diff options
-rw-r--r-- | include/linux/ring_buffer.h | 130 | ||||
-rw-r--r-- | kernel/trace/Kconfig | 4 | ||||
-rw-r--r-- | kernel/trace/Makefile | 1 | ||||
-rw-r--r-- | kernel/trace/ring_buffer.c | 1672 |
4 files changed, 1807 insertions, 0 deletions
diff --git a/include/linux/ring_buffer.h b/include/linux/ring_buffer.h new file mode 100644 index 000000000000..c52375b8330d --- /dev/null +++ b/include/linux/ring_buffer.h | |||
@@ -0,0 +1,130 @@ | |||
1 | #ifndef _LINUX_RING_BUFFER_H | ||
2 | #define _LINUX_RING_BUFFER_H | ||
3 | |||
4 | #include <linux/mm.h> | ||
5 | #include <linux/seq_file.h> | ||
6 | |||
7 | struct ring_buffer; | ||
8 | struct ring_buffer_iter; | ||
9 | |||
10 | /* | ||
11 | * Don't reference this struct directly, use functions below. | ||
12 | */ | ||
13 | struct ring_buffer_event { | ||
14 | u32 type:2, len:3, time_delta:27; | ||
15 | u32 array[]; | ||
16 | }; | ||
17 | |||
18 | /** | ||
19 | * enum ring_buffer_type - internal ring buffer types | ||
20 | * | ||
21 | * @RINGBUF_TYPE_PADDING: Left over page padding | ||
22 | * array is ignored | ||
23 | * size is variable depending on how much | ||
24 | * padding is needed | ||
25 | * | ||
26 | * @RINGBUF_TYPE_TIME_EXTEND: Extend the time delta | ||
27 | * array[0] = time delta (28 .. 59) | ||
28 | * size = 8 bytes | ||
29 | * | ||
30 | * @RINGBUF_TYPE_TIME_STAMP: Sync time stamp with external clock | ||
31 | * array[0] = tv_nsec | ||
32 | * array[1] = tv_sec | ||
33 | * size = 16 bytes | ||
34 | * | ||
35 | * @RINGBUF_TYPE_DATA: Data record | ||
36 | * If len is zero: | ||
37 | * array[0] holds the actual length | ||
38 | * array[1..(length+3)/4-1] holds data | ||
39 | * else | ||
40 | * length = len << 2 | ||
41 | * array[0..(length+3)/4] holds data | ||
42 | */ | ||
43 | enum ring_buffer_type { | ||
44 | RINGBUF_TYPE_PADDING, | ||
45 | RINGBUF_TYPE_TIME_EXTEND, | ||
46 | /* FIXME: RINGBUF_TYPE_TIME_STAMP not implemented */ | ||
47 | RINGBUF_TYPE_TIME_STAMP, | ||
48 | RINGBUF_TYPE_DATA, | ||
49 | }; | ||
50 | |||
51 | unsigned ring_buffer_event_length(struct ring_buffer_event *event); | ||
52 | void *ring_buffer_event_data(struct ring_buffer_event *event); | ||
53 | |||
54 | /** | ||
55 | * ring_buffer_event_time_delta - return the delta timestamp of the event | ||
56 | * @event: the event to get the delta timestamp of | ||
57 | * | ||
58 | * The delta timestamp is the 27 bit timestamp since the last event. | ||
59 | */ | ||
60 | static inline unsigned | ||
61 | ring_buffer_event_time_delta(struct ring_buffer_event *event) | ||
62 | { | ||
63 | return event->time_delta; | ||
64 | } | ||
65 | |||
66 | void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags); | ||
67 | void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags); | ||
68 | |||
69 | /* | ||
70 | * size is in bytes for each per CPU buffer. | ||
71 | */ | ||
72 | struct ring_buffer * | ||
73 | ring_buffer_alloc(unsigned long size, unsigned flags); | ||
74 | void ring_buffer_free(struct ring_buffer *buffer); | ||
75 | |||
76 | int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size); | ||
77 | |||
78 | struct ring_buffer_event * | ||
79 | ring_buffer_lock_reserve(struct ring_buffer *buffer, | ||
80 | unsigned long length, | ||
81 | unsigned long *flags); | ||
82 | int ring_buffer_unlock_commit(struct ring_buffer *buffer, | ||
83 | struct ring_buffer_event *event, | ||
84 | unsigned long flags); | ||
85 | int ring_buffer_write(struct ring_buffer *buffer, | ||
86 | unsigned long length, void *data); | ||
87 | |||
88 | struct ring_buffer_event * | ||
89 | ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts); | ||
90 | struct ring_buffer_event * | ||
91 | ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts); | ||
92 | |||
93 | struct ring_buffer_iter * | ||
94 | ring_buffer_read_start(struct ring_buffer *buffer, int cpu); | ||
95 | void ring_buffer_read_finish(struct ring_buffer_iter *iter); | ||
96 | |||
97 | struct ring_buffer_event * | ||
98 | ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts); | ||
99 | struct ring_buffer_event * | ||
100 | ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts); | ||
101 | void ring_buffer_iter_reset(struct ring_buffer_iter *iter); | ||
102 | int ring_buffer_iter_empty(struct ring_buffer_iter *iter); | ||
103 | |||
104 | unsigned long ring_buffer_size(struct ring_buffer *buffer); | ||
105 | |||
106 | void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu); | ||
107 | void ring_buffer_reset(struct ring_buffer *buffer); | ||
108 | |||
109 | int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, | ||
110 | struct ring_buffer *buffer_b, int cpu); | ||
111 | |||
112 | int ring_buffer_empty(struct ring_buffer *buffer); | ||
113 | int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu); | ||
114 | |||
115 | void ring_buffer_record_disable(struct ring_buffer *buffer); | ||
116 | void ring_buffer_record_enable(struct ring_buffer *buffer); | ||
117 | void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu); | ||
118 | void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu); | ||
119 | |||
120 | unsigned long ring_buffer_entries(struct ring_buffer *buffer); | ||
121 | unsigned long ring_buffer_overruns(struct ring_buffer *buffer); | ||
122 | |||
123 | u64 ring_buffer_time_stamp(int cpu); | ||
124 | void ring_buffer_normalize_time_stamp(int cpu, u64 *ts); | ||
125 | |||
126 | enum ring_buffer_flags { | ||
127 | RB_FL_OVERWRITE = 1 << 0, | ||
128 | }; | ||
129 | |||
130 | #endif /* _LINUX_RING_BUFFER_H */ | ||
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index 4feb3c81f94d..396aea11398e 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
@@ -18,9 +18,13 @@ config HAVE_FTRACE_MCOUNT_RECORD | |||
18 | config TRACER_MAX_TRACE | 18 | config TRACER_MAX_TRACE |
19 | bool | 19 | bool |
20 | 20 | ||
21 | config RING_BUFFER | ||
22 | bool | ||
23 | |||
21 | config TRACING | 24 | config TRACING |
22 | bool | 25 | bool |
23 | select DEBUG_FS | 26 | select DEBUG_FS |
27 | select RING_BUFFER | ||
24 | select STACKTRACE | 28 | select STACKTRACE |
25 | select TRACEPOINTS | 29 | select TRACEPOINTS |
26 | 30 | ||
diff --git a/kernel/trace/Makefile b/kernel/trace/Makefile index 35a07f7cfa86..a85dfba88ba0 100644 --- a/kernel/trace/Makefile +++ b/kernel/trace/Makefile | |||
@@ -11,6 +11,7 @@ obj-y += trace_selftest_dynamic.o | |||
11 | endif | 11 | endif |
12 | 12 | ||
13 | obj-$(CONFIG_FTRACE) += libftrace.o | 13 | obj-$(CONFIG_FTRACE) += libftrace.o |
14 | obj-$(CONFIG_RING_BUFFER) += ring_buffer.o | ||
14 | 15 | ||
15 | obj-$(CONFIG_TRACING) += trace.o | 16 | obj-$(CONFIG_TRACING) += trace.o |
16 | obj-$(CONFIG_CONTEXT_SWITCH_TRACER) += trace_sched_switch.o | 17 | obj-$(CONFIG_CONTEXT_SWITCH_TRACER) += trace_sched_switch.o |
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c new file mode 100644 index 000000000000..830a2930dd91 --- /dev/null +++ b/kernel/trace/ring_buffer.c | |||
@@ -0,0 +1,1672 @@ | |||
1 | /* | ||
2 | * Generic ring buffer | ||
3 | * | ||
4 | * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> | ||
5 | */ | ||
6 | #include <linux/ring_buffer.h> | ||
7 | #include <linux/spinlock.h> | ||
8 | #include <linux/debugfs.h> | ||
9 | #include <linux/uaccess.h> | ||
10 | #include <linux/module.h> | ||
11 | #include <linux/percpu.h> | ||
12 | #include <linux/mutex.h> | ||
13 | #include <linux/sched.h> /* used for sched_clock() (for now) */ | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/hash.h> | ||
16 | #include <linux/list.h> | ||
17 | #include <linux/fs.h> | ||
18 | |||
19 | /* Up this if you want to test the TIME_EXTENTS and normalization */ | ||
20 | #define DEBUG_SHIFT 0 | ||
21 | |||
22 | /* FIXME!!! */ | ||
23 | u64 ring_buffer_time_stamp(int cpu) | ||
24 | { | ||
25 | /* shift to debug/test normalization and TIME_EXTENTS */ | ||
26 | return sched_clock() << DEBUG_SHIFT; | ||
27 | } | ||
28 | |||
