aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--include/linux/ftrace_event.h1
-rw-r--r--kernel/trace/trace.h38
-rw-r--r--kernel/trace/trace_events_filter.c885
3 files changed, 754 insertions, 170 deletions
diff --git a/include/linux/ftrace_event.h b/include/linux/ftrace_event.h
index 47e3997f7b5c..1a99e7939c2b 100644
--- a/include/linux/ftrace_event.h
+++ b/include/linux/ftrace_event.h
@@ -208,7 +208,6 @@ struct ftrace_event_call {
208 208
209#define PERF_MAX_TRACE_SIZE 2048 209#define PERF_MAX_TRACE_SIZE 2048
210 210
211#define MAX_FILTER_PRED 32
212#define MAX_FILTER_STR_VAL 256 /* Should handle KSYM_SYMBOL_LEN */ 211#define MAX_FILTER_STR_VAL 256 /* Should handle KSYM_SYMBOL_LEN */
213 212
214extern void destroy_preds(struct ftrace_event_call *call); 213extern void destroy_preds(struct ftrace_event_call *call);
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h
index 9021f8c0c0c3..856e73cc1d3f 100644
--- a/kernel/trace/trace.h
+++ b/kernel/trace/trace.h
@@ -661,8 +661,10 @@ struct ftrace_event_field {
661}; 661};
662 662
663struct event_filter { 663struct event_filter {
664 int n_preds; 664 int n_preds; /* Number assigned */
665 struct filter_pred **preds; 665 int a_preds; /* allocated */
666 struct filter_pred *preds;
667 struct filter_pred *root;
666 char *filter_string; 668 char *filter_string;
667}; 669};
668 670
@@ -674,11 +676,23 @@ struct event_subsystem {
674 int nr_events; 676 int nr_events;
675}; 677};
676 678
679#define FILTER_PRED_INVALID ((unsigned short)-1)
680#define FILTER_PRED_IS_RIGHT (1 << 15)
681#define FILTER_PRED_FOLD (1 << 15)
682
683/*
684 * The max preds is the size of unsigned short with
685 * two flags at the MSBs. One bit is used for both the IS_RIGHT
686 * and FOLD flags. The other is reserved.
687 *
688 * 2^14 preds is way more than enough.
689 */
690#define MAX_FILTER_PRED 16384
691
677struct filter_pred; 692struct filter_pred;
678struct regex; 693struct regex;
679 694
680typedef int (*filter_pred_fn_t) (struct filter_pred *pred, void *event, 695typedef int (*filter_pred_fn_t) (struct filter_pred *pred, void *event);
681 int val1, int val2);
682 696
683typedef int (*regex_match_func)(char *str, struct regex *r, int len); 697typedef int (*regex_match_func)(char *str, struct regex *r, int len);
684 698
@@ -700,11 +714,23 @@ struct filter_pred {
700 filter_pred_fn_t fn; 714 filter_pred_fn_t fn;
701 u64 val; 715 u64 val;
702 struct regex regex; 716 struct regex regex;
703 char *field_name; 717 /*
718 * Leaf nodes use field_name, ops is used by AND and OR
719 * nodes. The field_name is always freed when freeing a pred.
720 * We can overload field_name for ops and have it freed
721 * as well.
722 */
723 union {
724 char *field_name;
725 unsigned short *ops;
726 };
704 int offset; 727 int offset;
705 int not; 728 int not;
706 int op; 729 int op;
707 int pop_n; 730 unsigned short index;
731 unsigned short parent;
732 unsigned short left;
733 unsigned short right;
708}; 734};
709 735
710extern struct list_head ftrace_common_fields; 736extern struct list_head ftrace_common_fields;
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c
index 36d40104b17f..3249b4f77ef0 100644
--- a/kernel/trace/trace_events_filter.c
+++ b/kernel/trace/trace_events_filter.c
@@ -123,9 +123,13 @@ struct filter_parse_state {
123 } operand; 123 } operand;
124}; 124};
125 125
126struct pred_stack {
127 struct filter_pred **preds;
128 int index;
129};
130
126#define DEFINE_COMPARISON_PRED(type) \ 131#define DEFINE_COMPARISON_PRED(type) \
127static int filter_pred_##type(struct filter_pred *pred, void *event, \ 132static int filter_pred_##type(struct filter_pred *pred, void *event) \
128 int val1, int val2) \
129{ \ 133{ \
130 type *addr = (type *)(event + pred->offset); \ 134 type *addr = (type *)(event + pred->offset); \
131 type val = (type)pred->val; \ 135 type val = (type)pred->val; \
@@ -152,8 +156,7 @@ static int filter_pred_##type(struct filter_pred *pred, void *event, \
152} 156}
153 157
154#define DEFINE_EQUALITY_PRED(size) \ 158#define DEFINE_EQUALITY_PRED(size) \
155static int filter_pred_##size(struct filter_pred *pred, void *event, \ 159static int filter_pred_##size(struct filter_pred *pred, void *event) \
156 int val1, int val2) \
157{ \ 160{ \
158 u##size *addr = (u##size *)(event + pred->offset); \ 161 u##size *addr = (u##size *)(event + pred->offset); \
159 u##size val = (u##size)pred->val; \ 162 u##size val = (u##size)pred->val; \
@@ -178,23 +181,8 @@ DEFINE_EQUALITY_PRED(32);
178DEFINE_EQUALITY_PRED(16); 181DEFINE_EQUALITY_PRED(16);
179DEFINE_EQUALITY_PRED(8); 182DEFINE_EQUALITY_PRED(8);
180 183
181static int filter_pred_and(struct filter_pred *pred __attribute((unused)),
182 void *event __attribute((unused)),
183 int val1, int val2)
184{
185 return val1 && val2;
186}
187
188static int filter_pred_or(struct filter_pred *pred __attribute((unused)),
189 void *event __attribute((unused)),
190 int val1, int val2)
191{
192 return val1 || val2;
193}
194
195/* Filter predicate for fixed sized arrays of characters */ 184/* Filter predicate for fixed sized arrays of characters */
196static int filter_pred_string(struct filter_pred *pred, void *event, 185static int filter_pred_string(struct filter_pred *pred, void *event)
197 int val1, int val2)
198{ 186{
199 char *addr = (char *)(event + pred->offset); 187 char *addr = (char *)(event + pred->offset);
200 int cmp, match; 188 int cmp, match;
@@ -207,8 +195,7 @@ static int filter_pred_string(struct filter_pred *pred, void *event,
207} 195}
208 196
209/* Filter predicate for char * pointers */ 197/* Filter predicate for char * pointers */
210static int filter_pred_pchar(struct filter_pred *pred, void *event, 198static int filter_pred_pchar(struct filter_pred *pred, void *event)
211 int val1, int val2)
212{ 199{
213 char **addr = (char **)(event + pred->offset); 200 char **addr = (char **)(event + pred->offset);
214 int cmp, match; 201 int cmp, match;
@@ -231,8 +218,7 @@ static int filter_pred_pchar(struct filter_pred *pred, void *event,
231 * and add it to the address of the entry, and at last we have 218 * and add it to the address of the entry, and at last we have
232 * the address of the string. 219 * the address of the string.
