring_free(&ic->i_recv_ring, 1); | ||
791 | } | ||
792 | |||
793 | if (state.ack_next_valid) | ||
794 | rds_iw_set_ack(ic, state.ack_next, state.ack_required); | ||
795 | if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { | ||
796 | rds_send_drop_acked(conn, state.ack_recv, NULL); | ||
797 | ic->i_ack_recv = state.ack_recv; | ||
798 | } | ||
799 | if (rds_conn_up(conn)) | ||
800 | rds_iw_attempt_ack(ic); | ||
801 | |||
802 | /* If we ever end up with a really empty receive ring, we're | ||
803 | * in deep trouble, as the sender will definitely see RNR | ||
804 | * timeouts. */ | ||
805 | if (rds_iw_ring_empty(&ic->i_recv_ring)) | ||
806 | rds_iw_stats_inc(s_iw_rx_ring_empty); | ||
807 | |||
808 | /* | ||
809 | * If the ring is running low, then schedule the thread to refill. | ||
810 | */ | ||
811 | if (rds_iw_ring_low(&ic->i_recv_ring)) | ||
812 | queue_delayed_work(rds_wq, &conn->c_recv_w, 0); | ||
813 | } | ||
814 | |||
815 | int rds_iw_recv(struct rds_connection *conn) | ||
816 | { | ||
817 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
818 | int ret = 0; | ||
819 | |||
820 | rdsdebug("conn %p\n", conn); | ||
821 | |||
822 | /* | ||
823 | * If we get a temporary posting failure in this context then | ||
824 | * we're really low and we want the caller to back off for a bit. | ||
825 | */ | ||
826 | mutex_lock(&ic->i_recv_mutex); | ||
827 | if (rds_iw_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0)) | ||
828 | ret = -ENOMEM; | ||
829 | else | ||
830 | rds_iw_stats_inc(s_iw_rx_refill_from_thread); | ||
831 | mutex_unlock(&ic->i_recv_mutex); | ||
832 | |||
833 | if (rds_conn_up(conn)) | ||
834 | rds_iw_attempt_ack(ic); | ||
835 | |||
836 | return ret; | ||
837 | } | ||
838 | |||
839 | int __init rds_iw_recv_init(void) | ||
840 | { | ||
841 | struct sysinfo si; | ||
842 | int ret = -ENOMEM; | ||
843 | |||
844 | /* Default to 30% of all available RAM for recv memory */ | ||
845 | si_meminfo(&si); | ||
846 | rds_iw_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; | ||
847 | |||
848 | rds_iw_incoming_slab = kmem_cache_create("rds_iw_incoming", | ||
849 | sizeof(struct rds_iw_incoming), | ||
850 | 0, 0, NULL); | ||
851 | if (rds_iw_incoming_slab == NULL) | ||
852 | goto out; | ||
853 | |||
854 | rds_iw_frag_slab = kmem_cache_create("rds_iw_frag", | ||
855 | sizeof(struct rds_page_frag), | ||
856 | 0, 0, NULL); | ||
857 | if (rds_iw_frag_slab == NULL) | ||
858 | kmem_cache_destroy(rds_iw_incoming_slab); | ||
859 | else | ||
860 | ret = 0; | ||
861 | out: | ||
862 | return ret; | ||
863 | } | ||
864 | |||
865 | void rds_iw_recv_exit(void) | ||
866 | { | ||
867 | kmem_cache_destroy(rds_iw_incoming_slab); | ||
868 | kmem_cache_destroy(rds_iw_frag_slab); | ||
869 | } | ||
diff --git a/net/rds/iw_ring.c b/net/rds/iw_ring.c new file mode 100644 index 000000000000..d422d4b5deef --- /dev/null +++ b/net/rds/iw_ring.c | |||
@@ -0,0 +1,169 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | |||
35 | #include "rds.h" | ||
36 | #include "iw.h" | ||
37 | |||
38 | /* | ||
39 | * Locking for IB rings. | ||
40 | * We assume that allocation is always protected by a mutex | ||
41 | * in the caller (this is a valid assumption for the current | ||
42 | * implementation). | ||
43 | * | ||
44 | * Freeing always happens in an interrupt, and hence only | ||
45 | * races with allocations, but not with other free()s. | ||
46 | * | ||
47 | * The interaction between allocation and freeing is that | ||
48 | * the alloc code has to determine the number of free entries. | ||
49 | * To this end, we maintain two counters; an allocation counter | ||
50 | * and a free counter. Both are allowed to run freely, and wrap | ||
51 | * around. | ||
52 | * The number of used entries is always (alloc_ctr - free_ctr) % NR. | ||
53 | * | ||
54 | * The current implementation makes free_ctr atomic. When the | ||
55 | * caller finds an allocation fails, it should set an "alloc fail" | ||
56 | * bit and retry the allocation. The "alloc fail" bit essentially tells | ||
57 | * the CQ completion handlers to wake it up after freeing some | ||
58 | * more entries. | ||
59 | */ | ||
60 | |||
61 | /* | ||
62 | * This only happens on shutdown. | ||
63 | */ | ||
64 | DECLARE_WAIT_QUEUE_HEAD(rds_iw_ring_empty_wait); | ||
65 | |||
66 | void rds_iw_ring_init(struct rds_iw_work_ring *ring, u32 nr) | ||
67 | { | ||
68 | memset(ring, 0, sizeof(*ring)); | ||
69 | ring->w_nr = nr; | ||
70 | rdsdebug("ring %p nr %u\n", ring, ring->w_nr); | ||
71 | } | ||
72 | |||
73 | static inline u32 __rds_iw_ring_used(struct rds_iw_work_ring *ring) | ||
74 | { | ||
75 | u32 diff; | ||
76 | |||
77 | /* This assumes that atomic_t has at least as many bits as u32 */ | ||
78 | diff = ring->w_alloc_ctr - (u32) atomic_read(&ring->w_free_ctr); | ||
79 | BUG_ON(diff > ring->w_nr); | ||
80 | |||
81 | return diff; | ||
82 | } | ||
83 | |||
84 | void rds_iw_ring_resize(struct rds_iw_work_ring *ring, u32 nr) | ||
85 | { | ||
86 | /* We only ever get called from the connection setup code, | ||
87 | * prior to creating the QP. */ | ||
88 | BUG_ON(__rds_iw_ring_used(ring)); | ||
89 | ring->w_nr = nr; | ||
90 | } | ||
91 | |||
92 | static int __rds_iw_ring_empty(struct rds_iw_work_ring *ring) | ||
93 | { | ||
94 | return __rds_iw_ring_used(ring) == 0; | ||
95 | } | ||
96 | |||
97 | u32 rds_iw_ring_alloc(struct rds_iw_work_ring *ring, u32 val, u32 *pos) | ||
98 | { | ||
99 | u32 ret = 0, avail; | ||
100 | |||
101 | avail = ring->w_nr - __rds_iw_ring_used(ring); | ||
102 | |||
103 | rdsdebug("ring %p val %u next %u free %u\n", ring, val, | ||
104 | ring->w_alloc_ptr, avail); | ||
105 | |||
106 | if (val && avail) { | ||
107 | ret = min(val, avail); | ||
108 | *pos = ring->w_alloc_ptr; | ||
109 | |||
110 | ring->w_alloc_ptr = (ring->w_alloc_ptr + ret) % ring->w_nr; | ||
111 | ring->w_alloc_ctr += ret; | ||
112 | } | ||
113 | |||
114 | return ret; | ||
115 | } | ||
116 | |||
117 | void rds_iw_ring_free(struct rds_iw_work_ring *ring, u32 val) | ||
118 | { | ||
119 | ring->w_free_ptr = (ring->w_free_ptr + val) % ring->w_nr; | ||
120 | atomic_add(val, &ring->w_free_ctr); | ||
121 | |||
122 | if (__rds_iw_ring_empty(ring) && | ||
123 | waitqueue_active(&rds_iw_ring_empty_wait)) | ||
124 | wake_up(&rds_iw_ring_empty_wait); | ||
125 | } | ||
126 | |||
127 | void rds_iw_ring_unalloc(struct rds_iw_work_ring *ring, u32 val) | ||
128 | { | ||