29 | void ring_buffer_normalize_time_stamp(int cpu, u64 *ts) | ||
30 | { | ||
31 | /* Just stupid testing the normalize function and deltas */ | ||
32 | *ts >>= DEBUG_SHIFT; | ||
33 | } | ||
34 | |||
35 | #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event)) | ||
36 | #define RB_ALIGNMENT_SHIFT 2 | ||
37 | #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT) | ||
38 | #define RB_MAX_SMALL_DATA 28 | ||
39 | |||
40 | enum { | ||
41 | RB_LEN_TIME_EXTEND = 8, | ||
42 | RB_LEN_TIME_STAMP = 16, | ||
43 | }; | ||
44 | |||
45 | /* inline for ring buffer fast paths */ | ||
46 | static inline unsigned | ||
47 | rb_event_length(struct ring_buffer_event *event) | ||
48 | { | ||
49 | unsigned length; | ||
50 | |||
51 | switch (event->type) { | ||
52 | case RINGBUF_TYPE_PADDING: | ||
53 | /* undefined */ | ||
54 | return -1; | ||
55 | |||
56 | case RINGBUF_TYPE_TIME_EXTEND: | ||
57 | return RB_LEN_TIME_EXTEND; | ||
58 | |||
59 | case RINGBUF_TYPE_TIME_STAMP: | ||
60 | return RB_LEN_TIME_STAMP; | ||
61 | |||
62 | case RINGBUF_TYPE_DATA: | ||
63 | if (event->len) | ||
64 | length = event->len << RB_ALIGNMENT_SHIFT; | ||
65 | else | ||
66 | length = event->array[0]; | ||
67 | return length + RB_EVNT_HDR_SIZE; | ||
68 | default: | ||
69 | BUG(); | ||
70 | } | ||
71 | /* not hit */ | ||
72 | return 0; | ||
73 | } | ||
74 | |||
75 | /** | ||
76 | * ring_buffer_event_length - return the length of the event | ||
77 | * @event: the event to get the length of | ||
78 | */ | ||
79 | unsigned ring_buffer_event_length(struct ring_buffer_event *event) | ||
80 | { | ||
81 | return rb_event_length(event); | ||
82 | } | ||
83 | |||
84 | /* inline for ring buffer fast paths */ | ||
85 | static inline void * | ||
86 | rb_event_data(struct ring_buffer_event *event) | ||
87 | { | ||
88 | BUG_ON(event->type != RINGBUF_TYPE_DATA); | ||
89 | /* If length is in len field, then array[0] has the data */ | ||
90 | if (event->len) | ||
91 | return (void *)&event->array[0]; | ||
92 | /* Otherwise length is in array[0] and array[1] has the data */ | ||
93 | return (void *)&event->array[1]; | ||
94 | } | ||
95 | |||
96 | /** | ||
97 | * ring_buffer_event_data - return the data of the event | ||
98 | * @event: the event to get the data from | ||
99 | */ | ||
100 | void *ring_buffer_event_data(struct ring_buffer_event *event) | ||
101 | { | ||
102 | return rb_event_data(event); | ||
103 | } | ||
104 | |||
105 | #define for_each_buffer_cpu(buffer, cpu) \ | ||
106 | for_each_cpu_mask(cpu, buffer->cpumask) | ||
107 | |||
108 | #define TS_SHIFT 27 | ||
109 | #define TS_MASK ((1ULL << TS_SHIFT) - 1) | ||
110 | #define TS_DELTA_TEST (~TS_MASK) | ||
111 | |||
112 | /* | ||
113 | * This hack stolen from mm/slob.c. | ||
114 | * We can store per page timing information in the page frame of the page. | ||
115 | * Thanks to Peter Zijlstra for suggesting this idea. | ||
116 | */ | ||
117 | struct buffer_page { | ||
118 | union { | ||
119 | struct { | ||
120 | unsigned long flags; /* mandatory */ | ||
121 | atomic_t _count; /* mandatory */ | ||
122 | u64 time_stamp; /* page time stamp */ | ||
123 | unsigned size; /* size of page data */ | ||
124 | struct list_head list; /* list of free pages */ | ||
125 | }; | ||
126 | struct page page; | ||
127 | }; | ||
128 | }; | ||
129 | |||
130 | /* | ||
131 | * We need to fit the time_stamp delta into 27 bits. | ||
132 | */ | ||
133 | static inline int test_time_stamp(u64 delta) | ||
134 | { | ||
135 | if (delta & TS_DELTA_TEST) | ||
136 | return 1; | ||
137 | return 0; | ||
138 | } | ||
139 | |||
140 | #define BUF_PAGE_SIZE PAGE_SIZE | ||
141 | |||
142 | /* | ||
143 | * head_page == tail_page && head == tail then buffer is empty. | ||
144 | */ | ||
145 | struct ring_buffer_per_cpu { | ||
146 | int cpu; | ||
147 | struct ring_buffer *buffer; | ||
148 | spinlock_t lock; | ||
149 | struct lock_class_key lock_key; | ||
150 | struct list_head pages; | ||
151 | unsigned long head; /* read from head */ | ||
152 | unsigned long tail; /* write to tail */ | ||
153 | struct buffer_page *head_page; | ||
154 | struct buffer_page *tail_page; | ||
155 | unsigned long overrun; | ||
156 | unsigned long entries; | ||
157 | u64 write_stamp; | ||
158 | u64 read_stamp; | ||
159 | atomic_t record_disabled; | ||
160 | }; | ||
161 | |||
162 | struct ring_buffer { | ||
163 | unsigned long size; | ||
164 | unsigned pages; | ||
165 | unsigned flags; | ||
166 | int cpus; | ||
167 | cpumask_t cpumask; | ||
168 | atomic_t record_disabled; | ||
169 | |||
170 | struct mutex mutex; | ||
171 | |||
172 | struct ring_buffer_per_cpu **buffers; | ||
173 | }; | ||
174 | |||
175 | struct ring_buffer_iter { | ||
176 | struct ring_buffer_per_cpu *cpu_buffer; | ||
177 | unsigned long head; | ||
178 | struct buffer_page *head_page; | ||
179 | u64 read_stamp; | ||
180 | }; | ||
181 | |||
182 | #define RB_WARN_ON(buffer, cond) \ | ||
183 | if (unlikely(cond)) { \ | ||
184 | atomic_inc(&buffer->record_disabled); \ | ||
185 | WARN_ON(1); \ | ||
186 | return -1; \ | ||
187 | } | ||
188 | |||
189 | /** | ||
190 | * check_pages - integrity check of buffer pages | ||
191 | * @cpu_buffer: CPU buffer with pages to test | ||
192 | * | ||
193 | * As a safty measure we check to make sure the data pages have not | ||
194 | * been corrupted. | ||
195 | */ | ||
196 | static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) | ||
197 | { | ||
198 | struct list_head *head = &cpu_buffer->pages; | ||
199 | struct buffer_page *page, *tmp; | ||
200 | |||
201 | RB_WARN_ON(cpu_buffer, head->next->prev != head); | ||
202 | RB_WARN_ON(cpu_buffer, head->prev->next != head); | ||
203 | |||
204 | list_for_each_entry_safe(page, tmp, head, list) { | ||
205 | RB_WARN_ON(cpu_buffer, page->list.next->prev != &page->list); | ||
206 | RB_WARN_ON(cpu_buffer, page->list.prev->next != &page->list); | ||
207 | } | ||
208 | |||
209 | return 0; | ||
210 | } | ||
211 | |||
212 | static unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer) | ||
213 | { | ||
214 | return cpu_buffer->head_page->size; | ||
215 | } | ||
216 | |||
217 | static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, | ||
218 | unsigned nr_pages) | ||
219 | { | ||
220 | struct list_head *head = &cpu_buffer->pages; | ||
221 | struct buffer_page *page, *tmp; | ||
222 | unsigned long addr; | ||
223 | LIST_HEAD(pages); | ||
224 | unsigned i; | ||
225 | |||
226 | for (i = 0; i < nr_pages; i++) { | ||
227 | addr = __get_free_page(GFP_KERNEL); | ||
228 | if (!addr) | ||
229 | goto free_pages; | ||
230 | page = (struct buffer_page *)virt_to_page(addr); | ||
231 | list_add(&page->list, &pages); | ||
232 | } | ||
233 | |||
234 | list_splice(&pages, head); | ||
235 | |||
236 | rb_check_pages(cpu_buffer); | ||
237 | |||
238 | return 0; | ||
239 | |||
240 | free_pages: | ||
241 | list_for_each_entry_safe(page, tmp, &pages, list) { | ||
242 | list_del_init(&page->list); | ||
243 | __free_page(&page->page); | ||
244 | } | ||
245 | return -ENOMEM; | ||
246 | } | ||
247 | |||
248 | static struct ring_buffer_per_cpu * | ||
249 | rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) | ||
250 | { | ||
251 | struct ring_buffer_per_cpu *cpu_buffer; | ||
252 | int ret; | ||
253 | |||
254 | cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), | ||
255 | GFP_KERNEL, cpu_to_node(cpu)); | ||
256 | if (!cpu_buffer) | ||
257 | return NULL; | ||
258 | |||
259 | cpu_buffer->cpu = cpu; | ||
260 | cpu_buffer->buffer = buffer; | ||
261 | spin_lock_init(&cpu_buffer->lock); | ||
262 | INIT_LIST_HEAD(&cpu_buffer->pages); | ||
263 | |||
264 | ret = rb_allocate_pages(cpu_buffer, buffer->pages); | ||
265 | if (ret < 0) | ||
266 | goto fail_free_buffer; | ||
267 | |||
268 | cpu_buffer->head_page | ||
269 | = list_entry(cpu_buffer->pages.next, struct buffer_page, list); | ||
270 | cpu_buffer->tail_page | ||
271 | = list_entry(cpu_buffer->pages.next, struct buffer_page, list); | ||
272 | |||
273 | return cpu_buffer; | ||