233 */ 220 */
234static int filter_pred_strloc(struct filter_pred *pred, void *event, 221static int filter_pred_strloc(struct filter_pred *pred, void *event)
235 int val1, int val2)
236{ 222{
237 u32 str_item = *(u32 *)(event + pred->offset); 223 u32 str_item = *(u32 *)(event + pred->offset);
238 int str_loc = str_item & 0xffff; 224 int str_loc = str_item & 0xffff;
@@ -247,8 +233,7 @@ static int filter_pred_strloc(struct filter_pred *pred, void *event,
247 return match; 233 return match;
248} 234}
249 235
250static int filter_pred_none(struct filter_pred *pred, void *event, 236static int filter_pred_none(struct filter_pred *pred, void *event)
251 int val1, int val2)
252{ 237{
253 return 0; 238 return 0;
254} 239}
@@ -377,32 +362,147 @@ static void filter_build_regex(struct filter_pred *pred)
377 pred->not ^= not; 362 pred->not ^= not;
378} 363}
379 364
365enum move_type {
366 MOVE_DOWN,
367 MOVE_UP_FROM_LEFT,
368 MOVE_UP_FROM_RIGHT
369};
370
371static struct filter_pred *
372get_pred_parent(struct filter_pred *pred, struct filter_pred *preds,
373 int index, enum move_type *move)
374{
375 if (pred->parent & FILTER_PRED_IS_RIGHT)
376 *move = MOVE_UP_FROM_RIGHT;
377 else
378 *move = MOVE_UP_FROM_LEFT;
379 pred = &preds[pred->parent & ~FILTER_PRED_IS_RIGHT];
380
381 return pred;
382}
383
384/*
385 * A series of AND or ORs where found together. Instead of
386 * climbing up and down the tree branches, an array of the
387 * ops were made in order of checks. We can just move across
388 * the array and short circuit if needed.
389 */
390static int process_ops(struct filter_pred *preds,
391 struct filter_pred *op, void *rec)
392{
393 struct filter_pred *pred;
394 int type;
395 int match;
396 int i;
397
398 /*
399 * Micro-optimization: We set type to true if op
400 * is an OR and false otherwise (AND). Then we
401 * just need to test if the match is equal to
402 * the type, and if it is, we can short circuit the
403 * rest of the checks:
404 *
405 * if ((match && op->op == OP_OR) ||
406 * (!match && op->op == OP_AND))
407 * return match;
408 */
409 type = op->op == OP_OR;
410
411 for (i = 0; i < op->val; i++) {
412 pred = &preds[op->ops[i]];
413 match = pred->fn(pred, rec);
414 if (!!match == type)
415 return match;
416 }
417 return match;
418}
419
380/* return 1 if event matches, 0 otherwise (discard) */ 420/* return 1 if event matches, 0 otherwise (discard) */
381int filter_match_preds(struct event_filter *filter, void *rec) 421int filter_match_preds(struct event_filter *filter, void *rec)
382{ 422{
383 int match, top = 0, val1 = 0, val2 = 0; 423 int match = -1;
384 int stack[MAX_FILTER_PRED]; 424 enum move_type move = MOVE_DOWN;
425 struct filter_pred *preds;
385 struct filter_pred *pred; 426 struct filter_pred *pred;
386 int i; 427 struct filter_pred *root;
428 int n_preds;
429 int done = 0;
430
431 /* no filter is considered a match */
432 if (!filter)
433 return 1;
434
435 n_preds = filter->n_preds;
436
437 if (!n_preds)
438 return 1;
439
440 /*
441 * n_preds, root and filter->preds are protect with preemption disabled.
442 */
443 preds = rcu_dereference_sched(filter->preds);
444 root = rcu_dereference_sched(filter->root);
445 if (!root)
446 return 1;
447
448 pred = root;
387 449
388 for (i = 0; i < filter->n_preds; i++) { 450 /* match is currently meaningless */
389 pred = filter->preds[i]; 451 match = -1;
390 if (!pred->pop_n) { 452
391 match = pred->fn(pred, rec, val1, val2); 453 do {
392 stack[top++] = match; 454 switch (move) {
455 case MOVE_DOWN:
456 /* only AND and OR have children */
457 if (pred->left != FILTER_PRED_INVALID) {
458 /* If ops is set, then it was folded. */
459 if (!pred->ops) {
460 /* keep going to down the left side */
461 pred = &preds[pred->left];
462 continue;
463 }
464 /* We can treat folded ops as a leaf node */
465 match = process_ops(preds, pred, rec);
466 } else
467 match = pred->fn(pred, rec);
468 /* If this pred is the only pred */
469 if (pred == root)
470 break;
471 pred = get_pred_parent(pred, preds,
472 pred->parent, &move);
473 continue;
474 case MOVE_UP_FROM_LEFT:
475 /*
476 * Check for short circuits.
