aboutsummaryrefslogtreecommitdiffstats
path: root/tools/perf/scripts/python/net_dropmonitor.py
diff options
context:
space:
mode:
authorEwan D. Milne <emilne@redhat.com>2014-12-04 11:49:26 -0500
committerChristoph Hellwig <hch@lst.de>2014-12-15 07:34:26 -0500
commit4bc6b63482a069baa2eeaba3e4a0b5df75263dc5 (patch)
tree91459de2c97b39f534c43fddd19ffdcf421656be /tools/perf/scripts/python/net_dropmonitor.py
parent6d6f3807ccb7ac884ff0d0dcb2510a0ca4dd3ace (diff)
scsi_debug: take sdebug_host_list_lock when changing capacity
All other traversals of the sdebug_host_list take the lock. Signed-off-by: Ewan D. Milne <emilne@redhat.com> Acked-by: Douglas Gilbert <dgilbert@interlog.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
Diffstat (limited to 'tools/perf/scripts/python/net_dropmonitor.py')
0 files changed, 0 insertions, 0 deletions
n286' href='#n286'>286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
/*[A[A
 * Copyright (C) 2005-2009 Red Hat, Inc. All rights reserved.
 *
 * Module Author: Heinz Mauelshagen <heinzm@redhat.com>
 *
 * This file is released under the GPL.
 *
 *
 * Linux 2.6 Device Mapper RAID4 and RAID5 target.
 *
 * Supports:
 *	o RAID4 with dedicated and selectable parity device
 *	o RAID5 with rotating parity (left+right, symmetric+asymmetric)
 *	o recovery of out of sync device for initial
 *	  RAID set creation or after dead drive replacement
 *	o run time optimization of xor algorithm used to calculate parity
 *
 *
 * Thanks to MD for:
 *    o the raid address calculation algorithm
 *    o the base of the biovec <-> page list copier.
 *
 *
 * Uses region hash to keep track of how many writes are in flight to
 * regions in order to use dirty log to keep state of regions to recover:
 *
 *    o clean regions (those which are synchronized
 * 	and don't have write io in flight)
 *    o dirty regions (those with write io in flight)
 *
 *
 * On startup, any dirty regions are migrated to the
 * 'nosync' state and are subject to recovery by the daemon.
 *
 * See raid_ctr() for table definition.
 *
 * FIXME: recovery bandwidth
 */ 

static const char *version = "v0.2594b";

#include "dm.h"
#include "dm-memcache.h"
#include "dm-message.h"
#include "dm-raid45.h"

#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/raid/xor.h>

#include <linux/bio.h>
#include <linux/dm-io.h>
#include <linux/dm-dirty-log.h>
#include "dm-region-hash.h"


/*
 * Configurable parameters
 */

/* Minimum/maximum and default # of selectable stripes. */
#define	STRIPES_MIN		8
#define	STRIPES_MAX		16384
#define	STRIPES_DEFAULT		80

/* Maximum and default chunk size in sectors if not set in constructor. */
#define	CHUNK_SIZE_MIN		8
#define	CHUNK_SIZE_MAX		16384
#define	CHUNK_SIZE_DEFAULT	64

/* Default io size in sectors if not set in constructor. */
#define	IO_SIZE_MIN		CHUNK_SIZE_MIN
#define	IO_SIZE_DEFAULT		IO_SIZE_MIN

/* Recover io size default in sectors. */
#define	RECOVER_IO_SIZE_MIN		64
#define	RECOVER_IO_SIZE_DEFAULT		256

/* Default, minimum and maximum percentage of recover io bandwidth. */
#define	BANDWIDTH_DEFAULT	10
#define	BANDWIDTH_MIN		1
#define	BANDWIDTH_MAX		100

/* # of parallel recovered regions */
#define RECOVERY_STRIPES_MIN	1
#define RECOVERY_STRIPES_MAX	64
#define RECOVERY_STRIPES_DEFAULT	RECOVERY_STRIPES_MIN
/*
 * END Configurable parameters
 */

#define	TARGET	"dm-raid45"
#define	DAEMON	"kraid45d"
#define	DM_MSG_PREFIX	TARGET

#define	SECTORS_PER_PAGE	(PAGE_SIZE >> SECTOR_SHIFT)

/* Amount/size for __xor(). */
#define	XOR_SIZE	PAGE_SIZE

/* Check value in range. */
#define	range_ok(i, min, max)	(i >= min && i <= max)

/* Check argument is power of 2. */
#define POWER_OF_2(a) (!(a & (a - 1)))

/* Structure access macros. */
/* Derive raid_set from stripe_cache pointer. */
#define	RS(x)	container_of(x, struct raid_set, sc)

/* Page reference. */
#define PAGE(stripe, p)  ((stripe)->obj[p].pl->page)

/* Stripe chunk reference. */
#define CHUNK(stripe, p) ((stripe)->chunk + p)

/* Bio list reference. */
#define	BL(stripe, p, rw)	(stripe->chunk[p].bl + rw)
#define	BL_CHUNK(chunk, rw)	(chunk->bl + rw)

/* Page list reference. */
#define	PL(stripe, p)		(stripe->obj[p].pl)
/* END: structure access macros. */

/* Factor out to dm-bio-list.h */
static inline void bio_list_push(struct bio_list *bl, struct bio *bio)
{
	bio->bi_next = bl->head;
	bl->head = bio;

	if (!bl->tail)
		bl->tail = bio;
}

/* Factor out to dm.h */
#define TI_ERR_RET(str, ret) \
	do { ti->error = str; return ret; } while (0);
#define TI_ERR(str)     TI_ERR_RET(str, -EINVAL)

/* Macro to define access IO flags access inline functions. */
#define	BITOPS(name, what, var, flag) \
static inline int TestClear ## name ## what(struct var *v) \
{ return test_and_clear_bit(flag, &v->io.flags); } \
static inline int TestSet ## name ## what(struct var *v) \
{ return test_and_set_bit(flag, &v->io.flags); } \
static inline void Clear ## name ## what(struct var *v) \
{ clear_bit(flag, &v->io.flags); } \
static inline void Set ## name ## what(struct var *v) \
{ set_bit(flag, &v->io.flags); } \
static inline int name ## what(struct var *v) \
{ return test_bit(flag, &v->io.flags); }

/*-----------------------------------------------------------------
 * Stripe cache
 *
 * Cache for all reads and writes to raid sets (operational or degraded)
 *
 * We need to run all data to and from a RAID set through this cache,
 * because parity chunks need to get calculated from data chunks
 * or, in the degraded/resynchronization case, missing chunks need
 * to be reconstructed using the other chunks of the stripe.
 *---------------------------------------------------------------*/
/* A chunk within a stripe (holds bios hanging off). */
/* IO status flags for chunks of a stripe. */
enum chunk_flags {
	CHUNK_DIRTY,		/* Pages of chunk dirty; need writing. */
	CHUNK_ERROR,		/* IO error on any chunk page. */
	CHUNK_IO,		/* Allow/prohibit IO on chunk pages. */
	CHUNK_LOCKED,		/* Chunk pages locked during IO. */
	CHUNK_MUST_IO,		/* Chunk must io. */
	CHUNK_UNLOCK,		/* Enforce chunk unlock. */
	CHUNK_UPTODATE,		/* Chunk pages are uptodate. */
};

#if READ != 0 || WRITE != 1
#error dm-raid45: READ/WRITE != 0/1 used as index!!!
#endif

enum bl_type {
	WRITE_QUEUED = WRITE + 1,
	WRITE_MERGED,
	NR_BL_TYPES,	/* Must be last one! */
};
struct stripe_chunk {
	atomic_t cnt;		/* Reference count. */
	struct stripe *stripe;	/* Backpointer to stripe for endio(). */
	/* Bio lists for reads, writes, and writes merged. */
	struct bio_list bl[NR_BL_TYPES];
	struct {
		unsigned long flags; /* IO status flags. */
	} io;
};

/* Define chunk bit operations. */
BITOPS(Chunk, Dirty,	 stripe_chunk, CHUNK_DIRTY)
BITOPS(Chunk, Error,	 stripe_chunk, CHUNK_ERROR)
BITOPS(Chunk, Io,	 stripe_chunk, CHUNK_IO)
BITOPS(Chunk, Locked,	 stripe_chunk, CHUNK_LOCKED)
BITOPS(Chunk, MustIo,	 stripe_chunk, CHUNK_MUST_IO)
BITOPS(Chunk, Unlock,	 stripe_chunk, CHUNK_UNLOCK)
BITOPS(Chunk, Uptodate,	 stripe_chunk, CHUNK_UPTODATE)

/*
 * Stripe linked list indexes. Keep order, because the stripe
 * and the stripe cache rely on the first 3!
 */
enum list_types {
	LIST_FLUSH,	/* Stripes to flush for io. */
	LIST_ENDIO,	/* Stripes to endio. */
	LIST_LRU,	/* Least recently used stripes. */
	SC_NR_LISTS,	/* # of lists in stripe cache. */
	LIST_HASH = SC_NR_LISTS,	/* Hashed stripes. */
	LIST_RECOVER = LIST_HASH, /* For recovery type stripes only. */
	STRIPE_NR_LISTS,/* To size array in struct stripe. */
};

/* Adressing region recovery. */
struct recover_addr {
	struct dm_region *reg;	/* Actual region to recover. */
	sector_t pos;	/* Position within region to recover. */
	sector_t end;	/* End of region to recover. */
};

/* A stripe: the io object to handle all reads and writes to a RAID set. */
struct stripe {
	atomic_t cnt;			/* Reference count. */
	struct stripe_cache *sc;	/* Backpointer to stripe cache. */

	/*
	 * 4 linked lists:
	 *   o io list to flush io
	 *   o endio list
	 *   o LRU list to put stripes w/o reference count on
	 *   o stripe cache hash
	 */
	struct list_head lists[STRIPE_NR_LISTS];

	sector_t key;	 /* Hash key. */
	region_t region; /* Region stripe is mapped to. */

	struct {
		unsigned long flags;	/* Stripe state flags (see below). */

		/*
		 * Pending ios in flight:
		 *
		 * used to control move of stripe to endio list
		 */
		atomic_t pending;

		/* Sectors to read and write for multi page stripe sets. */
		unsigned size;
	} io;

	/* Address region recovery. */
	struct recover_addr *recover;

	/* Lock on stripe (Future: for clustering). */
	void *lock;

	struct {
		unsigned short parity;	/* Parity chunk index. */
		short recover;		/* Recovery chunk index. */
	} idx;

	/*
	 * This stripe's memory cache object (dm-mem-cache);
	 * i.e. the io chunk pages.
	 */
	struct dm_mem_cache_object *obj;

	/* Array of stripe sets (dynamically allocated). */
	struct stripe_chunk chunk[0];
};

/* States stripes can be in (flags field). */
enum stripe_states {
	STRIPE_ERROR,		/* io error on stripe. */
	STRIPE_MERGED,		/* Writes got merged to be written. */
	STRIPE_RBW,		/* Read-before-write stripe. */
	STRIPE_RECONSTRUCT,	/* Reconstruct of a missing chunk required. */
	STRIPE_RECONSTRUCTED,	/* Reconstructed of a missing chunk. */
	STRIPE_RECOVER,		/* Stripe used for RAID set recovery. */
};

/* Define stripe bit operations. */
BITOPS(Stripe, Error,	      stripe, STRIPE_ERROR)
BITOPS(Stripe, Merged,        stripe, STRIPE_MERGED)
BITOPS(Stripe, RBW,	      stripe, STRIPE_RBW)
BITOPS(Stripe, Reconstruct,   stripe, STRIPE_RECONSTRUCT)
BITOPS(Stripe, Reconstructed, stripe, STRIPE_RECONSTRUCTED)
BITOPS(Stripe, Recover,	      stripe, STRIPE_RECOVER)

/* A stripe hash. */
struct stripe_hash {
	struct list_head *hash;
	unsigned buckets;
	unsigned mask;
	unsigned prime;
	unsigned shift;
};

enum sc_lock_types {
	LOCK_ENDIO,	/* Protect endio list. */
	LOCK_LRU,	/* Protect LRU list. */
	NR_LOCKS,       /* To size array in struct stripe_cache. */
};

/* A stripe cache. */
struct stripe_cache {
	/* Stripe hash. */
	struct stripe_hash hash;

	spinlock_t locks[NR_LOCKS];	/* Locks to protect lists. */

	/* Stripes with io to flush, stripes to endio and LRU lists. */
	struct list_head lists[SC_NR_LISTS];

	/* Slab cache to allocate stripes from. */
	struct {
		struct kmem_cache *cache;	/* Cache itself. */
		char name[32];	/* Unique name. */
	} kc;

	struct dm_io_client *dm_io_client; /* dm-io client resource context. */

	/* dm-mem-cache client resource context. */
	struct dm_mem_cache_client *mem_cache_client;

	int stripes_parm;	    /* # stripes parameter from constructor. */
	atomic_t stripes;	    /* actual # of stripes in cache. */
	atomic_t stripes_to_set;    /* # of stripes to resize cache to. */
	atomic_t stripes_last;	    /* last # of stripes in cache. */
	atomic_t active_stripes;    /* actual # of active stripes in cache. */

