diff options
-rw-r--r-- | mm/ksm.c | 1489 |
1 files changed, 1484 insertions, 5 deletions
@@ -1,11 +1,1285 @@ | |||
1 | /* | 1 | /* |
2 | * Initial dummy version just to illustrate KSM's interface to other files. | 2 | * Memory merging support. |
3 | * | ||
4 | * This code enables dynamic sharing of identical pages found in different | ||
5 | * memory areas, even if they are not shared by fork() | ||
6 | * | ||
7 | * Copyright (C) 2008 Red Hat, Inc. | ||
8 | * Authors: | ||
9 | * Izik Eidus | ||
10 | * Andrea Arcangeli | ||
11 | * Chris Wright | ||
12 | * | ||
13 | * This work is licensed under the terms of the GNU GPL, version 2. | ||
3 | */ | 14 | */ |
4 | 15 | ||
5 | #include <linux/errno.h> | 16 | #include <linux/errno.h> |
17 | #include <linux/mm.h> | ||
18 | #include <linux/fs.h> | ||
6 | #include <linux/mman.h> | 19 | #include <linux/mman.h> |
20 | #include <linux/sched.h> | ||
21 | #include <linux/rwsem.h> | ||
22 | #include <linux/pagemap.h> | ||
23 | #include <linux/rmap.h> | ||
24 | #include <linux/spinlock.h> | ||
25 | #include <linux/jhash.h> | ||
26 | #include <linux/delay.h> | ||
27 | #include <linux/kthread.h> | ||
28 | #include <linux/wait.h> | ||
29 | #include <linux/slab.h> | ||
30 | #include <linux/rbtree.h> | ||
31 | #include <linux/mmu_notifier.h> | ||
7 | #include <linux/ksm.h> | 32 | #include <linux/ksm.h> |
8 | 33 | ||
34 | #include <asm/tlbflush.h> | ||
35 | |||
36 | /* | ||
37 | * A few notes about the KSM scanning process, | ||
38 | * to make it easier to understand the data structures below: | ||
39 | * | ||
40 | * In order to reduce excessive scanning, KSM sorts the memory pages by their | ||
41 | * contents into a data structure that holds pointers to the pages' locations. | ||
42 | * | ||
43 | * Since the contents of the pages may change at any moment, KSM cannot just | ||
44 | * insert the pages into a normal sorted tree and expect it to find anything. | ||
45 | * Therefore KSM uses two data structures - the stable and the unstable tree. | ||
46 | * | ||
47 | * The stable tree holds pointers to all the merged pages (ksm pages), sorted | ||
48 | * by their contents. Because each such page is write-protected, searching on | ||
49 | * this tree is fully assured to be working (except when pages are unmapped), | ||
50 | * and therefore this tree is called the stable tree. | ||
51 | * | ||
52 | * In addition to the stable tree, KSM uses a second data structure called the | ||
53 | * unstable tree: this tree holds pointers to pages which have been found to | ||
54 | * be "unchanged for a period of time". The unstable tree sorts these pages | ||
55 | * by their contents, but since they are not write-protected, KSM cannot rely | ||
56 | * upon the unstable tree to work correctly - the unstable tree is liable to | ||
57 | * be corrupted as its contents are modified, and so it is called unstable. | ||
58 | * | ||
59 | * KSM solves this problem by several techniques: | ||
60 | * | ||
61 | * 1) The unstable tree is flushed every time KSM completes scanning all | ||
62 | * memory areas, and then the tree is rebuilt again from the beginning. | ||
63 | * 2) KSM will only insert into the unstable tree, pages whose hash value | ||
64 | * has not changed since the previous scan of all memory areas. | ||
65 | * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the | ||
66 | * colors of the nodes and not on their contents, assuring that even when | ||
67 | * the tree gets "corrupted" it won't get out of balance, so scanning time | ||
68 | * remains the same (also, searching and inserting nodes in an rbtree uses | ||
69 | * the same algorithm, so we have no overhead when we flush and rebuild). | ||
70 | * 4) KSM never flushes the stable tree, which means that even if it were to | ||
71 | * take 10 attempts to find a page in the unstable tree, once it is found, | ||
72 | * it is secured in the stable tree. (When we scan a new page, we first | ||
73 | * compare it against the stable tree, and then against the unstable tree.) | ||
74 | */ | ||
75 | |||
76 | /** | ||
77 | * struct mm_slot - ksm information per mm that is being scanned | ||
78 | * @link: link to the mm_slots hash list | ||
79 | * @mm_list: link into the mm_slots list, rooted in ksm_mm_head | ||
80 | * @rmap_list: head for this mm_slot's list of rmap_items | ||
81 | * @mm: the mm that this information is valid for | ||
82 | */ | ||
83 | struct mm_slot { | ||
84 | struct hlist_node link; | ||
85 | struct list_head mm_list; | ||
86 | struct list_head rmap_list; | ||
87 | struct mm_struct *mm; | ||
88 | }; | ||
89 | |||
90 | /** | ||
91 | * struct ksm_scan - cursor for scanning | ||
92 | * @mm_slot: the current mm_slot we are scanning | ||
93 | * @address: the next address inside that to be scanned | ||
94 | * @rmap_item: the current rmap that we are scanning inside the rmap_list | ||
95 | * @seqnr: count of completed full scans (needed when removing unstable node) | ||
96 | * | ||
97 | * There is only the one ksm_scan instance of this cursor structure. | ||
98 | */ | ||
99 | struct ksm_scan { | ||
100 | struct mm_slot *mm_slot; | ||
101 | unsigned long address; | ||
102 | struct rmap_item *rmap_item; | ||
103 | unsigned long seqnr; | ||
104 | }; | ||
105 | |||
106 | /** | ||
107 | * struct rmap_item - reverse mapping item for virtual addresses | ||
108 | * @link: link into mm_slot's rmap_list (rmap_list is per mm) | ||
109 | * @mm: the memory structure this rmap_item is pointing into | ||
110 | * @address: the virtual address this rmap_item tracks (+ flags in low bits) | ||
111 | * @oldchecksum: previous checksum of the page at that virtual address | ||
112 | * @node: rb_node of this rmap_item in either unstable or stable tree | ||
113 | * @next: next rmap_item hanging off the same node of the stable tree | ||
114 | * @prev: previous rmap_item hanging off the same node of the stable tree | ||
115 | */ | ||
116 | struct rmap_item { | ||
117 | struct list_head link; | ||
118 | struct mm_struct *mm; | ||
119 | unsigned long address; /* + low bits used for flags below */ | ||
120 | union { | ||
121 | unsigned int oldchecksum; /* when unstable */ | ||
122 | struct rmap_item *next; /* when stable */ | ||
123 | }; | ||
124 | union { | ||
125 | struct rb_node node; /* when tree node */ | ||
126 | struct rmap_item *prev; /* in stable list */ | ||
127 | }; | ||
128 | }; | ||
129 | |||
130 | #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ | ||
131 | #define NODE_FLAG 0x100 /* is a node of unstable or stable tree */ | ||
132 | #define STABLE_FLAG 0x200 /* is a node or list item of stable tree */ | ||
133 | |||
134 | /* The stable and unstable tree heads */ | ||
135 | static struct rb_root root_stable_tree = RB_ROOT; | ||
136 | static struct rb_root root_unstable_tree = RB_ROOT; | ||
137 | |||
138 | #define MM_SLOTS_HASH_HEADS 1024 | ||
139 | static struct hlist_head *mm_slots_hash; | ||
140 | |||
141 | static struct mm_slot ksm_mm_head = { | ||