477 *
478 * Optimization: !!match == (pred->op == OP_OR)
479 * is the same as:
480 * if ((match && pred->op == OP_OR) ||
481 * (!match && pred->op == OP_AND))
482 */
483 if (!!match == (pred->op == OP_OR)) {
484 if (pred == root)
485 break;
486 pred = get_pred_parent(pred, preds,
487 pred->parent, &move);
488 continue;
489 }
490 /* now go down the right side of the tree. */
491 pred = &preds[pred->right];
492 move = MOVE_DOWN;
493 continue;
494 case MOVE_UP_FROM_RIGHT:
495 /* We finished this equation. */
496 if (pred == root)
497 break;
498 pred = get_pred_parent(pred, preds,
499 pred->parent, &move);
393 continue; 500 continue;
394 } 501 }
395 if (pred->pop_n > top) { 502 done = 1;
396 WARN_ON_ONCE(1); 503 } while (!done);
397 return 0;
398 }
399 val1 = stack[--top];
400 val2 = stack[--top];
401 match = pred->fn(pred, rec, val1, val2);
402 stack[top++] = match;
403 }
404 504
405 return stack[--top]; 505 return match;
406} 506}
407EXPORT_SYMBOL_GPL(filter_match_preds); 507EXPORT_SYMBOL_GPL(filter_match_preds);
408 508
@@ -414,6 +514,9 @@ static void parse_error(struct filter_parse_state *ps, int err, int pos)
414 514
415static void remove_filter_string(struct event_filter *filter) 515static void remove_filter_string(struct event_filter *filter)
416{ 516{
517 if (!filter)
518 return;
519
417 kfree(filter->filter_string); 520 kfree(filter->filter_string);
418 filter->filter_string = NULL; 521 filter->filter_string = NULL;
419} 522}
@@ -473,9 +576,10 @@ static void append_filter_err(struct filter_parse_state *ps,
473 576
474void print_event_filter(struct ftrace_event_call *call, struct trace_seq *s) 577void print_event_filter(struct ftrace_event_call *call, struct trace_seq *s)
475{ 578{
476 struct event_filter *filter = call->filter; 579 struct event_filter *filter;
477 580
478 mutex_lock(&event_mutex); 581 mutex_lock(&event_mutex);
582 filter = call->filter;
479 if (filter && filter->filter_string) 583 if (filter && filter->filter_string)
480 trace_seq_printf(s, "%s\n", filter->filter_string); 584 trace_seq_printf(s, "%s\n", filter->filter_string);
481 else 585 else
@@ -486,9 +590,10 @@ void print_event_filter(struct ftrace_event_call *call, struct trace_seq *s)
486void print_subsystem_event_filter(struct event_subsystem *system, 590void print_subsystem_event_filter(struct event_subsystem *system,
487 struct trace_seq *s) 591 struct trace_seq *s)
488{ 592{
489 struct event_filter *filter = system->filter; 593 struct event_filter *filter;
490 594
491 mutex_lock(&event_mutex); 595 mutex_lock(&event_mutex);
596 filter = system->filter;
492 if (filter && filter->filter_string) 597 if (filter && filter->filter_string)
493 trace_seq_printf(s, "%s\n", filter->filter_string); 598 trace_seq_printf(s, "%s\n", filter->filter_string);
494 else 599 else
@@ -539,10 +644,58 @@ static void filter_clear_pred(struct filter_pred *pred)
539 pred->regex.len = 0; 644 pred->regex.len = 0;
540} 645}
541 646
542static int filter_set_pred(struct filter_pred *dest, 647static int __alloc_pred_stack(struct pred_stack *stack, int n_preds)
648{
649 stack->preds = kzalloc(sizeof(*stack->preds)*(n_preds + 1), GFP_KERNEL);
650 if (!stack->preds)
651 return -ENOMEM;
652 stack->index = n_preds;
653 return 0;
654}
655
656static void __free_pred_stack(struct pred_stack *stack)
657{
658 kfree(stack->preds);
659 stack->index = 0;
660}
661
662static int __push_pred_stack(struct pred_stack *stack,
663 struct filter_pred *pred)
664{
665 int index = stack->index;
666
667 if (WARN_ON(index == 0))
668 return -ENOSPC;
669
670 stack->preds[--index] = pred;
671 stack->index = index;
672 return 0;
673}
674
675static struct filter_pred *
676__pop_pred_stack(struct pred_stack *stack)
677{
678 struct filter_pred *pred;
679 int index = stack->index;
680
681 pred = stack->preds[index++];
682 if (!pred)
683 return NULL;
684
685 stack->index = index;
686 return pred;
687}
688
689static int filter_set_pred(struct event_filter *filter,
690 int idx,
691 struct pred_stack *stack,
543 struct filter_pred *src, 692 struct filter_pred *src,
544 filter_pred_fn_t fn) 693 filter_pred_fn_t fn)
545{ 694{
695 struct filter_pred *dest = &filter->preds[idx];
696 struct filter_pred *left;
697 struct filter_pred *right;
698
546 *dest = *src; 699 *dest = *src;
547 if (src->field_name) { 700 if (src->field_name) {
548 dest->field_name = kstrdup(src->field_name, GFP_KERNEL); 701 dest->field_name = kstrdup(src->field_name, GFP_KERNEL);
@@ -550,116 +703,140 @@ static int filter_set_pred(struct filter_pred *dest,
550 return -ENOMEM; 703 return -ENOMEM;
551 } 704 }
552 dest->fn = fn; 705 dest->fn = fn;
706 dest->index = idx;
553 707
554 return 0; 708 if (dest->op == OP_OR || dest->op == OP_AND) {
709 right = __pop_pred_stack(stack);
710 left = __pop_pred_stack(stack);
711 if (!left || !right)
712 return -EINVAL;
713 /*
714 * If both children can be folded
715 * and they are the same op as this op or a leaf,
716 * then this op can be folded.
717 */
718 if (left->index & FILTER_PRED_FOLD &&
719 (left->op == dest->op ||
720 left->left == FILTER_PRED_INVALID) &&
721 right->index & FILTER_PRED_FOLD &&
722 (right->op == dest->op ||
723 right->left == FILTER_PRED_INVALID))
724 dest->index |= FILTER_PRED_FOLD;
725
726 dest->left = left->index & ~FILTER_PRED_FOLD;
727 dest->right = right->index & ~FILTER_PRED_FOLD;
728 left->parent = dest->index & ~FILTER_PRED_FOLD;
729 right->parent = dest->index | FILTER_PRED_IS_RIGHT;
730 } else {
731 /*
732 * Make dest->left invalid to be used as a quick
733 * way to know this is a leaf node.