	/* REMOVEME: */
	atomic_t active_stripes_max; /* actual # of active stripes in cache. */
};

/* Flag specs for raid_dev */ ;
enum raid_dev_flags {
	DEV_FAILED,	/* Device failed. */
	DEV_IO_QUEUED,	/* Io got queued to device. */
};

/* The raid device in a set. */
struct raid_dev {
	struct dm_dev *dev;
	sector_t start;		/* Offset to map to. */
	struct {	/* Using struct to be able to BITOPS(). */
		unsigned long flags;	/* raid_dev_flags. */
	} io;
};

BITOPS(Dev, Failed,   raid_dev, DEV_FAILED)
BITOPS(Dev, IoQueued, raid_dev, DEV_IO_QUEUED)

/* Flags spec for raid_set. */
enum raid_set_flags {
	RS_CHECK_OVERWRITE,	/* Check for chunk overwrites. */
	RS_DEAD,		/* RAID set inoperational. */
	RS_DEGRADED,		/* Io errors on RAID device. */
	RS_DEVEL_STATS,		/* REMOVEME: display status information. */
	RS_RECOVER,		/* Do recovery. */
	RS_RECOVERY_BANDWIDTH,	/* Allow recovery bandwidth (delayed bios). */
	RS_SC_BUSY,		/* Stripe cache busy -> send an event. */
	RS_SUSPEND,		/* Suspend RAID set. */
};

/* REMOVEME: devel stats counters. */
enum stats_types {
	S_BIOS_READ,
	S_BIOS_ADDED_READ,
	S_BIOS_ENDIO_READ,
	S_BIOS_WRITE,
	S_BIOS_ADDED_WRITE,
	S_BIOS_ENDIO_WRITE,
	S_CAN_MERGE,
	S_CANT_MERGE,
	S_CONGESTED,
	S_DM_IO_READ,
	S_DM_IO_WRITE,
	S_BANDWIDTH,
	S_BARRIER,
	S_BIO_COPY_PL_NEXT,
	S_DEGRADED,
	S_DELAYED_BIOS,
	S_FLUSHS,
	S_HITS_1ST,
	S_IOS_POST,
	S_INSCACHE,
	S_MAX_LOOKUP,
	S_CHUNK_LOCKED,
	S_NO_BANDWIDTH,
	S_NOT_CONGESTED,
	S_NO_RW,
	S_NOSYNC,
	S_OVERWRITE,
	S_PROHIBITCHUNKIO,
	S_RECONSTRUCT_EI,
	S_RECONSTRUCT_DEV,
	S_RECONSTRUCT_SET,
	S_RECONSTRUCTED,
	S_REQUEUE,
	S_STRIPE_ERROR,
	S_SUM_DELAYED_BIOS,
	S_XORS,
	S_NR_STATS,	/* # of stats counters. Must be last! */
};

/* Status type -> string mappings. */
struct stats_map {
	const enum stats_types type;
	const char *str;
};

static struct stats_map stats_map[] = {
	{ S_BIOS_READ, "r=" },
	{ S_BIOS_ADDED_READ, "/" },
	{ S_BIOS_ENDIO_READ, "/" },
	{ S_BIOS_WRITE, " w=" },
	{ S_BIOS_ADDED_WRITE, "/" },
	{ S_BIOS_ENDIO_WRITE, "/" },
	{ S_DM_IO_READ, " rc=" },
	{ S_DM_IO_WRITE, " wc=" },
	{ S_BANDWIDTH, "\nbw=" },
	{ S_NO_BANDWIDTH, " no_bw=" },
	{ S_BARRIER, "\nbarrier=" },
	{ S_BIO_COPY_PL_NEXT, "\nbio_cp_next=" },
	{ S_CAN_MERGE, "\nmerge=" },
	{ S_CANT_MERGE, "/no_merge=" },
	{ S_CHUNK_LOCKED, "\nchunk_locked=" },
	{ S_CONGESTED, "\ncgst=" },
	{ S_NOT_CONGESTED, "/not_cgst=" },
	{ S_DEGRADED, "\ndegraded=" },
	{ S_DELAYED_BIOS, "\ndel_bios=" },
	{ S_SUM_DELAYED_BIOS, "/sum_del_bios=" },
	{ S_FLUSHS, "\nflushs=" },
	{ S_HITS_1ST, "\nhits_1st=" },
	{ S_IOS_POST, " ios_post=" },
	{ S_INSCACHE, " inscache=" },
	{ S_MAX_LOOKUP, " maxlookup=" },
	{ S_NO_RW, "\nno_rw=" },
	{ S_NOSYNC, " nosync=" },
	{ S_OVERWRITE, " ovr=" },
	{ S_PROHIBITCHUNKIO, " prhbt_io=" },
	{ S_RECONSTRUCT_EI, "\nrec_ei=" },
	{ S_RECONSTRUCT_DEV, " rec_dev=" },
	{ S_RECONSTRUCT_SET, " rec_set=" },
	{ S_RECONSTRUCTED, " rec=" },
	{ S_REQUEUE, " requeue=" },
	{ S_STRIPE_ERROR, " stripe_err=" },
	{ S_XORS, " xors=" },
};

/*
 * A RAID set.
 */
#define	dm_rh_client	dm_region_hash
enum count_type { IO_WORK = 0, IO_RECOVER, IO_NR_COUNT };
typedef void (*xor_function_t)(unsigned count, unsigned long **data);
struct raid_set {
	struct dm_target *ti;	/* Target pointer. */

	struct {
		unsigned long flags;	/* State flags. */
		struct mutex in_lock;	/* Protects central input list below. */
		struct bio_list in;	/* Pending ios (central input list). */
		struct bio_list work;	/* ios work set. */
		wait_queue_head_t suspendq;	/* suspend synchronization. */
		atomic_t in_process;	/* counter of queued bios (suspendq). */
		atomic_t in_process_max;/* counter of queued bios max. */

		/* io work. */
		struct workqueue_struct *wq;
		struct delayed_work dws_do_raid;	/* For main worker. */
		struct work_struct ws_do_table_event;	/* For event worker. */
	} io;

	/* Stripe locking abstraction. */
	struct dm_raid45_locking_type *locking;

	struct stripe_cache sc;	/* Stripe cache for this set. */

	/* Xor optimization. */
	struct {
		struct xor_func *f;
		unsigned chunks;
		unsigned speed;
	} xor;

	/* Recovery parameters. */
	struct recover {
		struct dm_dirty_log *dl;	/* Dirty log. */
		struct dm_rh_client *rh;	/* Region hash. */

		struct dm_io_client *dm_io_client; /* recovery dm-io client. */
		/* dm-mem-cache client resource context for recovery stripes. */
		struct dm_mem_cache_client *mem_cache_client;

		struct list_head stripes;	/* List of recovery stripes. */

		region_t nr_regions;
		region_t nr_regions_to_recover;
		region_t nr_regions_recovered;
		unsigned long start_jiffies;
		unsigned long end_jiffies;

		unsigned bandwidth;	 /* Recovery bandwidth [%]. */
		unsigned bandwidth_work; /* Recovery bandwidth [factor]. */
		unsigned bandwidth_parm; /*  " constructor parm. */
		unsigned io_size;        /* recovery io size <= region size. */
		unsigned io_size_parm;   /* recovery io size ctr parameter. */
		unsigned recovery;	 /* Recovery allowed/prohibited. */
		unsigned recovery_stripes; /* # of parallel recovery stripes. */

		/* recovery io throttling. */
		atomic_t io_count[IO_NR_COUNT];	/* counter recover/regular io.*/
		unsigned long last_jiffies;
	} recover;

	/* RAID set parameters. */
	struct {
		struct raid_type *raid_type;	/* RAID type (eg, RAID4). */
		unsigned raid_parms;	/* # variable raid parameters. */

		unsigned chunk_size;	/* Sectors per chunk. */
		unsigned chunk_size_parm;
		unsigned chunk_shift;	/* rsector chunk size shift. */

		unsigned io_size;	/* Sectors per io. */
		unsigned io_size_parm;
		unsigned io_mask;	/* Mask for bio_copy_page_list(). */
		unsigned io_inv_mask;	/* Mask for raid_address(). */

		sector_t sectors_per_dev;	/* Sectors per device. */

		atomic_t failed_devs;		/* Amount of devices failed. */

		/* Index of device to initialize. */
		int dev_to_init;
		int dev_to_init_parm;

		/* Raid devices dynamically allocated. */
		unsigned raid_devs;	/* # of RAID devices below. */
		unsigned data_devs;	/* # of RAID data devices. */

		int ei;		/* index of failed RAID device. */

		/* Index of dedicated parity device (i.e. RAID4). */
		int pi;
		int pi_parm;	/* constructor parm for status output. */
	} set;

	/* REMOVEME: devel stats counters. */
	atomic_t stats[S_NR_STATS];

	/* Dynamically allocated temporary pointers for xor(). */
	unsigned long **data;

	/* Dynamically allocated RAID devices. Alignment? */
	struct raid_dev dev[0];
};

/* Define RAID set bit operations. */
BITOPS(RS, Bandwidth, raid_set, RS_RECOVERY_BANDWIDTH)
BITOPS(RS, CheckOverwrite, raid_set, RS_CHECK_OVERWRITE)
BITOPS(RS, Dead, raid_set, RS_DEAD)
BITOPS(RS, Degraded, raid_set, RS_DEGRADED)
BITOPS(RS, DevelStats, raid_set, RS_DEVEL_STATS)
BITOPS(RS, Recover, raid_set, RS_RECOVER)
BITOPS(RS, ScBusy, raid_set, RS_SC_BUSY)
BITOPS(RS, Suspend, raid_set, RS_SUSPEND)
#undef BITOPS

/*-----------------------------------------------------------------
 * Raid-4/5 set structures.
 *---------------------------------------------------------------*/
/* RAID level definitions. */
enum raid_level {
	raid4,
	raid5,
};

/* Symmetric/Asymmetric, Left/Right parity rotating algorithms. */
enum raid_algorithm {
	none,
	left_asym,
	right_asym,
	left_sym,
	right_sym,
};

struct raid_type {
	const char *name;		/* RAID algorithm. */
	const char *descr;		/* Descriptor text for logging. */
	const unsigned parity_devs;	/* # of parity devices. */
	const unsigned minimal_devs;	/* minimal # of devices in set. */
	const enum raid_level level;		/* RAID level. */
	const enum raid_algorithm algorithm;	/* RAID algorithm. */
};

/* Supported raid types and properties. */
static struct raid_type raid_types[] = {
	{"raid4",    "RAID4 (dedicated parity disk)", 1, 3, raid4, none},
	{"raid5_la", "RAID5 (left asymmetric)",       1, 3, raid5, left_asym},
	{"raid5_ra", "RAID5 (right asymmetric)",      1, 3, raid5, right_asym},
	{"raid5_ls", "RAID5 (left symmetric)",        1, 3, raid5, left_sym},
	{"raid5_rs", "RAID5 (right symmetric)",       1, 3, raid5, right_sym},
};

/* Address as calculated by raid_address(). */
struct raid_address {
	sector_t key;		/* Hash key (address of stripe % chunk_size). */
	unsigned di, pi;	/* Data and parity disks index. */
};

/* REMOVEME: reset statistics counters. */
static void stats_reset(struct raid_set *rs)
{
	unsigned s = S_NR_STATS;

	while (s--)
		atomic_set(rs->stats + s, 0);
}

/*----------------------------------------------------------------
 * RAID set management routines.
 *--------------------------------------------------------------*/
/*
 * Begin small helper functions.
 */
/* No need to be called from region hash indirectly at dm_rh_dec(). */
static void wake_dummy(void *context) {}

/* Return # of io reference. */
static int io_ref(struct raid_set *rs)
{
	return atomic_read(&rs->io.in_process);
}

/* Get an io reference. */
static void io_get(struct raid_set *rs)
{
	int p = atomic_inc_return(&rs->io.in_process);

	if (p > atomic_read(&rs->io.in_process_max))
		atomic_set(&rs->io.in_process_max, p); /* REMOVEME: max. */
}

/* Put the io reference and conditionally wake io waiters. */
static void io_put(struct raid_set *rs)
{
	/* Intel: rebuild data corrupter? */
	if (atomic_dec_and_test(&rs->io.in_process))
		wake_up(&rs->io.suspendq);
	else
		BUG_ON(io_ref(rs) < 0);
}

/* Wait until all io has been processed. */
static void wait_ios(struct raid_set *rs)
{
	wait_event(rs->io.suspendq, !io_ref(rs));
}