129 | ring->w_alloc_ptr = (ring->w_alloc_ptr - val) % ring->w_nr; | ||
130 | ring->w_alloc_ctr -= val; | ||
131 | } | ||
132 | |||
133 | int rds_iw_ring_empty(struct rds_iw_work_ring *ring) | ||
134 | { | ||
135 | return __rds_iw_ring_empty(ring); | ||
136 | } | ||
137 | |||
138 | int rds_iw_ring_low(struct rds_iw_work_ring *ring) | ||
139 | { | ||
140 | return __rds_iw_ring_used(ring) <= (ring->w_nr >> 2); | ||
141 | } | ||
142 | |||
143 | |||
144 | /* | ||
145 | * returns the oldest alloced ring entry. This will be the next one | ||
146 | * freed. This can't be called if there are none allocated. | ||
147 | */ | ||
148 | u32 rds_iw_ring_oldest(struct rds_iw_work_ring *ring) | ||
149 | { | ||
150 | return ring->w_free_ptr; | ||
151 | } | ||
152 | |||
153 | /* | ||
154 | * returns the number of completed work requests. | ||
155 | */ | ||
156 | |||
157 | u32 rds_iw_ring_completed(struct rds_iw_work_ring *ring, u32 wr_id, u32 oldest) | ||
158 | { | ||
159 | u32 ret; | ||
160 | |||
161 | if (oldest <= (unsigned long long)wr_id) | ||
162 | ret = (unsigned long long)wr_id - oldest + 1; | ||
163 | else | ||
164 | ret = ring->w_nr - oldest + (unsigned long long)wr_id + 1; | ||
165 | |||
166 | rdsdebug("ring %p ret %u wr_id %u oldest %u\n", ring, ret, | ||
167 | wr_id, oldest); | ||
168 | return ret; | ||
169 | } | ||
diff --git a/net/rds/iw_send.c b/net/rds/iw_send.c new file mode 100644 index 000000000000..22dd38ffd608 --- /dev/null +++ b/net/rds/iw_send.c | |||
@@ -0,0 +1,975 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/in.h> | ||
35 | #include <linux/device.h> | ||
36 | #include <linux/dmapool.h> | ||
37 | |||
38 | #include "rds.h" | ||
39 | #include "rdma.h" | ||
40 | #include "iw.h" | ||
41 | |||
42 | static void rds_iw_send_rdma_complete(struct rds_message *rm, | ||
43 | int wc_status) | ||
44 | { | ||
45 | int notify_status; | ||
46 | |||
47 | switch (wc_status) { | ||
48 | case IB_WC_WR_FLUSH_ERR: | ||
49 | return; | ||
50 | |||
51 | case IB_WC_SUCCESS: | ||
52 | notify_status = RDS_RDMA_SUCCESS; | ||
53 | break; | ||
54 | |||
55 | case IB_WC_REM_ACCESS_ERR: | ||
56 | notify_status = RDS_RDMA_REMOTE_ERROR; | ||
57 | break; | ||
58 | |||
59 | default: | ||
60 | notify_status = RDS_RDMA_OTHER_ERROR; | ||
61 | break; | ||
62 | } | ||
63 | rds_rdma_send_complete(rm, notify_status); | ||
64 | } | ||
65 | |||
66 | static void rds_iw_send_unmap_rdma(struct rds_iw_connection *ic, | ||
67 | struct rds_rdma_op *op) | ||
68 | { | ||
69 | if (op->r_mapped) { | ||
70 | ib_dma_unmap_sg(ic->i_cm_id->device, | ||
71 | op->r_sg, op->r_nents, | ||
72 | op->r_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | ||
73 | op->r_mapped = 0; | ||
74 | } | ||
75 | } | ||
76 | |||
77 | static void rds_iw_send_unmap_rm(struct rds_iw_connection *ic, | ||
78 | struct rds_iw_send_work *send, | ||
79 | int wc_status) | ||
80 | { | ||
81 | struct rds_message *rm = send->s_rm; | ||
82 | |||
83 | rdsdebug("ic %p send %p rm %p\n", ic, send, rm); | ||
84 | |||
85 | ib_dma_unmap_sg(ic->i_cm_id->device, | ||
86 | rm->m_sg, rm->m_nents, | ||
87 | DMA_TO_DEVICE); | ||
88 | |||
89 | if (rm->m_rdma_op != NULL) { | ||
90 | rds_iw_send_unmap_rdma(ic, rm->m_rdma_op); | ||
91 | |||
92 | /* If the user asked for a completion notification on this | ||
93 | * message, we can implement three different semantics: | ||
94 | * 1. Notify when we received the ACK on the RDS message | ||
95 | * that was queued with the RDMA. This provides reliable | ||
96 | * notification of RDMA status at the expense of a one-way | ||
97 | * packet delay. | ||
98 | * 2. Notify when the IB stack gives us the completion event for | ||
99 | * the RDMA operation. | ||
100 | * 3. Notify when the IB stack gives us the completion event for | ||
101 | * the accompanying RDS messages. | ||
102 | * Here, we implement approach #3. To implement approach #2, | ||
103 | * call rds_rdma_send_complete from the cq_handler. To implement #1, | ||
104 | * don't call rds_rdma_send_complete at all, and fall back to the notify | ||
105 | * handling in the ACK processing code. | ||
106 | * | ||
107 | * Note: There's no need to explicitly sync any RDMA buffers using | ||
108 | * ib_dma_sync_sg_for_cpu - the completion for the RDMA | ||
109 | * operation itself unmapped the RDMA buffers, which takes care | ||
110 | * of synching. | ||
111 | */ | ||
112 | rds_iw_send_rdma_complete(rm, wc_status); | ||
113 | |||
114 | if (rm->m_rdma_op->r_write) | ||
115 | rds_stats_add(s_send_rdma_bytes, rm->m_rdma_op->r_bytes); | ||
116 | else | ||
117 | rds_stats_add(s_recv_rdma_bytes, rm->m_rdma_op->r_bytes); | ||
118 | } | ||
119 | |||
120 | /* If anyone waited for this message to get flushed out, wake | ||
121 | * them up now */ | ||
122 | rds_message_unmapped(rm); | ||
123 | |||
124 | rds_message_put(rm); | ||
125 | send->s_rm = NULL; | ||
126 | } | ||
127 | |||
128 | void rds_iw_send_init_ring(struct rds_iw_connection *ic) | ||
129 | { | ||
130 | struct rds_iw_send_work *send; | ||
131 | u32 i; | ||
132 | |||
133 | for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { | ||
134 | struct ib_sge *sge; | ||
135 | |||
136 | send->s_rm = NULL; | ||
137 | send->s_op = NULL; | ||
138 | send->s_mapping = NULL; | ||
139 | |||
140 | send->s_wr.next = NULL; | ||
141 | send->s_wr.wr_id = i; | ||
142 | send->s_wr.sg_list = send->s_sge; | ||
143 | send->s_wr.num_sge = 1; | ||
144 | send->s_wr.opcode = IB_WR_SEND; | ||
145 | send->s_wr.send_flags = 0; | ||
146 | send->s_wr.ex.imm_data = 0; | ||
147 | |||
148 | sge = rds_iw_data_sge(ic, send->s_sge); | ||
149 | sge->lkey = 0; | ||
150 | |||
151 | sge = rds_iw_header_sge(ic, send->s_sge); | ||
152 | sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header)); | ||
153 | sge->length = sizeof(struct rds_header); | ||
154 | sge->lkey = 0; | ||
155 | |||
156 | send->s_mr = ib_alloc_fast_reg_mr(ic->i_pd, fastreg_message_size); | ||
157 | if (IS_ERR(send->s_mr)) { | ||
158 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed\n"); | ||
159 | break; | ||
160 | } | ||
161 | |||
162 | send->s_page_list = ib_alloc_fast_reg_page_list( | ||
163 | ic->i_cm_id->device, fastreg_message_size); | ||
164 | if (IS_ERR(send->s_page_list)) { | ||
165 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed\n"); | ||
166 | break; | ||
167 | } | ||
168 | } | ||
169 | } | ||
170 | |||
171 | void rds_iw_send_clear_ring(struct rds_iw_connection *ic) | ||