734 */
735 dest->left = FILTER_PRED_INVALID;
736
737 /* All leafs allow folding the parent ops. */
738 dest->index |= FILTER_PRED_FOLD;
739 }
740
741 return __push_pred_stack(stack, dest);
555} 742}
556 743
557static void filter_disable_preds(struct ftrace_event_call *call) 744static void __free_preds(struct event_filter *filter)
558{ 745{
559 struct event_filter *filter = call->filter;
560 int i; 746 int i;
561 747
562 call->flags &= ~TRACE_EVENT_FL_FILTERED; 748 if (filter->preds) {
749 for (i = 0; i < filter->a_preds; i++)
750 kfree(filter->preds[i].field_name);
751 kfree(filter->preds);
752 filter->preds = NULL;
753 }
754 filter->a_preds = 0;
563 filter->n_preds = 0; 755 filter->n_preds = 0;
564
565 for (i = 0; i < MAX_FILTER_PRED; i++)
566 filter->preds[i]->fn = filter_pred_none;
567} 756}
568 757
569static void __free_preds(struct event_filter *filter) 758static void filter_disable(struct ftrace_event_call *call)
570{ 759{
571 int i; 760 call->flags &= ~TRACE_EVENT_FL_FILTERED;
761}
572 762
763static void __free_filter(struct event_filter *filter)
764{
573 if (!filter) 765 if (!filter)
574 return; 766 return;
575 767
576 for (i = 0; i < MAX_FILTER_PRED; i++) { 768 __free_preds(filter);
577 if (filter->preds[i])
578 filter_free_pred(filter->preds[i]);
579 }
580 kfree(filter->preds);
581 kfree(filter->filter_string); 769 kfree(filter->filter_string);
582 kfree(filter); 770 kfree(filter);
583} 771}
584 772
773/*
774 * Called when destroying the ftrace_event_call.
775 * The call is being freed, so we do not need to worry about
776 * the call being currently used. This is for module code removing
777 * the tracepoints from within it.
778 */
585void destroy_preds(struct ftrace_event_call *call) 779void destroy_preds(struct ftrace_event_call *call)
586{ 780{
587 __free_preds(call->filter); 781 __free_filter(call->filter);
588 call->filter = NULL; 782 call->filter = NULL;
589 call->flags &= ~TRACE_EVENT_FL_FILTERED;
590} 783}
591 784
592static struct event_filter *__alloc_preds(void) 785static struct event_filter *__alloc_filter(void)
593{ 786{
594 struct event_filter *filter; 787 struct event_filter *filter;
788
789 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
790 return filter;
791}
792
793static int __alloc_preds(struct event_filter *filter, int n_preds)
794{
595 struct filter_pred *pred; 795 struct filter_pred *pred;
596 int i; 796 int i;
597 797
598 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 798 if (filter->preds)
599 if (!filter) 799 __free_preds(filter);
600 return ERR_PTR(-ENOMEM);
601 800
602 filter->n_preds = 0; 801 filter->preds =
802 kzalloc(sizeof(*filter->preds) * n_preds, GFP_KERNEL);
603 803
604 filter->preds = kzalloc(MAX_FILTER_PRED * sizeof(pred), GFP_KERNEL);
605 if (!filter->preds) 804 if (!filter->preds)
606 goto oom; 805 return -ENOMEM;
607 806
608 for (i = 0; i < MAX_FILTER_PRED; i++) { 807 filter->a_preds = n_preds;
609 pred = kzalloc(sizeof(*pred), GFP_KERNEL); 808 filter->n_preds = 0;
610 if (!pred) 809
611 goto oom; 810 for (i = 0; i < n_preds; i++) {
811 pred = &filter->preds[i];
612 pred->fn = filter_pred_none; 812 pred->fn = filter_pred_none;
613 filter->preds[i] = pred;
614 } 813 }
615 814
616 return filter;
617
618oom:
619 __free_preds(filter);
620 return ERR_PTR(-ENOMEM);
621}
622
623static int init_preds(struct ftrace_event_call *call)
624{
625 if (call->filter)
626 return 0;
627
628 call->flags &= ~TRACE_EVENT_FL_FILTERED;
629 call->filter = __alloc_preds();
630 if (IS_ERR(call->filter))
631 return PTR_ERR(call->filter);
632
633 return 0; 815 return 0;
634} 816}
635 817
636static int init_subsystem_preds(struct event_subsystem *system) 818static void filter_free_subsystem_preds(struct event_subsystem *system)
637{ 819{
638 struct ftrace_event_call *call; 820 struct ftrace_event_call *call;
639 int err;
640 821
641 list_for_each_entry(call, &ftrace_events, list) { 822 list_for_each_entry(call, &ftrace_events, list) {
642 if (strcmp(call->class->system, system->name) != 0) 823 if (strcmp(call->class->system, system->name) != 0)
643 continue; 824 continue;
644 825
645 err = init_preds(call); 826 filter_disable(call);
646 if (err) 827 remove_filter_string(call->filter);
647 return err;
648 } 828 }
649
650 return 0;
651} 829}
652 830
653static void filter_free_subsystem_preds(struct event_subsystem *system) 831static void filter_free_subsystem_filters(struct event_subsystem *system)
654{ 832{
655 struct ftrace_event_call *call; 833 struct ftrace_event_call *call;
656 834
657 list_for_each_entry(call, &ftrace_events, list) { 835 list_for_each_entry(call, &ftrace_events, list) {
658 if (strcmp(call->class->system, system->name) != 0) 836 if (strcmp(call->class->system, system->name) != 0)
659 continue; 837 continue;
660 838 __free_filter(call->filter);
661 filter_disable_preds(call); 839 call->filter = NULL;
662 remove_filter_string(call->filter);
663 } 840 }
664} 841}
665 842
@@ -667,18 +844,19 @@ static int filter_add_pred_fn(struct filter_parse_state *ps,
667 struct ftrace_event_call *call, 844 struct ftrace_event_call *call,
668 struct event_filter *filter, 845 struct event_filter *filter,
669 struct filter_pred *pred, 846 struct filter_pred *pred,
847 struct pred_stack *stack,
670 filter_pred_fn_t fn) 848 filter_pred_fn_t fn)
671{ 849{
672 int idx, err; 850 int idx, err;
673 851
674 if (filter->n_preds == MAX_FILTER_PRED) { 852 if (WARN_ON(filter->n_preds == filter->a_preds)) {
675 parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0); 853 parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0);
676 return -ENOSPC; 854 return -ENOSPC;
677 } 855 }
678 856
679 idx = filter->n_preds; 857 idx = filter->n_preds;
680 filter_clear_pred(filter->preds[idx]); 858 filter_clear_pred(&filter->preds[idx]);
681 err = filter_set_pred(filter->preds[idx], pred, fn); 859 err = filter_set_pred(filter, idx, stack, pred, fn);
682 if (err) 860 if (err)
683 return err; 861 return err;
684 862