142 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), | ||
143 | }; | ||
144 | static struct ksm_scan ksm_scan = { | ||
145 | .mm_slot = &ksm_mm_head, | ||
146 | }; | ||
147 | |||
148 | static struct kmem_cache *rmap_item_cache; | ||
149 | static struct kmem_cache *mm_slot_cache; | ||
150 | |||
151 | /* The number of nodes in the stable tree */ | ||
152 | static unsigned long ksm_kernel_pages_allocated; | ||
153 | |||
154 | /* The number of page slots sharing those nodes */ | ||
155 | static unsigned long ksm_pages_shared; | ||
156 | |||
157 | /* Limit on the number of unswappable pages used */ | ||
158 | static unsigned long ksm_max_kernel_pages; | ||
159 | |||
160 | /* Number of pages ksmd should scan in one batch */ | ||
161 | static unsigned int ksm_thread_pages_to_scan; | ||
162 | |||
163 | /* Milliseconds ksmd should sleep between batches */ | ||
164 | static unsigned int ksm_thread_sleep_millisecs; | ||
165 | |||
166 | #define KSM_RUN_STOP 0 | ||
167 | #define KSM_RUN_MERGE 1 | ||
168 | #define KSM_RUN_UNMERGE 2 | ||
169 | static unsigned int ksm_run; | ||
170 | |||
171 | static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); | ||
172 | static DEFINE_MUTEX(ksm_thread_mutex); | ||
173 | static DEFINE_SPINLOCK(ksm_mmlist_lock); | ||
174 | |||
175 | #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ | ||
176 | sizeof(struct __struct), __alignof__(struct __struct),\ | ||
177 | (__flags), NULL) | ||
178 | |||
179 | static int __init ksm_slab_init(void) | ||
180 | { | ||
181 | rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); | ||
182 | if (!rmap_item_cache) | ||
183 | goto out; | ||
184 | |||
185 | mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); | ||
186 | if (!mm_slot_cache) | ||
187 | goto out_free; | ||
188 | |||
189 | return 0; | ||
190 | |||
191 | out_free: | ||
192 | kmem_cache_destroy(rmap_item_cache); | ||
193 | out: | ||
194 | return -ENOMEM; | ||
195 | } | ||
196 | |||
197 | static void __init ksm_slab_free(void) | ||
198 | { | ||
199 | kmem_cache_destroy(mm_slot_cache); | ||
200 | kmem_cache_destroy(rmap_item_cache); | ||
201 | mm_slot_cache = NULL; | ||
202 | } | ||
203 | |||
204 | static inline struct rmap_item *alloc_rmap_item(void) | ||
205 | { | ||
206 | return kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); | ||
207 | } | ||
208 | |||
209 | static inline void free_rmap_item(struct rmap_item *rmap_item) | ||
210 | { | ||
211 | rmap_item->mm = NULL; /* debug safety */ | ||
212 | kmem_cache_free(rmap_item_cache, rmap_item); | ||
213 | } | ||
214 | |||
215 | static inline struct mm_slot *alloc_mm_slot(void) | ||
216 | { | ||
217 | if (!mm_slot_cache) /* initialization failed */ | ||
218 | return NULL; | ||
219 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | ||
220 | } | ||
221 | |||
222 | static inline void free_mm_slot(struct mm_slot *mm_slot) | ||
223 | { | ||
224 | kmem_cache_free(mm_slot_cache, mm_slot); | ||
225 | } | ||
226 | |||
227 | static int __init mm_slots_hash_init(void) | ||
228 | { | ||
229 | mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), | ||
230 | GFP_KERNEL); | ||
231 | if (!mm_slots_hash) | ||
232 | return -ENOMEM; | ||
233 | return 0; | ||
234 | } | ||
235 | |||
236 | static void __init mm_slots_hash_free(void) | ||
237 | { | ||
238 | kfree(mm_slots_hash); | ||
239 | } | ||
240 | |||
241 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | ||
242 | { | ||
243 | struct mm_slot *mm_slot; | ||
244 | struct hlist_head *bucket; | ||
245 | struct hlist_node *node; | ||
246 | |||
247 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | ||
248 | % MM_SLOTS_HASH_HEADS]; | ||
249 | hlist_for_each_entry(mm_slot, node, bucket, link) { | ||
250 | if (mm == mm_slot->mm) | ||
251 | return mm_slot; | ||
252 | } | ||
253 | return NULL; | ||
254 | } | ||
255 | |||
256 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | ||
257 | struct mm_slot *mm_slot) | ||
258 | { | ||
259 | struct hlist_head *bucket; | ||
260 | |||
261 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | ||
262 | % MM_SLOTS_HASH_HEADS]; | ||
263 | mm_slot->mm = mm; | ||
264 | INIT_LIST_HEAD(&mm_slot->rmap_list); | ||
265 | hlist_add_head(&mm_slot->link, bucket); | ||
266 | } | ||
267 | |||
268 | static inline int in_stable_tree(struct rmap_item *rmap_item) | ||
269 | { | ||
270 | return rmap_item->address & STABLE_FLAG; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * We use break_ksm to break COW on a ksm page: it's a stripped down | ||
275 | * | ||
276 | * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) | ||
277 | * put_page(page); | ||
278 | * | ||
279 | * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, | ||
280 | * in case the application has unmapped and remapped mm,addr meanwhile. | ||
281 | * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP | ||
282 | * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. | ||
283 | */ | ||
284 | static void break_ksm(struct vm_area_struct *vma, unsigned long addr) | ||
285 | { | ||
286 | struct page *page; | ||
287 | int ret; | ||
288 | |||
289 | do { | ||
290 | cond_resched(); | ||
291 | page = follow_page(vma, addr, FOLL_GET); | ||
292 | if (!page) | ||
293 | break; | ||
294 | if (PageKsm(page)) | ||
295 | ret = handle_mm_fault(vma->vm_mm, vma, addr, | ||
296 | FAULT_FLAG_WRITE); | ||
297 | else | ||
298 | ret = VM_FAULT_WRITE; | ||
299 | put_page(page); | ||
300 | } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS))); | ||
301 | |||
302 | /* Which leaves us looping there if VM_FAULT_OOM: hmmm... */ | ||
303 | } | ||
304 | |||
305 | static void __break_cow(struct mm_struct *mm, unsigned long addr) | ||
306 | { | ||
307 | struct vm_area_struct *vma; | ||
308 | |||
309 | vma = find_vma(mm, addr); | ||
310 | if (!vma || vma->vm_start > addr) | ||
311 | return; | ||
312 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | ||
313 | return; | ||
314 | break_ksm(vma, addr); | ||
315 | } | ||
316 | |||
317 | static void break_cow(struct mm_struct *mm, unsigned long addr) | ||
318 | { | ||
319 | down_read(&mm->mmap_sem); | ||
320 | __break_cow(mm, addr); | ||
321 | up_read(&mm->mmap_sem); | ||
322 | } | ||
323 | |||
324 | static struct page *get_mergeable_page(struct rmap_item *rmap_item) | ||
325 | { | ||
326 | struct mm_struct *mm = rmap_item->mm; | ||
327 | unsigned long addr = rmap_item->address; | ||
328 | struct vm_area_struct *vma; | ||
329 | struct page *page; | ||
330 | |||
331 | down_read(&mm->mmap_sem); | ||
332 | vma = find_vma(mm, addr); | ||
333 | if (!vma || vma->vm_start > addr) | ||
334 | goto out; | ||
335 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | ||
336 | goto out; | ||
337 | |||
338 | page = follow_page(vma, addr, FOLL_GET); | ||
339 | if (!page) | ||
340 | goto out; | ||
341 | if (PageAnon(page)) { | ||
342 | flush_anon_page(vma, page, addr); | ||
343 | flush_dcache_page(page); | ||
344 | } else { | ||
345 | put_page(page); | ||
346 | out: page = NULL; | ||
347 | } | ||
348 | up_read(&mm->mmap_sem); | ||
349 | return page; | ||
