aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/ABI/testing/sysfs-bus-pci40
-rw-r--r--Documentation/PCI/pcieaer-howto.txt29
-rw-r--r--Documentation/power/pci.txt1258
-rw-r--r--arch/x86/Kconfig8
-rw-r--r--arch/x86/include/asm/pci_x86.h2
-rw-r--r--arch/x86/pci/Makefile2
-rw-r--r--arch/x86/pci/broadcom_bus.c101
-rw-r--r--arch/x86/pci/common.c2
-rw-r--r--arch/x86/pci/direct.c16
-rw-r--r--arch/x86/pci/irq.c9
-rw-r--r--arch/x86/pci/mmconfig-shared.c17
-rw-r--r--arch/x86/pci/mmconfig_32.c8
-rw-r--r--arch/x86/pci/numaq_32.c8
-rw-r--r--arch/x86/pci/pcbios.c8
-rw-r--r--drivers/edac/amd76x_edac.c2
-rw-r--r--drivers/edac/i82443bxgx_edac.c2
-rw-r--r--drivers/edac/r82600_edac.c2
-rw-r--r--drivers/pci/Kconfig2
-rw-r--r--drivers/pci/access.c41
-rw-r--r--drivers/pci/hotplug/cpqphp_core.c3
-rw-r--r--drivers/pci/hotplug/pciehp_pci.c17
-rw-r--r--drivers/pci/pci-sysfs.c44
-rw-r--r--drivers/pci/pci.c4
-rw-r--r--drivers/pci/pcie/aer/aer_inject.c2
-rw-r--r--drivers/pci/pcie/aer/aerdrv.c179
-rw-r--r--drivers/pci/pcie/aer/aerdrv.h6
-rw-r--r--drivers/pci/pcie/aer/aerdrv_core.c558
-rw-r--r--drivers/pci/quirks.c21
-rw-r--r--drivers/pci/slot.c48
-rw-r--r--include/linux/ioport.h4
-rw-r--r--include/linux/pci_ids.h4
-rw-r--r--include/linux/pci_regs.h3
-rw-r--r--kernel/resource.c16
33 files changed, 1726 insertions, 740 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-pci b/Documentation/ABI/testing/sysfs-bus-pci
index 25be3250f7d6..428676cfa61e 100644
--- a/Documentation/ABI/testing/sysfs-bus-pci
+++ b/Documentation/ABI/testing/sysfs-bus-pci
@@ -133,6 +133,46 @@ Description:
133 The symbolic link points to the PCI device sysfs entry of the 133 The symbolic link points to the PCI device sysfs entry of the
134 Physical Function this device associates with. 134 Physical Function this device associates with.
135 135
136
137What: /sys/bus/pci/slots/...
138Date: April 2005 (possibly older)
139KernelVersion: 2.6.12 (possibly older)
140Contact: linux-pci@vger.kernel.org
141Description:
142 When the appropriate driver is loaded, it will create a
143 directory per claimed physical PCI slot in
144 /sys/bus/pci/slots/. The names of these directories are
145 specific to the driver, which in turn, are specific to the
146 platform, but in general, should match the label on the
147 machine's physical chassis.
148
149 The drivers that can create slot directories include the
150 PCI hotplug drivers, and as of 2.6.27, the pci_slot driver.
151
152 The slot directories contain, at a minimum, a file named
153 'address' which contains the PCI bus:device:function tuple.
154 Other files may appear as well, but are specific to the
155 driver.
156
157What: /sys/bus/pci/slots/.../function[0-7]
158Date: March 2010
159KernelVersion: 2.6.35
160Contact: linux-pci@vger.kernel.org
161Description:
162 If PCI slot directories (as described above) are created,
163 and the physical slot is actually populated with a device,
164 symbolic links in the slot directory pointing to the
165 device's PCI functions are created as well.
166
167What: /sys/bus/pci/devices/.../slot
168Date: March 2010
169KernelVersion: 2.6.35
170Contact: linux-pci@vger.kernel.org
171Description:
172 If PCI slot directories (as described above) are created,
173 a symbolic link pointing to the slot directory will be
174 created as well.
175
136What: /sys/bus/pci/slots/.../module 176What: /sys/bus/pci/slots/.../module
137Date: June 2009 177Date: June 2009
138Contact: linux-pci@vger.kernel.org 178Contact: linux-pci@vger.kernel.org
diff --git a/Documentation/PCI/pcieaer-howto.txt b/Documentation/PCI/pcieaer-howto.txt
index be21001ab144..26d3d945c3c2 100644
--- a/Documentation/PCI/pcieaer-howto.txt
+++ b/Documentation/PCI/pcieaer-howto.txt
@@ -13,7 +13,7 @@ Reporting (AER) driver and provides information on how to use it, as
13well as how to enable the drivers of endpoint devices to conform with 13well as how to enable the drivers of endpoint devices to conform with
14PCI Express AER driver. 14PCI Express AER driver.
15 15
161.2 Copyright © Intel Corporation 2006. 161.2 Copyright (C) Intel Corporation 2006.
17 17
181.3 What is the PCI Express AER Driver? 181.3 What is the PCI Express AER Driver?
19 19
@@ -71,15 +71,11 @@ console. If it's a correctable error, it is outputed as a warning.
71Otherwise, it is printed as an error. So users could choose different 71Otherwise, it is printed as an error. So users could choose different
72log level to filter out correctable error messages. 72log level to filter out correctable error messages.
73 73
74Below shows an example. 74Below shows an example:
75+------ PCI-Express Device Error -----+ 750000:50:00.0: PCIe Bus Error: severity=Uncorrected (Fatal), type=Transaction Layer, id=0500(Requester ID)
76Error Severity : Uncorrected (Fatal) 760000:50:00.0: device [8086:0329] error status/mask=00100000/00000000
77PCIE Bus Error type : Transaction Layer 770000:50:00.0: [20] Unsupported Request (First)
78Unsupported Request : First 780000:50:00.0: TLP Header: 04000001 00200a03 05010000 00050100
79Requester ID : 0500
80VendorID=8086h, DeviceID=0329h, Bus=05h, Device=00h, Function=00h
81TLB Header:
8204000001 00200a03 05010000 00050100
83 79
84In the example, 'Requester ID' means the ID of the device who sends 80In the example, 'Requester ID' means the ID of the device who sends
85the error message to root port. Pls. refer to pci express specs for 81the error message to root port. Pls. refer to pci express specs for
@@ -112,7 +108,7 @@ but the PCI Express link itself is fully functional. Fatal errors, on
112the other hand, cause the link to be unreliable. 108the other hand, cause the link to be unreliable.
113 109
114When AER is enabled, a PCI Express device will automatically send an 110When AER is enabled, a PCI Express device will automatically send an
115error message to the PCIE root port above it when the device captures 111error message to the PCIe root port above it when the device captures
116an error. The Root Port, upon receiving an error reporting message, 112an error. The Root Port, upon receiving an error reporting message,
117internally processes and logs the error message in its PCI Express 113internally processes and logs the error message in its PCI Express
118capability structure. Error information being logged includes storing 114capability structure. Error information being logged includes storing
@@ -198,8 +194,9 @@ to reset link, AER port service driver is required to provide the
198function to reset link. Firstly, kernel looks for if the upstream 194function to reset link. Firstly, kernel looks for if the upstream
199component has an aer driver. If it has, kernel uses the reset_link 195component has an aer driver. If it has, kernel uses the reset_link
200callback of the aer driver. If the upstream component has no aer driver 196callback of the aer driver. If the upstream component has no aer driver
201and the port is downstream port, we will use the aer driver of the 197and the port is downstream port, we will perform a hot reset as the
202root port who reports the AER error. As for upstream ports, 198default by setting the Secondary Bus Reset bit of the Bridge Control
199register associated with the downstream port. As for upstream ports,
203they should provide their own aer service drivers with reset_link 200they should provide their own aer service drivers with reset_link
204function. If error_detected returns PCI_ERS_RESULT_CAN_RECOVER and 201function. If error_detected returns PCI_ERS_RESULT_CAN_RECOVER and
205reset_link returns PCI_ERS_RESULT_RECOVERED, the error handling goes 202reset_link returns PCI_ERS_RESULT_RECOVERED, the error handling goes
@@ -253,11 +250,11 @@ cleanup uncorrectable status register. Pls. refer to section 3.3.
253 250
2544. Software error injection 2514. Software error injection
255 252
256Debugging PCIE AER error recovery code is quite difficult because it 253Debugging PCIe AER error recovery code is quite difficult because it
257is hard to trigger real hardware errors. Software based error 254is hard to trigger real hardware errors. Software based error
258injection can be used to fake various kinds of PCIE errors. 255injection can be used to fake various kinds of PCIe errors.
259 256
260First you should enable PCIE AER software error injection in kernel 257First you should enable PCIe AER software error injection in kernel
261configuration, that is, following item should be in your .config. 258configuration, that is, following item should be in your .config.
262 259
263CONFIG_PCIEAER_INJECT=y or CONFIG_PCIEAER_INJECT=m 260CONFIG_PCIEAER_INJECT=y or CONFIG_PCIEAER_INJECT=m
diff --git a/Documentation/power/pci.txt b/Documentation/power/pci.txt
index dd8fe43888d3..62328d76b55b 100644
--- a/Documentation/power/pci.txt
+++ b/Documentation/power/pci.txt
@@ -1,299 +1,1025 @@
1
2PCI Power Management 1PCI Power Management
3~~~~~~~~~~~~~~~~~~~~
4 2
5An overview of the concepts and the related functions in the Linux kernel 3Copyright (c) 2010 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
4
5An overview of concepts and the Linux kernel's interfaces related to PCI power
6management. Based on previous work by Patrick Mochel <mochel@transmeta.com>
7(and others).
6 8
7Patrick Mochel <mochel@transmeta.com> 9This document only covers the aspects of power management specific to PCI
8(and others) 10devices. For general description of the kernel's interfaces related to device
11power management refer to Documentation/power/devices.txt and
12Documentation/power/runtime_pm.txt.
9 13
10--------------------------------------------------------------------------- 14---------------------------------------------------------------------------
11 15
121. Overview 161. Hardware and Platform Support for PCI Power Management
132. How the PCI Subsystem Does Power Management 172. PCI Subsystem and Device Power Management
143. PCI Utility Functions 183. PCI Device Drivers and Power Management
154. PCI Device Drivers 194. Resources
165. Resources 20
17 21
181. Overview 221. Hardware and Platform Support for PCI Power Management
19~~~~~~~~~~~ 23=========================================================
20 24
21The PCI Power Management Specification was introduced between the PCI 2.1 and 251.1. Native and Platform-Based Power Management
22PCI 2.2 Specifications. It a standard interface for controlling various 26-----------------------------------------------
23power management operations. 27In general, power management is a feature allowing one to save energy by putting
24 28devices into states in which they draw less power (low-power states) at the
25Implementation of the PCI PM Spec is optional, as are several sub-components of 29price of reduced functionality or performance.
26it. If a device supports the PCI PM Spec, the device will have an 8 byte 30
27capability field in its PCI configuration space. This field is used to describe 31Usually, a device is put into a low-power state when it is underutilized or
28and control the standard PCI power management features. 32completely inactive. However, when it is necessary to use the device once
29 33again, it has to be put back into the "fully functional" state (full-power
30The PCI PM spec defines 4 operating states for devices (D0 - D3) and for buses 34state). This may happen when there are some data for the device to handle or
31(B0 - B3). The higher the number, the less power the device consumes. However, 35as a result of an external event requiring the device to be active, which may
32the higher the number, the longer the latency is for the device to return to 36be signaled by the device itself.
33an operational state (D0). 37
34 38PCI devices may be put into low-power states in two ways, by using the device
35There are actually two D3 states. When someone talks about D3, they usually 39capabilities introduced by the PCI Bus Power Management Interface Specification,
36mean D3hot, which corresponds to an ACPI D2 state (power is reduced, the 40or with the help of platform firmware, such as an ACPI BIOS. In the first
37device may lose some context). But they may also mean D3cold, which is an 41approach, that is referred to as the native PCI power management (native PCI PM)
38ACPI D3 state (power is fully off, all state was discarded); or both. 42in what follows, the device power state is changed as a result of writing a
39 43specific value into one of its standard configuration registers. The second
40Bus power management is not covered in this version of this document. 44approach requires the platform firmware to provide special methods that may be
41 45used by the kernel to change the device's power state.
42Note that all PCI devices support D0 and D3cold by default, regardless of 46
43whether or not they implement any of the PCI PM spec. 47Devices supporting the native PCI PM usually can generate wakeup signals called
44 48Power Management Events (PMEs) to let the kernel know about external events
45The possible state transitions that a device can undergo are: 49requiring the device to be active. After receiving a PME the kernel is supposed
46 50to put the device that sent it into the full-power state. However, the PCI Bus
47+---------------------------+ 51Power Management Interface Specification doesn't define any standard method of
48| Current State | New State | 52delivering the PME from the device to the CPU and the operating system kernel.
49+---------------------------+ 53It is assumed that the platform firmware will perform this task and therefore,
50| D0 | D1, D2, D3| 54even though a PCI device is set up to generate PMEs, it also may be necessary to
51+---------------------------+ 55prepare the platform firmware for notifying the CPU of the PMEs coming from the
52| D1 | D2, D3 | 56device (e.g. by generating interrupts).
53+---------------------------+ 57
54| D2 | D3 | 58In turn, if the methods provided by the platform firmware are used for changing
55+---------------------------+ 59the power state of a device, usually the platform also provides a method for
56| D1, D2, D3 | D0 | 60preparing the device to generate wakeup signals. In that case, however, it
57+---------------------------+ 61often also is necessary to prepare the device for generating PMEs using the
58 62native PCI PM mechanism, because the method provided by the platform depends on
59Note that when the system is entering a global suspend state, all devices will 63that.
60be placed into D3 and when resuming, all devices will be placed into D0. 64
61However, when the system is running, other state transitions are possible. 65Thus in many situations both the native and the platform-based power management
62 66mechanisms have to be used simultaneously to obtain the desired result.
632. How The PCI Subsystem Handles Power Management 67
64~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 681.2. Native PCI Power Management
65 69--------------------------------
66The PCI suspend/resume functionality is accessed indirectly via the Power 70The PCI Bus Power Management Interface Specification (PCI PM Spec) was
67Management subsystem. At boot, the PCI driver registers a power management 71introduced between the PCI 2.1 and PCI 2.2 Specifications. It defined a
68callback with that layer. Upon entering a suspend state, the PM layer iterates 72standard interface for performing various operations related to power
69through all of its registered callbacks. This currently takes place only during 73management.
70APM state transitions. 74
71 75The implementation of the PCI PM Spec is optional for conventional PCI devices,
72Upon going to sleep, the PCI subsystem walks its device tree twice. Both times, 76but it is mandatory for PCI Express devices. If a device supports the PCI PM
73it does a depth first walk of the device tree. The first walk saves each of the 77Spec, it has an 8 byte power management capability field in its PCI
74device's state and checks for devices that will prevent the system from entering 78configuration space. This field is used to describe and control the standard
75a global power state. The next walk then places the devices in a low power 79features related to the native PCI power management.
80
81The PCI PM Spec defines 4 operating states for devices (D0-D3) and for buses
82(B0-B3). The higher the number, the less power is drawn by the device or bus
83in that state. However, the higher the number, the longer the latency for
84the device or bus to return to the full-power state (D0 or B0, respectively).
85
86There are two variants of the D3 state defined by the specification. The first
87one is D3hot, referred to as the software accessible D3, because devices can be
88programmed to go into it. The second one, D3cold, is the state that PCI devices
89are in when the supply voltage (Vcc) is removed from them. It is not possible
90to program a PCI device to go into D3cold, although there may be a programmable
91interface for putting the bus the device is on into a state in which Vcc is
92removed from all devices on the bus.
93
94PCI bus power management, however, is not supported by the Linux kernel at the
95time of this writing and therefore it is not covered by this document.
96
97Note that every PCI device can be in the full-power state (D0) or in D3cold,
98regardless of whether or not it implements the PCI PM Spec. In addition to
99that, if the PCI PM Spec is implemented by the device, it must support D3hot
100as well as D0. The support for the D1 and D2 power states is optional.
101
102PCI devices supporting the PCI PM Spec can be programmed to go to any of the
103supported low-power states (except for D3cold). While in D1-D3hot the
104standard configuration registers of the device must be accessible to software
105(i.e. the device is required to respond to PCI configuration accesses), although
106its I/O and memory spaces are then disabled. This allows the device to be
107programmatically put into D0. Thus the kernel can switch the device back and
108forth between D0 and the supported low-power states (except for D3cold) and the
109possible power state transitions the device can undergo are the following:
110
111+----------------------------+
112| Current State | New State |
113+----------------------------+
114| D0 | D1, D2, D3 |
115+----------------------------+
116| D1 | D2, D3 |
117+----------------------------+
118| D2 | D3 |
119+----------------------------+
120| D1, D2, D3 | D0 |
121+----------------------------+
122
123The transition from D3cold to D0 occurs when the supply voltage is provided to
124the device (i.e. power is restored). In that case the device returns to D0 with
125a full power-on reset sequence and the power-on defaults are restored to the
126device by hardware just as at initial power up.
127
128PCI devices supporting the PCI PM Spec can be programmed to generate PMEs
129while in a low-power state (D1-D3), but they are not required to be capable
130of generating PMEs from all supported low-power states. In particular, the
131capability of generating PMEs from D3cold is optional and depends on the
132presence of additional voltage (3.3Vaux) allowing the device to remain
133sufficiently active to generate a wakeup signal.
134
1351.3. ACPI Device Power Management
136---------------------------------
137The platform firmware support for the power management of PCI devices is
138system-specific. However, if the system in question is compliant with the
139Advanced Configuration and Power Interface (ACPI) Specification, like the
140majority of x86-based systems, it is supposed to implement device power
141management interfaces defined by the ACPI standard.
142
143For this purpose the ACPI BIOS provides special functions called "control
144methods" that may be executed by the kernel to perform specific tasks, such as
145putting a device into a low-power state. These control methods are encoded
146using special byte-code language called the ACPI Machine Language (AML) and
147stored in the machine's BIOS. The kernel loads them from the BIOS and executes
148them as needed using an AML interpreter that translates the AML byte code into
149computations and memory or I/O space accesses. This way, in theory, a BIOS
150writer can provide the kernel with a means to perform actions depending
151on the system design in a system-specific fashion.
152
153ACPI control methods may be divided into global control methods, that are not
154associated with any particular devices, and device control methods, that have
155to be defined separately for each device supposed to be handled with the help of
156the platform. This means, in particular, that ACPI device control methods can
157only be used to handle devices that the BIOS writer knew about in advance. The
158ACPI methods used for device power management fall into that category.
159
160The ACPI specification assumes that devices can be in one of four power states
161labeled as D0, D1, D2, and D3 that roughly correspond to the native PCI PM
162D0-D3 states (although the difference between D3hot and D3cold is not taken
163into account by ACPI). Moreover, for each power state of a device there is a
164set of power resources that have to be enabled for the device to be put into
165that state. These power resources are controlled (i.e. enabled or disabled)
166with the help of their own control methods, _ON and _OFF, that have to be
167defined individually for each of them.
168
169To put a device into the ACPI power state Dx (where x is a number between 0 and
1703 inclusive) the kernel is supposed to (1) enable the power resources required
171by the device in this state using their _ON control methods and (2) execute the
172_PSx control method defined for the device. In addition to that, if the device
173is going to be put into a low-power state (D1-D3) and is supposed to generate
174wakeup signals from that state, the _DSW (or _PSW, replaced with _DSW by ACPI
1753.0) control method defined for it has to be executed before _PSx. Power
176resources that are not required by the device in the target power state and are
177not required any more by any other device should be disabled (by executing their
178_OFF control methods). If the current power state of the device is D3, it can
179only be put into D0 this way.
180
181However, quite often the power states of devices are changed during a
182system-wide transition into a sleep state or back into the working state. ACPI
183defines four system sleep states, S1, S2, S3, and S4, and denotes the system
184working state as S0. In general, the target system sleep (or working) state
185determines the highest power (lowest number) state the device can be put
186into and the kernel is supposed to obtain this information by executing the
187device's _SxD control method (where x is a number between 0 and 4 inclusive).
188If the device is required to wake up the system from the target sleep state, the
189lowest power (highest number) state it can be put into is also determined by the
190target state of the system. The kernel is then supposed to use the device's
191_SxW control method to obtain the number of that state. It also is supposed to
192use the device's _PRW control method to learn which power resources need to be
193enabled for the device to be able to generate wakeup signals.
194
1951.4. Wakeup Signaling
196---------------------
197Wakeup signals generated by PCI devices, either as native PCI PMEs, or as
198a result of the execution of the _DSW (or _PSW) ACPI control method before
199putting the device into a low-power state, have to be caught and handled as
200appropriate. If they are sent while the system is in the working state
201(ACPI S0), they should be translated into interrupts so that the kernel can
202put the devices generating them into the full-power state and take care of the
203events that triggered them. In turn, if they are sent while the system is
204sleeping, they should cause the system's core logic to trigger wakeup.
205
206On ACPI-based systems wakeup signals sent by conventional PCI devices are
207converted into ACPI General-Purpose Events (GPEs) which are hardware signals
208from the system core logic generated in response to various events that need to
209be acted upon. Every GPE is associated with one or more sources of potentially
210interesting events. In particular, a GPE may be associated with a PCI device
211capable of signaling wakeup. The information on the connections between GPEs
212and event sources is recorded in the system's ACPI BIOS from where it can be
213read by the kernel.
