aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--arch/arm/mach-imx/include/mach/dma-v1.h8
-rw-r--r--arch/arm/plat-mxc/include/mach/dma.h67
-rw-r--r--arch/arm/plat-mxc/include/mach/sdma.h17
-rw-r--r--arch/powerpc/include/asm/fsldma.h137
-rw-r--r--drivers/dma/Kconfig24
-rw-r--r--drivers/dma/Makefile3
-rw-r--r--drivers/dma/amba-pl08x.c2167
-rw-r--r--drivers/dma/dmaengine.c4
-rw-r--r--drivers/dma/fsldma.c328
-rw-r--r--drivers/dma/imx-dma.c422
-rw-r--r--drivers/dma/imx-sdma.c1392
-rw-r--r--drivers/dma/intel_mid_dma.c476
-rw-r--r--drivers/dma/intel_mid_dma_regs.h53
-rw-r--r--drivers/dma/mv_xor.c2
-rw-r--r--drivers/dma/shdma.c3
-rw-r--r--drivers/dma/ste_dma40.c17
-rw-r--r--include/linux/amba/pl08x.h222
-rw-r--r--include/linux/dmaengine.h54
-rw-r--r--include/linux/intel_mid_dma.h16
19 files changed, 4988 insertions, 424 deletions
diff --git a/arch/arm/mach-imx/include/mach/dma-v1.h b/arch/arm/mach-imx/include/mach/dma-v1.h
index 287431cc13e5..ac6fd713828a 100644
--- a/arch/arm/mach-imx/include/mach/dma-v1.h
+++ b/arch/arm/mach-imx/include/mach/dma-v1.h
@@ -27,6 +27,8 @@
27 27
28#define imx_has_dma_v1() (cpu_is_mx1() || cpu_is_mx21() || cpu_is_mx27()) 28#define imx_has_dma_v1() (cpu_is_mx1() || cpu_is_mx21() || cpu_is_mx27())
29 29
30#include <mach/dma.h>
31
30#define IMX_DMA_CHANNELS 16 32#define IMX_DMA_CHANNELS 16
31 33
32#define DMA_MODE_READ 0 34#define DMA_MODE_READ 0
@@ -96,12 +98,6 @@ int imx_dma_request(int channel, const char *name);
96 98
97void imx_dma_free(int channel); 99void imx_dma_free(int channel);
98 100
99enum imx_dma_prio {
100 DMA_PRIO_HIGH = 0,
101 DMA_PRIO_MEDIUM = 1,
102 DMA_PRIO_LOW = 2
103};
104
105int imx_dma_request_by_prio(const char *name, enum imx_dma_prio prio); 101int imx_dma_request_by_prio(const char *name, enum imx_dma_prio prio);
106 102
107#endif /* __MACH_DMA_V1_H__ */ 103#endif /* __MACH_DMA_V1_H__ */
diff --git a/arch/arm/plat-mxc/include/mach/dma.h b/arch/arm/plat-mxc/include/mach/dma.h
new file mode 100644
index 000000000000..ef7751546f5f
--- /dev/null
+++ b/arch/arm/plat-mxc/include/mach/dma.h
@@ -0,0 +1,67 @@
1/*
2 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9#ifndef __ASM_ARCH_MXC_DMA_H__
10#define __ASM_ARCH_MXC_DMA_H__
11
12#include <linux/scatterlist.h>
13#include <linux/device.h>
14#include <linux/dmaengine.h>
15
16/*
17 * This enumerates peripheral types. Used for SDMA.
18 */
19enum sdma_peripheral_type {
20 IMX_DMATYPE_SSI, /* MCU domain SSI */
21 IMX_DMATYPE_SSI_SP, /* Shared SSI */
22 IMX_DMATYPE_MMC, /* MMC */
23 IMX_DMATYPE_SDHC, /* SDHC */
24 IMX_DMATYPE_UART, /* MCU domain UART */
25 IMX_DMATYPE_UART_SP, /* Shared UART */
26 IMX_DMATYPE_FIRI, /* FIRI */
27 IMX_DMATYPE_CSPI, /* MCU domain CSPI */
28 IMX_DMATYPE_CSPI_SP, /* Shared CSPI */
29 IMX_DMATYPE_SIM, /* SIM */
30 IMX_DMATYPE_ATA, /* ATA */
31 IMX_DMATYPE_CCM, /* CCM */
32 IMX_DMATYPE_EXT, /* External peripheral */
33 IMX_DMATYPE_MSHC, /* Memory Stick Host Controller */
34 IMX_DMATYPE_MSHC_SP, /* Shared Memory Stick Host Controller */
35 IMX_DMATYPE_DSP, /* DSP */
36 IMX_DMATYPE_MEMORY, /* Memory */
37 IMX_DMATYPE_FIFO_MEMORY,/* FIFO type Memory */
38 IMX_DMATYPE_SPDIF, /* SPDIF */
39 IMX_DMATYPE_IPU_MEMORY, /* IPU Memory */
40 IMX_DMATYPE_ASRC, /* ASRC */
41 IMX_DMATYPE_ESAI, /* ESAI */
42};
43
44enum imx_dma_prio {
45 DMA_PRIO_HIGH = 0,
46 DMA_PRIO_MEDIUM = 1,
47 DMA_PRIO_LOW = 2
48};
49
50struct imx_dma_data {
51 int dma_request; /* DMA request line */
52 enum sdma_peripheral_type peripheral_type;
53 int priority;
54};
55
56static inline int imx_dma_is_ipu(struct dma_chan *chan)
57{
58 return !strcmp(dev_name(chan->device->dev), "ipu-core");
59}
60
61static inline int imx_dma_is_general_purpose(struct dma_chan *chan)
62{
63 return !strcmp(dev_name(chan->device->dev), "imx-sdma") ||
64 !strcmp(dev_name(chan->device->dev), "imx-dma");
65}
66
67#endif
diff --git a/arch/arm/plat-mxc/include/mach/sdma.h b/arch/arm/plat-mxc/include/mach/sdma.h
new file mode 100644
index 000000000000..9be112227ac4
--- /dev/null
+++ b/arch/arm/plat-mxc/include/mach/sdma.h
@@ -0,0 +1,17 @@
1#ifndef __MACH_MXC_SDMA_H__
2#define __MACH_MXC_SDMA_H__
3
4/**
5 * struct sdma_platform_data - platform specific data for SDMA engine
6 *
7 * @sdma_version The version of this SDMA engine
8 * @cpu_name used to generate the firmware name
9 * @to_version CPU Tape out version
10 */
11struct sdma_platform_data {
12 int sdma_version;
13 char *cpu_name;
14 int to_version;
15};
16
17#endif /* __MACH_MXC_SDMA_H__ */
diff --git a/arch/powerpc/include/asm/fsldma.h b/arch/powerpc/include/asm/fsldma.h
deleted file mode 100644
index debc5ed96d6e..000000000000
--- a/arch/powerpc/include/asm/fsldma.h
+++ /dev/null
@@ -1,137 +0,0 @@
1/*
2 * Freescale MPC83XX / MPC85XX DMA Controller
3 *
4 * Copyright (c) 2009 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
9 */
10
11#ifndef __ARCH_POWERPC_ASM_FSLDMA_H__
12#define __ARCH_POWERPC_ASM_FSLDMA_H__
13
14#include <linux/slab.h>
15#include <linux/dmaengine.h>
16
17/*
18 * Definitions for the Freescale DMA controller's DMA_SLAVE implemention
19 *
20 * The Freescale DMA_SLAVE implementation was designed to handle many-to-many
21 * transfers. An example usage would be an accelerated copy between two
22 * scatterlists. Another example use would be an accelerated copy from
23 * multiple non-contiguous device buffers into a single scatterlist.
24 *
25 * A DMA_SLAVE transaction is defined by a struct fsl_dma_slave. This
26 * structure contains a list of hardware addresses that should be copied
27 * to/from the scatterlist passed into device_prep_slave_sg(). The structure
28 * also has some fields to enable hardware-specific features.
29 */
30
31/**
32 * struct fsl_dma_hw_addr
33 * @entry: linked list entry
34 * @address: the hardware address
35 * @length: length to transfer
36 *
37 * Holds a single physical hardware address / length pair for use
38 * with the DMAEngine DMA_SLAVE API.
39 */
40struct fsl_dma_hw_addr {
41 struct list_head entry;
42
43 dma_addr_t address;
44 size_t length;
45};
46
47/**
48 * struct fsl_dma_slave
49 * @addresses: a linked list of struct fsl_dma_hw_addr structures
50 * @request_count: value for DMA request count
51 * @src_loop_size: setup and enable constant source-address DMA transfers
52 * @dst_loop_size: setup and enable constant destination address DMA transfers
53 * @external_start: enable externally started DMA transfers
54 * @external_pause: enable externally paused DMA transfers
55 *
56 * Holds a list of address / length pairs for use with the DMAEngine
57 * DMA_SLAVE API implementation for the Freescale DMA controller.
58 */
59struct fsl_dma_slave {
60
61 /* List of hardware address/length pairs */
62 struct list_head addresses;
63
64 /* Support for extra controller features */
65 unsigned int request_count;
66 unsigned int src_loop_size;
67 unsigned int dst_loop_size;
68 bool external_start;
69 bool external_pause;
70};
71
72/**
73 * fsl_dma_slave_append - add an address/length pair to a struct fsl_dma_slave
74 * @slave: the &struct fsl_dma_slave to add to
75 * @address: the hardware address to add
76 * @length: the length of bytes to transfer from @address
77 *
78 * Add a hardware address/length pair to a struct fsl_dma_slave. Returns 0 on
79 * success, -ERRNO otherwise.
80 */
81static inline int fsl_dma_slave_append(struct fsl_dma_slave *slave,
82 dma_addr_t address, size_t length)
83{
84 struct fsl_dma_hw_addr *addr;
85
86 addr = kzalloc(sizeof(*addr), GFP_ATOMIC);
87 if (!addr)
88 return -ENOMEM;
89
90 INIT_LIST_HEAD(&addr->entry);
91 addr->address = address;
92 addr->length = length;
93
94 list_add_tail(&addr->entry, &slave->addresses);
95 return 0;
96}
97
98/**
99 * fsl_dma_slave_free - free a struct fsl_dma_slave
100 * @slave: the struct fsl_dma_slave to free
101 *
102 * Free a struct fsl_dma_slave and all associated address/length pairs
103 */
104static inline void fsl_dma_slave_free(struct fsl_dma_slave *slave)
105{
106 struct fsl_dma_hw_addr *addr, *tmp;
107
108 if (slave) {
109 list_for_each_entry_safe(addr, tmp, &slave->addresses, entry) {
110 list_del(&addr->entry);
111 kfree(addr);
112 }
113
114 kfree(slave);
115 }
116}
117
118/**
119 * fsl_dma_slave_alloc - allocate a struct fsl_dma_slave
120 * @gfp: the flags to pass to kmalloc when allocating this structure
121 *
122 * Allocate a struct fsl_dma_slave for use by the DMA_SLAVE API. Returns a new
123 * struct fsl_dma_slave on success, or NULL on failure.
124 */
125static inline struct fsl_dma_slave *fsl_dma_slave_alloc(gfp_t gfp)
126{
127 struct fsl_dma_slave *slave;
128
129 slave = kzalloc(sizeof(*slave), gfp);
130 if (!slave)
131 return NULL;
132
133 INIT_LIST_HEAD(&slave->addresses);
134 return slave;
135}
136
137#endif /* __ARCH_POWERPC_ASM_FSLDMA_H__ */
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig
index 9520cf02edc8..ab28f6093414 100644
--- a/drivers/dma/Kconfig
+++ b/drivers/dma/Kconfig
@@ -49,6 +49,14 @@ config INTEL_MID_DMAC
49config ASYNC_TX_DISABLE_CHANNEL_SWITCH 49config ASYNC_TX_DISABLE_CHANNEL_SWITCH
50 bool 50 bool
51 51
52config AMBA_PL08X
53 bool "ARM PrimeCell PL080 or PL081 support"
54 depends on ARM_AMBA && EXPERIMENTAL
55 select DMA_ENGINE
56 help
57 Platform has a PL08x DMAC device
58 which can provide DMA engine support
59
52config INTEL_IOATDMA 60config INTEL_IOATDMA
53 tristate "Intel I/OAT DMA support" 61 tristate "Intel I/OAT DMA support"
54 depends on PCI && X86 62 depends on PCI && X86
@@ -195,6 +203,22 @@ config PCH_DMA
195 help 203 help
196 Enable support for the Topcliff PCH DMA engine. 204 Enable support for the Topcliff PCH DMA engine.
197 205
206config IMX_SDMA
207 tristate "i.MX SDMA support"
208 depends on ARCH_MX25 || ARCH_MX3 || ARCH_MX5
209 select DMA_ENGINE
210 help
211 Support the i.MX SDMA engine. This engine is integrated into
212 Freescale i.MX25/31/35/51 chips.
213
214config IMX_DMA
215 tristate "i.MX DMA support"
216 depends on ARCH_MX1 || ARCH_MX21 || MACH_MX27
217 select DMA_ENGINE
218 help
219 Support the i.MX DMA engine. This engine is integrated into
220 Freescale i.MX1/21/27 chips.
221
198config DMA_ENGINE 222config DMA_ENGINE
199 bool 223 bool
200 224
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile
index 72bd70384d8a..a8a84f4587f2 100644
--- a/drivers/dma/Makefile
+++ b/drivers/dma/Makefile
@@ -21,7 +21,10 @@ obj-$(CONFIG_TXX9_DMAC) += txx9dmac.o
21obj-$(CONFIG_SH_DMAE) += shdma.o 21obj-$(CONFIG_SH_DMAE) += shdma.o
22obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o 22obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o
23obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/ 23obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/
24obj-$(CONFIG_IMX_SDMA) += imx-sdma.o
25obj-$(CONFIG_IMX_DMA) += imx-dma.o
24obj-$(CONFIG_TIMB_DMA) += timb_dma.o 26obj-$(CONFIG_TIMB_DMA) += timb_dma.o
25obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o 27obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o
26obj-$(CONFIG_PL330_DMA) += pl330.o 28obj-$(CONFIG_PL330_DMA) += pl330.o
27obj-$(CONFIG_PCH_DMA) += pch_dma.o 29obj-$(CONFIG_PCH_DMA) += pch_dma.o
30obj-$(CONFIG_AMBA_PL08X) += amba-pl08x.o
diff --git a/drivers/dma/amba-pl08x.c b/drivers/dma/amba-pl08x.c
new file mode 100644
index 000000000000..b605cc9ac3a2
--- /dev/null
+++ b/drivers/dma/amba-pl08x.c
@@ -0,0 +1,2167 @@
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is iin this distribution in the
23 * file called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * Only DMAC flow control is implemented
57 *
58 * Global TODO:
59 * - Break out common code from arch/arm/mach-s3c64xx and share
60 */
61#include <linux/device.h>
62#include <linux/init.h>
63#include <linux/module.h>
64#include <linux/pci.h>
65#include <linux/interrupt.h>
66#include <linux/slab.h>
67#include <linux/dmapool.h>
68#include <linux/amba/bus.h>
69#include <linux/dmaengine.h>
70#include <linux/amba/pl08x.h>
71#include <linux/debugfs.h>
72#include <linux/seq_file.h>
73
74#include <asm/hardware/pl080.h>
75#include <asm/dma.h>
76#include <asm/mach/dma.h>
77#include <asm/atomic.h>
78#include <asm/processor.h>
79#include <asm/cacheflush.h>
80
81#define DRIVER_NAME "pl08xdmac"
82
83/**
84 * struct vendor_data - vendor-specific config parameters
85 * for PL08x derivates
86 * @name: the name of this specific variant
87 * @channels: the number of channels available in this variant
88 * @dualmaster: whether this version supports dual AHB masters
89 * or not.
90 */
91struct vendor_data {
92 char *name;
93 u8 channels;
94 bool dualmaster;
95};
96
97/*
98 * PL08X private data structures
99 * An LLI struct - see pl08x TRM
100 * Note that next uses bit[0] as a bus bit,
101 * start & end do not - their bus bit info
102 * is in cctl
103 */
104struct lli {
105 dma_addr_t src;
106 dma_addr_t dst;
107 dma_addr_t next;
108 u32 cctl;
109};
110
111/**
112 * struct pl08x_driver_data - the local state holder for the PL08x
113 * @slave: slave engine for this instance
114 * @memcpy: memcpy engine for this instance
115 * @base: virtual memory base (remapped) for the PL08x
116 * @adev: the corresponding AMBA (PrimeCell) bus entry
117 * @vd: vendor data for this PL08x variant
118 * @pd: platform data passed in from the platform/machine
119 * @phy_chans: array of data for the physical channels
120 * @pool: a pool for the LLI descriptors
121 * @pool_ctr: counter of LLIs in the pool
122 * @lock: a spinlock for this struct
123 */
124struct pl08x_driver_data {
125 struct dma_device slave;
126 struct dma_device memcpy;
127 void __iomem *base;
128 struct amba_device *adev;
129 struct vendor_data *vd;
130 struct pl08x_platform_data *pd;
131 struct pl08x_phy_chan *phy_chans;
132 struct dma_pool *pool;
133 int pool_ctr;
134 spinlock_t lock;
135};
136
137/*
138 * PL08X specific defines
139 */
140
141/*
142 * Memory boundaries: the manual for PL08x says that the controller
143 * cannot read past a 1KiB boundary, so these defines are used to
144 * create transfer LLIs that do not cross such boundaries.
145 */
146#define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
147#define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
148
149/* Minimum period between work queue runs */
150#define PL08X_WQ_PERIODMIN 20
151
152/* Size (bytes) of each LLI buffer allocated for one transfer */
153# define PL08X_LLI_TSFR_SIZE 0x2000
154
155/* Maximimum times we call dma_pool_alloc on this pool without freeing */
156#define PL08X_MAX_ALLOCS 0x40
157#define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct lli))
158#define PL08X_ALIGN 8
159
160static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
161{
162 return container_of(chan, struct pl08x_dma_chan, chan);
163}
164
165/*
166 * Physical channel handling
167 */
168
169/* Whether a certain channel is busy or not */
170static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
171{
172 unsigned int val;
173
174 val = readl(ch->base + PL080_CH_CONFIG);
175 return val & PL080_CONFIG_ACTIVE;
176}
177
178/*
179 * Set the initial DMA register values i.e. those for the first LLI
180 * The next lli pointer and the configuration interrupt bit have
181 * been set when the LLIs were constructed
182 */
183static void pl08x_set_cregs(struct pl08x_driver_data *pl08x,
184 struct pl08x_phy_chan *ch)
185{
186 /* Wait for channel inactive */
187 while (pl08x_phy_channel_busy(ch))
188 ;
189
190 dev_vdbg(&pl08x->adev->dev,
191 "WRITE channel %d: csrc=%08x, cdst=%08x, "
192 "cctl=%08x, clli=%08x, ccfg=%08x\n",
193 ch->id,
194 ch->csrc,
195 ch->cdst,
196 ch->cctl,
197 ch->clli,
198 ch->ccfg);
199
200 writel(ch->csrc, ch->base + PL080_CH_SRC_ADDR);
201 writel(ch->cdst, ch->base + PL080_CH_DST_ADDR);
202 writel(ch->clli, ch->base + PL080_CH_LLI);
203 writel(ch->cctl, ch->base + PL080_CH_CONTROL);
204 writel(ch->ccfg, ch->base + PL080_CH_CONFIG);
205}
206
207static inline void pl08x_config_phychan_for_txd(struct pl08x_dma_chan *plchan)
208{
209 struct pl08x_channel_data *cd = plchan->cd;
210 struct pl08x_phy_chan *phychan = plchan->phychan;
211 struct pl08x_txd *txd = plchan->at;
212
213 /* Copy the basic control register calculated at transfer config */
214 phychan->csrc = txd->csrc;
215 phychan->cdst = txd->cdst;
216 phychan->clli = txd->clli;
217 phychan->cctl = txd->cctl;
218
219 /* Assign the signal to the proper control registers */
220 phychan->ccfg = cd->ccfg;
221 phychan->ccfg &= ~PL080_CONFIG_SRC_SEL_MASK;
222 phychan->ccfg &= ~PL080_CONFIG_DST_SEL_MASK;
223 /* If it wasn't set from AMBA, ignore it */
224 if (txd->direction == DMA_TO_DEVICE)
225 /* Select signal as destination */
226 phychan->ccfg |=
227 (phychan->signal << PL080_CONFIG_DST_SEL_SHIFT);
228 else if (txd->direction == DMA_FROM_DEVICE)
229 /* Select signal as source */
230 phychan->ccfg |=
231 (phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT);
232 /* Always enable error interrupts */
233 phychan->ccfg |= PL080_CONFIG_ERR_IRQ_MASK;
234 /* Always enable terminal interrupts */
235 phychan->ccfg |= PL080_CONFIG_TC_IRQ_MASK;
236}
237
238/*
239 * Enable the DMA channel
240 * Assumes all other configuration bits have been set
241 * as desired before this code is called
242 */
243static void pl08x_enable_phy_chan(struct pl08x_driver_data *pl08x,
244 struct pl08x_phy_chan *ch)
245{
246 u32 val;
247
248 /*
249 * Do not access config register until channel shows as disabled
250 */
251 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << ch->id))
252 ;
253
254 /*
255 * Do not access config register until channel shows as inactive
256 */
257 val = readl(ch->base + PL080_CH_CONFIG);
258 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
259 val = readl(ch->base + PL080_CH_CONFIG);
260
261 writel(val | PL080_CONFIG_ENABLE, ch->base + PL080_CH_CONFIG);
262}
263
264/*
265 * Overall DMAC remains enabled always.
266 *
267 * Disabling individual channels could lose data.
268 *
269 * Disable the peripheral DMA after disabling the DMAC
270 * in order to allow the DMAC FIFO to drain, and
271 * hence allow the channel to show inactive
272 *
273 */
274static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
275{
276 u32 val;
277
278 /* Set the HALT bit and wait for the FIFO to drain */
279 val = readl(ch->base + PL080_CH_CONFIG);
280 val |= PL080_CONFIG_HALT;
281 writel(val, ch->base + PL080_CH_CONFIG);
282
283 /* Wait for channel inactive */
284 while (pl08x_phy_channel_busy(ch))
285 ;
286}
287
288static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
289{
290 u32 val;
291
292 /* Clear the HALT bit */
293 val = readl(ch->base + PL080_CH_CONFIG);
294 val &= ~PL080_CONFIG_HALT;
295 writel(val, ch->base + PL080_CH_CONFIG);
296}
297
298
299/* Stops the channel */
300static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
301{
302 u32 val;
303
304 pl08x_pause_phy_chan(ch);
305
306 /* Disable channel */
307 val = readl(ch->base + PL080_CH_CONFIG);
308 val &= ~PL080_CONFIG_ENABLE;
309 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
310 val &= ~PL080_CONFIG_TC_IRQ_MASK;
311 writel(val, ch->base + PL080_CH_CONFIG);
312}
313
314static inline u32 get_bytes_in_cctl(u32 cctl)
315{
316 /* The source width defines the number of bytes */
317 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
318
319 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
320 case PL080_WIDTH_8BIT:
321 break;
322 case PL080_WIDTH_16BIT:
323 bytes *= 2;
324 break;
325 case PL080_WIDTH_32BIT:
326 bytes *= 4;
327 break;
328 }
329 return bytes;
330}
331
332/* The channel should be paused when calling this */
333static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
334{
335 struct pl08x_phy_chan *ch;
336 struct pl08x_txd *txdi = NULL;
337 struct pl08x_txd *txd;
338 unsigned long flags;
339 u32 bytes = 0;
340
341 spin_lock_irqsave(&plchan->lock, flags);
342
343 ch = plchan->phychan;
344 txd = plchan->at;
345
346 /*
347 * Next follow the LLIs to get the number of pending bytes in the
348 * currently active transaction.
349 */
350 if (ch && txd) {
351 struct lli *llis_va = txd->llis_va;
352 struct lli *llis_bus = (struct lli *) txd->llis_bus;
353 u32 clli = readl(ch->base + PL080_CH_LLI);
354
355 /* First get the bytes in the current active LLI */
356 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
357
358 if (clli) {
359 int i = 0;
360
361 /* Forward to the LLI pointed to by clli */
362 while ((clli != (u32) &(llis_bus[i])) &&
363 (i < MAX_NUM_TSFR_LLIS))
364 i++;
365
366 while (clli) {
367 bytes += get_bytes_in_cctl(llis_va[i].cctl);
368 /*
369 * A clli of 0x00000000 will terminate the
370 * LLI list
371 */
372 clli = llis_va[i].next;
373 i++;
374 }
375 }
376 }
377
378 /* Sum up all queued transactions */
379 if (!list_empty(&plchan->desc_list)) {
380 list_for_each_entry(txdi, &plchan->desc_list, node) {
381 bytes += txdi->len;
382 }
383
384 }
385
386 spin_unlock_irqrestore(&plchan->lock, flags);
387
388 return bytes;
389}
390
391/*
392 * Allocate a physical channel for a virtual channel
393 */
394static struct pl08x_phy_chan *
395pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
396 struct pl08x_dma_chan *virt_chan)
397{
398 struct pl08x_phy_chan *ch = NULL;
399 unsigned long flags;
400 int i;
401
402 /*
403 * Try to locate a physical channel to be used for
404 * this transfer. If all are taken return NULL and
405 * the requester will have to cope by using some fallback
406 * PIO mode or retrying later.
