aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/devicetree/bindings/i2c/trivial-devices.txt1
-rw-r--r--drivers/rtc/Kconfig11
-rw-r--r--drivers/rtc/Makefile1
-rw-r--r--drivers/rtc/rtc-ab-b5ze-s3.c802
4 files changed, 815 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/i2c/trivial-devices.txt b/Documentation/devicetree/bindings/i2c/trivial-devices.txt
index 9f41d05be3be..f9463b492f44 100644
--- a/Documentation/devicetree/bindings/i2c/trivial-devices.txt
+++ b/Documentation/devicetree/bindings/i2c/trivial-devices.txt
@@ -9,6 +9,7 @@ document for it just like any other devices.
9 9
10Compatible Vendor / Chip 10Compatible Vendor / Chip
11========== ============= 11========== =============
12abracon,abb5zes3 AB-RTCMC-32.768kHz-B5ZE-S3: Real Time Clock/Calendar Module with I2C Interface
12ad,ad7414 SMBus/I2C Digital Temperature Sensor in 6-Pin SOT with SMBus Alert and Over Temperature Pin 13ad,ad7414 SMBus/I2C Digital Temperature Sensor in 6-Pin SOT with SMBus Alert and Over Temperature Pin
13ad,adm9240 ADM9240: Complete System Hardware Monitor for uProcessor-Based Systems 14ad,adm9240 ADM9240: Complete System Hardware Monitor for uProcessor-Based Systems
14adi,adt7461 +/-1C TDM Extended Temp Range I.C 15adi,adt7461 +/-1C TDM Extended Temp Range I.C
diff --git a/drivers/rtc/Kconfig b/drivers/rtc/Kconfig
index f15cddfeb897..1b19f327f35f 100644
--- a/drivers/rtc/Kconfig
+++ b/drivers/rtc/Kconfig
@@ -153,6 +153,17 @@ config RTC_DRV_88PM80X
153 This driver can also be built as a module. If so, the module 153 This driver can also be built as a module. If so, the module
154 will be called rtc-88pm80x. 154 will be called rtc-88pm80x.
155 155
156config RTC_DRV_ABB5ZES3
157 depends on I2C
158 select REGMAP_I2C
159 tristate "Abracon AB-RTCMC-32.768kHz-B5ZE-S3"
160 help
161 If you say yes here you get support for the Abracon
162 AB-RTCMC-32.768kHz-B5ZE-S3 I2C RTC chip.
163
164 This driver can also be built as a module. If so, the module
165 will be called rtc-ab-b5ze-s3.
166
156config RTC_DRV_AS3722 167config RTC_DRV_AS3722
157 tristate "ams AS3722 RTC driver" 168 tristate "ams AS3722 RTC driver"
158 depends on MFD_AS3722 169 depends on MFD_AS3722
diff --git a/drivers/rtc/Makefile b/drivers/rtc/Makefile
index c8ef3e1e6ccd..855c4e364058 100644
--- a/drivers/rtc/Makefile
+++ b/drivers/rtc/Makefile
@@ -24,6 +24,7 @@ obj-$(CONFIG_RTC_DRV_88PM860X) += rtc-88pm860x.o
24obj-$(CONFIG_RTC_DRV_88PM80X) += rtc-88pm80x.o 24obj-$(CONFIG_RTC_DRV_88PM80X) += rtc-88pm80x.o
25obj-$(CONFIG_RTC_DRV_AB3100) += rtc-ab3100.o 25obj-$(CONFIG_RTC_DRV_AB3100) += rtc-ab3100.o
26obj-$(CONFIG_RTC_DRV_AB8500) += rtc-ab8500.o 26obj-$(CONFIG_RTC_DRV_AB8500) += rtc-ab8500.o
27obj-$(CONFIG_RTC_DRV_ABB5ZES3) += rtc-ab-b5ze-s3.o
27obj-$(CONFIG_RTC_DRV_AS3722) += rtc-as3722.o 28obj-$(CONFIG_RTC_DRV_AS3722) += rtc-as3722.o
28obj-$(CONFIG_RTC_DRV_AT32AP700X)+= rtc-at32ap700x.o 29obj-$(CONFIG_RTC_DRV_AT32AP700X)+= rtc-at32ap700x.o
29obj-$(CONFIG_RTC_DRV_AT91RM9200)+= rtc-at91rm9200.o 30obj-$(CONFIG_RTC_DRV_AT91RM9200)+= rtc-at91rm9200.o
diff --git a/drivers/rtc/rtc-ab-b5ze-s3.c b/drivers/rtc/rtc-ab-b5ze-s3.c
new file mode 100644
index 000000000000..bbbf06f55e17
--- /dev/null
+++ b/drivers/rtc/rtc-ab-b5ze-s3.c
@@ -0,0 +1,802 @@
1/*
2 * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
3 * I2C RTC / Alarm chip
4 *
5 * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
6 *
7 * Detailed datasheet of the chip is available here:
8 *
9 * http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
10 *
11 * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/rtc.h>
27#include <linux/i2c.h>
28#include <linux/bcd.h>
29#include <linux/of.h>
30#include <linux/regmap.h>
31#include <linux/interrupt.h>
32
33#define DRV_NAME "rtc-ab-b5ze-s3"
34
35/* Control section */
36#define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */
37#define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */
38#define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */
39#define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */
40#define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */
41#define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */
42#define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */
43#define ABB5ZES3_REG_CTRL1_CAP BIT(7)
44
45#define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */
46#define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */
