diff options
author | Feng Tang <feng.tang@intel.com> | 2012-08-08 05:57:55 -0400 |
---|---|---|
committer | Arnaldo Carvalho de Melo <acme@redhat.com> | 2012-08-08 11:55:38 -0400 |
commit | 0076d546b4f9b5c15121c6959d108a83fe43fa9a (patch) | |
tree | f62c2aa3af940f763d2077c5c2ac7e42333abb72 /tools/perf/scripts | |
parent | 02f1c33f7d630183518ea42d45a6acf275541b08 (diff) |
perf scripts python: Add event_analyzing_sample.py as a sample for general event handling
Currently only trace point events are supported in perf/python script,
the first 3 patches of this serie add the support for all types of
events. This script is just a simple sample to show how to gather the
basic information of the events and analyze them.
This script will create one object for each event sample and insert them
into a table in a database, then leverage the simple SQL commands to
sort/group them. User can modify or write their brand new functions
according to their specific requirment.
Here is the sample of how to use the script:
$ perf record -a tree
$ perf script -s process_event.py
There is 100 records in gen_events table
Statistics about the general events grouped by thread/symbol/dso:
comm number histgram
==========================================
swapper 56 ######
tree 20 #####
perf 10 ####
sshd 8 ####
kworker/7:2 4 ###
ksoftirqd/7 1 #
plugin-containe 1 #
symbol number histgram
==========================================================
native_write_msr_safe 40 ######
__lock_acquire 8 ####
ftrace_graph_caller 4 ###
prepare_ftrace_return 4 ###
intel_idle 3 ##
native_sched_clock 3 ##
Unknown_symbol 2 ##
do_softirq 2 ##
lock_release 2 ##
lock_release_holdtime 2 ##
trace_graph_entry 2 ##
_IO_putc 1 #
__d_lookup_rcu 1 #
__do_fault 1 #
__schedule 1 #
_raw_spin_lock 1 #
delay_tsc 1 #
generic_exec_single 1 #
generic_fillattr 1 #
dso number histgram
==================================================================
[kernel.kallsyms] 95 #######
/lib/libc-2.12.1.so 5 ###
Signed-off-by: Feng Tang <feng.tang@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Ahern <dsahern@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/r/1344419875-21665-6-git-send-email-feng.tang@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Diffstat (limited to 'tools/perf/scripts')
-rw-r--r-- | tools/perf/scripts/python/event_analyzing_sample.py | 193 |
1 files changed, 193 insertions, 0 deletions
diff --git a/tools/perf/scripts/python/event_analyzing_sample.py b/tools/perf/scripts/python/event_analyzing_sample.py new file mode 100644 index 000000000000..46f05aad6d07 --- /dev/null +++ b/tools/perf/scripts/python/event_analyzing_sample.py | |||
@@ -0,0 +1,193 @@ | |||
1 | # process_event.py: general event handler in python | ||
2 | # | ||
3 | # Current perf report is alreay very powerful with the anotation integrated, | ||
4 | # and this script is not trying to be as powerful as perf report, but | ||
5 | # providing end user/developer a flexible way to analyze the events other | ||
6 | # than trace points. | ||
7 | # | ||
8 | # The 2 database related functions in this script just show how to gather | ||
9 | # the basic information, and users can modify and write their own functions | ||
10 | # according to their specific requirment. | ||
11 | # | ||
12 | # The first sample "show_general_events" just does a baisc grouping for all | ||
13 | # generic events with the help of sqlite, and the 2nd one "show_pebs_ll" is | ||
14 | # for a x86 HW PMU event: PEBS with load latency data. | ||
15 | # | ||
16 | |||
17 | import os | ||
18 | import sys | ||
19 | import math | ||
20 | import struct | ||