350 | } | ||
351 | |||
352 | /* | ||
353 | * get_ksm_page: checks if the page at the virtual address in rmap_item | ||
354 | * is still PageKsm, in which case we can trust the content of the page, | ||
355 | * and it returns the gotten page; but NULL if the page has been zapped. | ||
356 | */ | ||
357 | static struct page *get_ksm_page(struct rmap_item *rmap_item) | ||
358 | { | ||
359 | struct page *page; | ||
360 | |||
361 | page = get_mergeable_page(rmap_item); | ||
362 | if (page && !PageKsm(page)) { | ||
363 | put_page(page); | ||
364 | page = NULL; | ||
365 | } | ||
366 | return page; | ||
367 | } | ||
368 | |||
369 | /* | ||
370 | * Removing rmap_item from stable or unstable tree. | ||
371 | * This function will clean the information from the stable/unstable tree. | ||
372 | */ | ||
373 | static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) | ||
374 | { | ||
375 | if (in_stable_tree(rmap_item)) { | ||
376 | struct rmap_item *next_item = rmap_item->next; | ||
377 | |||
378 | if (rmap_item->address & NODE_FLAG) { | ||
379 | if (next_item) { | ||
380 | rb_replace_node(&rmap_item->node, | ||
381 | &next_item->node, | ||
382 | &root_stable_tree); | ||
383 | next_item->address |= NODE_FLAG; | ||
384 | } else { | ||
385 | rb_erase(&rmap_item->node, &root_stable_tree); | ||
386 | ksm_kernel_pages_allocated--; | ||
387 | } | ||
388 | } else { | ||
389 | struct rmap_item *prev_item = rmap_item->prev; | ||
390 | |||
391 | BUG_ON(prev_item->next != rmap_item); | ||
392 | prev_item->next = next_item; | ||
393 | if (next_item) { | ||
394 | BUG_ON(next_item->prev != rmap_item); | ||
395 | next_item->prev = rmap_item->prev; | ||
396 | } | ||
397 | } | ||
398 | |||
399 | rmap_item->next = NULL; | ||
400 | ksm_pages_shared--; | ||
401 | |||
402 | } else if (rmap_item->address & NODE_FLAG) { | ||
403 | unsigned char age; | ||
404 | /* | ||
405 | * ksm_thread can and must skip the rb_erase, because | ||
406 | * root_unstable_tree was already reset to RB_ROOT. | ||
407 | * But __ksm_exit has to be careful: do the rb_erase | ||
408 | * if it's interrupting a scan, and this rmap_item was | ||
409 | * inserted by this scan rather than left from before. | ||
410 | * | ||
411 | * Because of the case in which remove_mm_from_lists | ||
412 | * increments seqnr before removing rmaps, unstable_nr | ||
413 | * may even be 2 behind seqnr, but should never be | ||
414 | * further behind. Yes, I did have trouble with this! | ||
415 | */ | ||
416 | age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); | ||
417 | BUG_ON(age > 2); | ||
418 | if (!age) | ||
419 | rb_erase(&rmap_item->node, &root_unstable_tree); | ||
420 | } | ||
421 | |||
422 | rmap_item->address &= PAGE_MASK; | ||
423 | |||
424 | cond_resched(); /* we're called from many long loops */ | ||
425 | } | ||
426 | |||
427 | static void remove_all_slot_rmap_items(struct mm_slot *mm_slot) | ||
428 | { | ||
429 | struct rmap_item *rmap_item, *node; | ||
430 | |||
431 | list_for_each_entry_safe(rmap_item, node, &mm_slot->rmap_list, link) { | ||
432 | remove_rmap_item_from_tree(rmap_item); | ||
433 | list_del(&rmap_item->link); | ||
434 | free_rmap_item(rmap_item); | ||
435 | } | ||
436 | } | ||
437 | |||
438 | static void remove_trailing_rmap_items(struct mm_slot *mm_slot, | ||
439 | struct list_head *cur) | ||
440 | { | ||
441 | struct rmap_item *rmap_item; | ||
442 | |||
443 | while (cur != &mm_slot->rmap_list) { | ||
444 | rmap_item = list_entry(cur, struct rmap_item, link); | ||
445 | cur = cur->next; | ||
446 | remove_rmap_item_from_tree(rmap_item); | ||
447 | list_del(&rmap_item->link); | ||
448 | free_rmap_item(rmap_item); | ||
449 | } | ||
450 | } | ||
451 | |||
452 | /* | ||
453 | * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather | ||
454 | * than check every pte of a given vma, the locking doesn't quite work for | ||
455 | * that - an rmap_item is assigned to the stable tree after inserting ksm | ||
456 | * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing | ||
457 | * rmap_items from parent to child at fork time (so as not to waste time | ||
458 | * if exit comes before the next scan reaches it). | ||
459 | */ | ||
460 | static void unmerge_ksm_pages(struct vm_area_struct *vma, | ||
461 | unsigned long start, unsigned long end) | ||
462 | { | ||
463 | unsigned long addr; | ||
464 | |||
465 | for (addr = start; addr < end; addr += PAGE_SIZE) | ||
466 | break_ksm(vma, addr); | ||
467 | } | ||
468 | |||
469 | static void unmerge_and_remove_all_rmap_items(void) | ||
470 | { | ||
471 | struct mm_slot *mm_slot; | ||
472 | struct mm_struct *mm; | ||
473 | struct vm_area_struct *vma; | ||
474 | |||
475 | list_for_each_entry(mm_slot, &ksm_mm_head.mm_list, mm_list) { | ||
476 | mm = mm_slot->mm; | ||
477 | down_read(&mm->mmap_sem); | ||
478 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | ||
479 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | ||
480 | continue; | ||
481 | unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end); | ||
482 | } | ||
483 | remove_all_slot_rmap_items(mm_slot); | ||
484 | up_read(&mm->mmap_sem); | ||
485 | } | ||
486 | |||
487 | spin_lock(&ksm_mmlist_lock); | ||
488 | if (ksm_scan.mm_slot != &ksm_mm_head) { | ||
489 | ksm_scan.mm_slot = &ksm_mm_head; | ||
490 | ksm_scan.seqnr++; | ||
491 | } | ||
492 | spin_unlock(&ksm_mmlist_lock); | ||
493 | } | ||
494 | |||
495 | static void remove_mm_from_lists(struct mm_struct *mm) | ||
496 | { | ||
497 | struct mm_slot *mm_slot; | ||
498 | |||
499 | spin_lock(&ksm_mmlist_lock); | ||
500 | mm_slot = get_mm_slot(mm); | ||
501 | |||
502 | /* | ||
503 | * This mm_slot is always at the scanning cursor when we're | ||
504 | * called from scan_get_next_rmap_item; but it's a special | ||
505 | * case when we're called from __ksm_exit. | ||
506 | */ | ||
507 | if (ksm_scan.mm_slot == mm_slot) { | ||
508 | ksm_scan.mm_slot = list_entry( | ||
509 | mm_slot->mm_list.next, struct mm_slot, mm_list); | ||
510 | ksm_scan.address = 0; | ||
511 | ksm_scan.rmap_item = list_entry( | ||
512 | &ksm_scan.mm_slot->rmap_list, struct rmap_item, link); | ||
513 | if (ksm_scan.mm_slot == &ksm_mm_head) | ||
514 | ksm_scan.seqnr++; | ||
515 | } | ||
516 | |||
517 | hlist_del(&mm_slot->link); | ||
518 | list_del(&mm_slot->mm_list); | ||
519 | spin_unlock(&ksm_mmlist_lock); | ||
520 | |||
521 | remove_all_slot_rmap_items(mm_slot); | ||
522 | free_mm_slot(mm_slot); | ||
523 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | ||
524 | } | ||
525 | |||
526 | static u32 calc_checksum(struct page *page) | ||
527 | { | ||
528 | u32 checksum; | ||
529 | void *addr = kmap_atomic(page, KM_USER0); | ||
530 | checksum = jhash2(addr, PAGE_SIZE / 4, 17); | ||
531 | kunmap_atomic(addr, KM_USER0); | ||
532 | return checksum; | ||
533 | } | ||
534 | |||
535 | static int memcmp_pages(struct page *page1, struct page *page2) | ||
536 | { | ||
537 | char *addr1, *addr2; | ||
538 | int ret; | ||
539 | |||
540 | addr1 = kmap_atomic(page1, KM_USER0); | ||