47#define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */
48#define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */
49#define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */
50#define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */
51#define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */
52#define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */
53#define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */
54
55#define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */
56#define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */
57#define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */
58#define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */
59#define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */
60#define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */
61#define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */
62#define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */
63
64#define ABB5ZES3_CTRL_SEC_LEN 3
65
66/* RTC section */
67#define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */
68#define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */
69#define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */
70#define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */
71#define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */
72#define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */
73#define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */
74#define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */
75#define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */
76
77#define ABB5ZES3_RTC_SEC_LEN 7
78
79/* Alarm section (enable bits are all active low) */
80#define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */
81#define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */
82#define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */
83#define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */
84#define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */
85#define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */
86#define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */
87#define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */
88
89#define ABB5ZES3_ALRM_SEC_LEN 4
90
91/* Frequency offset section */
92#define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */
93#define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */
94
95/* CLOCKOUT section */
96#define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */
97#define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */
98#define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */
99#define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */
100#define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */
101#define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */
102#define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */
103#define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */
104#define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */
105
106/* Timer A Section */
107#define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */
108#define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */
109#define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */
110#define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */
111#define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */
112
113#define ABB5ZES3_TIMA_SEC_LEN 2
114
115/* Timer B Section */
116#define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */
117#define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
118#define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
119#define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
120#define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
121#define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
122#define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
123#define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */
124#define ABB5ZES3_TIMB_SEC_LEN 2
125
126#define ABB5ZES3_MEM_MAP_LEN 0x14
127
128struct abb5zes3_rtc_data {
129 struct rtc_device *rtc;
130 struct regmap *regmap;
131 struct mutex lock;
132
133 int irq;
134
135 bool battery_low;
136};
137
138/*
139 * Try and match register bits w/ fixed null values to see whether we
140 * are dealing with an ABB5ZES3. Note: this function is called early
141 * during init and hence does need mutex protection.