21 | import sqlite3 | ||
22 | |||
23 | sys.path.append(os.environ['PERF_EXEC_PATH'] + \ | ||
24 | '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') | ||
25 | |||
26 | from perf_trace_context import * | ||
27 | from EventClass import * | ||
28 | |||
29 | # | ||
30 | # If the perf.data has a big number of samples, then the insert operation | ||
31 | # will be very time consuming (about 10+ minutes for 10000 samples) if the | ||
32 | # .db database is on disk. Move the .db file to RAM based FS to speedup | ||
33 | # the handling, which will cut the time down to several seconds. | ||
34 | # | ||
35 | con = sqlite3.connect("/dev/shm/perf.db") | ||
36 | con.isolation_level = None | ||
37 | |||
38 | def trace_begin(): | ||
39 | print "In trace_begin:\n" | ||
40 | |||
41 | # | ||
42 | # Will create several tables at the start, pebs_ll is for PEBS data with | ||
43 | # load latency info, while gen_events is for general event. | ||
44 | # | ||
45 | con.execute(""" | ||
46 | create table if not exists gen_events ( | ||
47 | name text, | ||
48 | symbol text, | ||
49 | comm text, | ||
50 | dso text | ||
51 | );""") | ||
52 | con.execute(""" | ||
53 | create table if not exists pebs_ll ( | ||
54 | name text, | ||
55 | symbol text, | ||
56 | comm text, | ||
57 | dso text, | ||
58 | flags integer, | ||
59 | ip integer, | ||
60 | status integer, | ||
61 | dse integer, | ||
62 | dla integer, | ||
63 | lat integer | ||
64 | );""") | ||
65 | |||
66 | # | ||
67 | # Create and insert event object to a database so that user could | ||
68 | # do more analysis with simple database commands. | ||
69 | # | ||
70 | def process_event(param_dict): | ||
71 | event_attr = param_dict["attr"] | ||
72 | sample = param_dict["sample"] | ||
73 | raw_buf = param_dict["raw_buf"] | ||
74 | comm = param_dict["comm"] | ||
75 | name = param_dict["ev_name"] | ||
76 | |||
77 | # Symbol and dso info are not always resolved | ||
78 | if (param_dict.has_key("dso")): | ||
79 | dso = param_dict["dso"] | ||
80 | else: | ||
81 | dso = "Unknown_dso" | ||
82 | |||
83 | if (param_dict.has_key("symbol")): | ||
84 | symbol = param_dict["symbol"] | ||
85 | else: | ||
86 | symbol = "Unknown_symbol" | ||
87 | |||
88 | # Creat the event object and insert it to the right table in database | ||
89 | event = create_event(name, comm, dso, symbol, raw_buf) | ||
90 | insert_db(event) | ||
91 | |||
92 | def insert_db(event): | ||
93 | if event.ev_type == EVTYPE_GENERIC: | ||
94 | con.execute("insert into gen_events values(?, ?, ?, ?)", | ||
95 | (event.name, event.symbol, event.comm, event.dso)) | ||
96 | elif event.ev_type == EVTYPE_PEBS_LL: | ||
97 | event.ip &= 0x7fffffffffffffff | ||
98 | event.dla &= 0x7fffffffffffffff | ||
99 | con.execute("insert into pebs_ll values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", | ||
100 | (event.name, event.symbol, event.comm, event.dso, event.flags, | ||
101 | event.ip, event.status, event.dse, event.dla, event.lat)) | ||
102 | |||
103 | def trace_end(): | ||
104 | print "In trace_end:\n" | ||
105 | # We show the basic info for the 2 type of event classes | ||
106 | show_general_events() | ||
107 | show_pebs_ll() | ||
108 | con.close() | ||
109 | |||
110 | # | ||
111 | # As the event number may be very big, so we can't use linear way | ||
112 | # to show the histgram in real number, but use a log2 algorithm. | ||
113 | # | ||
114 | |||
115 | def num2sym(num): | ||
116 | # Each number will have at least one '#' | ||
117 | snum = '#' * (int)(math.log(num, 2) + 1) | ||
118 | return snum | ||
119 | |||
120 | def show_general_events(): | ||