214
215If a PCI device known to the system's ACPI BIOS signals wakeup, the GPE
216associated with it (if there is one) is triggered. The GPEs associated with PCI
217bridges may also be triggered in response to a wakeup signal from one of the
218devices below the bridge (this also is the case for root bridges) and, for
219example, native PCI PMEs from devices unknown to the system's ACPI BIOS may be
220handled this way.
221
222A GPE may be triggered when the system is sleeping (i.e. when it is in one of
223the ACPI S1-S4 states), in which case system wakeup is started by its core logic
224(the device that was the source of the signal causing the system wakeup to occur
225may be identified later). The GPEs used in such situations are referred to as
226wakeup GPEs.
227
228Usually, however, GPEs are also triggered when the system is in the working
229state (ACPI S0) and in that case the system's core logic generates a System
230Control Interrupt (SCI) to notify the kernel of the event. Then, the SCI
231handler identifies the GPE that caused the interrupt to be generated which,
232in turn, allows the kernel to identify the source of the event (that may be
233a PCI device signaling wakeup). The GPEs used for notifying the kernel of
234events occurring while the system is in the working state are referred to as
235runtime GPEs.
236
237Unfortunately, there is no standard way of handling wakeup signals sent by
238conventional PCI devices on systems that are not ACPI-based, but there is one
239for PCI Express devices. Namely, the PCI Express Base Specification introduced
240a native mechanism for converting native PCI PMEs into interrupts generated by
241root ports. For conventional PCI devices native PMEs are out-of-band, so they
242are routed separately and they need not pass through bridges (in principle they
243may be routed directly to the system's core logic), but for PCI Express devices
244they are in-band messages that have to pass through the PCI Express hierarchy,
245including the root port on the path from the device to the Root Complex. Thus
246it was possible to introduce a mechanism by which a root port generates an
247interrupt whenever it receives a PME message from one of the devices below it.
248The PCI Express Requester ID of the device that sent the PME message is then
249recorded in one of the root port's configuration registers from where it may be
250read by the interrupt handler allowing the device to be identified. [PME
251messages sent by PCI Express endpoints integrated with the Root Complex don't
252pass through root ports, but instead they cause a Root Complex Event Collector
253(if there is one) to generate interrupts.]
254
255In principle the native PCI Express PME signaling may also be used on ACPI-based
256systems along with the GPEs, but to use it the kernel has to ask the system's
257ACPI BIOS to release control of root port configuration registers. The ACPI
258BIOS, however, is not required to allow the kernel to control these registers
259and if it doesn't do that, the kernel must not modify their contents. Of course
260the native PCI Express PME signaling cannot be used by the kernel in that case.
261
262
2632. PCI Subsystem and Device Power Management
264============================================
265
2662.1. Device Power Management Callbacks
267--------------------------------------
268The PCI Subsystem participates in the power management of PCI devices in a
269number of ways. First of all, it provides an intermediate code layer between
270the device power management core (PM core) and PCI device drivers.
271Specifically, the pm field of the PCI subsystem's struct bus_type object,
272pci_bus_type, points to a struct dev_pm_ops object, pci_dev_pm_ops, containing
273pointers to several device power management callbacks:
274
275const struct dev_pm_ops pci_dev_pm_ops = {
276 .prepare = pci_pm_prepare,
277 .complete = pci_pm_complete,
278 .suspend = pci_pm_suspend,
279 .resume = pci_pm_resume,
280 .freeze = pci_pm_freeze,
281 .thaw = pci_pm_thaw,
282 .poweroff = pci_pm_poweroff,
283 .restore = pci_pm_restore,
284 .suspend_noirq = pci_pm_suspend_noirq,
285 .resume_noirq = pci_pm_resume_noirq,
286 .freeze_noirq = pci_pm_freeze_noirq,
287 .thaw_noirq = pci_pm_thaw_noirq,
288 .poweroff_noirq = pci_pm_poweroff_noirq,
289 .restore_noirq = pci_pm_restore_noirq,
290 .runtime_suspend = pci_pm_runtime_suspend,
291 .runtime_resume = pci_pm_runtime_resume,
292 .runtime_idle = pci_pm_runtime_idle,
293};
294
295These callbacks are executed by the PM core in various situations related to
296device power management and they, in turn, execute power management callbacks
297provided by PCI device drivers. They also perform power management operations
298involving some standard configuration registers of PCI devices that device
299drivers need not know or care about.
300
301The structure representing a PCI device, struct pci_dev, contains several fields
302that these callbacks operate on:
303
304struct pci_dev {
305 ...
306 pci_power_t current_state; /* Current operating state. */
307 int pm_cap; /* PM capability offset in the
308 configuration space */
309 unsigned int pme_support:5; /* Bitmask of states from which PME#
310 can be generated */
311 unsigned int pme_interrupt:1;/* Is native PCIe PME signaling used? */
312 unsigned int d1_support:1; /* Low power state D1 is supported */
313 unsigned int d2_support:1; /* Low power state D2 is supported */
314 unsigned int no_d1d2:1; /* D1 and D2 are forbidden */
315 unsigned int wakeup_prepared:1; /* Device prepared for wake up */
316 unsigned int d3_delay; /* D3->D0 transition time in ms */
317 ...
318};
319
320They also indirectly use some fields of the struct device that is embedded in
321struct pci_dev.
322
3232.2. Device Initialization
324--------------------------
325The PCI subsystem's first task related to device power management is to
326prepare the device for power management and initialize the fields of struct
327pci_dev used for this purpose. This happens in two functions defined in
328drivers/pci/pci.c, pci_pm_init() and platform_pci_wakeup_init().
329
330The first of these functions checks if the device supports native PCI PM
331and if that's the case the offset of its power management capability structure
332in the configuration space is stored in the pm_cap field of the device's struct
333pci_dev object. Next, the function checks which PCI low-power states are
334supported by the device and from which low-power states the device can generate
335native PCI PMEs. The power management fields of the device's struct pci_dev and
336the struct device embedded in it are updated accordingly and the generation of
337PMEs by the device is disabled.
338
339The second function checks if the device can be prepared to signal wakeup with
340the help of the platform firmware, such as the ACPI BIOS. If that is the case,
341the function updates the wakeup fields in struct device embedded in the
342device's struct pci_dev and uses the firmware-provided method to prevent the
343device from signaling wakeup.
344
345At this point the device is ready for power management. For driverless devices,
346however, this functionality is limited to a few basic operations carried out
347during system-wide transitions to a sleep state and back to the working state.
348
3492.3. Runtime Device Power Management
350------------------------------------
351The PCI subsystem plays a vital role in the runtime power management of PCI
352devices. For this purpose it uses the general runtime power management
353(runtime PM) framework described in Documentation/power/runtime_pm.txt.
354Namely, it provides subsystem-level callbacks:
355
356 pci_pm_runtime_suspend()
357 pci_pm_runtime_resume()
358 pci_pm_runtime_idle()
359
360that are executed by the core runtime PM routines. It also implements the
361entire mechanics necessary for handling runtime wakeup signals from PCI devices
362in low-power states, which at the time of this writing works for both the native
363PCI Express PME signaling and the ACPI GPE-based wakeup signaling described in
364Section 1.
365
366First, a PCI device is put into a low-power state, or suspended, with the help
367of pm_schedule_suspend() or pm_runtime_suspend() which for PCI devices call
368pci_pm_runtime_suspend() to do the actual job. For this to work, the device's
369driver has to provide a pm->runtime_suspend() callback (see below), which is
370run by pci_pm_runtime_suspend() as the first action. If the driver's callback
371returns successfully, the device's standard configuration registers are saved,
372the device is prepared to generate wakeup signals and, finally, it is put into
373the target low-power state.
374
375The low-power state to put the device into is the lowest-power (highest number)
376state from which it can signal wakeup. The exact method of signaling wakeup is
377system-dependent and is determined by the PCI subsystem on the basis of the
378reported capabilities of the device and the platform firmware. To prepare the
379device for signaling wakeup and put it into the selected low-power state, the
380PCI subsystem can use the platform firmware as well as the device's native PCI
381PM capabilities, if supported.
382
383It is expected that the device driver's pm->runtime_suspend() callback will
384not attempt to prepare the device for signaling wakeup or to put it into a
385low-power state. The driver ought to leave these tasks to the PCI subsystem
386that has all of the information necessary to perform them.
387
388A suspended device is brought back into the "active" state, or resumed,
389with the help of pm_request_resume() or pm_runtime_resume() which both call
390pci_pm_runtime_resume() for PCI devices. Again, this only works if the device's
391driver provides a pm->runtime_resume() callback (see below). However, before
392the driver's callback is executed, pci_pm_runtime_resume() brings the device
393back into the full-power state, prevents it from signaling wakeup while in that
394state and restores its standard configuration registers. Thus the driver's
395callback need not worry about the PCI-specific aspects of the device resume.
396
397Note that generally pci_pm_runtime_resume() may be called in two different
398situations. First, it may be called at the request of the device's driver, for
399example if there are some data for it to process. Second, it may be called
400as a result of a wakeup signal from the device itself (this sometimes is
401referred to as "remote wakeup"). Of course, for this purpose the wakeup signal
402is handled in one of the ways described in Section 1 and finally converted into
403a notification for the PCI subsystem after the source device has been
404identified.
405
406The pci_pm_runtime_idle() function, called for PCI devices by pm_runtime_idle()
407and pm_request_idle(), executes the device driver's pm->runtime_idle()
408callback, if defined, and if that callback doesn't return error code (or is not
409present at all), suspends the device with the help of pm_runtime_suspend().
410Sometimes pci_pm_runtime_idle() is called automatically by the PM core (for
411example, it is called right after the device has just been resumed), in which
412cases it is expected to suspend the device if that makes sense. Usually,
413however, the PCI subsystem doesn't really know if the device really can be
414suspended, so it lets the device's driver decide by running its
415pm->runtime_idle() callback.
416
4172.4. System-Wide Power Transitions
418----------------------------------
419There are a few different types of system-wide power transitions, described in
420Documentation/power/devices.txt. Each of them requires devices to be handled
421in a specific way and the PM core executes subsystem-level power management
422callbacks for this purpose. They are executed in phases such that each phase
423involves executing the same subsystem-level callback for every device belonging
424to the given subsystem before the next phase begins. These phases always run
425after tasks have been frozen.
426
4272.4.1. System Suspend
428
429When the system is going into a sleep state in which the contents of memory will
430be preserved, such as one of the ACPI sleep states S1-S3, the phases are:
431
432 prepare, suspend, suspend_noirq.
433
434The following PCI bus type's callbacks, respectively, are used in these phases:
435
436 pci_pm_prepare()
437 pci_pm_suspend()
438 pci_pm_suspend_noirq()
439
440The pci_pm_prepare() routine first puts the device into the "fully functional"
441state with the help of pm_runtime_resume(). Then, it executes the device
442driver's pm->prepare() callback if defined (i.e. if the driver's struct
443dev_pm_ops object is present and the prepare pointer in that object is valid).
444
445The pci_pm_suspend() routine first checks if the device's driver implements
446legacy PCI suspend routines (see Section 3), in which case the driver's legacy
447suspend callback is executed, if present, and its result is returned. Next, if
448the device's driver doesn't provide a struct dev_pm_ops object (containing
449pointers to the driver's callbacks), pci_pm_default_suspend() is called, which
450simply turns off the device's bus master capability and runs
451pcibios_disable_device() to disable it, unless the device is a bridge (PCI
452bridges are ignored by this routine). Next, the device driver's pm->suspend()
453callback is executed, if defined, and its result is returned if it fails.
454Finally, pci_fixup_device() is called to apply hardware suspend quirks related
455to the device if necessary.
456
457Note that the suspend phase is carried out asynchronously for PCI devices, so
458the pci_pm_suspend() callback may be executed in parallel for any pair of PCI
459devices that don't depend on each other in a known way (i.e. none of the paths
460in the device tree from the root bridge to a leaf device contains both of them).
461
462The pci_pm_suspend_noirq() routine is executed after suspend_device_irqs() has
463been called, which means that the device driver's interrupt handler won't be
464invoked while this routine is running. It first checks if the device's driver
465implements legacy PCI suspends routines (Section 3), in which case the legacy
466late suspend routine is called and its result is returned (the standard
467configuration registers of the device are saved if the driver's callback hasn't
468done that). Second, if the device driver's struct dev_pm_ops object is not
469present, the device's standard configuration registers are saved and the routine
470returns success. Otherwise the device driver's pm->suspend_noirq() callback is
471executed, if present, and its result is returned if it fails. Next, if the
472device's standard configuration registers haven't been saved yet (one of the
473device driver's callbacks executed before might do that), pci_pm_suspend_noirq()
474saves them, prepares the device to signal wakeup (if necessary) and puts it into
475a low-power state.
476
477The low-power state to put the device into is the lowest-power (highest number)
478state from which it can signal wakeup while the system is in the target sleep
479state. Just like in the runtime PM case described above, the mechanism of
480signaling wakeup is system-dependent and determined by the PCI subsystem, which
481is also responsible for preparing the device to signal wakeup from the system's
482target sleep state as appropriate.
483
484PCI device drivers (that don't implement legacy power management callbacks) are
485generally not expected to prepare devices for signaling wakeup or to put them
486into low-power states. However, if one of the driver's suspend callbacks
487(pm->suspend() or pm->suspend_noirq()) saves the device's standard configuration
488registers, pci_pm_suspend_noirq() will assume that the device has been prepared
489to signal wakeup and put into a low-power state by the driver (the driver is
490then assumed to have used the helper functions provided by the PCI subsystem for
491this purpose). PCI device drivers are not encouraged to do that, but in some
492rare cases doing that in the driver may be the optimum approach.
493
4942.4.2. System Resume
495
496When the system is undergoing a transition from a sleep state in which the
497contents of memory have been preserved, such as one of the ACPI sleep states
498S1-S3, into the working state (ACPI S0), the phases are:
499
500 resume_noirq, resume, complete.
501
502The following PCI bus type's callbacks, respectively, are executed in these
503phases:
504
505 pci_pm_resume_noirq()
506 pci_pm_resume()
507 pci_pm_complete()
508
509The pci_pm_resume_noirq() routine first puts the device into the full-power
510state, restores its standard configuration registers and applies early resume
511hardware quirks related to the device, if necessary. This is done
512unconditionally, regardless of whether or not the device's driver implements
513legacy PCI power management callbacks (this way all PCI devices are in the
514full-power state and their standard configuration registers have been restored
515when their interrupt handlers are invoked for the first time during resume,
516which allows the kernel to avoid problems with the handling of shared interrupts
517by drivers whose devices are still suspended). If legacy PCI power management
518callbacks (see Section 3) are implemented by the device's driver, the legacy
519early resume callback is executed and its result is returned. Otherwise, the
520device driver's pm->resume_noirq() callback is executed, if defined, and its
521result is returned.
522
523The pci_pm_resume() routine first checks if the device's standard configuration
524registers have been restored and restores them if that's not the case (this
525only is necessary in the error path during a failing suspend). Next, resume
526hardware quirks related to the device are applied, if necessary, and if the
527device's driver implements legacy PCI power management callbacks (see
528Section 3), the driver's legacy resume callback is executed and its result is
529returned. Otherwise, the device's wakeup signaling mechanisms are blocked and
530its driver's pm->resume() callback is executed, if defined (the callback's
531result is then returned).
532
533The resume phase is carried out asynchronously for PCI devices, like the
534suspend phase described above, which means that if two PCI devices don't depend
535on each other in a known way, the pci_pm_resume() routine may be executed for
536the both of them in parallel.
537
538The pci_pm_complete() routine only executes the device driver's pm->complete()
539callback, if defined.
540
5412.4.3. System Hibernation
542
543System hibernation is more complicated than system suspend, because it requires
544a system image to be created and written into a persistent storage medium. The
545image is created atomically and all devices are quiesced, or frozen, before that
546happens.
547
548The freezing of devices is carried out after enough memory has been freed (at
549the time of this writing the image creation requires at least 50% of system RAM
550to be free) in the following three phases:
551
552 prepare, freeze, freeze_noirq
553
554that correspond to the PCI bus type's callbacks:
555
556 pci_pm_prepare()
557 pci_pm_freeze()
558 pci_pm_freeze_noirq()
559
560This means that the prepare phase is exactly the same as for system suspend.
561The other two phases, however, are different.
562
563The pci_pm_freeze() routine is quite similar to pci_pm_suspend(), but it runs
564the device driver's pm->freeze() callback, if defined, instead of pm->suspend(),
565and it doesn't apply the suspend-related hardware quirks. It is executed
566asynchronously for different PCI devices that don't depend on each other in a
567known way.
568
569The pci_pm_freeze_noirq() routine, in turn, is similar to
570pci_pm_suspend_noirq(), but it calls the device driver's pm->freeze_noirq()
571routine instead of pm->suspend_noirq(). It also doesn't attempt to prepare the
572device for signaling wakeup and put it into a low-power state. Still, it saves
573the device's standard configuration registers if they haven't been saved by one
574of the driver's callbacks.
575
576Once the image has been created, it has to be saved. However, at this point all
577devices are frozen and they cannot handle I/O, while their ability to handle
578I/O is obviously necessary for the image saving. Thus they have to be brought
579back to the fully functional state and this is done in the following phases:
580
581 thaw_noirq, thaw, complete
582
583using the following PCI bus type's callbacks:
584
585 pci_pm_thaw_noirq()
586 pci_pm_thaw()
587 pci_pm_complete()
588
589respectively.
590
591The first of them, pci_pm_thaw_noirq(), is analogous to pci_pm_resume_noirq(),
592but it doesn't put the device into the full power state and doesn't attempt to
593restore its standard configuration registers. It also executes the device
594driver's pm->thaw_noirq() callback, if defined, instead of pm->resume_noirq().
595
596The pci_pm_thaw() routine is similar to pci_pm_resume(), but it runs the device
597driver's pm->thaw() callback instead of pm->resume(). It is executed
598asynchronously for different PCI devices that don't depend on each other in a
599known way.
600
601The complete phase it the same as for system resume.
602
603After saving the image, devices need to be powered down before the system can
604enter the target sleep state (ACPI S4 for ACPI-based systems). This is done in
605three phases:
606
607 prepare, poweroff, poweroff_noirq
608
609where the prepare phase is exactly the same as for system suspend. The other
610two phases are analogous to the suspend and suspend_noirq phases, respectively.
611The PCI subsystem-level callbacks they correspond to
612
613 pci_pm_poweroff()
614 pci_pm_poweroff_noirq()
615
616work in analogy with pci_pm_suspend() and pci_pm_poweroff_noirq(), respectively,
617although they don't attempt to save the device's standard configuration
618registers.
619
6202.4.4. System Restore
621
622System restore requires a hibernation image to be loaded into memory and the
623pre-hibernation memory contents to be restored before the pre-hibernation system
624activity can be resumed.
625
626As described in Documentation/power/devices.txt, the hibernation image is loaded
627into memory by a fresh instance of the kernel, called the boot kernel, which in
628turn is loaded and run by a boot loader in the usual way. After the boot kernel
629has loaded the image, it needs to replace its own code and data with the code
630and data of the "hibernated" kernel stored within the image, called the image
631kernel. For this purpose all devices are frozen just like before creating
632the image during hibernation, in the
633
634 prepare, freeze, freeze_noirq
635
636phases described above. However, the devices affected by these phases are only
637those having drivers in the boot kernel; other devices will still be in whatever
638state the boot loader left them.
639
640Should the restoration of the pre-hibernation memory contents fail, the boot
641kernel would go through the "thawing" procedure described above, using the
642thaw_noirq, thaw, and complete phases (that will only affect the devices having
643drivers in the boot kernel), and then continue running normally.
644
645If the pre-hibernation memory contents are restored successfully, which is the
646usual situation, control is passed to the image kernel, which then becomes
647responsible for bringing the system back to the working state. To achieve this,
648it must restore the devices' pre-hibernation functionality, which is done much
649like waking up from the memory sleep state, although it involves different
650phases:
651
652 restore_noirq, restore, complete
653
654The first two of these are analogous to the resume_noirq and resume phases
655described above, respectively, and correspond to the following PCI subsystem
656callbacks:
657
658 pci_pm_restore_noirq()
659 pci_pm_restore()
660
661These callbacks work in analogy with pci_pm_resume_noirq() and pci_pm_resume(),
662respectively, but they execute the device driver's pm->restore_noirq() and
663pm->restore() callbacks, if available.
664
665The complete phase is carried out in exactly the same way as during system
666resume.
667
668
6693. PCI Device Drivers and Power Management
670==========================================
671
6723.1. Power Management Callbacks
673-------------------------------
674PCI device drivers participate in power management by providing callbacks to be
675executed by the PCI subsystem's power management routines described above and by
676controlling the runtime power management of their devices.
677
678At the time of this writing there are two ways to define power management
679callbacks for a PCI device driver, the recommended one, based on using a
680dev_pm_ops structure described in Documentation/power/devices.txt, and the
681"legacy" one, in which the .suspend(), .suspend_late(), .resume_early(), and
682.resume() callbacks from struct pci_driver are used. The legacy approach,
683however, doesn't allow one to define runtime power management callbacks and is
684not really suitable for any new drivers. Therefore it is not covered by this
685document (refer to the source code to learn more about it).