/* Queue (optionally delayed) io work. */
static void wake_do_raid_delayed(struct raid_set *rs, unsigned long delay)
{
	queue_delayed_work(rs->io.wq, &rs->io.dws_do_raid, delay);
}

/* Queue io work immediately (called from region hash too). */
static void wake_do_raid(void *context)
{
	struct raid_set *rs = context;

	queue_work(rs->io.wq, &rs->io.dws_do_raid.work);
}

/* Calculate device sector offset. */
static sector_t _sector(struct raid_set *rs, struct bio *bio)
{
	sector_t sector = bio->bi_sector;

	sector_div(sector, rs->set.data_devs);
	return sector;
}

/* Return # of active stripes in stripe cache. */
static int sc_active(struct stripe_cache *sc)
{
	return atomic_read(&sc->active_stripes);
}

/* Stripe cache busy indicator. */
static int sc_busy(struct raid_set *rs)
{
	return sc_active(&rs->sc) >
	       atomic_read(&rs->sc.stripes) - (STRIPES_MIN / 2);
}

/* Set chunks states. */
enum chunk_dirty_type { CLEAN, DIRTY, ERROR };
static void chunk_set(struct stripe_chunk *chunk, enum chunk_dirty_type type)
{
	switch (type) {
	case CLEAN:
		ClearChunkDirty(chunk);
		break;
	case DIRTY:
		SetChunkDirty(chunk);
		break;
	case ERROR:
		SetChunkError(chunk);
		SetStripeError(chunk->stripe);
		return;
	default:
		BUG();
	}

	SetChunkUptodate(chunk);
	SetChunkIo(chunk);
	ClearChunkError(chunk);
}

/* Return region state for a sector. */
static int region_state(struct raid_set *rs, sector_t sector, 
			enum dm_rh_region_states state)
{
	struct dm_rh_client *rh = rs->recover.rh;
	region_t region = dm_rh_sector_to_region(rh, sector);

	return !!(dm_rh_get_state(rh, region, 1) & state);
}

/*
 * Return true in case a chunk should be read/written
 *
 * Conditions to read/write:
 *	o chunk not uptodate
 *	o chunk dirty
 *
 * Conditios to avoid io:
 *	o io already ongoing on chunk
 *	o io explitely prohibited
 */
static int chunk_io(struct stripe_chunk *chunk)
{
	/* 2nd run optimization (flag set below on first run). */
	if (TestClearChunkMustIo(chunk))
		return 1;

	/* Avoid io if prohibited or a locked chunk. */
	if (!ChunkIo(chunk) || ChunkLocked(chunk))
		return 0;

	if (!ChunkUptodate(chunk) || ChunkDirty(chunk)) {
		SetChunkMustIo(chunk); /* 2nd run optimization. */
		return 1;
	}

	return 0;
}

/* Call a function on each chunk needing io unless device failed. */
static unsigned for_each_io_dev(struct stripe *stripe,
			        void (*f_io)(struct stripe *stripe, unsigned p))
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned p, r = 0;

	for (p = 0; p < rs->set.raid_devs; p++) {
		if (chunk_io(CHUNK(stripe, p)) && !DevFailed(rs->dev + p)) {
			f_io(stripe, p);
			r++;
		}
	}

	return r;
}

/*
 * Index of device to calculate parity on.
 *
 * Either the parity device index *or* the selected
 * device to init after a spare replacement.
 */
static int dev_for_parity(struct stripe *stripe, int *sync)
{
	struct raid_set *rs = RS(stripe->sc);
	int r = region_state(rs, stripe->key, DM_RH_NOSYNC | DM_RH_RECOVERING);

	*sync = !r;

	/* Reconstruct a particular device ?. */
	if (r && rs->set.dev_to_init > -1)
		return rs->set.dev_to_init;
	else if (rs->set.raid_type->level == raid4)
		return rs->set.pi;
	else if (!StripeRecover(stripe))
		return stripe->idx.parity;
	else
		return -1;
}

/* RAID set congested function. */
static int rs_congested(void *congested_data, int bdi_bits)
{
	int r;
	unsigned p;
	struct raid_set *rs = congested_data;

	if (sc_busy(rs) || RSSuspend(rs))
		r = 1;
	else for (r = 0, p = rs->set.raid_devs; !r && p--; ) {
		/* If any of our component devices are overloaded. */
		struct request_queue *q = bdev_get_queue(rs->dev[p].dev->bdev);

		r |= bdi_congested(&q->backing_dev_info, bdi_bits);
	}

	/* REMOVEME: statistics. */
	atomic_inc(rs->stats + (r ? S_CONGESTED : S_NOT_CONGESTED));
	return r;
}

/* RAID device degrade check. */
static void rs_check_degrade_dev(struct raid_set *rs,
				       struct stripe *stripe, unsigned p)
{
	if (TestSetDevFailed(rs->dev + p))
		return;

	/* Through an event in case of member device errors. */
	if (atomic_inc_return(&rs->set.failed_devs) >
	    rs->set.raid_type->parity_devs &&
	    !TestSetRSDead(rs)) {
		/* Display RAID set dead message once. */
		unsigned p;
		char buf[BDEVNAME_SIZE];

		DMERR("FATAL: too many devices failed -> RAID set broken");
		for (p = 0; p < rs->set.raid_devs; p++) {
			if (DevFailed(rs->dev + p))
				DMERR("device /dev/%s failed",
				      bdevname(rs->dev[p].dev->bdev, buf));
		}
	}

	/* Only log the first member error. */
	if (!TestSetRSDegraded(rs)) {
		char buf[BDEVNAME_SIZE];

		/* Store index for recovery. */
		rs->set.ei = p;
		DMERR("CRITICAL: %sio error on device /dev/%s "
		      "in region=%llu; DEGRADING RAID set\n",
		      stripe ? "" : "FAKED ",
		      bdevname(rs->dev[p].dev->bdev, buf),
		      (unsigned long long) (stripe ? stripe->key : 0));
		DMERR("further device error messages suppressed");
	}

	schedule_work(&rs->io.ws_do_table_event);
}

/* RAID set degrade check. */
static void rs_check_degrade(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned p = rs->set.raid_devs;

	while (p--) {
		if (ChunkError(CHUNK(stripe, p)))
			rs_check_degrade_dev(rs, stripe, p);
	}
}

/* Lookup a RAID device by name or by major:minor number. */
static int raid_dev_lookup(struct raid_set *rs, struct raid_dev *dev_lookup)
{
	unsigned p;
	struct raid_dev *dev;

	/*
	 * Must be an incremental loop, because the device array
	 * can have empty slots still on calls from raid_ctr()
	 */
	for (dev = rs->dev, p = 0;
	     dev->dev && p < rs->set.raid_devs;
	     dev++, p++) {
		if (dev_lookup->dev->bdev->bd_dev == dev->dev->bdev->bd_dev)
			return p;
	}

	return -ENODEV;
}
/*
 * End small helper functions.
 */

/*
 * Stripe hash functions
 */
/* Initialize/destroy stripe hash. */
static int hash_init(struct stripe_hash *hash, unsigned stripes)
{
	unsigned buckets = 2, max_buckets = stripes >> 1;
	static unsigned hash_primes[] = {
		/* Table of primes for hash_fn/table size optimization. */
		1, 2, 3, 7, 13, 27, 53, 97, 193, 389, 769,
		1543, 3079, 6151, 12289, 24593, 49157, 98317,
	};

	/* Calculate number of buckets (2^^n <= stripes / 2). */
	while (buckets < max_buckets)
		buckets <<= 1;

	/* Allocate stripe hash buckets. */
	hash->hash = vmalloc(buckets * sizeof(*hash->hash));
	if (!hash->hash)
		return -ENOMEM;

	hash->buckets = buckets;
	hash->mask = buckets - 1;
	hash->shift = ffs(buckets);
	if (hash->shift > ARRAY_SIZE(hash_primes))
		hash->shift = ARRAY_SIZE(hash_primes) - 1;

	BUG_ON(hash->shift < 2);
	hash->prime = hash_primes[hash->shift];

	/* Initialize buckets. */
	while (buckets--)
		INIT_LIST_HEAD(hash->hash + buckets);
	return 0;
}

static void hash_exit(struct stripe_hash *hash)
{
	if (hash->hash) {
		vfree(hash->hash);
		hash->hash = NULL;
	}
}

static unsigned hash_fn(struct stripe_hash *hash, sector_t key)
{
	return (unsigned) (((key * hash->prime) >> hash->shift) & hash->mask);
}

static struct list_head *hash_bucket(struct stripe_hash *hash, sector_t key)
{
	return hash->hash + hash_fn(hash, key);
}

/* Insert an entry into a hash. */
static void stripe_insert(struct stripe_hash *hash, struct stripe *stripe)
{
	list_add(stripe->lists + LIST_HASH, hash_bucket(hash, stripe->key));
}

/* Lookup an entry in the stripe hash. */
static struct stripe *stripe_lookup(struct stripe_cache *sc, sector_t key)
{
	unsigned look = 0;
	struct stripe *stripe;
	struct list_head *bucket = hash_bucket(&sc->hash, key);

	list_for_each_entry(stripe, bucket, lists[LIST_HASH]) {
		look++;

		if (stripe->key == key) {
			/* REMOVEME: statisics. */
			if (look > atomic_read(RS(sc)->stats + S_MAX_LOOKUP))
				atomic_set(RS(sc)->stats + S_MAX_LOOKUP, look);
			return stripe;
		}
	}

	return NULL;
}

/* Resize the stripe cache hash on size changes. */
static int sc_hash_resize(struct stripe_cache *sc)
{
	/* Resize indicated ? */
	if (atomic_read(&sc->stripes) != atomic_read(&sc->stripes_last)) {
		int r;
		struct stripe_hash hash;

		r = hash_init(&hash, atomic_read(&sc->stripes));
		if (r)
			return r;

		if (sc->hash.hash) {
			unsigned b = sc->hash.buckets;
			struct list_head *pos, *tmp;

			/* Walk old buckets and insert into new. */
			while (b--) {
				list_for_each_safe(pos, tmp, sc->hash.hash + b)
				    stripe_insert(&hash,
						  list_entry(pos, struct stripe,
							     lists[LIST_HASH]));
			}

		}

		hash_exit(&sc->hash);
		memcpy(&sc->hash, &hash, sizeof(sc->hash));
		atomic_set(&sc->stripes_last, atomic_read(&sc->stripes));
	}

	return 0;
}
/* End hash stripe hash function. */

/* List add, delete, push and pop functions. */
/* Add stripe to flush list. */
#define	DEL_LIST(lh) \
	if (!list_empty(lh)) \
		list_del_init(lh);

/* Delete stripe from hash. */
static void stripe_hash_del(struct stripe *stripe)
{
	DEL_LIST(stripe->lists + LIST_HASH);
}

/* Return stripe reference count. */
static inline int stripe_ref(struct stripe *stripe)
{
	return atomic_read(&stripe->cnt);
}

static void stripe_flush_add(struct stripe *stripe)
{
	struct stripe_cache *sc = stripe->sc;
	struct list_head *lh = stripe->lists + LIST_FLUSH;

	if (!StripeReconstruct(stripe) && list_empty(lh))
		list_add_tail(lh, sc->lists + LIST_FLUSH);
}

/*
 * Add stripe to LRU (inactive) list.
 *
 * Need lock, because of concurrent access from message interface.
 */
static void stripe_lru_add(struct stripe *stripe)
{
	if (!StripeRecover(stripe)) {
		unsigned long flags;
		struct list_head *lh = stripe->lists + LIST_LRU;
		spinlock_t *lock = stripe->sc->locks + LOCK_LRU;

		spin_lock_irqsave(lock, flags);
		if (list_empty(lh))
			list_add_tail(lh, stripe->sc->lists + LIST_LRU);
		spin_unlock_irqrestore(lock, flags);
	}
}

#define POP_LIST(list) \
	do { \
		if (list_empty(sc->lists + (list))) \
			stripe = NULL; \
		else { \
			stripe = list_first_entry(sc->lists + (list), \
						  struct stripe, \
						  lists[(list)]); \
			list_del_init(stripe->lists + (list)); \
		} \
	} while (0);

/* Pop an available stripe off the LRU list. */
static struct stripe *stripe_lru_pop(struct stripe_cache *sc)
{
	struct stripe *stripe;
	spinlock_t *lock = sc->locks + LOCK_LRU;

	spin_lock_irq(lock);
	POP_LIST(LIST_LRU);
	spin_unlock_irq(lock);

	return stripe;
}

/* Pop an available stripe off the io list. */
static struct stripe *stripe_io_pop(struct stripe_cache *sc)
{
	struct stripe *stripe;

	POP_LIST(LIST_FLUSH);
	return stripe;
}

/* Push a stripe safely onto the endio list to be handled by do_endios(). */
static void stripe_endio_push(struct stripe *stripe)
{
	unsigned long flags;
	struct stripe_cache *sc = stripe->sc;
	struct list_head *stripe_list = stripe->lists + LIST_ENDIO,
			 *sc_list = sc->lists + LIST_ENDIO;
	spinlock_t *lock = sc->locks + LOCK_ENDIO;