172 | { | ||
173 | struct rds_iw_send_work *send; | ||
174 | u32 i; | ||
175 | |||
176 | for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { | ||
177 | BUG_ON(!send->s_mr); | ||
178 | ib_dereg_mr(send->s_mr); | ||
179 | BUG_ON(!send->s_page_list); | ||
180 | ib_free_fast_reg_page_list(send->s_page_list); | ||
181 | if (send->s_wr.opcode == 0xdead) | ||
182 | continue; | ||
183 | if (send->s_rm) | ||
184 | rds_iw_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR); | ||
185 | if (send->s_op) | ||
186 | rds_iw_send_unmap_rdma(ic, send->s_op); | ||
187 | } | ||
188 | } | ||
189 | |||
190 | /* | ||
191 | * The _oldest/_free ring operations here race cleanly with the alloc/unalloc | ||
192 | * operations performed in the send path. As the sender allocs and potentially | ||
193 | * unallocs the next free entry in the ring it doesn't alter which is | ||
194 | * the next to be freed, which is what this is concerned with. | ||
195 | */ | ||
196 | void rds_iw_send_cq_comp_handler(struct ib_cq *cq, void *context) | ||
197 | { | ||
198 | struct rds_connection *conn = context; | ||
199 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
200 | struct ib_wc wc; | ||
201 | struct rds_iw_send_work *send; | ||
202 | u32 completed; | ||
203 | u32 oldest; | ||
204 | u32 i; | ||
205 | int ret; | ||
206 | |||
207 | rdsdebug("cq %p conn %p\n", cq, conn); | ||
208 | rds_iw_stats_inc(s_iw_tx_cq_call); | ||
209 | ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); | ||
210 | if (ret) | ||
211 | rdsdebug("ib_req_notify_cq send failed: %d\n", ret); | ||
212 | |||
213 | while (ib_poll_cq(cq, 1, &wc) > 0) { | ||
214 | rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", | ||
215 | (unsigned long long)wc.wr_id, wc.status, wc.byte_len, | ||
216 | be32_to_cpu(wc.ex.imm_data)); | ||
217 | rds_iw_stats_inc(s_iw_tx_cq_event); | ||
218 | |||
219 | if (wc.status != IB_WC_SUCCESS) { | ||
220 | printk(KERN_ERR "WC Error: status = %d opcode = %d\n", wc.status, wc.opcode); | ||
221 | break; | ||
222 | } | ||
223 | |||
224 | if (wc.opcode == IB_WC_LOCAL_INV && wc.wr_id == RDS_IW_LOCAL_INV_WR_ID) { | ||
225 | ic->i_fastreg_posted = 0; | ||
226 | continue; | ||
227 | } | ||
228 | |||
229 | if (wc.opcode == IB_WC_FAST_REG_MR && wc.wr_id == RDS_IW_FAST_REG_WR_ID) { | ||
230 | ic->i_fastreg_posted = 1; | ||
231 | continue; | ||
232 | } | ||
233 | |||
234 | if (wc.wr_id == RDS_IW_ACK_WR_ID) { | ||
235 | if (ic->i_ack_queued + HZ/2 < jiffies) | ||
236 | rds_iw_stats_inc(s_iw_tx_stalled); | ||
237 | rds_iw_ack_send_complete(ic); | ||
238 | continue; | ||
239 | } | ||
240 | |||
241 | oldest = rds_iw_ring_oldest(&ic->i_send_ring); | ||
242 | |||
243 | completed = rds_iw_ring_completed(&ic->i_send_ring, wc.wr_id, oldest); | ||
244 | |||
245 | for (i = 0; i < completed; i++) { | ||
246 | send = &ic->i_sends[oldest]; | ||
247 | |||
248 | /* In the error case, wc.opcode sometimes contains garbage */ | ||
249 | switch (send->s_wr.opcode) { | ||
250 | case IB_WR_SEND: | ||
251 | if (send->s_rm) | ||
252 | rds_iw_send_unmap_rm(ic, send, wc.status); | ||
253 | break; | ||
254 | case IB_WR_FAST_REG_MR: | ||
255 | case IB_WR_RDMA_WRITE: | ||
256 | case IB_WR_RDMA_READ: | ||
257 | case IB_WR_RDMA_READ_WITH_INV: | ||
258 | /* Nothing to be done - the SG list will be unmapped | ||
259 | * when the SEND completes. */ | ||
260 | break; | ||
261 | default: | ||
262 | if (printk_ratelimit()) | ||
263 | printk(KERN_NOTICE | ||
264 | "RDS/IW: %s: unexpected opcode 0x%x in WR!\n", | ||
265 | __func__, send->s_wr.opcode); | ||
266 | break; | ||
267 | } | ||
268 | |||
269 | send->s_wr.opcode = 0xdead; | ||
270 | send->s_wr.num_sge = 1; | ||
271 | if (send->s_queued + HZ/2 < jiffies) | ||
272 | rds_iw_stats_inc(s_iw_tx_stalled); | ||
273 | |||
274 | /* If a RDMA operation produced an error, signal this right | ||
275 | * away. If we don't, the subsequent SEND that goes with this | ||
276 | * RDMA will be canceled with ERR_WFLUSH, and the application | ||
277 | * never learn that the RDMA failed. */ | ||
278 | if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) { | ||
279 | struct rds_message *rm; | ||
280 | |||
281 | rm = rds_send_get_message(conn, send->s_op); | ||
282 | if (rm) | ||
283 | rds_iw_send_rdma_complete(rm, wc.status); | ||
284 | } | ||
285 | |||
286 | oldest = (oldest + 1) % ic->i_send_ring.w_nr; | ||
287 | } | ||
288 | |||
289 | rds_iw_ring_free(&ic->i_send_ring, completed); | ||
290 | |||
291 | if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) | ||
292 | || test_bit(0, &conn->c_map_queued)) | ||
293 | queue_delayed_work(rds_wq, &conn->c_send_w, 0); | ||
294 | |||
295 | /* We expect errors as the qp is drained during shutdown */ | ||
296 | if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) { | ||
297 | rds_iw_conn_error(conn, | ||
298 | "send completion on %pI4 " | ||
299 | "had status %u, disconnecting and reconnecting\n", | ||
300 | &conn->c_faddr, wc.status); | ||
301 | } | ||
302 | } | ||
303 | } | ||
304 | |||
305 | /* | ||
306 | * This is the main function for allocating credits when sending | ||
307 | * messages. | ||
308 | * | ||
309 | * Conceptually, we have two counters: | ||
310 | * - send credits: this tells us how many WRs we're allowed | ||
311 | * to submit without overruning the reciever's queue. For | ||
312 | * each SEND WR we post, we decrement this by one. | ||
313 | * | ||
314 | * - posted credits: this tells us how many WRs we recently | ||
315 | * posted to the receive queue. This value is transferred | ||
316 | * to the peer as a "credit update" in a RDS header field. | ||
317 | * Every time we transmit credits to the peer, we subtract | ||
318 | * the amount of transferred credits from this counter. | ||
319 | * | ||
320 | * It is essential that we avoid situations where both sides have | ||
321 | * exhausted their send credits, and are unable to send new credits | ||
322 | * to the peer. We achieve this by requiring that we send at least | ||
323 | * one credit update to the peer before exhausting our credits. | ||
324 | * When new credits arrive, we subtract one credit that is withheld | ||
325 | * until we've posted new buffers and are ready to transmit these | ||
326 | * credits (see rds_iw_send_add_credits below). | ||
327 | * | ||
328 | * The RDS send code is essentially single-threaded; rds_send_xmit | ||
329 | * grabs c_send_lock to ensure exclusive access to the send ring. | ||