274 | |||
275 | fail_free_buffer: | ||
276 | kfree(cpu_buffer); | ||
277 | return NULL; | ||
278 | } | ||
279 | |||
280 | static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) | ||
281 | { | ||
282 | struct list_head *head = &cpu_buffer->pages; | ||
283 | struct buffer_page *page, *tmp; | ||
284 | |||
285 | list_for_each_entry_safe(page, tmp, head, list) { | ||
286 | list_del_init(&page->list); | ||
287 | __free_page(&page->page); | ||
288 | } | ||
289 | kfree(cpu_buffer); | ||
290 | } | ||
291 | |||
292 | /** | ||
293 | * ring_buffer_alloc - allocate a new ring_buffer | ||
294 | * @size: the size in bytes that is needed. | ||
295 | * @flags: attributes to set for the ring buffer. | ||
296 | * | ||
297 | * Currently the only flag that is available is the RB_FL_OVERWRITE | ||
298 | * flag. This flag means that the buffer will overwrite old data | ||
299 | * when the buffer wraps. If this flag is not set, the buffer will | ||
300 | * drop data when the tail hits the head. | ||
301 | */ | ||
302 | struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags) | ||
303 | { | ||
304 | struct ring_buffer *buffer; | ||
305 | int bsize; | ||
306 | int cpu; | ||
307 | |||
308 | /* keep it in its own cache line */ | ||
309 | buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), | ||
310 | GFP_KERNEL); | ||
311 | if (!buffer) | ||
312 | return NULL; | ||
313 | |||
314 | buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); | ||
315 | buffer->flags = flags; | ||
316 | |||
317 | /* need at least two pages */ | ||
318 | if (buffer->pages == 1) | ||
319 | buffer->pages++; | ||
320 | |||
321 | buffer->cpumask = cpu_possible_map; | ||
322 | buffer->cpus = nr_cpu_ids; | ||
323 | |||
324 | bsize = sizeof(void *) * nr_cpu_ids; | ||
325 | buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), | ||
326 | GFP_KERNEL); | ||
327 | if (!buffer->buffers) | ||
328 | goto fail_free_buffer; | ||
329 | |||
330 | for_each_buffer_cpu(buffer, cpu) { | ||
331 | buffer->buffers[cpu] = | ||
332 | rb_allocate_cpu_buffer(buffer, cpu); | ||
333 | if (!buffer->buffers[cpu]) | ||
334 | goto fail_free_buffers; | ||
335 | } | ||
336 | |||
337 | mutex_init(&buffer->mutex); | ||
338 | |||
339 | return buffer; | ||
340 | |||
341 | fail_free_buffers: | ||
342 | for_each_buffer_cpu(buffer, cpu) { | ||
343 | if (buffer->buffers[cpu]) | ||
344 | rb_free_cpu_buffer(buffer->buffers[cpu]); | ||
345 | } | ||
346 | kfree(buffer->buffers); | ||
347 | |||
348 | fail_free_buffer: | ||
349 | kfree(buffer); | ||
350 | return NULL; | ||
351 | } | ||
352 | |||
353 | /** | ||
354 | * ring_buffer_free - free a ring buffer. | ||
355 | * @buffer: the buffer to free. | ||
356 | */ | ||
357 | void | ||
358 | ring_buffer_free(struct ring_buffer *buffer) | ||
359 | { | ||
360 | int cpu; | ||
361 | |||
362 | for_each_buffer_cpu(buffer, cpu) | ||
363 | rb_free_cpu_buffer(buffer->buffers[cpu]); | ||
364 | |||
365 | kfree(buffer); | ||
366 | } | ||
367 | |||
368 | static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); | ||
369 | |||
370 | static void | ||
371 | rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) | ||
372 | { | ||
373 | struct buffer_page *page; | ||
374 | struct list_head *p; | ||
375 | unsigned i; | ||
376 | |||
377 | atomic_inc(&cpu_buffer->record_disabled); | ||
378 | synchronize_sched(); | ||
379 | |||
380 | for (i = 0; i < nr_pages; i++) { | ||
381 | BUG_ON(list_empty(&cpu_buffer->pages)); | ||
382 | p = cpu_buffer->pages.next; | ||
383 | page = list_entry(p, struct buffer_page, list); | ||
384 | list_del_init(&page->list); | ||
385 | __free_page(&page->page); | ||
386 | } | ||
387 | BUG_ON(list_empty(&cpu_buffer->pages)); | ||
388 | |||
389 | rb_reset_cpu(cpu_buffer); | ||
390 | |||
391 | rb_check_pages(cpu_buffer); | ||
392 | |||
393 | atomic_dec(&cpu_buffer->record_disabled); | ||
394 | |||
395 | } | ||
396 | |||
397 | static void | ||
398 | rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, | ||
399 | struct list_head *pages, unsigned nr_pages) | ||
400 | { | ||
401 | struct buffer_page *page; | ||
402 | struct list_head *p; | ||
403 | unsigned i; | ||
404 | |||
405 | atomic_inc(&cpu_buffer->record_disabled); | ||
406 | synchronize_sched(); | ||
407 | |||
408 | for (i = 0; i < nr_pages; i++) { | ||
409 | BUG_ON(list_empty(pages)); | ||
410 | p = pages->next; | ||
411 | page = list_entry(p, struct buffer_page, list); | ||
412 | list_del_init(&page->list); | ||
413 | list_add_tail(&page->list, &cpu_buffer->pages); | ||
414 | } | ||
415 | rb_reset_cpu(cpu_buffer); | ||
416 | |||
417 | rb_check_pages(cpu_buffer); | ||
418 | |||
419 | atomic_dec(&cpu_buffer->record_disabled); | ||
420 | } | ||
421 | |||
422 | /** | ||
423 | * ring_buffer_resize - resize the ring buffer | ||
424 | * @buffer: the buffer to resize. | ||
425 | * @size: the new size. | ||
426 | * | ||
427 | * The tracer is responsible for making sure that the buffer is | ||
428 | * not being used while changing the size. | ||
429 | * Note: We may be able to change the above requirement by using | ||
430 | * RCU synchronizations. | ||
431 | * | ||
432 | * Minimum size is 2 * BUF_PAGE_SIZE. | ||
433 | * | ||
434 | * Returns -1 on failure. | ||
435 | */ | ||
436 | int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) | ||
437 | { | ||
438 | struct ring_buffer_per_cpu *cpu_buffer; | ||
439 | unsigned nr_pages, rm_pages, new_pages; | ||
440 | struct buffer_page *page, *tmp; | ||
441 | unsigned long buffer_size; | ||
442 | unsigned long addr; | ||
443 | LIST_HEAD(pages); | ||
444 | int i, cpu; | ||
445 | |||
446 | size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); | ||
447 | size *= BUF_PAGE_SIZE; | ||
448 | buffer_size = buffer->pages * BUF_PAGE_SIZE; | ||
449 | |||
450 | /* we need a minimum of two pages */ | ||
451 | if (size < BUF_PAGE_SIZE * 2) | ||
452 | size = BUF_PAGE_SIZE * 2; | ||
453 | |||
454 | if (size == buffer_size) | ||
455 | return size; | ||
456 | |||
457 | mutex_lock(&buffer->mutex); | ||
458 | |||
459 | nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); | ||
460 | |||
461 | if (size < buffer_size) { | ||
462 | |||
463 | /* easy case, just free pages */ | ||
464 | BUG_ON(nr_pages >= buffer->pages); | ||
465 | |||
466 | rm_pages = buffer->pages - nr_pages; | ||
467 | |||
468 | for_each_buffer_cpu(buffer, cpu) { | ||
469 | cpu_buffer = buffer->buffers[cpu]; | ||
470 | rb_remove_pages(cpu_buffer, rm_pages); | ||
471 | } | ||
472 | goto out; | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * This is a bit more difficult. We only want to add pages | ||
477 | * when we can allocate enough for all CPUs. We do this | ||
478 | * by allocating all the pages and storing them on a local | ||
479 | * link list. If we succeed in our allocation, then we | ||
480 | * add these pages to the cpu_buffers. Otherwise we just free | ||
481 | * them all and return -ENOMEM; | ||
482 | */ | ||
483 | BUG_ON(nr_pages <= buffer->pages); | ||
484 | new_pages = nr_pages - buffer->pages; | ||
485 | |||
486 | for_each_buffer_cpu(buffer, cpu) { | ||
487 | for (i = 0; i < new_pages; i++) { | ||
488 | addr = __get_free_page(GFP_KERNEL); | ||
489 | if (!addr) | ||
490 | goto free_pages; | ||
491 | page = (struct buffer_page *)virt_to_page(addr); | ||
492 | list_add(&page->list, &pages); | ||
493 | } | ||
494 | } | ||
495 | |||
496 | for_each_buffer_cpu(buffer, cpu) { | ||
497 | cpu_buffer = buffer->buffers[cpu]; | ||
498 | rb_insert_pages(cpu_buffer, &pages, new_pages); | ||
499 | } | ||
500 | |||
501 | BUG_ON(!list_empty(&pages)); | ||
502 | |||
503 | out: | ||
504 | buffer->pages = nr_pages; | ||
505 | mutex_unlock(&buffer->mutex); | ||
506 | |||
507 | return size; | ||
508 | |||
509 | free_pages: | ||
510 | list_for_each_entry_safe(page, tmp, &pages, list) { | ||
511 | list_del_init(&page->list); | ||
512 | __free_page(&page->page); | ||
513 | } | ||
514 | return -ENOMEM; | ||
515 | } | ||
516 | |||