	/* This runs in parallel with do_endios(). */
	spin_lock_irqsave(lock, flags);
	if (list_empty(stripe_list))
		list_add_tail(stripe_list, sc_list);
	spin_unlock_irqrestore(lock, flags);

	wake_do_raid(RS(sc)); /* Wake myself. */
}

/* Pop a stripe off safely off the endio list. */
static struct stripe *stripe_endio_pop(struct stripe_cache *sc)
{
	struct stripe *stripe;
	spinlock_t *lock = sc->locks + LOCK_ENDIO;

	/* This runs in parallel with endio(). */
	spin_lock_irq(lock);
	POP_LIST(LIST_ENDIO)
	spin_unlock_irq(lock);
	return stripe;
}
#undef POP_LIST

/*
 * Stripe cache locking functions
 */
/* Dummy lock function for single host RAID4+5. */
static void *no_lock(sector_t key, enum dm_lock_type type)
{
	return &no_lock;
}

/* Dummy unlock function for single host RAID4+5. */
static void no_unlock(void *lock_handle)
{
}

/* No locking (for single host RAID 4+5). */
static struct dm_raid45_locking_type locking_none = {
	.lock = no_lock,
	.unlock = no_unlock,
};

/* Lock a stripe (for clustering). */
static int
stripe_lock(struct stripe *stripe, int rw, sector_t key)
{
	stripe->lock = RS(stripe->sc)->locking->lock(key, rw == READ ? DM_RAID45_SHARED : DM_RAID45_EX);
	return stripe->lock ? 0 : -EPERM;
}

/* Unlock a stripe (for clustering). */
static void stripe_unlock(struct stripe *stripe)
{
	RS(stripe->sc)->locking->unlock(stripe->lock);
	stripe->lock = NULL;
}

/* Test io pending on stripe. */
static int stripe_io_ref(struct stripe *stripe)
{
	return atomic_read(&stripe->io.pending);
}

static void stripe_io_get(struct stripe *stripe)
{
	if (atomic_inc_return(&stripe->io.pending) == 1)
		/* REMOVEME: statistics */
		atomic_inc(&stripe->sc->active_stripes);
	else
		BUG_ON(stripe_io_ref(stripe) < 0);
}

static void stripe_io_put(struct stripe *stripe)
{
	if (atomic_dec_and_test(&stripe->io.pending)) {
		if (unlikely(StripeRecover(stripe)))
			/* Don't put recovery stripe on endio list. */
			wake_do_raid(RS(stripe->sc));
		else
			/* Add regular stripe to endio list and wake daemon. */
			stripe_endio_push(stripe);

		/* REMOVEME: statistics */
		atomic_dec(&stripe->sc->active_stripes);
	} else
		BUG_ON(stripe_io_ref(stripe) < 0);
}

/* Take stripe reference out. */
static int stripe_get(struct stripe *stripe)
{
	int r;
	struct list_head *lh = stripe->lists + LIST_LRU;
	spinlock_t *lock = stripe->sc->locks + LOCK_LRU;

	/* Delete stripe from LRU (inactive) list if on. */
	spin_lock_irq(lock);
	DEL_LIST(lh);
	spin_unlock_irq(lock);

	BUG_ON(stripe_ref(stripe) < 0);

	/* Lock stripe on first reference */
	r = (atomic_inc_return(&stripe->cnt) == 1) ?
	    stripe_lock(stripe, WRITE, stripe->key) : 0;

	return r;
}
#undef DEL_LIST

/* Return references on a chunk. */
static int chunk_ref(struct stripe_chunk *chunk)
{
	return atomic_read(&chunk->cnt);
}

/* Take out reference on a chunk. */
static int chunk_get(struct stripe_chunk *chunk)
{
	return atomic_inc_return(&chunk->cnt);
}

/* Drop reference on a chunk. */
static void chunk_put(struct stripe_chunk *chunk)
{
	BUG_ON(atomic_dec_return(&chunk->cnt) < 0);
}

/*
 * Drop reference on a stripe.
 *
 * Move it to list of LRU stripes if zero.
 */
static void stripe_put(struct stripe *stripe)
{
	if (atomic_dec_and_test(&stripe->cnt)) {
		BUG_ON(stripe_io_ref(stripe));
		stripe_unlock(stripe);
	} else
		BUG_ON(stripe_ref(stripe) < 0);
}

/* Helper needed by for_each_io_dev(). */
static void stripe_get_references(struct stripe *stripe, unsigned p)
{

	/*
	 * Another one to reference the stripe in
	 * order to protect vs. LRU list moves.
	 */
	io_get(RS(stripe->sc));	/* Global io references. */
	stripe_get(stripe);
	stripe_io_get(stripe);	/* One for each chunk io. */
}

/* Helper for endio() to put all take references. */
static void stripe_put_references(struct stripe *stripe)
{
	stripe_io_put(stripe);	/* One for each chunk io. */
	stripe_put(stripe);
	io_put(RS(stripe->sc));
}

/*
 * Stripe cache functions.
 */
/*
 * Invalidate all chunks (i.e. their pages)  of a stripe.
 *
 * I only keep state for the whole chunk.
 */
static inline void stripe_chunk_invalidate(struct stripe_chunk *chunk)
{
	chunk->io.flags = 0;
}

static void
stripe_chunks_invalidate(struct stripe *stripe)
{
	unsigned p = RS(stripe->sc)->set.raid_devs;

	while (p--)
		stripe_chunk_invalidate(CHUNK(stripe, p));
}

/* Prepare stripe for (re)use. */
static void stripe_invalidate(struct stripe *stripe)
{
	stripe->io.flags = 0;
	stripe->idx.parity = stripe->idx.recover = -1;
	stripe_chunks_invalidate(stripe);
}

/*
 * Allow io on all chunks of a stripe.
 * If not set, IO will not occur; i.e. it's prohibited.
 *
 * Actual IO submission for allowed chunks depends
 * on their !uptodate or dirty state.
 */
static void stripe_allow_io(struct stripe *stripe)
{
	unsigned p = RS(stripe->sc)->set.raid_devs;

	while (p--)
		SetChunkIo(CHUNK(stripe, p));
}

/* Initialize a stripe. */
static void stripe_init(struct stripe_cache *sc, struct stripe *stripe)
{
	unsigned i, p = RS(sc)->set.raid_devs;

	/* Work all io chunks. */
	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);

		atomic_set(&chunk->cnt, 0);
		chunk->stripe = stripe;
		i = ARRAY_SIZE(chunk->bl);
		while (i--)
			bio_list_init(chunk->bl + i);
	}

	stripe->sc = sc;


	i = ARRAY_SIZE(stripe->lists);
	while (i--)
		INIT_LIST_HEAD(stripe->lists + i);

	stripe->io.size = RS(sc)->set.io_size;
	atomic_set(&stripe->cnt, 0);
	atomic_set(&stripe->io.pending, 0);
	stripe_invalidate(stripe);
}

/* Number of pages per chunk. */
static inline unsigned chunk_pages(unsigned sectors)
{
	return dm_div_up(sectors, SECTORS_PER_PAGE);
}

/* Number of pages per stripe. */
static inline unsigned stripe_pages(struct raid_set *rs, unsigned io_size)
{
	return chunk_pages(io_size) * rs->set.raid_devs;
}

/* Initialize part of page_list (recovery). */
static void stripe_zero_pl_part(struct stripe *stripe, int p,
				unsigned start, unsigned count)
{
	unsigned o = start / SECTORS_PER_PAGE, pages = chunk_pages(count);
	/* Get offset into the page_list. */
	struct page_list *pl = pl_elem(PL(stripe, p), o);

	BUG_ON(!pl);
	while (pl && pages--) {
		BUG_ON(!pl->page);
		memset(page_address(pl->page), 0, PAGE_SIZE);
		pl = pl->next;
	}
}

/* Initialize parity chunk of stripe. */
static void stripe_zero_chunk(struct stripe *stripe, int p)
{
	if (p > -1)
		stripe_zero_pl_part(stripe, p, 0, stripe->io.size);
}

/* Return dynamic stripe structure size. */
static size_t stripe_size(struct raid_set *rs)
{
	return sizeof(struct stripe) +
		      rs->set.raid_devs * sizeof(struct stripe_chunk);
}

/* Allocate a stripe and its memory object. */
/* XXX adjust to cope with stripe cache and recovery stripe caches. */
enum grow { SC_GROW, SC_KEEP };
static struct stripe *stripe_alloc(struct stripe_cache *sc,
				   struct dm_mem_cache_client *mc,
				   enum grow grow)
{
	int r;
	struct stripe *stripe;

	stripe = kmem_cache_zalloc(sc->kc.cache, GFP_KERNEL);
	if (stripe) {
		/* Grow the dm-mem-cache by one object. */
		if (grow == SC_GROW) {
			r = dm_mem_cache_grow(mc, 1);
			if (r)
				goto err_free;
		}

		stripe->obj = dm_mem_cache_alloc(mc);
		if (!stripe->obj)
			goto err_shrink;

		stripe_init(sc, stripe);
	}

	return stripe;

err_shrink:
	if (grow == SC_GROW)
		dm_mem_cache_shrink(mc, 1);
err_free:
	kmem_cache_free(sc->kc.cache, stripe);
	return NULL;
}

/*
 * Free a stripes memory object, shrink the
 * memory cache and free the stripe itself.
 */
static void stripe_free(struct stripe *stripe, struct dm_mem_cache_client *mc)
{
	dm_mem_cache_free(mc, stripe->obj);
	dm_mem_cache_shrink(mc, 1);
	kmem_cache_free(stripe->sc->kc.cache, stripe);
}

/* Free the recovery stripe. */
static void stripe_recover_free(struct raid_set *rs)
{
	struct recover *rec = &rs->recover;
	struct dm_mem_cache_client *mc;

	mc = rec->mem_cache_client;
	rec->mem_cache_client = NULL;
	if (mc) {
		struct stripe *stripe;

		while (!list_empty(&rec->stripes)) {
			stripe = list_first_entry(&rec->stripes, struct stripe,
						  lists[LIST_RECOVER]);
			list_del(stripe->lists + LIST_RECOVER);
			kfree(stripe->recover);
			stripe_free(stripe, mc);
		}
	
		dm_mem_cache_client_destroy(mc);
		dm_io_client_destroy(rec->dm_io_client);
		rec->dm_io_client = NULL;
	}
}

/* Grow stripe cache. */
static int sc_grow(struct stripe_cache *sc, unsigned stripes, enum grow grow)
{
	int r = 0;

	/* Try to allocate this many (additional) stripes. */
	while (stripes--) {
		struct stripe *stripe =
			stripe_alloc(sc, sc->mem_cache_client, grow);

		if (likely(stripe)) {
			stripe_lru_add(stripe);
			atomic_inc(&sc->stripes);
		} else {
			r = -ENOMEM;
			break;
		}
	}

	return r ? r : sc_hash_resize(sc);
}

/* Shrink stripe cache. */
static int sc_shrink(struct stripe_cache *sc, unsigned stripes)
{
	int r = 0;

	/* Try to get unused stripe from LRU list. */
	while (stripes--) {
		struct stripe *stripe;

		stripe = stripe_lru_pop(sc);
		if (stripe) {
			/* An LRU stripe may never have ios pending! */
			BUG_ON(stripe_io_ref(stripe));
			BUG_ON(stripe_ref(stripe));
			atomic_dec(&sc->stripes);
			/* Remove from hash if on before deletion. */
			stripe_hash_del(stripe);
			stripe_free(stripe, sc->mem_cache_client);
		} else {
			r = -ENOENT;
			break;
		}
	}

	/* Check if stats are still sane. */
	if (atomic_read(&sc->active_stripes_max) >
	    atomic_read(&sc->stripes))
		atomic_set(&sc->active_stripes_max, 0);

	if (r)
		return r;

	return atomic_read(&sc->stripes) ? sc_hash_resize(sc) : 0;
}

/* Create stripe cache and recovery. */
static int sc_init(struct raid_set *rs, unsigned stripes)
{
	unsigned i, r, rstripes;
	struct stripe_cache *sc = &rs->sc;
	struct stripe *stripe;
	struct recover *rec = &rs->recover;
	struct mapped_device *md;
	struct gendisk *disk;

	/* Initialize lists and locks. */
	i = ARRAY_SIZE(sc->lists);
	while (i--)
		INIT_LIST_HEAD(sc->lists + i);

	INIT_LIST_HEAD(&rec->stripes);

	/* Initialize endio and LRU list locks. */
	i = NR_LOCKS;
	while (i--)
		spin_lock_init(sc->locks + i);