330 | * However, the ACK sending code is independent and can race with | ||
331 | * message SENDs. | ||
332 | * | ||
333 | * In the send path, we need to update the counters for send credits | ||
334 | * and the counter of posted buffers atomically - when we use the | ||
335 | * last available credit, we cannot allow another thread to race us | ||
336 | * and grab the posted credits counter. Hence, we have to use a | ||
337 | * spinlock to protect the credit counter, or use atomics. | ||
338 | * | ||
339 | * Spinlocks shared between the send and the receive path are bad, | ||
340 | * because they create unnecessary delays. An early implementation | ||
341 | * using a spinlock showed a 5% degradation in throughput at some | ||
342 | * loads. | ||
343 | * | ||
344 | * This implementation avoids spinlocks completely, putting both | ||
345 | * counters into a single atomic, and updating that atomic using | ||
346 | * atomic_add (in the receive path, when receiving fresh credits), | ||
347 | * and using atomic_cmpxchg when updating the two counters. | ||
348 | */ | ||
349 | int rds_iw_send_grab_credits(struct rds_iw_connection *ic, | ||
350 | u32 wanted, u32 *adv_credits, int need_posted) | ||
351 | { | ||
352 | unsigned int avail, posted, got = 0, advertise; | ||
353 | long oldval, newval; | ||
354 | |||
355 | *adv_credits = 0; | ||
356 | if (!ic->i_flowctl) | ||
357 | return wanted; | ||
358 | |||
359 | try_again: | ||
360 | advertise = 0; | ||
361 | oldval = newval = atomic_read(&ic->i_credits); | ||
362 | posted = IB_GET_POST_CREDITS(oldval); | ||
363 | avail = IB_GET_SEND_CREDITS(oldval); | ||
364 | |||
365 | rdsdebug("rds_iw_send_grab_credits(%u): credits=%u posted=%u\n", | ||
366 | wanted, avail, posted); | ||
367 | |||
368 | /* The last credit must be used to send a credit update. */ | ||
369 | if (avail && !posted) | ||
370 | avail--; | ||
371 | |||
372 | if (avail < wanted) { | ||
373 | struct rds_connection *conn = ic->i_cm_id->context; | ||
374 | |||
375 | /* Oops, there aren't that many credits left! */ | ||
376 | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | ||
377 | got = avail; | ||
378 | } else { | ||
379 | /* Sometimes you get what you want, lalala. */ | ||
380 | got = wanted; | ||
381 | } | ||
382 | newval -= IB_SET_SEND_CREDITS(got); | ||
383 | |||
384 | /* | ||
385 | * If need_posted is non-zero, then the caller wants | ||
386 | * the posted regardless of whether any send credits are | ||
387 | * available. | ||
388 | */ | ||
389 | if (posted && (got || need_posted)) { | ||
390 | advertise = min_t(unsigned int, posted, RDS_MAX_ADV_CREDIT); | ||
391 | newval -= IB_SET_POST_CREDITS(advertise); | ||
392 | } | ||
393 | |||
394 | /* Finally bill everything */ | ||
395 | if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval) | ||
396 | goto try_again; | ||
397 | |||
398 | *adv_credits = advertise; | ||
399 | return got; | ||
400 | } | ||
401 | |||
402 | void rds_iw_send_add_credits(struct rds_connection *conn, unsigned int credits) | ||
403 | { | ||
404 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
405 | |||
406 | if (credits == 0) | ||
407 | return; | ||
408 | |||
409 | rdsdebug("rds_iw_send_add_credits(%u): current=%u%s\n", | ||
410 | credits, | ||
411 | IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)), | ||
412 | test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : ""); | ||
413 | |||
414 | atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits); | ||
415 | if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags)) | ||
416 | queue_delayed_work(rds_wq, &conn->c_send_w, 0); | ||
417 | |||
418 | WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384); | ||
419 | |||
420 | rds_iw_stats_inc(s_iw_rx_credit_updates); | ||
421 | } | ||
422 | |||
423 | void rds_iw_advertise_credits(struct rds_connection *conn, unsigned int posted) | ||
424 | { | ||
425 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
426 | |||
427 | if (posted == 0) | ||
428 | return; | ||
429 | |||
430 | atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits); | ||
431 | |||
432 | /* Decide whether to send an update to the peer now. | ||
433 | * If we would send a credit update for every single buffer we | ||
434 | * post, we would end up with an ACK storm (ACK arrives, | ||
435 | * consumes buffer, we refill the ring, send ACK to remote | ||
436 | * advertising the newly posted buffer... ad inf) | ||
437 | * | ||
438 | * Performance pretty much depends on how often we send | ||
439 | * credit updates - too frequent updates mean lots of ACKs. | ||
440 | * Too infrequent updates, and the peer will run out of | ||
441 | * credits and has to throttle. | ||
442 | * For the time being, 16 seems to be a good compromise. | ||
443 | */ | ||
444 | if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16) | ||
445 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | ||
446 | } | ||
447 | |||
448 | static inline void | ||
449 | rds_iw_xmit_populate_wr(struct rds_iw_connection *ic, | ||
450 | struct rds_iw_send_work *send, unsigned int pos, | ||
451 | unsigned long buffer, unsigned int length, | ||
452 | int send_flags) | ||
453 | { | ||
454 | struct ib_sge *sge; | ||
455 | |||
456 | WARN_ON(pos != send - ic->i_sends); | ||
457 | |||
458 | send->s_wr.send_flags = send_flags; | ||
459 | send->s_wr.opcode = IB_WR_SEND; | ||
460 | send->s_wr.num_sge = 2; | ||
461 | send->s_wr.next = NULL; | ||
462 | send->s_queued = jiffies; | ||
463 | send->s_op = NULL; | ||
464 | |||
465 | if (length != 0) { | ||
466 | sge = rds_iw_data_sge(ic, send->s_sge); | ||
467 | sge->addr = buffer; | ||
468 | sge->length = length; | ||
469 | sge->lkey = rds_iw_local_dma_lkey(ic); | ||
470 | |||
471 | sge = rds_iw_header_sge(ic, send->s_sge); | ||
472 | } else { | ||
473 | /* We're sending a packet with no payload. There is only | ||
474 | * one SGE */ | ||
475 | send->s_wr.num_sge = 1; | ||
476 | sge = &send->s_sge[0]; | ||
477 | } | ||
478 | |||
479 | sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header)); | ||
480 | sge->length = sizeof(struct rds_header); | ||
481 | sge->lkey = rds_iw_local_dma_lkey(ic); | ||
482 | } | ||
483 | |||
484 | /* | ||
485 | * This can be called multiple times for a given message. The first time | ||
486 | * we see a message we map its scatterlist into the IB device so that | ||