517 | static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) | ||
518 | { | ||
519 | return cpu_buffer->head_page == cpu_buffer->tail_page && | ||
520 | cpu_buffer->head == cpu_buffer->tail; | ||
521 | } | ||
522 | |||
523 | static inline int rb_null_event(struct ring_buffer_event *event) | ||
524 | { | ||
525 | return event->type == RINGBUF_TYPE_PADDING; | ||
526 | } | ||
527 | |||
528 | static inline void *rb_page_index(struct buffer_page *page, unsigned index) | ||
529 | { | ||
530 | void *addr = page_address(&page->page); | ||
531 | |||
532 | return addr + index; | ||
533 | } | ||
534 | |||
535 | static inline struct ring_buffer_event * | ||
536 | rb_head_event(struct ring_buffer_per_cpu *cpu_buffer) | ||
537 | { | ||
538 | return rb_page_index(cpu_buffer->head_page, | ||
539 | cpu_buffer->head); | ||
540 | } | ||
541 | |||
542 | static inline struct ring_buffer_event * | ||
543 | rb_iter_head_event(struct ring_buffer_iter *iter) | ||
544 | { | ||
545 | return rb_page_index(iter->head_page, | ||
546 | iter->head); | ||
547 | } | ||
548 | |||
549 | /* | ||
550 | * When the tail hits the head and the buffer is in overwrite mode, | ||
551 | * the head jumps to the next page and all content on the previous | ||
552 | * page is discarded. But before doing so, we update the overrun | ||
553 | * variable of the buffer. | ||
554 | */ | ||
555 | static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer) | ||
556 | { | ||
557 | struct ring_buffer_event *event; | ||
558 | unsigned long head; | ||
559 | |||
560 | for (head = 0; head < rb_head_size(cpu_buffer); | ||
561 | head += rb_event_length(event)) { | ||
562 | |||
563 | event = rb_page_index(cpu_buffer->head_page, head); | ||
564 | BUG_ON(rb_null_event(event)); | ||
565 | /* Only count data entries */ | ||
566 | if (event->type != RINGBUF_TYPE_DATA) | ||
567 | continue; | ||
568 | cpu_buffer->overrun++; | ||
569 | cpu_buffer->entries--; | ||
570 | } | ||
571 | } | ||
572 | |||
573 | static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, | ||
574 | struct buffer_page **page) | ||
575 | { | ||
576 | struct list_head *p = (*page)->list.next; | ||
577 | |||
578 | if (p == &cpu_buffer->pages) | ||
579 | p = p->next; | ||
580 | |||
581 | *page = list_entry(p, struct buffer_page, list); | ||
582 | } | ||
583 | |||
584 | static inline void | ||
585 | rb_add_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) | ||
586 | { | ||
587 | cpu_buffer->tail_page->time_stamp = *ts; | ||
588 | cpu_buffer->write_stamp = *ts; | ||
589 | } | ||
590 | |||
591 | static void rb_reset_read_page(struct ring_buffer_per_cpu *cpu_buffer) | ||
592 | { | ||
593 | cpu_buffer->read_stamp = cpu_buffer->head_page->time_stamp; | ||
594 | cpu_buffer->head = 0; | ||
595 | } | ||
596 | |||
597 | static void | ||
598 | rb_reset_iter_read_page(struct ring_buffer_iter *iter) | ||
599 | { | ||
600 | iter->read_stamp = iter->head_page->time_stamp; | ||
601 | iter->head = 0; | ||
602 | } | ||
603 | |||
604 | /** | ||
605 | * ring_buffer_update_event - update event type and data | ||
606 | * @event: the even to update | ||
607 | * @type: the type of event | ||
608 | * @length: the size of the event field in the ring buffer | ||
609 | * | ||
610 | * Update the type and data fields of the event. The length | ||
611 | * is the actual size that is written to the ring buffer, | ||
612 | * and with this, we can determine what to place into the | ||
613 | * data field. | ||
614 | */ | ||
615 | static inline void | ||
616 | rb_update_event(struct ring_buffer_event *event, | ||
617 | unsigned type, unsigned length) | ||
618 | { | ||
619 | event->type = type; | ||
620 | |||
621 | switch (type) { | ||
622 | |||
623 | case RINGBUF_TYPE_PADDING: | ||
624 | break; | ||
625 | |||
626 | case RINGBUF_TYPE_TIME_EXTEND: | ||
627 | event->len = | ||
628 | (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1)) | ||
629 | >> RB_ALIGNMENT_SHIFT; | ||
630 | break; | ||
631 | |||
632 | case RINGBUF_TYPE_TIME_STAMP: | ||
633 | event->len = | ||
634 | (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1)) | ||
635 | >> RB_ALIGNMENT_SHIFT; | ||
636 | break; | ||
637 | |||
638 | case RINGBUF_TYPE_DATA: | ||
639 | length -= RB_EVNT_HDR_SIZE; | ||
640 | if (length > RB_MAX_SMALL_DATA) { | ||
641 | event->len = 0; | ||
642 | event->array[0] = length; | ||
643 | } else | ||
644 | event->len = | ||
645 | (length + (RB_ALIGNMENT-1)) | ||
646 | >> RB_ALIGNMENT_SHIFT; | ||
647 | break; | ||
648 | default: | ||
649 | BUG(); | ||
650 | } | ||
651 | } | ||
652 | |||
653 | static inline unsigned rb_calculate_event_length(unsigned length) | ||
654 | { | ||
655 | struct ring_buffer_event event; /* Used only for sizeof array */ | ||
656 | |||
657 | /* zero length can cause confusions */ | ||
658 | if (!length) | ||
659 | length = 1; | ||
660 | |||
661 | if (length > RB_MAX_SMALL_DATA) | ||
662 | length += sizeof(event.array[0]); | ||
663 | |||
664 | length += RB_EVNT_HDR_SIZE; | ||
665 | length = ALIGN(length, RB_ALIGNMENT); | ||
666 | |||
667 | return length; | ||
668 | } | ||
669 | |||
670 | static struct ring_buffer_event * | ||
671 | __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, | ||
672 | unsigned type, unsigned long length, u64 *ts) | ||
673 | { | ||
674 | struct buffer_page *head_page, *tail_page; | ||
675 | unsigned long tail; | ||
676 | struct ring_buffer *buffer = cpu_buffer->buffer; | ||
677 | struct ring_buffer_event *event; | ||
678 | |||
679 | tail_page = cpu_buffer->tail_page; | ||
680 | head_page = cpu_buffer->head_page; | ||
681 | tail = cpu_buffer->tail; | ||
682 | |||
683 | if (tail + length > BUF_PAGE_SIZE) { | ||
684 | struct buffer_page *next_page = tail_page; | ||
685 | |||
686 | rb_inc_page(cpu_buffer, &next_page); | ||
687 | |||
688 | if (next_page == head_page) { | ||
689 | if (!(buffer->flags & RB_FL_OVERWRITE)) | ||
690 | return NULL; | ||
691 | |||
692 | /* count overflows */ | ||
693 | rb_update_overflow(cpu_buffer); | ||
694 | |||
695 | rb_inc_page(cpu_buffer, &head_page); | ||
696 | cpu_buffer->head_page = head_page; | ||
697 | rb_reset_read_page(cpu_buffer); | ||
698 | } | ||
699 | |||
700 | if (tail != BUF_PAGE_SIZE) { | ||
701 | event = rb_page_index(tail_page, tail); | ||
702 | /* page padding */ | ||
703 | event->type = RINGBUF_TYPE_PADDING; | ||
704 | } | ||
705 | |||
706 | tail_page->size = tail; | ||
707 | tail_page = next_page; | ||
708 | tail_page->size = 0; | ||
709 | tail = 0; | ||
710 | cpu_buffer->tail_page = tail_page; | ||
711 | cpu_buffer->tail = tail; | ||
712 | rb_add_stamp(cpu_buffer, ts); | ||
713 | } | ||
714 | |||
715 | BUG_ON(tail + length > BUF_PAGE_SIZE); | ||
716 | |||
717 | event = rb_page_index(tail_page, tail); | ||
718 | rb_update_event(event, type, length); | ||
719 | |||
720 | return event; | ||
721 | } | ||
722 | |||
723 | static int | ||
724 | rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, | ||
725 | u64 *ts, u64 *delta) | ||
726 | { | ||
727 | struct ring_buffer_event *event; | ||
728 | static int once; | ||
729 | |||
730 | if (unlikely(*delta > (1ULL << 59) && !once++)) { | ||
731 | printk(KERN_WARNING "Delta way too big! %llu" | ||
732 | " ts=%llu write stamp = %llu\n", | ||
733 | *delta, *ts, cpu_buffer->write_stamp); | ||
734 | WARN_ON(1); | ||
735 | } | ||
736 | |||
737 | /* | ||
738 | * The delta is too big, we to add a | ||
739 | * new timestamp. | ||
740 | */ | ||
741 | event = __rb_reserve_next(cpu_buffer, | ||
742 | RINGBUF_TYPE_TIME_EXTEND, | ||
743 | RB_LEN_TIME_EXTEND, | ||
744 | ts); | ||
745 | if (!event) | ||
746 | return -1; | ||
747 | |||
748 | /* check to see if we went to the next page */ | ||
749 | if (cpu_buffer->tail) { | ||
750 | /* Still on same page, update timestamp */ | ||
751 | event->time_delta = *delta & TS_MASK; | ||
752 | event->array[0] = *delta >> TS_SHIFT; | ||
753 | /* commit the time event */ | ||
754 | cpu_buffer->tail += | ||