407 */
408 for (i = 0; i < pl08x->vd->channels; i++) {
409 ch = &pl08x->phy_chans[i];
410
411 spin_lock_irqsave(&ch->lock, flags);
412
413 if (!ch->serving) {
414 ch->serving = virt_chan;
415 ch->signal = -1;
416 spin_unlock_irqrestore(&ch->lock, flags);
417 break;
418 }
419
420 spin_unlock_irqrestore(&ch->lock, flags);
421 }
422
423 if (i == pl08x->vd->channels) {
424 /* No physical channel available, cope with it */
425 return NULL;
426 }
427
428 return ch;
429}
430
431static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
432 struct pl08x_phy_chan *ch)
433{
434 unsigned long flags;
435
436 /* Stop the channel and clear its interrupts */
437 pl08x_stop_phy_chan(ch);
438 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
439 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
440
441 /* Mark it as free */
442 spin_lock_irqsave(&ch->lock, flags);
443 ch->serving = NULL;
444 spin_unlock_irqrestore(&ch->lock, flags);
445}
446
447/*
448 * LLI handling
449 */
450
451static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
452{
453 switch (coded) {
454 case PL080_WIDTH_8BIT:
455 return 1;
456 case PL080_WIDTH_16BIT:
457 return 2;
458 case PL080_WIDTH_32BIT:
459 return 4;
460 default:
461 break;
462 }
463 BUG();
464 return 0;
465}
466
467static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
468 u32 tsize)
469{
470 u32 retbits = cctl;
471
472 /* Remove all src, dst and transfersize bits */
473 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
474 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
475 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
476
477 /* Then set the bits according to the parameters */
478 switch (srcwidth) {
479 case 1:
480 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
481 break;
482 case 2:
483 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
484 break;
485 case 4:
486 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
487 break;
488 default:
489 BUG();
490 break;
491 }
492
493 switch (dstwidth) {
494 case 1:
495 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
496 break;
497 case 2:
498 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
499 break;
500 case 4:
501 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
502 break;
503 default:
504 BUG();
505 break;
506 }
507
508 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
509 return retbits;
510}
511
512/*
513 * Autoselect a master bus to use for the transfer
514 * this prefers the destination bus if both available
515 * if fixed address on one bus the other will be chosen
516 */
517void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
518 struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
519 struct pl08x_bus_data **sbus, u32 cctl)
520{
521 if (!(cctl & PL080_CONTROL_DST_INCR)) {
522 *mbus = src_bus;
523 *sbus = dst_bus;
524 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
525 *mbus = dst_bus;
526 *sbus = src_bus;
527 } else {
528 if (dst_bus->buswidth == 4) {
529 *mbus = dst_bus;
530 *sbus = src_bus;
531 } else if (src_bus->buswidth == 4) {
532 *mbus = src_bus;
533 *sbus = dst_bus;
534 } else if (dst_bus->buswidth == 2) {
535 *mbus = dst_bus;
536 *sbus = src_bus;
537 } else if (src_bus->buswidth == 2) {
538 *mbus = src_bus;
539 *sbus = dst_bus;
540 } else {
541 /* src_bus->buswidth == 1 */
542 *mbus = dst_bus;
543 *sbus = src_bus;
544 }
545 }
546}
547
548/*
549 * Fills in one LLI for a certain transfer descriptor
550 * and advance the counter
551 */
552int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
553 struct pl08x_txd *txd, int num_llis, int len,
554 u32 cctl, u32 *remainder)
555{
556 struct lli *llis_va = txd->llis_va;
557 struct lli *llis_bus = (struct lli *) txd->llis_bus;
558
559 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
560
561 llis_va[num_llis].cctl = cctl;
562 llis_va[num_llis].src = txd->srcbus.addr;
563 llis_va[num_llis].dst = txd->dstbus.addr;
564
565 /*
566 * On versions with dual masters, you can optionally AND on
567 * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
568 * in new LLIs with that controller, but we always try to
569 * choose AHB1 to point into memory. The idea is to have AHB2
570 * fixed on the peripheral and AHB1 messing around in the
571 * memory. So we don't manipulate this bit currently.
572 */
573
574 llis_va[num_llis].next =
575 (dma_addr_t)((u32) &(llis_bus[num_llis + 1]));
576
577 if (cctl & PL080_CONTROL_SRC_INCR)
578 txd->srcbus.addr += len;
579 if (cctl & PL080_CONTROL_DST_INCR)
580 txd->dstbus.addr += len;
581
582 *remainder -= len;
583
584 return num_llis + 1;
585}
586
587/*
588 * Return number of bytes to fill to boundary, or len
589 */
590static inline u32 pl08x_pre_boundary(u32 addr, u32 len)
591{
592 u32 boundary;
593
594 boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
595 << PL08X_BOUNDARY_SHIFT;
596
597 if (boundary < addr + len)
598 return boundary - addr;
599 else
600 return len;
601}
602
603/*
604 * This fills in the table of LLIs for the transfer descriptor
605 * Note that we assume we never have to change the burst sizes
606 * Return 0 for error
607 */
608static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
609 struct pl08x_txd *txd)
610{
611 struct pl08x_channel_data *cd = txd->cd;
612 struct pl08x_bus_data *mbus, *sbus;
613 u32 remainder;
614 int num_llis = 0;
615 u32 cctl;
616 int max_bytes_per_lli;
617 int total_bytes = 0;
618 struct lli *llis_va;
619 struct lli *llis_bus;
620
621 if (!txd) {
622 dev_err(&pl08x->adev->dev, "%s no descriptor\n", __func__);
623 return 0;
624 }
625
626 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
627 &txd->llis_bus);
628 if (!txd->llis_va) {
629 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
630 return 0;
631 }
632
633 pl08x->pool_ctr++;
634
635 /*
636 * Initialize bus values for this transfer
637 * from the passed optimal values
638 */
639 if (!cd) {
640 dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__);
641 return 0;
642 }
643
644 /* Get the default CCTL from the platform data */
645 cctl = cd->cctl;
646
647 /*
648 * On the PL080 we have two bus masters and we
649 * should select one for source and one for
650 * destination. We try to use AHB2 for the
651 * bus which does not increment (typically the
652 * peripheral) else we just choose something.
653 */
654 cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
655 if (pl08x->vd->dualmaster) {
656 if (cctl & PL080_CONTROL_SRC_INCR)
657 /* Source increments, use AHB2 for destination */
658 cctl |= PL080_CONTROL_DST_AHB2;
659 else if (cctl & PL080_CONTROL_DST_INCR)
660 /* Destination increments, use AHB2 for source */
661 cctl |= PL080_CONTROL_SRC_AHB2;
662 else
663 /* Just pick something, source AHB1 dest AHB2 */
664 cctl |= PL080_CONTROL_DST_AHB2;
665 }
666
667 /* Find maximum width of the source bus */
668 txd->srcbus.maxwidth =
669 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
670 PL080_CONTROL_SWIDTH_SHIFT);
671
672 /* Find maximum width of the destination bus */
673 txd->dstbus.maxwidth =
674 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
675 PL080_CONTROL_DWIDTH_SHIFT);
676
677 /* Set up the bus widths to the maximum */
678 txd->srcbus.buswidth = txd->srcbus.maxwidth;
679 txd->dstbus.buswidth = txd->dstbus.maxwidth;
680 dev_vdbg(&pl08x->adev->dev,
681 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
682 __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
683
684
685 /*
686 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
687 */
688 max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
689 PL080_CONTROL_TRANSFER_SIZE_MASK;
690 dev_vdbg(&pl08x->adev->dev,
691 "%s max bytes per lli = %d\n",
692 __func__, max_bytes_per_lli);
693
694 /* We need to count this down to zero */
695 remainder = txd->len;
696 dev_vdbg(&pl08x->adev->dev,
697 "%s remainder = %d\n",
698 __func__, remainder);
699
700 /*
701 * Choose bus to align to
702 * - prefers destination bus if both available
703 * - if fixed address on one bus chooses other
704 * - modifies cctl to choose an apropriate master
705 */
706 pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
707 &mbus, &sbus, cctl);
708
709
710 /*
711 * The lowest bit of the LLI register
712 * is also used to indicate which master to
713 * use for reading the LLIs.
714 */
715
716 if (txd->len < mbus->buswidth) {
717 /*
718 * Less than a bus width available
719 * - send as single bytes
720 */
721 while (remainder) {
722 dev_vdbg(&pl08x->adev->dev,
723 "%s single byte LLIs for a transfer of "
724 "less than a bus width (remain %08x)\n",
725 __func__, remainder);
726 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
727 num_llis =
728 pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1,
729 cctl, &remainder);
730 total_bytes++;
731 }
732 } else {
733 /*
734 * Make one byte LLIs until master bus is aligned
735 * - slave will then be aligned also
736 */
737 while ((mbus->addr) % (mbus->buswidth)) {
738 dev_vdbg(&pl08x->adev->dev,
739 "%s adjustment lli for less than bus width "
740 "(remain %08x)\n",
741 __func__, remainder);
742 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
743 num_llis = pl08x_fill_lli_for_desc
744 (pl08x, txd, num_llis, 1, cctl, &remainder);
745 total_bytes++;
746 }
747
748 /*
749 * Master now aligned
750 * - if slave is not then we must set its width down
751 */
752 if (sbus->addr % sbus->buswidth) {
753 dev_dbg(&pl08x->adev->dev,
754 "%s set down bus width to one byte\n",
755 __func__);
756
757 sbus->buswidth = 1;
758 }
759
760 /*
761 * Make largest possible LLIs until less than one bus
762 * width left
763 */
764 while (remainder > (mbus->buswidth - 1)) {
765 int lli_len, target_len;
766 int tsize;
767 int odd_bytes;
768
769 /*
770 * If enough left try to send max possible,
771 * otherwise try to send the remainder
772 */
773 target_len = remainder;
774 if (remainder > max_bytes_per_lli)
775 target_len = max_bytes_per_lli;
776
777 /*
778 * Set bus lengths for incrementing busses
779 * to number of bytes which fill to next memory
780 * boundary
781 */
782 if (cctl & PL080_CONTROL_SRC_INCR)
783 txd->srcbus.fill_bytes =
784 pl08x_pre_boundary(
785 txd->srcbus.addr,
786 remainder);
787 else
788 txd->srcbus.fill_bytes =
789 max_bytes_per_lli;
790
791 if (cctl & PL080_CONTROL_DST_INCR)
792 txd->dstbus.fill_bytes =
793 pl08x_pre_boundary(
794 txd->dstbus.addr,
795 remainder);
796 else
797 txd->dstbus.fill_bytes =
798 max_bytes_per_lli;
799
800 /*
801 * Find the nearest
802 */
803 lli_len = min(txd->srcbus.fill_bytes,
804 txd->dstbus.fill_bytes);
805
806 BUG_ON(lli_len > remainder);
807
808 if (lli_len <= 0) {
809 dev_err(&pl08x->adev->dev,
810 "%s lli_len is %d, <= 0\n",
811 __func__, lli_len);
812 return 0;
813 }
814
815 if (lli_len == target_len) {
816 /*
817 * Can send what we wanted
818 */
819 /*
820 * Maintain alignment
821 */
822 lli_len = (lli_len/mbus->buswidth) *
823 mbus->buswidth;
824 odd_bytes = 0;
825 } else {
826 /*
827 * So now we know how many bytes to transfer
828 * to get to the nearest boundary
829 * The next lli will past the boundary
830 * - however we may be working to a boundary
831 * on the slave bus
832 * We need to ensure the master stays aligned
833 */
834 odd_bytes = lli_len % mbus->buswidth;
835 /*
836 * - and that we are working in multiples
837 * of the bus widths
838 */
839 lli_len -= odd_bytes;
840
841 }
842
843 if (lli_len) {
844 /*
845 * Check against minimum bus alignment:
846 * Calculate actual transfer size in relation
847 * to bus width an get a maximum remainder of
848 * the smallest bus width - 1
849 */
850 /* FIXME: use round_down()? */
851 tsize = lli_len / min(mbus->buswidth,
852 sbus->buswidth);
853 lli_len = tsize * min(mbus->buswidth,
854 sbus->buswidth);
855
856 if (target_len != lli_len) {
857 dev_vdbg(&pl08x->adev->dev,
858 "%s can't send what we want. Desired %08x, lli of %08x bytes in txd of %08x\n",
859 __func__, target_len, lli_len, txd->len);
860 }
861
862 cctl = pl08x_cctl_bits(cctl,
863 txd->srcbus.buswidth,
864 txd->dstbus.buswidth,
865 tsize);
866
867 dev_vdbg(&pl08x->adev->dev,
868 "%s fill lli with single lli chunk of size %08x (remainder %08x)\n",
869 __func__, lli_len, remainder);
870 num_llis = pl08x_fill_lli_for_desc(pl08x, txd,
871 num_llis, lli_len, cctl,
872 &remainder);
873 total_bytes += lli_len;
874 }
875
876
877 if (odd_bytes) {
878 /*
879 * Creep past the boundary,
880 * maintaining master alignment
881 */
882 int j;
883 for (j = 0; (j < mbus->buswidth)
884 && (remainder); j++) {
885 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
886 dev_vdbg(&pl08x->adev->dev,
887 "%s align with boundardy, single byte (remain %08x)\n",
888 __func__, remainder);
889 num_llis =
890 pl08x_fill_lli_for_desc(pl08x,
891 txd, num_llis, 1,
892 cctl, &remainder);
893 total_bytes++;
894 }
895 }
896 }
897
898 /*
899 * Send any odd bytes
900 */
901 if (remainder < 0) {
902 dev_err(&pl08x->adev->dev, "%s remainder not fitted 0x%08x bytes\n",
903 __func__, remainder);
904 return 0;
905 }
906
907 while (remainder) {
908 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
909 dev_vdbg(&pl08x->adev->dev,
910 "%s align with boundardy, single odd byte (remain %d)\n",
911 __func__, remainder);
912 num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis,
913 1, cctl, &remainder);
914 total_bytes++;
915 }
916 }
917 if (total_bytes != txd->len) {
918 dev_err(&pl08x->adev->dev,
919 "%s size of encoded lli:s don't match total txd, transferred 0x%08x from size 0x%08x\n",
920 __func__, total_bytes, txd->len);
921 return 0;
922 }
923
924 if (num_llis >= MAX_NUM_TSFR_LLIS) {
925 dev_err(&pl08x->adev->dev,
926 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
927 __func__, (u32) MAX_NUM_TSFR_LLIS);
928 return 0;
929 }
930 /*
931 * Decide whether this is a loop or a terminated transfer
932 */
933 llis_va = txd->llis_va;
934 llis_bus = (struct lli *) txd->llis_bus;
935
936 if (cd->circular_buffer) {
937 /*
938 * Loop the circular buffer so that the next element
939 * points back to the beginning of the LLI.
940 */
941 llis_va[num_llis - 1].next =
942 (dma_addr_t)((unsigned int)&(llis_bus[0]));
943 } else {
944 /*
945 * On non-circular buffers, the final LLI terminates
946 * the LLI.
947 */
948 llis_va[num_llis - 1].next = 0;
949 /*
950 * The final LLI element shall also fire an interrupt
951 */
952 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
953 }
954
955 /* Now store the channel register values */
956 txd->csrc = llis_va[0].src;
957 txd->cdst = llis_va[0].dst;
958 if (num_llis > 1)
959 txd->clli = llis_va[0].next;
960 else
961 txd->clli = 0;
962
963 txd->cctl = llis_va[0].cctl;
964 /* ccfg will be set at physical channel allocation time */
965
966#ifdef VERBOSE_DEBUG
967 {
968 int i;
969
970 for (i = 0; i < num_llis; i++) {
971 dev_vdbg(&pl08x->adev->dev,
972 "lli %d @%p: csrc=%08x, cdst=%08x, cctl=%08x, clli=%08x\n",
973 i,
974 &llis_va[i],
975 llis_va[i].src,
976 llis_va[i].dst,
977 llis_va[i].cctl,
978 llis_va[i].next
979 );
980 }
981 }
982#endif
983
984 return num_llis;
985}
986
987/* You should call this with the struct pl08x lock held */
988static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
989 struct pl08x_txd *txd)
990{
991 if (!txd)
992 dev_err(&pl08x->adev->dev,
993 "%s no descriptor to free\n",
994 __func__);
995
996 /* Free the LLI */
997 dma_pool_free(pl08x->pool, txd->llis_va,
998 txd->llis_bus);
999
1000 pl08x->pool_ctr--;
1001
1002 kfree(txd);
1003}
1004
1005static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1006 struct pl08x_dma_chan *plchan)
1007{
1008 struct pl08x_txd *txdi = NULL;
1009 struct pl08x_txd *next;
1010
1011 if (!list_empty(&plchan->desc_list)) {
1012 list_for_each_entry_safe(txdi,
1013 next, &plchan->desc_list, node) {
1014 list_del(&txdi->node);
1015 pl08x_free_txd(pl08x, txdi);
1016 }
1017
1018 }
1019}
1020
1021/*
1022 * The DMA ENGINE API
1023 */
1024static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1025{
1026 return 0;
1027}
1028
1029static void pl08x_free_chan_resources(struct dma_chan *chan)
1030{
1031}
1032
1033/*
1034 * This should be called with the channel plchan->lock held
1035 */
1036static int prep_phy_channel(struct pl08x_dma_chan *plchan,
1037 struct pl08x_txd *txd)
1038{
1039 struct pl08x_driver_data *pl08x = plchan->host;
1040 struct pl08x_phy_chan *ch;
1041 int ret;
1042
1043 /* Check if we already have a channel */
1044 if (plchan->phychan)
1045 return 0;
1046
1047 ch = pl08x_get_phy_channel(pl08x, plchan);
1048 if (!ch) {
1049 /* No physical channel available, cope with it */
1050 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
1051 return -EBUSY;
1052 }
1053
1054 /*
1055 * OK we have a physical channel: for memcpy() this is all we
1056 * need, but for slaves the physical signals may be muxed!
1057 * Can the platform allow us to use this channel?
1058 */
1059 if (plchan->slave &&
1060 ch->signal < 0 &&
1061 pl08x->pd->get_signal) {
1062 ret = pl08x->pd->get_signal(plchan);
1063 if (ret < 0) {
1064 dev_dbg(&pl08x->adev->dev,
1065 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
1066 ch->id, plchan->name);
1067 /* Release physical channel & return */
1068 pl08x_put_phy_channel(pl08x, ch);
1069 return -EBUSY;
1070 }
1071 ch->signal = ret;
1072 }
1073
1074 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
1075 ch->id,
1076 ch->signal,
1077 plchan->name);
1078
1079 plchan->phychan = ch;
1080
1081 return 0;
1082}
1083
1084static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
1085{
1086 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1087
1088 atomic_inc(&plchan->last_issued);
1089 tx->cookie = atomic_read(&plchan->last_issued);
1090 /* This unlock follows the lock in the prep() function */
1091 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1092
1093 return tx->cookie;
1094}
1095
1096static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1097 struct dma_chan *chan, unsigned long flags)
1098{
1099 struct dma_async_tx_descriptor *retval = NULL;
1100
1101 return retval;
1102}
1103
1104/*
1105 * Code accessing dma_async_is_complete() in a tight loop
1106 * may give problems - could schedule where indicated.
1107 * If slaves are relying on interrupts to signal completion this
1108 * function must not be called with interrupts disabled
1109 */
1110static enum dma_status
1111pl08x_dma_tx_status(struct dma_chan *chan,
1112 dma_cookie_t cookie,
1113 struct dma_tx_state *txstate)
1114{
1115 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1116 dma_cookie_t last_used;
1117 dma_cookie_t last_complete;
1118 enum dma_status ret;
1119 u32 bytesleft = 0;
1120
1121 last_used = atomic_read(&plchan->last_issued);
1122 last_complete = plchan->lc;
1123
1124 ret = dma_async_is_complete(cookie, last_complete, last_used);
1125 if (ret == DMA_SUCCESS) {
1126 dma_set_tx_state(txstate, last_complete, last_used, 0);
1127 return ret;
1128 }
1129
1130 /*
1131 * schedule(); could be inserted here
1132 */
1133
1134 /*
1135 * This cookie not complete yet
1136 */
1137 last_used = atomic_read(&plchan->last_issued);
1138 last_complete = plchan->lc;
1139
1140 /* Get number of bytes left in the active transactions and queue */
1141 bytesleft = pl08x_getbytes_chan(plchan);
1142
1143 dma_set_tx_state(txstate, last_complete, last_used,
1144 bytesleft);
1145
1146 if (plchan->state == PL08X_CHAN_PAUSED)
1147 return DMA_PAUSED;
1148
1149 /* Whether waiting or running, we're in progress */
1150 return DMA_IN_PROGRESS;
1151}
1152
1153/* PrimeCell DMA extension */
1154struct burst_table {
1155 int burstwords;
1156 u32 reg;
1157};
1158
1159static const struct burst_table burst_sizes[] = {
1160 {
1161 .burstwords = 256,
1162 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1163 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1164 },
1165 {
1166 .burstwords = 128,
1167 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1168 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1169 },
1170 {
1171 .burstwords = 64,
1172 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1173 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1174 },
1175 {
1176 .burstwords = 32,
1177 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1178 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1179 },
1180 {
1181 .burstwords = 16,
1182 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1183 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1184 },
1185 {
1186 .burstwords = 8,
1187 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1188 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1189 },
1190 {
1191 .burstwords = 4,
1192 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1193 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1194 },
1195 {
1196 .burstwords = 1,
1197 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1198 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1199 },
1200};
1201
1202static void dma_set_runtime_config(struct dma_chan *chan,
1203 struct dma_slave_config *config)
1204{
1205 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1206 struct pl08x_driver_data *pl08x = plchan->host;
1207 struct pl08x_channel_data *cd = plchan->cd;
1208 enum dma_slave_buswidth addr_width;
1209 u32 maxburst;
1210 u32 cctl = 0;
1211 /* Mask out all except src and dst channel */
1212 u32 ccfg = cd->ccfg & 0x000003DEU;
1213 int i = 0;
1214
1215 /* Transfer direction */
1216 plchan->runtime_direction = config->direction;
1217 if (config->direction == DMA_TO_DEVICE) {
1218 plchan->runtime_addr = config->dst_addr;
1219 cctl |= PL080_CONTROL_SRC_INCR;
1220 ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1221 addr_width = config->dst_addr_width;
1222 maxburst = config->dst_maxburst;
1223 } else if (config->direction == DMA_FROM_DEVICE) {
1224 plchan->runtime_addr = config->src_addr;
1225 cctl |= PL080_CONTROL_DST_INCR;
1226 ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1227 addr_width = config->src_addr_width;
1228 maxburst = config->src_maxburst;
1229 } else {
1230 dev_err(&pl08x->adev->dev,
1231 "bad runtime_config: alien transfer direction\n");
1232 return;
1233 }
1234
1235 switch (addr_width) {
1236 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1237 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1238 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1239 break;
1240 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1241 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1242 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1243 break;
1244 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1245 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1246 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1247 break;
1248 default:
1249 dev_err(&pl08x->adev->dev,
1250 "bad runtime_config: alien address width\n");
1251 return;
1252 }
1253
1254 /*
1255 * Now decide on a maxburst:
1256 * If this channel will only request single transfers, set
1257 * this down to ONE element.
1258 */
1259 if (plchan->cd->single) {
1260 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1261 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1262 } else {
1263 while (i < ARRAY_SIZE(burst_sizes)) {
1264 if (burst_sizes[i].burstwords <= maxburst)
1265 break;
1266 i++;
1267 }
1268 cctl |= burst_sizes[i].reg;
1269 }
1270
1271 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1272 cctl &= ~PL080_CONTROL_PROT_MASK;
1273 cctl |= PL080_CONTROL_PROT_SYS;
1274
1275 /* Modify the default channel data to fit PrimeCell request */
1276 cd->cctl = cctl;
1277 cd->ccfg = ccfg;
1278
1279 dev_dbg(&pl08x->adev->dev,
1280 "configured channel %s (%s) for %s, data width %d, "
1281 "maxburst %d words, LE, CCTL=%08x, CCFG=%08x\n",
1282 dma_chan_name(chan), plchan->name,
1283 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1284 addr_width,
1285 maxburst,
1286 cctl, ccfg);
1287}
1288
1289/*
1290 * Slave transactions callback to the slave device to allow
1291 * synchronization of slave DMA signals with the DMAC enable
1292 */
1293static void pl08x_issue_pending(struct dma_chan *chan)
1294{
1295 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1296 struct pl08x_driver_data *pl08x = plchan->host;
1297 unsigned long flags;
1298
1299 spin_lock_irqsave(&plchan->lock, flags);
1300 /* Something is already active */
1301 if (plchan->at) {
1302 spin_unlock_irqrestore(&plchan->lock, flags);
1303 return;
1304 }
1305
1306 /* Didn't get a physical channel so waiting for it ... */
1307 if (plchan->state == PL08X_CHAN_WAITING)
1308 return;
1309
1310 /* Take the first element in the queue and execute it */
1311 if (!list_empty(&plchan->desc_list)) {
1312 struct pl08x_txd *next;
1313
1314 next = list_first_entry(&plchan->desc_list,
1315 struct pl08x_txd,
1316 node);
1317 list_del(&next->node);
1318 plchan->at = next;
1319 plchan->state = PL08X_CHAN_RUNNING;
1320
1321 /* Configure the physical channel for the active txd */
1322 pl08x_config_phychan_for_txd(plchan);
1323 pl08x_set_cregs(pl08x, plchan->phychan);
1324 pl08x_enable_phy_chan(pl08x, plchan->phychan);
1325 }
1326
1327 spin_unlock_irqrestore(&plchan->lock, flags);
1328}
1329
1330static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1331 struct pl08x_txd *txd)
1332{
1333 int num_llis;
1334 struct pl08x_driver_data *pl08x = plchan->host;
1335 int ret;
1336
1337 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1338
1339 if (!num_llis)
1340 return -EINVAL;
1341
1342 spin_lock_irqsave(&plchan->lock, plchan->lockflags);
1343
1344 /*
1345 * If this device is not using a circular buffer then
1346 * queue this new descriptor for transfer.
1347 * The descriptor for a circular buffer continues
1348 * to be used until the channel is freed.
1349 */
1350 if (txd->cd->circular_buffer)
1351 dev_err(&pl08x->adev->dev,
1352 "%s attempting to queue a circular buffer\n",
1353 __func__);
1354 else
1355 list_add_tail(&txd->node,
1356 &plchan->desc_list);
1357
1358 /*
1359 * See if we already have a physical channel allocated,
1360 * else this is the time to try to get one.
1361 */
1362 ret = prep_phy_channel(plchan, txd);
1363 if (ret) {
1364 /*
1365 * No physical channel available, we will
1366 * stack up the memcpy channels until there is a channel
1367 * available to handle it whereas slave transfers may
1368 * have been denied due to platform channel muxing restrictions
1369 * and since there is no guarantee that this will ever be
1370 * resolved, and since the signal must be aquired AFTER
1371 * aquiring the physical channel, we will let them be NACK:ed
1372 * with -EBUSY here. The drivers can alway retry the prep()
1373 * call if they are eager on doing this using DMA.
1374 */
1375 if (plchan->slave) {
1376 pl08x_free_txd_list(pl08x, plchan);
1377 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1378 return -EBUSY;
1379 }
1380 /* Do this memcpy whenever there is a channel ready */
1381 plchan->state = PL08X_CHAN_WAITING;
1382 plchan->waiting = txd;
1383 } else
1384 /*
1385 * Else we're all set, paused and ready to roll,
1386 * status will switch to PL08X_CHAN_RUNNING when
1387 * we call issue_pending(). If there is something
1388 * running on the channel already we don't change
1389 * its state.
1390 */
1391 if (plchan->state == PL08X_CHAN_IDLE)
1392 plchan->state = PL08X_CHAN_PAUSED;
1393
1394 /*
1395 * Notice that we leave plchan->lock locked on purpose:
1396 * it will be unlocked in the subsequent tx_submit()
1397 * call. This is a consequence of the current API.