	/* Initialize atomic variables. */
	atomic_set(&sc->stripes, 0);
	atomic_set(&sc->stripes_to_set, 0);
	atomic_set(&sc->active_stripes, 0);
	atomic_set(&sc->active_stripes_max, 0);	/* REMOVEME: statistics. */

	/*
	 * We need a runtime unique # to suffix the kmem cache name
	 * because we'll have one for each active RAID set.
	 */
	md = dm_table_get_md(rs->ti->table);
	disk = dm_disk(md);
	sprintf(sc->kc.name, "%s-%d", TARGET, disk->first_minor);
	dm_put(md);
	sc->kc.cache = kmem_cache_create(sc->kc.name, stripe_size(rs),
					 0, 0, NULL);
	if (!sc->kc.cache)
		return -ENOMEM;

	/* Create memory cache client context for RAID stripe cache. */
	sc->mem_cache_client =
		dm_mem_cache_client_create(stripes, rs->set.raid_devs,
					   chunk_pages(rs->set.io_size));
	if (IS_ERR(sc->mem_cache_client))
		return PTR_ERR(sc->mem_cache_client);

	/* Create memory cache client context for RAID recovery stripe(s). */
	rstripes = rec->recovery_stripes;
	rec->mem_cache_client =
		dm_mem_cache_client_create(rstripes, rs->set.raid_devs,
					   chunk_pages(rec->io_size));
	if (IS_ERR(rec->mem_cache_client))
		return PTR_ERR(rec->mem_cache_client);

	/* Create dm-io client context for IO stripes. */
	sc->dm_io_client =
		dm_io_client_create((stripes > 32 ? 32 : stripes) *
				    rs->set.raid_devs *
				    chunk_pages(rs->set.io_size));
	if (IS_ERR(sc->dm_io_client))
		return PTR_ERR(sc->dm_io_client);

	/* FIXME: intermingeled with stripe cache initialization. */
	/* Create dm-io client context for recovery stripes. */
	rec->dm_io_client =
		dm_io_client_create(rstripes * rs->set.raid_devs *
				    chunk_pages(rec->io_size));
	if (IS_ERR(rec->dm_io_client))
		return PTR_ERR(rec->dm_io_client);

	/* Allocate stripes for set recovery. */
	while (rstripes--) {
		stripe = stripe_alloc(sc, rec->mem_cache_client, SC_KEEP);
		if (!stripe)
			return -ENOMEM;

		stripe->recover = kzalloc(sizeof(*stripe->recover), GFP_KERNEL);
		if (!stripe->recover) {
			stripe_free(stripe, rec->mem_cache_client);
			return -ENOMEM;
		}

		SetStripeRecover(stripe);
		stripe->io.size = rec->io_size;
		list_add_tail(stripe->lists + LIST_RECOVER, &rec->stripes);
		/* Don't add recovery stripes to LRU list! */
	}

	/*
	 * Allocate the stripe objetcs from the
	 * cache and add them to the LRU list.
	 */
	r = sc_grow(sc, stripes, SC_KEEP);
	if (!r)
		atomic_set(&sc->stripes_last, stripes);

	return r;
}

/* Destroy the stripe cache. */
static void sc_exit(struct stripe_cache *sc)
{
	struct raid_set *rs = RS(sc);

	if (sc->kc.cache) {
		stripe_recover_free(rs);
		BUG_ON(sc_shrink(sc, atomic_read(&sc->stripes)));
		kmem_cache_destroy(sc->kc.cache);
		sc->kc.cache = NULL;

		if (sc->mem_cache_client && !IS_ERR(sc->mem_cache_client))
			dm_mem_cache_client_destroy(sc->mem_cache_client);

		if (sc->dm_io_client && !IS_ERR(sc->dm_io_client))
			dm_io_client_destroy(sc->dm_io_client);

		hash_exit(&sc->hash);
	}
}

/*
 * Calculate RAID address
 *
 * Delivers tuple with the index of the data disk holding the chunk
 * in the set, the parity disks index and the start of the stripe
 * within the address space of the set (used as the stripe cache hash key).
 */
/* thx MD. */
static struct raid_address *raid_address(struct raid_set *rs, sector_t sector,
					 struct raid_address *addr)
{
	sector_t stripe, tmp;

	/*
	 * chunk_number = sector / chunk_size
	 * stripe_number = chunk_number / data_devs
	 * di = stripe % data_devs;
	 */
	stripe = sector >> rs->set.chunk_shift;
	addr->di = sector_div(stripe, rs->set.data_devs);

	switch (rs->set.raid_type->level) {
	case raid4:
		addr->pi = rs->set.pi;
		goto check_shift_di;
	case raid5:
		tmp = stripe;
		addr->pi = sector_div(tmp, rs->set.raid_devs);

		switch (rs->set.raid_type->algorithm) {
		case left_asym:		/* Left asymmetric. */
			addr->pi = rs->set.data_devs - addr->pi;
		case right_asym:	/* Right asymmetric. */
check_shift_di:
			if (addr->di >= addr->pi)
				addr->di++;
			break;
		case left_sym:		/* Left symmetric. */
			addr->pi = rs->set.data_devs - addr->pi;
		case right_sym:		/* Right symmetric. */
			addr->di = (addr->pi + addr->di + 1) %
				   rs->set.raid_devs;
			break;
		case none: /* Ain't happen: RAID4 algorithm placeholder. */
			BUG();
		}
	}

	/*
	 * Start offset of the stripes chunk on any single device of the RAID
	 * set, adjusted in case io size differs from chunk size.
	 */
	addr->key = (stripe << rs->set.chunk_shift) +
		    (sector & rs->set.io_inv_mask);
	return addr;
}

/*
 * Copy data across between stripe pages and bio vectors.
 *
 * Pay attention to data alignment in stripe and bio pages.
 */
static void bio_copy_page_list(int rw, struct stripe *stripe,
			       struct page_list *pl, struct bio *bio)
{
	unsigned i, page_offset;
	void *page_addr;
	struct raid_set *rs = RS(stripe->sc);
	struct bio_vec *bv;

	/* Get start page in page list for this sector. */
	i = (bio->bi_sector & rs->set.io_mask) / SECTORS_PER_PAGE;
	pl = pl_elem(pl, i);
	BUG_ON(!pl);
	BUG_ON(!pl->page);

	page_addr = page_address(pl->page);
	page_offset = to_bytes(bio->bi_sector & (SECTORS_PER_PAGE - 1));

	/* Walk all segments and copy data across between bio_vecs and pages. */
	bio_for_each_segment(bv, bio, i) {
		int len = bv->bv_len, size;
		unsigned bio_offset = 0;
		void *bio_addr = __bio_kmap_atomic(bio, i, KM_USER0);
redo:
		size = (page_offset + len > PAGE_SIZE) ?
		       PAGE_SIZE - page_offset : len;

		if (rw == READ)
			memcpy(bio_addr + bio_offset,
			       page_addr + page_offset, size);
		else
			memcpy(page_addr + page_offset,
			       bio_addr + bio_offset, size);

		page_offset += size;
		if (page_offset == PAGE_SIZE) {
			/*
			 * We reached the end of the chunk page ->
			 * need to refer to the next one to copy more data.
			 */
			len -= size;
			if (len) {
				/* Get next page. */
				pl = pl->next;
				BUG_ON(!pl);
				BUG_ON(!pl->page);
				page_addr = page_address(pl->page);
				page_offset = 0;
				bio_offset += size;
				/* REMOVEME: statistics. */
				atomic_inc(rs->stats + S_BIO_COPY_PL_NEXT);
				goto redo;
			}
		}

		__bio_kunmap_atomic(bio_addr, KM_USER0);
	}
}

/*
 * Xor optimization macros.
 */
/* Xor data pointer declaration and initialization macros. */
#define DECLARE_2	unsigned long *d0 = data[0], *d1 = data[1]
#define DECLARE_3	DECLARE_2, *d2 = data[2]
#define DECLARE_4	DECLARE_3, *d3 = data[3]
#define DECLARE_5	DECLARE_4, *d4 = data[4]
#define DECLARE_6	DECLARE_5, *d5 = data[5]
#define DECLARE_7	DECLARE_6, *d6 = data[6]
#define DECLARE_8	DECLARE_7, *d7 = data[7]

/* Xor unrole macros. */
#define D2(n)	d0[n] = d0[n] ^ d1[n]
#define D3(n)	D2(n) ^ d2[n]
#define D4(n)	D3(n) ^ d3[n]
#define D5(n)	D4(n) ^ d4[n]
#define D6(n)	D5(n) ^ d5[n]
#define D7(n)	D6(n) ^ d6[n]
#define D8(n)	D7(n) ^ d7[n]

#define	X_2(macro, offset)	macro(offset); macro(offset + 1);
#define	X_4(macro, offset)	X_2(macro, offset); X_2(macro, offset + 2);
#define	X_8(macro, offset)	X_4(macro, offset); X_4(macro, offset + 4);
#define	X_16(macro, offset)	X_8(macro, offset); X_8(macro, offset + 8);
#define	X_32(macro, offset)	X_16(macro, offset); X_16(macro, offset + 16);
#define	X_64(macro, offset)	X_32(macro, offset); X_32(macro, offset + 32);

/* Define a _xor_#chunks_#xors_per_run() function. */
#define	_XOR(chunks, xors_per_run) \
static void _xor ## chunks ## _ ## xors_per_run(unsigned long **data) \
{ \
	unsigned end = XOR_SIZE / sizeof(data[0]), i; \
	DECLARE_ ## chunks; \
\
	for (i = 0; i < end; i += xors_per_run) { \
		X_ ## xors_per_run(D ## chunks, i); \
	} \
}

/* Define xor functions for 2 - 8 chunks and xors per run. */
#define	MAKE_XOR_PER_RUN(xors_per_run) \
	_XOR(2, xors_per_run); _XOR(3, xors_per_run); \
	_XOR(4, xors_per_run); _XOR(5, xors_per_run); \
	_XOR(6, xors_per_run); _XOR(7, xors_per_run); \
	_XOR(8, xors_per_run);

MAKE_XOR_PER_RUN(8)	/* Define _xor_*_8() functions. */
MAKE_XOR_PER_RUN(16)	/* Define _xor_*_16() functions. */
MAKE_XOR_PER_RUN(32)	/* Define _xor_*_32() functions. */
MAKE_XOR_PER_RUN(64)	/* Define _xor_*_64() functions. */

#define MAKE_XOR(xors_per_run) \
struct { \
	void (*f)(unsigned long **); \
} static xor_funcs ## xors_per_run[] = { \
	{ NULL }, /* NULL pointers to optimize indexing in xor(). */ \
	{ NULL }, \
	{ _xor2_ ## xors_per_run }, \
	{ _xor3_ ## xors_per_run }, \
	{ _xor4_ ## xors_per_run }, \
	{ _xor5_ ## xors_per_run }, \
	{ _xor6_ ## xors_per_run }, \
	{ _xor7_ ## xors_per_run }, \
	{ _xor8_ ## xors_per_run }, \
}; \
\
static void xor_ ## xors_per_run(unsigned n, unsigned long **data) \
{ \
	/* Call respective function for amount of chunks. */ \
	xor_funcs ## xors_per_run[n].f(data); \
}

/* Define xor_8() - xor_64 functions. */
MAKE_XOR(8)
MAKE_XOR(16)
MAKE_XOR(32)
MAKE_XOR(64)

/* Maximum number of chunks, which can be xor'ed in one go. */
#define	XOR_CHUNKS_MAX	(ARRAY_SIZE(xor_funcs8) - 1)

static void xor_blocks_wrapper(unsigned n, unsigned long **data)
{
	BUG_ON(n < 2 || n > MAX_XOR_BLOCKS + 1);
	xor_blocks(n - 1, XOR_SIZE, (void *) data[0], (void **) data + 1);
}

struct xor_func {
	xor_function_t f;
	const char *name;
} static xor_funcs[] = {
	{ xor_8,   "xor_8"  },
	{ xor_16,  "xor_16" },
	{ xor_32,  "xor_32" },
	{ xor_64,  "xor_64" },
	{ xor_blocks_wrapper, "xor_blocks" },
};

/*
 * Check, if chunk has to be xored in/out:
 *
 * o if writes are queued
 * o if writes are merged
 * o if stripe is to be reconstructed
 * o if recovery stripe
 */
static inline int chunk_must_xor(struct stripe_chunk *chunk)
{
	if (ChunkUptodate(chunk)) {
		BUG_ON(!bio_list_empty(BL_CHUNK(chunk, WRITE_QUEUED)) &&
		       !bio_list_empty(BL_CHUNK(chunk, WRITE_MERGED)));

		if (!bio_list_empty(BL_CHUNK(chunk, WRITE_QUEUED)) ||
		    !bio_list_empty(BL_CHUNK(chunk, WRITE_MERGED)))
			return 1;

		if (StripeReconstruct(chunk->stripe) ||
		    StripeRecover(chunk->stripe))
			return 1;
	}

	return 0;
}

/*
 * Calculate crc.
 *
 * This indexes into the chunks of a stripe and their pages.
 *
 * All chunks will be xored into the indexed (@pi)
 * chunk in maximum groups of xor.chunks.
 *
 */
static void xor(struct stripe *stripe, unsigned pi, unsigned sector)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned max_chunks = rs->xor.chunks, n = 1,
		 o = sector / SECTORS_PER_PAGE, /* Offset into the page_list. */
		 p = rs->set.raid_devs;
	unsigned long **d = rs->data;
	xor_function_t xor_f = rs->xor.f->f;