686
687It is recommended that all PCI device drivers define a struct dev_pm_ops object
688containing pointers to power management (PM) callbacks that will be executed by
689the PCI subsystem's PM routines in various circumstances. A pointer to the
690driver's struct dev_pm_ops object has to be assigned to the driver.pm field in
691its struct pci_driver object. Once that has happened, the "legacy" PM callbacks
692in struct pci_driver are ignored (even if they are not NULL).
693
694The PM callbacks in struct dev_pm_ops are not mandatory and if they are not
695defined (i.e. the respective fields of struct dev_pm_ops are unset) the PCI
696subsystem will handle the device in a simplified default manner. If they are
697defined, though, they are expected to behave as described in the following
698subsections.
699
7003.1.1. prepare()
701
702The prepare() callback is executed during system suspend, during hibernation
703(when a hibernation image is about to be created), during power-off after
704saving a hibernation image and during system restore, when a hibernation image
705has just been loaded into memory.
706
707This callback is only necessary if the driver's device has children that in
708general may be registered at any time. In that case the role of the prepare()
709callback is to prevent new children of the device from being registered until
710one of the resume_noirq(), thaw_noirq(), or restore_noirq() callbacks is run.
711
712In addition to that the prepare() callback may carry out some operations
713preparing the device to be suspended, although it should not allocate memory
714(if additional memory is required to suspend the device, it has to be
715preallocated earlier, for example in a suspend/hibernate notifier as described
716in Documentation/power/notifiers.txt).
717
7183.1.2. suspend()
719
720The suspend() callback is only executed during system suspend, after prepare()
721callbacks have been executed for all devices in the system.
722
723This callback is expected to quiesce the device and prepare it to be put into a
724low-power state by the PCI subsystem. It is not required (in fact it even is
725not recommended) that a PCI driver's suspend() callback save the standard
726configuration registers of the device, prepare it for waking up the system, or
727put it into a low-power state. All of these operations can very well be taken
728care of by the PCI subsystem, without the driver's participation.
729
730However, in some rare case it is convenient to carry out these operations in
731a PCI driver. Then, pci_save_state(), pci_prepare_to_sleep(), and
732pci_set_power_state() should be used to save the device's standard configuration
733registers, to prepare it for system wakeup (if necessary), and to put it into a
734low-power state, respectively. Moreover, if the driver calls pci_save_state(),
735the PCI subsystem will not execute either pci_prepare_to_sleep(), or
736pci_set_power_state() for its device, so the driver is then responsible for
737handling the device as appropriate.
738
739While the suspend() callback is being executed, the driver's interrupt handler
740can be invoked to handle an interrupt from the device, so all suspend-related
741operations relying on the driver's ability to handle interrupts should be
742carried out in this callback.
743
7443.1.3. suspend_noirq()
745
746The suspend_noirq() callback is only executed during system suspend, after
747suspend() callbacks have been executed for all devices in the system and
748after device interrupts have been disabled by the PM core.
749
750The difference between suspend_noirq() and suspend() is that the driver's
751interrupt handler will not be invoked while suspend_noirq() is running. Thus
752suspend_noirq() can carry out operations that would cause race conditions to
753arise if they were performed in suspend().
754
7553.1.4. freeze()
756
757The freeze() callback is hibernation-specific and is executed in two situations,
758during hibernation, after prepare() callbacks have been executed for all devices
759in preparation for the creation of a system image, and during restore,
760after a system image has been loaded into memory from persistent storage and the
761prepare() callbacks have been executed for all devices.
762
763The role of this callback is analogous to the role of the suspend() callback
764described above. In fact, they only need to be different in the rare cases when
765the driver takes the responsibility for putting the device into a low-power
76state. 766state.
77 767
78The first walk allows a graceful recovery in the event of a failure, since none 768In that cases the freeze() callback should not prepare the device system wakeup
79of the devices have actually been powered down. 769or put it into a low-power state. Still, either it or freeze_noirq() should
80 770save the device's standard configuration registers using pci_save_state().
81In both walks, in particular the second, all children of a bridge are touched
82before the actual bridge itself. This allows the bridge to retain power while
83its children are being accessed.
84
85Upon resuming from sleep, just the opposite must be true: all bridges must be
86powered on and restored before their children are powered on. This is easily
87accomplished with a breadth-first walk of the PCI device tree.
88
89
903. PCI Utility Functions
91~~~~~~~~~~~~~~~~~~~~~~~~
92
93These are helper functions designed to be called by individual device drivers.
94Assuming that a device behaves as advertised, these should be applicable in most
95cases. However, results may vary.
96
97Note that these functions are never implicitly called for the driver. The driver
98is always responsible for deciding when and if to call these.
99
100
101pci_save_state
102--------------
103
104Usage:
105 pci_save_state(struct pci_dev *dev);
106
107Description:
108 Save first 64 bytes of PCI config space, along with any additional
109 PCI-Express or PCI-X information.
110
111
112pci_restore_state
113-----------------
114
115Usage:
116 pci_restore_state(struct pci_dev *dev);
117
118Description:
119 Restore previously saved config space.
120
121
122pci_set_power_state
123-------------------
124
125Usage:
126 pci_set_power_state(struct pci_dev *dev, pci_power_t state);
127
128Description:
129 Transition device to low power state using PCI PM Capabilities
130 registers.
131
132 Will fail under one of the following conditions:
133 - If state is less than current state, but not D0 (illegal transition)
134 - Device doesn't support PM Capabilities
135 - Device does not support requested state
136
137
138pci_enable_wake
139---------------
140
141Usage:
142 pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable);
143
144Description:
145 Enable device to generate PME# during low power state using PCI PM
146 Capabilities.
147
148 Checks whether if device supports generating PME# from requested state
149 and fail if it does not, unless enable == 0 (request is to disable wake
150 events, which is implicit if it doesn't even support it in the first
151 place).
152
153 Note that the PMC Register in the device's PM Capabilities has a bitmask
154 of the states it supports generating PME# from. D3hot is bit 3 and
155 D3cold is bit 4. So, while a value of 4 as the state may not seem
156 semantically correct, it is.
157
158
1594. PCI Device Drivers
160~~~~~~~~~~~~~~~~~~~~~
161
162These functions are intended for use by individual drivers, and are defined in
163struct pci_driver:
164
165 int (*suspend) (struct pci_dev *dev, pm_message_t state);
166 int (*resume) (struct pci_dev *dev);
167
168
169suspend
170-------
171
172Usage:
173
174if (dev->driver && dev->driver->suspend)
175 dev->driver->suspend(dev,state);
176
177A driver uses this function to actually transition the device into a low power
178state. This should include disabling I/O, IRQs, and bus-mastering, as well as
179physically transitioning the device to a lower power state; it may also include
180calls to pci_enable_wake().
181
182Bus mastering may be disabled by doing:
183
184pci_disable_device(dev);
185
186For devices that support the PCI PM Spec, this may be used to set the device's
187power state to match the suspend() parameter:
188
189pci_set_power_state(dev,state);
190
191The driver is also responsible for disabling any other device-specific features
192(e.g blanking screen, turning off on-card memory, etc).
193
194The driver should be sure to track the current state of the device, as it may
195obviate the need for some operations.
196
197The driver should update the current_state field in its pci_dev structure in
198this function, except for PM-capable devices when pci_set_power_state is used.
199
200resume
201------
202
203Usage:
204
205if (dev->driver && dev->driver->resume)
206 dev->driver->resume(dev)
207 771
208The resume callback may be called from any power state, and is always meant to 7723.1.5. freeze_noirq()
209transition the device to the D0 state.
210 773
211The driver is responsible for reenabling any features of the device that had 774The freeze_noirq() callback is hibernation-specific. It is executed during
212been disabled during previous suspend calls, such as IRQs and bus mastering, 775hibernation, after prepare() and freeze() callbacks have been executed for all
213as well as calling pci_restore_state(). 776devices in preparation for the creation of a system image, and during restore,
777after a system image has been loaded into memory and after prepare() and
778freeze() callbacks have been executed for all devices. It is always executed
779after device interrupts have been disabled by the PM core.
214 780
215If the device is currently in D3, it may need to be reinitialized in resume(). 781The role of this callback is analogous to the role of the suspend_noirq()
782callback described above and it very rarely is necessary to define
783freeze_noirq().
216 784
217 * Some types of devices, like bus controllers, will preserve context in D3hot 785The difference between freeze_noirq() and freeze() is analogous to the
218 (using Vcc power). Their drivers will often want to avoid re-initializing 786difference between suspend_noirq() and suspend().
219 them after re-entering D0 (perhaps to avoid resetting downstream devices).
220 787
221 * Other kinds of devices in D3hot will discard device context as part of a 7883.1.6. poweroff()
222 soft reset when re-entering the D0 state.
223
224 * Devices resuming from D3cold always go through a power-on reset. Some
225 device context can also be preserved using Vaux power.
226 789
227 * Some systems hide D3cold resume paths from drivers. For example, on PCs 790The poweroff() callback is hibernation-specific. It is executed when the system
228 the resume path for suspend-to-disk often runs BIOS powerup code, which 791is about to be powered off after saving a hibernation image to a persistent
229 will sometimes re-initialize the device. 792storage. prepare() callbacks are executed for all devices before poweroff() is
793called.
230 794
231To handle resets during D3 to D0 transitions, it may be convenient to share 795The role of this callback is analogous to the role of the suspend() and freeze()
232device initialization code between probe() and resume(). Device parameters 796callbacks described above, although it does not need to save the contents of
233can also be saved before the driver suspends into D3, avoiding re-probe. 797the device's registers. In particular, if the driver wants to put the device
798into a low-power state itself instead of allowing the PCI subsystem to do that,
799the poweroff() callback should use pci_prepare_to_sleep() and
800pci_set_power_state() to prepare the device for system wakeup and to put it
801into a low-power state, respectively, but it need not save the device's standard
802configuration registers.
234 803
235If the device supports the PCI PM Spec, it can use this to physically transition 8043.1.7. poweroff_noirq()
236the device to D0:
237 805
238pci_set_power_state(dev,0); 806The poweroff_noirq() callback is hibernation-specific. It is executed after
807poweroff() callbacks have been executed for all devices in the system.
239 808
240Note that if the entire system is transitioning out of a global sleep state, all 809The role of this callback is analogous to the role of the suspend_noirq() and
241devices will be placed in the D0 state, so this is not necessary. However, in 810freeze_noirq() callbacks described above, but it does not need to save the
242the event that the device is placed in the D3 state during normal operation, 811contents of the device's registers.
243this call is necessary. It is impossible to determine which of the two events is
244taking place in the driver, so it is always a good idea to make that call.
245 812
246The driver should take note of the state that it is resuming from in order to 813The difference between poweroff_noirq() and poweroff() is analogous to the
247ensure correct (and speedy) operation. 814difference between suspend_noirq() and suspend().
248 815
249The driver should update the current_state field in its pci_dev structure in 8163.1.8. resume_noirq()
250this function, except for PM-capable devices when pci_set_power_state is used.
251 817
818The resume_noirq() callback is only executed during system resume, after the
819PM core has enabled the non-boot CPUs. The driver's interrupt handler will not
820be invoked while resume_noirq() is running, so this callback can carry out
821operations that might race with the interrupt handler.
252 822
823Since the PCI subsystem unconditionally puts all devices into the full power
824state in the resume_noirq phase of system resume and restores their standard
825configuration registers, resume_noirq() is usually not necessary. In general
826it should only be used for performing operations that would lead to race
827conditions if carried out by resume().
253 828
254A reference implementation 8293.1.9. resume()
255-------------------------
256.suspend()
257{
258 /* driver specific operations */
259 830
260 /* Disable IRQ */ 831The resume() callback is only executed during system resume, after
261 free_irq(); 832resume_noirq() callbacks have been executed for all devices in the system and
262 /* If using MSI */ 833device interrupts have been enabled by the PM core.
263 pci_disable_msi();
264 834
265 pci_save_state(); 835This callback is responsible for restoring the pre-suspend configuration of the
266 pci_enable_wake(); 836device and bringing it back to the fully functional state. The device should be
267 /* Disable IO/bus master/irq router */ 837able to process I/O in a usual way after resume() has returned.
268 pci_disable_device();
269 pci_set_power_state(pci_choose_state());
270}
271 838
272.resume() 8393.1.10. thaw_noirq()
273{
274 pci_set_power_state(PCI_D0);
275 pci_restore_state();
276 /* device's irq possibly is changed, driver should take care */
277 pci_enable_device();
278 pci_set_master();
279 840
280 /* if using MSI, device's vector possibly is changed */ 841The thaw_noirq() callback is hibernation-specific. It is executed after a
281 pci_enable_msi(); 842system image has been created and the non-boot CPUs have been enabled by the PM
843core, in the thaw_noirq phase of hibernation. It also may be executed if the
844loading of a hibernation image fails during system restore (it is then executed
845after enabling the non-boot CPUs). The driver's interrupt handler will not be
846invoked while thaw_noirq() is running.
282 847
283 request_irq(); 848The role of this callback is analogous to the role of resume_noirq(). The
284 /* driver specific operations; */ 849difference between these two callbacks is that thaw_noirq() is executed after
285} 850freeze() and freeze_noirq(), so in general it does not need to modify the
851contents of the device's registers.
286 852
287This is a typical implementation. Drivers can slightly change the order 8533.1.11. thaw()
288of the operations in the implementation, ignore some operations or add
289more driver specific operations in it, but drivers should do something like
290this on the whole.
291 854
2925. Resources 855The thaw() callback is hibernation-specific. It is executed after thaw_noirq()
293~~~~~~~~~~~~ 856callbacks have been executed for all devices in the system and after device
857interrupts have been enabled by the PM core.
294 858
295PCI Local Bus Specification 859This callback is responsible for restoring the pre-freeze configuration of
296PCI Bus Power Management Interface Specification 860the device, so that it will work in a usual way after thaw() has returned.
297 861
298 http://www.pcisig.com 8623.1.12. restore_noirq()
299 863
864The restore_noirq() callback is hibernation-specific. It is executed in the
865restore_noirq phase of hibernation, when the boot kernel has passed control to
866the image kernel and the non-boot CPUs have been enabled by the image kernel's
867PM core.
868
869This callback is analogous to resume_noirq() with the exception that it cannot
870make any assumption on the previous state of the device, even if the BIOS (or
871generally the platform firmware) is known to preserve that state over a
872suspend-resume cycle.
873
874For the vast majority of PCI device drivers there is no difference between
875resume_noirq() and restore_noirq().
876
8773.1.13. restore()
878
879The restore() callback is hibernation-specific. It is executed after
880restore_noirq() callbacks have been executed for all devices in the system and
881after the PM core has enabled device drivers' interrupt handlers to be invoked.
882
883This callback is analogous to resume(), just like restore_noirq() is analogous
884to resume_noirq(). Consequently, the difference between restore_noirq() and
885restore() is analogous to the difference between resume_noirq() and resume().
886
887For the vast majority of PCI device drivers there is no difference between
888resume() and restore().
889
8903.1.14. complete()
891
892The complete() callback is executed in the following situations:
893 - during system resume, after resume() callbacks have been executed for all
894 devices,
895 - during hibernation, before saving the system image, after thaw() callbacks
896 have been executed for all devices,
897 - during system restore, when the system is going back to its pre-hibernation
898 state, after restore() callbacks have been executed for all devices.
899It also may be executed if the loading of a hibernation image into memory fails
900(in that case it is run after thaw() callbacks have been executed for all
901devices that have drivers in the boot kernel).
902
903This callback is entirely optional, although it may be necessary if the
904prepare() callback performs operations that need to be reversed.
905
9063.1.15. runtime_suspend()
907
908The runtime_suspend() callback is specific to device runtime power management
909(runtime PM). It is executed by the PM core's runtime PM framework when the
910device is about to be suspended (i.e. quiesced and put into a low-power state)
911at run time.
912
913This callback is responsible for freezing the device and preparing it to be
914put into a low-power state, but it must allow the PCI subsystem to perform all
915of the PCI-specific actions necessary for suspending the device.
916
9173.1.16. runtime_resume()
918
919The runtime_resume() callback is specific to device runtime PM. It is executed
920by the PM core's runtime PM framework when the device is about to be resumed
921(i.e. put into the full-power state and programmed to process I/O normally) at
922run time.
923
924This callback is responsible for restoring the normal functionality of the
925device after it has been put into the full-power state by the PCI subsystem.
926The device is expected to be able to process I/O in the usual way after
927runtime_resume() has returned.
928
9293.1.17. runtime_idle()
930
931The runtime_idle() callback is specific to device runtime PM. It is executed
932by the PM core's runtime PM framework whenever it may be desirable to suspend
933the device according to the PM core's information. In particular, it is
934automatically executed right after runtime_resume() has returned in case the
935resume of the device has happened as a result of a spurious event.
936
937This callback is optional, but if it is not implemented or if it returns 0, the
938PCI subsystem will call pm_runtime_suspend() for the device, which in turn will
939cause the driver's runtime_suspend() callback to be executed.
940
9413.1.18. Pointing Multiple Callback Pointers to One Routine
942
943Although in principle each of the callbacks described in the previous
944subsections can be defined as a separate function, it often is convenient to
945point two or more members of struct dev_pm_ops to the same routine. There are
946a few convenience macros that can be used for this purpose.
947
948The SIMPLE_DEV_PM_OPS macro declares a struct dev_pm_ops object with one
949suspend routine pointed to by the .suspend(), .freeze(), and .poweroff()
950members and one resume routine pointed to by the .resume(), .thaw(), and
951.restore() members. The other function pointers in this struct dev_pm_ops are
952unset.
953
954The UNIVERSAL_DEV_PM_OPS macro is similar to SIMPLE_DEV_PM_OPS, but it
955additionally sets the .runtime_resume() pointer to the same value as
956.resume() (and .thaw(), and .restore()) and the .runtime_suspend() pointer to
957the same value as .suspend() (and .freeze() and .poweroff()).
958
959The SET_SYSTEM_SLEEP_PM_OPS can be used inside of a declaration of struct
960dev_pm_ops to indicate that one suspend routine is to be pointed to by the
961.suspend(), .freeze(), and .poweroff() members and one resume routine is to
962be pointed to by the .resume(), .thaw(), and .restore() members.
963
9643.2. Device Runtime Power Management
965------------------------------------
966In addition to providing device power management callbacks PCI device drivers
967are responsible for controlling the runtime power management (runtime PM) of
968their devices.
969
970The PCI device runtime PM is optional, but it is recommended that PCI device
971drivers implement it at least in the cases where there is a reliable way of
972verifying that the device is not used (like when the network cable is detached
973from an Ethernet adapter or there are no devices attached to a USB controller).
974
975To support the PCI runtime PM the driver first needs to implement the
976runtime_suspend() and runtime_resume() callbacks. It also may need to implement
977the runtime_idle() callback to prevent the device from being suspended again
978every time right after the runtime_resume() callback has returned
979(alternatively, the runtime_suspend() callback will have to check if the
980device should really be suspended and return -EAGAIN if that is not the case).
981
982The runtime PM of PCI devices is disabled by default. It is also blocked by
983pci_pm_init() that runs the pm_runtime_forbid() helper function. If a PCI
984driver implements the runtime PM callbacks and intends to use the runtime PM
985framework provided by the PM core and the PCI subsystem, it should enable this
986feature by executing the pm_runtime_enable() helper function. However, the
987driver should not call the pm_runtime_allow() helper function unblocking
988the runtime PM of the device. Instead, it should allow user space or some
989platform-specific code to do that (user space can do it via sysfs), although
990once it has called pm_runtime_enable(), it must be prepared to handle the
991runtime PM of the device correctly as soon as pm_runtime_allow() is called
992(which may happen at any time). [It also is possible that user space causes
993pm_runtime_allow() to be called via sysfs before the driver is loaded, so in
994fact the driver has to be prepared to handle the runtime PM of the device as
995soon as it calls pm_runtime_enable().]
996
997The runtime PM framework works by processing requests to suspend or resume
998devices, or to check if they are idle (in which cases it is reasonable to
999subsequently request that they be suspended). These requests are represented
1000by work items put into the power management workqueue, pm_wq. Although there
1001are a few situations in which power management requests are automatically
1002queued by the PM core (for example, after processing a request to resume a
1003device the PM core automatically queues a request to check if the device is
1004idle), device drivers are generally responsible for queuing power management
1005requests for their devices. For this purpose they should use the runtime PM
1006helper functions provided by the PM core, discussed in
1007Documentation/power/runtime_pm.txt.
1008
1009Devices can also be suspended and resumed synchronously, without placing a
1010request into pm_wq. In the majority of cases this also is done by their
1011drivers that use helper functions provided by the PM core for this purpose.
1012
1013For more information on the runtime PM of devices refer to
1014Documentation/power/runtime_pm.txt.
1015
1016
10174. Resources
1018============
1019
1020PCI Local Bus Specification, Rev. 3.0
1021PCI Bus Power Management Interface Specification, Rev. 1.2
1022Advanced Configuration and Power Interface (ACPI) Specification, Rev. 3.0b
1023PCI Express Base Specification, Rev. 2.0
1024Documentation/power/devices.txt
1025Documentation/power/runtime_pm.txt
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index a2d3a5fbeeda..e0c619c55b4e 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -1923,6 +1923,14 @@ config PCI_MMCONFIG
1923 bool "Support mmconfig PCI config space access" 1923 bool "Support mmconfig PCI config space access"
1924 depends on X86_64 && PCI && ACPI 1924 depends on X86_64 && PCI && ACPI
1925 1925
1926config PCI_CNB20LE_QUIRK
1927 bool "Read CNB20LE Host Bridge Windows"
1928 depends on PCI
1929 help
1930 Read the PCI windows out of the CNB20LE host bridge. This allows
1931 PCI hotplug to work on systems with the CNB20LE chipset which do
1932 not have ACPI.