1398 */
1399
1400 return 0;
1401}
1402
1403/*
1404 * Initialize a descriptor to be used by memcpy submit
1405 */
1406static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1407 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1408 size_t len, unsigned long flags)
1409{
1410 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1411 struct pl08x_driver_data *pl08x = plchan->host;
1412 struct pl08x_txd *txd;
1413 int ret;
1414
1415 txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1416 if (!txd) {
1417 dev_err(&pl08x->adev->dev,
1418 "%s no memory for descriptor\n", __func__);
1419 return NULL;
1420 }
1421
1422 dma_async_tx_descriptor_init(&txd->tx, chan);
1423 txd->direction = DMA_NONE;
1424 txd->srcbus.addr = src;
1425 txd->dstbus.addr = dest;
1426
1427 /* Set platform data for m2m */
1428 txd->cd = &pl08x->pd->memcpy_channel;
1429 /* Both to be incremented or the code will break */
1430 txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1431 txd->tx.tx_submit = pl08x_tx_submit;
1432 txd->tx.callback = NULL;
1433 txd->tx.callback_param = NULL;
1434 txd->len = len;
1435
1436 INIT_LIST_HEAD(&txd->node);
1437 ret = pl08x_prep_channel_resources(plchan, txd);
1438 if (ret)
1439 return NULL;
1440 /*
1441 * NB: the channel lock is held at this point so tx_submit()
1442 * must be called in direct succession.
1443 */
1444
1445 return &txd->tx;
1446}
1447
1448struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1449 struct dma_chan *chan, struct scatterlist *sgl,
1450 unsigned int sg_len, enum dma_data_direction direction,
1451 unsigned long flags)
1452{
1453 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1454 struct pl08x_driver_data *pl08x = plchan->host;
1455 struct pl08x_txd *txd;
1456 int ret;
1457
1458 /*
1459 * Current implementation ASSUMES only one sg
1460 */
1461 if (sg_len != 1) {
1462 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1463 __func__);
1464 BUG();
1465 }
1466
1467 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1468 __func__, sgl->length, plchan->name);
1469
1470 txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1471 if (!txd) {
1472 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1473 return NULL;
1474 }
1475
1476 dma_async_tx_descriptor_init(&txd->tx, chan);
1477
1478 if (direction != plchan->runtime_direction)
1479 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1480 "the direction configured for the PrimeCell\n",
1481 __func__);
1482
1483 /*
1484 * Set up addresses, the PrimeCell configured address
1485 * will take precedence since this may configure the
1486 * channel target address dynamically at runtime.
1487 */
1488 txd->direction = direction;
1489 if (direction == DMA_TO_DEVICE) {
1490 txd->srcbus.addr = sgl->dma_address;
1491 if (plchan->runtime_addr)
1492 txd->dstbus.addr = plchan->runtime_addr;
1493 else
1494 txd->dstbus.addr = plchan->cd->addr;
1495 } else if (direction == DMA_FROM_DEVICE) {
1496 if (plchan->runtime_addr)
1497 txd->srcbus.addr = plchan->runtime_addr;
1498 else
1499 txd->srcbus.addr = plchan->cd->addr;
1500 txd->dstbus.addr = sgl->dma_address;
1501 } else {
1502 dev_err(&pl08x->adev->dev,
1503 "%s direction unsupported\n", __func__);
1504 return NULL;
1505 }
1506 txd->cd = plchan->cd;
1507 txd->tx.tx_submit = pl08x_tx_submit;
1508 txd->tx.callback = NULL;
1509 txd->tx.callback_param = NULL;
1510 txd->len = sgl->length;
1511 INIT_LIST_HEAD(&txd->node);
1512
1513 ret = pl08x_prep_channel_resources(plchan, txd);
1514 if (ret)
1515 return NULL;
1516 /*
1517 * NB: the channel lock is held at this point so tx_submit()
1518 * must be called in direct succession.
1519 */
1520
1521 return &txd->tx;
1522}
1523
1524static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1525 unsigned long arg)
1526{
1527 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1528 struct pl08x_driver_data *pl08x = plchan->host;
1529 unsigned long flags;
1530 int ret = 0;
1531
1532 /* Controls applicable to inactive channels */
1533 if (cmd == DMA_SLAVE_CONFIG) {
1534 dma_set_runtime_config(chan,
1535 (struct dma_slave_config *)
1536 arg);
1537 return 0;
1538 }
1539
1540 /*
1541 * Anything succeeds on channels with no physical allocation and
1542 * no queued transfers.
1543 */
1544 spin_lock_irqsave(&plchan->lock, flags);
1545 if (!plchan->phychan && !plchan->at) {
1546 spin_unlock_irqrestore(&plchan->lock, flags);
1547 return 0;
1548 }
1549
1550 switch (cmd) {
1551 case DMA_TERMINATE_ALL:
1552 plchan->state = PL08X_CHAN_IDLE;
1553
1554 if (plchan->phychan) {
1555 pl08x_stop_phy_chan(plchan->phychan);
1556
1557 /*
1558 * Mark physical channel as free and free any slave
1559 * signal
1560 */
1561 if ((plchan->phychan->signal >= 0) &&
1562 pl08x->pd->put_signal) {
1563 pl08x->pd->put_signal(plchan);
1564 plchan->phychan->signal = -1;
1565 }
1566 pl08x_put_phy_channel(pl08x, plchan->phychan);
1567 plchan->phychan = NULL;
1568 }
1569 /* Stop any pending tasklet */
1570 tasklet_disable(&plchan->tasklet);
1571 /* Dequeue jobs and free LLIs */
1572 if (plchan->at) {
1573 pl08x_free_txd(pl08x, plchan->at);
1574 plchan->at = NULL;
1575 }
1576 /* Dequeue jobs not yet fired as well */
1577 pl08x_free_txd_list(pl08x, plchan);
1578 break;
1579 case DMA_PAUSE:
1580 pl08x_pause_phy_chan(plchan->phychan);
1581 plchan->state = PL08X_CHAN_PAUSED;
1582 break;
1583 case DMA_RESUME:
1584 pl08x_resume_phy_chan(plchan->phychan);
1585 plchan->state = PL08X_CHAN_RUNNING;
1586 break;
1587 default:
1588 /* Unknown command */
1589 ret = -ENXIO;
1590 break;
1591 }
1592
1593 spin_unlock_irqrestore(&plchan->lock, flags);
1594
1595 return ret;
1596}
1597
1598bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1599{
1600 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1601 char *name = chan_id;
1602
1603 /* Check that the channel is not taken! */
1604 if (!strcmp(plchan->name, name))
1605 return true;
1606
1607 return false;
1608}
1609
1610/*
1611 * Just check that the device is there and active
1612 * TODO: turn this bit on/off depending on the number of
1613 * physical channels actually used, if it is zero... well
1614 * shut it off. That will save some power. Cut the clock
1615 * at the same time.
1616 */
1617static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1618{
1619 u32 val;
1620
1621 val = readl(pl08x->base + PL080_CONFIG);
1622 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1623 /* We implictly clear bit 1 and that means little-endian mode */
1624 val |= PL080_CONFIG_ENABLE;
1625 writel(val, pl08x->base + PL080_CONFIG);
1626}
1627
1628static void pl08x_tasklet(unsigned long data)
1629{
1630 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1631 struct pl08x_phy_chan *phychan = plchan->phychan;
1632 struct pl08x_driver_data *pl08x = plchan->host;
1633
1634 if (!plchan)
1635 BUG();
1636
1637 spin_lock(&plchan->lock);
1638
1639 if (plchan->at) {
1640 dma_async_tx_callback callback =
1641 plchan->at->tx.callback;
1642 void *callback_param =
1643 plchan->at->tx.callback_param;
1644
1645 /*
1646 * Update last completed
1647 */
1648 plchan->lc =
1649 (plchan->at->tx.cookie);
1650
1651 /*
1652 * Callback to signal completion
1653 */
1654 if (callback)
1655 callback(callback_param);
1656
1657 /*
1658 * Device callbacks should NOT clear
1659 * the current transaction on the channel
1660 * Linus: sometimes they should?
1661 */
1662 if (!plchan->at)
1663 BUG();
1664
1665 /*
1666 * Free the descriptor if it's not for a device
1667 * using a circular buffer
1668 */
1669 if (!plchan->at->cd->circular_buffer) {
1670 pl08x_free_txd(pl08x, plchan->at);
1671 plchan->at = NULL;
1672 }
1673 /*
1674 * else descriptor for circular
1675 * buffers only freed when
1676 * client has disabled dma
1677 */
1678 }
1679 /*
1680 * If a new descriptor is queued, set it up
1681 * plchan->at is NULL here
1682 */
1683 if (!list_empty(&plchan->desc_list)) {
1684 struct pl08x_txd *next;
1685
1686 next = list_first_entry(&plchan->desc_list,
1687 struct pl08x_txd,
1688 node);
1689 list_del(&next->node);
1690 plchan->at = next;
1691 /* Configure the physical channel for the next txd */
1692 pl08x_config_phychan_for_txd(plchan);
1693 pl08x_set_cregs(pl08x, plchan->phychan);
1694 pl08x_enable_phy_chan(pl08x, plchan->phychan);
1695 } else {
1696 struct pl08x_dma_chan *waiting = NULL;
1697
1698 /*
1699 * No more jobs, so free up the physical channel
1700 * Free any allocated signal on slave transfers too
1701 */
1702 if ((phychan->signal >= 0) && pl08x->pd->put_signal) {
1703 pl08x->pd->put_signal(plchan);
1704 phychan->signal = -1;
1705 }
1706 pl08x_put_phy_channel(pl08x, phychan);
1707 plchan->phychan = NULL;
1708 plchan->state = PL08X_CHAN_IDLE;
1709
1710 /*
1711 * And NOW before anyone else can grab that free:d
1712 * up physical channel, see if there is some memcpy
1713 * pending that seriously needs to start because of
1714 * being stacked up while we were choking the
1715 * physical channels with data.
1716 */
1717 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1718 chan.device_node) {
1719 if (waiting->state == PL08X_CHAN_WAITING &&
1720 waiting->waiting != NULL) {
1721 int ret;
1722
1723 /* This should REALLY not fail now */
1724 ret = prep_phy_channel(waiting,
1725 waiting->waiting);
1726 BUG_ON(ret);
1727 waiting->state = PL08X_CHAN_RUNNING;
1728 waiting->waiting = NULL;
1729 pl08x_issue_pending(&waiting->chan);
1730 break;
1731 }
1732 }
1733 }
1734
1735 spin_unlock(&plchan->lock);
1736}
1737
1738static irqreturn_t pl08x_irq(int irq, void *dev)
1739{
1740 struct pl08x_driver_data *pl08x = dev;
1741 u32 mask = 0;
1742 u32 val;
1743 int i;
1744
1745 val = readl(pl08x->base + PL080_ERR_STATUS);
1746 if (val) {
1747 /*
1748 * An error interrupt (on one or more channels)
1749 */
1750 dev_err(&pl08x->adev->dev,
1751 "%s error interrupt, register value 0x%08x\n",
1752 __func__, val);
1753 /*
1754 * Simply clear ALL PL08X error interrupts,
1755 * regardless of channel and cause
1756 * FIXME: should be 0x00000003 on PL081 really.
1757 */
1758 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1759 }
1760 val = readl(pl08x->base + PL080_INT_STATUS);
1761 for (i = 0; i < pl08x->vd->channels; i++) {
1762 if ((1 << i) & val) {
1763 /* Locate physical channel */
1764 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1765 struct pl08x_dma_chan *plchan = phychan->serving;
1766
1767 /* Schedule tasklet on this channel */
1768 tasklet_schedule(&plchan->tasklet);
1769
1770 mask |= (1 << i);
1771 }
1772 }
1773 /*
1774 * Clear only the terminal interrupts on channels we processed
1775 */
1776 writel(mask, pl08x->base + PL080_TC_CLEAR);
1777
1778 return mask ? IRQ_HANDLED : IRQ_NONE;
1779}
1780
1781/*
1782 * Initialise the DMAC memcpy/slave channels.
1783 * Make a local wrapper to hold required data
1784 */
1785static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1786 struct dma_device *dmadev,
1787 unsigned int channels,
1788 bool slave)
1789{
1790 struct pl08x_dma_chan *chan;
1791 int i;
1792
1793 INIT_LIST_HEAD(&dmadev->channels);
1794 /*
1795 * Register as many many memcpy as we have physical channels,
1796 * we won't always be able to use all but the code will have
1797 * to cope with that situation.
1798 */
1799 for (i = 0; i < channels; i++) {
1800 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1801 if (!chan) {
1802 dev_err(&pl08x->adev->dev,
1803 "%s no memory for channel\n", __func__);
1804 return -ENOMEM;
1805 }
1806
1807 chan->host = pl08x;
1808 chan->state = PL08X_CHAN_IDLE;
1809
1810 if (slave) {
1811 chan->slave = true;
1812 chan->name = pl08x->pd->slave_channels[i].bus_id;
1813 chan->cd = &pl08x->pd->slave_channels[i];
1814 } else {
1815 chan->cd = &pl08x->pd->memcpy_channel;
1816 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1817 if (!chan->name) {
1818 kfree(chan);
1819 return -ENOMEM;
1820 }
1821 }
1822 dev_info(&pl08x->adev->dev,
1823 "initialize virtual channel \"%s\"\n",
1824 chan->name);
1825
1826 chan->chan.device = dmadev;
1827 atomic_set(&chan->last_issued, 0);
1828 chan->lc = atomic_read(&chan->last_issued);
1829
1830 spin_lock_init(&chan->lock);
1831 INIT_LIST_HEAD(&chan->desc_list);
1832 tasklet_init(&chan->tasklet, pl08x_tasklet,
1833 (unsigned long) chan);
1834
1835 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1836 }
1837 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1838 i, slave ? "slave" : "memcpy");
1839 return i;
1840}
1841
1842static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1843{
1844 struct pl08x_dma_chan *chan = NULL;
1845 struct pl08x_dma_chan *next;
1846
1847 list_for_each_entry_safe(chan,
1848 next, &dmadev->channels, chan.device_node) {
1849 list_del(&chan->chan.device_node);
1850 kfree(chan);
1851 }
1852}
1853
1854#ifdef CONFIG_DEBUG_FS
1855static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1856{
1857 switch (state) {
1858 case PL08X_CHAN_IDLE:
1859 return "idle";
1860 case PL08X_CHAN_RUNNING:
1861 return "running";
1862 case PL08X_CHAN_PAUSED:
1863 return "paused";
1864 case PL08X_CHAN_WAITING:
1865 return "waiting";
1866 default:
1867 break;
1868 }
1869 return "UNKNOWN STATE";
1870}
1871
1872static int pl08x_debugfs_show(struct seq_file *s, void *data)
1873{
1874 struct pl08x_driver_data *pl08x = s->private;
1875 struct pl08x_dma_chan *chan;
1876 struct pl08x_phy_chan *ch;
1877 unsigned long flags;
1878 int i;
1879
1880 seq_printf(s, "PL08x physical channels:\n");
1881 seq_printf(s, "CHANNEL:\tUSER:\n");
1882 seq_printf(s, "--------\t-----\n");
1883 for (i = 0; i < pl08x->vd->channels; i++) {
1884 struct pl08x_dma_chan *virt_chan;
1885
1886 ch = &pl08x->phy_chans[i];
1887
1888 spin_lock_irqsave(&ch->lock, flags);
1889 virt_chan = ch->serving;
1890
1891 seq_printf(s, "%d\t\t%s\n",
1892 ch->id, virt_chan ? virt_chan->name : "(none)");
1893
1894 spin_unlock_irqrestore(&ch->lock, flags);
1895 }
1896
1897 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1898 seq_printf(s, "CHANNEL:\tSTATE:\n");
1899 seq_printf(s, "--------\t------\n");
1900 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1901 seq_printf(s, "%s\t\t\%s\n", chan->name,
1902 pl08x_state_str(chan->state));
1903 }
1904
1905 seq_printf(s, "\nPL08x virtual slave channels:\n");
1906 seq_printf(s, "CHANNEL:\tSTATE:\n");
1907 seq_printf(s, "--------\t------\n");
1908 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1909 seq_printf(s, "%s\t\t\%s\n", chan->name,
1910 pl08x_state_str(chan->state));
1911 }
1912
1913 return 0;
1914}
1915
1916static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1917{
1918 return single_open(file, pl08x_debugfs_show, inode->i_private);
1919}
1920
1921static const struct file_operations pl08x_debugfs_operations = {
1922 .open = pl08x_debugfs_open,
1923 .read = seq_read,
1924 .llseek = seq_lseek,
1925 .release = single_release,
1926};
1927
1928static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1929{
1930 /* Expose a simple debugfs interface to view all clocks */
1931 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1932 NULL, pl08x,
1933 &pl08x_debugfs_operations);
1934}
1935
1936#else
1937static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1938{
1939}
1940#endif
1941
1942static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1943{
1944 struct pl08x_driver_data *pl08x;
1945 struct vendor_data *vd = id->data;
1946 int ret = 0;
1947 int i;
1948
1949 ret = amba_request_regions(adev, NULL);
1950 if (ret)
1951 return ret;
1952
1953 /* Create the driver state holder */
1954 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1955 if (!pl08x) {
1956 ret = -ENOMEM;
1957 goto out_no_pl08x;
1958 }
1959
1960 /* Initialize memcpy engine */
1961 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1962 pl08x->memcpy.dev = &adev->dev;
1963 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1964 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1965 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1966 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1967 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1968 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1969 pl08x->memcpy.device_control = pl08x_control;
1970
1971 /* Initialize slave engine */
1972 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1973 pl08x->slave.dev = &adev->dev;
1974 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1975 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1976 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1977 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1978 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1979 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1980 pl08x->slave.device_control = pl08x_control;
1981
1982 /* Get the platform data */
1983 pl08x->pd = dev_get_platdata(&adev->dev);
1984 if (!pl08x->pd) {
1985 dev_err(&adev->dev, "no platform data supplied\n");
1986 goto out_no_platdata;
1987 }
1988
1989 /* Assign useful pointers to the driver state */
1990 pl08x->adev = adev;
1991 pl08x->vd = vd;
1992
1993 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1994 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1995 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1996 if (!pl08x->pool) {
1997 ret = -ENOMEM;
1998 goto out_no_lli_pool;
1999 }
2000
2001 spin_lock_init(&pl08x->lock);
2002
2003 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2004 if (!pl08x->base) {
2005 ret = -ENOMEM;
2006 goto out_no_ioremap;
2007 }
2008
2009 /* Turn on the PL08x */
2010 pl08x_ensure_on(pl08x);
2011
2012 /*
2013 * Attach the interrupt handler
2014 */
2015 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2016 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2017
2018 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2019 vd->name, pl08x);
2020 if (ret) {
2021 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2022 __func__, adev->irq[0]);
2023 goto out_no_irq;
2024 }
2025
2026 /* Initialize physical channels */
2027 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
2028 GFP_KERNEL);
2029 if (!pl08x->phy_chans) {
2030 dev_err(&adev->dev, "%s failed to allocate "
2031 "physical channel holders\n",
2032 __func__);
2033 goto out_no_phychans;
2034 }
2035
2036 for (i = 0; i < vd->channels; i++) {
2037 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2038
2039 ch->id = i;
2040 ch->base = pl08x->base + PL080_Cx_BASE(i);
2041 spin_lock_init(&ch->lock);
2042 ch->serving = NULL;
2043 ch->signal = -1;
2044 dev_info(&adev->dev,
2045 "physical channel %d is %s\n", i,
2046 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2047 }
2048
2049 /* Register as many memcpy channels as there are physical channels */
2050 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2051 pl08x->vd->channels, false);
2052 if (ret <= 0) {
2053 dev_warn(&pl08x->adev->dev,
2054 "%s failed to enumerate memcpy channels - %d\n",
2055 __func__, ret);
2056 goto out_no_memcpy;
2057 }
2058 pl08x->memcpy.chancnt = ret;
2059
2060 /* Register slave channels */
2061 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2062 pl08x->pd->num_slave_channels,
2063 true);
2064 if (ret <= 0) {
2065 dev_warn(&pl08x->adev->dev,
2066 "%s failed to enumerate slave channels - %d\n",
2067 __func__, ret);
2068 goto out_no_slave;
2069 }
2070 pl08x->slave.chancnt = ret;
2071
2072 ret = dma_async_device_register(&pl08x->memcpy);
2073 if (ret) {
2074 dev_warn(&pl08x->adev->dev,
2075 "%s failed to register memcpy as an async device - %d\n",
2076 __func__, ret);
2077 goto out_no_memcpy_reg;
2078 }
2079
2080 ret = dma_async_device_register(&pl08x->slave);
2081 if (ret) {
2082 dev_warn(&pl08x->adev->dev,
2083 "%s failed to register slave as an async device - %d\n",
2084 __func__, ret);
2085 goto out_no_slave_reg;
2086 }
2087
2088 amba_set_drvdata(adev, pl08x);
2089 init_pl08x_debugfs(pl08x);
2090 dev_info(&pl08x->adev->dev, "ARM(R) %s DMA block initialized @%08x\n",
2091 vd->name, adev->res.start);
2092 return 0;
2093
2094out_no_slave_reg:
2095 dma_async_device_unregister(&pl08x->memcpy);
2096out_no_memcpy_reg:
2097 pl08x_free_virtual_channels(&pl08x->slave);
2098out_no_slave:
2099 pl08x_free_virtual_channels(&pl08x->memcpy);
2100out_no_memcpy:
2101 kfree(pl08x->phy_chans);
2102out_no_phychans:
2103 free_irq(adev->irq[0], pl08x);
2104out_no_irq:
2105 iounmap(pl08x->base);
2106out_no_ioremap:
2107 dma_pool_destroy(pl08x->pool);
2108out_no_lli_pool:
2109out_no_platdata:
2110 kfree(pl08x);
2111out_no_pl08x:
2112 amba_release_regions(adev);
2113 return ret;
2114}
2115
2116/* PL080 has 8 channels and the PL080 have just 2 */
2117static struct vendor_data vendor_pl080 = {
2118 .name = "PL080",
2119 .channels = 8,
2120 .dualmaster = true,
2121};
2122
2123static struct vendor_data vendor_pl081 = {
2124 .name = "PL081",
2125 .channels = 2,
2126 .dualmaster = false,
2127};
2128
2129static struct amba_id pl08x_ids[] = {
2130 /* PL080 */
2131 {
2132 .id = 0x00041080,
2133 .mask = 0x000fffff,
2134 .data = &vendor_pl080,
2135 },
2136 /* PL081 */
2137 {
2138 .id = 0x00041081,
2139 .mask = 0x000fffff,
2140 .data = &vendor_pl081,
2141 },
2142 /* Nomadik 8815 PL080 variant */
2143 {
2144 .id = 0x00280880,
2145 .mask = 0x00ffffff,
2146 .data = &vendor_pl080,
2147 },
2148 { 0, 0 },
2149};
2150
2151static struct amba_driver pl08x_amba_driver = {
2152 .drv.name = DRIVER_NAME,
2153 .id_table = pl08x_ids,
2154 .probe = pl08x_probe,
2155};
2156
2157static int __init pl08x_init(void)
2158{
2159 int retval;
2160 retval = amba_driver_register(&pl08x_amba_driver);
2161 if (retval)
2162 printk(KERN_WARNING DRIVER_NAME
2163 "failed to register as an amba device (%d)\n",
2164 retval);
2165 return retval;
2166}
2167subsys_initcall(pl08x_init);
diff --git a/drivers/dma/dmaengine.c b/drivers/dma/dmaengine.c
index 9d31d5eb95c1..235153cd7ac5 100644
--- a/drivers/dma/dmaengine.c
+++ b/drivers/dma/dmaengine.c
@@ -690,8 +690,12 @@ int dma_async_device_register(struct dma_device *device)
690 !device->device_prep_dma_memset); 690 !device->device_prep_dma_memset);
691 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && 691 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
692 !device->device_prep_dma_interrupt); 692 !device->device_prep_dma_interrupt);
693 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
694 !device->device_prep_dma_sg);
693 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && 695 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
694 !device->device_prep_slave_sg); 696 !device->device_prep_slave_sg);
697 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
698 !device->device_prep_dma_cyclic);
695 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && 699 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
696 !device->device_control); 700 !device->device_control);
697 701
diff --git a/drivers/dma/fsldma.c b/drivers/dma/fsldma.c
index cea08bed9cf9..286c3ac6bdcc 100644
--- a/drivers/dma/fsldma.c
+++ b/drivers/dma/fsldma.c
@@ -35,9 +35,10 @@
35#include <linux/dmapool.h> 35#include <linux/dmapool.h>
36#include <linux/of_platform.h> 36#include <linux/of_platform.h>
37 37
38#include <asm/fsldma.h>
39#include "fsldma.h" 38#include "fsldma.h"
40 39
40static const char msg_ld_oom[] = "No free memory for link descriptor\n";
41
41static void dma_init(struct fsldma_chan *chan) 42static void dma_init(struct fsldma_chan *chan)
42{ 43{
43 /* Reset the channel */ 44 /* Reset the channel */
@@ -499,7 +500,7 @@ fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
499 500
500 new = fsl_dma_alloc_descriptor(chan); 501 new = fsl_dma_alloc_descriptor(chan);
501 if (!new) { 502 if (!new) {
502 dev_err(chan->dev, "No free memory for link descriptor\n"); 503 dev_err(chan->dev, msg_ld_oom);
503 return NULL; 504 return NULL;
504 } 505 }
505 506
@@ -536,8 +537,7 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
536 /* Allocate the link descriptor from DMA pool */ 537 /* Allocate the link descriptor from DMA pool */
537 new = fsl_dma_alloc_descriptor(chan); 538 new = fsl_dma_alloc_descriptor(chan);
538 if (!new) { 539 if (!new) {
539 dev_err(chan->dev, 540 dev_err(chan->dev, msg_ld_oom);
540 "No free memory for link descriptor\n");
541 goto fail; 541 goto fail;
542 } 542 }
543#ifdef FSL_DMA_LD_DEBUG 543#ifdef FSL_DMA_LD_DEBUG
@@ -583,223 +583,205 @@ fail:
583 return NULL; 583 return NULL;
584} 584}
585 585
586/** 586static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
587 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 587 struct scatterlist *dst_sg, unsigned int dst_nents,
588 * @chan: DMA channel 588 struct scatterlist *src_sg, unsigned int src_nents,
589 * @sgl: scatterlist to transfer to/from 589 unsigned long flags)
590 * @sg_len: number of entries in @scatterlist
591 * @direction: DMA direction
592 * @flags: DMAEngine flags
593 *
594 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
595 * DMA_SLAVE API, this gets the device-specific information from the
596 * chan->private variable.