541 | addr2 = kmap_atomic(page2, KM_USER1); | ||
542 | ret = memcmp(addr1, addr2, PAGE_SIZE); | ||
543 | kunmap_atomic(addr2, KM_USER1); | ||
544 | kunmap_atomic(addr1, KM_USER0); | ||
545 | return ret; | ||
546 | } | ||
547 | |||
548 | static inline int pages_identical(struct page *page1, struct page *page2) | ||
549 | { | ||
550 | return !memcmp_pages(page1, page2); | ||
551 | } | ||
552 | |||
553 | static int write_protect_page(struct vm_area_struct *vma, struct page *page, | ||
554 | pte_t *orig_pte) | ||
555 | { | ||
556 | struct mm_struct *mm = vma->vm_mm; | ||
557 | unsigned long addr; | ||
558 | pte_t *ptep; | ||
559 | spinlock_t *ptl; | ||
560 | int swapped; | ||
561 | int err = -EFAULT; | ||
562 | |||
563 | addr = page_address_in_vma(page, vma); | ||
564 | if (addr == -EFAULT) | ||
565 | goto out; | ||
566 | |||
567 | ptep = page_check_address(page, mm, addr, &ptl, 0); | ||
568 | if (!ptep) | ||
569 | goto out; | ||
570 | |||
571 | if (pte_write(*ptep)) { | ||
572 | pte_t entry; | ||
573 | |||
574 | swapped = PageSwapCache(page); | ||
575 | flush_cache_page(vma, addr, page_to_pfn(page)); | ||
576 | /* | ||
577 | * Ok this is tricky, when get_user_pages_fast() run it doesnt | ||
578 | * take any lock, therefore the check that we are going to make | ||
579 | * with the pagecount against the mapcount is racey and | ||
580 | * O_DIRECT can happen right after the check. | ||
581 | * So we clear the pte and flush the tlb before the check | ||
582 | * this assure us that no O_DIRECT can happen after the check | ||
583 | * or in the middle of the check. | ||
584 | */ | ||
585 | entry = ptep_clear_flush(vma, addr, ptep); | ||
586 | /* | ||
587 | * Check that no O_DIRECT or similar I/O is in progress on the | ||
588 | * page | ||
589 | */ | ||
590 | if ((page_mapcount(page) + 2 + swapped) != page_count(page)) { | ||
591 | set_pte_at_notify(mm, addr, ptep, entry); | ||
592 | goto out_unlock; | ||
593 | } | ||
594 | entry = pte_wrprotect(entry); | ||
595 | set_pte_at_notify(mm, addr, ptep, entry); | ||
596 | } | ||
597 | *orig_pte = *ptep; | ||
598 | err = 0; | ||
599 | |||
600 | out_unlock: | ||
601 | pte_unmap_unlock(ptep, ptl); | ||
602 | out: | ||
603 | return err; | ||
604 | } | ||
605 | |||
606 | /** | ||
607 | * replace_page - replace page in vma by new ksm page | ||
608 | * @vma: vma that holds the pte pointing to oldpage | ||
609 | * @oldpage: the page we are replacing by newpage | ||
610 | * @newpage: the ksm page we replace oldpage by | ||
611 | * @orig_pte: the original value of the pte | ||
612 | * | ||
613 | * Returns 0 on success, -EFAULT on failure. | ||
614 | */ | ||
615 | static int replace_page(struct vm_area_struct *vma, struct page *oldpage, | ||
616 | struct page *newpage, pte_t orig_pte) | ||
617 | { | ||
618 | struct mm_struct *mm = vma->vm_mm; | ||
619 | pgd_t *pgd; | ||
620 | pud_t *pud; | ||
621 | pmd_t *pmd; | ||
622 | pte_t *ptep; | ||
623 | spinlock_t *ptl; | ||
624 | unsigned long addr; | ||
625 | pgprot_t prot; | ||
626 | int err = -EFAULT; | ||
627 | |||
628 | prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE); | ||
629 | |||
630 | addr = page_address_in_vma(oldpage, vma); | ||
631 | if (addr == -EFAULT) | ||
632 | goto out; | ||
633 | |||
634 | pgd = pgd_offset(mm, addr); | ||
635 | if (!pgd_present(*pgd)) | ||
636 | goto out; | ||
637 | |||
638 | pud = pud_offset(pgd, addr); | ||
639 | if (!pud_present(*pud)) | ||
640 | goto out; | ||
641 | |||
642 | pmd = pmd_offset(pud, addr); | ||
643 | if (!pmd_present(*pmd)) | ||
644 | goto out; | ||
645 | |||
646 | ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); | ||
647 | if (!pte_same(*ptep, orig_pte)) { | ||
648 | pte_unmap_unlock(ptep, ptl); | ||
649 | goto out; | ||
650 | } | ||
651 | |||
652 | get_page(newpage); | ||
653 | page_add_ksm_rmap(newpage); | ||
654 | |||
655 | flush_cache_page(vma, addr, pte_pfn(*ptep)); | ||
656 | ptep_clear_flush(vma, addr, ptep); | ||
657 | set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot)); | ||
658 | |||
659 | page_remove_rmap(oldpage); | ||
660 | put_page(oldpage); | ||
661 | |||
662 | pte_unmap_unlock(ptep, ptl); | ||
663 | err = 0; | ||
664 | out: | ||
665 | return err; | ||
666 | } | ||
667 | |||
668 | /* | ||
669 | * try_to_merge_one_page - take two pages and merge them into one | ||
670 | * @vma: the vma that hold the pte pointing into oldpage | ||
671 | * @oldpage: the page that we want to replace with newpage | ||
672 | * @newpage: the page that we want to map instead of oldpage | ||
673 | * | ||
674 | * Note: | ||
675 | * oldpage should be a PageAnon page, while newpage should be a PageKsm page, | ||
676 | * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm. | ||
677 | * | ||
678 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | ||
679 | */ | ||
680 | static int try_to_merge_one_page(struct vm_area_struct *vma, | ||
681 | struct page *oldpage, | ||
682 | struct page *newpage) | ||
683 | { | ||
684 | pte_t orig_pte = __pte(0); | ||
685 | int err = -EFAULT; | ||
686 | |||
687 | if (!(vma->vm_flags & VM_MERGEABLE)) | ||
688 | goto out; | ||
689 | |||
690 | if (!PageAnon(oldpage)) | ||
691 | goto out; | ||
692 | |||
693 | get_page(newpage); | ||
694 | get_page(oldpage); | ||
695 | |||
696 | /* | ||
697 | * We need the page lock to read a stable PageSwapCache in | ||
698 | * write_protect_page(). We use trylock_page() instead of | ||
699 | * lock_page() because we don't want to wait here - we | ||
700 | * prefer to continue scanning and merging different pages, | ||
701 | * then come back to this page when it is unlocked. | ||
702 | */ | ||
703 | if (!trylock_page(oldpage)) | ||
704 | goto out_putpage; | ||
705 | /* | ||
706 | * If this anonymous page is mapped only here, its pte may need | ||
707 | * to be write-protected. If it's mapped elsewhere, all of its | ||
708 | * ptes are necessarily already write-protected. But in either | ||
709 | * case, we need to lock and check page_count is not raised. | ||
710 | */ | ||
711 | if (write_protect_page(vma, oldpage, &orig_pte)) { | ||
712 | unlock_page(oldpage); | ||
713 | goto out_putpage; | ||
714 | } | ||
715 | unlock_page(oldpage); | ||
716 | |||
717 | if (pages_identical(oldpage, newpage)) | ||
718 | err = replace_page(vma, oldpage, newpage, orig_pte); | ||
719 | |||
720 | out_putpage: | ||
721 | put_page(oldpage); | ||
722 | put_page(newpage); | ||
723 | out: | ||
724 | return err; | ||
725 | } | ||
726 | |||
727 | /* | ||
728 | * try_to_merge_two_pages - take two identical pages and prepare them | ||
729 | * to be merged into one page. | ||
730 | * | ||
731 | * This function returns 0 if we successfully mapped two identical pages | ||
732 | * into one page, -EFAULT otherwise. | ||
733 | * | ||
734 | * Note that this function allocates a new kernel page: if one of the pages | ||
735 | * is already a ksm page, try_to_merge_with_ksm_page should be used. | ||
736 | */ | ||
737 | static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1, | ||