@@ -763,6 +941,7 @@ static int filter_add_pred(struct filter_parse_state *ps,
763 struct ftrace_event_call *call, 941 struct ftrace_event_call *call,
764 struct event_filter *filter, 942 struct event_filter *filter,
765 struct filter_pred *pred, 943 struct filter_pred *pred,
944 struct pred_stack *stack,
766 bool dry_run) 945 bool dry_run)
767{ 946{
768 struct ftrace_event_field *field; 947 struct ftrace_event_field *field;
@@ -770,17 +949,12 @@ static int filter_add_pred(struct filter_parse_state *ps,
770 unsigned long long val; 949 unsigned long long val;
771 int ret; 950 int ret;
772 951
773 pred->fn = filter_pred_none; 952 fn = pred->fn = filter_pred_none;
774 953
775 if (pred->op == OP_AND) { 954 if (pred->op == OP_AND)
776 pred->pop_n = 2;
777 fn = filter_pred_and;
778 goto add_pred_fn; 955 goto add_pred_fn;
779 } else if (pred->op == OP_OR) { 956 else if (pred->op == OP_OR)
780 pred->pop_n = 2;
781 fn = filter_pred_or;
782 goto add_pred_fn; 957 goto add_pred_fn;
783 }
784 958
785 field = find_event_field(call, pred->field_name); 959 field = find_event_field(call, pred->field_name);
786 if (!field) { 960 if (!field) {
@@ -829,7 +1003,7 @@ static int filter_add_pred(struct filter_parse_state *ps,
829 1003
830add_pred_fn: 1004add_pred_fn:
831 if (!dry_run) 1005 if (!dry_run)
832 return filter_add_pred_fn(ps, call, filter, pred, fn); 1006 return filter_add_pred_fn(ps, call, filter, pred, stack, fn);
833 return 0; 1007 return 0;
834} 1008}
835 1009
@@ -1187,6 +1361,234 @@ static int check_preds(struct filter_parse_state *ps)
1187 return 0; 1361 return 0;
1188} 1362}
1189 1363
1364static int count_preds(struct filter_parse_state *ps)
1365{
1366 struct postfix_elt *elt;
1367 int n_preds = 0;
1368
1369 list_for_each_entry(elt, &ps->postfix, list) {
1370 if (elt->op == OP_NONE)
1371 continue;
1372 n_preds++;
1373 }
1374
1375 return n_preds;
1376}
1377
1378/*
1379 * The tree is walked at filtering of an event. If the tree is not correctly
1380 * built, it may cause an infinite loop. Check here that the tree does
1381 * indeed terminate.
1382 */
1383static int check_pred_tree(struct event_filter *filter,
1384 struct filter_pred *root)
1385{
1386 struct filter_pred *preds;
1387 struct filter_pred *pred;
1388 enum move_type move = MOVE_DOWN;
1389 int count = 0;
1390 int done = 0;
1391 int max;
1392
1393 /*
1394 * The max that we can hit a node is three times.
1395 * Once going down, once coming up from left, and
1396 * once coming up from right. This is more than enough
1397 * since leafs are only hit a single time.
1398 */
1399 max = 3 * filter->n_preds;
1400
1401 preds = filter->preds;
1402 if (!preds)
1403 return -EINVAL;
1404 pred = root;
1405
1406 do {
1407 if (WARN_ON(count++ > max))
1408 return -EINVAL;
1409
1410 switch (move) {
1411 case MOVE_DOWN:
1412 if (pred->left != FILTER_PRED_INVALID) {
1413 pred = &preds[pred->left];
1414 continue;
1415 }
1416 /* A leaf at the root is just a leaf in the tree */
1417 if (pred == root)
1418 break;
1419 pred = get_pred_parent(pred, preds,
1420 pred->parent, &move);
1421 continue;
1422 case MOVE_UP_FROM_LEFT:
1423 pred = &preds[pred->right];
1424 move = MOVE_DOWN;
1425 continue;
1426 case MOVE_UP_FROM_RIGHT:
1427 if (pred == root)
1428 break;
1429 pred = get_pred_parent(pred, preds,
1430 pred->parent, &move);
1431 continue;
1432 }
1433 done = 1;
1434 } while (!done);
1435
1436 /* We are fine. */
1437 return 0;
1438}
1439
1440static int count_leafs(struct filter_pred *preds, struct filter_pred *root)
1441{
1442 struct filter_pred *pred;
1443 enum move_type move = MOVE_DOWN;
1444 int count = 0;
1445 int done = 0;
1446
1447 pred = root;
1448
1449 do {
1450 switch (move) {
1451 case MOVE_DOWN:
1452 if (pred->left != FILTER_PRED_INVALID) {
1453 pred = &preds[pred->left];
1454 continue;
1455 }
1456 /* A leaf at the root is just a leaf in the tree */
1457 if (pred == root)
1458 return 1;
1459 count++;
1460 pred = get_pred_parent(pred, preds,
1461 pred->parent, &move);
1462 continue;
1463 case MOVE_UP_FROM_LEFT:
1464 pred = &preds[pred->right];
1465 move = MOVE_DOWN;
1466 continue;
1467 case MOVE_UP_FROM_RIGHT:
1468 if (pred == root)
1469 break;
1470 pred = get_pred_parent(pred, preds,
1471 pred->parent, &move);
1472 continue;
1473 }
1474 done = 1;
1475 } while (!done);
1476
1477 return count;
1478}
1479
1480static int fold_pred(struct filter_pred *preds, struct filter_pred *root)
1481{
1482 struct filter_pred *pred;
1483 enum move_type move = MOVE_DOWN;
1484 int count = 0;
1485 int children;
1486 int done = 0;
1487
1488 /* No need to keep the fold flag */
1489 root->index &= ~FILTER_PRED_FOLD;
1490
1491 /* If the root is a leaf then do nothing */
1492 if (root->left == FILTER_PRED_INVALID)
1493 return 0;
1494
1495 /* count the children */
1496 children = count_leafs(preds, &preds[root->left]);
1497 children += count_leafs(preds, &preds[root->right]);
1498
1499 root->ops = kzalloc(sizeof(*root->ops) * children, GFP_KERNEL);
1500 if (!root->ops)
1501 return -ENOMEM;
1502
1503 root->val = children;
1504
1505 pred = root;
1506 do {
1507 switch (move) {
1508 case MOVE_DOWN:
1509 if (pred->left != FILTER_PRED_INVALID) {
1510 pred = &preds[pred->left];
1511 continue;
1512 }
1513 if (WARN_ON(count == children))
1514 return -EINVAL;
1515 pred->index &= ~FILTER_PRED_FOLD;
1516 root->ops[count++] = pred->index;
1517 pred = get_pred_parent(pred, preds,
1518 pred->parent, &move);
1519 continue;
1520 case MOVE_UP_FROM_LEFT:
1521 pred = &preds[pred->right];
1522 move = MOVE_DOWN;
1523 continue;
1524 case MOVE_UP_FROM_RIGHT:
1525 if (pred == root)
1526 break;
1527 pred = get_pred_parent(pred, preds,
1528 pred->parent, &move);
1529 continue;
1530 }
1531 done = 1;
1532 } while (!done);
1533
1534 return 0;
1535}
1536
1537/*
1538 * To optimize the processing of the ops, if we have several "ors" or
1539 * "ands" together, we can put them in an array and process them all
1540 * together speeding up the filter logic.