1933
1926config DMAR 1934config DMAR
1927 bool "Support for DMA Remapping Devices (EXPERIMENTAL)" 1935 bool "Support for DMA Remapping Devices (EXPERIMENTAL)"
1928 depends on PCI_MSI && ACPI && EXPERIMENTAL 1936 depends on PCI_MSI && ACPI && EXPERIMENTAL
diff --git a/arch/x86/include/asm/pci_x86.h b/arch/x86/include/asm/pci_x86.h
index 1a0422348d6d..8d8797eae5d7 100644
--- a/arch/x86/include/asm/pci_x86.h
+++ b/arch/x86/include/asm/pci_x86.h
@@ -83,7 +83,7 @@ struct irq_routing_table {
83 83
84extern unsigned int pcibios_irq_mask; 84extern unsigned int pcibios_irq_mask;
85 85
86extern spinlock_t pci_config_lock; 86extern raw_spinlock_t pci_config_lock;
87 87
88extern int (*pcibios_enable_irq)(struct pci_dev *dev); 88extern int (*pcibios_enable_irq)(struct pci_dev *dev);
89extern void (*pcibios_disable_irq)(struct pci_dev *dev); 89extern void (*pcibios_disable_irq)(struct pci_dev *dev);
diff --git a/arch/x86/pci/Makefile b/arch/x86/pci/Makefile
index b110d97fb925..a0207a7fdf39 100644
--- a/arch/x86/pci/Makefile
+++ b/arch/x86/pci/Makefile
@@ -18,6 +18,8 @@ obj-$(CONFIG_X86_MRST) += mrst.o
18obj-y += common.o early.o 18obj-y += common.o early.o
19obj-y += amd_bus.o bus_numa.o 19obj-y += amd_bus.o bus_numa.o
20 20
21obj-$(CONFIG_PCI_CNB20LE_QUIRK) += broadcom_bus.o
22
21ifeq ($(CONFIG_PCI_DEBUG),y) 23ifeq ($(CONFIG_PCI_DEBUG),y)
22EXTRA_CFLAGS += -DDEBUG 24EXTRA_CFLAGS += -DDEBUG
23endif 25endif
diff --git a/arch/x86/pci/broadcom_bus.c b/arch/x86/pci/broadcom_bus.c
new file mode 100644
index 000000000000..0846a5bbbfbd
--- /dev/null
+++ b/arch/x86/pci/broadcom_bus.c
@@ -0,0 +1,101 @@
1/*
2 * Read address ranges from a Broadcom CNB20LE Host Bridge
3 *
4 * Copyright (c) 2010 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12#include <linux/delay.h>
13#include <linux/dmi.h>
14#include <linux/pci.h>
15#include <linux/init.h>
16#include <asm/pci_x86.h>
17
18#include "bus_numa.h"
19
20static void __devinit cnb20le_res(struct pci_dev *dev)
21{
22 struct pci_root_info *info;
23 struct resource res;
24 u16 word1, word2;
25 u8 fbus, lbus;
26 int i;
27
28 /*
29 * The x86_pci_root_bus_res_quirks() function already refuses to use
30 * this information if ACPI _CRS was used. Therefore, we don't bother
31 * checking if ACPI is enabled, and just generate the information
32 * for both the ACPI _CRS and no ACPI cases.
33 */
34
35 info = &pci_root_info[pci_root_num];
36 pci_root_num++;
37
38 /* read the PCI bus numbers */
39 pci_read_config_byte(dev, 0x44, &fbus);
40 pci_read_config_byte(dev, 0x45, &lbus);
41 info->bus_min = fbus;
42 info->bus_max = lbus;
43
44 /*
45 * Add the legacy IDE ports on bus 0
46 *
47 * These do not exist anywhere in the bridge registers, AFAICT. I do
48 * not have the datasheet, so this is the best I can do.
49 */
50 if (fbus == 0) {
51 update_res(info, 0x01f0, 0x01f7, IORESOURCE_IO, 0);
52 update_res(info, 0x03f6, 0x03f6, IORESOURCE_IO, 0);
53 update_res(info, 0x0170, 0x0177, IORESOURCE_IO, 0);
54 update_res(info, 0x0376, 0x0376, IORESOURCE_IO, 0);
55 update_res(info, 0xffa0, 0xffaf, IORESOURCE_IO, 0);
56 }
57
58 /* read the non-prefetchable memory window */
59 pci_read_config_word(dev, 0xc0, &word1);
60 pci_read_config_word(dev, 0xc2, &word2);
61 if (word1 != word2) {
62 res.start = (word1 << 16) | 0x0000;
63 res.end = (word2 << 16) | 0xffff;
64 res.flags = IORESOURCE_MEM;
65 update_res(info, res.start, res.end, res.flags, 0);
66 }
67
68 /* read the prefetchable memory window */
69 pci_read_config_word(dev, 0xc4, &word1);
70 pci_read_config_word(dev, 0xc6, &word2);
71 if (word1 != word2) {
72 res.start = (word1 << 16) | 0x0000;
73 res.end = (word2 << 16) | 0xffff;
74 res.flags = IORESOURCE_MEM | IORESOURCE_PREFETCH;
75 update_res(info, res.start, res.end, res.flags, 0);
76 }
77
78 /* read the IO port window */
79 pci_read_config_word(dev, 0xd0, &word1);
80 pci_read_config_word(dev, 0xd2, &word2);
81 if (word1 != word2) {
82 res.start = word1;
83 res.end = word2;
84 res.flags = IORESOURCE_IO;
85 update_res(info, res.start, res.end, res.flags, 0);
86 }
87
88 /* print information about this host bridge */
89 res.start = fbus;
90 res.end = lbus;
91 res.flags = IORESOURCE_BUS;
92 dev_info(&dev->dev, "CNB20LE PCI Host Bridge (domain %04x %pR)\n",
93 pci_domain_nr(dev->bus), &res);
94
95 for (i = 0; i < info->res_num; i++)
96 dev_info(&dev->dev, "host bridge window %pR\n", &info->res[i]);
97}
98
99DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_SERVERWORKS, PCI_DEVICE_ID_SERVERWORKS_LE,
100 cnb20le_res);
101
diff --git a/arch/x86/pci/common.c b/arch/x86/pci/common.c
index cf2e93869c48..215a27ae050d 100644
--- a/arch/x86/pci/common.c
+++ b/arch/x86/pci/common.c
@@ -76,7 +76,7 @@ struct pci_ops pci_root_ops = {
76 * This interrupt-safe spinlock protects all accesses to PCI 76 * This interrupt-safe spinlock protects all accesses to PCI
77 * configuration space. 77 * configuration space.
78 */ 78 */
79DEFINE_SPINLOCK(pci_config_lock); 79DEFINE_RAW_SPINLOCK(pci_config_lock);
80 80
81static int __devinit can_skip_ioresource_align(const struct dmi_system_id *d) 81static int __devinit can_skip_ioresource_align(const struct dmi_system_id *d)
82{ 82{
diff --git a/arch/x86/pci/direct.c b/arch/x86/pci/direct.c
index 347d882b3bb3..bd33620b0071 100644
--- a/arch/x86/pci/direct.c
+++ b/arch/x86/pci/direct.c
@@ -27,7 +27,7 @@ static int pci_conf1_read(unsigned int seg, unsigned int bus,
27 return -EINVAL; 27 return -EINVAL;
28 } 28 }
29 29
30 spin_lock_irqsave(&pci_config_lock, flags); 30 raw_spin_lock_irqsave(&pci_config_lock, flags);
31 31
32 outl(PCI_CONF1_ADDRESS(bus, devfn, reg), 0xCF8); 32 outl(PCI_CONF1_ADDRESS(bus, devfn, reg), 0xCF8);
33 33
@@ -43,7 +43,7 @@ static int pci_conf1_read(unsigned int seg, unsigned int bus,
43 break; 43 break;
44 } 44 }
45 45
46 spin_unlock_irqrestore(&pci_config_lock, flags); 46 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
47 47
48 return 0; 48 return 0;
49} 49}
@@ -56,7 +56,7 @@ static int pci_conf1_write(unsigned int seg, unsigned int bus,
56 if ((bus > 255) || (devfn > 255) || (reg > 4095)) 56 if ((bus > 255) || (devfn > 255) || (reg > 4095))
57 return -EINVAL; 57 return -EINVAL;
58 58
59 spin_lock_irqsave(&pci_config_lock, flags); 59 raw_spin_lock_irqsave(&pci_config_lock, flags);
60 60
61 outl(PCI_CONF1_ADDRESS(bus, devfn, reg), 0xCF8); 61 outl(PCI_CONF1_ADDRESS(bus, devfn, reg), 0xCF8);
62 62
@@ -72,7 +72,7 @@ static int pci_conf1_write(unsigned int seg, unsigned int bus,
72 break; 72 break;
73 } 73 }
74 74
75 spin_unlock_irqrestore(&pci_config_lock, flags); 75 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
76 76
77 return 0; 77 return 0;
78} 78}
@@ -108,7 +108,7 @@ static int pci_conf2_read(unsigned int seg, unsigned int bus,
108 if (dev & 0x10) 108 if (dev & 0x10)
109 return PCIBIOS_DEVICE_NOT_FOUND; 109 return PCIBIOS_DEVICE_NOT_FOUND;
110 110
111 spin_lock_irqsave(&pci_config_lock, flags); 111 raw_spin_lock_irqsave(&pci_config_lock, flags);
112 112
113 outb((u8)(0xF0 | (fn << 1)), 0xCF8); 113 outb((u8)(0xF0 | (fn << 1)), 0xCF8);
114 outb((u8)bus, 0xCFA); 114 outb((u8)bus, 0xCFA);
@@ -127,7 +127,7 @@ static int pci_conf2_read(unsigned int seg, unsigned int bus,
127 127
128 outb(0, 0xCF8); 128 outb(0, 0xCF8);
129 129
130 spin_unlock_irqrestore(&pci_config_lock, flags); 130 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
131 131
132 return 0; 132 return 0;
133} 133}
@@ -147,7 +147,7 @@ static int pci_conf2_write(unsigned int seg, unsigned int bus,
147 if (dev & 0x10) 147 if (dev & 0x10)
148 return PCIBIOS_DEVICE_NOT_FOUND; 148 return PCIBIOS_DEVICE_NOT_FOUND;
149 149
150 spin_lock_irqsave(&pci_config_lock, flags); 150 raw_spin_lock_irqsave(&pci_config_lock, flags);
151 151
152 outb((u8)(0xF0 | (fn << 1)), 0xCF8); 152 outb((u8)(0xF0 | (fn << 1)), 0xCF8);
153 outb((u8)bus, 0xCFA); 153 outb((u8)bus, 0xCFA);
@@ -166,7 +166,7 @@ static int pci_conf2_write(unsigned int seg, unsigned int bus,
166 166
167 outb(0, 0xCF8); 167 outb(0, 0xCF8);
168 168
169 spin_unlock_irqrestore(&pci_config_lock, flags); 169 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
170 170
171 return 0; 171 return 0;
172} 172}
diff --git a/arch/x86/pci/irq.c b/arch/x86/pci/irq.c
index 5d362b5ba06f..9810a0f76c91 100644
--- a/arch/x86/pci/irq.c
+++ b/arch/x86/pci/irq.c
@@ -589,8 +589,6 @@ static __init int intel_router_probe(struct irq_router *r, struct pci_dev *route
589 case PCI_DEVICE_ID_INTEL_ICH10_1: 589 case PCI_DEVICE_ID_INTEL_ICH10_1:
590 case PCI_DEVICE_ID_INTEL_ICH10_2: 590 case PCI_DEVICE_ID_INTEL_ICH10_2:
591 case PCI_DEVICE_ID_INTEL_ICH10_3: 591 case PCI_DEVICE_ID_INTEL_ICH10_3:
592 case PCI_DEVICE_ID_INTEL_CPT_LPC1:
593 case PCI_DEVICE_ID_INTEL_CPT_LPC2:
594 r->name = "PIIX/ICH"; 592 r->name = "PIIX/ICH";
595 r->get = pirq_piix_get; 593 r->get = pirq_piix_get;
596 r->set = pirq_piix_set; 594 r->set = pirq_piix_set;
@@ -605,6 +603,13 @@ static __init int intel_router_probe(struct irq_router *r, struct pci_dev *route
605 return 1; 603 return 1;
606 } 604 }
607 605
606 if ((device >= PCI_DEVICE_ID_INTEL_CPT_LPC_MIN) &&
607 (device <= PCI_DEVICE_ID_INTEL_CPT_LPC_MAX)) {
608 r->name = "PIIX/ICH";
609 r->get = pirq_piix_get;
610 r->set = pirq_piix_set;
611 return 1;
612 }
608 return 0; 613 return 0;
609} 614}
610 615
diff --git a/arch/x86/pci/mmconfig-shared.c b/arch/x86/pci/mmconfig-shared.c
index 39b9ebe8f886..a918553ebc75 100644
--- a/arch/x86/pci/mmconfig-shared.c
+++ b/arch/x86/pci/mmconfig-shared.c
@@ -483,16 +483,17 @@ static void __init pci_mmcfg_reject_broken(int early)
483 list_for_each_entry(cfg, &pci_mmcfg_list, list) { 483 list_for_each_entry(cfg, &pci_mmcfg_list, list) {
484 int valid = 0; 484 int valid = 0;
485 485
486 if (!early && !acpi_disabled) 486 if (!early && !acpi_disabled) {
487 valid = is_mmconf_reserved(is_acpi_reserved, cfg, 0); 487 valid = is_mmconf_reserved(is_acpi_reserved, cfg, 0);
488 488
489 if (valid) 489 if (valid)
490 continue; 490 continue;
491 491 else
492 if (!early) 492 printk(KERN_ERR FW_BUG PREFIX
493 printk(KERN_ERR FW_BUG PREFIX 493 "MMCONFIG at %pR not reserved in "
494 "MMCONFIG at %pR not reserved in " 494 "ACPI motherboard resources\n",
495 "ACPI motherboard resources\n", &cfg->res); 495 &cfg->res);
496 }
496 497
497 /* Don't try to do this check unless configuration 498 /* Don't try to do this check unless configuration
498 type 1 is available. how about type 2 ?*/ 499 type 1 is available. how about type 2 ?*/
diff --git a/arch/x86/pci/mmconfig_32.c b/arch/x86/pci/mmconfig_32.c
index 90d5fd476ed4..a3d9c54792ae 100644
--- a/arch/x86/pci/mmconfig_32.c
+++ b/arch/x86/pci/mmconfig_32.c
@@ -64,7 +64,7 @@ err: *value = -1;
64 if (!base) 64 if (!base)
65 goto err; 65 goto err;
66 66
67 spin_lock_irqsave(&pci_config_lock, flags); 67 raw_spin_lock_irqsave(&pci_config_lock, flags);
68 68
69 pci_exp_set_dev_base(base, bus, devfn); 69 pci_exp_set_dev_base(base, bus, devfn);
70 70
@@ -79,7 +79,7 @@ err: *value = -1;
79 *value = mmio_config_readl(mmcfg_virt_addr + reg); 79 *value = mmio_config_readl(mmcfg_virt_addr + reg);
80 break; 80 break;
81 } 81 }
82 spin_unlock_irqrestore(&pci_config_lock, flags); 82 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
83 83
84 return 0; 84 return 0;
85} 85}
@@ -97,7 +97,7 @@ static int pci_mmcfg_write(unsigned int seg, unsigned int bus,
97 if (!base) 97 if (!base)
98 return -EINVAL; 98 return -EINVAL;
99 99
100 spin_lock_irqsave(&pci_config_lock, flags); 100 raw_spin_lock_irqsave(&pci_config_lock, flags);
101 101
102 pci_exp_set_dev_base(base, bus, devfn); 102 pci_exp_set_dev_base(base, bus, devfn);
103 103
@@ -112,7 +112,7 @@ static int pci_mmcfg_write(unsigned int seg, unsigned int bus,
112 mmio_config_writel(mmcfg_virt_addr + reg, value); 112 mmio_config_writel(mmcfg_virt_addr + reg, value);
113 break; 113 break;
114 } 114 }
115 spin_unlock_irqrestore(&pci_config_lock, flags); 115 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
116 116
117 return 0; 117 return 0;
118} 118}
diff --git a/arch/x86/pci/numaq_32.c b/arch/x86/pci/numaq_32.c
index 8223738ad806..5c9e2458df4e 100644
--- a/arch/x86/pci/numaq_32.c
+++ b/arch/x86/pci/numaq_32.c
@@ -37,7 +37,7 @@ static int pci_conf1_mq_read(unsigned int seg, unsigned int bus,
37 if (!value || (bus >= MAX_MP_BUSSES) || (devfn > 255) || (reg > 255)) 37 if (!value || (bus >= MAX_MP_BUSSES) || (devfn > 255) || (reg > 255))
38 return -EINVAL; 38 return -EINVAL;
39 39
40 spin_lock_irqsave(&pci_config_lock, flags); 40 raw_spin_lock_irqsave(&pci_config_lock, flags);
41 41
42 write_cf8(bus, devfn, reg); 42 write_cf8(bus, devfn, reg);
43 43
@@ -62,7 +62,7 @@ static int pci_conf1_mq_read(unsigned int seg, unsigned int bus,
62 break; 62 break;
63 } 63 }
64 64
65 spin_unlock_irqrestore(&pci_config_lock, flags); 65 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
66 66
67 return 0; 67 return 0;
68} 68}
@@ -76,7 +76,7 @@ static int pci_conf1_mq_write(unsigned int seg, unsigned int bus,
76 if ((bus >= MAX_MP_BUSSES) || (devfn > 255) || (reg > 255)) 76 if ((bus >= MAX_MP_BUSSES) || (devfn > 255) || (reg > 255))
77 return -EINVAL; 77 return -EINVAL;
78 78
79 spin_lock_irqsave(&pci_config_lock, flags); 79 raw_spin_lock_irqsave(&pci_config_lock, flags);
80 80
81 write_cf8(bus, devfn, reg); 81 write_cf8(bus, devfn, reg);
82 82
@@ -101,7 +101,7 @@ static int pci_conf1_mq_write(unsigned int seg, unsigned int bus,
101 break; 101 break;
102 } 102 }
103 103
104 spin_unlock_irqrestore(&pci_config_lock, flags); 104 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
105 105
106 return 0; 106 return 0;
107} 107}
diff --git a/arch/x86/pci/pcbios.c b/arch/x86/pci/pcbios.c
index 59a225c17b84..2492d165096a 100644
--- a/arch/x86/pci/pcbios.c
+++ b/arch/x86/pci/pcbios.c
@@ -162,7 +162,7 @@ static int pci_bios_read(unsigned int seg, unsigned int bus,
162 if (!value || (bus > 255) || (devfn > 255) || (reg > 255)) 162 if (!value || (bus > 255) || (devfn > 255) || (reg > 255))
163 return -EINVAL; 163 return -EINVAL;
164 164
165 spin_lock_irqsave(&pci_config_lock, flags); 165 raw_spin_lock_irqsave(&pci_config_lock, flags);
166 166
167 switch (len) { 167 switch (len) {
168 case 1: 168 case 1:
@@ -213,7 +213,7 @@ static int pci_bios_read(unsigned int seg, unsigned int bus,
213 break; 213 break;
214 } 214 }
215 215
216 spin_unlock_irqrestore(&pci_config_lock, flags); 216 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
217 217
218 return (int)((result & 0xff00) >> 8); 218 return (int)((result & 0xff00) >> 8);
219} 219}
@@ -228,7 +228,7 @@ static int pci_bios_write(unsigned int seg, unsigned int bus,
228 if ((bus > 255) || (devfn > 255) || (reg > 255)) 228 if ((bus > 255) || (devfn > 255) || (reg > 255))
229 return -EINVAL; 229 return -EINVAL;
230 230
231 spin_lock_irqsave(&pci_config_lock, flags); 231 raw_spin_lock_irqsave(&pci_config_lock, flags);
232 232
233 switch (len) { 233 switch (len) {
234 case 1: 234 case 1:
@@ -269,7 +269,7 @@ static int pci_bios_write(unsigned int seg, unsigned int bus,
269 break; 269 break;
270 } 270 }
271 271
272 spin_unlock_irqrestore(&pci_config_lock, flags); 272 raw_spin_unlock_irqrestore(&pci_config_lock, flags);
273 273
274 return (int)((result & 0xff00) >> 8); 274 return (int)((result & 0xff00) >> 8);
275} 275}
diff --git a/drivers/edac/amd76x_edac.c b/drivers/edac/amd76x_edac.c
index f2330f81cb5e..cace0a7b707a 100644
--- a/drivers/edac/amd76x_edac.c
+++ b/drivers/edac/amd76x_edac.c
@@ -294,7 +294,7 @@ static int __devinit amd76x_init_one(struct pci_dev *pdev,
294{ 294{
295 debugf0("%s()\n", __func__); 295 debugf0("%s()\n", __func__);
296 296
297 /* don't need to call pci_device_enable() */ 297 /* don't need to call pci_enable_device() */
298 return amd76x_probe1(pdev, ent->driver_data); 298 return amd76x_probe1(pdev, ent->driver_data);
299} 299}
300 300
diff --git a/drivers/edac/i82443bxgx_edac.c b/drivers/edac/i82443bxgx_edac.c
index 7f3884fcbd46..2bf2c5051bfe 100644
--- a/drivers/edac/i82443bxgx_edac.c
+++ b/drivers/edac/i82443bxgx_edac.c
@@ -354,7 +354,7 @@ static int __devinit i82443bxgx_edacmc_init_one(struct pci_dev *pdev,
354 354
355 debugf0("MC: " __FILE__ ": %s()\n", __func__); 355 debugf0("MC: " __FILE__ ": %s()\n", __func__);
356 356
357 /* don't need to call pci_device_enable() */ 357 /* don't need to call pci_enable_device() */
358 rc = i82443bxgx_edacmc_probe1(pdev, ent->driver_data); 358 rc = i82443bxgx_edacmc_probe1(pdev, ent->driver_data);
359 359
360 if (mci_pdev == NULL) 360 if (mci_pdev == NULL)
diff --git a/drivers/edac/r82600_edac.c b/drivers/edac/r82600_edac.c
index d55f8e9de788..6a822c631ef5 100644
--- a/drivers/edac/r82600_edac.c
+++ b/drivers/edac/r82600_edac.c
@@ -354,7 +354,7 @@ static int __devinit r82600_init_one(struct pci_dev *pdev,
354{ 354{
355 debugf0("%s()\n", __func__); 355 debugf0("%s()\n", __func__);
356 356
357 /* don't need to call pci_device_enable() */ 357 /* don't need to call pci_enable_device() */
358 return r82600_probe1(pdev, ent->driver_data); 358 return r82600_probe1(pdev, ent->driver_data);
359} 359}
360 360
diff --git a/drivers/pci/Kconfig b/drivers/pci/Kconfig
index 7858a117e80b..34ef70d562b2 100644
--- a/drivers/pci/Kconfig
+++ b/drivers/pci/Kconfig
@@ -19,7 +19,7 @@ config PCI_MSI
19 by using the 'pci=nomsi' option. This disables MSI for the 19 by using the 'pci=nomsi' option. This disables MSI for the
20 entire system. 20 entire system.