738 | struct page *page1, struct mm_struct *mm2, | ||
739 | unsigned long addr2, struct page *page2) | ||
740 | { | ||
741 | struct vm_area_struct *vma; | ||
742 | struct page *kpage; | ||
743 | int err = -EFAULT; | ||
744 | |||
745 | /* | ||
746 | * The number of nodes in the stable tree | ||
747 | * is the number of kernel pages that we hold. | ||
748 | */ | ||
749 | if (ksm_max_kernel_pages && | ||
750 | ksm_max_kernel_pages <= ksm_kernel_pages_allocated) | ||
751 | return err; | ||
752 | |||
753 | kpage = alloc_page(GFP_HIGHUSER); | ||
754 | if (!kpage) | ||
755 | return err; | ||
756 | |||
757 | down_read(&mm1->mmap_sem); | ||
758 | vma = find_vma(mm1, addr1); | ||
759 | if (!vma || vma->vm_start > addr1) { | ||
760 | put_page(kpage); | ||
761 | up_read(&mm1->mmap_sem); | ||
762 | return err; | ||
763 | } | ||
764 | |||
765 | copy_user_highpage(kpage, page1, addr1, vma); | ||
766 | err = try_to_merge_one_page(vma, page1, kpage); | ||
767 | up_read(&mm1->mmap_sem); | ||
768 | |||
769 | if (!err) { | ||
770 | down_read(&mm2->mmap_sem); | ||
771 | vma = find_vma(mm2, addr2); | ||
772 | if (!vma || vma->vm_start > addr2) { | ||
773 | put_page(kpage); | ||
774 | up_read(&mm2->mmap_sem); | ||
775 | break_cow(mm1, addr1); | ||
776 | return -EFAULT; | ||
777 | } | ||
778 | |||
779 | err = try_to_merge_one_page(vma, page2, kpage); | ||
780 | up_read(&mm2->mmap_sem); | ||
781 | |||
782 | /* | ||
783 | * If the second try_to_merge_one_page failed, we have a | ||
784 | * ksm page with just one pte pointing to it, so break it. | ||
785 | */ | ||
786 | if (err) | ||
787 | break_cow(mm1, addr1); | ||
788 | else | ||
789 | ksm_pages_shared += 2; | ||
790 | } | ||
791 | |||
792 | put_page(kpage); | ||
793 | return err; | ||
794 | } | ||
795 | |||
796 | /* | ||
797 | * try_to_merge_with_ksm_page - like try_to_merge_two_pages, | ||
798 | * but no new kernel page is allocated: kpage must already be a ksm page. | ||
799 | */ | ||
800 | static int try_to_merge_with_ksm_page(struct mm_struct *mm1, | ||
801 | unsigned long addr1, | ||
802 | struct page *page1, | ||
803 | struct page *kpage) | ||
804 | { | ||
805 | struct vm_area_struct *vma; | ||
806 | int err = -EFAULT; | ||
807 | |||
808 | down_read(&mm1->mmap_sem); | ||
809 | vma = find_vma(mm1, addr1); | ||
810 | if (!vma || vma->vm_start > addr1) { | ||
811 | up_read(&mm1->mmap_sem); | ||
812 | return err; | ||
813 | } | ||
814 | |||
815 | err = try_to_merge_one_page(vma, page1, kpage); | ||
816 | up_read(&mm1->mmap_sem); | ||
817 | |||
818 | if (!err) | ||
819 | ksm_pages_shared++; | ||
820 | |||
821 | return err; | ||
822 | } | ||
823 | |||
824 | /* | ||
825 | * stable_tree_search - search page inside the stable tree | ||
826 | * @page: the page that we are searching identical pages to. | ||
827 | * @page2: pointer into identical page that we are holding inside the stable | ||
828 | * tree that we have found. | ||
829 | * @rmap_item: the reverse mapping item | ||
830 | * | ||
831 | * This function checks if there is a page inside the stable tree | ||
832 | * with identical content to the page that we are scanning right now. | ||
833 | * | ||
834 | * This function return rmap_item pointer to the identical item if found, | ||
835 | * NULL otherwise. | ||
836 | */ | ||
837 | static struct rmap_item *stable_tree_search(struct page *page, | ||
838 | struct page **page2, | ||
839 | struct rmap_item *rmap_item) | ||
840 | { | ||
841 | struct rb_node *node = root_stable_tree.rb_node; | ||
842 | |||
843 | while (node) { | ||
844 | struct rmap_item *tree_rmap_item, *next_rmap_item; | ||
845 | int ret; | ||
846 | |||
847 | tree_rmap_item = rb_entry(node, struct rmap_item, node); | ||
848 | while (tree_rmap_item) { | ||
849 | BUG_ON(!in_stable_tree(tree_rmap_item)); | ||
850 | cond_resched(); | ||
851 | page2[0] = get_ksm_page(tree_rmap_item); | ||
852 | if (page2[0]) | ||
853 | break; | ||
854 | next_rmap_item = tree_rmap_item->next; | ||
855 | remove_rmap_item_from_tree(tree_rmap_item); | ||
856 | tree_rmap_item = next_rmap_item; | ||
857 | } | ||
858 | if (!tree_rmap_item) | ||
859 | return NULL; | ||
860 | |||
861 | ret = memcmp_pages(page, page2[0]); | ||
862 | |||
863 | if (ret < 0) { | ||
864 | put_page(page2[0]); | ||
865 | node = node->rb_left; | ||
866 | } else if (ret > 0) { | ||
867 | put_page(page2[0]); | ||
868 | node = node->rb_right; | ||
869 | } else { | ||
870 | return tree_rmap_item; | ||
871 | } | ||
872 | } | ||
873 | |||
874 | return NULL; | ||
875 | } | ||
876 | |||
877 | /* | ||
878 | * stable_tree_insert - insert rmap_item pointing to new ksm page | ||
879 | * into the stable tree. | ||
880 | * | ||
881 | * @page: the page that we are searching identical page to inside the stable | ||
882 | * tree. | ||
883 | * @rmap_item: pointer to the reverse mapping item. | ||
884 | * | ||
885 | * This function returns rmap_item if success, NULL otherwise. | ||
886 | */ | ||
887 | static struct rmap_item *stable_tree_insert(struct page *page, | ||
888 | struct rmap_item *rmap_item) | ||
889 | { | ||
890 | struct rb_node **new = &root_stable_tree.rb_node; | ||
891 | struct rb_node *parent = NULL; | ||
892 | |||
893 | while (*new) { | ||
894 | struct rmap_item *tree_rmap_item, *next_rmap_item; | ||
895 | struct page *tree_page; | ||
896 | int ret; | ||
897 | |||
898 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); | ||
899 | while (tree_rmap_item) { | ||
900 | BUG_ON(!in_stable_tree(tree_rmap_item)); | ||
901 | cond_resched(); | ||
902 | tree_page = get_ksm_page(tree_rmap_item); | ||
903 | if (tree_page) | ||
904 | break; | ||
905 | next_rmap_item = tree_rmap_item->next; | ||
906 | remove_rmap_item_from_tree(tree_rmap_item); | ||
907 | tree_rmap_item = next_rmap_item; | ||
908 | } | ||
909 | if (!tree_rmap_item) | ||
910 | return NULL; | ||
911 | |||
912 | ret = memcmp_pages(page, tree_page); | ||
913 | put_page(tree_page); | ||
914 | |||
915 | parent = *new; | ||
916 | if (ret < 0) | ||
917 | new = &parent->rb_left; | ||
918 | else if (ret > 0) | ||
919 | new = &parent->rb_right; | ||
920 | else { | ||
921 | /* | ||
922 | * It is not a bug that stable_tree_search() didn't | ||
923 | * find this node: because at that time our page was | ||
924 | * not yet write-protected, so may have changed since. | ||
925 | */ | ||
926 | return NULL; | ||
927 | } | ||
928 | } | ||
929 | |||
930 | ksm_kernel_pages_allocated++; | ||
931 | |||
932 | rmap_item->address |= NODE_FLAG | STABLE_FLAG; | ||
933 | rmap_item->next = NULL; | ||
934 | rb_link_node(&rmap_item->node, parent, new); | ||
935 | rb_insert_color(&rmap_item->node, &root_stable_tree); | ||
936 | |||
937 | return rmap_item; | ||
938 | } | ||
939 | |||
940 | /* | ||
941 | * unstable_tree_search_insert - search and insert items into the unstable tree. | ||
942 | * | ||
943 | * @page: the page that we are going to search for identical page or to insert | ||
944 | * into the unstable tree | ||
945 | * @page2: pointer into identical page that was found inside the unstable tree | ||