487 | * we can provide that mapped address to the IB scatter gather entries | ||
488 | * in the IB work requests. We translate the scatterlist into a series | ||
489 | * of work requests that fragment the message. These work requests complete | ||
490 | * in order so we pass ownership of the message to the completion handler | ||
491 | * once we send the final fragment. | ||
492 | * | ||
493 | * The RDS core uses the c_send_lock to only enter this function once | ||
494 | * per connection. This makes sure that the tx ring alloc/unalloc pairs | ||
495 | * don't get out of sync and confuse the ring. | ||
496 | */ | ||
497 | int rds_iw_xmit(struct rds_connection *conn, struct rds_message *rm, | ||
498 | unsigned int hdr_off, unsigned int sg, unsigned int off) | ||
499 | { | ||
500 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
501 | struct ib_device *dev = ic->i_cm_id->device; | ||
502 | struct rds_iw_send_work *send = NULL; | ||
503 | struct rds_iw_send_work *first; | ||
504 | struct rds_iw_send_work *prev; | ||
505 | struct ib_send_wr *failed_wr; | ||
506 | struct scatterlist *scat; | ||
507 | u32 pos; | ||
508 | u32 i; | ||
509 | u32 work_alloc; | ||
510 | u32 credit_alloc; | ||
511 | u32 posted; | ||
512 | u32 adv_credits = 0; | ||
513 | int send_flags = 0; | ||
514 | int sent; | ||
515 | int ret; | ||
516 | int flow_controlled = 0; | ||
517 | |||
518 | BUG_ON(off % RDS_FRAG_SIZE); | ||
519 | BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header)); | ||
520 | |||
521 | /* Fastreg support */ | ||
522 | if (rds_rdma_cookie_key(rm->m_rdma_cookie) | ||
523 | && !ic->i_fastreg_posted) { | ||
524 | ret = -EAGAIN; | ||
525 | goto out; | ||
526 | } | ||
527 | |||
528 | /* FIXME we may overallocate here */ | ||
529 | if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) | ||
530 | i = 1; | ||
531 | else | ||
532 | i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE); | ||
533 | |||
534 | work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos); | ||
535 | if (work_alloc == 0) { | ||
536 | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | ||
537 | rds_iw_stats_inc(s_iw_tx_ring_full); | ||
538 | ret = -ENOMEM; | ||
539 | goto out; | ||
540 | } | ||
541 | |||
542 | credit_alloc = work_alloc; | ||
543 | if (ic->i_flowctl) { | ||
544 | credit_alloc = rds_iw_send_grab_credits(ic, work_alloc, &posted, 0); | ||
545 | adv_credits += posted; | ||
546 | if (credit_alloc < work_alloc) { | ||
547 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc); | ||
548 | work_alloc = credit_alloc; | ||
549 | flow_controlled++; | ||
550 | } | ||
551 | if (work_alloc == 0) { | ||
552 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | ||
553 | rds_iw_stats_inc(s_iw_tx_throttle); | ||
554 | ret = -ENOMEM; | ||
555 | goto out; | ||
556 | } | ||
557 | } | ||
558 | |||
559 | /* map the message the first time we see it */ | ||
560 | if (ic->i_rm == NULL) { | ||
561 | /* | ||
562 | printk(KERN_NOTICE "rds_iw_xmit prep msg dport=%u flags=0x%x len=%d\n", | ||
563 | be16_to_cpu(rm->m_inc.i_hdr.h_dport), | ||
564 | rm->m_inc.i_hdr.h_flags, | ||
565 | be32_to_cpu(rm->m_inc.i_hdr.h_len)); | ||
566 | */ | ||
567 | if (rm->m_nents) { | ||
568 | rm->m_count = ib_dma_map_sg(dev, | ||
569 | rm->m_sg, rm->m_nents, DMA_TO_DEVICE); | ||
570 | rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->m_count); | ||
571 | if (rm->m_count == 0) { | ||
572 | rds_iw_stats_inc(s_iw_tx_sg_mapping_failure); | ||
573 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | ||
574 | ret = -ENOMEM; /* XXX ? */ | ||
575 | goto out; | ||
576 | } | ||
577 | } else { | ||
578 | rm->m_count = 0; | ||
579 | } | ||
580 | |||
581 | ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs; | ||
582 | ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes; | ||
583 | rds_message_addref(rm); | ||
584 | ic->i_rm = rm; | ||
585 | |||
586 | /* Finalize the header */ | ||
587 | if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags)) | ||
588 | rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED; | ||
589 | if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) | ||
590 | rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; | ||
591 | |||
592 | /* If it has a RDMA op, tell the peer we did it. This is | ||
593 | * used by the peer to release use-once RDMA MRs. */ | ||
594 | if (rm->m_rdma_op) { | ||
595 | struct rds_ext_header_rdma ext_hdr; | ||
596 | |||
597 | ext_hdr.h_rdma_rkey = cpu_to_be32(rm->m_rdma_op->r_key); | ||
598 | rds_message_add_extension(&rm->m_inc.i_hdr, | ||
599 | RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr)); | ||
600 | } | ||
601 | if (rm->m_rdma_cookie) { | ||
602 | rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr, | ||
603 | rds_rdma_cookie_key(rm->m_rdma_cookie), | ||
604 | rds_rdma_cookie_offset(rm->m_rdma_cookie)); | ||
605 | } | ||
606 | |||
607 | /* Note - rds_iw_piggyb_ack clears the ACK_REQUIRED bit, so | ||
608 | * we should not do this unless we have a chance of at least | ||
609 | * sticking the header into the send ring. Which is why we | ||
610 | * should call rds_iw_ring_alloc first. */ | ||
611 | rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_iw_piggyb_ack(ic)); | ||
612 | rds_message_make_checksum(&rm->m_inc.i_hdr); | ||
613 | |||
614 | /* | ||
615 | * Update adv_credits since we reset the ACK_REQUIRED bit. | ||
616 | */ | ||
617 | rds_iw_send_grab_credits(ic, 0, &posted, 1); | ||
618 | adv_credits += posted; | ||
619 | BUG_ON(adv_credits > 255); | ||
620 | } else if (ic->i_rm != rm) | ||
621 | BUG(); | ||
622 | |||
623 | send = &ic->i_sends[pos]; | ||
624 | first = send; | ||
625 | prev = NULL; | ||
626 | scat = &rm->m_sg[sg]; | ||
627 | sent = 0; | ||
628 | i = 0; | ||
629 | |||
630 | /* Sometimes you want to put a fence between an RDMA | ||
631 | * READ and the following SEND. | ||
632 | * We could either do this all the time | ||
633 | * or when requested by the user. Right now, we let | ||
634 | * the application choose. | ||
635 | */ | ||
636 | if (rm->m_rdma_op && rm->m_rdma_op->r_fence) | ||
637 | send_flags = IB_SEND_FENCE; | ||
638 | |||
639 | /* | ||
640 | * We could be copying the header into the unused tail of the page. | ||
641 | * That would need to be changed in the future when those pages might | ||
642 | * be mapped userspace pages or page cache pages. So instead we always | ||
643 | * use a second sge and our long-lived ring of mapped headers. We send | ||