1541 */
1542static int fold_pred_tree(struct event_filter *filter,
1543 struct filter_pred *root)
1544{
1545 struct filter_pred *preds;
1546 struct filter_pred *pred;
1547 enum move_type move = MOVE_DOWN;
1548 int done = 0;
1549 int err;
1550
1551 preds = filter->preds;
1552 if (!preds)
1553 return -EINVAL;
1554 pred = root;
1555
1556 do {
1557 switch (move) {
1558 case MOVE_DOWN:
1559 if (pred->index & FILTER_PRED_FOLD) {
1560 err = fold_pred(preds, pred);
1561 if (err)
1562 return err;
1563 /* Folded nodes are like leafs */
1564 } else if (pred->left != FILTER_PRED_INVALID) {
1565 pred = &preds[pred->left];
1566 continue;
1567 }
1568
1569 /* A leaf at the root is just a leaf in the tree */
1570 if (pred == root)
1571 break;
1572 pred = get_pred_parent(pred, preds,
1573 pred->parent, &move);
1574 continue;
1575 case MOVE_UP_FROM_LEFT:
1576 pred = &preds[pred->right];
1577 move = MOVE_DOWN;
1578 continue;
1579 case MOVE_UP_FROM_RIGHT:
1580 if (pred == root)
1581 break;
1582 pred = get_pred_parent(pred, preds,
1583 pred->parent, &move);
1584 continue;
1585 }
1586 done = 1;
1587 } while (!done);
1588
1589 return 0;
1590}
1591
1190static int replace_preds(struct ftrace_event_call *call, 1592static int replace_preds(struct ftrace_event_call *call,
1191 struct event_filter *filter, 1593 struct event_filter *filter,
1192 struct filter_parse_state *ps, 1594 struct filter_parse_state *ps,
@@ -1195,14 +1597,32 @@ static int replace_preds(struct ftrace_event_call *call,
1195{ 1597{
1196 char *operand1 = NULL, *operand2 = NULL; 1598 char *operand1 = NULL, *operand2 = NULL;
1197 struct filter_pred *pred; 1599 struct filter_pred *pred;
1600 struct filter_pred *root;
1198 struct postfix_elt *elt; 1601 struct postfix_elt *elt;
1602 struct pred_stack stack = { }; /* init to NULL */
1199 int err; 1603 int err;
1200 int n_preds = 0; 1604 int n_preds = 0;
1201 1605
1606 n_preds = count_preds(ps);
1607 if (n_preds >= MAX_FILTER_PRED) {
1608 parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0);
1609 return -ENOSPC;
1610 }
1611
1202 err = check_preds(ps); 1612 err = check_preds(ps);
1203 if (err) 1613 if (err)
1204 return err; 1614 return err;
1205 1615
1616 if (!dry_run) {
1617 err = __alloc_pred_stack(&stack, n_preds);
1618 if (err)
1619 return err;
1620 err = __alloc_preds(filter, n_preds);
1621 if (err)
1622 goto fail;
1623 }
1624
1625 n_preds = 0;
1206 list_for_each_entry(elt, &ps->postfix, list) { 1626 list_for_each_entry(elt, &ps->postfix, list) {
1207 if (elt->op == OP_NONE) { 1627 if (elt->op == OP_NONE) {
1208 if (!operand1) 1628 if (!operand1)
@@ -1211,14 +1631,16 @@ static int replace_preds(struct ftrace_event_call *call,
1211 operand2 = elt->operand; 1631 operand2 = elt->operand;
1212 else { 1632 else {
1213 parse_error(ps, FILT_ERR_TOO_MANY_OPERANDS, 0); 1633 parse_error(ps, FILT_ERR_TOO_MANY_OPERANDS, 0);
1214 return -EINVAL; 1634 err = -EINVAL;
1635 goto fail;
1215 } 1636 }
1216 continue; 1637 continue;
1217 } 1638 }
1218 1639
1219 if (n_preds++ == MAX_FILTER_PRED) { 1640 if (WARN_ON(n_preds++ == MAX_FILTER_PRED)) {
1220 parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0); 1641 parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0);
1221 return -ENOSPC; 1642 err = -ENOSPC;
1643 goto fail;
1222 } 1644 }
1223 1645
1224 if (elt->op == OP_AND || elt->op == OP_OR) { 1646 if (elt->op == OP_AND || elt->op == OP_OR) {
@@ -1228,76 +1650,181 @@ static int replace_preds(struct ftrace_event_call *call,
1228 1650
1229 if (!operand1 || !operand2) { 1651 if (!operand1 || !operand2) {
1230 parse_error(ps, FILT_ERR_MISSING_FIELD, 0); 1652 parse_error(ps, FILT_ERR_MISSING_FIELD, 0);
1231 return -EINVAL; 1653 err = -EINVAL;
1654 goto fail;
1232 } 1655 }
1233 1656
1234 pred = create_pred(elt->op, operand1, operand2); 1657 pred = create_pred(elt->op, operand1, operand2);
1235add_pred: 1658add_pred:
1236 if (!pred) 1659 if (!pred) {
1237 return -ENOMEM; 1660 err = -ENOMEM;
1238 err = filter_add_pred(ps, call, filter, pred, dry_run); 1661 goto fail;
1662 }
1663 err = filter_add_pred(ps, call, filter, pred, &stack, dry_run);
1239 filter_free_pred(pred); 1664 filter_free_pred(pred);
1240 if (err) 1665 if (err)
1241 return err; 1666 goto fail;
1242 1667
1243 operand1 = operand2 = NULL; 1668 operand1 = operand2 = NULL;
1244 } 1669 }
1245 1670
1246 return 0; 1671 if (!dry_run) {
1672 /* We should have one item left on the stack */
1673 pred = __pop_pred_stack(&stack);
1674 if (!pred)
1675 return -EINVAL;
1676 /* This item is where we start from in matching */
1677 root = pred;
1678 /* Make sure the stack is empty */
1679 pred = __pop_pred_stack(&stack);
1680 if (WARN_ON(pred)) {
1681 err = -EINVAL;
1682 filter->root = NULL;
1683 goto fail;
1684 }
1685 err = check_pred_tree(filter, root);
1686 if (err)
1687 goto fail;
1688
1689 /* Optimize the tree */
1690 err = fold_pred_tree(filter, root);
1691 if (err)
1692 goto fail;
1693
1694 /* We don't set root until we know it works */
1695 barrier();
1696 filter->root = root;
1697 }
1698
1699 err = 0;