946 | * @rmap_item: the reverse mapping item of page | ||
947 | * | ||
948 | * This function searches for a page in the unstable tree identical to the | ||
949 | * page currently being scanned; and if no identical page is found in the | ||
950 | * tree, we insert rmap_item as a new object into the unstable tree. | ||
951 | * | ||
952 | * This function returns pointer to rmap_item found to be identical | ||
953 | * to the currently scanned page, NULL otherwise. | ||
954 | * | ||
955 | * This function does both searching and inserting, because they share | ||
956 | * the same walking algorithm in an rbtree. | ||
957 | */ | ||
958 | static struct rmap_item *unstable_tree_search_insert(struct page *page, | ||
959 | struct page **page2, | ||
960 | struct rmap_item *rmap_item) | ||
961 | { | ||
962 | struct rb_node **new = &root_unstable_tree.rb_node; | ||
963 | struct rb_node *parent = NULL; | ||
964 | |||
965 | while (*new) { | ||
966 | struct rmap_item *tree_rmap_item; | ||
967 | int ret; | ||
968 | |||
969 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); | ||
970 | page2[0] = get_mergeable_page(tree_rmap_item); | ||
971 | if (!page2[0]) | ||
972 | return NULL; | ||
973 | |||
974 | /* | ||
975 | * Don't substitute an unswappable ksm page | ||
976 | * just for one good swappable forked page. | ||
977 | */ | ||
978 | if (page == page2[0]) { | ||
979 | put_page(page2[0]); | ||
980 | return NULL; | ||
981 | } | ||
982 | |||
983 | ret = memcmp_pages(page, page2[0]); | ||
984 | |||
985 | parent = *new; | ||
986 | if (ret < 0) { | ||
987 | put_page(page2[0]); | ||
988 | new = &parent->rb_left; | ||
989 | } else if (ret > 0) { | ||
990 | put_page(page2[0]); | ||
991 | new = &parent->rb_right; | ||
992 | } else { | ||
993 | return tree_rmap_item; | ||
994 | } | ||
995 | } | ||
996 | |||
997 | rmap_item->address |= NODE_FLAG; | ||
998 | rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); | ||
999 | rb_link_node(&rmap_item->node, parent, new); | ||
1000 | rb_insert_color(&rmap_item->node, &root_unstable_tree); | ||
1001 | |||
1002 | return NULL; | ||
1003 | } | ||
1004 | |||
1005 | /* | ||
1006 | * stable_tree_append - add another rmap_item to the linked list of | ||
1007 | * rmap_items hanging off a given node of the stable tree, all sharing | ||
1008 | * the same ksm page. | ||
1009 | */ | ||
1010 | static void stable_tree_append(struct rmap_item *rmap_item, | ||
1011 | struct rmap_item *tree_rmap_item) | ||
1012 | { | ||
1013 | rmap_item->next = tree_rmap_item->next; | ||
1014 | rmap_item->prev = tree_rmap_item; | ||
1015 | |||
1016 | if (tree_rmap_item->next) | ||
1017 | tree_rmap_item->next->prev = rmap_item; | ||
1018 | |||
1019 | tree_rmap_item->next = rmap_item; | ||
1020 | rmap_item->address |= STABLE_FLAG; | ||
1021 | } | ||
1022 | |||
1023 | /* | ||
1024 | * cmp_and_merge_page - take a page computes its hash value and check if there | ||
1025 | * is similar hash value to different page, | ||
1026 | * in case we find that there is similar hash to different page we call to | ||
1027 | * try_to_merge_two_pages(). | ||
1028 | * | ||
1029 | * @page: the page that we are searching identical page to. | ||
1030 | * @rmap_item: the reverse mapping into the virtual address of this page | ||
1031 | */ | ||
1032 | static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) | ||
1033 | { | ||
1034 | struct page *page2[1]; | ||
1035 | struct rmap_item *tree_rmap_item; | ||
1036 | unsigned int checksum; | ||
1037 | int err; | ||
1038 | |||
1039 | if (in_stable_tree(rmap_item)) | ||
1040 | remove_rmap_item_from_tree(rmap_item); | ||
1041 | |||
1042 | /* We first start with searching the page inside the stable tree */ | ||
1043 | tree_rmap_item = stable_tree_search(page, page2, rmap_item); | ||
1044 | if (tree_rmap_item) { | ||
1045 | if (page == page2[0]) { /* forked */ | ||
1046 | ksm_pages_shared++; | ||
1047 | err = 0; | ||
1048 | } else | ||
1049 | err = try_to_merge_with_ksm_page(rmap_item->mm, | ||
1050 | rmap_item->address, | ||
1051 | page, page2[0]); | ||
1052 | put_page(page2[0]); | ||
1053 | |||
1054 | if (!err) { | ||
1055 | /* | ||
1056 | * The page was successfully merged: | ||
1057 | * add its rmap_item to the stable tree. | ||
1058 | */ | ||
1059 | stable_tree_append(rmap_item, tree_rmap_item); | ||
1060 | } | ||
1061 | return; | ||
1062 | } | ||
1063 | |||
1064 | /* | ||
1065 | * A ksm page might have got here by fork, but its other | ||
1066 | * references have already been removed from the stable tree. | ||
1067 | */ | ||
1068 | if (PageKsm(page)) | ||
1069 | break_cow(rmap_item->mm, rmap_item->address); | ||
1070 | |||
1071 | /* | ||
1072 | * In case the hash value of the page was changed from the last time we | ||
1073 | * have calculated it, this page to be changed frequely, therefore we | ||
1074 | * don't want to insert it to the unstable tree, and we don't want to | ||
1075 | * waste our time to search if there is something identical to it there. | ||
1076 | */ | ||
1077 | checksum = calc_checksum(page); | ||
1078 | if (rmap_item->oldchecksum != checksum) { | ||
1079 | rmap_item->oldchecksum = checksum; | ||
1080 | return; | ||
1081 | } | ||
1082 | |||
1083 | tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item); | ||
1084 | if (tree_rmap_item) { | ||
1085 | err = try_to_merge_two_pages(rmap_item->mm, | ||
1086 | rmap_item->address, page, | ||
1087 | tree_rmap_item->mm, | ||
1088 | tree_rmap_item->address, page2[0]); | ||
1089 | /* | ||
1090 | * As soon as we merge this page, we want to remove the | ||
1091 | * rmap_item of the page we have merged with from the unstable | ||
1092 | * tree, and insert it instead as new node in the stable tree. | ||
1093 | */ | ||
1094 | if (!err) { | ||
1095 | rb_erase(&tree_rmap_item->node, &root_unstable_tree); | ||
1096 | tree_rmap_item->address &= ~NODE_FLAG; | ||
1097 | /* | ||
1098 | * If we fail to insert the page into the stable tree, | ||
1099 | * we will have 2 virtual addresses that are pointing | ||
1100 | * to a ksm page left outside the stable tree, | ||
1101 | * in which case we need to break_cow on both. | ||
1102 | */ | ||
1103 | if (stable_tree_insert(page2[0], tree_rmap_item)) | ||
1104 | stable_tree_append(rmap_item, tree_rmap_item); | ||
1105 | else { | ||
1106 | break_cow(tree_rmap_item->mm, | ||
1107 | tree_rmap_item->address); | ||
1108 | break_cow(rmap_item->mm, rmap_item->address); | ||
1109 | ksm_pages_shared -= 2; | ||
1110 | } | ||
1111 | } | ||
1112 | |||
1113 | put_page(page2[0]); | ||
1114 | } | ||
1115 | } | ||
1116 | |||
1117 | static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, | ||
1118 | struct list_head *cur, | ||
1119 | unsigned long addr) | ||
1120 | { | ||
1121 | struct rmap_item *rmap_item; | ||
1122 | |||
1123 | while (cur != &mm_slot->rmap_list) { | ||
1124 | rmap_item = list_entry(cur, struct rmap_item, link); | ||
1125 | if ((rmap_item->address & PAGE_MASK) == addr) { | ||
1126 | if (!in_stable_tree(rmap_item)) | ||