755 | rb_event_length(event); | ||
756 | cpu_buffer->write_stamp = *ts; | ||
757 | *delta = 0; | ||
758 | } | ||
759 | |||
760 | return 0; | ||
761 | } | ||
762 | |||
763 | static struct ring_buffer_event * | ||
764 | rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer, | ||
765 | unsigned type, unsigned long length) | ||
766 | { | ||
767 | struct ring_buffer_event *event; | ||
768 | u64 ts, delta; | ||
769 | |||
770 | ts = ring_buffer_time_stamp(cpu_buffer->cpu); | ||
771 | |||
772 | if (cpu_buffer->tail) { | ||
773 | delta = ts - cpu_buffer->write_stamp; | ||
774 | |||
775 | if (test_time_stamp(delta)) { | ||
776 | int ret; | ||
777 | |||
778 | ret = rb_add_time_stamp(cpu_buffer, &ts, &delta); | ||
779 | if (ret < 0) | ||
780 | return NULL; | ||
781 | } | ||
782 | } else { | ||
783 | rb_add_stamp(cpu_buffer, &ts); | ||
784 | delta = 0; | ||
785 | } | ||
786 | |||
787 | event = __rb_reserve_next(cpu_buffer, type, length, &ts); | ||
788 | if (!event) | ||
789 | return NULL; | ||
790 | |||
791 | /* If the reserve went to the next page, our delta is zero */ | ||
792 | if (!cpu_buffer->tail) | ||
793 | delta = 0; | ||
794 | |||
795 | event->time_delta = delta; | ||
796 | |||
797 | return event; | ||
798 | } | ||
799 | |||
800 | /** | ||
801 | * ring_buffer_lock_reserve - reserve a part of the buffer | ||
802 | * @buffer: the ring buffer to reserve from | ||
803 | * @length: the length of the data to reserve (excluding event header) | ||
804 | * @flags: a pointer to save the interrupt flags | ||
805 | * | ||
806 | * Returns a reseverd event on the ring buffer to copy directly to. | ||
807 | * The user of this interface will need to get the body to write into | ||
808 | * and can use the ring_buffer_event_data() interface. | ||
809 | * | ||
810 | * The length is the length of the data needed, not the event length | ||
811 | * which also includes the event header. | ||
812 | * | ||
813 | * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. | ||
814 | * If NULL is returned, then nothing has been allocated or locked. | ||
815 | */ | ||
816 | struct ring_buffer_event * | ||
817 | ring_buffer_lock_reserve(struct ring_buffer *buffer, | ||
818 | unsigned long length, | ||
819 | unsigned long *flags) | ||
820 | { | ||
821 | struct ring_buffer_per_cpu *cpu_buffer; | ||
822 | struct ring_buffer_event *event; | ||
823 | int cpu; | ||
824 | |||
825 | if (atomic_read(&buffer->record_disabled)) | ||
826 | return NULL; | ||
827 | |||
828 | raw_local_irq_save(*flags); | ||
829 | cpu = raw_smp_processor_id(); | ||
830 | |||
831 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
832 | goto out_irq; | ||
833 | |||
834 | cpu_buffer = buffer->buffers[cpu]; | ||
835 | spin_lock(&cpu_buffer->lock); | ||
836 | |||
837 | if (atomic_read(&cpu_buffer->record_disabled)) | ||
838 | goto no_record; | ||
839 | |||
840 | length = rb_calculate_event_length(length); | ||
841 | if (length > BUF_PAGE_SIZE) | ||
842 | return NULL; | ||
843 | |||
844 | event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length); | ||
845 | if (!event) | ||
846 | goto no_record; | ||
847 | |||
848 | return event; | ||
849 | |||
850 | no_record: | ||
851 | spin_unlock(&cpu_buffer->lock); | ||
852 | out_irq: | ||
853 | local_irq_restore(*flags); | ||
854 | return NULL; | ||
855 | } | ||
856 | |||
857 | static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, | ||
858 | struct ring_buffer_event *event) | ||
859 | { | ||
860 | cpu_buffer->tail += rb_event_length(event); | ||
861 | cpu_buffer->tail_page->size = cpu_buffer->tail; | ||
862 | cpu_buffer->write_stamp += event->time_delta; | ||
863 | cpu_buffer->entries++; | ||
864 | } | ||
865 | |||
866 | /** | ||
867 | * ring_buffer_unlock_commit - commit a reserved | ||
868 | * @buffer: The buffer to commit to | ||
869 | * @event: The event pointer to commit. | ||
870 | * @flags: the interrupt flags received from ring_buffer_lock_reserve. | ||
871 | * | ||
872 | * This commits the data to the ring buffer, and releases any locks held. | ||
873 | * | ||
874 | * Must be paired with ring_buffer_lock_reserve. | ||
875 | */ | ||
876 | int ring_buffer_unlock_commit(struct ring_buffer *buffer, | ||
877 | struct ring_buffer_event *event, | ||
878 | unsigned long flags) | ||
879 | { | ||
880 | struct ring_buffer_per_cpu *cpu_buffer; | ||
881 | int cpu = raw_smp_processor_id(); | ||
882 | |||
883 | cpu_buffer = buffer->buffers[cpu]; | ||
884 | |||
885 | assert_spin_locked(&cpu_buffer->lock); | ||
886 | |||
887 | rb_commit(cpu_buffer, event); | ||
888 | |||
889 | spin_unlock(&cpu_buffer->lock); | ||
890 | raw_local_irq_restore(flags); | ||
891 | |||
892 | return 0; | ||
893 | } | ||
894 | |||
895 | /** | ||
896 | * ring_buffer_write - write data to the buffer without reserving | ||
897 | * @buffer: The ring buffer to write to. | ||
898 | * @length: The length of the data being written (excluding the event header) | ||
899 | * @data: The data to write to the buffer. | ||
900 | * | ||
901 | * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as | ||
902 | * one function. If you already have the data to write to the buffer, it | ||
903 | * may be easier to simply call this function. | ||
904 | * | ||
905 | * Note, like ring_buffer_lock_reserve, the length is the length of the data | ||
906 | * and not the length of the event which would hold the header. | ||
907 | */ | ||
908 | int ring_buffer_write(struct ring_buffer *buffer, | ||
909 | unsigned long length, | ||
910 | void *data) | ||
911 | { | ||
912 | struct ring_buffer_per_cpu *cpu_buffer; | ||
913 | struct ring_buffer_event *event; | ||
914 | unsigned long event_length, flags; | ||
915 | void *body; | ||
916 | int ret = -EBUSY; | ||
917 | int cpu; | ||
918 | |||
919 | if (atomic_read(&buffer->record_disabled)) | ||
920 | return -EBUSY; | ||
921 | |||
922 | local_irq_save(flags); | ||
923 | cpu = raw_smp_processor_id(); | ||
924 | |||
925 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
926 | goto out_irq; | ||
927 | |||
928 | cpu_buffer = buffer->buffers[cpu]; | ||
929 | spin_lock(&cpu_buffer->lock); | ||
930 | |||
931 | if (atomic_read(&cpu_buffer->record_disabled)) | ||
932 | goto out; | ||
933 | |||
934 | event_length = rb_calculate_event_length(length); | ||
935 | event = rb_reserve_next_event(cpu_buffer, | ||
936 | RINGBUF_TYPE_DATA, event_length); | ||
937 | if (!event) | ||
938 | goto out; | ||
939 | |||
940 | body = rb_event_data(event); | ||
941 | |||
942 | memcpy(body, data, length); | ||
943 | |||
944 | rb_commit(cpu_buffer, event); | ||
945 | |||
946 | ret = 0; | ||
947 | out: | ||
948 | spin_unlock(&cpu_buffer->lock); | ||
949 | out_irq: | ||
950 | local_irq_restore(flags); | ||
951 | |||
952 | return ret; | ||
953 | } | ||
954 | |||
955 | /** | ||
956 | * ring_buffer_lock - lock the ring buffer | ||
957 | * @buffer: The ring buffer to lock | ||
958 | * @flags: The place to store the interrupt flags | ||
959 | * | ||
960 | * This locks all the per CPU buffers. | ||
961 | * | ||
962 | * Must be unlocked by ring_buffer_unlock. | ||
963 | */ | ||
964 | void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags) | ||
965 | { | ||
966 | struct ring_buffer_per_cpu *cpu_buffer; | ||
967 | int cpu; | ||
968 | |||
969 | local_irq_save(*flags); | ||
970 | |||
971 | for_each_buffer_cpu(buffer, cpu) { | ||
972 | cpu_buffer = buffer->buffers[cpu]; | ||
973 | spin_lock(&cpu_buffer->lock); | ||
974 | } | ||
975 | } | ||
976 | |||
977 | /** | ||
978 | * ring_buffer_unlock - unlock a locked buffer | ||
979 | * @buffer: The locked buffer to unlock | ||
980 | * @flags: The interrupt flags received by ring_buffer_lock | ||
981 | */ | ||
982 | void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags) | ||
983 | { | ||
984 | struct ring_buffer_per_cpu *cpu_buffer; | ||
985 | int cpu; | ||
986 | |||
987 | for (cpu = buffer->cpus - 1; cpu >= 0; cpu--) { | ||
988 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