21 21
22 If you don't know what to do here, say N. 22 If you don't know what to do here, say Y.
23 23
24config PCI_DEBUG 24config PCI_DEBUG
25 bool "PCI Debugging" 25 bool "PCI Debugging"
diff --git a/drivers/pci/access.c b/drivers/pci/access.c
index 2f646fe1260f..531bc697d800 100644
--- a/drivers/pci/access.c
+++ b/drivers/pci/access.c
@@ -13,7 +13,7 @@
13 * configuration space. 13 * configuration space.
14 */ 14 */
15 15
16static DEFINE_SPINLOCK(pci_lock); 16static DEFINE_RAW_SPINLOCK(pci_lock);
17 17
18/* 18/*
19 * Wrappers for all PCI configuration access functions. They just check 19 * Wrappers for all PCI configuration access functions. They just check
@@ -33,10 +33,10 @@ int pci_bus_read_config_##size \
33 unsigned long flags; \ 33 unsigned long flags; \
34 u32 data = 0; \ 34 u32 data = 0; \
35 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \ 35 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
36 spin_lock_irqsave(&pci_lock, flags); \ 36 raw_spin_lock_irqsave(&pci_lock, flags); \
37 res = bus->ops->read(bus, devfn, pos, len, &data); \ 37 res = bus->ops->read(bus, devfn, pos, len, &data); \
38 *value = (type)data; \ 38 *value = (type)data; \
39 spin_unlock_irqrestore(&pci_lock, flags); \ 39 raw_spin_unlock_irqrestore(&pci_lock, flags); \
40 return res; \ 40 return res; \
41} 41}
42 42
@@ -47,9 +47,9 @@ int pci_bus_write_config_##size \
47 int res; \ 47 int res; \
48 unsigned long flags; \ 48 unsigned long flags; \
49 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \ 49 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
50 spin_lock_irqsave(&pci_lock, flags); \ 50 raw_spin_lock_irqsave(&pci_lock, flags); \
51 res = bus->ops->write(bus, devfn, pos, len, value); \ 51 res = bus->ops->write(bus, devfn, pos, len, value); \
52 spin_unlock_irqrestore(&pci_lock, flags); \ 52 raw_spin_unlock_irqrestore(&pci_lock, flags); \
53 return res; \ 53 return res; \
54} 54}
55 55
@@ -79,10 +79,10 @@ struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
79 struct pci_ops *old_ops; 79 struct pci_ops *old_ops;
80 unsigned long flags; 80 unsigned long flags;
81 81
82 spin_lock_irqsave(&pci_lock, flags); 82 raw_spin_lock_irqsave(&pci_lock, flags);
83 old_ops = bus->ops; 83 old_ops = bus->ops;
84 bus->ops = ops; 84 bus->ops = ops;
85 spin_unlock_irqrestore(&pci_lock, flags); 85 raw_spin_unlock_irqrestore(&pci_lock, flags);
86 return old_ops; 86 return old_ops;
87} 87}
88EXPORT_SYMBOL(pci_bus_set_ops); 88EXPORT_SYMBOL(pci_bus_set_ops);
@@ -136,9 +136,9 @@ static noinline void pci_wait_ucfg(struct pci_dev *dev)
136 __add_wait_queue(&pci_ucfg_wait, &wait); 136 __add_wait_queue(&pci_ucfg_wait, &wait);
137 do { 137 do {
138 set_current_state(TASK_UNINTERRUPTIBLE); 138 set_current_state(TASK_UNINTERRUPTIBLE);
139 spin_unlock_irq(&pci_lock); 139 raw_spin_unlock_irq(&pci_lock);
140 schedule(); 140 schedule();
141 spin_lock_irq(&pci_lock); 141 raw_spin_lock_irq(&pci_lock);
142 } while (dev->block_ucfg_access); 142 } while (dev->block_ucfg_access);
143 __remove_wait_queue(&pci_ucfg_wait, &wait); 143 __remove_wait_queue(&pci_ucfg_wait, &wait);
144} 144}
@@ -150,11 +150,11 @@ int pci_user_read_config_##size \
150 int ret = 0; \ 150 int ret = 0; \
151 u32 data = -1; \ 151 u32 data = -1; \
152 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \ 152 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
153 spin_lock_irq(&pci_lock); \ 153 raw_spin_lock_irq(&pci_lock); \
154 if (unlikely(dev->block_ucfg_access)) pci_wait_ucfg(dev); \ 154 if (unlikely(dev->block_ucfg_access)) pci_wait_ucfg(dev); \
155 ret = dev->bus->ops->read(dev->bus, dev->devfn, \ 155 ret = dev->bus->ops->read(dev->bus, dev->devfn, \
156 pos, sizeof(type), &data); \ 156 pos, sizeof(type), &data); \
157 spin_unlock_irq(&pci_lock); \ 157 raw_spin_unlock_irq(&pci_lock); \
158 *val = (type)data; \ 158 *val = (type)data; \
159 return ret; \ 159 return ret; \
160} 160}
@@ -165,11 +165,11 @@ int pci_user_write_config_##size \
165{ \ 165{ \
166 int ret = -EIO; \ 166 int ret = -EIO; \
167 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \ 167 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
168 spin_lock_irq(&pci_lock); \ 168 raw_spin_lock_irq(&pci_lock); \
169 if (unlikely(dev->block_ucfg_access)) pci_wait_ucfg(dev); \ 169 if (unlikely(dev->block_ucfg_access)) pci_wait_ucfg(dev); \
170 ret = dev->bus->ops->write(dev->bus, dev->devfn, \ 170 ret = dev->bus->ops->write(dev->bus, dev->devfn, \
171 pos, sizeof(type), val); \ 171 pos, sizeof(type), val); \
172 spin_unlock_irq(&pci_lock); \ 172 raw_spin_unlock_irq(&pci_lock); \
173 return ret; \ 173 return ret; \
174} 174}
175 175
@@ -220,8 +220,13 @@ static int pci_vpd_pci22_wait(struct pci_dev *dev)
220 return 0; 220 return 0;
221 } 221 }
222 222
223 if (time_after(jiffies, timeout)) 223 if (time_after(jiffies, timeout)) {
224 dev_printk(KERN_DEBUG, &dev->dev,
225 "vpd r/w failed. This is likely a firmware "
226 "bug on this device. Contact the card "
227 "vendor for a firmware update.");
224 return -ETIMEDOUT; 228 return -ETIMEDOUT;
229 }
225 if (fatal_signal_pending(current)) 230 if (fatal_signal_pending(current))
226 return -EINTR; 231 return -EINTR;
227 if (!cond_resched()) 232 if (!cond_resched())
@@ -396,10 +401,10 @@ void pci_block_user_cfg_access(struct pci_dev *dev)
396 unsigned long flags; 401 unsigned long flags;
397 int was_blocked; 402 int was_blocked;
398 403
399 spin_lock_irqsave(&pci_lock, flags); 404 raw_spin_lock_irqsave(&pci_lock, flags);
400 was_blocked = dev->block_ucfg_access; 405 was_blocked = dev->block_ucfg_access;
401 dev->block_ucfg_access = 1; 406 dev->block_ucfg_access = 1;
402 spin_unlock_irqrestore(&pci_lock, flags); 407 raw_spin_unlock_irqrestore(&pci_lock, flags);
403 408
404 /* If we BUG() inside the pci_lock, we're guaranteed to hose 409 /* If we BUG() inside the pci_lock, we're guaranteed to hose
405 * the machine */ 410 * the machine */
@@ -417,7 +422,7 @@ void pci_unblock_user_cfg_access(struct pci_dev *dev)
417{ 422{
418 unsigned long flags; 423 unsigned long flags;
419 424
420 spin_lock_irqsave(&pci_lock, flags); 425 raw_spin_lock_irqsave(&pci_lock, flags);
421 426
422 /* This indicates a problem in the caller, but we don't need 427 /* This indicates a problem in the caller, but we don't need
423 * to kill them, unlike a double-block above. */ 428 * to kill them, unlike a double-block above. */
@@ -425,6 +430,6 @@ void pci_unblock_user_cfg_access(struct pci_dev *dev)
425 430
426 dev->block_ucfg_access = 0; 431 dev->block_ucfg_access = 0;
427 wake_up_all(&pci_ucfg_wait); 432 wake_up_all(&pci_ucfg_wait);
428 spin_unlock_irqrestore(&pci_lock, flags); 433 raw_spin_unlock_irqrestore(&pci_lock, flags);
429} 434}
430EXPORT_SYMBOL_GPL(pci_unblock_user_cfg_access); 435EXPORT_SYMBOL_GPL(pci_unblock_user_cfg_access);
diff --git a/drivers/pci/hotplug/cpqphp_core.c b/drivers/pci/hotplug/cpqphp_core.c
index 6644337d63d6..b3e5580c837b 100644
--- a/drivers/pci/hotplug/cpqphp_core.c
+++ b/drivers/pci/hotplug/cpqphp_core.c
@@ -1075,13 +1075,12 @@ static int cpqhpc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1075 1075
1076 /* make our own copy of the pci bus structure, 1076 /* make our own copy of the pci bus structure,
1077 * as we like tweaking it a lot */ 1077 * as we like tweaking it a lot */
1078 ctrl->pci_bus = kmalloc(sizeof(*ctrl->pci_bus), GFP_KERNEL); 1078 ctrl->pci_bus = kmemdup(pdev->bus, sizeof(*ctrl->pci_bus), GFP_KERNEL);
1079 if (!ctrl->pci_bus) { 1079 if (!ctrl->pci_bus) {
1080 err("out of memory\n"); 1080 err("out of memory\n");
1081 rc = -ENOMEM; 1081 rc = -ENOMEM;
1082 goto err_free_ctrl; 1082 goto err_free_ctrl;
1083 } 1083 }
1084 memcpy(ctrl->pci_bus, pdev->bus, sizeof(*ctrl->pci_bus));
1085 1084
1086 ctrl->bus = pdev->bus->number; 1085 ctrl->bus = pdev->bus->number;
1087 ctrl->rev = pdev->revision; 1086 ctrl->rev = pdev->revision;
diff --git a/drivers/pci/hotplug/pciehp_pci.c b/drivers/pci/hotplug/pciehp_pci.c
index 0a16444c14c9..2fce726758d2 100644
--- a/drivers/pci/hotplug/pciehp_pci.c
+++ b/drivers/pci/hotplug/pciehp_pci.c
@@ -84,12 +84,6 @@ int pciehp_configure_device(struct slot *p_slot)
84 dev = pci_get_slot(parent, PCI_DEVFN(0, fn)); 84 dev = pci_get_slot(parent, PCI_DEVFN(0, fn));
85 if (!dev) 85 if (!dev)
86 continue; 86 continue;
87 if ((dev->class >> 16) == PCI_BASE_CLASS_DISPLAY) {
88 ctrl_err(ctrl, "Cannot hot-add display device %s\n",
89 pci_name(dev));
90 pci_dev_put(dev);
91 continue;
92 }
93 if ((dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) || 87 if ((dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) ||
94 (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS)) { 88 (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS)) {
95 pciehp_add_bridge(dev); 89 pciehp_add_bridge(dev);
@@ -133,15 +127,9 @@ int pciehp_unconfigure_device(struct slot *p_slot)
133 presence = 0; 127 presence = 0;
134 128
135 for (j = 0; j < 8; j++) { 129 for (j = 0; j < 8; j++) {
136 struct pci_dev* temp = pci_get_slot(parent, PCI_DEVFN(0, j)); 130 struct pci_dev *temp = pci_get_slot(parent, PCI_DEVFN(0, j));
137 if (!temp) 131 if (!temp)
138 continue; 132 continue;
139 if ((temp->class >> 16) == PCI_BASE_CLASS_DISPLAY) {
140 ctrl_err(ctrl, "Cannot remove display device %s\n",
141 pci_name(temp));
142 pci_dev_put(temp);
143 continue;
144 }
145 if (temp->hdr_type == PCI_HEADER_TYPE_BRIDGE && presence) { 133 if (temp->hdr_type == PCI_HEADER_TYPE_BRIDGE && presence) {
146 pci_read_config_byte(temp, PCI_BRIDGE_CONTROL, &bctl); 134 pci_read_config_byte(temp, PCI_BRIDGE_CONTROL, &bctl);
147 if (bctl & PCI_BRIDGE_CTL_VGA) { 135 if (bctl & PCI_BRIDGE_CTL_VGA) {
@@ -149,7 +137,8 @@ int pciehp_unconfigure_device(struct slot *p_slot)
149 "Cannot remove display device %s\n", 137 "Cannot remove display device %s\n",
150 pci_name(temp)); 138 pci_name(temp));
151 pci_dev_put(temp); 139 pci_dev_put(temp);
152 continue; 140 rc = EINVAL;
141 break;
153 } 142 }
154 } 143 }
155 pci_remove_bus_device(temp); 144 pci_remove_bus_device(temp);
diff --git a/drivers/pci/pci-sysfs.c b/drivers/pci/pci-sysfs.c
index 6309c5a2528f..afd2fbf7d797 100644
--- a/drivers/pci/pci-sysfs.c
+++ b/drivers/pci/pci-sysfs.c
@@ -979,7 +979,12 @@ static ssize_t reset_store(struct device *dev,
979 979
980 if (val != 1) 980 if (val != 1)
981 return -EINVAL; 981 return -EINVAL;
982 return pci_reset_function(pdev); 982
983 result = pci_reset_function(pdev);
984 if (result < 0)
985 return result;
986
987 return count;
983} 988}
984 989
985static struct device_attribute reset_attr = __ATTR(reset, 0200, NULL, reset_store); 990static struct device_attribute reset_attr = __ATTR(reset, 0200, NULL, reset_store);
@@ -1030,6 +1035,39 @@ error:
1030 return retval; 1035 return retval;
1031} 1036}
1032 1037
1038static void pci_remove_slot_links(struct pci_dev *dev)
1039{
1040 char func[10];
1041 struct pci_slot *slot;
1042
1043 sysfs_remove_link(&dev->dev.kobj, "slot");
1044 list_for_each_entry(slot, &dev->bus->slots, list) {
1045 if (slot->number != PCI_SLOT(dev->devfn))
1046 continue;
1047 snprintf(func, 10, "function%d", PCI_FUNC(dev->devfn));
1048 sysfs_remove_link(&slot->kobj, func);
1049 }
1050}
1051
1052static int pci_create_slot_links(struct pci_dev *dev)
1053{
1054 int result = 0;
1055 char func[10];
1056 struct pci_slot *slot;
1057
1058 list_for_each_entry(slot, &dev->bus->slots, list) {
1059 if (slot->number != PCI_SLOT(dev->devfn))
1060 continue;
1061 result = sysfs_create_link(&dev->dev.kobj, &slot->kobj, "slot");
1062 if (result)
1063 goto out;
1064 snprintf(func, 10, "function%d", PCI_FUNC(dev->devfn));
1065 result = sysfs_create_link(&slot->kobj, &dev->dev.kobj, func);
1066 }
1067out:
1068 return result;
1069}
1070
1033int __must_check pci_create_sysfs_dev_files (struct pci_dev *pdev) 1071int __must_check pci_create_sysfs_dev_files (struct pci_dev *pdev)
1034{ 1072{
1035 int retval; 1073 int retval;
@@ -1092,6 +1130,8 @@ int __must_check pci_create_sysfs_dev_files (struct pci_dev *pdev)
1092 if (retval) 1130 if (retval)
1093 goto err_vga_file; 1131 goto err_vga_file;
1094 1132
1133 pci_create_slot_links(pdev);
1134
1095 return 0; 1135 return 0;
1096 1136
1097err_vga_file: 1137err_vga_file:
@@ -1141,6 +1181,8 @@ void pci_remove_sysfs_dev_files(struct pci_dev *pdev)
1141 if (!sysfs_initialized) 1181 if (!sysfs_initialized)
1142 return; 1182 return;
1143 1183
1184 pci_remove_slot_links(pdev);
1185
1144 pci_remove_capabilities_sysfs(pdev); 1186 pci_remove_capabilities_sysfs(pdev);
1145 1187
1146 if (pdev->cfg_size < PCI_CFG_SPACE_EXP_SIZE) 1188 if (pdev->cfg_size < PCI_CFG_SPACE_EXP_SIZE)
diff --git a/drivers/pci/pci.c b/drivers/pci/pci.c
index 1df7c508814e..60f30e7f1c8c 100644
--- a/drivers/pci/pci.c
+++ b/drivers/pci/pci.c
@@ -1193,7 +1193,7 @@ void pci_disable_enabled_device(struct pci_dev *dev)
1193 * anymore. This only involves disabling PCI bus-mastering, if active. 1193 * anymore. This only involves disabling PCI bus-mastering, if active.
1194 * 1194 *
1195 * Note we don't actually disable the device until all callers of 1195 * Note we don't actually disable the device until all callers of
1196 * pci_device_enable() have called pci_device_disable(). 1196 * pci_enable_device() have called pci_disable_device().
1197 */ 1197 */
1198void 1198void
1199pci_disable_device(struct pci_dev *dev) 1199pci_disable_device(struct pci_dev *dev)
@@ -1631,7 +1631,6 @@ void pci_pm_init(struct pci_dev *dev)
1631 * let the user space enable it to wake up the system as needed. 1631 * let the user space enable it to wake up the system as needed.
1632 */ 1632 */
1633 device_set_wakeup_capable(&dev->dev, true); 1633 device_set_wakeup_capable(&dev->dev, true);
1634 device_set_wakeup_enable(&dev->dev, false);
1635 /* Disable the PME# generation functionality */ 1634 /* Disable the PME# generation functionality */
1636 pci_pme_active(dev, false); 1635 pci_pme_active(dev, false);
1637 } else { 1636 } else {
@@ -1655,7 +1654,6 @@ void platform_pci_wakeup_init(struct pci_dev *dev)
1655 return; 1654 return;
1656 1655
1657 device_set_wakeup_capable(&dev->dev, true); 1656 device_set_wakeup_capable(&dev->dev, true);
1658 device_set_wakeup_enable(&dev->dev, false);
1659 platform_pci_sleep_wake(dev, false); 1657 platform_pci_sleep_wake(dev, false);
1660} 1658}
1661 1659
diff --git a/drivers/pci/pcie/aer/aer_inject.c b/drivers/pci/pcie/aer/aer_inject.c
index f8f425b8731d..909924692b8a 100644
--- a/drivers/pci/pcie/aer/aer_inject.c
+++ b/drivers/pci/pcie/aer/aer_inject.c
@@ -168,7 +168,7 @@ static u32 *find_pci_config_dword(struct aer_error *err, int where,
168 target = &err->root_status; 168 target = &err->root_status;
169 rw1cs = 1; 169 rw1cs = 1;
170 break; 170 break;
171 case PCI_ERR_ROOT_COR_SRC: 171 case PCI_ERR_ROOT_ERR_SRC:
172 target = &err->source_id; 172 target = &err->source_id;
173 break; 173 break;
174 } 174 }
diff --git a/drivers/pci/pcie/aer/aerdrv.c b/drivers/pci/pcie/aer/aerdrv.c
index 7a711ee314b7..484cc55194b8 100644
--- a/drivers/pci/pcie/aer/aerdrv.c
+++ b/drivers/pci/pcie/aer/aerdrv.c
@@ -72,13 +72,120 @@ void pci_no_aer(void)
72 pcie_aer_disable = 1; /* has priority over 'forceload' */ 72 pcie_aer_disable = 1; /* has priority over 'forceload' */
73} 73}
74 74
75static int set_device_error_reporting(struct pci_dev *dev, void *data)
76{
77 bool enable = *((bool *)data);
78
79 if ((dev->pcie_type == PCI_EXP_TYPE_ROOT_PORT) ||
80 (dev->pcie_type == PCI_EXP_TYPE_UPSTREAM) ||
81 (dev->pcie_type == PCI_EXP_TYPE_DOWNSTREAM)) {
82 if (enable)
83 pci_enable_pcie_error_reporting(dev);
84 else
85 pci_disable_pcie_error_reporting(dev);
86 }
87
88 if (enable)
89 pcie_set_ecrc_checking(dev);
90
91 return 0;
92}
93
94/**
95 * set_downstream_devices_error_reporting - enable/disable the error reporting bits on the root port and its downstream ports.