644 | * the header after the data so that the data payload can be aligned on | ||
645 | * the receiver. | ||
646 | */ | ||
647 | |||
648 | /* handle a 0-len message */ | ||
649 | if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) { | ||
650 | rds_iw_xmit_populate_wr(ic, send, pos, 0, 0, send_flags); | ||
651 | goto add_header; | ||
652 | } | ||
653 | |||
654 | /* if there's data reference it with a chain of work reqs */ | ||
655 | for (; i < work_alloc && scat != &rm->m_sg[rm->m_count]; i++) { | ||
656 | unsigned int len; | ||
657 | |||
658 | send = &ic->i_sends[pos]; | ||
659 | |||
660 | len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off); | ||
661 | rds_iw_xmit_populate_wr(ic, send, pos, | ||
662 | ib_sg_dma_address(dev, scat) + off, len, | ||
663 | send_flags); | ||
664 | |||
665 | /* | ||
666 | * We want to delay signaling completions just enough to get | ||
667 | * the batching benefits but not so much that we create dead time | ||
668 | * on the wire. | ||
669 | */ | ||
670 | if (ic->i_unsignaled_wrs-- == 0) { | ||
671 | ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs; | ||
672 | send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; | ||
673 | } | ||
674 | |||
675 | ic->i_unsignaled_bytes -= len; | ||
676 | if (ic->i_unsignaled_bytes <= 0) { | ||
677 | ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes; | ||
678 | send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; | ||
679 | } | ||
680 | |||
681 | /* | ||
682 | * Always signal the last one if we're stopping due to flow control. | ||
683 | */ | ||
684 | if (flow_controlled && i == (work_alloc-1)) | ||
685 | send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; | ||
686 | |||
687 | rdsdebug("send %p wr %p num_sge %u next %p\n", send, | ||
688 | &send->s_wr, send->s_wr.num_sge, send->s_wr.next); | ||
689 | |||
690 | sent += len; | ||
691 | off += len; | ||
692 | if (off == ib_sg_dma_len(dev, scat)) { | ||
693 | scat++; | ||
694 | off = 0; | ||
695 | } | ||
696 | |||
697 | add_header: | ||
698 | /* Tack on the header after the data. The header SGE should already | ||
699 | * have been set up to point to the right header buffer. */ | ||
700 | memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header)); | ||
701 | |||
702 | if (0) { | ||
703 | struct rds_header *hdr = &ic->i_send_hdrs[pos]; | ||
704 | |||
705 | printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n", | ||
706 | be16_to_cpu(hdr->h_dport), | ||
707 | hdr->h_flags, | ||
708 | be32_to_cpu(hdr->h_len)); | ||
709 | } | ||
710 | if (adv_credits) { | ||
711 | struct rds_header *hdr = &ic->i_send_hdrs[pos]; | ||
712 | |||
713 | /* add credit and redo the header checksum */ | ||
714 | hdr->h_credit = adv_credits; | ||
715 | rds_message_make_checksum(hdr); | ||
716 | adv_credits = 0; | ||
717 | rds_iw_stats_inc(s_iw_tx_credit_updates); | ||
718 | } | ||
719 | |||
720 | if (prev) | ||
721 | prev->s_wr.next = &send->s_wr; | ||
722 | prev = send; | ||
723 | |||
724 | pos = (pos + 1) % ic->i_send_ring.w_nr; | ||
725 | } | ||
726 | |||
727 | /* Account the RDS header in the number of bytes we sent, but just once. | ||
728 | * The caller has no concept of fragmentation. */ | ||
729 | if (hdr_off == 0) | ||
730 | sent += sizeof(struct rds_header); | ||
731 | |||
732 | /* if we finished the message then send completion owns it */ | ||
733 | if (scat == &rm->m_sg[rm->m_count]) { | ||
734 | prev->s_rm = ic->i_rm; | ||
735 | prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; | ||
736 | ic->i_rm = NULL; | ||
737 | } | ||
738 | |||
739 | if (i < work_alloc) { | ||
740 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i); | ||
741 | work_alloc = i; | ||
742 | } | ||
743 | if (ic->i_flowctl && i < credit_alloc) | ||
744 | rds_iw_send_add_credits(conn, credit_alloc - i); | ||
745 | |||
746 | /* XXX need to worry about failed_wr and partial sends. */ | ||
747 | failed_wr = &first->s_wr; | ||
748 | ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); | ||
749 | rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, | ||
750 | first, &first->s_wr, ret, failed_wr); | ||
751 | BUG_ON(failed_wr != &first->s_wr); | ||
752 | if (ret) { | ||
753 | printk(KERN_WARNING "RDS/IW: ib_post_send to %pI4 " | ||
754 | "returned %d\n", &conn->c_faddr, ret); | ||
755 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | ||
756 | if (prev->s_rm) { | ||
757 | ic->i_rm = prev->s_rm; | ||
758 | prev->s_rm = NULL; | ||
759 | } | ||
760 | goto out; | ||
761 | } | ||
762 | |||
763 | ret = sent; | ||
764 | out: | ||
765 | BUG_ON(adv_credits); | ||
766 | return ret; | ||
767 | } | ||
768 | |||
769 | static void rds_iw_build_send_fastreg(struct rds_iw_device *rds_iwdev, struct rds_iw_connection *ic, struct rds_iw_send_work *send, int nent, int len, u64 sg_addr) | ||
770 | { | ||
771 | BUG_ON(nent > send->s_page_list->max_page_list_len); | ||
772 | /* | ||
773 | * Perform a WR for the fast_reg_mr. Each individual page | ||
774 | * in the sg list is added to the fast reg page list and placed | ||
775 | * inside the fast_reg_mr WR. | ||
776 | */ | ||
777 | send->s_wr.opcode = IB_WR_FAST_REG_MR; | ||
778 | send->s_wr.wr.fast_reg.length = len; | ||
779 | send->s_wr.wr.fast_reg.rkey = send->s_mr->rkey; | ||
780 | send->s_wr.wr.fast_reg.page_list = send->s_page_list; | ||
781 | send->s_wr.wr.fast_reg.page_list_len = nent; | ||
782 | send->s_wr.wr.fast_reg.page_shift = rds_iwdev->page_shift; | ||
783 | send->s_wr.wr.fast_reg.access_flags = IB_ACCESS_REMOTE_WRITE; | ||
784 | send->s_wr.wr.fast_reg.iova_start = sg_addr; | ||
785 | |||
786 | ib_update_fast_reg_key(send->s_mr, send->s_remap_count++); | ||
787 | } | ||
788 | |||
789 | int rds_iw_xmit_rdma(struct rds_connection *conn, struct rds_rdma_op *op) | ||
790 | { | ||
791 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
792 | struct rds_iw_send_work *send = NULL; | ||
793 | struct rds_iw_send_work *first; | ||
794 | struct rds_iw_send_work *prev; | ||
795 | struct ib_send_wr *failed_wr; | ||
796 | struct rds_iw_device *rds_iwdev; | ||
797 | struct scatterlist *scat; | ||
798 | unsigned long len; | ||
799 | u64 remote_addr = op->r_remote_addr; | ||
800 | u32 pos, fr_pos; | ||
801 | u32 work_alloc; | ||
802 | u32 i; | ||
803 | u32 j; | ||
804 | int sent; | ||
805 | int ret; | ||
806 | int num_sge; | ||
807 | |||
808 | rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client); | ||