142 */
143static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
144{
145 u8 regs[ABB5ZES3_MEM_MAP_LEN];
146 static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
147 0x80, 0xc0, 0xc0, 0xf8,
148 0xe0, 0x00, 0x00, 0x40,
149 0x40, 0x78, 0x00, 0x00,
150 0xf8, 0x00, 0x88, 0x00 };
151 int ret, i;
152
153 ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
154 if (ret)
155 return ret;
156
157 for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
158 if (regs[i] & mask[i]) /* check if bits are cleared */
159 return -ENODEV;
160 }
161
162 return 0;
163}
164
165/* Clear alarm status bit. */
166static int _abb5zes3_rtc_clear_alarm(struct device *dev)
167{
168 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
169 int ret;
170
171 ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
172 ABB5ZES3_REG_CTRL2_AF, 0);
173 if (ret)
174 dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
175
176 return ret;
177}
178
179/* Enable or disable alarm (i.e. alarm interrupt generation) */
180static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
181{
182 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
183 int ret;
184
185 ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
186 ABB5ZES3_REG_CTRL1_AIE,
187 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
188 if (ret)
189 dev_err(dev, "%s: writing alarm INT failed (%d)\n",
190 __func__, ret);
191
192 return ret;
193}
194
195/*
196 * Note: we only read, so regmap inner lock protection is sufficient, i.e.
197 * we do not need driver's main lock protection.
198 */
199static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
200{
201 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
202 u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
203 int ret;
204
205 /*
206 * As we need to read CTRL1 register anyway to access 24/12h
207 * mode bit, we do a single bulk read of both control and RTC
208 * sections (they are consecutive). This also ease indexing
209 * of register values after bulk read.
210 */
211 ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
212 sizeof(regs));
213 if (ret) {
214 dev_err(dev, "%s: reading RTC time failed (%d)\n",
215 __func__, ret);
216 goto err;
217 }
218
219 /* If clock integrity is not guaranteed, do not return a time value */
220 if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
221 ret = -ENODATA;
222 goto err;
223 }
224
225 tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
226 tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
227
228 if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
229 tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
230 if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
231 tm->tm_hour += 12;
232 } else { /* 24hr mode */
233 tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
234 }
235
236 tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
237 tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
238 tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
239 tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
240
241 ret = rtc_valid_tm(tm);
242
243err:
244 return ret;
245}
246
247static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
248{
249 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
250 u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
251 int ret;
252
253 /*
254 * Year register is 8-bit wide and bcd-coded, i.e records values
255 * between 0 and 99. tm_year is an offset from 1900 and we are
256 * interested in the 2000-2099 range, so any value less than 100
257 * is invalid.
258 */
259 if (tm->tm_year < 100)
260 return -EINVAL;
261
262 regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
263 regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
264 regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
265 regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
266 regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
267 regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
268 regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
269
270 mutex_lock(&data->lock);
271 ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
272 regs + ABB5ZES3_REG_RTC_SC,
273 ABB5ZES3_RTC_SEC_LEN);
274 mutex_unlock(&data->lock);
275
276
277 return ret;
278}
279
280static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
281{
282 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
283 struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
284 unsigned long rtc_secs, alarm_secs;
285 u8 regs[ABB5ZES3_ALRM_SEC_LEN];
286 unsigned int reg;
287 int ret;
288
289 mutex_lock(&data->lock);
290 ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
291 ABB5ZES3_ALRM_SEC_LEN);
292 if (ret) {
293 dev_err(dev, "%s: reading alarm section failed (%d)\n",
294 __func__, ret);
295 goto err;
296 }
297
298 alarm_tm->tm_sec = 0;
299 alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f);
300 alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
301 alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
302 alarm_tm->tm_wday = -1;
303
304 /*
305 * The alarm section does not store year/month. We use the ones in rtc
306 * section as a basis and increment month and then year if needed to get
307 * alarm after current time.