597 */
598static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
599 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
600 enum dma_data_direction direction, unsigned long flags)
601{ 590{
602 struct fsldma_chan *chan;
603 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL; 591 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
604 struct fsl_dma_slave *slave; 592 struct fsldma_chan *chan = to_fsl_chan(dchan);
605 size_t copy; 593 size_t dst_avail, src_avail;
606 594 dma_addr_t dst, src;
607 int i; 595 size_t len;
608 struct scatterlist *sg;
609 size_t sg_used;
610 size_t hw_used;
611 struct fsl_dma_hw_addr *hw;
612 dma_addr_t dma_dst, dma_src;
613 596
614 if (!dchan) 597 /* basic sanity checks */
598 if (dst_nents == 0 || src_nents == 0)
615 return NULL; 599 return NULL;
616 600
617 if (!dchan->private) 601 if (dst_sg == NULL || src_sg == NULL)
618 return NULL; 602 return NULL;
619 603
620 chan = to_fsl_chan(dchan); 604 /*
621 slave = dchan->private; 605 * TODO: should we check that both scatterlists have the same
606 * TODO: number of bytes in total? Is that really an error?
607 */
622 608
623 if (list_empty(&slave->addresses)) 609 /* get prepared for the loop */
624 return NULL; 610 dst_avail = sg_dma_len(dst_sg);
611 src_avail = sg_dma_len(src_sg);
625 612
626 hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry); 613 /* run until we are out of scatterlist entries */
627 hw_used = 0; 614 while (true) {
628 615
629 /* 616 /* create the largest transaction possible */
630 * Build the hardware transaction to copy from the scatterlist to 617 len = min_t(size_t, src_avail, dst_avail);
631 * the hardware, or from the hardware to the scatterlist 618 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
632 * 619 if (len == 0)
633 * If you are copying from the hardware to the scatterlist and it 620 goto fetch;
634 * takes two hardware entries to fill an entire page, then both 621
635 * hardware entries will be coalesced into the same page 622 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
636 * 623 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
637 * If you are copying from the scatterlist to the hardware and a 624
638 * single page can fill two hardware entries, then the data will 625 /* allocate and populate the descriptor */
639 * be read out of the page into the first hardware entry, and so on 626 new = fsl_dma_alloc_descriptor(chan);
640 */ 627 if (!new) {
641 for_each_sg(sgl, sg, sg_len, i) { 628 dev_err(chan->dev, msg_ld_oom);
642 sg_used = 0; 629 goto fail;
643 630 }
644 /* Loop until the entire scatterlist entry is used */
645 while (sg_used < sg_dma_len(sg)) {
646
647 /*
648 * If we've used up the current hardware address/length
649 * pair, we need to load a new one
650 *
651 * This is done in a while loop so that descriptors with
652 * length == 0 will be skipped
653 */
654 while (hw_used >= hw->length) {
655
656 /*
657 * If the current hardware entry is the last
658 * entry in the list, we're finished
659 */
660 if (list_is_last(&hw->entry, &slave->addresses))
661 goto finished;
662
663 /* Get the next hardware address/length pair */
664 hw = list_entry(hw->entry.next,
665 struct fsl_dma_hw_addr, entry);
666 hw_used = 0;
667 }
668
669 /* Allocate the link descriptor from DMA pool */
670 new = fsl_dma_alloc_descriptor(chan);
671 if (!new) {
672 dev_err(chan->dev, "No free memory for "
673 "link descriptor\n");
674 goto fail;
675 }
676#ifdef FSL_DMA_LD_DEBUG 631#ifdef FSL_DMA_LD_DEBUG
677 dev_dbg(chan->dev, "new link desc alloc %p\n", new); 632 dev_dbg(chan->dev, "new link desc alloc %p\n", new);
678#endif 633#endif
679 634
680 /* 635 set_desc_cnt(chan, &new->hw, len);
681 * Calculate the maximum number of bytes to transfer, 636 set_desc_src(chan, &new->hw, src);
682 * making sure it is less than the DMA controller limit 637 set_desc_dst(chan, &new->hw, dst);
683 */
684 copy = min_t(size_t, sg_dma_len(sg) - sg_used,
685 hw->length - hw_used);
686 copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
687
688 /*
689 * DMA_FROM_DEVICE
690 * from the hardware to the scatterlist
691 *
692 * DMA_TO_DEVICE
693 * from the scatterlist to the hardware
694 */
695 if (direction == DMA_FROM_DEVICE) {
696 dma_src = hw->address + hw_used;
697 dma_dst = sg_dma_address(sg) + sg_used;
698 } else {
699 dma_src = sg_dma_address(sg) + sg_used;
700 dma_dst = hw->address + hw_used;
701 }
702
703 /* Fill in the descriptor */
704 set_desc_cnt(chan, &new->hw, copy);
705 set_desc_src(chan, &new->hw, dma_src);
706 set_desc_dst(chan, &new->hw, dma_dst);
707
708 /*
709 * If this is not the first descriptor, chain the
710 * current descriptor after the previous descriptor
711 */
712 if (!first) {
713 first = new;
714 } else {
715 set_desc_next(chan, &prev->hw,
716 new->async_tx.phys);
717 }
718
719 new->async_tx.cookie = 0;
720 async_tx_ack(&new->async_tx);
721
722 prev = new;
723 sg_used += copy;
724 hw_used += copy;
725
726 /* Insert the link descriptor into the LD ring */
727 list_add_tail(&new->node, &first->tx_list);
728 }
729 }
730 638
731finished: 639 if (!first)
640 first = new;
641 else
642 set_desc_next(chan, &prev->hw, new->async_tx.phys);
732 643
733 /* All of the hardware address/length pairs had length == 0 */ 644 new->async_tx.cookie = 0;
734 if (!first || !new) 645 async_tx_ack(&new->async_tx);
735 return NULL; 646 prev = new;
736 647
737 new->async_tx.flags = flags; 648 /* Insert the link descriptor to the LD ring */
738 new->async_tx.cookie = -EBUSY; 649 list_add_tail(&new->node, &first->tx_list);
739 650
740 /* Set End-of-link to the last link descriptor of new list */ 651 /* update metadata */
741 set_ld_eol(chan, new); 652 dst_avail -= len;
653 src_avail -= len;
654
655fetch:
656 /* fetch the next dst scatterlist entry */
657 if (dst_avail == 0) {
658
659 /* no more entries: we're done */
660 if (dst_nents == 0)
661 break;
662
663 /* fetch the next entry: if there are no more: done */
664 dst_sg = sg_next(dst_sg);
665 if (dst_sg == NULL)
666 break;
667
668 dst_nents--;
669 dst_avail = sg_dma_len(dst_sg);
670 }
742 671
743 /* Enable extra controller features */ 672 /* fetch the next src scatterlist entry */
744 if (chan->set_src_loop_size) 673 if (src_avail == 0) {
745 chan->set_src_loop_size(chan, slave->src_loop_size);
746 674
747 if (chan->set_dst_loop_size) 675 /* no more entries: we're done */
748 chan->set_dst_loop_size(chan, slave->dst_loop_size); 676 if (src_nents == 0)
677 break;
749 678
750 if (chan->toggle_ext_start) 679 /* fetch the next entry: if there are no more: done */
751 chan->toggle_ext_start(chan, slave->external_start); 680 src_sg = sg_next(src_sg);
681 if (src_sg == NULL)
682 break;
752 683
753 if (chan->toggle_ext_pause) 684 src_nents--;
754 chan->toggle_ext_pause(chan, slave->external_pause); 685 src_avail = sg_dma_len(src_sg);
686 }
687 }
755 688
756 if (chan->set_request_count) 689 new->async_tx.flags = flags; /* client is in control of this ack */
757 chan->set_request_count(chan, slave->request_count); 690 new->async_tx.cookie = -EBUSY;
691
692 /* Set End-of-link to the last link descriptor of new list */
693 set_ld_eol(chan, new);
758 694
759 return &first->async_tx; 695 return &first->async_tx;
760 696
761fail: 697fail:
762 /* If first was not set, then we failed to allocate the very first
763 * descriptor, and we're done */
764 if (!first) 698 if (!first)
765 return NULL; 699 return NULL;
766 700
701 fsldma_free_desc_list_reverse(chan, &first->tx_list);
702 return NULL;
703}
704
705/**
706 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
707 * @chan: DMA channel
708 * @sgl: scatterlist to transfer to/from
709 * @sg_len: number of entries in @scatterlist
710 * @direction: DMA direction
711 * @flags: DMAEngine flags
712 *
713 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
714 * DMA_SLAVE API, this gets the device-specific information from the
715 * chan->private variable.
716 */
717static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
718 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
719 enum dma_data_direction direction, unsigned long flags)
720{
767 /* 721 /*
768 * First is set, so all of the descriptors we allocated have been added 722 * This operation is not supported on the Freescale DMA controller
769 * to first->tx_list, INCLUDING "first" itself. Therefore we
770 * must traverse the list backwards freeing each descriptor in turn
771 * 723 *
772 * We're re-using variables for the loop, oh well 724 * However, we need to provide the function pointer to allow the
725 * device_control() method to work.
773 */ 726 */
774 fsldma_free_desc_list_reverse(chan, &first->tx_list);
775 return NULL; 727 return NULL;
776} 728}
777 729
778static int fsl_dma_device_control(struct dma_chan *dchan, 730static int fsl_dma_device_control(struct dma_chan *dchan,
779 enum dma_ctrl_cmd cmd, unsigned long arg) 731 enum dma_ctrl_cmd cmd, unsigned long arg)
780{ 732{
733 struct dma_slave_config *config;
781 struct fsldma_chan *chan; 734 struct fsldma_chan *chan;
782 unsigned long flags; 735 unsigned long flags;
783 736 int size;
784 /* Only supports DMA_TERMINATE_ALL */
785 if (cmd != DMA_TERMINATE_ALL)
786 return -ENXIO;
787 737
788 if (!dchan) 738 if (!dchan)
789 return -EINVAL; 739 return -EINVAL;
790 740
791 chan = to_fsl_chan(dchan); 741 chan = to_fsl_chan(dchan);
792 742
793 /* Halt the DMA engine */ 743 switch (cmd) {
794 dma_halt(chan); 744 case DMA_TERMINATE_ALL:
745 /* Halt the DMA engine */
746 dma_halt(chan);
795 747
796 spin_lock_irqsave(&chan->desc_lock, flags); 748 spin_lock_irqsave(&chan->desc_lock, flags);
797 749
798 /* Remove and free all of the descriptors in the LD queue */ 750 /* Remove and free all of the descriptors in the LD queue */
799 fsldma_free_desc_list(chan, &chan->ld_pending); 751 fsldma_free_desc_list(chan, &chan->ld_pending);
800 fsldma_free_desc_list(chan, &chan->ld_running); 752 fsldma_free_desc_list(chan, &chan->ld_running);
801 753
802 spin_unlock_irqrestore(&chan->desc_lock, flags); 754 spin_unlock_irqrestore(&chan->desc_lock, flags);
755 return 0;
756
757 case DMA_SLAVE_CONFIG:
758 config = (struct dma_slave_config *)arg;
759
760 /* make sure the channel supports setting burst size */
761 if (!chan->set_request_count)
762 return -ENXIO;
763
764 /* we set the controller burst size depending on direction */
765 if (config->direction == DMA_TO_DEVICE)
766 size = config->dst_addr_width * config->dst_maxburst;
767 else
768 size = config->src_addr_width * config->src_maxburst;
769
770 chan->set_request_count(chan, size);
771 return 0;
772
773 case FSLDMA_EXTERNAL_START:
774
775 /* make sure the channel supports external start */
776 if (!chan->toggle_ext_start)
777 return -ENXIO;
778
779 chan->toggle_ext_start(chan, arg);
780 return 0;
781
782 default:
783 return -ENXIO;
784 }
803 785
804 return 0; 786 return 0;
805} 787}
@@ -1327,11 +1309,13 @@ static int __devinit fsldma_of_probe(struct platform_device *op,
1327 1309
1328 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1310 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1329 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); 1311 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1312 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1330 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); 1313 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1331 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1314 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1332 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1315 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1333 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; 1316 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1334 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1317 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1318 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1335 fdev->common.device_tx_status = fsl_tx_status; 1319 fdev->common.device_tx_status = fsl_tx_status;
1336 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1320 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1337 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg; 1321 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
diff --git a/drivers/dma/imx-dma.c b/drivers/dma/imx-dma.c
new file mode 100644
index 000000000000..346be6218058
--- /dev/null
+++ b/drivers/dma/imx-dma.c
@@ -0,0 +1,422 @@
1/*
2 * drivers/dma/imx-dma.c
3 *
4 * This file contains a driver for the Freescale i.MX DMA engine
5 * found on i.MX1/21/27
6 *
7 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 *
9 * The code contained herein is licensed under the GNU General Public
10 * License. You may obtain a copy of the GNU General Public License
11 * Version 2 or later at the following locations:
12 *
13 * http://www.opensource.org/licenses/gpl-license.html
14 * http://www.gnu.org/copyleft/gpl.html
15 */
16#include <linux/init.h>
17#include <linux/types.h>
18#include <linux/mm.h>
19#include <linux/interrupt.h>
20#include <linux/spinlock.h>
21#include <linux/device.h>
22#include <linux/dma-mapping.h>
23#include <linux/slab.h>
24#include <linux/platform_device.h>
25#include <linux/dmaengine.h>
26
27#include <asm/irq.h>
28#include <mach/dma-v1.h>
29#include <mach/hardware.h>
30
31struct imxdma_channel {
32 struct imxdma_engine *imxdma;
33 unsigned int channel;
34 unsigned int imxdma_channel;
35
36 enum dma_slave_buswidth word_size;
37 dma_addr_t per_address;
38 u32 watermark_level;
39 struct dma_chan chan;
40 spinlock_t lock;
41 struct dma_async_tx_descriptor desc;
42 dma_cookie_t last_completed;
43 enum dma_status status;
44 int dma_request;
45 struct scatterlist *sg_list;
46};
47
48#define MAX_DMA_CHANNELS 8
49
50struct imxdma_engine {
51 struct device *dev;
52 struct dma_device dma_device;
53 struct imxdma_channel channel[MAX_DMA_CHANNELS];
54};
55
56static struct imxdma_channel *to_imxdma_chan(struct dma_chan *chan)
57{
58 return container_of(chan, struct imxdma_channel, chan);
59}
60
61static void imxdma_handle(struct imxdma_channel *imxdmac)
62{
63 if (imxdmac->desc.callback)
64 imxdmac->desc.callback(imxdmac->desc.callback_param);
65 imxdmac->last_completed = imxdmac->desc.cookie;
66}
67
68static void imxdma_irq_handler(int channel, void *data)
69{
70 struct imxdma_channel *imxdmac = data;
71
72 imxdmac->status = DMA_SUCCESS;
73 imxdma_handle(imxdmac);
74}
75
76static void imxdma_err_handler(int channel, void *data, int error)
77{
78 struct imxdma_channel *imxdmac = data;
79
80 imxdmac->status = DMA_ERROR;
81 imxdma_handle(imxdmac);
82}
83
84static void imxdma_progression(int channel, void *data,
85 struct scatterlist *sg)
86{
87 struct imxdma_channel *imxdmac = data;
88
89 imxdmac->status = DMA_SUCCESS;
90 imxdma_handle(imxdmac);
91}
92
93static int imxdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
94 unsigned long arg)
95{
96 struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
97 struct dma_slave_config *dmaengine_cfg = (void *)arg;
98 int ret;
99 unsigned int mode = 0;
100
101 switch (cmd) {
102 case DMA_TERMINATE_ALL:
103 imxdmac->status = DMA_ERROR;
104 imx_dma_disable(imxdmac->imxdma_channel);
105 return 0;
106 case DMA_SLAVE_CONFIG:
107 if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
108 imxdmac->per_address = dmaengine_cfg->src_addr;
109 imxdmac->watermark_level = dmaengine_cfg->src_maxburst;
110 imxdmac->word_size = dmaengine_cfg->src_addr_width;
111 } else {
112 imxdmac->per_address = dmaengine_cfg->dst_addr;
113 imxdmac->watermark_level = dmaengine_cfg->dst_maxburst;
114 imxdmac->word_size = dmaengine_cfg->dst_addr_width;
115 }
116
117 switch (imxdmac->word_size) {
118 case DMA_SLAVE_BUSWIDTH_1_BYTE:
119 mode = IMX_DMA_MEMSIZE_8;
120 break;
121 case DMA_SLAVE_BUSWIDTH_2_BYTES:
122 mode = IMX_DMA_MEMSIZE_16;
123 break;
124 default:
125 case DMA_SLAVE_BUSWIDTH_4_BYTES:
126 mode = IMX_DMA_MEMSIZE_32;
127 break;
128 }
129 ret = imx_dma_config_channel(imxdmac->imxdma_channel,
130 mode | IMX_DMA_TYPE_FIFO,
131 IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
132 imxdmac->dma_request, 1);
133
134 if (ret)
135 return ret;
136
137 imx_dma_config_burstlen(imxdmac->imxdma_channel, imxdmac->watermark_level);
138
139 return 0;
140 default:
141 return -ENOSYS;
142 }
143
144 return -EINVAL;
145}
146
147static enum dma_status imxdma_tx_status(struct dma_chan *chan,
148 dma_cookie_t cookie,
149 struct dma_tx_state *txstate)
150{
151 struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
152 dma_cookie_t last_used;
153 enum dma_status ret;
154
155 last_used = chan->cookie;
156
157 ret = dma_async_is_complete(cookie, imxdmac->last_completed, last_used);
158 dma_set_tx_state(txstate, imxdmac->last_completed, last_used, 0);
159
160 return ret;
161}
162
163static dma_cookie_t imxdma_assign_cookie(struct imxdma_channel *imxdma)
164{
165 dma_cookie_t cookie = imxdma->chan.cookie;
166
167 if (++cookie < 0)
168 cookie = 1;
169
170 imxdma->chan.cookie = cookie;
171 imxdma->desc.cookie = cookie;
172
173 return cookie;
174}
175
176static dma_cookie_t imxdma_tx_submit(struct dma_async_tx_descriptor *tx)
177{
178 struct imxdma_channel *imxdmac = to_imxdma_chan(tx->chan);
179 dma_cookie_t cookie;
180
181 spin_lock_irq(&imxdmac->lock);
182
183 cookie = imxdma_assign_cookie(imxdmac);
184
185 imx_dma_enable(imxdmac->imxdma_channel);
186
187 spin_unlock_irq(&imxdmac->lock);
188
189 return cookie;
190}
191
192static int imxdma_alloc_chan_resources(struct dma_chan *chan)
193{
194 struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
195 struct imx_dma_data *data = chan->private;
196
197 imxdmac->dma_request = data->dma_request;
198
199 dma_async_tx_descriptor_init(&imxdmac->desc, chan);
200 imxdmac->desc.tx_submit = imxdma_tx_submit;
201 /* txd.flags will be overwritten in prep funcs */
202 imxdmac->desc.flags = DMA_CTRL_ACK;
203
204 imxdmac->status = DMA_SUCCESS;
205
206 return 0;
207}
208
209static void imxdma_free_chan_resources(struct dma_chan *chan)
210{
211 struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
212
213 imx_dma_disable(imxdmac->imxdma_channel);
214
215 if (imxdmac->sg_list) {
216 kfree(imxdmac->sg_list);
217 imxdmac->sg_list = NULL;
218 }
219}
220
221static struct dma_async_tx_descriptor *imxdma_prep_slave_sg(
222 struct dma_chan *chan, struct scatterlist *sgl,
223 unsigned int sg_len, enum dma_data_direction direction,
224 unsigned long flags)
225{
226 struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
227 struct scatterlist *sg;
228 int i, ret, dma_length = 0;
229 unsigned int dmamode;
230
231 if (imxdmac->status == DMA_IN_PROGRESS)
232 return NULL;
233
234 imxdmac->status = DMA_IN_PROGRESS;
235
236 for_each_sg(sgl, sg, sg_len, i) {
237 dma_length += sg->length;
238 }
239
240 if (direction == DMA_FROM_DEVICE)
241 dmamode = DMA_MODE_READ;
242 else
243 dmamode = DMA_MODE_WRITE;
244
245 ret = imx_dma_setup_sg(imxdmac->imxdma_channel, sgl, sg_len,
246 dma_length, imxdmac->per_address, dmamode);
247 if (ret)
248 return NULL;
249
250 return &imxdmac->desc;
251}
252
253static struct dma_async_tx_descriptor *imxdma_prep_dma_cyclic(
254 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
255 size_t period_len, enum dma_data_direction direction)
256{
257 struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
258 struct imxdma_engine *imxdma = imxdmac->imxdma;
259 int i, ret;
260 unsigned int periods = buf_len / period_len;
261 unsigned int dmamode;
262
263 dev_dbg(imxdma->dev, "%s channel: %d buf_len=%d period_len=%d\n",
264 __func__, imxdmac->channel, buf_len, period_len);
265
266 if (imxdmac->status == DMA_IN_PROGRESS)
267 return NULL;
268 imxdmac->status = DMA_IN_PROGRESS;
269
270 ret = imx_dma_setup_progression_handler(imxdmac->imxdma_channel,
271 imxdma_progression);
272 if (ret) {
273 dev_err(imxdma->dev, "Failed to setup the DMA handler\n");
274 return NULL;
275 }
276
277 if (imxdmac->sg_list)
278 kfree(imxdmac->sg_list);
279
280 imxdmac->sg_list = kcalloc(periods + 1,
281 sizeof(struct scatterlist), GFP_KERNEL);
282 if (!imxdmac->sg_list)
283 return NULL;
284
285 sg_init_table(imxdmac->sg_list, periods);
286
287 for (i = 0; i < periods; i++) {
288 imxdmac->sg_list[i].page_link = 0;
289 imxdmac->sg_list[i].offset = 0;
290 imxdmac->sg_list[i].dma_address = dma_addr;
291 imxdmac->sg_list[i].length = period_len;
292 dma_addr += period_len;
293 }
294
295 /* close the loop */
296 imxdmac->sg_list[periods].offset = 0;
297 imxdmac->sg_list[periods].length = 0;
298 imxdmac->sg_list[periods].page_link =
299 ((unsigned long)imxdmac->sg_list | 0x01) & ~0x02;
300
301 if (direction == DMA_FROM_DEVICE)
302 dmamode = DMA_MODE_READ;
303 else
304 dmamode = DMA_MODE_WRITE;
305
306 ret = imx_dma_setup_sg(imxdmac->imxdma_channel, imxdmac->sg_list, periods,
307 IMX_DMA_LENGTH_LOOP, imxdmac->per_address, dmamode);
308 if (ret)
309 return NULL;
310
311 return &imxdmac->desc;
312}
313
314static void imxdma_issue_pending(struct dma_chan *chan)
315{
316 /*
317 * Nothing to do. We only have a single descriptor
318 */
319}
320
321static int __init imxdma_probe(struct platform_device *pdev)
322{
323 struct imxdma_engine *imxdma;
324 int ret, i;
325
326 imxdma = kzalloc(sizeof(*imxdma), GFP_KERNEL);
327 if (!imxdma)
328 return -ENOMEM;
329
330 INIT_LIST_HEAD(&imxdma->dma_device.channels);
331
332 /* Initialize channel parameters */
333 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
334 struct imxdma_channel *imxdmac = &imxdma->channel[i];
335
336 imxdmac->imxdma_channel = imx_dma_request_by_prio("dmaengine",
337 DMA_PRIO_MEDIUM);
338 if (imxdmac->channel < 0)
339 goto err_init;
340
341 imx_dma_setup_handlers(imxdmac->imxdma_channel,
342 imxdma_irq_handler, imxdma_err_handler, imxdmac);
343
344 imxdmac->imxdma = imxdma;
345 spin_lock_init(&imxdmac->lock);
346
347 dma_cap_set(DMA_SLAVE, imxdma->dma_device.cap_mask);
348 dma_cap_set(DMA_CYCLIC, imxdma->dma_device.cap_mask);
349
350 imxdmac->chan.device = &imxdma->dma_device;
351 imxdmac->chan.chan_id = i;
352 imxdmac->channel = i;
353
354 /* Add the channel to the DMAC list */
355 list_add_tail(&imxdmac->chan.device_node, &imxdma->dma_device.channels);
356 }
357
358 imxdma->dev = &pdev->dev;
359 imxdma->dma_device.dev = &pdev->dev;
360
361 imxdma->dma_device.device_alloc_chan_resources = imxdma_alloc_chan_resources;
362 imxdma->dma_device.device_free_chan_resources = imxdma_free_chan_resources;
363 imxdma->dma_device.device_tx_status = imxdma_tx_status;
364 imxdma->dma_device.device_prep_slave_sg = imxdma_prep_slave_sg;
365 imxdma->dma_device.device_prep_dma_cyclic = imxdma_prep_dma_cyclic;
366 imxdma->dma_device.device_control = imxdma_control;
367 imxdma->dma_device.device_issue_pending = imxdma_issue_pending;
368
369 platform_set_drvdata(pdev, imxdma);
370
371 ret = dma_async_device_register(&imxdma->dma_device);
372 if (ret) {
373 dev_err(&pdev->dev, "unable to register\n");
374 goto err_init;
375 }
376
377 return 0;
378
379err_init:
380 while (i-- >= 0) {
381 struct imxdma_channel *imxdmac = &imxdma->channel[i];
382 imx_dma_free(imxdmac->imxdma_channel);
383 }
384
385 kfree(imxdma);
386 return ret;
387}
388
389static int __exit imxdma_remove(struct platform_device *pdev)
390{
391 struct imxdma_engine *imxdma = platform_get_drvdata(pdev);
392 int i;
393
394 dma_async_device_unregister(&imxdma->dma_device);
395
396 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
397 struct imxdma_channel *imxdmac = &imxdma->channel[i];
398
399 imx_dma_free(imxdmac->imxdma_channel);
400 }
401
402 kfree(imxdma);
403
404 return 0;
405}
406
407static struct platform_driver imxdma_driver = {
408 .driver = {
409 .name = "imx-dma",
410 },
411 .remove = __exit_p(imxdma_remove),
412};
413
414static int __init imxdma_module_init(void)
415{
416 return platform_driver_probe(&imxdma_driver, imxdma_probe);
417}
418subsys_initcall(imxdma_module_init);
419
420MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
421MODULE_DESCRIPTION("i.MX dma driver");
422MODULE_LICENSE("GPL");
diff --git a/drivers/dma/imx-sdma.c b/drivers/dma/imx-sdma.c
new file mode 100644
index 000000000000..0834323a0599
--- /dev/null
+++ b/drivers/dma/imx-sdma.c
@@ -0,0 +1,1392 @@
1/*
2 * drivers/dma/imx-sdma.c
3 *
4 * This file contains a driver for the Freescale Smart DMA engine
5 *
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7 *
8 * Based on code from Freescale:
9 *
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11 *
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
15 *
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20#include <linux/init.h>
21#include <linux/types.h>
22#include <linux/mm.h>
23#include <linux/interrupt.h>
24#include <linux/clk.h>
25#include <linux/wait.h>
26#include <linux/sched.h>
27#include <linux/semaphore.h>
28#include <linux/spinlock.h>
29#include <linux/device.h>
30#include <linux/dma-mapping.h>
31#include <linux/firmware.h>
32#include <linux/slab.h>
33#include <linux/platform_device.h>
34#include <linux/dmaengine.h>
35
36#include <asm/irq.h>
37#include <mach/sdma.h>
38#include <mach/dma.h>
39#include <mach/hardware.h>
40
41/* SDMA registers */
42#define SDMA_H_C0PTR 0x000
43#define SDMA_H_INTR 0x004
44#define SDMA_H_STATSTOP 0x008
45#define SDMA_H_START 0x00c
46#define SDMA_H_EVTOVR 0x010
47#define SDMA_H_DSPOVR 0x014
48#define SDMA_H_HOSTOVR 0x018
49#define SDMA_H_EVTPEND 0x01c
50#define SDMA_H_DSPENBL 0x020
51#define SDMA_H_RESET 0x024
52#define SDMA_H_EVTERR 0x028
53#define SDMA_H_INTRMSK 0x02c
54#define SDMA_H_PSW 0x030
55#define SDMA_H_EVTERRDBG 0x034
56#define SDMA_H_CONFIG 0x038
57#define SDMA_ONCE_ENB 0x040
58#define SDMA_ONCE_DATA 0x044
59#define SDMA_ONCE_INSTR 0x048
60#define SDMA_ONCE_STAT 0x04c
61#define SDMA_ONCE_CMD 0x050
62#define SDMA_EVT_MIRROR 0x054
63#define SDMA_ILLINSTADDR 0x058
64#define SDMA_CHN0ADDR 0x05c
65#define SDMA_ONCE_RTB 0x060
66#define SDMA_XTRIG_CONF1 0x070
67#define SDMA_XTRIG_CONF2 0x074
68#define SDMA_CHNENBL0_V2 0x200
69#define SDMA_CHNENBL0_V1 0x080
70#define SDMA_CHNPRI_0 0x100
71
72/*
73 * Buffer descriptor status values.