1127 | remove_rmap_item_from_tree(rmap_item); | ||
1128 | return rmap_item; | ||
1129 | } | ||
1130 | if (rmap_item->address > addr) | ||
1131 | break; | ||
1132 | cur = cur->next; | ||
1133 | remove_rmap_item_from_tree(rmap_item); | ||
1134 | list_del(&rmap_item->link); | ||
1135 | free_rmap_item(rmap_item); | ||
1136 | } | ||
1137 | |||
1138 | rmap_item = alloc_rmap_item(); | ||
1139 | if (rmap_item) { | ||
1140 | /* It has already been zeroed */ | ||
1141 | rmap_item->mm = mm_slot->mm; | ||
1142 | rmap_item->address = addr; | ||
1143 | list_add_tail(&rmap_item->link, cur); | ||
1144 | } | ||
1145 | return rmap_item; | ||
1146 | } | ||
1147 | |||
1148 | static struct rmap_item *scan_get_next_rmap_item(struct page **page) | ||
1149 | { | ||
1150 | struct mm_struct *mm; | ||
1151 | struct mm_slot *slot; | ||
1152 | struct vm_area_struct *vma; | ||
1153 | struct rmap_item *rmap_item; | ||
1154 | |||
1155 | if (list_empty(&ksm_mm_head.mm_list)) | ||
1156 | return NULL; | ||
1157 | |||
1158 | slot = ksm_scan.mm_slot; | ||
1159 | if (slot == &ksm_mm_head) { | ||
1160 | root_unstable_tree = RB_ROOT; | ||
1161 | |||
1162 | spin_lock(&ksm_mmlist_lock); | ||
1163 | slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); | ||
1164 | ksm_scan.mm_slot = slot; | ||
1165 | spin_unlock(&ksm_mmlist_lock); | ||
1166 | next_mm: | ||
1167 | ksm_scan.address = 0; | ||
1168 | ksm_scan.rmap_item = list_entry(&slot->rmap_list, | ||
1169 | struct rmap_item, link); | ||
1170 | } | ||
1171 | |||
1172 | mm = slot->mm; | ||
1173 | down_read(&mm->mmap_sem); | ||
1174 | for (vma = find_vma(mm, ksm_scan.address); vma; vma = vma->vm_next) { | ||
1175 | if (!(vma->vm_flags & VM_MERGEABLE)) | ||
1176 | continue; | ||
1177 | if (ksm_scan.address < vma->vm_start) | ||
1178 | ksm_scan.address = vma->vm_start; | ||
1179 | if (!vma->anon_vma) | ||
1180 | ksm_scan.address = vma->vm_end; | ||
1181 | |||
1182 | while (ksm_scan.address < vma->vm_end) { | ||
1183 | *page = follow_page(vma, ksm_scan.address, FOLL_GET); | ||
1184 | if (*page && PageAnon(*page)) { | ||
1185 | flush_anon_page(vma, *page, ksm_scan.address); | ||
1186 | flush_dcache_page(*page); | ||
1187 | rmap_item = get_next_rmap_item(slot, | ||
1188 | ksm_scan.rmap_item->link.next, | ||
1189 | ksm_scan.address); | ||
1190 | if (rmap_item) { | ||
1191 | ksm_scan.rmap_item = rmap_item; | ||
1192 | ksm_scan.address += PAGE_SIZE; | ||
1193 | } else | ||
1194 | put_page(*page); | ||
1195 | up_read(&mm->mmap_sem); | ||
1196 | return rmap_item; | ||
1197 | } | ||
1198 | if (*page) | ||
1199 | put_page(*page); | ||
1200 | ksm_scan.address += PAGE_SIZE; | ||
1201 | cond_resched(); | ||
1202 | } | ||
1203 | } | ||
1204 | |||
1205 | if (!ksm_scan.address) { | ||
1206 | /* | ||
1207 | * We've completed a full scan of all vmas, holding mmap_sem | ||
1208 | * throughout, and found no VM_MERGEABLE: so do the same as | ||
1209 | * __ksm_exit does to remove this mm from all our lists now. | ||
1210 | */ | ||
1211 | remove_mm_from_lists(mm); | ||
1212 | up_read(&mm->mmap_sem); | ||
1213 | slot = ksm_scan.mm_slot; | ||
1214 | if (slot != &ksm_mm_head) | ||
1215 | goto next_mm; | ||
1216 | return NULL; | ||
1217 | } | ||
1218 | |||
1219 | /* | ||
1220 | * Nuke all the rmap_items that are above this current rmap: | ||
1221 | * because there were no VM_MERGEABLE vmas with such addresses. | ||
1222 | */ | ||
1223 | remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next); | ||
1224 | up_read(&mm->mmap_sem); | ||
1225 | |||
1226 | spin_lock(&ksm_mmlist_lock); | ||
1227 | slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); | ||
1228 | ksm_scan.mm_slot = slot; | ||
1229 | spin_unlock(&ksm_mmlist_lock); | ||
1230 | |||
1231 | /* Repeat until we've completed scanning the whole list */ | ||
1232 | if (slot != &ksm_mm_head) | ||
1233 | goto next_mm; | ||
1234 | |||
1235 | /* | ||
1236 | * Bump seqnr here rather than at top, so that __ksm_exit | ||
1237 | * can skip rb_erase on unstable tree until we run again. | ||
1238 | */ | ||
1239 | ksm_scan.seqnr++; | ||
1240 | return NULL; | ||
1241 | } | ||
1242 | |||
1243 | /** | ||
1244 | * ksm_do_scan - the ksm scanner main worker function. | ||
1245 | * @scan_npages - number of pages we want to scan before we return. | ||
1246 | */ | ||
1247 | static void ksm_do_scan(unsigned int scan_npages) | ||
1248 | { | ||
1249 | struct rmap_item *rmap_item; | ||
1250 | struct page *page; | ||
1251 | |||
1252 | while (scan_npages--) { | ||
1253 | cond_resched(); | ||
1254 | rmap_item = scan_get_next_rmap_item(&page); | ||
1255 | if (!rmap_item) | ||
1256 | return; | ||
1257 | if (!PageKsm(page) || !in_stable_tree(rmap_item)) | ||
1258 | cmp_and_merge_page(page, rmap_item); | ||
1259 | put_page(page); | ||
1260 | } | ||
1261 | } | ||
1262 | |||
1263 | static int ksm_scan_thread(void *nothing) | ||
1264 | { | ||
1265 | set_user_nice(current, 0); | ||
1266 | |||
1267 | while (!kthread_should_stop()) { | ||
1268 | if (ksm_run & KSM_RUN_MERGE) { | ||
1269 | mutex_lock(&ksm_thread_mutex); | ||
1270 | ksm_do_scan(ksm_thread_pages_to_scan); | ||
1271 | mutex_unlock(&ksm_thread_mutex); | ||
1272 | schedule_timeout_interruptible( | ||
1273 | msecs_to_jiffies(ksm_thread_sleep_millisecs)); | ||
1274 | } else { | ||
1275 | wait_event_interruptible(ksm_thread_wait, | ||
1276 | (ksm_run & KSM_RUN_MERGE) || | ||
1277 | kthread_should_stop()); | ||
1278 | } | ||
1279 | } | ||
1280 | return 0; | ||
1281 | } | ||
1282 | |||
9 | int ksm_madvise(struct vm_area_struct *vma, unsigned long start, | 1283 | int ksm_madvise(struct vm_area_struct *vma, unsigned long start, |
10 | unsigned long end, int advice, unsigned long *vm_flags) | 1284 | unsigned long end, int advice, unsigned long *vm_flags) |
11 | { | 1285 | { |
@@ -33,7 +1307,8 @@ int ksm_madvise(struct vm_area_struct *vma, unsigned long start, | |||
33 | if (!(*vm_flags & VM_MERGEABLE)) | 1307 | if (!(*vm_flags & VM_MERGEABLE)) |
34 | return 0; /* just ignore the advice */ | 1308 | return 0; /* just ignore the advice */ |
35 | 1309 | ||
36 | /* Unmerge any merged pages here */ | 1310 | if (vma->anon_vma) |
1311 | unmerge_ksm_pages(vma, start, end); | ||
37 | 1312 | ||
38 | *vm_flags &= ~VM_MERGEABLE; | 1313 | *vm_flags &= ~VM_MERGEABLE; |
39 | break; | 1314 | break; |
@@ -44,13 +1319,217 @@ int ksm_madvise(struct vm_area_struct *vma, unsigned long start, | |||
44 | 1319 | ||
45 | int __ksm_enter(struct mm_struct *mm) | 1320 | int __ksm_enter(struct mm_struct *mm) |
46 | { | 1321 | { |
47 | /* Allocate a structure to track mm and link it into KSM's list */ | 1322 | struct mm_slot *mm_slot = alloc_mm_slot(); |
1323 | if (!mm_slot) | ||
1324 | return -ENOMEM; | ||
1325 | |||
1326 | spin_lock(&ksm_mmlist_lock); | ||
1327 | insert_to_mm_slots_hash(mm, mm_slot); | ||
1328 | /* | ||
1329 | * Insert just behind the scanning cursor, to let the area settle | ||
1330 | * down a little; when fork is followed by immediate exec, we don't | ||