308 */
309 ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
310 if (ret)
311 goto err;
312
313 alarm_tm->tm_year = rtc_tm.tm_year;
314 alarm_tm->tm_mon = rtc_tm.tm_mon;
315
316 ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
317 if (ret)
318 goto err;
319
320 ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
321 if (ret)
322 goto err;
323
324 if (alarm_secs < rtc_secs) {
325 if (alarm_tm->tm_mon == 11) {
326 alarm_tm->tm_mon = 0;
327 alarm_tm->tm_year += 1;
328 } else {
329 alarm_tm->tm_mon += 1;
330 }
331 }
332
333 ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
334 if (ret) {
335 dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
336 __func__, ret);
337 goto err;
338 }
339
340 alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
341
342err:
343 mutex_unlock(&data->lock);
344
345 return ret;
346}
347
348/* ALARM is only accurate to the minute (not the second) */
349static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
350{
351 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
352 struct rtc_time *alarm_tm = &alarm->time;
353 unsigned long rtc_secs, alarm_secs;
354 u8 regs[ABB5ZES3_ALRM_SEC_LEN];
355 struct rtc_time rtc_tm;
356 int ret, enable = 1;
357
358 mutex_lock(&data->lock);
359 ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
360 if (ret)
361 goto err;
362
363 ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
364 if (ret)
365 goto err;
366
367 ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
368 if (ret)
369 goto err;
370
371 /* If alarm time is before current time, disable the alarm */
372 if (!alarm->enabled || alarm_secs <= rtc_secs) {
373 enable = 0;
374 } else {
375 /*
376 * Chip only support alarms up to one month in the future. Let's
377 * return an error if we get something after that limit.
378 * Comparison is done by incrementing rtc_tm month field by one
379 * and checking alarm value is still below.
380 */
381 if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
382 rtc_tm.tm_mon = 0;
383 rtc_tm.tm_year += 1;
384 } else {
385 rtc_tm.tm_mon += 1;
386 }
387
388 ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
389 if (ret)
390 goto err;
391
392 if (alarm_secs > rtc_secs) {
393 dev_err(dev, "%s: alarm maximum is one month in the "
394 "future (%d)\n", __func__, ret);
395 ret = -EINVAL;
396 goto err;
397 }
398 }
399
400 /* Disable the alarm before modifying it */
401 ret = _abb5zes3_rtc_update_alarm(dev, 0);
402 if (ret < 0) {
403 dev_err(dev, "%s: unable to disable the alarm (%d)\n",
404 __func__, ret);
405 goto err;
406 }
407
408 /* Program alarm registers */
409 regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; /* minute */
410 regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; /* hour */
411 regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; /* day of the month */
412 regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
413
414 ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
415 ABB5ZES3_ALRM_SEC_LEN);
416 if (ret < 0) {
417 dev_err(dev, "%s: writing ALARM section failed (%d)\n",
418 __func__, ret);
419 goto err;
420 }
421
422 /* Enable or disable alarm */
423 ret = _abb5zes3_rtc_update_alarm(dev, enable);
424
425err:
426 mutex_unlock(&data->lock);
427
428 return ret;
429}
430
431
432/* Enable or disable battery low irq generation */
433static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
434 bool enable)
435{
436 return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
437 ABB5ZES3_REG_CTRL3_BLIE,
438 enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
439}
440
441/*
442 * Check current RTC status and enable/disable what needs to be. Return 0 if
443 * everything went ok and a negative value upon error. Note: this function
444 * is called early during init and hence does need mutex protection.
445 */
446static int abb5zes3_rtc_check_setup(struct device *dev)
447{
448 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
449 struct regmap *regmap = data->regmap;
450 unsigned int reg;
451 int ret;
452 u8 mask;
453
454 /*
455 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
456 * is disabled here to prevent polluting the interrupt line and
457 * uselessly triggering the IRQ handler we install for alarm and battery
458 * low events. Note: this is done before clearing int. status below
459 * in this function.
460 * We also disable all timers and set timer interrupt to permanent (not
461 * pulsed).
462 */
463 mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
464 ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
465 ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
466 ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
467 ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
468 ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
469 ABB5ZES3_REG_TIM_CLK_COF2);
470 if (ret < 0) {
471 dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
472 __func__, ret);
473 return ret;
474 }
475
476 /*
477 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
478 * individually by clearing/setting MSB of each associated register. So,
479 * we set all alarm enable bits to disable current alarm setting.
480 */
481 mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
482 ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
483 ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
484 if (ret < 0) {
485 dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
486 __func__, ret);
487 return ret;
488 }
489
490 /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
491 mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
492 ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
493 ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
494 ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
495 if (ret < 0) {
496 dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
497 __func__, ret);
498 return ret;
499 }
500
501 /*
502 * Set Control 2 register (timer int. disabled, alarm status cleared).
503 * WTAF is read-only and cleared automatically by reading the register.