809 | |||
810 | /* map the message the first time we see it */ | ||
811 | if (!op->r_mapped) { | ||
812 | op->r_count = ib_dma_map_sg(ic->i_cm_id->device, | ||
813 | op->r_sg, op->r_nents, (op->r_write) ? | ||
814 | DMA_TO_DEVICE : DMA_FROM_DEVICE); | ||
815 | rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->r_count); | ||
816 | if (op->r_count == 0) { | ||
817 | rds_iw_stats_inc(s_iw_tx_sg_mapping_failure); | ||
818 | ret = -ENOMEM; /* XXX ? */ | ||
819 | goto out; | ||
820 | } | ||
821 | |||
822 | op->r_mapped = 1; | ||
823 | } | ||
824 | |||
825 | if (!op->r_write) { | ||
826 | /* Alloc space on the send queue for the fastreg */ | ||
827 | work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, 1, &fr_pos); | ||
828 | if (work_alloc != 1) { | ||
829 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | ||
830 | rds_iw_stats_inc(s_iw_tx_ring_full); | ||
831 | ret = -ENOMEM; | ||
832 | goto out; | ||
833 | } | ||
834 | } | ||
835 | |||
836 | /* | ||
837 | * Instead of knowing how to return a partial rdma read/write we insist that there | ||
838 | * be enough work requests to send the entire message. | ||
839 | */ | ||
840 | i = ceil(op->r_count, rds_iwdev->max_sge); | ||
841 | |||
842 | work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos); | ||
843 | if (work_alloc != i) { | ||
844 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | ||
845 | rds_iw_stats_inc(s_iw_tx_ring_full); | ||
846 | ret = -ENOMEM; | ||
847 | goto out; | ||
848 | } | ||
849 | |||
850 | send = &ic->i_sends[pos]; | ||
851 | if (!op->r_write) { | ||
852 | first = prev = &ic->i_sends[fr_pos]; | ||
853 | } else { | ||
854 | first = send; | ||
855 | prev = NULL; | ||
856 | } | ||
857 | scat = &op->r_sg[0]; | ||
858 | sent = 0; | ||
859 | num_sge = op->r_count; | ||
860 | |||
861 | for (i = 0; i < work_alloc && scat != &op->r_sg[op->r_count]; i++) { | ||
862 | send->s_wr.send_flags = 0; | ||
863 | send->s_queued = jiffies; | ||
864 | |||
865 | /* | ||
866 | * We want to delay signaling completions just enough to get | ||
867 | * the batching benefits but not so much that we create dead time on the wire. | ||
868 | */ | ||
869 | if (ic->i_unsignaled_wrs-- == 0) { | ||
870 | ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs; | ||
871 | send->s_wr.send_flags = IB_SEND_SIGNALED; | ||
872 | } | ||
873 | |||
874 | /* To avoid the need to have the plumbing to invalidate the fastreg_mr used | ||
875 | * for local access after RDS is finished with it, using | ||
876 | * IB_WR_RDMA_READ_WITH_INV will invalidate it after the read has completed. | ||
877 | */ | ||
878 | if (op->r_write) | ||
879 | send->s_wr.opcode = IB_WR_RDMA_WRITE; | ||
880 | else | ||
881 | send->s_wr.opcode = IB_WR_RDMA_READ_WITH_INV; | ||
882 | |||
883 | send->s_wr.wr.rdma.remote_addr = remote_addr; | ||
884 | send->s_wr.wr.rdma.rkey = op->r_key; | ||
885 | send->s_op = op; | ||
886 | |||
887 | if (num_sge > rds_iwdev->max_sge) { | ||
888 | send->s_wr.num_sge = rds_iwdev->max_sge; | ||
889 | num_sge -= rds_iwdev->max_sge; | ||
890 | } else | ||
891 | send->s_wr.num_sge = num_sge; | ||
892 | |||
893 | send->s_wr.next = NULL; | ||
894 | |||
895 | if (prev) | ||
896 | prev->s_wr.next = &send->s_wr; | ||
897 | |||
898 | for (j = 0; j < send->s_wr.num_sge && scat != &op->r_sg[op->r_count]; j++) { | ||
899 | len = ib_sg_dma_len(ic->i_cm_id->device, scat); | ||
900 | |||
901 | if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV) | ||
902 | send->s_page_list->page_list[j] = ib_sg_dma_address(ic->i_cm_id->device, scat); | ||
903 | else { | ||
904 | send->s_sge[j].addr = ib_sg_dma_address(ic->i_cm_id->device, scat); | ||
905 | send->s_sge[j].length = len; | ||
906 | send->s_sge[j].lkey = rds_iw_local_dma_lkey(ic); | ||
907 | } | ||
908 | |||
909 | sent += len; | ||
910 | rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr); | ||
911 | remote_addr += len; | ||
912 | |||
913 | scat++; | ||
914 | } | ||
915 | |||
916 | if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV) { | ||
917 | send->s_wr.num_sge = 1; | ||
918 | send->s_sge[0].addr = conn->c_xmit_rm->m_rs->rs_user_addr; | ||
919 | send->s_sge[0].length = conn->c_xmit_rm->m_rs->rs_user_bytes; | ||
920 | send->s_sge[0].lkey = ic->i_sends[fr_pos].s_mr->lkey; | ||
921 | } | ||
922 | |||
923 | rdsdebug("send %p wr %p num_sge %u next %p\n", send, | ||
924 | &send->s_wr, send->s_wr.num_sge, send->s_wr.next); | ||
925 | |||
926 | prev = send; | ||
927 | if (++send == &ic->i_sends[ic->i_send_ring.w_nr]) | ||
928 | send = ic->i_sends; | ||
929 | } | ||
930 | |||
931 | /* if we finished the message then send completion owns it */ | ||
932 | if (scat == &op->r_sg[op->r_count]) | ||
933 | first->s_wr.send_flags = IB_SEND_SIGNALED; | ||
934 | |||
935 | if (i < work_alloc) { | ||
936 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i); | ||
937 | work_alloc = i; | ||
938 | } | ||
939 | |||
940 | /* On iWARP, local memory access by a remote system (ie, RDMA Read) is not | ||
941 | * recommended. Putting the lkey on the wire is a security hole, as it can | ||
942 | * allow for memory access to all of memory on the remote system. Some | ||
943 | * adapters do not allow using the lkey for this at all. To bypass this use a | ||
944 | * fastreg_mr (or possibly a dma_mr) | ||
945 | */ | ||
946 | if (!op->r_write) { | ||
947 | rds_iw_build_send_fastreg(rds_iwdev, ic, &ic->i_sends[fr_pos], | ||
948 | op->r_count, sent, conn->c_xmit_rm->m_rs->rs_user_addr); | ||
949 | work_alloc++; | ||
950 | } | ||
951 | |||
952 | failed_wr = &first->s_wr; | ||
953 | ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); | ||
954 | rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, | ||
955 | first, &first->s_wr, ret, failed_wr); | ||
956 | BUG_ON(failed_wr != &first->s_wr); | ||
957 | if (ret) { | ||
958 | printk(KERN_WARNING "RDS/IW: rdma ib_post_send to %pI4 " | ||
959 | "returned %d\n", &conn->c_faddr, ret); | ||
960 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | ||
961 | goto out; | ||
962 | } | ||
963 | |||
964 | out: | ||
965 | return ret; | ||
966 | } | ||
967 | |||
968 | void rds_iw_xmit_complete(struct rds_connection *conn) | ||
969 | { | ||
970 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
971 | |||
972 | /* We may have a pending ACK or window update we were unable | ||
973 | * to send previously (due to flow control). Try again. */ | ||
974 | rds_iw_attempt_ack(ic); | ||