74 */
75#define BD_DONE 0x01
76#define BD_WRAP 0x02
77#define BD_CONT 0x04
78#define BD_INTR 0x08
79#define BD_RROR 0x10
80#define BD_LAST 0x20
81#define BD_EXTD 0x80
82
83/*
84 * Data Node descriptor status values.
85 */
86#define DND_END_OF_FRAME 0x80
87#define DND_END_OF_XFER 0x40
88#define DND_DONE 0x20
89#define DND_UNUSED 0x01
90
91/*
92 * IPCV2 descriptor status values.
93 */
94#define BD_IPCV2_END_OF_FRAME 0x40
95
96#define IPCV2_MAX_NODES 50
97/*
98 * Error bit set in the CCB status field by the SDMA,
99 * in setbd routine, in case of a transfer error
100 */
101#define DATA_ERROR 0x10000000
102
103/*
104 * Buffer descriptor commands.
105 */
106#define C0_ADDR 0x01
107#define C0_LOAD 0x02
108#define C0_DUMP 0x03
109#define C0_SETCTX 0x07
110#define C0_GETCTX 0x03
111#define C0_SETDM 0x01
112#define C0_SETPM 0x04
113#define C0_GETDM 0x02
114#define C0_GETPM 0x08
115/*
116 * Change endianness indicator in the BD command field
117 */
118#define CHANGE_ENDIANNESS 0x80
119
120/*
121 * Mode/Count of data node descriptors - IPCv2
122 */
123struct sdma_mode_count {
124 u32 count : 16; /* size of the buffer pointed by this BD */
125 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
126 u32 command : 8; /* command mostlky used for channel 0 */
127};
128
129/*
130 * Buffer descriptor
131 */
132struct sdma_buffer_descriptor {
133 struct sdma_mode_count mode;
134 u32 buffer_addr; /* address of the buffer described */
135 u32 ext_buffer_addr; /* extended buffer address */
136} __attribute__ ((packed));
137
138/**
139 * struct sdma_channel_control - Channel control Block
140 *
141 * @current_bd_ptr current buffer descriptor processed
142 * @base_bd_ptr first element of buffer descriptor array
143 * @unused padding. The SDMA engine expects an array of 128 byte
144 * control blocks
145 */
146struct sdma_channel_control {
147 u32 current_bd_ptr;
148 u32 base_bd_ptr;
149 u32 unused[2];
150} __attribute__ ((packed));
151
152/**
153 * struct sdma_state_registers - SDMA context for a channel
154 *
155 * @pc: program counter
156 * @t: test bit: status of arithmetic & test instruction
157 * @rpc: return program counter
158 * @sf: source fault while loading data
159 * @spc: loop start program counter
160 * @df: destination fault while storing data
161 * @epc: loop end program counter
162 * @lm: loop mode
163 */
164struct sdma_state_registers {
165 u32 pc :14;
166 u32 unused1: 1;
167 u32 t : 1;
168 u32 rpc :14;
169 u32 unused0: 1;
170 u32 sf : 1;
171 u32 spc :14;
172 u32 unused2: 1;
173 u32 df : 1;
174 u32 epc :14;
175 u32 lm : 2;
176} __attribute__ ((packed));
177
178/**
179 * struct sdma_context_data - sdma context specific to a channel
180 *
181 * @channel_state: channel state bits
182 * @gReg: general registers
183 * @mda: burst dma destination address register
184 * @msa: burst dma source address register
185 * @ms: burst dma status register
186 * @md: burst dma data register
187 * @pda: peripheral dma destination address register
188 * @psa: peripheral dma source address register
189 * @ps: peripheral dma status register
190 * @pd: peripheral dma data register
191 * @ca: CRC polynomial register
192 * @cs: CRC accumulator register
193 * @dda: dedicated core destination address register
194 * @dsa: dedicated core source address register
195 * @ds: dedicated core status register
196 * @dd: dedicated core data register
197 */
198struct sdma_context_data {
199 struct sdma_state_registers channel_state;
200 u32 gReg[8];
201 u32 mda;
202 u32 msa;
203 u32 ms;
204 u32 md;
205 u32 pda;
206 u32 psa;
207 u32 ps;
208 u32 pd;
209 u32 ca;
210 u32 cs;
211 u32 dda;
212 u32 dsa;
213 u32 ds;
214 u32 dd;
215 u32 scratch0;
216 u32 scratch1;
217 u32 scratch2;
218 u32 scratch3;
219 u32 scratch4;
220 u32 scratch5;
221 u32 scratch6;
222 u32 scratch7;
223} __attribute__ ((packed));
224
225#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
226
227struct sdma_engine;
228
229/**
230 * struct sdma_channel - housekeeping for a SDMA channel
231 *
232 * @sdma pointer to the SDMA engine for this channel
233 * @channel the channel number, matches dmaengine chan_id
234 * @direction transfer type. Needed for setting SDMA script
235 * @peripheral_type Peripheral type. Needed for setting SDMA script
236 * @event_id0 aka dma request line
237 * @event_id1 for channels that use 2 events
238 * @word_size peripheral access size
239 * @buf_tail ID of the buffer that was processed
240 * @done channel completion
241 * @num_bd max NUM_BD. number of descriptors currently handling
242 */
243struct sdma_channel {
244 struct sdma_engine *sdma;
245 unsigned int channel;
246 enum dma_data_direction direction;
247 enum sdma_peripheral_type peripheral_type;
248 unsigned int event_id0;
249 unsigned int event_id1;
250 enum dma_slave_buswidth word_size;
251 unsigned int buf_tail;
252 struct completion done;
253 unsigned int num_bd;
254 struct sdma_buffer_descriptor *bd;
255 dma_addr_t bd_phys;
256 unsigned int pc_from_device, pc_to_device;
257 unsigned long flags;
258 dma_addr_t per_address;
259 u32 event_mask0, event_mask1;
260 u32 watermark_level;
261 u32 shp_addr, per_addr;
262 struct dma_chan chan;
263 spinlock_t lock;
264 struct dma_async_tx_descriptor desc;
265 dma_cookie_t last_completed;
266 enum dma_status status;
267};
268
269#define IMX_DMA_SG_LOOP (1 << 0)
270
271#define MAX_DMA_CHANNELS 32
272#define MXC_SDMA_DEFAULT_PRIORITY 1
273#define MXC_SDMA_MIN_PRIORITY 1
274#define MXC_SDMA_MAX_PRIORITY 7
275
276/**
277 * struct sdma_script_start_addrs - SDMA script start pointers
278 *
279 * start addresses of the different functions in the physical
280 * address space of the SDMA engine.
281 */
282struct sdma_script_start_addrs {
283 u32 ap_2_ap_addr;
284 u32 ap_2_bp_addr;
285 u32 ap_2_ap_fixed_addr;
286 u32 bp_2_ap_addr;
287 u32 loopback_on_dsp_side_addr;
288 u32 mcu_interrupt_only_addr;
289 u32 firi_2_per_addr;
290 u32 firi_2_mcu_addr;
291 u32 per_2_firi_addr;
292 u32 mcu_2_firi_addr;
293 u32 uart_2_per_addr;
294 u32 uart_2_mcu_addr;
295 u32 per_2_app_addr;
296 u32 mcu_2_app_addr;
297 u32 per_2_per_addr;
298 u32 uartsh_2_per_addr;
299 u32 uartsh_2_mcu_addr;
300 u32 per_2_shp_addr;
301 u32 mcu_2_shp_addr;
302 u32 ata_2_mcu_addr;
303 u32 mcu_2_ata_addr;
304 u32 app_2_per_addr;
305 u32 app_2_mcu_addr;
306 u32 shp_2_per_addr;
307 u32 shp_2_mcu_addr;
308 u32 mshc_2_mcu_addr;
309 u32 mcu_2_mshc_addr;
310 u32 spdif_2_mcu_addr;
311 u32 mcu_2_spdif_addr;
312 u32 asrc_2_mcu_addr;
313 u32 ext_mem_2_ipu_addr;
314 u32 descrambler_addr;
315 u32 dptc_dvfs_addr;
316 u32 utra_addr;
317 u32 ram_code_start_addr;
318};
319
320#define SDMA_FIRMWARE_MAGIC 0x414d4453
321
322/**
323 * struct sdma_firmware_header - Layout of the firmware image
324 *
325 * @magic "SDMA"
326 * @version_major increased whenever layout of struct sdma_script_start_addrs
327 * changes.
328 * @version_minor firmware minor version (for binary compatible changes)
329 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
330 * @num_script_addrs Number of script addresses in this image
331 * @ram_code_start offset of SDMA ram image in this firmware image
332 * @ram_code_size size of SDMA ram image
333 * @script_addrs Stores the start address of the SDMA scripts
334 * (in SDMA memory space)
335 */
336struct sdma_firmware_header {
337 u32 magic;
338 u32 version_major;
339 u32 version_minor;
340 u32 script_addrs_start;
341 u32 num_script_addrs;
342 u32 ram_code_start;
343 u32 ram_code_size;
344};
345
346struct sdma_engine {
347 struct device *dev;
348 struct sdma_channel channel[MAX_DMA_CHANNELS];
349 struct sdma_channel_control *channel_control;
350 void __iomem *regs;
351 unsigned int version;
352 unsigned int num_events;
353 struct sdma_context_data *context;
354 dma_addr_t context_phys;
355 struct dma_device dma_device;
356 struct clk *clk;
357 struct sdma_script_start_addrs *script_addrs;
358};
359
360#define SDMA_H_CONFIG_DSPDMA (1 << 12) /* indicates if the DSPDMA is used */
361#define SDMA_H_CONFIG_RTD_PINS (1 << 11) /* indicates if Real-Time Debug pins are enabled */
362#define SDMA_H_CONFIG_ACR (1 << 4) /* indicates if AHB freq /core freq = 2 or 1 */
363#define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
364
365static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
366{
367 u32 chnenbl0 = (sdma->version == 2 ? SDMA_CHNENBL0_V2 : SDMA_CHNENBL0_V1);
368
369 return chnenbl0 + event * 4;
370}
371
372static int sdma_config_ownership(struct sdma_channel *sdmac,
373 bool event_override, bool mcu_override, bool dsp_override)
374{
375 struct sdma_engine *sdma = sdmac->sdma;
376 int channel = sdmac->channel;
377 u32 evt, mcu, dsp;
378
379 if (event_override && mcu_override && dsp_override)
380 return -EINVAL;
381
382 evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
383 mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
384 dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
385
386 if (dsp_override)
387 dsp &= ~(1 << channel);
388 else
389 dsp |= (1 << channel);
390
391 if (event_override)
392 evt &= ~(1 << channel);
393 else
394 evt |= (1 << channel);
395
396 if (mcu_override)
397 mcu &= ~(1 << channel);
398 else
399 mcu |= (1 << channel);
400
401 __raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
402 __raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
403 __raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
404
405 return 0;
406}
407
408/*
409 * sdma_run_channel - run a channel and wait till it's done
410 */
411static int sdma_run_channel(struct sdma_channel *sdmac)
412{
413 struct sdma_engine *sdma = sdmac->sdma;
414 int channel = sdmac->channel;
415 int ret;
416
417 init_completion(&sdmac->done);
418
419 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
420
421 ret = wait_for_completion_timeout(&sdmac->done, HZ);
422
423 return ret ? 0 : -ETIMEDOUT;
424}
425
426static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
427 u32 address)
428{
429 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
430 void *buf_virt;
431 dma_addr_t buf_phys;
432 int ret;
433
434 buf_virt = dma_alloc_coherent(NULL,
435 size,
436 &buf_phys, GFP_KERNEL);
437 if (!buf_virt)
438 return -ENOMEM;
439
440 bd0->mode.command = C0_SETPM;
441 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
442 bd0->mode.count = size / 2;
443 bd0->buffer_addr = buf_phys;
444 bd0->ext_buffer_addr = address;
445
446 memcpy(buf_virt, buf, size);
447
448 ret = sdma_run_channel(&sdma->channel[0]);
449
450 dma_free_coherent(NULL, size, buf_virt, buf_phys);
451
452 return ret;
453}
454
455static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
456{
457 struct sdma_engine *sdma = sdmac->sdma;
458 int channel = sdmac->channel;
459 u32 val;
460 u32 chnenbl = chnenbl_ofs(sdma, event);
461
462 val = __raw_readl(sdma->regs + chnenbl);
463 val |= (1 << channel);
464 __raw_writel(val, sdma->regs + chnenbl);
465}
466
467static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
468{
469 struct sdma_engine *sdma = sdmac->sdma;
470 int channel = sdmac->channel;
471 u32 chnenbl = chnenbl_ofs(sdma, event);
472 u32 val;
473
474 val = __raw_readl(sdma->regs + chnenbl);
475 val &= ~(1 << channel);
476 __raw_writel(val, sdma->regs + chnenbl);
477}
478
479static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
480{
481 struct sdma_buffer_descriptor *bd;
482
483 /*
484 * loop mode. Iterate over descriptors, re-setup them and
485 * call callback function.
486 */
487 while (1) {
488 bd = &sdmac->bd[sdmac->buf_tail];
489
490 if (bd->mode.status & BD_DONE)
491 break;
492
493 if (bd->mode.status & BD_RROR)
494 sdmac->status = DMA_ERROR;
495 else
496 sdmac->status = DMA_SUCCESS;
497
498 bd->mode.status |= BD_DONE;
499 sdmac->buf_tail++;
500 sdmac->buf_tail %= sdmac->num_bd;
501
502 if (sdmac->desc.callback)
503 sdmac->desc.callback(sdmac->desc.callback_param);
504 }
505}
506
507static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
508{
509 struct sdma_buffer_descriptor *bd;
510 int i, error = 0;
511
512 /*
513 * non loop mode. Iterate over all descriptors, collect
514 * errors and call callback function
515 */
516 for (i = 0; i < sdmac->num_bd; i++) {
517 bd = &sdmac->bd[i];
518
519 if (bd->mode.status & (BD_DONE | BD_RROR))
520 error = -EIO;
521 }
522
523 if (error)
524 sdmac->status = DMA_ERROR;
525 else
526 sdmac->status = DMA_SUCCESS;
527
528 if (sdmac->desc.callback)
529 sdmac->desc.callback(sdmac->desc.callback_param);
530 sdmac->last_completed = sdmac->desc.cookie;
531}
532
533static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
534{
535 complete(&sdmac->done);
536
537 /* not interested in channel 0 interrupts */
538 if (sdmac->channel == 0)
539 return;
540
541 if (sdmac->flags & IMX_DMA_SG_LOOP)
542 sdma_handle_channel_loop(sdmac);
543 else
544 mxc_sdma_handle_channel_normal(sdmac);
545}
546
547static irqreturn_t sdma_int_handler(int irq, void *dev_id)
548{
549 struct sdma_engine *sdma = dev_id;
550 u32 stat;
551
552 stat = __raw_readl(sdma->regs + SDMA_H_INTR);
553 __raw_writel(stat, sdma->regs + SDMA_H_INTR);
554
555 while (stat) {
556 int channel = fls(stat) - 1;
557 struct sdma_channel *sdmac = &sdma->channel[channel];
558
559 mxc_sdma_handle_channel(sdmac);
560
561 stat &= ~(1 << channel);
562 }
563
564 return IRQ_HANDLED;
565}
566
567/*
568 * sets the pc of SDMA script according to the peripheral type
569 */
570static void sdma_get_pc(struct sdma_channel *sdmac,
571 enum sdma_peripheral_type peripheral_type)
572{
573 struct sdma_engine *sdma = sdmac->sdma;
574 int per_2_emi = 0, emi_2_per = 0;
575 /*
576 * These are needed once we start to support transfers between
577 * two peripherals or memory-to-memory transfers
578 */
579 int per_2_per = 0, emi_2_emi = 0;
580
581 sdmac->pc_from_device = 0;
582 sdmac->pc_to_device = 0;
583
584 switch (peripheral_type) {
585 case IMX_DMATYPE_MEMORY:
586 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
587 break;
588 case IMX_DMATYPE_DSP:
589 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
590 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
591 break;
592 case IMX_DMATYPE_FIRI:
593 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
594 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
595 break;
596 case IMX_DMATYPE_UART:
597 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
598 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
599 break;
600 case IMX_DMATYPE_UART_SP:
601 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
602 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
603 break;
604 case IMX_DMATYPE_ATA:
605 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
606 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
607 break;
608 case IMX_DMATYPE_CSPI:
609 case IMX_DMATYPE_EXT:
610 case IMX_DMATYPE_SSI:
611 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
612 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
613 break;
614 case IMX_DMATYPE_SSI_SP:
615 case IMX_DMATYPE_MMC:
616 case IMX_DMATYPE_SDHC:
617 case IMX_DMATYPE_CSPI_SP:
618 case IMX_DMATYPE_ESAI:
619 case IMX_DMATYPE_MSHC_SP:
620 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
621 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
622 break;
623 case IMX_DMATYPE_ASRC:
624 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
625 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
626 per_2_per = sdma->script_addrs->per_2_per_addr;
627 break;
628 case IMX_DMATYPE_MSHC:
629 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
630 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
631 break;
632 case IMX_DMATYPE_CCM:
633 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
634 break;
635 case IMX_DMATYPE_SPDIF:
636 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
637 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
638 break;
639 case IMX_DMATYPE_IPU_MEMORY:
640 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
641 break;
642 default:
643 break;
644 }
645
646 sdmac->pc_from_device = per_2_emi;
647 sdmac->pc_to_device = emi_2_per;
648}
649
650static int sdma_load_context(struct sdma_channel *sdmac)
651{
652 struct sdma_engine *sdma = sdmac->sdma;
653 int channel = sdmac->channel;
654 int load_address;
655 struct sdma_context_data *context = sdma->context;
656 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
657 int ret;
658
659 if (sdmac->direction == DMA_FROM_DEVICE) {
660 load_address = sdmac->pc_from_device;
661 } else {
662 load_address = sdmac->pc_to_device;
663 }
664
665 if (load_address < 0)
666 return load_address;
667
668 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
669 dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
670 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
671 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
672 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
673 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
674
675 memset(context, 0, sizeof(*context));
676 context->channel_state.pc = load_address;
677
678 /* Send by context the event mask,base address for peripheral
679 * and watermark level
680 */
681 context->gReg[0] = sdmac->event_mask1;
682 context->gReg[1] = sdmac->event_mask0;
683 context->gReg[2] = sdmac->per_addr;
684 context->gReg[6] = sdmac->shp_addr;
685 context->gReg[7] = sdmac->watermark_level;
686
687 bd0->mode.command = C0_SETDM;
688 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
689 bd0->mode.count = sizeof(*context) / 4;
690 bd0->buffer_addr = sdma->context_phys;
691 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
692
693 ret = sdma_run_channel(&sdma->channel[0]);
694
695 return ret;
696}
697
698static void sdma_disable_channel(struct sdma_channel *sdmac)
699{
700 struct sdma_engine *sdma = sdmac->sdma;
701 int channel = sdmac->channel;
702
703 __raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
704 sdmac->status = DMA_ERROR;
705}
706
707static int sdma_config_channel(struct sdma_channel *sdmac)
708{
709 int ret;
710
711 sdma_disable_channel(sdmac);
712
713 sdmac->event_mask0 = 0;
714 sdmac->event_mask1 = 0;
715 sdmac->shp_addr = 0;
716 sdmac->per_addr = 0;
717
718 if (sdmac->event_id0) {
719 if (sdmac->event_id0 > 32)
720 return -EINVAL;
721 sdma_event_enable(sdmac, sdmac->event_id0);
722 }
723
724 switch (sdmac->peripheral_type) {
725 case IMX_DMATYPE_DSP:
726 sdma_config_ownership(sdmac, false, true, true);
727 break;
728 case IMX_DMATYPE_MEMORY:
729 sdma_config_ownership(sdmac, false, true, false);
730 break;
731 default:
732 sdma_config_ownership(sdmac, true, true, false);
733 break;
734 }
735
736 sdma_get_pc(sdmac, sdmac->peripheral_type);
737
738 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
739 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
740 /* Handle multiple event channels differently */
741 if (sdmac->event_id1) {
742 sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
743 if (sdmac->event_id1 > 31)
744 sdmac->watermark_level |= 1 << 31;
745 sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
746 if (sdmac->event_id0 > 31)
747 sdmac->watermark_level |= 1 << 30;
748 } else {
749 sdmac->event_mask0 = 1 << sdmac->event_id0;
750 sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
751 }
752 /* Watermark Level */
753 sdmac->watermark_level |= sdmac->watermark_level;
754 /* Address */
755 sdmac->shp_addr = sdmac->per_address;
756 } else {
757 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
758 }
759
760 ret = sdma_load_context(sdmac);
761
762 return ret;
763}
764
765static int sdma_set_channel_priority(struct sdma_channel *sdmac,
766 unsigned int priority)
767{
768 struct sdma_engine *sdma = sdmac->sdma;
769 int channel = sdmac->channel;
770
771 if (priority < MXC_SDMA_MIN_PRIORITY
772 || priority > MXC_SDMA_MAX_PRIORITY) {
773 return -EINVAL;
774 }
775
776 __raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
777
778 return 0;
779}
780
781static int sdma_request_channel(struct sdma_channel *sdmac)
782{
783 struct sdma_engine *sdma = sdmac->sdma;
784 int channel = sdmac->channel;
785 int ret = -EBUSY;
786
787 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
788 if (!sdmac->bd) {
789 ret = -ENOMEM;
790 goto out;
791 }
792
793 memset(sdmac->bd, 0, PAGE_SIZE);
794
795 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
796 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
797
798 clk_enable(sdma->clk);
799
800 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
801
802 init_completion(&sdmac->done);
803
804 sdmac->buf_tail = 0;
805
806 return 0;
807out:
808
809 return ret;
810}
811
812static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
813{
814 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
815}
816
817static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdma)
818{
819 dma_cookie_t cookie = sdma->chan.cookie;
820
821 if (++cookie < 0)
822 cookie = 1;
823
824 sdma->chan.cookie = cookie;
825 sdma->desc.cookie = cookie;
826
827 return cookie;
828}
829
830static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