989 | continue; | ||
990 | cpu_buffer = buffer->buffers[cpu]; | ||
991 | spin_unlock(&cpu_buffer->lock); | ||
992 | } | ||
993 | |||
994 | local_irq_restore(flags); | ||
995 | } | ||
996 | |||
997 | /** | ||
998 | * ring_buffer_record_disable - stop all writes into the buffer | ||
999 | * @buffer: The ring buffer to stop writes to. | ||
1000 | * | ||
1001 | * This prevents all writes to the buffer. Any attempt to write | ||
1002 | * to the buffer after this will fail and return NULL. | ||
1003 | * | ||
1004 | * The caller should call synchronize_sched() after this. | ||
1005 | */ | ||
1006 | void ring_buffer_record_disable(struct ring_buffer *buffer) | ||
1007 | { | ||
1008 | atomic_inc(&buffer->record_disabled); | ||
1009 | } | ||
1010 | |||
1011 | /** | ||
1012 | * ring_buffer_record_enable - enable writes to the buffer | ||
1013 | * @buffer: The ring buffer to enable writes | ||
1014 | * | ||
1015 | * Note, multiple disables will need the same number of enables | ||
1016 | * to truely enable the writing (much like preempt_disable). | ||
1017 | */ | ||
1018 | void ring_buffer_record_enable(struct ring_buffer *buffer) | ||
1019 | { | ||
1020 | atomic_dec(&buffer->record_disabled); | ||
1021 | } | ||
1022 | |||
1023 | /** | ||
1024 | * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer | ||
1025 | * @buffer: The ring buffer to stop writes to. | ||
1026 | * @cpu: The CPU buffer to stop | ||
1027 | * | ||
1028 | * This prevents all writes to the buffer. Any attempt to write | ||
1029 | * to the buffer after this will fail and return NULL. | ||
1030 | * | ||
1031 | * The caller should call synchronize_sched() after this. | ||
1032 | */ | ||
1033 | void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) | ||
1034 | { | ||
1035 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1036 | |||
1037 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
1038 | return; | ||
1039 | |||
1040 | cpu_buffer = buffer->buffers[cpu]; | ||
1041 | atomic_inc(&cpu_buffer->record_disabled); | ||
1042 | } | ||
1043 | |||
1044 | /** | ||
1045 | * ring_buffer_record_enable_cpu - enable writes to the buffer | ||
1046 | * @buffer: The ring buffer to enable writes | ||
1047 | * @cpu: The CPU to enable. | ||
1048 | * | ||
1049 | * Note, multiple disables will need the same number of enables | ||
1050 | * to truely enable the writing (much like preempt_disable). | ||
1051 | */ | ||
1052 | void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) | ||
1053 | { | ||
1054 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1055 | |||
1056 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
1057 | return; | ||
1058 | |||
1059 | cpu_buffer = buffer->buffers[cpu]; | ||
1060 | atomic_dec(&cpu_buffer->record_disabled); | ||
1061 | } | ||
1062 | |||
1063 | /** | ||
1064 | * ring_buffer_entries_cpu - get the number of entries in a cpu buffer | ||
1065 | * @buffer: The ring buffer | ||
1066 | * @cpu: The per CPU buffer to get the entries from. | ||
1067 | */ | ||
1068 | unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) | ||
1069 | { | ||
1070 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1071 | |||
1072 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
1073 | return 0; | ||
1074 | |||
1075 | cpu_buffer = buffer->buffers[cpu]; | ||
1076 | return cpu_buffer->entries; | ||
1077 | } | ||
1078 | |||
1079 | /** | ||
1080 | * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer | ||
1081 | * @buffer: The ring buffer | ||
1082 | * @cpu: The per CPU buffer to get the number of overruns from | ||
1083 | */ | ||
1084 | unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) | ||
1085 | { | ||
1086 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1087 | |||
1088 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
1089 | return 0; | ||
1090 | |||
1091 | cpu_buffer = buffer->buffers[cpu]; | ||
1092 | return cpu_buffer->overrun; | ||
1093 | } | ||
1094 | |||
1095 | /** | ||
1096 | * ring_buffer_entries - get the number of entries in a buffer | ||
1097 | * @buffer: The ring buffer | ||
1098 | * | ||
1099 | * Returns the total number of entries in the ring buffer | ||
1100 | * (all CPU entries) | ||
1101 | */ | ||
1102 | unsigned long ring_buffer_entries(struct ring_buffer *buffer) | ||
1103 | { | ||
1104 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1105 | unsigned long entries = 0; | ||
1106 | int cpu; | ||
1107 | |||
1108 | /* if you care about this being correct, lock the buffer */ | ||
1109 | for_each_buffer_cpu(buffer, cpu) { | ||
1110 | cpu_buffer = buffer->buffers[cpu]; | ||
1111 | entries += cpu_buffer->entries; | ||
1112 | } | ||
1113 | |||
1114 | return entries; | ||
1115 | } | ||
1116 | |||
1117 | /** | ||
1118 | * ring_buffer_overrun_cpu - get the number of overruns in buffer | ||
1119 | * @buffer: The ring buffer | ||
1120 | * | ||
1121 | * Returns the total number of overruns in the ring buffer | ||
1122 | * (all CPU entries) | ||
1123 | */ | ||
1124 | unsigned long ring_buffer_overruns(struct ring_buffer *buffer) | ||
1125 | { | ||
1126 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1127 | unsigned long overruns = 0; | ||
1128 | int cpu; | ||
1129 | |||
1130 | /* if you care about this being correct, lock the buffer */ | ||
1131 | for_each_buffer_cpu(buffer, cpu) { | ||
1132 | cpu_buffer = buffer->buffers[cpu]; | ||
1133 | overruns += cpu_buffer->overrun; | ||
1134 | } | ||
1135 | |||
1136 | return overruns; | ||
1137 | } | ||
1138 | |||
1139 | /** | ||
1140 | * ring_buffer_iter_reset - reset an iterator | ||
1141 | * @iter: The iterator to reset | ||
1142 | * | ||
1143 | * Resets the iterator, so that it will start from the beginning | ||
1144 | * again. | ||
1145 | */ | ||
1146 | void ring_buffer_iter_reset(struct ring_buffer_iter *iter) | ||
1147 | { | ||
1148 | struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; | ||
1149 | |||
1150 | iter->head_page = cpu_buffer->head_page; | ||
1151 | iter->head = cpu_buffer->head; | ||
1152 | rb_reset_iter_read_page(iter); | ||
1153 | } | ||
1154 | |||
1155 | /** | ||
1156 | * ring_buffer_iter_empty - check if an iterator has no more to read | ||
1157 | * @iter: The iterator to check | ||
1158 | */ | ||
1159 | int ring_buffer_iter_empty(struct ring_buffer_iter *iter) | ||
1160 | { | ||
1161 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1162 | |||
1163 | cpu_buffer = iter->cpu_buffer; | ||
1164 | |||
1165 | return iter->head_page == cpu_buffer->tail_page && | ||
1166 | iter->head == cpu_buffer->tail; | ||
1167 | } | ||
1168 | |||
1169 | static void | ||
1170 | rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, | ||
1171 | struct ring_buffer_event *event) | ||
1172 | { | ||
1173 | u64 delta; | ||
1174 | |||
1175 | switch (event->type) { | ||
1176 | case RINGBUF_TYPE_PADDING: | ||
1177 | return; | ||
1178 | |||
1179 | case RINGBUF_TYPE_TIME_EXTEND: | ||
1180 | delta = event->array[0]; | ||
1181 | delta <<= TS_SHIFT; | ||
1182 | delta += event->time_delta; | ||
1183 | cpu_buffer->read_stamp += delta; | ||
1184 | return; | ||
1185 | |||
1186 | case RINGBUF_TYPE_TIME_STAMP: | ||
1187 | /* FIXME: not implemented */ | ||
1188 | return; | ||
1189 | |||
1190 | case RINGBUF_TYPE_DATA: | ||
1191 | cpu_buffer->read_stamp += event->time_delta; | ||
1192 | return; | ||
1193 | |||
1194 | default: | ||
1195 | BUG(); | ||
1196 | } | ||
1197 | return; | ||
1198 | } | ||
1199 | |||
1200 | static void | ||
1201 | rb_update_iter_read_stamp(struct ring_buffer_iter *iter, | ||
1202 | struct ring_buffer_event *event) | ||
1203 | { | ||
1204 | u64 delta; | ||
1205 | |||
1206 | switch (event->type) { | ||
1207 | case RINGBUF_TYPE_PADDING: | ||
1208 | return; | ||
1209 | |||
1210 | case RINGBUF_TYPE_TIME_EXTEND: | ||
1211 | delta = event->array[0]; | ||
1212 | delta <<= TS_SHIFT; | ||
1213 | delta += event->time_delta; | ||
1214 | iter->read_stamp += delta; | ||
1215 | return; | ||
1216 | |||