	BUG_ON(sector > stripe->io.size);

	/* Address of parity page to xor into. */
	d[0] = page_address(pl_elem(PL(stripe, pi), o)->page);

	while (p--) {
		/* Preset pointers to data pages. */
		if (p != pi && chunk_must_xor(CHUNK(stripe, p)))
			d[n++] = page_address(pl_elem(PL(stripe, p), o)->page);

		/* If max chunks -> xor. */
		if (n == max_chunks) {
			xor_f(n, d);
			n = 1;
		}
	}

	/* If chunks -> xor. */
	if (n > 1)
		xor_f(n, d);
}

/* Common xor loop through all stripe page lists. */
static void common_xor(struct stripe *stripe, sector_t count,
		       unsigned off, unsigned pi)
{
	unsigned sector;

	BUG_ON(!count);
	for (sector = off; sector < count; sector += SECTORS_PER_PAGE)
		xor(stripe, pi, sector);

	/* Set parity page uptodate and clean. */
	chunk_set(CHUNK(stripe, pi), CLEAN);
	atomic_inc(RS(stripe->sc)->stats + S_XORS); /* REMOVEME: statistics. */
}

/*
 * Calculate parity sectors on intact stripes.
 *
 * Need to calculate raid address for recover stripe, because its
 * chunk sizes differs and is typically larger than io chunk size.
 */
static void parity_xor(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned chunk_size = rs->set.chunk_size, io_size = stripe->io.size,
		 xor_size = chunk_size > io_size ? io_size : chunk_size;
	sector_t off;

	/* This can be the recover stripe with a larger io size. */
	for (off = 0; off < io_size; off += xor_size) {
		/*
		 * Recover stripe is likely bigger than regular io
		 * ones and has no precalculated parity disk index ->
		 * need to calculate RAID address.
		 */
		if (unlikely(StripeRecover(stripe))) {
			struct raid_address addr;

			raid_address(rs,
				     (stripe->key + off) * rs->set.data_devs,
				     &addr);
			stripe->idx.parity = addr.pi;
			stripe_zero_pl_part(stripe, addr.pi, off, xor_size);
		}

		common_xor(stripe, xor_size, off, stripe->idx.parity);
		chunk_set(CHUNK(stripe, stripe->idx.parity), DIRTY);
	}
}

/* Reconstruct missing chunk. */
static void stripe_reconstruct(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	int p = rs->set.raid_devs, pr = stripe->idx.recover;

	BUG_ON(pr < 0);

	/* Check if all but the chunk to be reconstructed are uptodate. */
	while (p--)
		BUG_ON(p != pr && !ChunkUptodate(CHUNK(stripe, p)));

	/* REMOVEME: statistics. */
	atomic_inc(rs->stats + (RSDegraded(rs) ? S_RECONSTRUCT_EI :
						 S_RECONSTRUCT_DEV));
	/* Zero chunk to be reconstructed. */
	stripe_zero_chunk(stripe, pr);
	common_xor(stripe, stripe->io.size, 0, pr);
	stripe->idx.recover = -1;
}

/*
 * Recovery io throttling
 */
/* Conditionally reset io counters. */
static int recover_io_reset(struct raid_set *rs)
{
	unsigned long j = jiffies;

	/* Pay attention to jiffies overflows. */
	if (j > rs->recover.last_jiffies + HZ / 20 ||
	    j < rs->recover.last_jiffies) {
		atomic_set(rs->recover.io_count + IO_WORK, 0);
		atomic_set(rs->recover.io_count + IO_RECOVER, 0);
		rs->recover.last_jiffies = j;
		return 1;
	}

	return 0;
}

/* Count ios. */
static void recover_io_count(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);

	recover_io_reset(rs);
	atomic_inc(rs->recover.io_count +
		   (StripeRecover(stripe) ? IO_RECOVER : IO_WORK));
}

/* Try getting a stripe either from the hash or from the LRU list. */
static struct stripe *stripe_find(struct raid_set *rs,
				  struct raid_address *addr)
{
	int r;
	struct stripe_cache *sc = &rs->sc;
	struct stripe *stripe;

	/* Try stripe from hash. */
	stripe = stripe_lookup(sc, addr->key);
	if (stripe) {
		r = stripe_get(stripe);
		if (r)
			goto get_lock_failed;

		atomic_inc(rs->stats + S_HITS_1ST); /* REMOVEME: statistics. */
	} else {
		/* Not in hash -> try to get an LRU stripe. */
		stripe = stripe_lru_pop(sc);
		if (stripe) {
			/*
			 * An LRU stripe may not be referenced
			 * and may never have ios pending!
			 */
			BUG_ON(stripe_ref(stripe));
			BUG_ON(stripe_io_ref(stripe));

			/* Remove from hash if on before reuse. */
			stripe_hash_del(stripe);

			/* Invalidate before reinserting with changed key. */
			stripe_invalidate(stripe);

			stripe->key = addr->key;
			stripe->region = dm_rh_sector_to_region(rs->recover.rh,
								addr->key);
			stripe->idx.parity = addr->pi;
			r = stripe_get(stripe);
			if (r)
				goto get_lock_failed;

			/* Insert stripe into the stripe hash. */
			stripe_insert(&sc->hash, stripe);
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_INSCACHE);
		}
	}

	return stripe;

get_lock_failed:
	stripe_put(stripe);
	return NULL;
}

/*
 * Process end io
 *
 * I need to do it here because I can't in interrupt
 */
/* End io all bios on a bio list. */
static void bio_list_endio(struct stripe *stripe, struct bio_list *bl,
			   int p, int error)
{
	struct raid_set *rs = RS(stripe->sc);
	struct bio *bio;
	struct page_list *pl = PL(stripe, p);
	struct stripe_chunk *chunk = CHUNK(stripe, p);

	/* Update region counters. */
	while ((bio = bio_list_pop(bl))) {
		if (bio_data_dir(bio) == WRITE)
			/* Drop io pending count for any writes. */
			dm_rh_dec(rs->recover.rh, stripe->region);
		else if (!error)
			/* Copy data accross. */
			bio_copy_page_list(READ, stripe, pl, bio);

		bio_endio(bio, error);

		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + (bio_data_dir(bio) == READ ?
			   S_BIOS_ENDIO_READ : S_BIOS_ENDIO_WRITE));

		chunk_put(chunk);
		stripe_put(stripe);
		io_put(rs);	/* Wake any suspend waiters on last bio. */
	}
}

/*
 * End io all reads/writes on a stripe copying
 * read data accross from stripe to bios and
 * decrementing region counters for writes.
 *
 * Processing of ios depeding on state:
 * o no chunk error -> endio ok
 * o degraded:
 *   - chunk error and read -> ignore to be requeued
 *   - chunk error and write -> endio ok
 * o dead (more than parity_devs failed) and chunk_error-> endio failed
 */
static void stripe_endio(int rw, struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned p = rs->set.raid_devs;
	int write = (rw != READ);

	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);
		struct bio_list *bl;

		BUG_ON(ChunkLocked(chunk));

		bl = BL_CHUNK(chunk, rw);
		if (bio_list_empty(bl))
			continue;

		if (unlikely(ChunkError(chunk) || !ChunkUptodate(chunk))) {
			/* RAID set dead. */
			if (unlikely(RSDead(rs)))
				bio_list_endio(stripe, bl, p, -EIO);
			/* RAID set degraded. */
			else if (write)
				bio_list_endio(stripe, bl, p, 0);
		} else {
			BUG_ON(!RSDegraded(rs) && ChunkDirty(chunk));
			bio_list_endio(stripe, bl, p, 0);
		}
	}
}

/* Fail all ios hanging off all bio lists of a stripe. */
static void stripe_fail_io(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned p = rs->set.raid_devs;

	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);
		int i = ARRAY_SIZE(chunk->bl);

		/* Fail all bios on all bio lists of the stripe. */
		while (i--) {
			struct bio_list *bl = chunk->bl + i;

			if (!bio_list_empty(bl))
				bio_list_endio(stripe, bl, p, -EIO);
		}
	}

	/* Put stripe on LRU list. */
	BUG_ON(stripe_io_ref(stripe));
	BUG_ON(stripe_ref(stripe));
}

/* Unlock all required chunks. */
static void stripe_chunks_unlock(struct stripe *stripe)
{
	unsigned p = RS(stripe->sc)->set.raid_devs;
	struct stripe_chunk *chunk;

	while (p--) {
		chunk = CHUNK(stripe, p);

		if (TestClearChunkUnlock(chunk))
			ClearChunkLocked(chunk);
	}
}

/*
 * Queue reads and writes to a stripe by hanging
 * their bios off the stripesets read/write lists.
 */
static int stripe_queue_bio(struct raid_set *rs, struct bio *bio,
			    struct bio_list *reject)
{
	struct raid_address addr;
	struct stripe *stripe;

	stripe = stripe_find(rs, raid_address(rs, bio->bi_sector, &addr));
	if (stripe) {
		int r = 0, rw = bio_data_dir(bio);

		/* Distinguish reads and writes. */
		bio_list_add(BL(stripe, addr.di, rw), bio);
	
		if (rw == READ)
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_BIOS_ADDED_READ);
		else {
			/* Inrement pending write count on region. */
			dm_rh_inc(rs->recover.rh, stripe->region);
			r = 1;

			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_BIOS_ADDED_WRITE);
		}

		/*
		 * Put on io (flush) list in case of
		 * initial bio queued to chunk.
		 */
		if (chunk_get(CHUNK(stripe, addr.di)) == 1)
			stripe_flush_add(stripe);

		return r;
	}

	/* Got no stripe from cache or failed to lock it -> reject bio. */
	bio_list_add(reject, bio);
	atomic_inc(rs->stats + S_IOS_POST); /* REMOVEME: statistics. */
	return 0;
}

/*
 * Handle all stripes by handing them to the daemon, because we can't
 * map their chunk pages to copy the data in interrupt context.
 *
 * We don't want to handle them here either, while interrupts are disabled.
 */

/* Read/write endio function for dm-io (interrupt context). */
static void endio(unsigned long error, void *context)
{
	struct stripe_chunk *chunk = context;

	if (unlikely(error)) {
		chunk_set(chunk, ERROR);
		/* REMOVEME: statistics. */
		atomic_inc(RS(chunk->stripe->sc)->stats + S_STRIPE_ERROR);
	} else
		chunk_set(chunk, CLEAN);

	/*
	 * For recovery stripes, I need to reset locked locked
	 * here, because those aren't processed in do_endios().
	 */
	if (unlikely(StripeRecover(chunk->stripe)))
		ClearChunkLocked(chunk);
	else
		SetChunkUnlock(chunk);

	/* Indirectly puts stripe on cache's endio list via stripe_io_put(). */
	stripe_put_references(chunk->stripe);
}

/* Read/Write a chunk asynchronously. */
static void stripe_chunk_rw(struct stripe *stripe, unsigned p)
{
	struct stripe_cache *sc = stripe->sc;
	struct raid_set *rs = RS(sc);
	struct dm_mem_cache_object *obj = stripe->obj + p;
	struct page_list *pl = obj->pl;
	struct stripe_chunk *chunk = CHUNK(stripe, p);
	struct raid_dev *dev = rs->dev + p;
	struct dm_io_region io = {
		.bdev = dev->dev->bdev,
		.sector = stripe->key,
		.count = stripe->io.size,
	};
	struct dm_io_request control = {
		.bi_rw = ChunkDirty(chunk) ? WRITE : READ,
		.mem = {
			.type = DM_IO_PAGE_LIST,
			.ptr.pl = pl,
			.offset = 0,
		},
		.notify = {
			.fn = endio,
			.context = chunk,
		},
		.client = StripeRecover(stripe) ? rs->recover.dm_io_client :
						  sc->dm_io_client,
	};

	BUG_ON(ChunkLocked(chunk));
	BUG_ON(!ChunkUptodate(chunk) && ChunkDirty(chunk));
	BUG_ON(ChunkUptodate(chunk) && !ChunkDirty(chunk));

	/*
	 * Don't rw past end of device, which can happen, because
	 * typically sectors_per_dev isn't divisible by io_size.
	 */
	if (unlikely(io.sector + io.count > rs->set.sectors_per_dev))
		io.count = rs->set.sectors_per_dev - io.sector;