96 * @dev: pointer to root port's pci_dev data structure
97 * @enable: true = enable error reporting, false = disable error reporting.
98 */
99static void set_downstream_devices_error_reporting(struct pci_dev *dev,
100 bool enable)
101{
102 set_device_error_reporting(dev, &enable);
103
104 if (!dev->subordinate)
105 return;
106 pci_walk_bus(dev->subordinate, set_device_error_reporting, &enable);
107}
108
109/**
110 * aer_enable_rootport - enable Root Port's interrupts when receiving messages
111 * @rpc: pointer to a Root Port data structure
112 *
113 * Invoked when PCIe bus loads AER service driver.
114 */
115static void aer_enable_rootport(struct aer_rpc *rpc)
116{
117 struct pci_dev *pdev = rpc->rpd->port;
118 int pos, aer_pos;
119 u16 reg16;
120 u32 reg32;
121
122 pos = pci_pcie_cap(pdev);
123 /* Clear PCIe Capability's Device Status */
124 pci_read_config_word(pdev, pos+PCI_EXP_DEVSTA, &reg16);
125 pci_write_config_word(pdev, pos+PCI_EXP_DEVSTA, reg16);
126
127 /* Disable system error generation in response to error messages */
128 pci_read_config_word(pdev, pos + PCI_EXP_RTCTL, &reg16);
129 reg16 &= ~(SYSTEM_ERROR_INTR_ON_MESG_MASK);
130 pci_write_config_word(pdev, pos + PCI_EXP_RTCTL, reg16);
131
132 aer_pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
133 /* Clear error status */
134 pci_read_config_dword(pdev, aer_pos + PCI_ERR_ROOT_STATUS, &reg32);
135 pci_write_config_dword(pdev, aer_pos + PCI_ERR_ROOT_STATUS, reg32);
136 pci_read_config_dword(pdev, aer_pos + PCI_ERR_COR_STATUS, &reg32);
137 pci_write_config_dword(pdev, aer_pos + PCI_ERR_COR_STATUS, reg32);
138 pci_read_config_dword(pdev, aer_pos + PCI_ERR_UNCOR_STATUS, &reg32);
139 pci_write_config_dword(pdev, aer_pos + PCI_ERR_UNCOR_STATUS, reg32);
140
141 /*
142 * Enable error reporting for the root port device and downstream port
143 * devices.
144 */
145 set_downstream_devices_error_reporting(pdev, true);
146
147 /* Enable Root Port's interrupt in response to error messages */
148 pci_read_config_dword(pdev, aer_pos + PCI_ERR_ROOT_COMMAND, &reg32);
149 reg32 |= ROOT_PORT_INTR_ON_MESG_MASK;
150 pci_write_config_dword(pdev, aer_pos + PCI_ERR_ROOT_COMMAND, reg32);
151}
152
153/**
154 * aer_disable_rootport - disable Root Port's interrupts when receiving messages
155 * @rpc: pointer to a Root Port data structure
156 *
157 * Invoked when PCIe bus unloads AER service driver.
158 */
159static void aer_disable_rootport(struct aer_rpc *rpc)
160{
161 struct pci_dev *pdev = rpc->rpd->port;
162 u32 reg32;
163 int pos;
164
165 /*
166 * Disable error reporting for the root port device and downstream port
167 * devices.
168 */
169 set_downstream_devices_error_reporting(pdev, false);
170
171 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
172 /* Disable Root's interrupt in response to error messages */
173 pci_read_config_dword(pdev, pos + PCI_ERR_ROOT_COMMAND, &reg32);
174 reg32 &= ~ROOT_PORT_INTR_ON_MESG_MASK;
175 pci_write_config_dword(pdev, pos + PCI_ERR_ROOT_COMMAND, reg32);
176
177 /* Clear Root's error status reg */
178 pci_read_config_dword(pdev, pos + PCI_ERR_ROOT_STATUS, &reg32);
179 pci_write_config_dword(pdev, pos + PCI_ERR_ROOT_STATUS, reg32);
180}
181
75/** 182/**
76 * aer_irq - Root Port's ISR 183 * aer_irq - Root Port's ISR
77 * @irq: IRQ assigned to Root Port 184 * @irq: IRQ assigned to Root Port
78 * @context: pointer to Root Port data structure 185 * @context: pointer to Root Port data structure
79 * 186 *
80 * Invoked when Root Port detects AER messages. 187 * Invoked when Root Port detects AER messages.
81 **/ 188 */
82irqreturn_t aer_irq(int irq, void *context) 189irqreturn_t aer_irq(int irq, void *context)
83{ 190{
84 unsigned int status, id; 191 unsigned int status, id;
@@ -97,13 +204,13 @@ irqreturn_t aer_irq(int irq, void *context)
97 204
98 /* Read error status */ 205 /* Read error status */
99 pci_read_config_dword(pdev->port, pos + PCI_ERR_ROOT_STATUS, &status); 206 pci_read_config_dword(pdev->port, pos + PCI_ERR_ROOT_STATUS, &status);
100 if (!(status & ROOT_ERR_STATUS_MASKS)) { 207 if (!(status & (PCI_ERR_ROOT_UNCOR_RCV|PCI_ERR_ROOT_COR_RCV))) {
101 spin_unlock_irqrestore(&rpc->e_lock, flags); 208 spin_unlock_irqrestore(&rpc->e_lock, flags);
102 return IRQ_NONE; 209 return IRQ_NONE;
103 } 210 }
104 211
105 /* Read error source and clear error status */ 212 /* Read error source and clear error status */
106 pci_read_config_dword(pdev->port, pos + PCI_ERR_ROOT_COR_SRC, &id); 213 pci_read_config_dword(pdev->port, pos + PCI_ERR_ROOT_ERR_SRC, &id);
107 pci_write_config_dword(pdev->port, pos + PCI_ERR_ROOT_STATUS, status); 214 pci_write_config_dword(pdev->port, pos + PCI_ERR_ROOT_STATUS, status);
108 215
109 /* Store error source for later DPC handler */ 216 /* Store error source for later DPC handler */
@@ -135,7 +242,7 @@ EXPORT_SYMBOL_GPL(aer_irq);
135 * @dev: pointer to the pcie_dev data structure 242 * @dev: pointer to the pcie_dev data structure
136 * 243 *
137 * Invoked when Root Port's AER service is loaded. 244 * Invoked when Root Port's AER service is loaded.
138 **/ 245 */
139static struct aer_rpc *aer_alloc_rpc(struct pcie_device *dev) 246static struct aer_rpc *aer_alloc_rpc(struct pcie_device *dev)
140{ 247{
141 struct aer_rpc *rpc; 248 struct aer_rpc *rpc;
@@ -144,15 +251,11 @@ static struct aer_rpc *aer_alloc_rpc(struct pcie_device *dev)
144 if (!rpc) 251 if (!rpc)
145 return NULL; 252 return NULL;
146 253
147 /* 254 /* Initialize Root lock access, e_lock, to Root Error Status Reg */
148 * Initialize Root lock access, e_lock, to Root Error Status Reg,
149 * Root Error ID Reg, and Root error producer/consumer index.
150 */
151 spin_lock_init(&rpc->e_lock); 255 spin_lock_init(&rpc->e_lock);
152 256
153 rpc->rpd = dev; 257 rpc->rpd = dev;
154 INIT_WORK(&rpc->dpc_handler, aer_isr); 258 INIT_WORK(&rpc->dpc_handler, aer_isr);
155 rpc->prod_idx = rpc->cons_idx = 0;
156 mutex_init(&rpc->rpc_mutex); 259 mutex_init(&rpc->rpc_mutex);
157 init_waitqueue_head(&rpc->wait_release); 260 init_waitqueue_head(&rpc->wait_release);
158 261
@@ -167,7 +270,7 @@ static struct aer_rpc *aer_alloc_rpc(struct pcie_device *dev)
167 * @dev: pointer to the pcie_dev data structure 270 * @dev: pointer to the pcie_dev data structure
168 * 271 *
169 * Invoked when PCI Express bus unloads or AER probe fails. 272 * Invoked when PCI Express bus unloads or AER probe fails.
170 **/ 273 */
171static void aer_remove(struct pcie_device *dev) 274static void aer_remove(struct pcie_device *dev)
172{ 275{
173 struct aer_rpc *rpc = get_service_data(dev); 276 struct aer_rpc *rpc = get_service_data(dev);
@@ -179,7 +282,8 @@ static void aer_remove(struct pcie_device *dev)
179 282
180 wait_event(rpc->wait_release, rpc->prod_idx == rpc->cons_idx); 283 wait_event(rpc->wait_release, rpc->prod_idx == rpc->cons_idx);
181 284
182 aer_delete_rootport(rpc); 285 aer_disable_rootport(rpc);
286 kfree(rpc);
183 set_service_data(dev, NULL); 287 set_service_data(dev, NULL);
184 } 288 }
185} 289}
@@ -190,7 +294,7 @@ static void aer_remove(struct pcie_device *dev)
190 * @id: pointer to the service id data structure 294 * @id: pointer to the service id data structure
191 * 295 *
192 * Invoked when PCI Express bus loads AER service driver. 296 * Invoked when PCI Express bus loads AER service driver.
193 **/ 297 */
194static int __devinit aer_probe(struct pcie_device *dev) 298static int __devinit aer_probe(struct pcie_device *dev)
195{ 299{
196 int status; 300 int status;
@@ -230,47 +334,30 @@ static int __devinit aer_probe(struct pcie_device *dev)
230 * @dev: pointer to Root Port's pci_dev data structure 334 * @dev: pointer to Root Port's pci_dev data structure
231 * 335 *
232 * Invoked by Port Bus driver when performing link reset at Root Port. 336 * Invoked by Port Bus driver when performing link reset at Root Port.
233 **/ 337 */
234static pci_ers_result_t aer_root_reset(struct pci_dev *dev) 338static pci_ers_result_t aer_root_reset(struct pci_dev *dev)
235{ 339{
236 u16 p2p_ctrl; 340 u32 reg32;
237 u32 status;
238 int pos; 341 int pos;
239 342
240 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); 343 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
241 344
242 /* Disable Root's interrupt in response to error messages */ 345 /* Disable Root's interrupt in response to error messages */
243 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, 0); 346 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, &reg32);
244 347 reg32 &= ~ROOT_PORT_INTR_ON_MESG_MASK;
245 /* Assert Secondary Bus Reset */ 348 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, reg32);
246 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &p2p_ctrl);
247 p2p_ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
248 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, p2p_ctrl);
249
250 /*
251 * we should send hot reset message for 2ms to allow it time to
252 * propogate to all downstream ports
253 */
254 msleep(2);
255
256 /* De-assert Secondary Bus Reset */
257 p2p_ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
258 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, p2p_ctrl);
259 349
260 /* 350 aer_do_secondary_bus_reset(dev);
261 * System software must wait for at least 100ms from the end
262 * of a reset of one or more device before it is permitted
263 * to issue Configuration Requests to those devices.
264 */
265 msleep(200);
266 dev_printk(KERN_DEBUG, &dev->dev, "Root Port link has been reset\n"); 351 dev_printk(KERN_DEBUG, &dev->dev, "Root Port link has been reset\n");
267 352
353 /* Clear Root Error Status */
354 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &reg32);
355 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, reg32);
356
268 /* Enable Root Port's interrupt in response to error messages */ 357 /* Enable Root Port's interrupt in response to error messages */
269 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &status); 358 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, &reg32);
270 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, status); 359 reg32 |= ROOT_PORT_INTR_ON_MESG_MASK;
271 pci_write_config_dword(dev, 360 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, reg32);
272 pos + PCI_ERR_ROOT_COMMAND,
273 ROOT_PORT_INTR_ON_MESG_MASK);
274 361
275 return PCI_ERS_RESULT_RECOVERED; 362 return PCI_ERS_RESULT_RECOVERED;
276} 363}
@@ -281,7 +368,7 @@ static pci_ers_result_t aer_root_reset(struct pci_dev *dev)
281 * @error: error severity being notified by port bus 368 * @error: error severity being notified by port bus
282 * 369 *
283 * Invoked by Port Bus driver during error recovery. 370 * Invoked by Port Bus driver during error recovery.
284 **/ 371 */
285static pci_ers_result_t aer_error_detected(struct pci_dev *dev, 372static pci_ers_result_t aer_error_detected(struct pci_dev *dev,
286 enum pci_channel_state error) 373 enum pci_channel_state error)
287{ 374{
@@ -294,7 +381,7 @@ static pci_ers_result_t aer_error_detected(struct pci_dev *dev,
294 * @dev: pointer to Root Port's pci_dev data structure 381 * @dev: pointer to Root Port's pci_dev data structure
295 * 382 *
296 * Invoked by Port Bus driver during nonfatal recovery. 383 * Invoked by Port Bus driver during nonfatal recovery.
297 **/ 384 */
298static void aer_error_resume(struct pci_dev *dev) 385static void aer_error_resume(struct pci_dev *dev)
299{ 386{
300 int pos; 387 int pos;
@@ -321,7 +408,7 @@ static void aer_error_resume(struct pci_dev *dev)
321 * aer_service_init - register AER root service driver 408 * aer_service_init - register AER root service driver
322 * 409 *
323 * Invoked when AER root service driver is loaded. 410 * Invoked when AER root service driver is loaded.
324 **/ 411 */
325static int __init aer_service_init(void) 412static int __init aer_service_init(void)
326{ 413{
327 if (pcie_aer_disable) 414 if (pcie_aer_disable)
@@ -335,7 +422,7 @@ static int __init aer_service_init(void)
335 * aer_service_exit - unregister AER root service driver 422 * aer_service_exit - unregister AER root service driver
336 * 423 *
337 * Invoked when AER root service driver is unloaded. 424 * Invoked when AER root service driver is unloaded.
338 **/ 425 */
339static void __exit aer_service_exit(void) 426static void __exit aer_service_exit(void)
340{ 427{
341 pcie_port_service_unregister(&aerdriver); 428 pcie_port_service_unregister(&aerdriver);
diff --git a/drivers/pci/pcie/aer/aerdrv.h b/drivers/pci/pcie/aer/aerdrv.h
index bd833ea3ba49..7aaae2d2bd67 100644
--- a/drivers/pci/pcie/aer/aerdrv.h
+++ b/drivers/pci/pcie/aer/aerdrv.h
@@ -17,9 +17,6 @@
17#define AER_FATAL 1 17#define AER_FATAL 1
18#define AER_CORRECTABLE 2 18#define AER_CORRECTABLE 2
19 19
20/* Root Error Status Register Bits */
21#define ROOT_ERR_STATUS_MASKS 0x0f
22
23#define SYSTEM_ERROR_INTR_ON_MESG_MASK (PCI_EXP_RTCTL_SECEE| \ 20#define SYSTEM_ERROR_INTR_ON_MESG_MASK (PCI_EXP_RTCTL_SECEE| \
24 PCI_EXP_RTCTL_SENFEE| \ 21 PCI_EXP_RTCTL_SENFEE| \
25 PCI_EXP_RTCTL_SEFEE) 22 PCI_EXP_RTCTL_SEFEE)
@@ -117,8 +114,7 @@ static inline pci_ers_result_t merge_result(enum pci_ers_result orig,
117} 114}
118 115
119extern struct bus_type pcie_port_bus_type; 116extern struct bus_type pcie_port_bus_type;
120extern void aer_enable_rootport(struct aer_rpc *rpc); 117extern void aer_do_secondary_bus_reset(struct pci_dev *dev);
121extern void aer_delete_rootport(struct aer_rpc *rpc);
122extern int aer_init(struct pcie_device *dev); 118extern int aer_init(struct pcie_device *dev);
123extern void aer_isr(struct work_struct *work); 119extern void aer_isr(struct work_struct *work);
124extern void aer_print_error(struct pci_dev *dev, struct aer_err_info *info); 120extern void aer_print_error(struct pci_dev *dev, struct aer_err_info *info);
diff --git a/drivers/pci/pcie/aer/aerdrv_core.c b/drivers/pci/pcie/aer/aerdrv_core.c
index aceb04b67b60..df2d686fe3dd 100644
--- a/drivers/pci/pcie/aer/aerdrv_core.c
+++ b/drivers/pci/pcie/aer/aerdrv_core.c
@@ -47,13 +47,12 @@ int pci_enable_pcie_error_reporting(struct pci_dev *dev)
47 if (!pos) 47 if (!pos)
48 return -EIO; 48 return -EIO;
49 49
50 pci_read_config_word(dev, pos+PCI_EXP_DEVCTL, &reg16); 50 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &reg16);
51 reg16 = reg16 | 51 reg16 |= (PCI_EXP_DEVCTL_CERE |
52 PCI_EXP_DEVCTL_CERE |
53 PCI_EXP_DEVCTL_NFERE | 52 PCI_EXP_DEVCTL_NFERE |
54 PCI_EXP_DEVCTL_FERE | 53 PCI_EXP_DEVCTL_FERE |
55 PCI_EXP_DEVCTL_URRE; 54 PCI_EXP_DEVCTL_URRE);
56 pci_write_config_word(dev, pos+PCI_EXP_DEVCTL, reg16); 55 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, reg16);
57 56
58 return 0; 57 return 0;
59} 58}
@@ -71,12 +70,12 @@ int pci_disable_pcie_error_reporting(struct pci_dev *dev)
71 if (!pos) 70 if (!pos)
72 return -EIO; 71 return -EIO;
73 72
74 pci_read_config_word(dev, pos+PCI_EXP_DEVCTL, &reg16); 73 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &reg16);
75 reg16 = reg16 & ~(PCI_EXP_DEVCTL_CERE | 74 reg16 &= ~(PCI_EXP_DEVCTL_CERE |
76 PCI_EXP_DEVCTL_NFERE | 75 PCI_EXP_DEVCTL_NFERE |
77 PCI_EXP_DEVCTL_FERE | 76 PCI_EXP_DEVCTL_FERE |
78 PCI_EXP_DEVCTL_URRE); 77 PCI_EXP_DEVCTL_URRE);
79 pci_write_config_word(dev, pos+PCI_EXP_DEVCTL, reg16); 78 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, reg16);
80 79
81 return 0; 80 return 0;
82} 81}
@@ -99,99 +98,46 @@ int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
99} 98}
100EXPORT_SYMBOL_GPL(pci_cleanup_aer_uncorrect_error_status); 99EXPORT_SYMBOL_GPL(pci_cleanup_aer_uncorrect_error_status);
101 100
102static int set_device_error_reporting(struct pci_dev *dev, void *data)
103{
104 bool enable = *((bool *)data);
105
106 if ((dev->pcie_type == PCI_EXP_TYPE_ROOT_PORT) ||
107 (dev->pcie_type == PCI_EXP_TYPE_UPSTREAM) ||
108 (dev->pcie_type == PCI_EXP_TYPE_DOWNSTREAM)) {
109 if (enable)
110 pci_enable_pcie_error_reporting(dev);
111 else
112 pci_disable_pcie_error_reporting(dev);
113 }
114
115 if (enable)
116 pcie_set_ecrc_checking(dev);
117
118 return 0;
119}
120
121/** 101/**
122 * set_downstream_devices_error_reporting - enable/disable the error reporting bits on the root port and its downstream ports. 102 * add_error_device - list device to be handled
123 * @dev: pointer to root port's pci_dev data structure 103 * @e_info: pointer to error info
124 * @enable: true = enable error reporting, false = disable error reporting. 104 * @dev: pointer to pci_dev to be added
125 */ 105 */
126static void set_downstream_devices_error_reporting(struct pci_dev *dev,
127 bool enable)
128{
129 set_device_error_reporting(dev, &enable);
130
131 if (!dev->subordinate)
132 return;
133 pci_walk_bus(dev->subordinate, set_device_error_reporting, &enable);
134}
135
136static inline int compare_device_id(struct pci_dev *dev,
137 struct aer_err_info *e_info)
138{
139 if (e_info->id == ((dev->bus->number << 8) | dev->devfn)) {
140 /*
141 * Device ID match
142 */
143 return 1;
144 }
145
146 return 0;
147}
148
149static int add_error_device(struct aer_err_info *e_info, struct pci_dev *dev) 106static int add_error_device(struct aer_err_info *e_info, struct pci_dev *dev)
150{ 107{
151 if (e_info->error_dev_num < AER_MAX_MULTI_ERR_DEVICES) { 108 if (e_info->error_dev_num < AER_MAX_MULTI_ERR_DEVICES) {
152 e_info->dev[e_info->error_dev_num] = dev; 109 e_info->dev[e_info->error_dev_num] = dev;
153 e_info->error_dev_num++; 110 e_info->error_dev_num++;
154 return 1; 111 return 0;
155 } 112 }
156 113 return -ENOSPC;
157 return 0;
158} 114}
159 115
160
161#define PCI_BUS(x) (((x) >> 8) & 0xff) 116#define PCI_BUS(x) (((x) >> 8) & 0xff)
162 117
163static int find_device_iter(struct pci_dev *dev, void *data) 118/**
119 * is_error_source - check whether the device is source of reported error
120 * @dev: pointer to pci_dev to be checked
121 * @e_info: pointer to reported error info
122 */
123static bool is_error_source(struct pci_dev *dev, struct aer_err_info *e_info)
164{ 124{
165 int pos; 125 int pos;
166 u32 status; 126 u32 status, mask;
167 u32 mask;
168 u16 reg16; 127 u16 reg16;
169 int result;
170 struct aer_err_info *e_info = (struct aer_err_info *)data;
171 128
172 /* 129 /*
173 * When bus id is equal to 0, it might be a bad id 130 * When bus id is equal to 0, it might be a bad id
174 * reported by root port. 131 * reported by root port.