1700fail:
1701 __free_pred_stack(&stack);
1702 return err;
1247} 1703}
1248 1704
1705struct filter_list {
1706 struct list_head list;
1707 struct event_filter *filter;
1708};
1709
1249static int replace_system_preds(struct event_subsystem *system, 1710static int replace_system_preds(struct event_subsystem *system,
1250 struct filter_parse_state *ps, 1711 struct filter_parse_state *ps,
1251 char *filter_string) 1712 char *filter_string)
1252{ 1713{
1253 struct ftrace_event_call *call; 1714 struct ftrace_event_call *call;
1715 struct filter_list *filter_item;
1716 struct filter_list *tmp;
1717 LIST_HEAD(filter_list);
1254 bool fail = true; 1718 bool fail = true;
1255 int err; 1719 int err;
1256 1720
1257 list_for_each_entry(call, &ftrace_events, list) { 1721 list_for_each_entry(call, &ftrace_events, list) {
1258 struct event_filter *filter = call->filter;
1259 1722
1260 if (strcmp(call->class->system, system->name) != 0) 1723 if (strcmp(call->class->system, system->name) != 0)
1261 continue; 1724 continue;
1262 1725
1263 /* try to see if the filter can be applied */ 1726 /*
1264 err = replace_preds(call, filter, ps, filter_string, true); 1727 * Try to see if the filter can be applied
1728 * (filter arg is ignored on dry_run)
1729 */
1730 err = replace_preds(call, NULL, ps, filter_string, true);
1265 if (err) 1731 if (err)
1732 goto fail;
1733 }
1734
1735 list_for_each_entry(call, &ftrace_events, list) {
1736 struct event_filter *filter;
1737
1738 if (strcmp(call->class->system, system->name) != 0)
1266 continue; 1739 continue;
1267 1740
1268 /* really apply the filter */ 1741 filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1269 filter_disable_preds(call); 1742 if (!filter_item)
1270 err = replace_preds(call, filter, ps, filter_string, false); 1743 goto fail_mem;
1744
1745 list_add_tail(&filter_item->list, &filter_list);
1746
1747 filter_item->filter = __alloc_filter();
1748 if (!filter_item->filter)
1749 goto fail_mem;
1750 filter = filter_item->filter;
1751
1752 /* Can only fail on no memory */
1753 err = replace_filter_string(filter, filter_string);
1271 if (err) 1754 if (err)
1272 filter_disable_preds(call); 1755 goto fail_mem;
1273 else { 1756
1757 err = replace_preds(call, filter, ps, filter_string, false);
1758 if (err) {
1759 filter_disable(call);
1760 parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1761 append_filter_err(ps, filter);
1762 } else
1274 call->flags |= TRACE_EVENT_FL_FILTERED; 1763 call->flags |= TRACE_EVENT_FL_FILTERED;
1275 replace_filter_string(filter, filter_string); 1764 /*
1276 } 1765 * Regardless of if this returned an error, we still
1766 * replace the filter for the call.
1767 */
1768 filter = call->filter;
1769 call->filter = filter_item->filter;
1770 filter_item->filter = filter;
1771
1277 fail = false; 1772 fail = false;
1278 } 1773 }
1279 1774
1280 if (fail) { 1775 if (fail)
1281 parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0); 1776 goto fail;
1282 return -EINVAL; 1777
1778 /*
1779 * The calls can still be using the old filters.
1780 * Do a synchronize_sched() to ensure all calls are
1781 * done with them before we free them.
1782 */
1783 synchronize_sched();
1784 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1785 __free_filter(filter_item->filter);
1786 list_del(&filter_item->list);
1787 kfree(filter_item);
1283 } 1788 }
1284 return 0; 1789 return 0;
1790 fail:
1791 /* No call succeeded */
1792 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1793 list_del(&filter_item->list);
1794 kfree(filter_item);
1795 }
1796 parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1797 return -EINVAL;
1798 fail_mem:
1799 /* If any call succeeded, we still need to sync */
1800 if (!fail)
1801 synchronize_sched();
1802 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1803 __free_filter(filter_item->filter);
1804 list_del(&filter_item->list);
1805 kfree(filter_item);
1806 }
1807 return -ENOMEM;
1285} 1808}
1286 1809
1287int apply_event_filter(struct ftrace_event_call *call, char *filter_string) 1810int apply_event_filter(struct ftrace_event_call *call, char *filter_string)
1288{ 1811{
1289 int err;
1290 struct filter_parse_state *ps; 1812 struct filter_parse_state *ps;
1813 struct event_filter *filter;
1814 struct event_filter *tmp;
1815 int err = 0;
1291 1816
1292 mutex_lock(&event_mutex); 1817 mutex_lock(&event_mutex);
1293 1818
1294 err = init_preds(call);
1295 if (err)
1296 goto out_unlock;
1297
1298 if (!strcmp(strstrip(filter_string), "0")) { 1819 if (!strcmp(strstrip(filter_string), "0")) {
1299 filter_disable_preds(call); 1820 filter_disable(call);
1300 remove_filter_string(call->filter); 1821 filter = call->filter;
1822 if (!filter)
1823 goto out_unlock;
1824 call->filter = NULL;
1825 /* Make sure the filter is not being used */
1826 synchronize_sched();
1827 __free_filter(filter);
1301 goto out_unlock; 1828 goto out_unlock;
1302 } 1829 }
1303 1830
@@ -1306,22 +1833,41 @@ int apply_event_filter(struct ftrace_event_call *call, char *filter_string)
1306 if (!ps) 1833 if (!ps)