1217 | case RINGBUF_TYPE_TIME_STAMP: | ||
1218 | /* FIXME: not implemented */ | ||
1219 | return; | ||
1220 | |||
1221 | case RINGBUF_TYPE_DATA: | ||
1222 | iter->read_stamp += event->time_delta; | ||
1223 | return; | ||
1224 | |||
1225 | default: | ||
1226 | BUG(); | ||
1227 | } | ||
1228 | return; | ||
1229 | } | ||
1230 | |||
1231 | static void rb_advance_head(struct ring_buffer_per_cpu *cpu_buffer) | ||
1232 | { | ||
1233 | struct ring_buffer_event *event; | ||
1234 | unsigned length; | ||
1235 | |||
1236 | /* | ||
1237 | * Check if we are at the end of the buffer. | ||
1238 | */ | ||
1239 | if (cpu_buffer->head >= cpu_buffer->head_page->size) { | ||
1240 | BUG_ON(cpu_buffer->head_page == cpu_buffer->tail_page); | ||
1241 | rb_inc_page(cpu_buffer, &cpu_buffer->head_page); | ||
1242 | rb_reset_read_page(cpu_buffer); | ||
1243 | return; | ||
1244 | } | ||
1245 | |||
1246 | event = rb_head_event(cpu_buffer); | ||
1247 | |||
1248 | if (event->type == RINGBUF_TYPE_DATA) | ||
1249 | cpu_buffer->entries--; | ||
1250 | |||
1251 | length = rb_event_length(event); | ||
1252 | |||
1253 | /* | ||
1254 | * This should not be called to advance the header if we are | ||
1255 | * at the tail of the buffer. | ||
1256 | */ | ||
1257 | BUG_ON((cpu_buffer->head_page == cpu_buffer->tail_page) && | ||
1258 | (cpu_buffer->head + length > cpu_buffer->tail)); | ||
1259 | |||
1260 | rb_update_read_stamp(cpu_buffer, event); | ||
1261 | |||
1262 | cpu_buffer->head += length; | ||
1263 | |||
1264 | /* check for end of page */ | ||
1265 | if ((cpu_buffer->head >= cpu_buffer->head_page->size) && | ||
1266 | (cpu_buffer->head_page != cpu_buffer->tail_page)) | ||
1267 | rb_advance_head(cpu_buffer); | ||
1268 | } | ||
1269 | |||
1270 | static void rb_advance_iter(struct ring_buffer_iter *iter) | ||
1271 | { | ||
1272 | struct ring_buffer *buffer; | ||
1273 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1274 | struct ring_buffer_event *event; | ||
1275 | unsigned length; | ||
1276 | |||
1277 | cpu_buffer = iter->cpu_buffer; | ||
1278 | buffer = cpu_buffer->buffer; | ||
1279 | |||
1280 | /* | ||
1281 | * Check if we are at the end of the buffer. | ||
1282 | */ | ||
1283 | if (iter->head >= iter->head_page->size) { | ||
1284 | BUG_ON(iter->head_page == cpu_buffer->tail_page); | ||
1285 | rb_inc_page(cpu_buffer, &iter->head_page); | ||
1286 | rb_reset_iter_read_page(iter); | ||
1287 | return; | ||
1288 | } | ||
1289 | |||
1290 | event = rb_iter_head_event(iter); | ||
1291 | |||
1292 | length = rb_event_length(event); | ||
1293 | |||
1294 | /* | ||
1295 | * This should not be called to advance the header if we are | ||
1296 | * at the tail of the buffer. | ||
1297 | */ | ||
1298 | BUG_ON((iter->head_page == cpu_buffer->tail_page) && | ||
1299 | (iter->head + length > cpu_buffer->tail)); | ||
1300 | |||
1301 | rb_update_iter_read_stamp(iter, event); | ||
1302 | |||
1303 | iter->head += length; | ||
1304 | |||
1305 | /* check for end of page padding */ | ||
1306 | if ((iter->head >= iter->head_page->size) && | ||
1307 | (iter->head_page != cpu_buffer->tail_page)) | ||
1308 | rb_advance_iter(iter); | ||
1309 | } | ||
1310 | |||
1311 | /** | ||
1312 | * ring_buffer_peek - peek at the next event to be read | ||
1313 | * @buffer: The ring buffer to read | ||
1314 | * @cpu: The cpu to peak at | ||
1315 | * @ts: The timestamp counter of this event. | ||
1316 | * | ||
1317 | * This will return the event that will be read next, but does | ||
1318 | * not consume the data. | ||
1319 | */ | ||
1320 | struct ring_buffer_event * | ||
1321 | ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | ||
1322 | { | ||
1323 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1324 | struct ring_buffer_event *event; | ||
1325 | |||
1326 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
1327 | return NULL; | ||
1328 | |||
1329 | cpu_buffer = buffer->buffers[cpu]; | ||
1330 | |||
1331 | again: | ||
1332 | if (rb_per_cpu_empty(cpu_buffer)) | ||
1333 | return NULL; | ||
1334 | |||
1335 | event = rb_head_event(cpu_buffer); | ||
1336 | |||
1337 | switch (event->type) { | ||
1338 | case RINGBUF_TYPE_PADDING: | ||
1339 | rb_inc_page(cpu_buffer, &cpu_buffer->head_page); | ||
1340 | rb_reset_read_page(cpu_buffer); | ||
1341 | goto again; | ||
1342 | |||
1343 | case RINGBUF_TYPE_TIME_EXTEND: | ||
1344 | /* Internal data, OK to advance */ | ||
1345 | rb_advance_head(cpu_buffer); | ||
1346 | goto again; | ||
1347 | |||
1348 | case RINGBUF_TYPE_TIME_STAMP: | ||
1349 | /* FIXME: not implemented */ | ||
1350 | rb_advance_head(cpu_buffer); | ||
1351 | goto again; | ||
1352 | |||
1353 | case RINGBUF_TYPE_DATA: | ||
1354 | if (ts) { | ||
1355 | *ts = cpu_buffer->read_stamp + event->time_delta; | ||
1356 | ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts); | ||
1357 | } | ||
1358 | return event; | ||
1359 | |||
1360 | default: | ||
1361 | BUG(); | ||
1362 | } | ||
1363 | |||
1364 | return NULL; | ||
1365 | } | ||
1366 | |||
1367 | /** | ||
1368 | * ring_buffer_iter_peek - peek at the next event to be read | ||
1369 | * @iter: The ring buffer iterator | ||
1370 | * @ts: The timestamp counter of this event. | ||
1371 | * | ||
1372 | * This will return the event that will be read next, but does | ||
1373 | * not increment the iterator. | ||
1374 | */ | ||
1375 | struct ring_buffer_event * | ||
1376 | ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) | ||
1377 | { | ||
1378 | struct ring_buffer *buffer; | ||
1379 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1380 | struct ring_buffer_event *event; | ||
1381 | |||
1382 | if (ring_buffer_iter_empty(iter)) | ||
1383 | return NULL; | ||
1384 | |||
1385 | cpu_buffer = iter->cpu_buffer; | ||
1386 | buffer = cpu_buffer->buffer; | ||
1387 | |||
1388 | again: | ||
1389 | if (rb_per_cpu_empty(cpu_buffer)) | ||
1390 | return NULL; | ||
1391 | |||
1392 | event = rb_iter_head_event(iter); | ||
1393 | |||
1394 | switch (event->type) { | ||
1395 | case RINGBUF_TYPE_PADDING: | ||
1396 | rb_inc_page(cpu_buffer, &iter->head_page); | ||
1397 | rb_reset_iter_read_page(iter); | ||
1398 | goto again; | ||
1399 | |||
1400 | case RINGBUF_TYPE_TIME_EXTEND: | ||
1401 | /* Internal data, OK to advance */ | ||
1402 | rb_advance_iter(iter); | ||
1403 | goto again; | ||
1404 | |||
1405 | case RINGBUF_TYPE_TIME_STAMP: | ||
1406 | /* FIXME: not implemented */ | ||
1407 | rb_advance_iter(iter); | ||
1408 | goto again; | ||
1409 | |||
1410 | case RINGBUF_TYPE_DATA: | ||
1411 | if (ts) { | ||
1412 | *ts = iter->read_stamp + event->time_delta; | ||
1413 | ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts); | ||
1414 | } | ||
1415 | return event; | ||
1416 | |||
1417 | default: | ||
1418 | BUG(); | ||
1419 | } | ||
1420 | |||
1421 | return NULL; | ||
1422 | } | ||
1423 | |||
1424 | /** | ||
1425 | * ring_buffer_consume - return an event and consume it | ||
1426 | * @buffer: The ring buffer to get the next event from | ||
1427 | * | ||
1428 | * Returns the next event in the ring buffer, and that event is consumed. | ||
1429 | * Meaning, that sequential reads will keep returning a different event, | ||
1430 | * and eventually empty the ring buffer if the producer is slower. | ||
1431 | */ | ||
1432 | struct ring_buffer_event * | ||
1433 | ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) | ||
1434 | { | ||
1435 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1436 | struct ring_buffer_event *event; | ||
1437 | |||
1438 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
1439 | return NULL; | ||
1440 | |||
1441 | event = ring_buffer_peek(buffer, cpu, ts); | ||
1442 | if (!event) | ||
1443 | return NULL; | ||
1444 | |||
1445 | cpu_buffer = buffer->buffers[cpu]; | ||
1446 | rb_advance_head(cpu_buffer); | ||
1447 | |||
1448 | return event; | ||
1449 | } | ||
1450 | |||
1451 | /** | ||
1452 | * ring_buffer_read_start - start a non consuming read of the buffer | ||