831{
832 return container_of(chan, struct sdma_channel, chan);
833}
834
835static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
836{
837 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
838 struct sdma_engine *sdma = sdmac->sdma;
839 dma_cookie_t cookie;
840
841 spin_lock_irq(&sdmac->lock);
842
843 cookie = sdma_assign_cookie(sdmac);
844
845 sdma_enable_channel(sdma, tx->chan->chan_id);
846
847 spin_unlock_irq(&sdmac->lock);
848
849 return cookie;
850}
851
852static int sdma_alloc_chan_resources(struct dma_chan *chan)
853{
854 struct sdma_channel *sdmac = to_sdma_chan(chan);
855 struct imx_dma_data *data = chan->private;
856 int prio, ret;
857
858 /* No need to execute this for internal channel 0 */
859 if (chan->chan_id == 0)
860 return 0;
861
862 if (!data)
863 return -EINVAL;
864
865 switch (data->priority) {
866 case DMA_PRIO_HIGH:
867 prio = 3;
868 break;
869 case DMA_PRIO_MEDIUM:
870 prio = 2;
871 break;
872 case DMA_PRIO_LOW:
873 default:
874 prio = 1;
875 break;
876 }
877
878 sdmac->peripheral_type = data->peripheral_type;
879 sdmac->event_id0 = data->dma_request;
880 ret = sdma_set_channel_priority(sdmac, prio);
881 if (ret)
882 return ret;
883
884 ret = sdma_request_channel(sdmac);
885 if (ret)
886 return ret;
887
888 dma_async_tx_descriptor_init(&sdmac->desc, chan);
889 sdmac->desc.tx_submit = sdma_tx_submit;
890 /* txd.flags will be overwritten in prep funcs */
891 sdmac->desc.flags = DMA_CTRL_ACK;
892
893 return 0;
894}
895
896static void sdma_free_chan_resources(struct dma_chan *chan)
897{
898 struct sdma_channel *sdmac = to_sdma_chan(chan);
899 struct sdma_engine *sdma = sdmac->sdma;
900
901 sdma_disable_channel(sdmac);
902
903 if (sdmac->event_id0)
904 sdma_event_disable(sdmac, sdmac->event_id0);
905 if (sdmac->event_id1)
906 sdma_event_disable(sdmac, sdmac->event_id1);
907
908 sdmac->event_id0 = 0;
909 sdmac->event_id1 = 0;
910
911 sdma_set_channel_priority(sdmac, 0);
912
913 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
914
915 clk_disable(sdma->clk);
916}
917
918static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
919 struct dma_chan *chan, struct scatterlist *sgl,
920 unsigned int sg_len, enum dma_data_direction direction,
921 unsigned long flags)
922{
923 struct sdma_channel *sdmac = to_sdma_chan(chan);
924 struct sdma_engine *sdma = sdmac->sdma;
925 int ret, i, count;
926 int channel = chan->chan_id;
927 struct scatterlist *sg;
928
929 if (sdmac->status == DMA_IN_PROGRESS)
930 return NULL;
931 sdmac->status = DMA_IN_PROGRESS;
932
933 sdmac->flags = 0;
934
935 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
936 sg_len, channel);
937
938 sdmac->direction = direction;
939 ret = sdma_load_context(sdmac);
940 if (ret)
941 goto err_out;
942
943 if (sg_len > NUM_BD) {
944 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
945 channel, sg_len, NUM_BD);
946 ret = -EINVAL;
947 goto err_out;
948 }
949
950 for_each_sg(sgl, sg, sg_len, i) {
951 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
952 int param;
953
954 bd->buffer_addr = sgl->dma_address;
955
956 count = sg->length;
957
958 if (count > 0xffff) {
959 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
960 channel, count, 0xffff);
961 ret = -EINVAL;
962 goto err_out;
963 }
964
965 bd->mode.count = count;
966
967 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
968 ret = -EINVAL;
969 goto err_out;
970 }
971 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
972 bd->mode.command = 0;
973 else
974 bd->mode.command = sdmac->word_size;
975
976 param = BD_DONE | BD_EXTD | BD_CONT;
977
978 if (sdmac->flags & IMX_DMA_SG_LOOP) {
979 param |= BD_INTR;
980 if (i + 1 == sg_len)
981 param |= BD_WRAP;
982 }
983
984 if (i + 1 == sg_len)
985 param |= BD_INTR;
986
987 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
988 i, count, sg->dma_address,
989 param & BD_WRAP ? "wrap" : "",
990 param & BD_INTR ? " intr" : "");
991
992 bd->mode.status = param;
993 }
994
995 sdmac->num_bd = sg_len;
996 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
997
998 return &sdmac->desc;
999err_out:
1000 return NULL;
1001}
1002
1003static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1004 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1005 size_t period_len, enum dma_data_direction direction)
1006{
1007 struct sdma_channel *sdmac = to_sdma_chan(chan);
1008 struct sdma_engine *sdma = sdmac->sdma;
1009 int num_periods = buf_len / period_len;
1010 int channel = chan->chan_id;
1011 int ret, i = 0, buf = 0;
1012
1013 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1014
1015 if (sdmac->status == DMA_IN_PROGRESS)
1016 return NULL;
1017
1018 sdmac->status = DMA_IN_PROGRESS;
1019
1020 sdmac->flags |= IMX_DMA_SG_LOOP;
1021 sdmac->direction = direction;
1022 ret = sdma_load_context(sdmac);
1023 if (ret)
1024 goto err_out;
1025
1026 if (num_periods > NUM_BD) {
1027 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1028 channel, num_periods, NUM_BD);
1029 goto err_out;
1030 }
1031
1032 if (period_len > 0xffff) {
1033 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1034 channel, period_len, 0xffff);
1035 goto err_out;
1036 }
1037
1038 while (buf < buf_len) {
1039 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1040 int param;
1041
1042 bd->buffer_addr = dma_addr;
1043
1044 bd->mode.count = period_len;
1045
1046 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1047 goto err_out;
1048 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1049 bd->mode.command = 0;
1050 else
1051 bd->mode.command = sdmac->word_size;
1052
1053 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1054 if (i + 1 == num_periods)
1055 param |= BD_WRAP;
1056
1057 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1058 i, period_len, dma_addr,
1059 param & BD_WRAP ? "wrap" : "",
1060 param & BD_INTR ? " intr" : "");
1061
1062 bd->mode.status = param;
1063
1064 dma_addr += period_len;
1065 buf += period_len;
1066
1067 i++;
1068 }
1069
1070 sdmac->num_bd = num_periods;
1071 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1072
1073 return &sdmac->desc;
1074err_out:
1075 sdmac->status = DMA_ERROR;
1076 return NULL;
1077}
1078
1079static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1080 unsigned long arg)
1081{
1082 struct sdma_channel *sdmac = to_sdma_chan(chan);
1083 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1084
1085 switch (cmd) {
1086 case DMA_TERMINATE_ALL:
1087 sdma_disable_channel(sdmac);
1088 return 0;
1089 case DMA_SLAVE_CONFIG:
1090 if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
1091 sdmac->per_address = dmaengine_cfg->src_addr;
1092 sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1093 sdmac->word_size = dmaengine_cfg->src_addr_width;
1094 } else {
1095 sdmac->per_address = dmaengine_cfg->dst_addr;
1096 sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1097 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1098 }
1099 return sdma_config_channel(sdmac);
1100 default:
1101 return -ENOSYS;
1102 }
1103
1104 return -EINVAL;
1105}
1106
1107static enum dma_status sdma_tx_status(struct dma_chan *chan,
1108 dma_cookie_t cookie,
1109 struct dma_tx_state *txstate)
1110{
1111 struct sdma_channel *sdmac = to_sdma_chan(chan);
1112 dma_cookie_t last_used;
1113 enum dma_status ret;
1114
1115 last_used = chan->cookie;
1116
1117 ret = dma_async_is_complete(cookie, sdmac->last_completed, last_used);
1118 dma_set_tx_state(txstate, sdmac->last_completed, last_used, 0);
1119
1120 return ret;
1121}
1122
1123static void sdma_issue_pending(struct dma_chan *chan)
1124{
1125 /*
1126 * Nothing to do. We only have a single descriptor
1127 */
1128}
1129
1130static int __init sdma_init(struct sdma_engine *sdma,
1131 void *ram_code, int ram_code_size)
1132{
1133 int i, ret;
1134 dma_addr_t ccb_phys;
1135
1136 switch (sdma->version) {
1137 case 1:
1138 sdma->num_events = 32;
1139 break;
1140 case 2:
1141 sdma->num_events = 48;
1142 break;
1143 default:
1144 dev_err(sdma->dev, "Unknown version %d. aborting\n", sdma->version);
1145 return -ENODEV;
1146 }
1147
1148 clk_enable(sdma->clk);
1149
1150 /* Be sure SDMA has not started yet */
1151 __raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1152
1153 sdma->channel_control = dma_alloc_coherent(NULL,
1154 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1155 sizeof(struct sdma_context_data),
1156 &ccb_phys, GFP_KERNEL);
1157
1158 if (!sdma->channel_control) {
1159 ret = -ENOMEM;
1160 goto err_dma_alloc;
1161 }
1162
1163 sdma->context = (void *)sdma->channel_control +
1164 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1165 sdma->context_phys = ccb_phys +
1166 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1167
1168 /* Zero-out the CCB structures array just allocated */
1169 memset(sdma->channel_control, 0,
1170 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1171
1172 /* disable all channels */
1173 for (i = 0; i < sdma->num_events; i++)
1174 __raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1175
1176 /* All channels have priority 0 */
1177 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1178 __raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1179
1180 ret = sdma_request_channel(&sdma->channel[0]);
1181 if (ret)
1182 goto err_dma_alloc;
1183
1184 sdma_config_ownership(&sdma->channel[0], false, true, false);
1185
1186 /* Set Command Channel (Channel Zero) */
1187 __raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1188
1189 /* Set bits of CONFIG register but with static context switching */
1190 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1191 __raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1192
1193 __raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1194
1195 /* download the RAM image for SDMA */
1196 sdma_load_script(sdma, ram_code,
1197 ram_code_size,
1198 sdma->script_addrs->ram_code_start_addr);
1199
1200 /* Set bits of CONFIG register with given context switching mode */
1201 __raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1202
1203 /* Initializes channel's priorities */
1204 sdma_set_channel_priority(&sdma->channel[0], 7);
1205
1206 clk_disable(sdma->clk);
1207
1208 return 0;
1209
1210err_dma_alloc:
1211 clk_disable(sdma->clk);
1212 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1213 return ret;
1214}
1215
1216static int __init sdma_probe(struct platform_device *pdev)
1217{
1218 int ret;
1219 const struct firmware *fw;
1220 const struct sdma_firmware_header *header;
1221 const struct sdma_script_start_addrs *addr;
1222 int irq;
1223 unsigned short *ram_code;
1224 struct resource *iores;
1225 struct sdma_platform_data *pdata = pdev->dev.platform_data;
1226 char *fwname;
1227 int i;
1228 dma_cap_mask_t mask;
1229 struct sdma_engine *sdma;
1230
1231 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1232 if (!sdma)
1233 return -ENOMEM;
1234
1235 sdma->dev = &pdev->dev;
1236
1237 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1238 irq = platform_get_irq(pdev, 0);
1239 if (!iores || irq < 0 || !pdata) {
1240 ret = -EINVAL;
1241 goto err_irq;
1242 }
1243
1244 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1245 ret = -EBUSY;
1246 goto err_request_region;
1247 }
1248
1249 sdma->clk = clk_get(&pdev->dev, NULL);
1250 if (IS_ERR(sdma->clk)) {
1251 ret = PTR_ERR(sdma->clk);
1252 goto err_clk;
1253 }
1254
1255 sdma->regs = ioremap(iores->start, resource_size(iores));
1256 if (!sdma->regs) {
1257 ret = -ENOMEM;
1258 goto err_ioremap;
1259 }
1260
1261 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1262 if (ret)
1263 goto err_request_irq;
1264
1265 fwname = kasprintf(GFP_KERNEL, "sdma-%s-to%d.bin",
1266 pdata->cpu_name, pdata->to_version);
1267 if (!fwname) {
1268 ret = -ENOMEM;
1269 goto err_cputype;
1270 }
1271
1272 ret = request_firmware(&fw, fwname, &pdev->dev);
1273 if (ret) {
1274 dev_err(&pdev->dev, "request firmware \"%s\" failed with %d\n",
1275 fwname, ret);
1276 kfree(fwname);
1277 goto err_cputype;
1278 }
1279 kfree(fwname);
1280
1281 if (fw->size < sizeof(*header))
1282 goto err_firmware;
1283
1284 header = (struct sdma_firmware_header *)fw->data;
1285
1286 if (header->magic != SDMA_FIRMWARE_MAGIC)
1287 goto err_firmware;
1288 if (header->ram_code_start + header->ram_code_size > fw->size)
1289 goto err_firmware;
1290
1291 addr = (void *)header + header->script_addrs_start;
1292 ram_code = (void *)header + header->ram_code_start;
1293 sdma->script_addrs = kmalloc(sizeof(*addr), GFP_KERNEL);
1294 if (!sdma->script_addrs)
1295 goto err_firmware;
1296 memcpy(sdma->script_addrs, addr, sizeof(*addr));
1297
1298 sdma->version = pdata->sdma_version;
1299
1300 INIT_LIST_HEAD(&sdma->dma_device.channels);
1301 /* Initialize channel parameters */
1302 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1303 struct sdma_channel *sdmac = &sdma->channel[i];
1304
1305 sdmac->sdma = sdma;
1306 spin_lock_init(&sdmac->lock);
1307
1308 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1309 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1310
1311 sdmac->chan.device = &sdma->dma_device;
1312 sdmac->chan.chan_id = i;
1313 sdmac->channel = i;
1314
1315 /* Add the channel to the DMAC list */
1316 list_add_tail(&sdmac->chan.device_node, &sdma->dma_device.channels);
1317 }
1318
1319 ret = sdma_init(sdma, ram_code, header->ram_code_size);
1320 if (ret)
1321 goto err_init;
1322
1323 sdma->dma_device.dev = &pdev->dev;
1324
1325 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1326 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1327 sdma->dma_device.device_tx_status = sdma_tx_status;
1328 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1329 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1330 sdma->dma_device.device_control = sdma_control;
1331 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1332
1333 ret = dma_async_device_register(&sdma->dma_device);
1334 if (ret) {
1335 dev_err(&pdev->dev, "unable to register\n");
1336 goto err_init;
1337 }
1338
1339 dev_info(&pdev->dev, "initialized (firmware %d.%d)\n",
1340 header->version_major,
1341 header->version_minor);
1342
1343 /* request channel 0. This is an internal control channel
1344 * to the SDMA engine and not available to clients.
1345 */
1346 dma_cap_zero(mask);
1347 dma_cap_set(DMA_SLAVE, mask);
1348 dma_request_channel(mask, NULL, NULL);
1349
1350 release_firmware(fw);
1351
1352 return 0;
1353
1354err_init:
1355 kfree(sdma->script_addrs);
1356err_firmware:
1357 release_firmware(fw);
1358err_cputype:
1359 free_irq(irq, sdma);
1360err_request_irq:
1361 iounmap(sdma->regs);
1362err_ioremap:
1363 clk_put(sdma->clk);
1364err_clk:
1365 release_mem_region(iores->start, resource_size(iores));
1366err_request_region:
1367err_irq:
1368 kfree(sdma);
1369 return 0;
1370}
1371
1372static int __exit sdma_remove(struct platform_device *pdev)
1373{
1374 return -EBUSY;
1375}
1376
1377static struct platform_driver sdma_driver = {
1378 .driver = {
1379 .name = "imx-sdma",
1380 },
1381 .remove = __exit_p(sdma_remove),
1382};
1383
1384static int __init sdma_module_init(void)
1385{
1386 return platform_driver_probe(&sdma_driver, sdma_probe);
1387}
1388subsys_initcall(sdma_module_init);
1389
1390MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1391MODULE_DESCRIPTION("i.MX SDMA driver");
1392MODULE_LICENSE("GPL");
diff --git a/drivers/dma/intel_mid_dma.c b/drivers/dma/intel_mid_dma.c
index c2591e8d9b6e..338bc4eed1f3 100644
--- a/drivers/dma/intel_mid_dma.c
+++ b/drivers/dma/intel_mid_dma.c
@@ -25,6 +25,7 @@
25 */ 25 */
26#include <linux/pci.h> 26#include <linux/pci.h>
27#include <linux/interrupt.h> 27#include <linux/interrupt.h>
28#include <linux/pm_runtime.h>
28#include <linux/intel_mid_dma.h> 29#include <linux/intel_mid_dma.h>
29 30
30#define MAX_CHAN 4 /*max ch across controllers*/ 31#define MAX_CHAN 4 /*max ch across controllers*/
@@ -91,13 +92,13 @@ static int get_block_ts(int len, int tx_width, int block_size)
91 int byte_width = 0, block_ts = 0; 92 int byte_width = 0, block_ts = 0;
92 93
93 switch (tx_width) { 94 switch (tx_width) {
94 case LNW_DMA_WIDTH_8BIT: 95 case DMA_SLAVE_BUSWIDTH_1_BYTE:
95 byte_width = 1; 96 byte_width = 1;
96 break; 97 break;
97 case LNW_DMA_WIDTH_16BIT: 98 case DMA_SLAVE_BUSWIDTH_2_BYTES:
98 byte_width = 2; 99 byte_width = 2;
99 break; 100 break;
100 case LNW_DMA_WIDTH_32BIT: 101 case DMA_SLAVE_BUSWIDTH_4_BYTES:
101 default: 102 default:
102 byte_width = 4; 103 byte_width = 4;
103 break; 104 break;
@@ -247,16 +248,17 @@ static void midc_dostart(struct intel_mid_dma_chan *midc,
247 struct middma_device *mid = to_middma_device(midc->chan.device); 248 struct middma_device *mid = to_middma_device(midc->chan.device);
248 249
249 /* channel is idle */ 250 /* channel is idle */
250 if (midc->in_use && test_ch_en(midc->dma_base, midc->ch_id)) { 251 if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
251 /*error*/ 252 /*error*/
252 pr_err("ERR_MDMA: channel is busy in start\n"); 253 pr_err("ERR_MDMA: channel is busy in start\n");
253 /* The tasklet will hopefully advance the queue... */ 254 /* The tasklet will hopefully advance the queue... */
254 return; 255 return;
255 } 256 }
256 257 midc->busy = true;
257 /*write registers and en*/ 258 /*write registers and en*/
258 iowrite32(first->sar, midc->ch_regs + SAR); 259 iowrite32(first->sar, midc->ch_regs + SAR);
259 iowrite32(first->dar, midc->ch_regs + DAR); 260 iowrite32(first->dar, midc->ch_regs + DAR);
261 iowrite32(first->lli_phys, midc->ch_regs + LLP);
260 iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH); 262 iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
261 iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW); 263 iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
262 iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW); 264 iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
@@ -264,9 +266,9 @@ static void midc_dostart(struct intel_mid_dma_chan *midc,
264 pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n", 266 pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
265 (int)first->sar, (int)first->dar, first->cfg_hi, 267 (int)first->sar, (int)first->dar, first->cfg_hi,
266 first->cfg_lo, first->ctl_hi, first->ctl_lo); 268 first->cfg_lo, first->ctl_hi, first->ctl_lo);
269 first->status = DMA_IN_PROGRESS;
267 270
268 iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN); 271 iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
269 first->status = DMA_IN_PROGRESS;
270} 272}
271 273
272/** 274/**
@@ -283,20 +285,36 @@ static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
283{ 285{
284 struct dma_async_tx_descriptor *txd = &desc->txd; 286 struct dma_async_tx_descriptor *txd = &desc->txd;
285 dma_async_tx_callback callback_txd = NULL; 287 dma_async_tx_callback callback_txd = NULL;
288 struct intel_mid_dma_lli *llitem;
286 void *param_txd = NULL; 289 void *param_txd = NULL;
287 290
288 midc->completed = txd->cookie; 291 midc->completed = txd->cookie;
289 callback_txd = txd->callback; 292 callback_txd = txd->callback;
290 param_txd = txd->callback_param; 293 param_txd = txd->callback_param;
291 294
292 list_move(&desc->desc_node, &midc->free_list); 295 if (desc->lli != NULL) {
293 296 /*clear the DONE bit of completed LLI in memory*/
297 llitem = desc->lli + desc->current_lli;
298 llitem->ctl_hi &= CLEAR_DONE;
299 if (desc->current_lli < desc->lli_length-1)
300 (desc->current_lli)++;
301 else
302 desc->current_lli = 0;
303 }
294 spin_unlock_bh(&midc->lock); 304 spin_unlock_bh(&midc->lock);
295 if (callback_txd) { 305 if (callback_txd) {
296 pr_debug("MDMA: TXD callback set ... calling\n"); 306 pr_debug("MDMA: TXD callback set ... calling\n");
297 callback_txd(param_txd); 307 callback_txd(param_txd);
298 spin_lock_bh(&midc->lock); 308 }
299 return; 309 if (midc->raw_tfr) {
310 desc->status = DMA_SUCCESS;
311 if (desc->lli != NULL) {
312 pci_pool_free(desc->lli_pool, desc->lli,
313 desc->lli_phys);
314 pci_pool_destroy(desc->lli_pool);
315 }
316 list_move(&desc->desc_node, &midc->free_list);
317 midc->busy = false;
300 } 318 }
301 spin_lock_bh(&midc->lock); 319 spin_lock_bh(&midc->lock);
302 320
@@ -317,14 +335,89 @@ static void midc_scan_descriptors(struct middma_device *mid,
317 335
318 /*tx is complete*/ 336 /*tx is complete*/
319 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) { 337 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
320 if (desc->status == DMA_IN_PROGRESS) { 338 if (desc->status == DMA_IN_PROGRESS)
321 desc->status = DMA_SUCCESS;
322 midc_descriptor_complete(midc, desc); 339 midc_descriptor_complete(midc, desc);
323 }
324 } 340 }
325 return; 341 return;
326} 342 }
343/**
344 * midc_lli_fill_sg - Helper function to convert
345 * SG list to Linked List Items.
346 *@midc: Channel
347 *@desc: DMA descriptor
348 *@sglist: Pointer to SG list
349 *@sglen: SG list length
350 *@flags: DMA transaction flags
351 *
352 * Walk through the SG list and convert the SG list into Linked
353 * List Items (LLI).