175 */ 132 */
176 if (!nosourceid && (PCI_BUS(e_info->id) != 0)) { 133 if (!nosourceid && (PCI_BUS(e_info->id) != 0)) {
177 result = compare_device_id(dev, e_info); 134 /* Device ID match? */
178 if (result) 135 if (e_info->id == ((dev->bus->number << 8) | dev->devfn))
179 add_error_device(e_info, dev); 136 return true;
180 137
181 /* 138 /* Continue id comparing if there is no multiple error */
182 * If there is no multiple error, we stop
183 * or continue based on the id comparing.
184 */
185 if (!e_info->multi_error_valid) 139 if (!e_info->multi_error_valid)
186 return result; 140 return false;
187
188 /*
189 * If there are multiple errors and id does match,
190 * We need continue to search other devices under
191 * the root port. Return 0 means that.
192 */
193 if (result)
194 return 0;
195 } 141 }
196 142
197 /* 143 /*
@@ -200,71 +146,94 @@ static int find_device_iter(struct pci_dev *dev, void *data)
200 * 2) bus id is equal to 0. Some ports might lose the bus 146 * 2) bus id is equal to 0. Some ports might lose the bus
201 * id of error source id; 147 * id of error source id;
202 * 3) There are multiple errors and prior id comparing fails; 148 * 3) There are multiple errors and prior id comparing fails;
203 * We check AER status registers to find the initial reporter. 149 * We check AER status registers to find possible reporter.
204 */ 150 */
205 if (atomic_read(&dev->enable_cnt) == 0) 151 if (atomic_read(&dev->enable_cnt) == 0)
206 return 0; 152 return false;
207 pos = pci_pcie_cap(dev); 153 pos = pci_pcie_cap(dev);
208 if (!pos) 154 if (!pos)
209 return 0; 155 return false;
156
210 /* Check if AER is enabled */ 157 /* Check if AER is enabled */
211 pci_read_config_word(dev, pos+PCI_EXP_DEVCTL, &reg16); 158 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &reg16);
212 if (!(reg16 & ( 159 if (!(reg16 & (
213 PCI_EXP_DEVCTL_CERE | 160 PCI_EXP_DEVCTL_CERE |
214 PCI_EXP_DEVCTL_NFERE | 161 PCI_EXP_DEVCTL_NFERE |
215 PCI_EXP_DEVCTL_FERE | 162 PCI_EXP_DEVCTL_FERE |
216 PCI_EXP_DEVCTL_URRE))) 163 PCI_EXP_DEVCTL_URRE)))
217 return 0; 164 return false;
218 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); 165 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
219 if (!pos) 166 if (!pos)
220 return 0; 167 return false;
221 168
222 status = 0; 169 /* Check if error is recorded */
223 mask = 0;
224 if (e_info->severity == AER_CORRECTABLE) { 170 if (e_info->severity == AER_CORRECTABLE) {
225 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &status); 171 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &status);
226 pci_read_config_dword(dev, pos + PCI_ERR_COR_MASK, &mask); 172 pci_read_config_dword(dev, pos + PCI_ERR_COR_MASK, &mask);
227 if (status & ~mask) {
228 add_error_device(e_info, dev);
229 goto added;
230 }
231 } else { 173 } else {
232 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status); 174 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
233 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, &mask); 175 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, &mask);
234 if (status & ~mask) {
235 add_error_device(e_info, dev);
236 goto added;
237 }
238 } 176 }
177 if (status & ~mask)
178 return true;
239 179
240 return 0; 180 return false;
181}
241 182
242added: 183static int find_device_iter(struct pci_dev *dev, void *data)
243 if (e_info->multi_error_valid) 184{
244 return 0; 185 struct aer_err_info *e_info = (struct aer_err_info *)data;
245 else 186
246 return 1; 187 if (is_error_source(dev, e_info)) {
188 /* List this device */
189 if (add_error_device(e_info, dev)) {
190 /* We cannot handle more... Stop iteration */
191 /* TODO: Should print error message here? */
192 return 1;
193 }
194
195 /* If there is only a single error, stop iteration */
196 if (!e_info->multi_error_valid)
197 return 1;
198 }
199 return 0;
247} 200}
248 201
249/** 202/**
250 * find_source_device - search through device hierarchy for source device 203 * find_source_device - search through device hierarchy for source device
251 * @parent: pointer to Root Port pci_dev data structure 204 * @parent: pointer to Root Port pci_dev data structure
252 * @err_info: including detailed error information such like id 205 * @e_info: including detailed error information such like id
253 * 206 *
254 * Invoked when error is detected at the Root Port. 207 * Return true if found.
208 *
209 * Invoked by DPC when error is detected at the Root Port.
210 * Caller of this function must set id, severity, and multi_error_valid of
211 * struct aer_err_info pointed by @e_info properly. This function must fill
212 * e_info->error_dev_num and e_info->dev[], based on the given information.
255 */ 213 */
256static void find_source_device(struct pci_dev *parent, 214static bool find_source_device(struct pci_dev *parent,
257 struct aer_err_info *e_info) 215 struct aer_err_info *e_info)
258{ 216{
259 struct pci_dev *dev = parent; 217 struct pci_dev *dev = parent;
260 int result; 218 int result;
261 219
220 /* Must reset in this function */
221 e_info->error_dev_num = 0;
222
262 /* Is Root Port an agent that sends error message? */ 223 /* Is Root Port an agent that sends error message? */
263 result = find_device_iter(dev, e_info); 224 result = find_device_iter(dev, e_info);
264 if (result) 225 if (result)
265 return; 226 return true;
266 227
267 pci_walk_bus(parent->subordinate, find_device_iter, e_info); 228 pci_walk_bus(parent->subordinate, find_device_iter, e_info);
229
230 if (!e_info->error_dev_num) {
231 dev_printk(KERN_DEBUG, &parent->dev,
232 "can't find device of ID%04x\n",
233 e_info->id);
234 return false;
235 }
236 return true;
268} 237}
269 238
270static int report_error_detected(struct pci_dev *dev, void *data) 239static int report_error_detected(struct pci_dev *dev, void *data)
@@ -403,43 +372,77 @@ static pci_ers_result_t broadcast_error_message(struct pci_dev *dev,
403 return result_data.result; 372 return result_data.result;
404} 373}
405 374
406struct find_aer_service_data { 375/**
407 struct pcie_port_service_driver *aer_driver; 376 * aer_do_secondary_bus_reset - perform secondary bus reset
408 int is_downstream; 377 * @dev: pointer to bridge's pci_dev data structure
409}; 378 *
410 379 * Invoked when performing link reset at Root Port or Downstream Port.
411static int find_aer_service_iter(struct device *device, void *data) 380 */
381void aer_do_secondary_bus_reset(struct pci_dev *dev)
412{ 382{
413 struct device_driver *driver; 383 u16 p2p_ctrl;
414 struct pcie_port_service_driver *service_driver; 384
415 struct find_aer_service_data *result; 385 /* Assert Secondary Bus Reset */
386 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &p2p_ctrl);
387 p2p_ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
388 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, p2p_ctrl);
389
390 /*
391 * we should send hot reset message for 2ms to allow it time to
392 * propagate to all downstream ports
393 */
394 msleep(2);
395
396 /* De-assert Secondary Bus Reset */
397 p2p_ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
398 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, p2p_ctrl);
399
400 /*
401 * System software must wait for at least 100ms from the end
402 * of a reset of one or more device before it is permitted
403 * to issue Configuration Requests to those devices.
404 */
405 msleep(200);
406}
416 407
417 result = (struct find_aer_service_data *) data; 408/**
409 * default_downstream_reset_link - default reset function for Downstream Port
410 * @dev: pointer to downstream port's pci_dev data structure
411 *
412 * Invoked when performing link reset at Downstream Port w/ no aer driver.
413 */
414static pci_ers_result_t default_downstream_reset_link(struct pci_dev *dev)
415{
416 aer_do_secondary_bus_reset(dev);
417 dev_printk(KERN_DEBUG, &dev->dev,
418 "Downstream Port link has been reset\n");
419 return PCI_ERS_RESULT_RECOVERED;
420}
418 421
419 if (device->bus == &pcie_port_bus_type) { 422static int find_aer_service_iter(struct device *device, void *data)
420 struct pcie_device *pcie = to_pcie_device(device); 423{
424 struct pcie_port_service_driver *service_driver, **drv;
421 425
422 if (pcie->port->pcie_type == PCI_EXP_TYPE_DOWNSTREAM) 426 drv = (struct pcie_port_service_driver **) data;
423 result->is_downstream = 1;
424 427
425 driver = device->driver; 428 if (device->bus == &pcie_port_bus_type && device->driver) {
426 if (driver) { 429 service_driver = to_service_driver(device->driver);
427 service_driver = to_service_driver(driver); 430 if (service_driver->service == PCIE_PORT_SERVICE_AER) {
428 if (service_driver->service == PCIE_PORT_SERVICE_AER) { 431 *drv = service_driver;
429 result->aer_driver = service_driver; 432 return 1;
430 return 1;
431 }
432 } 433 }
433 } 434 }
434 435
435 return 0; 436 return 0;
436} 437}
437 438
438static void find_aer_service(struct pci_dev *dev, 439static struct pcie_port_service_driver *find_aer_service(struct pci_dev *dev)
439 struct find_aer_service_data *data)
440{ 440{
441 int retval; 441 struct pcie_port_service_driver *drv = NULL;
442 retval = device_for_each_child(&dev->dev, data, find_aer_service_iter); 442
443 device_for_each_child(&dev->dev, &drv, find_aer_service_iter);
444
445 return drv;
443} 446}
444 447
445static pci_ers_result_t reset_link(struct pcie_device *aerdev, 448static pci_ers_result_t reset_link(struct pcie_device *aerdev,
@@ -447,38 +450,34 @@ static pci_ers_result_t reset_link(struct pcie_device *aerdev,
447{ 450{
448 struct pci_dev *udev; 451 struct pci_dev *udev;
449 pci_ers_result_t status; 452 pci_ers_result_t status;
450 struct find_aer_service_data data; 453 struct pcie_port_service_driver *driver;
451 454
452 if (dev->hdr_type & PCI_HEADER_TYPE_BRIDGE) 455 if (dev->hdr_type & PCI_HEADER_TYPE_BRIDGE) {
456 /* Reset this port for all subordinates */
453 udev = dev; 457 udev = dev;
454 else 458 } else {
459 /* Reset the upstream component (likely downstream port) */
455 udev = dev->bus->self; 460 udev = dev->bus->self;
461 }
456 462
457 data.is_downstream = 0; 463 /* Use the aer driver of the component firstly */
458 data.aer_driver = NULL; 464 driver = find_aer_service(udev);
459 find_aer_service(udev, &data);
460 465
461 /* 466 if (driver && driver->reset_link) {
462 * Use the aer driver of the error agent firstly. 467 status = driver->reset_link(udev);
463 * If it hasn't the aer driver, use the root port's 468 } else if (udev->pcie_type == PCI_EXP_TYPE_DOWNSTREAM) {
464 */ 469 status = default_downstream_reset_link(udev);
465 if (!data.aer_driver || !data.aer_driver->reset_link) { 470 } else {
466 if (data.is_downstream && 471 dev_printk(KERN_DEBUG, &dev->dev,
467 aerdev->device.driver && 472 "no link-reset support at upstream device %s\n",
468 to_service_driver(aerdev->device.driver)->reset_link) { 473 pci_name(udev));
469 data.aer_driver = 474 return PCI_ERS_RESULT_DISCONNECT;
470 to_service_driver(aerdev->device.driver);
471 } else {
472 dev_printk(KERN_DEBUG, &dev->dev, "no link-reset "
473 "support\n");
474 return PCI_ERS_RESULT_DISCONNECT;
475 }
476 } 475 }
477 476
478 status = data.aer_driver->reset_link(udev);
479 if (status != PCI_ERS_RESULT_RECOVERED) { 477 if (status != PCI_ERS_RESULT_RECOVERED) {
480 dev_printk(KERN_DEBUG, &dev->dev, "link reset at upstream " 478 dev_printk(KERN_DEBUG, &dev->dev,
481 "device %s failed\n", pci_name(udev)); 479 "link reset at upstream device %s failed\n",
480 pci_name(udev));
482 return PCI_ERS_RESULT_DISCONNECT; 481 return PCI_ERS_RESULT_DISCONNECT;
483 } 482 }
484 483
@@ -495,8 +494,7 @@ static pci_ers_result_t reset_link(struct pcie_device *aerdev,
495 * error detected message to all downstream drivers within a hierarchy in 494 * error detected message to all downstream drivers within a hierarchy in
496 * question and return the returned code. 495 * question and return the returned code.
497 */ 496 */
498static pci_ers_result_t do_recovery(struct pcie_device *aerdev, 497static void do_recovery(struct pcie_device *aerdev, struct pci_dev *dev,
499 struct pci_dev *dev,
500 int severity) 498 int severity)
501{ 499{
502 pci_ers_result_t status, result = PCI_ERS_RESULT_RECOVERED; 500 pci_ers_result_t status, result = PCI_ERS_RESULT_RECOVERED;
@@ -514,10 +512,8 @@ static pci_ers_result_t do_recovery(struct pcie_device *aerdev,
514 512
515 if (severity == AER_FATAL) { 513 if (severity == AER_FATAL) {
516 result = reset_link(aerdev, dev); 514 result = reset_link(aerdev, dev);
517 if (result != PCI_ERS_RESULT_RECOVERED) { 515 if (result != PCI_ERS_RESULT_RECOVERED)
518 /* TODO: Should panic here? */ 516 goto failed;
519 return result;
520 }
521 } 517 }
522 518
523 if (status == PCI_ERS_RESULT_CAN_RECOVER) 519 if (status == PCI_ERS_RESULT_CAN_RECOVER)
@@ -538,13 +534,22 @@ static pci_ers_result_t do_recovery(struct pcie_device *aerdev,
538 report_slot_reset); 534 report_slot_reset);
539 } 535 }
540 536
541 if (status == PCI_ERS_RESULT_RECOVERED) 537 if (status != PCI_ERS_RESULT_RECOVERED)
542 broadcast_error_message(dev, 538 goto failed;
539
540 broadcast_error_message(dev,
543 state, 541 state,
544 "resume", 542 "resume",
545 report_resume); 543 report_resume);
546 544
547 return status; 545 dev_printk(KERN_DEBUG, &dev->dev,
546 "AER driver successfully recovered\n");
547 return;
548
549failed:
550 /* TODO: Should kernel panic here? */
551 dev_printk(KERN_DEBUG, &dev->dev,
552 "AER driver didn't recover\n");
548} 553}
549 554
550/** 555/**
@@ -559,7 +564,6 @@ static void handle_error_source(struct pcie_device *aerdev,
559 struct pci_dev *dev, 564 struct pci_dev *dev,
560 struct aer_err_info *info) 565 struct aer_err_info *info)
561{ 566{
562 pci_ers_result_t status = 0;
563 int pos; 567 int pos;
564 568
565 if (info->severity == AER_CORRECTABLE) { 569 if (info->severity == AER_CORRECTABLE) {
@@ -571,114 +575,8 @@ static void handle_error_source(struct pcie_device *aerdev,
571 if (pos) 575 if (pos)
572 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, 576 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS,
573 info->status); 577 info->status);
574 } else { 578 } else
575 status = do_recovery(aerdev, dev, info->severity); 579 do_recovery(aerdev, dev, info->severity);
576 if (status == PCI_ERS_RESULT_RECOVERED) {
577 dev_printk(KERN_DEBUG, &dev->dev, "AER driver "
578 "successfully recovered\n");
579 } else {
580 /* TODO: Should kernel panic here? */
581 dev_printk(KERN_DEBUG, &dev->dev, "AER driver didn't "
582 "recover\n");
583 }
584 }
585}
586
587/**
588 * aer_enable_rootport - enable Root Port's interrupts when receiving messages
589 * @rpc: pointer to a Root Port data structure
590 *
591 * Invoked when PCIe bus loads AER service driver.
592 */
593void aer_enable_rootport(struct aer_rpc *rpc)
594{
595 struct pci_dev *pdev = rpc->rpd->port;
596 int pos, aer_pos;
597 u16 reg16;
598 u32 reg32;
599
600 pos = pci_pcie_cap(pdev);
601 /* Clear PCIe Capability's Device Status */
602 pci_read_config_word(pdev, pos+PCI_EXP_DEVSTA, &reg16);
603 pci_write_config_word(pdev, pos+PCI_EXP_DEVSTA, reg16);
604
605 /* Disable system error generation in response to error messages */
606 pci_read_config_word(pdev, pos + PCI_EXP_RTCTL, &reg16);
607 reg16 &= ~(SYSTEM_ERROR_INTR_ON_MESG_MASK);
608 pci_write_config_word(pdev, pos + PCI_EXP_RTCTL, reg16);
609
610 aer_pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
611 /* Clear error status */
612 pci_read_config_dword(pdev, aer_pos + PCI_ERR_ROOT_STATUS, &reg32);
613 pci_write_config_dword(pdev, aer_pos + PCI_ERR_ROOT_STATUS, reg32);
614 pci_read_config_dword(pdev, aer_pos + PCI_ERR_COR_STATUS, &reg32);
615 pci_write_config_dword(pdev, aer_pos + PCI_ERR_COR_STATUS, reg32);
616 pci_read_config_dword(pdev, aer_pos + PCI_ERR_UNCOR_STATUS, &reg32);
617 pci_write_config_dword(pdev, aer_pos + PCI_ERR_UNCOR_STATUS, reg32);
618
619 /*
620 * Enable error reporting for the root port device and downstream port
621 * devices.
622 */
623 set_downstream_devices_error_reporting(pdev, true);
624
625 /* Enable Root Port's interrupt in response to error messages */
626 pci_write_config_dword(pdev,
627 aer_pos + PCI_ERR_ROOT_COMMAND,
628 ROOT_PORT_INTR_ON_MESG_MASK);
629}
630
631/**
632 * disable_root_aer - disable Root Port's interrupts when receiving messages
633 * @rpc: pointer to a Root Port data structure
634 *
635 * Invoked when PCIe bus unloads AER service driver.
636 */
637static void disable_root_aer(struct aer_rpc *rpc)
638{
639 struct pci_dev *pdev = rpc->rpd->port;
640 u32 reg32;
641 int pos;
642
643 /*
644 * Disable error reporting for the root port device and downstream port
645 * devices.
646 */
647 set_downstream_devices_error_reporting(pdev, false);
648
649 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
650 /* Disable Root's interrupt in response to error messages */
651 pci_write_config_dword(pdev, pos + PCI_ERR_ROOT_COMMAND, 0);
652
653 /* Clear Root's error status reg */
654 pci_read_config_dword(pdev, pos + PCI_ERR_ROOT_STATUS, &reg32);
655 pci_write_config_dword(pdev, pos + PCI_ERR_ROOT_STATUS, reg32);
656}
657
658/**
659 * get_e_source - retrieve an error source
660 * @rpc: pointer to the root port which holds an error
661 *
662 * Invoked by DPC handler to consume an error.
663 */
664static struct aer_err_source *get_e_source(struct aer_rpc *rpc)
665{
666 struct aer_err_source *e_source;
667 unsigned long flags;
668
669 /* Lock access to Root error producer/consumer index */
670 spin_lock_irqsave(&rpc->e_lock, flags);
671 if (rpc->prod_idx == rpc->cons_idx) {
672 spin_unlock_irqrestore(&rpc->e_lock, flags);
673 return NULL;
674 }
675 e_source = &rpc->e_sources[rpc->cons_idx];
676 rpc->cons_idx++;
677 if (rpc->cons_idx == AER_ERROR_SOURCES_MAX)
678 rpc->cons_idx = 0;
679 spin_unlock_irqrestore(&rpc->e_lock, flags);
680
681 return e_source;
682} 580}
683 581
684/** 582/**
@@ -687,11 +585,14 @@ static struct aer_err_source *get_e_source(struct aer_rpc *rpc)
687 * @info: pointer to structure to store the error record 585 * @info: pointer to structure to store the error record
688 * 586 *
689 * Return 1 on success, 0 on error. 587 * Return 1 on success, 0 on error.
588 *
589 * Note that @info is reused among all error devices. Clear fields properly.