975 | } | ||
diff --git a/net/rds/iw_stats.c b/net/rds/iw_stats.c new file mode 100644 index 000000000000..ccc7e8f0bf0e --- /dev/null +++ b/net/rds/iw_stats.c | |||
@@ -0,0 +1,95 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/percpu.h> | ||
34 | #include <linux/seq_file.h> | ||
35 | #include <linux/proc_fs.h> | ||
36 | |||
37 | #include "rds.h" | ||
38 | #include "iw.h" | ||
39 | |||
40 | DEFINE_PER_CPU(struct rds_iw_statistics, rds_iw_stats) ____cacheline_aligned; | ||
41 | |||
42 | static char *rds_iw_stat_names[] = { | ||
43 | "iw_connect_raced", | ||
44 | "iw_listen_closed_stale", | ||
45 | "iw_tx_cq_call", | ||
46 | "iw_tx_cq_event", | ||
47 | "iw_tx_ring_full", | ||
48 | "iw_tx_throttle", | ||
49 | "iw_tx_sg_mapping_failure", | ||
50 | "iw_tx_stalled", | ||
51 | "iw_tx_credit_updates", | ||
52 | "iw_rx_cq_call", | ||
53 | "iw_rx_cq_event", | ||
54 | "iw_rx_ring_empty", | ||
55 | "iw_rx_refill_from_cq", | ||
56 | "iw_rx_refill_from_thread", | ||
57 | "iw_rx_alloc_limit", | ||
58 | "iw_rx_credit_updates", | ||
59 | "iw_ack_sent", | ||
60 | "iw_ack_send_failure", | ||
61 | "iw_ack_send_delayed", | ||
62 | "iw_ack_send_piggybacked", | ||
63 | "iw_ack_received", | ||
64 | "iw_rdma_mr_alloc", | ||
65 | "iw_rdma_mr_free", | ||
66 | "iw_rdma_mr_used", | ||
67 | "iw_rdma_mr_pool_flush", | ||
68 | "iw_rdma_mr_pool_wait", | ||
69 | "iw_rdma_mr_pool_depleted", | ||
70 | }; | ||
71 | |||
72 | unsigned int rds_iw_stats_info_copy(struct rds_info_iterator *iter, | ||
73 | unsigned int avail) | ||
74 | { | ||
75 | struct rds_iw_statistics stats = {0, }; | ||
76 | uint64_t *src; | ||
77 | uint64_t *sum; | ||
78 | size_t i; | ||
79 | int cpu; | ||
80 | |||
81 | if (avail < ARRAY_SIZE(rds_iw_stat_names)) | ||
82 | goto out; | ||
83 | |||
84 | for_each_online_cpu(cpu) { | ||
85 | src = (uint64_t *)&(per_cpu(rds_iw_stats, cpu)); | ||
86 | sum = (uint64_t *)&stats; | ||
87 | for (i = 0; i < sizeof(stats) / sizeof(uint64_t); i++) | ||
88 | *(sum++) += *(src++); | ||
89 | } | ||
90 | |||
91 | rds_stats_info_copy(iter, (uint64_t *)&stats, rds_iw_stat_names, | ||
92 | ARRAY_SIZE(rds_iw_stat_names)); | ||
93 | out: | ||
94 | return ARRAY_SIZE(rds_iw_stat_names); | ||
95 | } | ||
diff --git a/net/rds/iw_sysctl.c b/net/rds/iw_sysctl.c new file mode 100644 index 000000000000..9590678cd616 --- /dev/null +++ b/net/rds/iw_sysctl.c | |||
@@ -0,0 +1,137 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/sysctl.h> | ||
35 | #include <linux/proc_fs.h> | ||
36 | |||
37 | #include "iw.h" | ||
38 | |||
39 | static struct ctl_table_header *rds_iw_sysctl_hdr; | ||
40 | |||
41 | unsigned long rds_iw_sysctl_max_send_wr = RDS_IW_DEFAULT_SEND_WR; | ||
42 | unsigned long rds_iw_sysctl_max_recv_wr = RDS_IW_DEFAULT_RECV_WR; | ||
43 | unsigned long rds_iw_sysctl_max_recv_allocation = (128 * 1024 * 1024) / RDS_FRAG_SIZE; | ||
44 | static unsigned long rds_iw_sysctl_max_wr_min = 1; | ||
45 | /* hardware will fail CQ creation long before this */ | ||
46 | static unsigned long rds_iw_sysctl_max_wr_max = (u32)~0; | ||
47 | |||
48 | unsigned long rds_iw_sysctl_max_unsig_wrs = 16; | ||
49 | static unsigned long rds_iw_sysctl_max_unsig_wr_min = 1; | ||
50 | static unsigned long rds_iw_sysctl_max_unsig_wr_max = 64; | ||
51 | |||
52 | unsigned long rds_iw_sysctl_max_unsig_bytes = (16 << 20); | ||
53 | static unsigned long rds_iw_sysctl_max_unsig_bytes_min = 1; | ||
54 | static unsigned long rds_iw_sysctl_max_unsig_bytes_max = ~0UL; | ||
55 | |||
56 | unsigned int rds_iw_sysctl_flow_control = 1; | ||
57 | |||
58 | ctl_table rds_iw_sysctl_table[] = { | ||
59 | { | ||
60 | .ctl_name = CTL_UNNUMBERED, | ||
61 | .procname = "max_send_wr", | ||
62 | .data = &rds_iw_sysctl_max_send_wr, | ||
63 | .maxlen = sizeof(unsigned long), | ||
64 | .mode = 0644, | ||
65 | .proc_handler = &proc_doulongvec_minmax, | ||
66 | .extra1 = &rds_iw_sysctl_max_wr_min, | ||
67 | .extra2 = &rds_iw_sysctl_max_wr_max, | ||
68 | }, | ||
69 | { | ||
70 | .ctl_name = CTL_UNNUMBERED, | ||
71 | .procname = "max_recv_wr", | ||
72 | .data = &rds_iw_sysctl_max_recv_wr, | ||
73 | .maxlen = sizeof(unsigned long), | ||
74 | .mode = 0644, | ||
75 | .proc_handler = &proc_doulongvec_minmax, | ||
76 | .extra1 = &rds_iw_sysctl_max_wr_min, | ||
77 | .extra2 = &rds_iw_sysctl_max_wr_max, | ||
78 | }, | ||
79 | { | ||
80 | .ctl_name = CTL_UNNUMBERED, | ||
81 | .procname = "max_unsignaled_wr", | ||
82 | .data = &rds_iw_sysctl_max_unsig_wrs, | ||
83 | .maxlen = sizeof(unsigned long), | ||
84 | .mode = 0644, | ||
85 | .proc_handler = &proc_doulongvec_minmax, | ||
86 | .extra1 = &rds_iw_sysctl_max_unsig_wr_min, | ||
87 | .extra2 = &rds_iw_sysctl_max_unsig_wr_max, | ||
88 | }, | ||
89 | { | ||
90 | .ctl_name = CTL_UNNUMBERED, | ||
91 | .procname = "max_unsignaled_bytes", | ||
92 | .data = &rds_iw_sysctl_max_unsig_bytes, | ||
93 | .maxlen = sizeof(unsigned long), | ||
94 | .mode = 0644, | ||
95 | .proc_handler = &proc_doulongvec_minmax, | ||
96 | .extra1 = &rds_iw_sysctl_max_unsig_bytes_min, | ||
97 | .extra2 = &rds_iw_sysctl_max_unsig_bytes_max, | ||
98 | }, | ||
99 | { | ||
100 | .ctl_name = CTL_UNNUMBERED, | ||
101 | .procname = "max_recv_allocation", | ||
102 | .data = &rds_iw_sysctl_max_recv_allocation, | ||
103 | .maxlen = sizeof(unsigned long), | ||
104 | .mode = 0644, | ||
105 | .proc_handler = &proc_doulongvec_minmax, | ||
106 | }, | ||
107 | { | ||
108 | .ctl_name = CTL_UNNUMBERED, | ||
109 | .procname = "flow_control", | ||
110 | .data = &rds_iw_sysctl_flow_control, | ||
111 | .maxlen = sizeof(rds_iw_sysctl_flow_control), | ||
112 | .mode = 0644, | ||
113 | .proc_handler = &proc_dointvec, | ||
114 | }, | ||
115 | { .ctl_name = 0} | ||
116 | }; | ||
117 | |||
118 | static struct ctl_path rds_iw_sysctl_path[] = { | ||
119 | { .procname = "net", .ctl_name = CTL_NET, }, | ||
120 | { .procname = "rds", .ctl_name = CTL_UNNUMBERED, }, | ||
121 | { .procname = "iw", .ctl_name = CTL_UNNUMBERED, }, | ||
122 | { } | ||
123 | }; | ||
124 | |||
125 | void rds_iw_sysctl_exit(void) | ||
126 | { | ||
127 | if (rds_iw_sysctl_hdr) | ||
128 | unregister_sysctl_table(rds_iw_sysctl_hdr); | ||
129 | } | ||
130 | |||
131 | int __init rds_iw_sysctl_init(void) | ||
132 | { | ||
133 | rds_iw_sysctl_hdr = register_sysctl_paths(rds_iw_sysctl_path, rds_iw_sysctl_table); | ||
134 | if (rds_iw_sysctl_hdr == NULL) | ||
135 | return -ENOMEM; | ||
136 | return 0; | ||
137 | } | ||