504 */
505 mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
506 ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
507 ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
508 ABB5ZES3_REG_CTRL2_CTAF);
509 ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
510 if (ret < 0) {
511 dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
512 __func__, ret);
513 return ret;
514 }
515
516 /*
517 * Enable battery low detection function and battery switchover function
518 * (standard mode). Disable associated interrupts. Clear battery
519 * switchover flag but not battery low flag. The latter is checked
520 * later below.
521 */
522 mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
523 ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
524 ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
525 ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
526 if (ret < 0) {
527 dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
528 __func__, ret);
529 return ret;
530 }
531
532 /* Check oscillator integrity flag */
533 ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
534 if (ret < 0) {
535 dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
536 __func__, ret);
537 return ret;
538 }
539
540 if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
541 dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
542 "or has been interrupted.\n");
543 dev_err(dev, "change battery (if not already done) and "
544 "then set time to reset osc. failure flag.\n");
545 }
546
547 /*
548 * Check battery low flag at startup: this allows reporting battery
549 * is low at startup when IRQ line is not connected. Note: we record
550 * current status to avoid reenabling this interrupt later in probe
551 * function if battery is low.
552 */
553 ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
554 if (ret < 0) {
555 dev_err(dev, "%s: unable to read battery low flag (%d)\n",
556 __func__, ret);
557 return ret;
558 }
559
560 data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
561 if (data->battery_low) {
562 dev_err(dev, "RTC battery is low; please, consider "
563 "changing it!\n");
564
565 ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
566 if (ret)
567 dev_err(dev, "%s: disabling battery low interrupt "
568 "generation failed (%d)\n", __func__, ret);
569 }
570
571 return ret;
572}
573
574static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
575 unsigned int enable)
576{
577 struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
578 int ret = 0;
579
580 if (rtc_data->irq) {
581 mutex_lock(&rtc_data->lock);
582 ret = _abb5zes3_rtc_update_alarm(dev, enable);
583 mutex_unlock(&rtc_data->lock);
584 }
585
586 return ret;
587}
588
589static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
590{
591 struct i2c_client *client = data;
592 struct device *dev = &client->dev;
593 struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
594 struct rtc_device *rtc = rtc_data->rtc;
595 u8 regs[ABB5ZES3_CTRL_SEC_LEN];
596 int ret, handled = IRQ_NONE;
597
598 ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
599 ABB5ZES3_CTRL_SEC_LEN);
600 if (ret) {
601 dev_err(dev, "%s: unable to read control section (%d)!\n",
602 __func__, ret);
603 return handled;
604 }
605
606 /*
607 * Check battery low detection flag and disable battery low interrupt
608 * generation if flag is set (interrupt can only be cleared when
609 * battery is replaced).
610 */
611 if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
612 dev_err(dev, "RTC battery is low; please change it!\n");
613
614 _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
615
616 handled = IRQ_HANDLED;
617 }
618
619 /* Check alarm flag */
620 if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
621 dev_dbg(dev, "RTC alarm!\n");
622
623 rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
624
625 /* Acknowledge and disable the alarm */
626 _abb5zes3_rtc_clear_alarm(dev);
627 _abb5zes3_rtc_update_alarm(dev, 0);
628
629 handled = IRQ_HANDLED;
630 }
631
632 return handled;
633}
634
635static const struct rtc_class_ops rtc_ops = {
636 .read_time = _abb5zes3_rtc_read_time,
637 .set_time = abb5zes3_rtc_set_time,
638 .read_alarm = abb5zes3_rtc_read_alarm,
639 .set_alarm = abb5zes3_rtc_set_alarm,