1453 | * @buffer: The ring buffer to read from | ||
1454 | * @cpu: The cpu buffer to iterate over | ||
1455 | * | ||
1456 | * This starts up an iteration through the buffer. It also disables | ||
1457 | * the recording to the buffer until the reading is finished. | ||
1458 | * This prevents the reading from being corrupted. This is not | ||
1459 | * a consuming read, so a producer is not expected. | ||
1460 | * | ||
1461 | * Must be paired with ring_buffer_finish. | ||
1462 | */ | ||
1463 | struct ring_buffer_iter * | ||
1464 | ring_buffer_read_start(struct ring_buffer *buffer, int cpu) | ||
1465 | { | ||
1466 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1467 | struct ring_buffer_iter *iter; | ||
1468 | |||
1469 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
1470 | return NULL; | ||
1471 | |||
1472 | iter = kmalloc(sizeof(*iter), GFP_KERNEL); | ||
1473 | if (!iter) | ||
1474 | return NULL; | ||
1475 | |||
1476 | cpu_buffer = buffer->buffers[cpu]; | ||
1477 | |||
1478 | iter->cpu_buffer = cpu_buffer; | ||
1479 | |||
1480 | atomic_inc(&cpu_buffer->record_disabled); | ||
1481 | synchronize_sched(); | ||
1482 | |||
1483 | spin_lock(&cpu_buffer->lock); | ||
1484 | iter->head = cpu_buffer->head; | ||
1485 | iter->head_page = cpu_buffer->head_page; | ||
1486 | rb_reset_iter_read_page(iter); | ||
1487 | spin_unlock(&cpu_buffer->lock); | ||
1488 | |||
1489 | return iter; | ||
1490 | } | ||
1491 | |||
1492 | /** | ||
1493 | * ring_buffer_finish - finish reading the iterator of the buffer | ||
1494 | * @iter: The iterator retrieved by ring_buffer_start | ||
1495 | * | ||
1496 | * This re-enables the recording to the buffer, and frees the | ||
1497 | * iterator. | ||
1498 | */ | ||
1499 | void | ||
1500 | ring_buffer_read_finish(struct ring_buffer_iter *iter) | ||
1501 | { | ||
1502 | struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; | ||
1503 | |||
1504 | atomic_dec(&cpu_buffer->record_disabled); | ||
1505 | kfree(iter); | ||
1506 | } | ||
1507 | |||
1508 | /** | ||
1509 | * ring_buffer_read - read the next item in the ring buffer by the iterator | ||
1510 | * @iter: The ring buffer iterator | ||
1511 | * @ts: The time stamp of the event read. | ||
1512 | * | ||
1513 | * This reads the next event in the ring buffer and increments the iterator. | ||
1514 | */ | ||
1515 | struct ring_buffer_event * | ||
1516 | ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) | ||
1517 | { | ||
1518 | struct ring_buffer_event *event; | ||
1519 | |||
1520 | event = ring_buffer_iter_peek(iter, ts); | ||
1521 | if (!event) | ||
1522 | return NULL; | ||
1523 | |||
1524 | rb_advance_iter(iter); | ||
1525 | |||
1526 | return event; | ||
1527 | } | ||
1528 | |||
1529 | /** | ||
1530 | * ring_buffer_size - return the size of the ring buffer (in bytes) | ||
1531 | * @buffer: The ring buffer. | ||
1532 | */ | ||
1533 | unsigned long ring_buffer_size(struct ring_buffer *buffer) | ||
1534 | { | ||
1535 | return BUF_PAGE_SIZE * buffer->pages; | ||
1536 | } | ||
1537 | |||
1538 | static void | ||
1539 | rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) | ||
1540 | { | ||
1541 | cpu_buffer->head_page | ||
1542 | = list_entry(cpu_buffer->pages.next, struct buffer_page, list); | ||
1543 | cpu_buffer->tail_page | ||
1544 | = list_entry(cpu_buffer->pages.next, struct buffer_page, list); | ||
1545 | |||
1546 | cpu_buffer->head = cpu_buffer->tail = 0; | ||
1547 | cpu_buffer->overrun = 0; | ||
1548 | cpu_buffer->entries = 0; | ||
1549 | } | ||
1550 | |||
1551 | /** | ||
1552 | * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer | ||
1553 | * @buffer: The ring buffer to reset a per cpu buffer of | ||
1554 | * @cpu: The CPU buffer to be reset | ||
1555 | */ | ||
1556 | void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) | ||
1557 | { | ||
1558 | struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; | ||
1559 | unsigned long flags; | ||
1560 | |||
1561 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
1562 | return; | ||
1563 | |||
1564 | raw_local_irq_save(flags); | ||
1565 | spin_lock(&cpu_buffer->lock); | ||
1566 | |||
1567 | rb_reset_cpu(cpu_buffer); | ||
1568 | |||
1569 | spin_unlock(&cpu_buffer->lock); | ||
1570 | raw_local_irq_restore(flags); | ||
1571 | } | ||
1572 | |||
1573 | /** | ||
1574 | * ring_buffer_reset - reset a ring buffer | ||
1575 | * @buffer: The ring buffer to reset all cpu buffers | ||
1576 | */ | ||
1577 | void ring_buffer_reset(struct ring_buffer *buffer) | ||
1578 | { | ||
1579 | unsigned long flags; | ||
1580 | int cpu; | ||
1581 | |||
1582 | ring_buffer_lock(buffer, &flags); | ||
1583 | |||
1584 | for_each_buffer_cpu(buffer, cpu) | ||
1585 | rb_reset_cpu(buffer->buffers[cpu]); | ||
1586 | |||
1587 | ring_buffer_unlock(buffer, flags); | ||
1588 | } | ||
1589 | |||
1590 | /** | ||
1591 | * rind_buffer_empty - is the ring buffer empty? | ||
1592 | * @buffer: The ring buffer to test | ||
1593 | */ | ||
1594 | int ring_buffer_empty(struct ring_buffer *buffer) | ||
1595 | { | ||
1596 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1597 | int cpu; | ||
1598 | |||
1599 | /* yes this is racy, but if you don't like the race, lock the buffer */ | ||
1600 | for_each_buffer_cpu(buffer, cpu) { | ||
1601 | cpu_buffer = buffer->buffers[cpu]; | ||
1602 | if (!rb_per_cpu_empty(cpu_buffer)) | ||
1603 | return 0; | ||
1604 | } | ||
1605 | return 1; | ||
1606 | } | ||
1607 | |||
1608 | /** | ||
1609 | * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? | ||
1610 | * @buffer: The ring buffer | ||
1611 | * @cpu: The CPU buffer to test | ||
1612 | */ | ||
1613 | int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) | ||
1614 | { | ||
1615 | struct ring_buffer_per_cpu *cpu_buffer; | ||
1616 | |||
1617 | if (!cpu_isset(cpu, buffer->cpumask)) | ||
1618 | return 1; | ||
1619 | |||
1620 | cpu_buffer = buffer->buffers[cpu]; | ||
1621 | return rb_per_cpu_empty(cpu_buffer); | ||
1622 | } | ||
1623 | |||
1624 | /** | ||
1625 | * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers | ||
1626 | * @buffer_a: One buffer to swap with | ||
1627 | * @buffer_b: The other buffer to swap with | ||
1628 | * | ||
1629 | * This function is useful for tracers that want to take a "snapshot" | ||
1630 | * of a CPU buffer and has another back up buffer lying around. | ||
1631 | * it is expected that the tracer handles the cpu buffer not being | ||
1632 | * used at the moment. | ||
1633 | */ | ||
1634 | int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, | ||
1635 | struct ring_buffer *buffer_b, int cpu) | ||
1636 | { | ||
1637 | struct ring_buffer_per_cpu *cpu_buffer_a; | ||
1638 | struct ring_buffer_per_cpu *cpu_buffer_b; | ||
1639 | |||
1640 | if (!cpu_isset(cpu, buffer_a->cpumask) || | ||
1641 | !cpu_isset(cpu, buffer_b->cpumask)) | ||
1642 | return -EINVAL; | ||
1643 | |||
1644 | /* At least make sure the two buffers are somewhat the same */ | ||
1645 | if (buffer_a->size != buffer_b->size || | ||
1646 | buffer_a->pages != buffer_b->pages) | ||
1647 | return -EINVAL; | ||
1648 | |||
1649 | cpu_buffer_a = buffer_a->buffers[cpu]; | ||
1650 | cpu_buffer_b = buffer_b->buffers[cpu]; | ||
1651 | |||
1652 | /* | ||
1653 | * We can't do a synchronize_sched here because this | ||
1654 | * function can be called in atomic context. | ||
1655 | * Normally this will be called from the same CPU as cpu. | ||
1656 | * If not it's up to the caller to protect this. | ||
1657 | */ | ||
1658 | atomic_inc(&cpu_buffer_a->record_disabled); | ||
1659 | atomic_inc(&cpu_buffer_b->record_disabled); | ||
1660 | |||
1661 | buffer_a->buffers[cpu] = cpu_buffer_b; | ||
1662 | buffer_b->buffers[cpu] = cpu_buffer_a; | ||
1663 | |||
1664 | cpu_buffer_b->buffer = buffer_a; | ||
1665 | cpu_buffer_a->buffer = buffer_b; | ||
1666 | |||
1667 | atomic_dec(&cpu_buffer_a->record_disabled); | ||
1668 | atomic_dec(&cpu_buffer_b->record_disabled); | ||
1669 | |||
1670 | return 0; | ||
1671 | } | ||
1672 | |||