354 */
355static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
356 struct intel_mid_dma_desc *desc,
357 struct scatterlist *sglist,
358 unsigned int sglen,
359 unsigned int flags)
360{
361 struct intel_mid_dma_slave *mids;
362 struct scatterlist *sg;
363 dma_addr_t lli_next, sg_phy_addr;
364 struct intel_mid_dma_lli *lli_bloc_desc;
365 union intel_mid_dma_ctl_lo ctl_lo;
366 union intel_mid_dma_ctl_hi ctl_hi;
367 int i;
327 368
369 pr_debug("MDMA: Entered midc_lli_fill_sg\n");
370 mids = midc->mid_slave;
371
372 lli_bloc_desc = desc->lli;
373 lli_next = desc->lli_phys;
374
375 ctl_lo.ctl_lo = desc->ctl_lo;
376 ctl_hi.ctl_hi = desc->ctl_hi;
377 for_each_sg(sglist, sg, sglen, i) {
378 /*Populate CTL_LOW and LLI values*/
379 if (i != sglen - 1) {
380 lli_next = lli_next +
381 sizeof(struct intel_mid_dma_lli);
382 } else {
383 /*Check for circular list, otherwise terminate LLI to ZERO*/
384 if (flags & DMA_PREP_CIRCULAR_LIST) {
385 pr_debug("MDMA: LLI is configured in circular mode\n");
386 lli_next = desc->lli_phys;
387 } else {
388 lli_next = 0;
389 ctl_lo.ctlx.llp_dst_en = 0;
390 ctl_lo.ctlx.llp_src_en = 0;
391 }
392 }
393 /*Populate CTL_HI values*/
394 ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
395 desc->width,
396 midc->dma->block_size);
397 /*Populate SAR and DAR values*/
398 sg_phy_addr = sg_phys(sg);
399 if (desc->dirn == DMA_TO_DEVICE) {
400 lli_bloc_desc->sar = sg_phy_addr;
401 lli_bloc_desc->dar = mids->dma_slave.dst_addr;
402 } else if (desc->dirn == DMA_FROM_DEVICE) {
403 lli_bloc_desc->sar = mids->dma_slave.src_addr;
404 lli_bloc_desc->dar = sg_phy_addr;
405 }
406 /*Copy values into block descriptor in system memroy*/
407 lli_bloc_desc->llp = lli_next;
408 lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
409 lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
410
411 lli_bloc_desc++;
412 }
413 /*Copy very first LLI values to descriptor*/
414 desc->ctl_lo = desc->lli->ctl_lo;
415 desc->ctl_hi = desc->lli->ctl_hi;
416 desc->sar = desc->lli->sar;
417 desc->dar = desc->lli->dar;
418
419 return 0;
420}
328/***************************************************************************** 421/*****************************************************************************
329DMA engine callback Functions*/ 422DMA engine callback Functions*/
330/** 423/**
@@ -349,12 +442,12 @@ static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
349 desc->txd.cookie = cookie; 442 desc->txd.cookie = cookie;
350 443
351 444
352 if (list_empty(&midc->active_list)) { 445 if (list_empty(&midc->active_list))
353 midc_dostart(midc, desc);
354 list_add_tail(&desc->desc_node, &midc->active_list); 446 list_add_tail(&desc->desc_node, &midc->active_list);
355 } else { 447 else
356 list_add_tail(&desc->desc_node, &midc->queue); 448 list_add_tail(&desc->desc_node, &midc->queue);
357 } 449
450 midc_dostart(midc, desc);
358 spin_unlock_bh(&midc->lock); 451 spin_unlock_bh(&midc->lock);
359 452
360 return cookie; 453 return cookie;
@@ -414,6 +507,23 @@ static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
414 return ret; 507 return ret;
415} 508}
416 509
510static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
511{
512 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
513 struct dma_slave_config *slave = (struct dma_slave_config *)arg;
514 struct intel_mid_dma_slave *mid_slave;
515
516 BUG_ON(!midc);
517 BUG_ON(!slave);
518 pr_debug("MDMA: slave control called\n");
519
520 mid_slave = to_intel_mid_dma_slave(slave);
521
522 BUG_ON(!mid_slave);
523
524 midc->mid_slave = mid_slave;
525 return 0;
526}
417/** 527/**
418 * intel_mid_dma_device_control - DMA device control 528 * intel_mid_dma_device_control - DMA device control
419 * @chan: chan for DMA control 529 * @chan: chan for DMA control
@@ -428,49 +538,41 @@ static int intel_mid_dma_device_control(struct dma_chan *chan,
428 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); 538 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
429 struct middma_device *mid = to_middma_device(chan->device); 539 struct middma_device *mid = to_middma_device(chan->device);
430 struct intel_mid_dma_desc *desc, *_desc; 540 struct intel_mid_dma_desc *desc, *_desc;
431 LIST_HEAD(list); 541 union intel_mid_dma_cfg_lo cfg_lo;
542
543 if (cmd == DMA_SLAVE_CONFIG)
544 return dma_slave_control(chan, arg);
432 545
433 if (cmd != DMA_TERMINATE_ALL) 546 if (cmd != DMA_TERMINATE_ALL)
434 return -ENXIO; 547 return -ENXIO;
435 548
436 spin_lock_bh(&midc->lock); 549 spin_lock_bh(&midc->lock);
437 if (midc->in_use == false) { 550 if (midc->busy == false) {
438 spin_unlock_bh(&midc->lock); 551 spin_unlock_bh(&midc->lock);
439 return 0; 552 return 0;
440 } 553 }
441 list_splice_init(&midc->free_list, &list); 554 /*Suspend and disable the channel*/
442 midc->descs_allocated = 0; 555 cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
443 midc->slave = NULL; 556 cfg_lo.cfgx.ch_susp = 1;
444 557 iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
558 iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
559 midc->busy = false;
445 /* Disable interrupts */ 560 /* Disable interrupts */
446 disable_dma_interrupt(midc); 561 disable_dma_interrupt(midc);
562 midc->descs_allocated = 0;
447 563
448 spin_unlock_bh(&midc->lock); 564 spin_unlock_bh(&midc->lock);
449 list_for_each_entry_safe(desc, _desc, &list, desc_node) { 565 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
450 pr_debug("MDMA: freeing descriptor %p\n", desc); 566 if (desc->lli != NULL) {
451 pci_pool_free(mid->dma_pool, desc, desc->txd.phys); 567 pci_pool_free(desc->lli_pool, desc->lli,
568 desc->lli_phys);
569 pci_pool_destroy(desc->lli_pool);
570 }
571 list_move(&desc->desc_node, &midc->free_list);
452 } 572 }
453 return 0; 573 return 0;
454} 574}
455 575
456/**
457 * intel_mid_dma_prep_slave_sg - Prep slave sg txn
458 * @chan: chan for DMA transfer
459 * @sgl: scatter gather list
460 * @sg_len: length of sg txn
461 * @direction: DMA transfer dirtn
462 * @flags: DMA flags
463 *
464 * Do DMA sg txn: NOT supported now
465 */
466static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
467 struct dma_chan *chan, struct scatterlist *sgl,
468 unsigned int sg_len, enum dma_data_direction direction,
469 unsigned long flags)
470{
471 /*not supported now*/
472 return NULL;
473}
474 576
475/** 577/**
476 * intel_mid_dma_prep_memcpy - Prep memcpy txn 578 * intel_mid_dma_prep_memcpy - Prep memcpy txn
@@ -495,23 +597,24 @@ static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
495 union intel_mid_dma_ctl_hi ctl_hi; 597 union intel_mid_dma_ctl_hi ctl_hi;
496 union intel_mid_dma_cfg_lo cfg_lo; 598 union intel_mid_dma_cfg_lo cfg_lo;
497 union intel_mid_dma_cfg_hi cfg_hi; 599 union intel_mid_dma_cfg_hi cfg_hi;
498 enum intel_mid_dma_width width = 0; 600 enum dma_slave_buswidth width;
499 601
500 pr_debug("MDMA: Prep for memcpy\n"); 602 pr_debug("MDMA: Prep for memcpy\n");
501 WARN_ON(!chan); 603 BUG_ON(!chan);
502 if (!len) 604 if (!len)
503 return NULL; 605 return NULL;
504 606
505 mids = chan->private;
506 WARN_ON(!mids);
507
508 midc = to_intel_mid_dma_chan(chan); 607 midc = to_intel_mid_dma_chan(chan);
509 WARN_ON(!midc); 608 BUG_ON(!midc);
609
610 mids = midc->mid_slave;
611 BUG_ON(!mids);
510 612
511 pr_debug("MDMA:called for DMA %x CH %d Length %zu\n", 613 pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
512 midc->dma->pci_id, midc->ch_id, len); 614 midc->dma->pci_id, midc->ch_id, len);
513 pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n", 615 pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
514 mids->cfg_mode, mids->dirn, mids->hs_mode, mids->src_width); 616 mids->cfg_mode, mids->dma_slave.direction,
617 mids->hs_mode, mids->dma_slave.src_addr_width);
515 618
516 /*calculate CFG_LO*/ 619 /*calculate CFG_LO*/
517 if (mids->hs_mode == LNW_DMA_SW_HS) { 620 if (mids->hs_mode == LNW_DMA_SW_HS) {
@@ -530,13 +633,13 @@ static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
530 if (midc->dma->pimr_mask) { 633 if (midc->dma->pimr_mask) {
531 cfg_hi.cfgx.protctl = 0x0; /*default value*/ 634 cfg_hi.cfgx.protctl = 0x0; /*default value*/
532 cfg_hi.cfgx.fifo_mode = 1; 635 cfg_hi.cfgx.fifo_mode = 1;
533 if (mids->dirn == DMA_TO_DEVICE) { 636 if (mids->dma_slave.direction == DMA_TO_DEVICE) {
534 cfg_hi.cfgx.src_per = 0; 637 cfg_hi.cfgx.src_per = 0;
535 if (mids->device_instance == 0) 638 if (mids->device_instance == 0)
536 cfg_hi.cfgx.dst_per = 3; 639 cfg_hi.cfgx.dst_per = 3;
537 if (mids->device_instance == 1) 640 if (mids->device_instance == 1)
538 cfg_hi.cfgx.dst_per = 1; 641 cfg_hi.cfgx.dst_per = 1;
539 } else if (mids->dirn == DMA_FROM_DEVICE) { 642 } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
540 if (mids->device_instance == 0) 643 if (mids->device_instance == 0)
541 cfg_hi.cfgx.src_per = 2; 644 cfg_hi.cfgx.src_per = 2;
542 if (mids->device_instance == 1) 645 if (mids->device_instance == 1)
@@ -552,7 +655,8 @@ static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
552 655
553 /*calculate CTL_HI*/ 656 /*calculate CTL_HI*/
554 ctl_hi.ctlx.reser = 0; 657 ctl_hi.ctlx.reser = 0;
555 width = mids->src_width; 658 ctl_hi.ctlx.done = 0;
659 width = mids->dma_slave.src_addr_width;
556 660
557 ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size); 661 ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
558 pr_debug("MDMA:calc len %d for block size %d\n", 662 pr_debug("MDMA:calc len %d for block size %d\n",
@@ -560,21 +664,21 @@ static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
560 /*calculate CTL_LO*/ 664 /*calculate CTL_LO*/
561 ctl_lo.ctl_lo = 0; 665 ctl_lo.ctl_lo = 0;
562 ctl_lo.ctlx.int_en = 1; 666 ctl_lo.ctlx.int_en = 1;
563 ctl_lo.ctlx.dst_tr_width = mids->dst_width; 667 ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width;
564 ctl_lo.ctlx.src_tr_width = mids->src_width; 668 ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width;
565 ctl_lo.ctlx.dst_msize = mids->src_msize; 669 ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
566 ctl_lo.ctlx.src_msize = mids->dst_msize; 670 ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
567 671
568 if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) { 672 if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
569 ctl_lo.ctlx.tt_fc = 0; 673 ctl_lo.ctlx.tt_fc = 0;
570 ctl_lo.ctlx.sinc = 0; 674 ctl_lo.ctlx.sinc = 0;
571 ctl_lo.ctlx.dinc = 0; 675 ctl_lo.ctlx.dinc = 0;
572 } else { 676 } else {
573 if (mids->dirn == DMA_TO_DEVICE) { 677 if (mids->dma_slave.direction == DMA_TO_DEVICE) {
574 ctl_lo.ctlx.sinc = 0; 678 ctl_lo.ctlx.sinc = 0;
575 ctl_lo.ctlx.dinc = 2; 679 ctl_lo.ctlx.dinc = 2;
576 ctl_lo.ctlx.tt_fc = 1; 680 ctl_lo.ctlx.tt_fc = 1;
577 } else if (mids->dirn == DMA_FROM_DEVICE) { 681 } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
578 ctl_lo.ctlx.sinc = 2; 682 ctl_lo.ctlx.sinc = 2;
579 ctl_lo.ctlx.dinc = 0; 683 ctl_lo.ctlx.dinc = 0;
580 ctl_lo.ctlx.tt_fc = 2; 684 ctl_lo.ctlx.tt_fc = 2;
@@ -597,7 +701,10 @@ static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
597 desc->ctl_lo = ctl_lo.ctl_lo; 701 desc->ctl_lo = ctl_lo.ctl_lo;
598 desc->ctl_hi = ctl_hi.ctl_hi; 702 desc->ctl_hi = ctl_hi.ctl_hi;
599 desc->width = width; 703 desc->width = width;
600 desc->dirn = mids->dirn; 704 desc->dirn = mids->dma_slave.direction;
705 desc->lli_phys = 0;
706 desc->lli = NULL;
707 desc->lli_pool = NULL;
601 return &desc->txd; 708 return &desc->txd;
602 709
603err_desc_get: 710err_desc_get:
@@ -605,6 +712,85 @@ err_desc_get:
605 midc_desc_put(midc, desc); 712 midc_desc_put(midc, desc);
606 return NULL; 713 return NULL;
607} 714}
715/**
716 * intel_mid_dma_prep_slave_sg - Prep slave sg txn
717 * @chan: chan for DMA transfer
718 * @sgl: scatter gather list
719 * @sg_len: length of sg txn
720 * @direction: DMA transfer dirtn
721 * @flags: DMA flags
722 *
723 * Prepares LLI based periphral transfer
724 */
725static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
726 struct dma_chan *chan, struct scatterlist *sgl,
727 unsigned int sg_len, enum dma_data_direction direction,
728 unsigned long flags)
729{
730 struct intel_mid_dma_chan *midc = NULL;
731 struct intel_mid_dma_slave *mids = NULL;
732 struct intel_mid_dma_desc *desc = NULL;
733 struct dma_async_tx_descriptor *txd = NULL;
734 union intel_mid_dma_ctl_lo ctl_lo;
735
736 pr_debug("MDMA: Prep for slave SG\n");
737
738 if (!sg_len) {
739 pr_err("MDMA: Invalid SG length\n");
740 return NULL;
741 }
742 midc = to_intel_mid_dma_chan(chan);
743 BUG_ON(!midc);
744
745 mids = midc->mid_slave;
746 BUG_ON(!mids);
747
748 if (!midc->dma->pimr_mask) {
749 pr_debug("MDMA: SG list is not supported by this controller\n");
750 return NULL;
751 }
752
753 pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
754 sg_len, direction, flags);
755
756 txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
757 if (NULL == txd) {
758 pr_err("MDMA: Prep memcpy failed\n");
759 return NULL;
760 }
761 desc = to_intel_mid_dma_desc(txd);
762 desc->dirn = direction;
763 ctl_lo.ctl_lo = desc->ctl_lo;
764 ctl_lo.ctlx.llp_dst_en = 1;
765 ctl_lo.ctlx.llp_src_en = 1;
766 desc->ctl_lo = ctl_lo.ctl_lo;
767 desc->lli_length = sg_len;
768 desc->current_lli = 0;
769 /* DMA coherent memory pool for LLI descriptors*/
770 desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
771 midc->dma->pdev,
772 (sizeof(struct intel_mid_dma_lli)*sg_len),
773 32, 0);
774 if (NULL == desc->lli_pool) {
775 pr_err("MID_DMA:LLI pool create failed\n");
776 return NULL;
777 }
778
779 desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
780 if (!desc->lli) {
781 pr_err("MID_DMA: LLI alloc failed\n");
782 pci_pool_destroy(desc->lli_pool);
783 return NULL;
784 }
785
786 midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
787 if (flags & DMA_PREP_INTERRUPT) {
788 iowrite32(UNMASK_INTR_REG(midc->ch_id),
789 midc->dma_base + MASK_BLOCK);
790 pr_debug("MDMA:Enabled Block interrupt\n");
791 }
792 return &desc->txd;
793}
608 794
609/** 795/**
610 * intel_mid_dma_free_chan_resources - Frees dma resources 796 * intel_mid_dma_free_chan_resources - Frees dma resources
@@ -618,11 +804,11 @@ static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
618 struct middma_device *mid = to_middma_device(chan->device); 804 struct middma_device *mid = to_middma_device(chan->device);
619 struct intel_mid_dma_desc *desc, *_desc; 805 struct intel_mid_dma_desc *desc, *_desc;
620 806
621 if (true == midc->in_use) { 807 if (true == midc->busy) {
622 /*trying to free ch in use!!!!!*/ 808 /*trying to free ch in use!!!!!*/
623 pr_err("ERR_MDMA: trying to free ch in use\n"); 809 pr_err("ERR_MDMA: trying to free ch in use\n");
624 } 810 }
625 811 pm_runtime_put(&mid->pdev->dev);
626 spin_lock_bh(&midc->lock); 812 spin_lock_bh(&midc->lock);
627 midc->descs_allocated = 0; 813 midc->descs_allocated = 0;
628 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) { 814 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
@@ -639,6 +825,7 @@ static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
639 } 825 }
640 spin_unlock_bh(&midc->lock); 826 spin_unlock_bh(&midc->lock);
641 midc->in_use = false; 827 midc->in_use = false;
828 midc->busy = false;
642 /* Disable CH interrupts */ 829 /* Disable CH interrupts */
643 iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK); 830 iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
644 iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR); 831 iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
@@ -659,11 +846,20 @@ static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
659 dma_addr_t phys; 846 dma_addr_t phys;
660 int i = 0; 847 int i = 0;
661 848
849 pm_runtime_get_sync(&mid->pdev->dev);
850
851 if (mid->state == SUSPENDED) {
852 if (dma_resume(mid->pdev)) {
853 pr_err("ERR_MDMA: resume failed");
854 return -EFAULT;
855 }
856 }
662 857
663 /* ASSERT: channel is idle */ 858 /* ASSERT: channel is idle */
664 if (test_ch_en(mid->dma_base, midc->ch_id)) { 859 if (test_ch_en(mid->dma_base, midc->ch_id)) {
665 /*ch is not idle*/ 860 /*ch is not idle*/
666 pr_err("ERR_MDMA: ch not idle\n"); 861 pr_err("ERR_MDMA: ch not idle\n");
862 pm_runtime_put(&mid->pdev->dev);
667 return -EIO; 863 return -EIO;
668 } 864 }
669 midc->completed = chan->cookie = 1; 865 midc->completed = chan->cookie = 1;
@@ -674,6 +870,7 @@ static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
674 desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys); 870 desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
675 if (!desc) { 871 if (!desc) {
676 pr_err("ERR_MDMA: desc failed\n"); 872 pr_err("ERR_MDMA: desc failed\n");
873 pm_runtime_put(&mid->pdev->dev);
677 return -ENOMEM; 874 return -ENOMEM;
678 /*check*/ 875 /*check*/
679 } 876 }
@@ -686,7 +883,8 @@ static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
686 list_add_tail(&desc->desc_node, &midc->free_list); 883 list_add_tail(&desc->desc_node, &midc->free_list);
687 } 884 }
688 spin_unlock_bh(&midc->lock); 885 spin_unlock_bh(&midc->lock);
689 midc->in_use = false; 886 midc->in_use = true;
887 midc->busy = false;
690 pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i); 888 pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
691 return i; 889 return i;
692} 890}
@@ -715,7 +913,7 @@ static void dma_tasklet(unsigned long data)
715{ 913{
716 struct middma_device *mid = NULL; 914 struct middma_device *mid = NULL;
717 struct intel_mid_dma_chan *midc = NULL; 915 struct intel_mid_dma_chan *midc = NULL;
718 u32 status; 916 u32 status, raw_tfr, raw_block;
719 int i; 917 int i;
720 918
721 mid = (struct middma_device *)data; 919 mid = (struct middma_device *)data;
@@ -724,8 +922,9 @@ static void dma_tasklet(unsigned long data)
724 return; 922 return;
725 } 923 }
726 pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id); 924 pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
727 status = ioread32(mid->dma_base + RAW_TFR); 925 raw_tfr = ioread32(mid->dma_base + RAW_TFR);
728 pr_debug("MDMA:RAW_TFR %x\n", status); 926 raw_block = ioread32(mid->dma_base + RAW_BLOCK);
927 status = raw_tfr | raw_block;
729 status &= mid->intr_mask; 928 status &= mid->intr_mask;
730 while (status) { 929 while (status) {
731 /*txn interrupt*/ 930 /*txn interrupt*/
@@ -741,15 +940,23 @@ static void dma_tasklet(unsigned long data)
741 } 940 }
742 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n", 941 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
743 status, midc->ch_id, i); 942 status, midc->ch_id, i);
943 midc->raw_tfr = raw_tfr;
944 midc->raw_block = raw_block;
945 spin_lock_bh(&midc->lock);
744 /*clearing this interrupts first*/ 946 /*clearing this interrupts first*/
745 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR); 947 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
746 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_BLOCK); 948 if (raw_block) {
747 949 iowrite32((1 << midc->ch_id),
748 spin_lock_bh(&midc->lock); 950 mid->dma_base + CLEAR_BLOCK);
951 }
749 midc_scan_descriptors(mid, midc); 952 midc_scan_descriptors(mid, midc);
750 pr_debug("MDMA:Scan of desc... complete, unmasking\n"); 953 pr_debug("MDMA:Scan of desc... complete, unmasking\n");
751 iowrite32(UNMASK_INTR_REG(midc->ch_id), 954 iowrite32(UNMASK_INTR_REG(midc->ch_id),
752 mid->dma_base + MASK_TFR); 955 mid->dma_base + MASK_TFR);
956 if (raw_block) {
957 iowrite32(UNMASK_INTR_REG(midc->ch_id),
958 mid->dma_base + MASK_BLOCK);
959 }
753 spin_unlock_bh(&midc->lock); 960 spin_unlock_bh(&midc->lock);
754 } 961 }
755 962
@@ -804,9 +1011,14 @@ static void dma_tasklet2(unsigned long data)
804static irqreturn_t intel_mid_dma_interrupt(int irq, void *data) 1011static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
805{ 1012{
806 struct middma_device *mid = data; 1013 struct middma_device *mid = data;
807 u32 status; 1014 u32 tfr_status, err_status;
808 int call_tasklet = 0; 1015 int call_tasklet = 0;
809 1016
1017 tfr_status = ioread32(mid->dma_base + RAW_TFR);
1018 err_status = ioread32(mid->dma_base + RAW_ERR);
1019 if (!tfr_status && !err_status)
1020 return IRQ_NONE;
1021
810 /*DMA Interrupt*/ 1022 /*DMA Interrupt*/
811 pr_debug("MDMA:Got an interrupt on irq %d\n", irq); 1023 pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
812 if (!mid) { 1024 if (!mid) {
@@ -814,19 +1026,18 @@ static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
814 return -EINVAL; 1026 return -EINVAL;
815 } 1027 }
816 1028
817 status = ioread32(mid->dma_base + RAW_TFR); 1029 pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
818 pr_debug("MDMA: Status %x, Mask %x\n", status, mid->intr_mask); 1030 tfr_status &= mid->intr_mask;
819 status &= mid->intr_mask; 1031 if (tfr_status) {
820 if (status) {
821 /*need to disable intr*/ 1032 /*need to disable intr*/
822 iowrite32((status << 8), mid->dma_base + MASK_TFR); 1033 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
823 pr_debug("MDMA: Calling tasklet %x\n", status); 1034 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1035 pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
824 call_tasklet = 1; 1036 call_tasklet = 1;
825 } 1037 }
826 status = ioread32(mid->dma_base + RAW_ERR); 1038 err_status &= mid->intr_mask;
827 status &= mid->intr_mask; 1039 if (err_status) {
828 if (status) { 1040 iowrite32(MASK_INTR_REG(err_status), mid->dma_base + MASK_ERR);
829 iowrite32(MASK_INTR_REG(status), mid->dma_base + MASK_ERR);
830 call_tasklet = 1; 1041 call_tasklet = 1;
831 } 1042 }
832 if (call_tasklet) 1043 if (call_tasklet)
@@ -856,7 +1067,6 @@ static int mid_setup_dma(struct pci_dev *pdev)
856{ 1067{
857 struct middma_device *dma = pci_get_drvdata(pdev); 1068 struct middma_device *dma = pci_get_drvdata(pdev);
858 int err, i; 1069 int err, i;
859 unsigned int irq_level;
860 1070
861 /* DMA coherent memory pool for DMA descriptor allocations */ 1071 /* DMA coherent memory pool for DMA descriptor allocations */
862 dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev, 1072 dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
@@ -884,6 +1094,7 @@ static int mid_setup_dma(struct pci_dev *pdev)
884 pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan); 1094 pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
885 /*init CH structures*/ 1095 /*init CH structures*/
886 dma->intr_mask = 0; 1096 dma->intr_mask = 0;
1097 dma->state = RUNNING;
887 for (i = 0; i < dma->max_chan; i++) { 1098 for (i = 0; i < dma->max_chan; i++) {
888 struct intel_mid_dma_chan *midch = &dma->ch[i]; 1099 struct intel_mid_dma_chan *midch = &dma->ch[i];
889 1100
@@ -943,7 +1154,6 @@ static int mid_setup_dma(struct pci_dev *pdev)
943 1154
944 /*register irq */ 1155 /*register irq */
945 if (dma->pimr_mask) { 1156 if (dma->pimr_mask) {
946 irq_level = IRQF_SHARED;
947 pr_debug("MDMA:Requesting irq shared for DMAC1\n"); 1157 pr_debug("MDMA:Requesting irq shared for DMAC1\n");
948 err = request_irq(pdev->irq, intel_mid_dma_interrupt1, 1158 err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
949 IRQF_SHARED, "INTEL_MID_DMAC1", dma); 1159 IRQF_SHARED, "INTEL_MID_DMAC1", dma);
@@ -951,10 +1161,9 @@ static int mid_setup_dma(struct pci_dev *pdev)
951 goto err_irq; 1161 goto err_irq;
952 } else { 1162 } else {
953 dma->intr_mask = 0x03; 1163 dma->intr_mask = 0x03;
954 irq_level = 0;
955 pr_debug("MDMA:Requesting irq for DMAC2\n"); 1164 pr_debug("MDMA:Requesting irq for DMAC2\n");
956 err = request_irq(pdev->irq, intel_mid_dma_interrupt2, 1165 err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
957 0, "INTEL_MID_DMAC2", dma); 1166 IRQF_SHARED, "INTEL_MID_DMAC2", dma);
958 if (0 != err) 1167 if (0 != err)
959 goto err_irq; 1168 goto err_irq;
960 } 1169 }
@@ -1070,6 +1279,9 @@ static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1070 if (err) 1279 if (err)
1071 goto err_dma; 1280 goto err_dma;
1072 1281
1282 pm_runtime_set_active(&pdev->dev);
1283 pm_runtime_enable(&pdev->dev);
1284 pm_runtime_allow(&pdev->dev);
1073 return 0; 1285 return 0;
1074 1286
1075err_dma: 1287err_dma:
@@ -1104,6 +1316,85 @@ static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1104 pci_disable_device(pdev); 1316 pci_disable_device(pdev);
1105} 1317}
1106 1318
1319/* Power Management */
1320/*
1321* dma_suspend - PCI suspend function
1322*
1323* @pci: PCI device structure
1324* @state: PM message
1325*
1326* This function is called by OS when a power event occurs
1327*/
1328int dma_suspend(struct pci_dev *pci, pm_message_t state)
1329{
1330 int i;
1331 struct middma_device *device = pci_get_drvdata(pci);
1332 pr_debug("MDMA: dma_suspend called\n");
1333
1334 for (i = 0; i < device->max_chan; i++) {
1335 if (device->ch[i].in_use)
1336 return -EAGAIN;
1337 }
1338 device->state = SUSPENDED;
1339 pci_set_drvdata(pci, device);
1340 pci_save_state(pci);
1341 pci_disable_device(pci);
1342 pci_set_power_state(pci, PCI_D3hot);
1343 return 0;
1344}
1345
1346/**
1347* dma_resume - PCI resume function
1348*
1349* @pci: PCI device structure
1350*
1351* This function is called by OS when a power event occurs
1352*/
1353int dma_resume(struct pci_dev *pci)
1354{
1355 int ret;
1356 struct middma_device *device = pci_get_drvdata(pci);
1357
1358 pr_debug("MDMA: dma_resume called\n");
1359 pci_set_power_state(pci, PCI_D0);
1360 pci_restore_state(pci);
1361 ret = pci_enable_device(pci);
1362 if (ret) {
1363 pr_err("MDMA: device cant be enabled for %x\n", pci->device);
1364 return ret;
1365 }
1366 device->state = RUNNING;
1367 iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1368 pci_set_drvdata(pci, device);
1369 return 0;
1370}
1371
1372static int dma_runtime_suspend(struct device *dev)
1373{
1374 struct pci_dev *pci_dev = to_pci_dev(dev);
1375 return dma_suspend(pci_dev, PMSG_SUSPEND);
1376}
1377
1378static int dma_runtime_resume(struct device *dev)
1379{
1380 struct pci_dev *pci_dev = to_pci_dev(dev);
1381 return dma_resume(pci_dev);
1382}
1383
1384static int dma_runtime_idle(struct device *dev)
1385{
1386 struct pci_dev *pdev = to_pci_dev(dev);
1387 struct middma_device *device = pci_get_drvdata(pdev);
1388 int i;
1389
1390 for (i = 0; i < device->max_chan; i++) {
1391 if (device->ch[i].in_use)
1392 return -EAGAIN;
1393 }
1394
1395 return pm_schedule_suspend(dev, 0);
1396}
1397
1107/****************************************************************************** 1398/******************************************************************************
1108* PCI stuff 1399* PCI stuff
1109*/ 1400*/
@@ -1116,11 +1407,24 @@ static struct pci_device_id intel_mid_dma_ids[] = {
1116}; 1407};
1117MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids); 1408MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1118 1409
1410static const struct dev_pm_ops intel_mid_dma_pm = {
1411 .runtime_suspend = dma_runtime_suspend,
1412 .runtime_resume = dma_runtime_resume,
1413 .runtime_idle = dma_runtime_idle,
1414};
1415
1119static struct pci_driver intel_mid_dma_pci = { 1416static struct pci_driver intel_mid_dma_pci = {
1120 .name = "Intel MID DMA", 1417 .name = "Intel MID DMA",
1121 .id_table = intel_mid_dma_ids, 1418 .id_table = intel_mid_dma_ids,
1122 .probe = intel_mid_dma_probe, 1419 .probe = intel_mid_dma_probe,
1123 .remove = __devexit_p(intel_mid_dma_remove), 1420 .remove = __devexit_p(intel_mid_dma_remove),
1421#ifdef CONFIG_PM
1422 .suspend = dma_suspend,
1423 .resume = dma_resume,
1424 .driver = {
1425 .pm = &intel_mid_dma_pm,
1426 },
1427#endif
1124}; 1428};
1125 1429
1126static int __init intel_mid_dma_init(void) 1430static int __init intel_mid_dma_init(void)
diff --git a/drivers/dma/intel_mid_dma_regs.h b/drivers/dma/intel_mid_dma_regs.h
index d81aa658ab09..709fecbdde79 100644
--- a/drivers/dma/intel_mid_dma_regs.h
+++ b/drivers/dma/intel_mid_dma_regs.h
@@ -29,11 +29,12 @@
29#include <linux/dmapool.h> 29#include <linux/dmapool.h>
30#include <linux/pci_ids.h> 30#include <linux/pci_ids.h>
31 31
32#define INTEL_MID_DMA_DRIVER_VERSION "1.0.5" 32#define INTEL_MID_DMA_DRIVER_VERSION "1.1.0"
33 33
34#define REG_BIT0 0x00000001 34#define REG_BIT0 0x00000001
35#define REG_BIT8 0x00000100 35#define REG_BIT8 0x00000100
36 36#define INT_MASK_WE 0x8
37#define CLEAR_DONE 0xFFFFEFFF
37#define UNMASK_INTR_REG(chan_num) \ 38#define UNMASK_INTR_REG(chan_num) \