1331 | * want ksmd to waste time setting up and tearing down an rmap_list. | ||
1332 | */ | ||
1333 | list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); | ||
1334 | spin_unlock(&ksm_mmlist_lock); | ||
1335 | |||
48 | set_bit(MMF_VM_MERGEABLE, &mm->flags); | 1336 | set_bit(MMF_VM_MERGEABLE, &mm->flags); |
49 | return 0; | 1337 | return 0; |
50 | } | 1338 | } |
51 | 1339 | ||
52 | void __ksm_exit(struct mm_struct *mm) | 1340 | void __ksm_exit(struct mm_struct *mm) |
53 | { | 1341 | { |
54 | /* Unlink and free all KSM's structures which track this mm */ | 1342 | /* |
55 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | 1343 | * This process is exiting: doesn't hold and doesn't need mmap_sem; |
1344 | * but we do need to exclude ksmd and other exiters while we modify | ||
1345 | * the various lists and trees. | ||
1346 | */ | ||
1347 | mutex_lock(&ksm_thread_mutex); | ||
1348 | remove_mm_from_lists(mm); | ||
1349 | mutex_unlock(&ksm_thread_mutex); | ||
1350 | } | ||
1351 | |||
1352 | #define KSM_ATTR_RO(_name) \ | ||
1353 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | ||
1354 | #define KSM_ATTR(_name) \ | ||
1355 | static struct kobj_attribute _name##_attr = \ | ||
1356 | __ATTR(_name, 0644, _name##_show, _name##_store) | ||
1357 | |||
1358 | static ssize_t sleep_millisecs_show(struct kobject *kobj, | ||
1359 | struct kobj_attribute *attr, char *buf) | ||
1360 | { | ||
1361 | return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); | ||
1362 | } | ||
1363 | |||
1364 | static ssize_t sleep_millisecs_store(struct kobject *kobj, | ||
1365 | struct kobj_attribute *attr, | ||
1366 | const char *buf, size_t count) | ||
1367 | { | ||
1368 | unsigned long msecs; | ||
1369 | int err; | ||
1370 | |||
1371 | err = strict_strtoul(buf, 10, &msecs); | ||
1372 | if (err || msecs > UINT_MAX) | ||
1373 | return -EINVAL; | ||
1374 | |||
1375 | ksm_thread_sleep_millisecs = msecs; | ||
1376 | |||
1377 | return count; | ||
1378 | } | ||
1379 | KSM_ATTR(sleep_millisecs); | ||
1380 | |||
1381 | static ssize_t pages_to_scan_show(struct kobject *kobj, | ||
1382 | struct kobj_attribute *attr, char *buf) | ||
1383 | { | ||
1384 | return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); | ||
1385 | } | ||
1386 | |||
1387 | static ssize_t pages_to_scan_store(struct kobject *kobj, | ||
1388 | struct kobj_attribute *attr, | ||
1389 | const char *buf, size_t count) | ||
1390 | { | ||
1391 | int err; | ||
1392 | unsigned long nr_pages; | ||
1393 | |||
1394 | err = strict_strtoul(buf, 10, &nr_pages); | ||
1395 | if (err || nr_pages > UINT_MAX) | ||
1396 | return -EINVAL; | ||
1397 | |||
1398 | ksm_thread_pages_to_scan = nr_pages; | ||
1399 | |||
1400 | return count; | ||
1401 | } | ||
1402 | KSM_ATTR(pages_to_scan); | ||
1403 | |||
1404 | static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, | ||
1405 | char *buf) | ||
1406 | { | ||
1407 | return sprintf(buf, "%u\n", ksm_run); | ||
1408 | } | ||
1409 | |||
1410 | static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, | ||
1411 | const char *buf, size_t count) | ||
1412 | { | ||
1413 | int err; | ||
1414 | unsigned long flags; | ||
1415 | |||
1416 | err = strict_strtoul(buf, 10, &flags); | ||
1417 | if (err || flags > UINT_MAX) | ||
1418 | return -EINVAL; | ||
1419 | if (flags > KSM_RUN_UNMERGE) | ||
1420 | return -EINVAL; | ||
1421 | |||
1422 | /* | ||
1423 | * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. | ||
1424 | * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, | ||
1425 | * breaking COW to free the kernel_pages_allocated (but leaves | ||
1426 | * mm_slots on the list for when ksmd may be set running again). | ||
1427 | */ | ||
1428 | |||
1429 | mutex_lock(&ksm_thread_mutex); | ||
1430 | if (ksm_run != flags) { | ||
1431 | ksm_run = flags; | ||
1432 | if (flags & KSM_RUN_UNMERGE) | ||
1433 | unmerge_and_remove_all_rmap_items(); | ||
1434 | } | ||
1435 | mutex_unlock(&ksm_thread_mutex); | ||
1436 | |||
1437 | if (flags & KSM_RUN_MERGE) | ||
1438 | wake_up_interruptible(&ksm_thread_wait); | ||
1439 | |||
1440 | return count; | ||
1441 | } | ||
1442 | KSM_ATTR(run); | ||
1443 | |||
1444 | static ssize_t pages_shared_show(struct kobject *kobj, | ||
1445 | struct kobj_attribute *attr, char *buf) | ||
1446 | { | ||
1447 | return sprintf(buf, "%lu\n", | ||
1448 | ksm_pages_shared - ksm_kernel_pages_allocated); | ||
1449 | } | ||
1450 | KSM_ATTR_RO(pages_shared); | ||
1451 | |||
1452 | static ssize_t kernel_pages_allocated_show(struct kobject *kobj, | ||
1453 | struct kobj_attribute *attr, | ||
1454 | char *buf) | ||
1455 | { | ||
1456 | return sprintf(buf, "%lu\n", ksm_kernel_pages_allocated); | ||
1457 | } | ||
1458 | KSM_ATTR_RO(kernel_pages_allocated); | ||
1459 | |||
1460 | static ssize_t max_kernel_pages_store(struct kobject *kobj, | ||
1461 | struct kobj_attribute *attr, | ||
1462 | const char *buf, size_t count) | ||
1463 | { | ||
1464 | int err; | ||
1465 | unsigned long nr_pages; | ||
1466 | |||
1467 | err = strict_strtoul(buf, 10, &nr_pages); | ||
1468 | if (err) | ||
1469 | return -EINVAL; | ||
1470 | |||
1471 | ksm_max_kernel_pages = nr_pages; | ||
1472 | |||
1473 | return count; | ||
1474 | } | ||
1475 | |||
1476 | static ssize_t max_kernel_pages_show(struct kobject *kobj, | ||
1477 | struct kobj_attribute *attr, char *buf) | ||
1478 | { | ||
1479 | return sprintf(buf, "%lu\n", ksm_max_kernel_pages); | ||
1480 | } | ||
1481 | KSM_ATTR(max_kernel_pages); | ||
1482 | |||
1483 | static struct attribute *ksm_attrs[] = { | ||
1484 | &sleep_millisecs_attr.attr, | ||
1485 | &pages_to_scan_attr.attr, | ||
1486 | &run_attr.attr, | ||
1487 | &pages_shared_attr.attr, | ||
1488 | &kernel_pages_allocated_attr.attr, | ||
1489 | &max_kernel_pages_attr.attr, | ||
1490 | NULL, | ||
1491 | }; | ||
1492 | |||
1493 | static struct attribute_group ksm_attr_group = { | ||
1494 | .attrs = ksm_attrs, | ||
1495 | .name = "ksm", | ||
1496 | }; | ||
1497 | |||
1498 | static int __init ksm_init(void) | ||
1499 | { | ||
1500 | struct task_struct *ksm_thread; | ||
1501 | int err; | ||
1502 | |||
1503 | err = ksm_slab_init(); | ||
1504 | if (err) | ||
1505 | goto out; | ||
1506 | |||
1507 | err = mm_slots_hash_init(); | ||
1508 | if (err) | ||
1509 | goto out_free1; | ||
1510 | |||
1511 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); | ||
1512 | if (IS_ERR(ksm_thread)) { | ||
1513 | printk(KERN_ERR "ksm: creating kthread failed\n"); | ||
1514 | err = PTR_ERR(ksm_thread); | ||
1515 | goto out_free2; | ||
1516 | } | ||
1517 | |||
1518 | err = sysfs_create_group(mm_kobj, &ksm_attr_group); | ||
1519 | if (err) { | ||
1520 | printk(KERN_ERR "ksm: register sysfs failed\n"); | ||
1521 | goto out_free3; | ||
1522 | } | ||
1523 | |||
1524 | return 0; | ||
1525 | |||
1526 | out_free3: | ||
1527 | kthread_stop(ksm_thread); | ||
1528 | out_free2: | ||
1529 | mm_slots_hash_free(); | ||
1530 | out_free1: | ||
1531 | ksm_slab_free(); | ||
1532 | out: | ||
1533 | return err; | ||
56 | } | 1534 | } |
1535 | module_init(ksm_init) | ||