	BUG_ON(!io.count);
	io.sector += dev->start;	/* Add <offset>. */
	if (RSRecover(rs))
		recover_io_count(stripe);	/* Recovery io accounting. */

	/* REMOVEME: statistics. */
	atomic_inc(rs->stats + (ChunkDirty(chunk) ? S_DM_IO_WRITE :
						    S_DM_IO_READ));
	SetChunkLocked(chunk);
	SetDevIoQueued(dev);
	BUG_ON(dm_io(&control, 1, &io, NULL));
}

/*
 * Write dirty or read not uptodate page lists of a stripe.
 */
static int stripe_chunks_rw(struct stripe *stripe)
{
	int r;
	struct raid_set *rs = RS(stripe->sc);

	/*
	 * Increment the pending count on the stripe
	 * first, so that we don't race in endio().
	 *
	 * An inc (IO) is needed for any chunk unless !ChunkIo(chunk):
	 *
	 * o not uptodate
	 * o dirtied by writes merged
	 * o dirtied by parity calculations
	 */
	r = for_each_io_dev(stripe, stripe_get_references);
	if (r) {
		/* Io needed: chunks are either not uptodate or dirty. */
		int max;	/* REMOVEME: */
		struct stripe_cache *sc = &rs->sc;

		/* Submit actual io. */
		for_each_io_dev(stripe, stripe_chunk_rw);

		/* REMOVEME: statistics */
		max = sc_active(sc);
		if (atomic_read(&sc->active_stripes_max) < max)
			atomic_set(&sc->active_stripes_max, max);

		atomic_inc(rs->stats + S_FLUSHS);
		/* END REMOVEME: statistics */
	}

	return r;
}

/* Merge in all writes hence dirtying respective chunks. */
static void stripe_merge_writes(struct stripe *stripe)
{
	unsigned p = RS(stripe->sc)->set.raid_devs;

	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);
		struct bio_list *write = BL_CHUNK(chunk, WRITE_QUEUED);
	
		if (!bio_list_empty(write)) {
			struct bio *bio;
			struct page_list *pl = stripe->obj[p].pl;

			/*
			 * We can play with the lists without holding a lock,
			 * because it is just us accessing them anyway.
			 */
			bio_list_for_each(bio, write)
				bio_copy_page_list(WRITE, stripe, pl, bio);

			bio_list_merge(BL_CHUNK(chunk, WRITE_MERGED), write);
			bio_list_init(write);
			chunk_set(chunk, DIRTY);
		}
	}
}

/* Queue all writes to get merged. */
static int stripe_queue_writes(struct stripe *stripe)
{
	int r = 0;
	unsigned p = RS(stripe->sc)->set.raid_devs;

	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);
		struct bio_list *write = BL_CHUNK(chunk, WRITE);

		if (!bio_list_empty(write)) {
			bio_list_merge(BL_CHUNK(chunk, WRITE_QUEUED), write);
			bio_list_init(write);
SetChunkIo(chunk);
			r = 1;
		}
	}

	return r;
}


/* Check, if a chunk gets completely overwritten. */
static int stripe_check_chunk_overwrite(struct stripe *stripe, unsigned p)
{
	unsigned sectors = 0;
	struct bio *bio;
	struct bio_list *bl = BL(stripe, p, WRITE_QUEUED);

	bio_list_for_each(bio, bl)
		sectors += bio_sectors(bio);

	BUG_ON(sectors > RS(stripe->sc)->set.io_size);
	return sectors == RS(stripe->sc)->set.io_size;
}

/*
 * Avoid io on broken/reconstructed drive in order to
 * reconstruct date on endio.
 *
 * (*1*) We set StripeReconstruct() in here, so that _do_endios()
 *	 will trigger a reconstruct call before resetting it.
 */
static int stripe_chunk_set_io_flags(struct stripe *stripe, int pr)
{
	struct stripe_chunk *chunk = CHUNK(stripe, pr);

	/*
	 * Allow io on all chunks but the indexed one,
	 * because we're either degraded or prohibit it
	 * on the one for later reconstruction.
	 */
	/* Includes ClearChunkIo(), ClearChunkUptodate(). */
	stripe_chunk_invalidate(chunk);
	stripe->idx.recover = pr;
	SetStripeReconstruct(stripe);

	/* REMOVEME: statistics. */
	atomic_inc(RS(stripe->sc)->stats + S_PROHIBITCHUNKIO);
	return -EPERM;
}

/* Chunk locked/uptodate and device failed tests. */
static struct stripe_chunk *
stripe_chunk_check(struct stripe *stripe, unsigned p, unsigned *chunks_uptodate)
{
	struct raid_set *rs = RS(stripe->sc);
	struct stripe_chunk *chunk = CHUNK(stripe, p);

	/* Can't access active chunks. */
	if (ChunkLocked(chunk)) {
		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + S_CHUNK_LOCKED);
		return NULL;
	}

	/* Can't access broken devive. */
	if (ChunkError(chunk) || DevFailed(rs->dev + p))
		return NULL;

	/* Can access uptodate chunks. */
	if (ChunkUptodate(chunk)) {
		(*chunks_uptodate)++;
		return NULL;
	}

	return chunk;
}

/*
 * Degraded/reconstruction mode.
 *
 * Check stripe state to figure which chunks don't need IO.
 *
 * Returns 0 for fully operational, -EPERM for degraded/resynchronizing.
 */
static int stripe_check_reconstruct(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);

	if (RSDead(rs)) {
		ClearStripeReconstruct(stripe);
		ClearStripeReconstructed(stripe);
		stripe_allow_io(stripe);
		return 0;
	}

	/* Avoid further reconstruction setting, when already set. */
	if (StripeReconstruct(stripe)) {
		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + S_RECONSTRUCT_SET);
		return -EBUSY;
	}

	/* Initially allow io on all chunks. */
	stripe_allow_io(stripe);

	/* Return if stripe is already reconstructed. */
	if (StripeReconstructed(stripe)) {
		atomic_inc(rs->stats + S_RECONSTRUCTED);
		return 0;
	}

	/*
	 * Degraded/reconstruction mode (device failed) ->
	 * avoid io on the failed device.
	 */
	if (unlikely(RSDegraded(rs))) {
		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + S_DEGRADED);
		/* Allow IO on all devices but the dead one. */
		BUG_ON(rs->set.ei < 0);
		return stripe_chunk_set_io_flags(stripe, rs->set.ei);
	} else {
		int sync, pi = dev_for_parity(stripe, &sync);

		/*
		 * Reconstruction mode (ie. a particular (replaced) device or
		 * some (rotating) parity chunk is being resynchronized) ->
		 *   o make sure all needed chunks are read in
		 *   o writes are allowed to go through
		 */
		if (!sync) {
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_NOSYNC);
			/* Allow IO on all devs but the one to reconstruct. */
			return stripe_chunk_set_io_flags(stripe, pi);
		}
	}

	return 0;
}

/*
 * Check, if stripe is ready to merge writes.
 * I.e. if all chunks present to allow to merge bios.
 *
 * We prohibit io on:
 *
 * o chunks without bios
 * o chunks which get completely written over
 */
static int stripe_merge_possible(struct stripe *stripe, int nosync)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned chunks_overwrite = 0, chunks_prohibited = 0,
		 chunks_uptodate = 0, p = rs->set.raid_devs;

	/* Walk all chunks. */
	while (p--) {
		struct stripe_chunk *chunk;

		/* Prohibit io on broken devices. */
		if (DevFailed(rs->dev + p)) {
			chunk = CHUNK(stripe, p);
			goto prohibit_io;
		}

		/* We can't optimize any further if no chunk. */
		chunk = stripe_chunk_check(stripe, p, &chunks_uptodate);
		if (!chunk || nosync)
			continue;

		/*
		 * We have a chunk, which is not uptodate.
		 *
		 * If this is not parity and we don't have
		 * reads queued, we can optimize further.
		 */
		if (p != stripe->idx.parity &&
		    bio_list_empty(BL_CHUNK(chunk, READ)) &&
		    bio_list_empty(BL_CHUNK(chunk, WRITE_MERGED))) {
			if (bio_list_empty(BL_CHUNK(chunk, WRITE_QUEUED)))
				goto prohibit_io;
			else if (RSCheckOverwrite(rs) &&
				 stripe_check_chunk_overwrite(stripe, p))
				/* Completely overwritten chunk. */
				chunks_overwrite++;
		}

		/* Allow io for chunks with bios and overwritten ones. */
		SetChunkIo(chunk);
		continue;

prohibit_io:
		/* No io for broken devices or for chunks w/o bios. */
		ClearChunkIo(chunk);
		chunks_prohibited++;
		/* REMOVEME: statistics. */
		atomic_inc(RS(stripe->sc)->stats + S_PROHIBITCHUNKIO);
	}

	/* All data chunks will get written over. */
	if (chunks_overwrite == rs->set.data_devs)
		atomic_inc(rs->stats + S_OVERWRITE); /* REMOVEME: statistics.*/
	else if (chunks_uptodate + chunks_prohibited < rs->set.raid_devs) {
		/* We don't have enough chunks to merge. */
		atomic_inc(rs->stats + S_CANT_MERGE); /* REMOVEME: statistics.*/
		return -EPERM;
	}

	/*
	 * If we have all chunks up to date or overwrite them, we
	 * just zero the parity chunk and let stripe_rw() recreate it.
	 */
	if (chunks_uptodate == rs->set.raid_devs ||
	    chunks_overwrite == rs->set.data_devs) {
		stripe_zero_chunk(stripe, stripe->idx.parity);
		BUG_ON(StripeReconstruct(stripe));
		SetStripeReconstruct(stripe);	/* Enforce xor in caller. */
	} else {
		/*
		 * With less chunks, we xor parity out.
		 *
		 * (*4*) We rely on !StripeReconstruct() in chunk_must_xor(),
		 *	 so that only chunks with queued or merged writes 
		 *	 are being xored.
		 */
		parity_xor(stripe);
	}

	/*
	 * We do have enough chunks to merge.
	 * All chunks are uptodate or get written over.
	 */
	atomic_inc(rs->stats + S_CAN_MERGE); /* REMOVEME: statistics. */
	return 0;
}

/*
 * Avoid reading chunks in case we're fully operational.
 *
 * We prohibit io on any chunks without bios but the parity chunk.
 */
static void stripe_avoid_reads(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned dummy = 0, p = rs->set.raid_devs;

	/* Walk all chunks. */
	while (p--) {
		struct stripe_chunk *chunk =
			stripe_chunk_check(stripe, p, &dummy);

		if (!chunk)
			continue;

		/* If parity or any bios pending -> allow io. */
		if (chunk_ref(chunk) || p == stripe->idx.parity)
			SetChunkIo(chunk);
		else {
			ClearChunkIo(chunk);
			/* REMOVEME: statistics. */
			atomic_inc(RS(stripe->sc)->stats + S_PROHIBITCHUNKIO);
		}
	}
}

/*
 * Read/write a stripe.
 *
 * All stripe read/write activity goes through this function
 * unless recovery, which has to call stripe_chunk_rw() directly.
 *
 * Make sure we don't try already merged stripes in order
 * to avoid data corruption.
 *
 * Check the state of the RAID set and if degraded (or
 * resynchronizing for reads), read in all other chunks but
 * the one on the dead/resynchronizing device in order to be
 * able to reconstruct the missing one in _do_endios().
 *
 * Can be called on active stripes in order
 * to dispatch new io on inactive chunks.
 *
 * States to cover:
 *   o stripe to read and/or write
 *   o stripe with error to reconstruct
 */
static void stripe_rw(struct stripe *stripe)
{
	int nosync, r;
	struct raid_set *rs = RS(stripe->sc);

	/*
 	 * Check, if a chunk needs to be reconstructed
 	 * because of a degraded set or a region out of sync.
 	 */
	nosync = stripe_check_reconstruct(stripe);
	switch (nosync) {
	case -EBUSY:
		return; /* Wait for stripe reconstruction to finish. */
	case -EPERM:
		goto io;
	}

	/*
	 * If we don't have merged writes pending, we can schedule
	 * queued writes to be merged next without corrupting data.
	 */
	if (!StripeMerged(stripe)) {
		r = stripe_queue_writes(stripe);
		if (r)
			/* Writes got queued -> flag RBW. */
			SetStripeRBW(stripe);
	}

	/*
	 * Merge all writes hanging off uptodate/overwritten
	 * chunks of the stripe.
	 */
	if (StripeRBW(stripe)) {
		r = stripe_merge_possible(stripe, nosync);
		if (!r) { /* Merge possible. */
			struct stripe_chunk *chunk;

			/*
			 * I rely on valid parity in order
			 * to xor a fraction of chunks out
			 * of parity and back in.
			 */
			stripe_merge_writes(stripe);	/* Merge writes in. */
			parity_xor(stripe);		/* Update parity. */
			ClearStripeReconstruct(stripe);	/* Reset xor enforce. */
			SetStripeMerged(stripe);	/* Writes merged. */
			ClearStripeRBW(stripe);		/* Disable RBW. */