1307 goto out_unlock; 1834 goto out_unlock;
1308 1835
1309 filter_disable_preds(call); 1836 filter = __alloc_filter();
1310 replace_filter_string(call->filter, filter_string); 1837 if (!filter) {
1838 kfree(ps);
1839 goto out_unlock;
1840 }
1841
1842 replace_filter_string(filter, filter_string);
1311 1843
1312 parse_init(ps, filter_ops, filter_string); 1844 parse_init(ps, filter_ops, filter_string);
1313 err = filter_parse(ps); 1845 err = filter_parse(ps);
1314 if (err) { 1846 if (err) {
1315 append_filter_err(ps, call->filter); 1847 append_filter_err(ps, filter);
1316 goto out; 1848 goto out;
1317 } 1849 }
1318 1850
1319 err = replace_preds(call, call->filter, ps, filter_string, false); 1851 err = replace_preds(call, filter, ps, filter_string, false);
1320 if (err) 1852 if (err) {
1321 append_filter_err(ps, call->filter); 1853 filter_disable(call);
1322 else 1854 append_filter_err(ps, filter);
1855 } else
1323 call->flags |= TRACE_EVENT_FL_FILTERED; 1856 call->flags |= TRACE_EVENT_FL_FILTERED;
1324out: 1857out:
1858 /*
1859 * Always swap the call filter with the new filter
1860 * even if there was an error. If there was an error
1861 * in the filter, we disable the filter and show the error
1862 * string
1863 */
1864 tmp = call->filter;
1865 call->filter = filter;
1866 if (tmp) {
1867 /* Make sure the call is done with the filter */
1868 synchronize_sched();
1869 __free_filter(tmp);
1870 }
1325 filter_opstack_clear(ps); 1871 filter_opstack_clear(ps);
1326 postfix_clear(ps); 1872 postfix_clear(ps);
1327 kfree(ps); 1873 kfree(ps);
@@ -1334,18 +1880,21 @@ out_unlock:
1334int apply_subsystem_event_filter(struct event_subsystem *system, 1880int apply_subsystem_event_filter(struct event_subsystem *system,
1335 char *filter_string) 1881 char *filter_string)
1336{ 1882{
1337 int err;
1338 struct filter_parse_state *ps; 1883 struct filter_parse_state *ps;
1884 struct event_filter *filter;
1885 int err = 0;
1339 1886
1340 mutex_lock(&event_mutex); 1887 mutex_lock(&event_mutex);
1341 1888
1342 err = init_subsystem_preds(system);
1343 if (err)
1344 goto out_unlock;
1345
1346 if (!strcmp(strstrip(filter_string), "0")) { 1889 if (!strcmp(strstrip(filter_string), "0")) {
1347 filter_free_subsystem_preds(system); 1890 filter_free_subsystem_preds(system);
1348 remove_filter_string(system->filter); 1891 remove_filter_string(system->filter);
1892 filter = system->filter;
1893 system->filter = NULL;
1894 /* Ensure all filters are no longer used */
1895 synchronize_sched();
1896 filter_free_subsystem_filters(system);
1897 __free_filter(filter);
1349 goto out_unlock; 1898 goto out_unlock;
1350 } 1899 }
1351 1900
@@ -1354,7 +1903,17 @@ int apply_subsystem_event_filter(struct event_subsystem *system,
1354 if (!ps) 1903 if (!ps)
1355 goto out_unlock; 1904 goto out_unlock;
1356 1905
1357 replace_filter_string(system->filter, filter_string); 1906 filter = __alloc_filter();
1907 if (!filter)
1908 goto out;
1909
1910 replace_filter_string(filter, filter_string);
1911 /*
1912 * No event actually uses the system filter
1913 * we can free it without synchronize_sched().
1914 */
1915 __free_filter(system->filter);
1916 system->filter = filter;
1358 1917
1359 parse_init(ps, filter_ops, filter_string); 1918 parse_init(ps, filter_ops, filter_string);
1360 err = filter_parse(ps); 1919 err = filter_parse(ps);
@@ -1384,7 +1943,7 @@ void ftrace_profile_free_filter(struct perf_event *event)
1384 struct event_filter *filter = event->filter; 1943 struct event_filter *filter = event->filter;
1385 1944
1386 event->filter = NULL; 1945 event->filter = NULL;
1387 __free_preds(filter); 1946 __free_filter(filter);
1388} 1947}
1389 1948
1390int ftrace_profile_set_filter(struct perf_event *event, int event_id, 1949int ftrace_profile_set_filter(struct perf_event *event, int event_id,
@@ -1410,8 +1969,8 @@ int ftrace_profile_set_filter(struct perf_event *event, int event_id,
1410 if (event->filter) 1969 if (event->filter)
1411 goto out_unlock; 1970 goto out_unlock;
1412 1971
1413 filter = __alloc_preds(); 1972 filter = __alloc_filter();
1414 if (IS_ERR(filter)) { 1973 if (!filter) {
1415 err = PTR_ERR(filter); 1974 err = PTR_ERR(filter);
1416 goto out_unlock; 1975 goto out_unlock;
1417 } 1976 }
@@ -1419,7 +1978,7 @@ int ftrace_profile_set_filter(struct perf_event *event, int event_id,
1419 err = -ENOMEM; 1978 err = -ENOMEM;
1420 ps = kzalloc(sizeof(*ps), GFP_KERNEL); 1979 ps = kzalloc(sizeof(*ps), GFP_KERNEL);
1421 if (!ps) 1980 if (!ps)
1422 goto free_preds; 1981 goto free_filter;
1423 1982
1424 parse_init(ps, filter_ops, filter_str); 1983 parse_init(ps, filter_ops, filter_str);
1425 err = filter_parse(ps); 1984 err = filter_parse(ps);
@@ -1435,9 +1994,9 @@ free_ps:
1435 postfix_clear(ps); 1994 postfix_clear(ps);
1436 kfree(ps); 1995 kfree(ps);
1437 1996
1438free_preds: 1997free_filter:
1439 if (err) 1998 if (err)
1440 __free_preds(filter); 1999 __free_filter(filter);
1441 2000
1442out_unlock: 2001out_unlock:
1443 mutex_unlock(&event_mutex); 2002 mutex_unlock(&event_mutex);