640 .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
641};
642
643static struct regmap_config abb5zes3_rtc_regmap_config = {
644 .reg_bits = 8,
645 .val_bits = 8,
646};
647
648static int abb5zes3_probe(struct i2c_client *client,
649 const struct i2c_device_id *id)
650{
651 struct abb5zes3_rtc_data *data = NULL;
652 struct device *dev = &client->dev;
653 struct regmap *regmap;
654 int ret;
655
656 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
657 I2C_FUNC_SMBUS_BYTE_DATA |
658 I2C_FUNC_SMBUS_I2C_BLOCK)) {
659 ret = -ENODEV;
660 goto err;
661 }
662
663 regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
664 if (IS_ERR(regmap)) {
665 ret = PTR_ERR(regmap);
666 dev_err(dev, "%s: regmap allocation failed: %d\n",
667 __func__, ret);
668 goto err;
669 }
670
671 ret = abb5zes3_i2c_validate_chip(regmap);
672 if (ret)
673 goto err;
674
675 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
676 if (!data) {
677 ret = -ENOMEM;
678 goto err;
679 }
680
681 mutex_init(&data->lock);
682 data->regmap = regmap;
683 dev_set_drvdata(dev, data);
684
685 ret = abb5zes3_rtc_check_setup(dev);
686 if (ret)
687 goto err;
688
689 if (client->irq > 0) {
690 ret = devm_request_threaded_irq(dev, client->irq, NULL,
691 _abb5zes3_rtc_interrupt,
692 IRQF_SHARED|IRQF_ONESHOT,
693 DRV_NAME, client);
694 if (!ret) {
695 device_init_wakeup(dev, true);
696 data->irq = client->irq;
697 dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
698 client->irq);
699 } else {
700 dev_err(dev, "%s: irq %d unavailable (%d)\n",
701 __func__, client->irq, ret);
702 goto err;
703 }
704 }
705
706 data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
707 THIS_MODULE);
708 ret = PTR_ERR_OR_ZERO(data->rtc);
709 if (ret) {
710 dev_err(dev, "%s: unable to register RTC device (%d)\n",
711 __func__, ret);
712 goto err;
713 }
714
715 /*
716 * AB-B5Z5E only supports a coarse granularity alarm (one minute
717 * resolution up to one month) so we cannot support UIE mode
718 * using the device's alarm. Note it should be feasible to support
719 * such a feature using one of the two timers the device provides.
720 */
721 data->rtc->uie_unsupported = 1;
722
723 /* Enable battery low detection interrupt if battery not already low */
724 if (!data->battery_low && data->irq) {
725 ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
726 if (ret) {
727 dev_err(dev, "%s: enabling battery low interrupt "
728 "generation failed (%d)\n", __func__, ret);
729 goto err;
730 }
731 }
732
733err:
734 if (ret && data && data->irq)
735 device_init_wakeup(dev, false);
736 return ret;
737}
738
739static int abb5zes3_remove(struct i2c_client *client)
740{
741 struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
742
743 if (rtc_data->irq > 0)
744 device_init_wakeup(&client->dev, false);
745
746 return 0;
747}
748
749#ifdef CONFIG_PM_SLEEP
750static int abb5zes3_rtc_suspend(struct device *dev)
751{
752 struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
753
754 if (device_may_wakeup(dev))
755 return enable_irq_wake(rtc_data->irq);
756
757 return 0;
758}
759
760static int abb5zes3_rtc_resume(struct device *dev)
761{
762 struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
763
764 if (device_may_wakeup(dev))
765 return disable_irq_wake(rtc_data->irq);
766
767 return 0;
768}
769#endif
770
771static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
772 abb5zes3_rtc_resume);
773
774#ifdef CONFIG_OF
775static const struct of_device_id abb5zes3_dt_match[] = {
776 { .compatible = "abracon,abb5zes3" },
777 { },
778};
779#endif
780
781static const struct i2c_device_id abb5zes3_id[] = {
782 { "abb5zes3", 0 },
783 { }
784};
785MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
786
787static struct i2c_driver abb5zes3_driver = {
788 .driver = {
789 .name = DRV_NAME,
790 .owner = THIS_MODULE,
791 .pm = &abb5zes3_rtc_pm_ops,
792 .of_match_table = of_match_ptr(abb5zes3_dt_match),
793 },
794 .probe = abb5zes3_probe,
795 .remove = abb5zes3_remove,
796 .id_table = abb5zes3_id,
797};
798module_i2c_driver(abb5zes3_driver);
799
800MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
801MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
802MODULE_LICENSE("GPL");