690 */ 590 */
691static int get_device_error_info(struct pci_dev *dev, struct aer_err_info *info) 591static int get_device_error_info(struct pci_dev *dev, struct aer_err_info *info)
692{ 592{
693 int pos, temp; 593 int pos, temp;
694 594
595 /* Must reset in this function */
695 info->status = 0; 596 info->status = 0;
696 info->tlp_header_valid = 0; 597 info->tlp_header_valid = 0;
697 598
@@ -744,12 +645,6 @@ static inline void aer_process_err_devices(struct pcie_device *p_device,
744{ 645{
745 int i; 646 int i;
746 647
747 if (!e_info->dev[0]) {
748 dev_printk(KERN_DEBUG, &p_device->port->dev,
749 "can't find device of ID%04x\n",
750 e_info->id);
751 }
752
753 /* Report all before handle them, not to lost records by reset etc. */ 648 /* Report all before handle them, not to lost records by reset etc. */
754 for (i = 0; i < e_info->error_dev_num && e_info->dev[i]; i++) { 649 for (i = 0; i < e_info->error_dev_num && e_info->dev[i]; i++) {
755 if (get_device_error_info(e_info->dev[i], e_info)) 650 if (get_device_error_info(e_info->dev[i], e_info))
@@ -770,11 +665,10 @@ static void aer_isr_one_error(struct pcie_device *p_device,
770 struct aer_err_source *e_src) 665 struct aer_err_source *e_src)
771{ 666{
772 struct aer_err_info *e_info; 667 struct aer_err_info *e_info;
773 int i;
774 668
775 /* struct aer_err_info might be big, so we allocate it with slab */ 669 /* struct aer_err_info might be big, so we allocate it with slab */
776 e_info = kmalloc(sizeof(struct aer_err_info), GFP_KERNEL); 670 e_info = kmalloc(sizeof(struct aer_err_info), GFP_KERNEL);
777 if (e_info == NULL) { 671 if (!e_info) {
778 dev_printk(KERN_DEBUG, &p_device->port->dev, 672 dev_printk(KERN_DEBUG, &p_device->port->dev,
779 "Can't allocate mem when processing AER errors\n"); 673 "Can't allocate mem when processing AER errors\n");
780 return; 674 return;
@@ -784,37 +678,72 @@ static void aer_isr_one_error(struct pcie_device *p_device,
784 * There is a possibility that both correctable error and 678 * There is a possibility that both correctable error and
785 * uncorrectable error being logged. Report correctable error first. 679 * uncorrectable error being logged. Report correctable error first.
786 */ 680 */
787 for (i = 1; i & ROOT_ERR_STATUS_MASKS ; i <<= 2) { 681 if (e_src->status & PCI_ERR_ROOT_COR_RCV) {
788 if (i > 4) 682 e_info->id = ERR_COR_ID(e_src->id);
789 break; 683 e_info->severity = AER_CORRECTABLE;
790 if (!(e_src->status & i)) 684
791 continue; 685 if (e_src->status & PCI_ERR_ROOT_MULTI_COR_RCV)
792
793 memset(e_info, 0, sizeof(struct aer_err_info));
794
795 /* Init comprehensive error information */
796 if (i & PCI_ERR_ROOT_COR_RCV) {
797 e_info->id = ERR_COR_ID(e_src->id);
798 e_info->severity = AER_CORRECTABLE;
799 } else {
800 e_info->id = ERR_UNCOR_ID(e_src->id);
801 e_info->severity = ((e_src->status >> 6) & 1);
802 }
803 if (e_src->status &
804 (PCI_ERR_ROOT_MULTI_COR_RCV |
805 PCI_ERR_ROOT_MULTI_UNCOR_RCV))
806 e_info->multi_error_valid = 1; 686 e_info->multi_error_valid = 1;
687 else
688 e_info->multi_error_valid = 0;
689
690 aer_print_port_info(p_device->port, e_info);
691
692 if (find_source_device(p_device->port, e_info))
693 aer_process_err_devices(p_device, e_info);
694 }
695
696 if (e_src->status & PCI_ERR_ROOT_UNCOR_RCV) {
697 e_info->id = ERR_UNCOR_ID(e_src->id);
698
699 if (e_src->status & PCI_ERR_ROOT_FATAL_RCV)
700 e_info->severity = AER_FATAL;
701 else
702 e_info->severity = AER_NONFATAL;
703
704 if (e_src->status & PCI_ERR_ROOT_MULTI_UNCOR_RCV)
705 e_info->multi_error_valid = 1;
706 else
707 e_info->multi_error_valid = 0;
807 708
808 aer_print_port_info(p_device->port, e_info); 709 aer_print_port_info(p_device->port, e_info);
809 710
810 find_source_device(p_device->port, e_info); 711 if (find_source_device(p_device->port, e_info))
811 aer_process_err_devices(p_device, e_info); 712 aer_process_err_devices(p_device, e_info);
812 } 713 }
813 714
814 kfree(e_info); 715 kfree(e_info);
815} 716}
816 717
817/** 718/**
719 * get_e_source - retrieve an error source
720 * @rpc: pointer to the root port which holds an error
721 * @e_src: pointer to store retrieved error source
722 *
723 * Return 1 if an error source is retrieved, otherwise 0.
724 *
725 * Invoked by DPC handler to consume an error.
726 */
727static int get_e_source(struct aer_rpc *rpc, struct aer_err_source *e_src)
728{
729 unsigned long flags;
730 int ret = 0;
731
732 /* Lock access to Root error producer/consumer index */
733 spin_lock_irqsave(&rpc->e_lock, flags);
734 if (rpc->prod_idx != rpc->cons_idx) {
735 *e_src = rpc->e_sources[rpc->cons_idx];
736 rpc->cons_idx++;
737 if (rpc->cons_idx == AER_ERROR_SOURCES_MAX)
738 rpc->cons_idx = 0;
739 ret = 1;
740 }
741 spin_unlock_irqrestore(&rpc->e_lock, flags);
742
743 return ret;
744}
745
746/**
818 * aer_isr - consume errors detected by root port 747 * aer_isr - consume errors detected by root port
819 * @work: definition of this work item 748 * @work: definition of this work item
820 * 749 *
@@ -824,34 +753,17 @@ void aer_isr(struct work_struct *work)
824{ 753{
825 struct aer_rpc *rpc = container_of(work, struct aer_rpc, dpc_handler); 754 struct aer_rpc *rpc = container_of(work, struct aer_rpc, dpc_handler);
826 struct pcie_device *p_device = rpc->rpd; 755 struct pcie_device *p_device = rpc->rpd;
827 struct aer_err_source *e_src; 756 struct aer_err_source e_src;
828 757
829 mutex_lock(&rpc->rpc_mutex); 758 mutex_lock(&rpc->rpc_mutex);
830 e_src = get_e_source(rpc); 759 while (get_e_source(rpc, &e_src))
831 while (e_src) { 760 aer_isr_one_error(p_device, &e_src);
832 aer_isr_one_error(p_device, e_src);
833 e_src = get_e_source(rpc);
834 }
835 mutex_unlock(&rpc->rpc_mutex); 761 mutex_unlock(&rpc->rpc_mutex);
836 762
837 wake_up(&rpc->wait_release); 763 wake_up(&rpc->wait_release);
838} 764}
839 765
840/** 766/**
841 * aer_delete_rootport - disable root port aer and delete service data
842 * @rpc: pointer to a root port device being deleted
843 *
844 * Invoked when AER service unloaded on a specific Root Port
845 */
846void aer_delete_rootport(struct aer_rpc *rpc)
847{
848 /* Disable root port AER itself */
849 disable_root_aer(rpc);
850
851 kfree(rpc);
852}
853
854/**
855 * aer_init - provide AER initialization 767 * aer_init - provide AER initialization
856 * @dev: pointer to AER pcie device 768 * @dev: pointer to AER pcie device
857 * 769 *
diff --git a/drivers/pci/quirks.c b/drivers/pci/quirks.c
index 27c0e6eb7136..b7512cf08c58 100644
--- a/drivers/pci/quirks.c
+++ b/drivers/pci/quirks.c
@@ -2127,6 +2127,7 @@ DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_AMD, 0x9602, quirk_disable_msi);
2127DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_ASUSTEK, 0x9602, quirk_disable_msi); 2127DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_ASUSTEK, 0x9602, quirk_disable_msi);
2128DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_AI, 0x9602, quirk_disable_msi); 2128DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_AI, 0x9602, quirk_disable_msi);
2129DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_VIA, 0xa238, quirk_disable_msi); 2129DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_VIA, 0xa238, quirk_disable_msi);
2130DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_ATI, 0x5a3f, quirk_disable_msi);
2130 2131
2131/* Go through the list of Hypertransport capabilities and 2132/* Go through the list of Hypertransport capabilities and
2132 * return 1 if a HT MSI capability is found and enabled */ 2133 * return 1 if a HT MSI capability is found and enabled */
@@ -2218,15 +2219,16 @@ DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SERVERWORKS,
2218DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_8132_BRIDGE, 2219DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_8132_BRIDGE,
2219 ht_enable_msi_mapping); 2220 ht_enable_msi_mapping);
2220 2221
2221/* The P5N32-SLI Premium motherboard from Asus has a problem with msi 2222/* The P5N32-SLI motherboards from Asus have a problem with msi
2222 * for the MCP55 NIC. It is not yet determined whether the msi problem 2223 * for the MCP55 NIC. It is not yet determined whether the msi problem
2223 * also affects other devices. As for now, turn off msi for this device. 2224 * also affects other devices. As for now, turn off msi for this device.
2224 */ 2225 */
2225static void __devinit nvenet_msi_disable(struct pci_dev *dev) 2226static void __devinit nvenet_msi_disable(struct pci_dev *dev)
2226{ 2227{
2227 if (dmi_name_in_vendors("P5N32-SLI PREMIUM")) { 2228 if (dmi_name_in_vendors("P5N32-SLI PREMIUM") ||
2229 dmi_name_in_vendors("P5N32-E SLI")) {
2228 dev_info(&dev->dev, 2230 dev_info(&dev->dev,
2229 "Disabling msi for MCP55 NIC on P5N32-SLI Premium\n"); 2231 "Disabling msi for MCP55 NIC on P5N32-SLI\n");
2230 dev->no_msi = 1; 2232 dev->no_msi = 1;
2231 } 2233 }
2232} 2234}
@@ -2552,6 +2554,19 @@ DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1518, quirk_i82576_sriov);
2552 2554
2553#endif /* CONFIG_PCI_IOV */ 2555#endif /* CONFIG_PCI_IOV */
2554 2556
2557/* Allow manual resource allocation for PCI hotplug bridges
2558 * via pci=hpmemsize=nnM and pci=hpiosize=nnM parameters. For
2559 * some PCI-PCI hotplug bridges, like PLX 6254 (former HINT HB6),
2560 * kernel fails to allocate resources when hotplug device is
2561 * inserted and PCI bus is rescanned.
2562 */
2563static void __devinit quirk_hotplug_bridge(struct pci_dev *dev)
2564{
2565 dev->is_hotplug_bridge = 1;
2566}
2567
2568DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_HINT, 0x0020, quirk_hotplug_bridge);
2569
2555/* 2570/*
2556 * This is a quirk for the Ricoh MMC controller found as a part of 2571 * This is a quirk for the Ricoh MMC controller found as a part of
2557 * some mulifunction chips. 2572 * some mulifunction chips.
diff --git a/drivers/pci/slot.c b/drivers/pci/slot.c
index 659eaa0fc48f..e0189cf7c558 100644
--- a/drivers/pci/slot.c
+++ b/drivers/pci/slot.c
@@ -97,6 +97,50 @@ static ssize_t cur_speed_read_file(struct pci_slot *slot, char *buf)
97 return bus_speed_read(slot->bus->cur_bus_speed, buf); 97 return bus_speed_read(slot->bus->cur_bus_speed, buf);
98} 98}
99 99
100static void remove_sysfs_files(struct pci_slot *slot)
101{
102 char func[10];
103 struct list_head *tmp;
104
105 list_for_each(tmp, &slot->bus->devices) {
106 struct pci_dev *dev = pci_dev_b(tmp);
107 if (PCI_SLOT(dev->devfn) != slot->number)
108 continue;
109 sysfs_remove_link(&dev->dev.kobj, "slot");
110
111 snprintf(func, 10, "function%d", PCI_FUNC(dev->devfn));
112 sysfs_remove_link(&slot->kobj, func);
113 }
114}
115
116static int create_sysfs_files(struct pci_slot *slot)
117{
118 int result;
119 char func[10];
120 struct list_head *tmp;
121
122 list_for_each(tmp, &slot->bus->devices) {
123 struct pci_dev *dev = pci_dev_b(tmp);
124 if (PCI_SLOT(dev->devfn) != slot->number)
125 continue;
126
127 result = sysfs_create_link(&dev->dev.kobj, &slot->kobj, "slot");
128 if (result)
129 goto fail;
130
131 snprintf(func, 10, "function%d", PCI_FUNC(dev->devfn));
132 result = sysfs_create_link(&slot->kobj, &dev->dev.kobj, func);
133 if (result)
134 goto fail;
135 }
136
137 return 0;
138
139fail:
140 remove_sysfs_files(slot);
141 return result;
142}
143
100static void pci_slot_release(struct kobject *kobj) 144static void pci_slot_release(struct kobject *kobj)
101{ 145{
102 struct pci_dev *dev; 146 struct pci_dev *dev;
@@ -109,6 +153,8 @@ static void pci_slot_release(struct kobject *kobj)
109 if (PCI_SLOT(dev->devfn) == slot->number) 153 if (PCI_SLOT(dev->devfn) == slot->number)
110 dev->slot = NULL; 154 dev->slot = NULL;
111 155
156 remove_sysfs_files(slot);
157
112 list_del(&slot->list); 158 list_del(&slot->list);
113 159
114 kfree(slot); 160 kfree(slot);
@@ -300,6 +346,8 @@ placeholder:
300 INIT_LIST_HEAD(&slot->list); 346 INIT_LIST_HEAD(&slot->list);
301 list_add(&slot->list, &parent->slots); 347 list_add(&slot->list, &parent->slots);
302 348
349 create_sysfs_files(slot);
350
303 list_for_each_entry(dev, &parent->devices, bus_list) 351 list_for_each_entry(dev, &parent->devices, bus_list)
304 if (PCI_SLOT(dev->devfn) == slot_nr) 352 if (PCI_SLOT(dev->devfn) == slot_nr)
305 dev->slot = slot; 353 dev->slot = slot;
diff --git a/include/linux/ioport.h b/include/linux/ioport.h
index 26fad187d661..b22790268b64 100644
--- a/include/linux/ioport.h
+++ b/include/linux/ioport.h
@@ -52,6 +52,7 @@ struct resource_list {
52 52
53#define IORESOURCE_MEM_64 0x00100000 53#define IORESOURCE_MEM_64 0x00100000
54#define IORESOURCE_WINDOW 0x00200000 /* forwarded by bridge */ 54#define IORESOURCE_WINDOW 0x00200000 /* forwarded by bridge */
55#define IORESOURCE_MUXED 0x00400000 /* Resource is software muxed */
55 56
56#define IORESOURCE_EXCLUSIVE 0x08000000 /* Userland may not map this resource */ 57#define IORESOURCE_EXCLUSIVE 0x08000000 /* Userland may not map this resource */
57#define IORESOURCE_DISABLED 0x10000000 58#define IORESOURCE_DISABLED 0x10000000
@@ -143,7 +144,8 @@ static inline unsigned long resource_type(const struct resource *res)
143} 144}
144 145
145/* Convenience shorthand with allocation */ 146/* Convenience shorthand with allocation */
146#define request_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), 0) 147#define request_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), 0)
148#define request_muxed_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), IORESOURCE_MUXED)
147#define __request_mem_region(start,n,name, excl) __request_region(&iomem_resource, (start), (n), (name), excl) 149#define __request_mem_region(start,n,name, excl) __request_region(&iomem_resource, (start), (n), (name), excl)
148#define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name), 0) 150#define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name), 0)
149#define request_mem_region_exclusive(start,n,name) \ 151#define request_mem_region_exclusive(start,n,name) \
diff --git a/include/linux/pci_ids.h b/include/linux/pci_ids.h
index 9f688d243b86..ae66851870be 100644
--- a/include/linux/pci_ids.h
+++ b/include/linux/pci_ids.h
@@ -2419,8 +2419,8 @@
2419#define PCI_DEVICE_ID_INTEL_82845_HB 0x1a30 2419#define PCI_DEVICE_ID_INTEL_82845_HB 0x1a30
2420#define PCI_DEVICE_ID_INTEL_IOAT 0x1a38 2420#define PCI_DEVICE_ID_INTEL_IOAT 0x1a38
2421#define PCI_DEVICE_ID_INTEL_CPT_SMBUS 0x1c22 2421#define PCI_DEVICE_ID_INTEL_CPT_SMBUS 0x1c22
2422#define PCI_DEVICE_ID_INTEL_CPT_LPC1 0x1c42 2422#define PCI_DEVICE_ID_INTEL_CPT_LPC_MIN 0x1c41
2423#define PCI_DEVICE_ID_INTEL_CPT_LPC2 0x1c43 2423#define PCI_DEVICE_ID_INTEL_CPT_LPC_MAX 0x1c5f
2424#define PCI_DEVICE_ID_INTEL_82801AA_0 0x2410 2424#define PCI_DEVICE_ID_INTEL_82801AA_0 0x2410
2425#define PCI_DEVICE_ID_INTEL_82801AA_1 0x2411 2425#define PCI_DEVICE_ID_INTEL_82801AA_1 0x2411
2426#define PCI_DEVICE_ID_INTEL_82801AA_3 0x2413 2426#define PCI_DEVICE_ID_INTEL_82801AA_3 0x2413
diff --git a/include/linux/pci_regs.h b/include/linux/pci_regs.h
index c4c3d68be19a..455b9ccdfca7 100644
--- a/include/linux/pci_regs.h
+++ b/include/linux/pci_regs.h
@@ -566,8 +566,7 @@
566#define PCI_ERR_ROOT_FIRST_FATAL 0x00000010 /* First Fatal */ 566#define PCI_ERR_ROOT_FIRST_FATAL 0x00000010 /* First Fatal */
567#define PCI_ERR_ROOT_NONFATAL_RCV 0x00000020 /* Non-Fatal Received */ 567#define PCI_ERR_ROOT_NONFATAL_RCV 0x00000020 /* Non-Fatal Received */
568#define PCI_ERR_ROOT_FATAL_RCV 0x00000040 /* Fatal Received */ 568#define PCI_ERR_ROOT_FATAL_RCV 0x00000040 /* Fatal Received */
569#define PCI_ERR_ROOT_COR_SRC 52 569#define PCI_ERR_ROOT_ERR_SRC 52 /* Error Source Identification */
570#define PCI_ERR_ROOT_SRC 54
571 570
572/* Virtual Channel */ 571/* Virtual Channel */
573#define PCI_VC_PORT_REG1 4 572#define PCI_VC_PORT_REG1 4
diff --git a/kernel/resource.c b/kernel/resource.c
index 9c358e263534..7b36976e5dea 100644
--- a/kernel/resource.c
+++ b/kernel/resource.c
@@ -15,6 +15,7 @@
15#include <linux/spinlock.h> 15#include <linux/spinlock.h>
16#include <linux/fs.h> 16#include <linux/fs.h>
17#include <linux/proc_fs.h> 17#include <linux/proc_fs.h>
18#include <linux/sched.h>
18#include <linux/seq_file.h> 19#include <linux/seq_file.h>
19#include <linux/device.h> 20#include <linux/device.h>
20#include <linux/pfn.h> 21#include <linux/pfn.h>
@@ -681,6 +682,8 @@ resource_size_t resource_alignment(struct resource *res)
681 * release_region releases a matching busy region. 682 * release_region releases a matching busy region.
682 */ 683 */
683 684
685static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
686
684/** 687/**
685 * __request_region - create a new busy resource region 688 * __request_region - create a new busy resource region
686 * @parent: parent resource descriptor 689 * @parent: parent resource descriptor
@@ -693,6 +696,7 @@ struct resource * __request_region(struct resource *parent,
693 resource_size_t start, resource_size_t n, 696 resource_size_t start, resource_size_t n,
694 const char *name, int flags) 697 const char *name, int flags)
695{ 698{
699 DECLARE_WAITQUEUE(wait, current);
696 struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL); 700 struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
697 701
698 if (!res) 702 if (!res)
@@ -717,7 +721,15 @@ struct resource * __request_region(struct resource *parent,
717 if (!(conflict->flags & IORESOURCE_BUSY)) 721 if (!(conflict->flags & IORESOURCE_BUSY))
718 continue; 722 continue;
719 } 723 }
720 724 if (conflict->flags & flags & IORESOURCE_MUXED) {
725 add_wait_queue(&muxed_resource_wait, &wait);
726 write_unlock(&resource_lock);
727 set_current_state(TASK_UNINTERRUPTIBLE);
728 schedule();
729 remove_wait_queue(&muxed_resource_wait, &wait);
730 write_lock(&resource_lock);
731 continue;
732 }
721 /* Uhhuh, that didn't work out.. */ 733 /* Uhhuh, that didn't work out.. */
722 kfree(res); 734 kfree(res);
723 res = NULL; 735 res = NULL;
@@ -791,6 +803,8 @@ void __release_region(struct resource *parent, resource_size_t start,
791 break; 803 break;
792 *p = res->sibling; 804 *p = res->sibling;
793 write_unlock(&resource_lock); 805 write_unlock(&resource_lock);
806 if (res->flags & IORESOURCE_MUXED)
807 wake_up(&muxed_resource_wait);
794 kfree(res); 808 kfree(res);
795 return; 809 return;
796 } 810 }