121 | |||
122 | # Check the total record number in the table | ||
123 | count = con.execute("select count(*) from gen_events") | ||
124 | for t in count: | ||
125 | print "There is %d records in gen_events table" % t[0] | ||
126 | if t[0] == 0: | ||
127 | return | ||
128 | |||
129 | print "Statistics about the general events grouped by thread/symbol/dso: \n" | ||
130 | |||
131 | # Group by thread | ||
132 | commq = con.execute("select comm, count(comm) from gen_events group by comm order by -count(comm)") | ||
133 | print "\n%16s %8s %16s\n%s" % ("comm", "number", "histgram", "="*42) | ||
134 | for row in commq: | ||
135 | print "%16s %8d %s" % (row[0], row[1], num2sym(row[1])) | ||
136 | |||
137 | # Group by symbol | ||
138 | print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histgram", "="*58) | ||
139 | symbolq = con.execute("select symbol, count(symbol) from gen_events group by symbol order by -count(symbol)") | ||
140 | for row in symbolq: | ||
141 | print "%32s %8d %s" % (row[0], row[1], num2sym(row[1])) | ||
142 | |||
143 | # Group by dso | ||
144 | print "\n%40s %8s %16s\n%s" % ("dso", "number", "histgram", "="*74) | ||
145 | dsoq = con.execute("select dso, count(dso) from gen_events group by dso order by -count(dso)") | ||
146 | for row in dsoq: | ||
147 | print "%40s %8d %s" % (row[0], row[1], num2sym(row[1])) | ||
148 | |||
149 | # | ||
150 | # This function just shows the basic info, and we could do more with the | ||
151 | # data in the tables, like checking the function parameters when some | ||
152 | # big latency events happen. | ||
153 | # | ||
154 | def show_pebs_ll(): | ||
155 | |||
156 | count = con.execute("select count(*) from pebs_ll") | ||
157 | for t in count: | ||
158 | print "There is %d records in pebs_ll table" % t[0] | ||
159 | if t[0] == 0: | ||
160 | return | ||
161 | |||
162 | print "Statistics about the PEBS Load Latency events grouped by thread/symbol/dse/latency: \n" | ||
163 | |||
164 | # Group by thread | ||
165 | commq = con.execute("select comm, count(comm) from pebs_ll group by comm order by -count(comm)") | ||
166 | print "\n%16s %8s %16s\n%s" % ("comm", "number", "histgram", "="*42) | ||
167 | for row in commq: | ||
168 | print "%16s %8d %s" % (row[0], row[1], num2sym(row[1])) | ||
169 | |||
170 | # Group by symbol | ||
171 | print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histgram", "="*58) | ||
172 | symbolq = con.execute("select symbol, count(symbol) from pebs_ll group by symbol order by -count(symbol)") | ||
173 | for row in symbolq: | ||
174 | print "%32s %8d %s" % (row[0], row[1], num2sym(row[1])) | ||
175 | |||
176 | # Group by dse | ||
177 | dseq = con.execute("select dse, count(dse) from pebs_ll group by dse order by -count(dse)") | ||
178 | print "\n%32s %8s %16s\n%s" % ("dse", "number", "histgram", "="*58) | ||
179 | for row in dseq: | ||
180 | print "%32s %8d %s" % (row[0], row[1], num2sym(row[1])) | ||
181 | |||
182 | # Group by latency | ||
183 | latq = con.execute("select lat, count(lat) from pebs_ll group by lat order by lat") | ||
184 | print "\n%32s %8s %16s\n%s" % ("latency", "number", "histgram", "="*58) | ||
185 | for row in latq: | ||
186 | print "%32s %8d %s" % (row[0], row[1], num2sym(row[1])) | ||
187 | |||
188 | def trace_unhandled(event_name, context, event_fields_dict): | ||
189 | print ' '.join(['%s=%s'%(k,str(v))for k,v in sorted(event_fields_dict.items())]) | ||
190 | |||
191 | def print_header(event_name, cpu, secs, nsecs, pid, comm): | ||
192 | print "%-20s %5u %05u.%09u %8u %-20s " % \ | ||
193 | (event_name, cpu, secs, nsecs, pid, comm), | ||