38 ((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num)) 39 ((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num))
39#define MASK_INTR_REG(chan_num) (REG_BIT8 << chan_num) 40#define MASK_INTR_REG(chan_num) (REG_BIT8 << chan_num)
@@ -41,6 +42,9 @@
41#define ENABLE_CHANNEL(chan_num) \ 42#define ENABLE_CHANNEL(chan_num) \
42 ((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num)) 43 ((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num))
43 44
45#define DISABLE_CHANNEL(chan_num) \
46 (REG_BIT8 << chan_num)
47
44#define DESCS_PER_CHANNEL 16 48#define DESCS_PER_CHANNEL 16
45/*DMA Registers*/ 49/*DMA Registers*/
46/*registers associated with channel programming*/ 50/*registers associated with channel programming*/
@@ -50,6 +54,7 @@
50/*CH X REG = (DMA_CH_SIZE)*CH_NO + REG*/ 54/*CH X REG = (DMA_CH_SIZE)*CH_NO + REG*/
51#define SAR 0x00 /* Source Address Register*/ 55#define SAR 0x00 /* Source Address Register*/
52#define DAR 0x08 /* Destination Address Register*/ 56#define DAR 0x08 /* Destination Address Register*/
57#define LLP 0x10 /* Linked List Pointer Register*/
53#define CTL_LOW 0x18 /* Control Register*/ 58#define CTL_LOW 0x18 /* Control Register*/
54#define CTL_HIGH 0x1C /* Control Register*/ 59#define CTL_HIGH 0x1C /* Control Register*/
55#define CFG_LOW 0x40 /* Configuration Register Low*/ 60#define CFG_LOW 0x40 /* Configuration Register Low*/
@@ -112,8 +117,8 @@ union intel_mid_dma_ctl_lo {
112union intel_mid_dma_ctl_hi { 117union intel_mid_dma_ctl_hi {
113 struct { 118 struct {
114 u32 block_ts:12; /*block transfer size*/ 119 u32 block_ts:12; /*block transfer size*/
115 /*configured by DMAC*/ 120 u32 done:1; /*Done - updated by DMAC*/
116 u32 reser:20; 121 u32 reser:19; /*configured by DMAC*/
117 } ctlx; 122 } ctlx;
118 u32 ctl_hi; 123 u32 ctl_hi;
119 124
@@ -152,6 +157,7 @@ union intel_mid_dma_cfg_hi {
152 u32 cfg_hi; 157 u32 cfg_hi;
153}; 158};
154 159
160
155/** 161/**
156 * struct intel_mid_dma_chan - internal mid representation of a DMA channel 162 * struct intel_mid_dma_chan - internal mid representation of a DMA channel
157 * @chan: dma_chan strcture represetation for mid chan 163 * @chan: dma_chan strcture represetation for mid chan
@@ -166,7 +172,10 @@ union intel_mid_dma_cfg_hi {
166 * @slave: dma slave struture 172 * @slave: dma slave struture
167 * @descs_allocated: total number of decsiptors allocated 173 * @descs_allocated: total number of decsiptors allocated
168 * @dma: dma device struture pointer 174 * @dma: dma device struture pointer
175 * @busy: bool representing if ch is busy (active txn) or not
169 * @in_use: bool representing if ch is in use or not 176 * @in_use: bool representing if ch is in use or not
177 * @raw_tfr: raw trf interrupt recieved
178 * @raw_block: raw block interrupt recieved
170 */ 179 */
171struct intel_mid_dma_chan { 180struct intel_mid_dma_chan {
172 struct dma_chan chan; 181 struct dma_chan chan;
@@ -178,10 +187,13 @@ struct intel_mid_dma_chan {
178 struct list_head active_list; 187 struct list_head active_list;
179 struct list_head queue; 188 struct list_head queue;
180 struct list_head free_list; 189 struct list_head free_list;
181 struct intel_mid_dma_slave *slave;
182 unsigned int descs_allocated; 190 unsigned int descs_allocated;
183 struct middma_device *dma; 191 struct middma_device *dma;
192 bool busy;
184 bool in_use; 193 bool in_use;
194 u32 raw_tfr;
195 u32 raw_block;
196 struct intel_mid_dma_slave *mid_slave;
185}; 197};
186 198
187static inline struct intel_mid_dma_chan *to_intel_mid_dma_chan( 199static inline struct intel_mid_dma_chan *to_intel_mid_dma_chan(
@@ -190,6 +202,10 @@ static inline struct intel_mid_dma_chan *to_intel_mid_dma_chan(
190 return container_of(chan, struct intel_mid_dma_chan, chan); 202 return container_of(chan, struct intel_mid_dma_chan, chan);
191} 203}
192 204
205enum intel_mid_dma_state {
206 RUNNING = 0,
207 SUSPENDED,
208};
193/** 209/**
194 * struct middma_device - internal representation of a DMA device 210 * struct middma_device - internal representation of a DMA device
195 * @pdev: PCI device 211 * @pdev: PCI device
@@ -205,6 +221,7 @@ static inline struct intel_mid_dma_chan *to_intel_mid_dma_chan(
205 * @max_chan: max number of chs supported (from drv_data) 221 * @max_chan: max number of chs supported (from drv_data)
206 * @block_size: Block size of DMA transfer supported (from drv_data) 222 * @block_size: Block size of DMA transfer supported (from drv_data)
207 * @pimr_mask: MMIO register addr for periphral interrupt (from drv_data) 223 * @pimr_mask: MMIO register addr for periphral interrupt (from drv_data)
224 * @state: dma PM device state
208 */ 225 */
209struct middma_device { 226struct middma_device {
210 struct pci_dev *pdev; 227 struct pci_dev *pdev;
@@ -220,6 +237,7 @@ struct middma_device {
220 int max_chan; 237 int max_chan;
221 int block_size; 238 int block_size;
222 unsigned int pimr_mask; 239 unsigned int pimr_mask;
240 enum intel_mid_dma_state state;
223}; 241};
224 242
225static inline struct middma_device *to_middma_device(struct dma_device *common) 243static inline struct middma_device *to_middma_device(struct dma_device *common)
@@ -238,14 +256,27 @@ struct intel_mid_dma_desc {
238 u32 cfg_lo; 256 u32 cfg_lo;
239 u32 ctl_lo; 257 u32 ctl_lo;
240 u32 ctl_hi; 258 u32 ctl_hi;
259 struct pci_pool *lli_pool;
260 struct intel_mid_dma_lli *lli;
261 dma_addr_t lli_phys;
262 unsigned int lli_length;
263 unsigned int current_lli;
241 dma_addr_t next; 264 dma_addr_t next;
242 enum dma_data_direction dirn; 265 enum dma_data_direction dirn;
243 enum dma_status status; 266 enum dma_status status;
244 enum intel_mid_dma_width width; /*width of DMA txn*/ 267 enum dma_slave_buswidth width; /*width of DMA txn*/
245 enum intel_mid_dma_mode cfg_mode; /*mode configuration*/ 268 enum intel_mid_dma_mode cfg_mode; /*mode configuration*/
246 269
247}; 270};
248 271
272struct intel_mid_dma_lli {
273 dma_addr_t sar;
274 dma_addr_t dar;
275 dma_addr_t llp;
276 u32 ctl_lo;
277 u32 ctl_hi;
278} __attribute__ ((packed));
279
249static inline int test_ch_en(void __iomem *dma, u32 ch_no) 280static inline int test_ch_en(void __iomem *dma, u32 ch_no)
250{ 281{
251 u32 en_reg = ioread32(dma + DMA_CHAN_EN); 282 u32 en_reg = ioread32(dma + DMA_CHAN_EN);
@@ -257,4 +288,14 @@ static inline struct intel_mid_dma_desc *to_intel_mid_dma_desc
257{ 288{
258 return container_of(txd, struct intel_mid_dma_desc, txd); 289 return container_of(txd, struct intel_mid_dma_desc, txd);
259} 290}
291
292static inline struct intel_mid_dma_slave *to_intel_mid_dma_slave
293 (struct dma_slave_config *slave)
294{
295 return container_of(slave, struct intel_mid_dma_slave, dma_slave);
296}
297
298
299int dma_resume(struct pci_dev *pci);
300
260#endif /*__INTEL_MID_DMAC_REGS_H__*/ 301#endif /*__INTEL_MID_DMAC_REGS_H__*/
diff --git a/drivers/dma/mv_xor.c b/drivers/dma/mv_xor.c
index 86c5ae9fde34..411d5bf50fc4 100644
--- a/drivers/dma/mv_xor.c
+++ b/drivers/dma/mv_xor.c
@@ -162,7 +162,7 @@ static int mv_is_err_intr(u32 intr_cause)
162 162
163static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan) 163static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
164{ 164{
165 u32 val = (1 << (1 + (chan->idx * 16))); 165 u32 val = ~(1 << (chan->idx * 16));
166 dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val); 166 dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
167 __raw_writel(val, XOR_INTR_CAUSE(chan)); 167 __raw_writel(val, XOR_INTR_CAUSE(chan));
168} 168}
diff --git a/drivers/dma/shdma.c b/drivers/dma/shdma.c
index fb64cf36ba61..eb6b54dbb806 100644
--- a/drivers/dma/shdma.c
+++ b/drivers/dma/shdma.c
@@ -580,7 +580,6 @@ static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
580 580
581 sh_chan = to_sh_chan(chan); 581 sh_chan = to_sh_chan(chan);
582 param = chan->private; 582 param = chan->private;
583 slave_addr = param->config->addr;
584 583
585 /* Someone calling slave DMA on a public channel? */ 584 /* Someone calling slave DMA on a public channel? */
586 if (!param || !sg_len) { 585 if (!param || !sg_len) {
@@ -589,6 +588,8 @@ static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
589 return NULL; 588 return NULL;
590 } 589 }
591 590
591 slave_addr = param->config->addr;
592
592 /* 593 /*
593 * if (param != NULL), this is a successfully requested slave channel, 594 * if (param != NULL), this is a successfully requested slave channel,
594 * therefore param->config != NULL too. 595 * therefore param->config != NULL too.
diff --git a/drivers/dma/ste_dma40.c b/drivers/dma/ste_dma40.c
index 662d7e35f862..3f76cd9af7c3 100644
--- a/drivers/dma/ste_dma40.c
+++ b/drivers/dma/ste_dma40.c
@@ -1903,6 +1903,18 @@ err:
1903 return NULL; 1903 return NULL;
1904} 1904}
1905 1905
1906static struct dma_async_tx_descriptor *
1907d40_prep_sg(struct dma_chan *chan,
1908 struct scatterlist *dst_sg, unsigned int dst_nents,
1909 struct scatterlist *src_sg, unsigned int src_nents,
1910 unsigned long dma_flags)
1911{
1912 if (dst_nents != src_nents)
1913 return NULL;
1914
1915 return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
1916}
1917
1906static int d40_prep_slave_sg_log(struct d40_desc *d40d, 1918static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1907 struct d40_chan *d40c, 1919 struct d40_chan *d40c,
1908 struct scatterlist *sgl, 1920 struct scatterlist *sgl,
@@ -2325,6 +2337,7 @@ static int __init d40_dmaengine_init(struct d40_base *base,
2325 base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources; 2337 base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2326 base->dma_slave.device_free_chan_resources = d40_free_chan_resources; 2338 base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2327 base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy; 2339 base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2340 base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2328 base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg; 2341 base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2329 base->dma_slave.device_tx_status = d40_tx_status; 2342 base->dma_slave.device_tx_status = d40_tx_status;
2330 base->dma_slave.device_issue_pending = d40_issue_pending; 2343 base->dma_slave.device_issue_pending = d40_issue_pending;
@@ -2345,10 +2358,12 @@ static int __init d40_dmaengine_init(struct d40_base *base,
2345 2358
2346 dma_cap_zero(base->dma_memcpy.cap_mask); 2359 dma_cap_zero(base->dma_memcpy.cap_mask);
2347 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); 2360 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2361 dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2348 2362
2349 base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources; 2363 base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2350 base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources; 2364 base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2351 base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy; 2365 base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2366 base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2352 base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg; 2367 base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2353 base->dma_memcpy.device_tx_status = d40_tx_status; 2368 base->dma_memcpy.device_tx_status = d40_tx_status;
2354 base->dma_memcpy.device_issue_pending = d40_issue_pending; 2369 base->dma_memcpy.device_issue_pending = d40_issue_pending;
@@ -2375,10 +2390,12 @@ static int __init d40_dmaengine_init(struct d40_base *base,
2375 dma_cap_zero(base->dma_both.cap_mask); 2390 dma_cap_zero(base->dma_both.cap_mask);
2376 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); 2391 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2377 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); 2392 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2393 dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2378 2394
2379 base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources; 2395 base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2380 base->dma_both.device_free_chan_resources = d40_free_chan_resources; 2396 base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2381 base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy; 2397 base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2398 base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2382 base->dma_both.device_prep_slave_sg = d40_prep_slave_sg; 2399 base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2383 base->dma_both.device_tx_status = d40_tx_status; 2400 base->dma_both.device_tx_status = d40_tx_status;
2384 base->dma_both.device_issue_pending = d40_issue_pending; 2401 base->dma_both.device_issue_pending = d40_issue_pending;
diff --git a/include/linux/amba/pl08x.h b/include/linux/amba/pl08x.h
new file mode 100644
index 000000000000..521a0f8974ac
--- /dev/null
+++ b/include/linux/amba/pl08x.h
@@ -0,0 +1,222 @@
1/*
2 * linux/amba/pl08x.h - ARM PrimeCell DMA Controller driver
3 *
4 * Copyright (C) 2005 ARM Ltd
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * pl08x information required by platform code
12 *
13 * Please credit ARM.com
14 * Documentation: ARM DDI 0196D
15 *
16 */
17
18#ifndef AMBA_PL08X_H
19#define AMBA_PL08X_H
20
21/* We need sizes of structs from this header */
22#include <linux/dmaengine.h>
23#include <linux/interrupt.h>
24
25/**
26 * struct pl08x_channel_data - data structure to pass info between
27 * platform and PL08x driver regarding channel configuration
28 * @bus_id: name of this device channel, not just a device name since
29 * devices may have more than one channel e.g. "foo_tx"
30 * @min_signal: the minimum DMA signal number to be muxed in for this
31 * channel (for platforms supporting muxed signals). If you have
32 * static assignments, make sure this is set to the assigned signal
33 * number, PL08x have 16 possible signals in number 0 thru 15 so
34 * when these are not enough they often get muxed (in hardware)
35 * disabling simultaneous use of the same channel for two devices.
36 * @max_signal: the maximum DMA signal number to be muxed in for
37 * the channel. Set to the same as min_signal for
38 * devices with static assignments
39 * @muxval: a number usually used to poke into some mux regiser to
40 * mux in the signal to this channel
41 * @cctl_opt: default options for the channel control register
42 * @addr: source/target address in physical memory for this DMA channel,
43 * can be the address of a FIFO register for burst requests for example.
44 * This can be left undefined if the PrimeCell API is used for configuring
45 * this.
46 * @circular_buffer: whether the buffer passed in is circular and
47 * shall simply be looped round round (like a record baby round
48 * round round round)
49 * @single: the device connected to this channel will request single
50 * DMA transfers, not bursts. (Bursts are default.)
51 */
52struct pl08x_channel_data {
53 char *bus_id;
54 int min_signal;
55 int max_signal;
56 u32 muxval;
57 u32 cctl;
58 u32 ccfg;
59 dma_addr_t addr;
60 bool circular_buffer;
61 bool single;
62};
63
64/**
65 * Struct pl08x_bus_data - information of source or destination
66 * busses for a transfer
67 * @addr: current address
68 * @maxwidth: the maximum width of a transfer on this bus
69 * @buswidth: the width of this bus in bytes: 1, 2 or 4
70 * @fill_bytes: bytes required to fill to the next bus memory
71 * boundary
72 */
73struct pl08x_bus_data {
74 dma_addr_t addr;
75 u8 maxwidth;
76 u8 buswidth;
77 u32 fill_bytes;
78};
79
80/**
81 * struct pl08x_phy_chan - holder for the physical channels
82 * @id: physical index to this channel
83 * @lock: a lock to use when altering an instance of this struct
84 * @signal: the physical signal (aka channel) serving this
85 * physical channel right now
86 * @serving: the virtual channel currently being served by this
87 * physical channel
88 */
89struct pl08x_phy_chan {
90 unsigned int id;
91 void __iomem *base;
92 spinlock_t lock;
93 int signal;
94 struct pl08x_dma_chan *serving;
95 u32 csrc;
96 u32 cdst;
97 u32 clli;
98 u32 cctl;
99 u32 ccfg;
100};
101
102/**
103 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
104 * @llis_bus: DMA memory address (physical) start for the LLIs
105 * @llis_va: virtual memory address start for the LLIs
106 */
107struct pl08x_txd {
108 struct dma_async_tx_descriptor tx;
109 struct list_head node;
110 enum dma_data_direction direction;
111 struct pl08x_bus_data srcbus;
112 struct pl08x_bus_data dstbus;
113 int len;
114 dma_addr_t llis_bus;
115 void *llis_va;
116 struct pl08x_channel_data *cd;
117 bool active;
118 /*
119 * Settings to be put into the physical channel when we
120 * trigger this txd
121 */
122 u32 csrc;
123 u32 cdst;
124 u32 clli;
125 u32 cctl;
126};
127
128/**
129 * struct pl08x_dma_chan_state - holds the PL08x specific virtual
130 * channel states
131 * @PL08X_CHAN_IDLE: the channel is idle
132 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
133 * channel and is running a transfer on it
134 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
135 * channel, but the transfer is currently paused
136 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
137 * channel to become available (only pertains to memcpy channels)
138 */
139enum pl08x_dma_chan_state {
140 PL08X_CHAN_IDLE,
141 PL08X_CHAN_RUNNING,
142 PL08X_CHAN_PAUSED,
143 PL08X_CHAN_WAITING,
144};
145
146/**
147 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
148 * @chan: wrappped abstract channel
149 * @phychan: the physical channel utilized by this channel, if there is one
150 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
151 * @name: name of channel
152 * @cd: channel platform data
153 * @runtime_addr: address for RX/TX according to the runtime config
154 * @runtime_direction: current direction of this channel according to
155 * runtime config
156 * @lc: last completed transaction on this channel
157 * @desc_list: queued transactions pending on this channel
158 * @at: active transaction on this channel
159 * @lockflags: sometimes we let a lock last between two function calls,
160 * especially prep/submit, and then we need to store the IRQ flags
161 * in the channel state, here
162 * @lock: a lock for this channel data
163 * @host: a pointer to the host (internal use)
164 * @state: whether the channel is idle, paused, running etc
165 * @slave: whether this channel is a device (slave) or for memcpy
166 * @waiting: a TX descriptor on this channel which is waiting for
167 * a physical channel to become available
168 */
169struct pl08x_dma_chan {
170 struct dma_chan chan;
171 struct pl08x_phy_chan *phychan;
172 struct tasklet_struct tasklet;
173 char *name;
174 struct pl08x_channel_data *cd;
175 dma_addr_t runtime_addr;
176 enum dma_data_direction runtime_direction;
177 atomic_t last_issued;
178 dma_cookie_t lc;
179 struct list_head desc_list;
180 struct pl08x_txd *at;
181 unsigned long lockflags;
182 spinlock_t lock;
183 void *host;
184 enum pl08x_dma_chan_state state;
185 bool slave;
186 struct pl08x_txd *waiting;
187};
188
189/**
190 * struct pl08x_platform_data - the platform configuration for the
191 * PL08x PrimeCells.
192 * @slave_channels: the channels defined for the different devices on the
193 * platform, all inclusive, including multiplexed channels. The available
194 * physical channels will be multiplexed around these signals as they
195 * are requested, just enumerate all possible channels.
196 * @get_signal: request a physical signal to be used for a DMA
197 * transfer immediately: if there is some multiplexing or similar blocking
198 * the use of the channel the transfer can be denied by returning
199 * less than zero, else it returns the allocated signal number
200 * @put_signal: indicate to the platform that this physical signal is not
201 * running any DMA transfer and multiplexing can be recycled
202 * @bus_bit_lli: Bit[0] of the address indicated which AHB bus master the
203 * LLI addresses are on 0/1 Master 1/2.
204 */
205struct pl08x_platform_data {
206 struct pl08x_channel_data *slave_channels;
207 unsigned int num_slave_channels;
208 struct pl08x_channel_data memcpy_channel;
209 int (*get_signal)(struct pl08x_dma_chan *);
210 void (*put_signal)(struct pl08x_dma_chan *);
211};
212
213#ifdef CONFIG_AMBA_PL08X
214bool pl08x_filter_id(struct dma_chan *chan, void *chan_id);
215#else
216static inline bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
217{
218 return false;
219}
220#endif
221
222#endif /* AMBA_PL08X_H */
diff --git a/include/linux/dmaengine.h b/include/linux/dmaengine.h
index c61d4ca27bcc..3934ebdd85c2 100644
--- a/include/linux/dmaengine.h
+++ b/include/linux/dmaengine.h
@@ -64,13 +64,15 @@ enum dma_transaction_type {
64 DMA_PQ_VAL, 64 DMA_PQ_VAL,
65 DMA_MEMSET, 65 DMA_MEMSET,
66 DMA_INTERRUPT, 66 DMA_INTERRUPT,
67 DMA_SG,
67 DMA_PRIVATE, 68 DMA_PRIVATE,
68 DMA_ASYNC_TX, 69 DMA_ASYNC_TX,
69 DMA_SLAVE, 70 DMA_SLAVE,
71 DMA_CYCLIC,
70}; 72};
71 73
72/* last transaction type for creation of the capabilities mask */ 74/* last transaction type for creation of the capabilities mask */
73#define DMA_TX_TYPE_END (DMA_SLAVE + 1) 75#define DMA_TX_TYPE_END (DMA_CYCLIC + 1)
74 76
75 77
76/** 78/**
@@ -119,12 +121,15 @@ enum dma_ctrl_flags {
119 * configuration data in statically from the platform). An additional 121 * configuration data in statically from the platform). An additional
120 * argument of struct dma_slave_config must be passed in with this 122 * argument of struct dma_slave_config must be passed in with this
121 * command. 123 * command.
124 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
125 * into external start mode.
122 */ 126 */
123enum dma_ctrl_cmd { 127enum dma_ctrl_cmd {
124 DMA_TERMINATE_ALL, 128 DMA_TERMINATE_ALL,
125 DMA_PAUSE, 129 DMA_PAUSE,
126 DMA_RESUME, 130 DMA_RESUME,
127 DMA_SLAVE_CONFIG, 131 DMA_SLAVE_CONFIG,
132 FSLDMA_EXTERNAL_START,
128}; 133};
129 134
130/** 135/**
@@ -422,6 +427,9 @@ struct dma_tx_state {
422 * @device_prep_dma_memset: prepares a memset operation 427 * @device_prep_dma_memset: prepares a memset operation
423 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 428 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
424 * @device_prep_slave_sg: prepares a slave dma operation 429 * @device_prep_slave_sg: prepares a slave dma operation
430 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
431 * The function takes a buffer of size buf_len. The callback function will
432 * be called after period_len bytes have been transferred.
425 * @device_control: manipulate all pending operations on a channel, returns 433 * @device_control: manipulate all pending operations on a channel, returns
426 * zero or error code 434 * zero or error code
427 * @device_tx_status: poll for transaction completion, the optional 435 * @device_tx_status: poll for transaction completion, the optional
@@ -473,11 +481,19 @@ struct dma_device {
473 unsigned long flags); 481 unsigned long flags);
474 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 482 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
475 struct dma_chan *chan, unsigned long flags); 483 struct dma_chan *chan, unsigned long flags);
484 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
485 struct dma_chan *chan,
486 struct scatterlist *dst_sg, unsigned int dst_nents,
487 struct scatterlist *src_sg, unsigned int src_nents,
488 unsigned long flags);
476 489
477 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 490 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
478 struct dma_chan *chan, struct scatterlist *sgl, 491 struct dma_chan *chan, struct scatterlist *sgl,
479 unsigned int sg_len, enum dma_data_direction direction, 492 unsigned int sg_len, enum dma_data_direction direction,
480 unsigned long flags); 493 unsigned long flags);
494 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
495 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
496 size_t period_len, enum dma_data_direction direction);
481 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 497 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
482 unsigned long arg); 498 unsigned long arg);
483 499
@@ -487,6 +503,40 @@ struct dma_device {
487 void (*device_issue_pending)(struct dma_chan *chan); 503 void (*device_issue_pending)(struct dma_chan *chan);
488}; 504};
489 505
506static inline int dmaengine_device_control(struct dma_chan *chan,
507 enum dma_ctrl_cmd cmd,
508 unsigned long arg)
509{
510 return chan->device->device_control(chan, cmd, arg);
511}
512
513static inline int dmaengine_slave_config(struct dma_chan *chan,
514 struct dma_slave_config *config)
515{
516 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
517 (unsigned long)config);
518}
519
520static inline int dmaengine_terminate_all(struct dma_chan *chan)
521{
522 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
523}
524
525static inline int dmaengine_pause(struct dma_chan *chan)
526{
527 return dmaengine_device_control(chan, DMA_PAUSE, 0);
528}
529
530static inline int dmaengine_resume(struct dma_chan *chan)
531{
532 return dmaengine_device_control(chan, DMA_RESUME, 0);
533}
534
535static inline int dmaengine_submit(struct dma_async_tx_descriptor *desc)
536{
537 return desc->tx_submit(desc);
538}
539
490static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 540static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
491{ 541{
492 size_t mask; 542 size_t mask;
@@ -548,7 +598,7 @@ static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
548 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 598 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
549} 599}
550 600
551static unsigned short dma_dev_to_maxpq(struct dma_device *dma) 601static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
552{ 602{
553 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 603 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
554} 604}
diff --git a/include/linux/intel_mid_dma.h b/include/linux/intel_mid_dma.h
index d9d08b6269b6..10496bd24c5c 100644
--- a/include/linux/intel_mid_dma.h
+++ b/include/linux/intel_mid_dma.h
@@ -27,14 +27,7 @@
27 27
28#include <linux/dmaengine.h> 28#include <linux/dmaengine.h>
29 29
30/*DMA transaction width, src and dstn width would be same 30#define DMA_PREP_CIRCULAR_LIST (1 << 10)
31The DMA length must be width aligned,
32for 32 bit width the length must be 32 bit (4bytes) aligned only*/
33enum intel_mid_dma_width {
34 LNW_DMA_WIDTH_8BIT = 0x0,
35 LNW_DMA_WIDTH_16BIT = 0x1,
36 LNW_DMA_WIDTH_32BIT = 0x2,
37};
38 31
39/*DMA mode configurations*/ 32/*DMA mode configurations*/
40enum intel_mid_dma_mode { 33enum intel_mid_dma_mode {
@@ -69,18 +62,15 @@ enum intel_mid_dma_msize {
69 * @cfg_mode: DMA data transfer mode (per-per/mem-per/mem-mem) 62 * @cfg_mode: DMA data transfer mode (per-per/mem-per/mem-mem)
70 * @src_msize: Source DMA burst size 63 * @src_msize: Source DMA burst size
71 * @dst_msize: Dst DMA burst size 64 * @dst_msize: Dst DMA burst size
65 * @per_addr: Periphral address
72 * @device_instance: DMA peripheral device instance, we can have multiple 66 * @device_instance: DMA peripheral device instance, we can have multiple
73 * peripheral device connected to single DMAC 67 * peripheral device connected to single DMAC
74 */ 68 */
75struct intel_mid_dma_slave { 69struct intel_mid_dma_slave {
76 enum dma_data_direction dirn;
77 enum intel_mid_dma_width src_width; /*width of DMA src txn*/
78 enum intel_mid_dma_width dst_width; /*width of DMA dst txn*/
79 enum intel_mid_dma_hs_mode hs_mode; /*handshaking*/ 70 enum intel_mid_dma_hs_mode hs_mode; /*handshaking*/
80 enum intel_mid_dma_mode cfg_mode; /*mode configuration*/ 71 enum intel_mid_dma_mode cfg_mode; /*mode configuration*/
81 enum intel_mid_dma_msize src_msize; /*size if src burst*/
82 enum intel_mid_dma_msize dst_msize; /*size of dst burst*/
83 unsigned int device_instance; /*0, 1 for periphral instance*/ 72 unsigned int device_instance; /*0, 1 for periphral instance*/
73 struct dma_slave_config dma_slave;
84}; 74};
85 75
86#endif /*__INTEL_MID_DMA_H__*/ 76#endif /*__INTEL_MID_DMA_H__*/