			/*
			 * REMOVEME: sanity check on parity chunk
			 * 	     states after writes got merged.
			 */
			chunk = CHUNK(stripe, stripe->idx.parity);
			BUG_ON(ChunkLocked(chunk));
			BUG_ON(!ChunkUptodate(chunk));
			BUG_ON(!ChunkDirty(chunk));
			BUG_ON(!ChunkIo(chunk));
		}
	} else if (!nosync && !StripeMerged(stripe))
		/* Read avoidance if not degraded/resynchronizing/merged. */
		stripe_avoid_reads(stripe);

io:
	/* Now submit any reads/writes for non-uptodate or dirty chunks. */
	r = stripe_chunks_rw(stripe);
	if (!r) {
		/*
		 * No io submitted because of chunk io
		 * prohibited or locked chunks/failed devices
		 * -> push to end io list for processing.
		 */
		stripe_endio_push(stripe);
		atomic_inc(rs->stats + S_NO_RW); /* REMOVEME: statistics. */
	}
}

/*
 * Recovery functions
 */
/* Read a stripe off a raid set for recovery. */
static int stripe_recover_read(struct stripe *stripe, int pi)
{
	BUG_ON(stripe_io_ref(stripe));

	/* Invalidate all chunks so that they get read in. */
	stripe_chunks_invalidate(stripe);
	stripe_allow_io(stripe); /* Allow io on all recovery chunks. */

	/*
	 * If we are reconstructing a perticular device, we can avoid
 	 * reading the respective chunk in, because we're going to
	 * reconstruct it anyway.
	 *
	 * We can't do that for resynchronization of rotating parity,
	 * because the recovery stripe chunk size is typically larger
	 * than the sets chunk size.
	 */
	if (pi > -1)
		ClearChunkIo(CHUNK(stripe, pi));

	return stripe_chunks_rw(stripe);
}

/* Write a stripe to a raid set for recovery. */
static int stripe_recover_write(struct stripe *stripe, int pi)
{
	BUG_ON(stripe_io_ref(stripe));

	/*
	 * If this is a reconstruct of a particular device, then
	 * reconstruct the respective chunk, else create parity chunk.
	 */
	if (pi > -1) {
		stripe_zero_chunk(stripe, pi);
		common_xor(stripe, stripe->io.size, 0, pi);
		chunk_set(CHUNK(stripe, pi), DIRTY);
	} else
		parity_xor(stripe);

	return stripe_chunks_rw(stripe);
}

/* Read/write a recovery stripe. */
static int stripe_recover_rw(struct stripe *stripe)
{
	int r = 0, sync = 0;

	/* Read/write flip-flop. */
	if (TestClearStripeRBW(stripe)) {
		SetStripeMerged(stripe);
		stripe->key = stripe->recover->pos;
		r = stripe_recover_read(stripe, dev_for_parity(stripe, &sync));
		BUG_ON(!r);
	} else if (TestClearStripeMerged(stripe)) {
		r = stripe_recover_write(stripe, dev_for_parity(stripe, &sync));
		BUG_ON(!r);
	}

	BUG_ON(sync);
	return r;
}

/* Recover bandwidth available ?. */
static int recover_bandwidth(struct raid_set *rs)
{
	int r, work;

	/* On reset or when bios delayed -> allow recovery. */
	r = recover_io_reset(rs);
	if (r || RSBandwidth(rs))
		goto out;

	work = atomic_read(rs->recover.io_count + IO_WORK);
	if (work) {
		/* Pay attention to larger recover stripe size. */
		int recover = atomic_read(rs->recover.io_count + IO_RECOVER) *
					  rs->recover.io_size / rs->set.io_size;

		/*
		 * Don't use more than given bandwidth
		 * of the work io for recovery.
		 */
		if (recover > work / rs->recover.bandwidth_work) {
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_NO_BANDWIDTH);
			return 0;
		}
	}

out:
	atomic_inc(rs->stats + S_BANDWIDTH);	/* REMOVEME: statistics. */
	return 1;
}

/* Try to get a region to recover. */
static int stripe_recover_get_region(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	struct recover *rec = &rs->recover;
	struct recover_addr *addr = stripe->recover;
	struct dm_dirty_log *dl = rec->dl;
	struct dm_rh_client *rh = rec->rh;

	BUG_ON(!dl);
	BUG_ON(!rh);

	/* Return, that we have region first to finish it during suspension. */
	if (addr->reg)
		return 1;

	if (RSSuspend(rs))
		return -EPERM;

	if (dl->type->get_sync_count(dl) >= rec->nr_regions)
		return -ENOENT;

	/* If we don't have enough bandwidth, we don't proceed recovering. */
	if (!recover_bandwidth(rs))
		return -EAGAIN;

	/* Start quiescing a region. */
	dm_rh_recovery_prepare(rh);
	addr->reg = dm_rh_recovery_start(rh);
	if (!addr->reg)
		return -EAGAIN;

	addr->pos = dm_rh_region_to_sector(rh, dm_rh_get_region_key(addr->reg));
	addr->end = addr->pos + dm_rh_get_region_size(rh);

	/*
	 * Take one global io reference out for the
	 * whole region, which is going to be released
	 * when the region is completely done with.
	 */
	io_get(rs);
	return 0;
}

/* Update region hash state. */
enum recover_type { REC_FAILURE = 0, REC_SUCCESS = 1 };
static void recover_rh_update(struct stripe *stripe, enum recover_type success)
{
	struct recover_addr *addr = stripe->recover;
	struct raid_set *rs = RS(stripe->sc);
	struct recover *rec = &rs->recover;

	if (!addr->reg) {
		DMERR("%s- Called w/o region", __func__);
		return;
	}

	dm_rh_recovery_end(addr->reg, success);
	if (success)
		rec->nr_regions_recovered++;

	addr->reg = NULL;

	/*
	 * Completely done with this region ->
	 * release the 1st io reference.
	 */
	io_put(rs);
}

/* Set start of recovery state. */
static void set_start_recovery(struct raid_set *rs)
{
	/* Initialize recovery. */
	rs->recover.start_jiffies = jiffies;
	rs->recover.end_jiffies = 0;
}

/* Set end of recovery state. */
static void set_end_recovery(struct raid_set *rs)
{
	ClearRSRecover(rs);
	rs->set.dev_to_init = -1;

	/* Check for jiffies overrun. */
	rs->recover.end_jiffies = jiffies;
	if (rs->recover.end_jiffies < rs->recover.start_jiffies)
		rs->recover.end_jiffies = ~0;
}

/* Handle recovery on one recovery stripe. */
static int _do_recovery(struct stripe *stripe)
{
	int r;
	struct raid_set *rs = RS(stripe->sc);
	struct recover_addr *addr = stripe->recover;

	/* If recovery is active -> return. */
	if (stripe_io_ref(stripe))
		return 1;

	/* IO error is fatal for recovery -> stop it. */
	if (unlikely(StripeError(stripe)))
		goto err;

	/* Recovery end required. */
	if (!RSRecover(rs))
		goto err;

	/* Get a region to recover. */
	r = stripe_recover_get_region(stripe);
	switch (r) {
	case 0:	/* Got a new region: flag initial read before write. */
		SetStripeRBW(stripe);
	case 1:	/* Have a region in the works. */
		break;
	case -EAGAIN:
		/* No bandwidth/quiesced region yet, try later. */
		if (!io_ref(rs))
			wake_do_raid_delayed(rs, HZ / 4);
	case -EPERM:
		/* Suspend. */
		return 1;
	case -ENOENT:	/* No more regions to recover. */
		schedule_work(&rs->io.ws_do_table_event);
		return 0;
	default:
		BUG();
	}

	/* Read/write a recover stripe. */
	r = stripe_recover_rw(stripe);
	if (r)
		/* IO initiated. */
		return 1;

	/* Read and write finished-> update recovery position within region. */
	addr->pos += stripe->io.size;

	/* If we're at end of region, update region hash. */
	if (addr->pos >= addr->end ||
	    addr->pos >= rs->set.sectors_per_dev)
		recover_rh_update(stripe, REC_SUCCESS);
	else
		/* Prepare to read next region segment. */
		SetStripeRBW(stripe);

	/* Schedule myself for another round... */
	wake_do_raid(rs);
	return 1;

err:
	/* FIXME: rather try recovering other regions on error? */
	rs_check_degrade(stripe);
	recover_rh_update(stripe, REC_FAILURE);

	/* Check state of partially recovered array. */
	if (RSDegraded(rs) && !RSDead(rs) &&
	    rs->set.dev_to_init != -1 &&
	    rs->set.ei != rs->set.dev_to_init)
		/* Broken drive != drive to recover -> FATAL. */
		SetRSDead(rs);

	if (StripeError(stripe)) {
		char buf[BDEVNAME_SIZE];

		DMERR("stopping recovery due to "
		      "ERROR on /dev/%s, stripe at offset %llu",
		      bdevname(rs->dev[rs->set.ei].dev->bdev, buf),
		      (unsigned long long) stripe->key);

	}

	/* Make sure, that all quiesced regions get released. */
	while (addr->reg) {
		dm_rh_recovery_end(addr->reg, -EIO);
		addr->reg = dm_rh_recovery_start(rs->recover.rh);
	}

	return 0;
}

/* Called by main io daemon to recover regions. */
static void do_recovery(struct raid_set *rs)
{
	if (RSRecover(rs)) {
		int r = 0;
		struct stripe *stripe;

		list_for_each_entry(stripe, &rs->recover.stripes,
				    lists[LIST_RECOVER])
			r += _do_recovery(stripe);

		if (!r) {
			set_end_recovery(rs);
			stripe_recover_free(rs);
		}
	}
}

/*
 * END recovery functions
 */

/* End io process all stripes handed in by endio() callback. */
static void _do_endios(struct raid_set *rs, struct stripe *stripe,
		       struct list_head *flush_list)
{
	/* First unlock all required chunks. */
	stripe_chunks_unlock(stripe);

	/*
	 * If an io error on a stripe occured, degrade the RAID set
	 * and try to endio as many bios as possible. If any bios can't
	 * be endio processed, requeue the stripe (stripe_ref() != 0).
	 */
	if (TestClearStripeError(stripe)) {
		/*
		 * FIXME: if read, rewrite the failed chunk after reconstruction
		 *        in order to trigger disk bad sector relocation.
		 */
		rs_check_degrade(stripe); /* Resets ChunkError(). */
		ClearStripeReconstruct(stripe);
		ClearStripeReconstructed(stripe);
	}

	/* Got to reconstruct a missing chunk. */
	if (StripeReconstruct(stripe)) {
		/*
		 * (*2*) We use StripeReconstruct() to allow for
		 *	 all chunks to be xored into the reconstructed
		 *	 one (see chunk_must_xor()).
		 */
		stripe_reconstruct(stripe);

		/*
		 * (*3*) Now we reset StripeReconstruct() and flag
		 * 	 StripeReconstructed() to show to stripe_rw(),
		 * 	 that we have reconstructed a missing chunk.
		 */
		ClearStripeReconstruct(stripe);
		SetStripeReconstructed(stripe);

		/* FIXME: reschedule to be written in case of read. */
		// if (!StripeRBW(stripe)) {
		// 	chunk_set(CHUNK(stripe, pr), DIRTY);
		// 	stripe_chunks_rw(stripe);
		// }
	}

	/*
	 * Now that we eventually got a complete stripe, we
	 * can process the rest of the end ios on reads.
	 */
	stripe_endio(READ, stripe);

	/* End io all merged writes. */
	if (TestClearStripeMerged(stripe))
		stripe_endio(WRITE_MERGED, stripe);

	/* If RAID set is dead -> fail any ios to dead drives. */
	if (RSDead(rs)) {
		DMERR_LIMIT("RAID set dead: failing ios to dead devices");
		stripe_fail_io(stripe);
	}

	/*
	 * We have stripe references still,
	 * beacuse of read befeore writes or IO errors ->
	 * got to put on flush list for processing.
	 */
	if (stripe_ref(stripe)) {
		BUG_ON(!list_empty(stripe->lists + LIST_LRU));
		list_add_tail(stripe->lists + LIST_FLUSH, flush_list);
		atomic_inc(rs->stats + S_REQUEUE); /* REMOVEME: statistics. */
	} else
		stripe_lru_add(stripe);
}

/* Pop any endio stripes off of the endio list and belabour them. */
static void do_endios(struct raid_set *rs)
{
	struct stripe_cache *sc = &rs->sc;
	struct stripe *stripe;
	/* IO flush list for sorted requeued stripes. */
	struct list_head flush_list;

	INIT_LIST_HEAD(&flush_list);

	while ((stripe = stripe_endio_pop(sc))) {
		/* Avoid endio on stripes with newly io'ed chunks. */
		if (!stripe_io_ref(stripe))
			_do_endios(rs, stripe, &flush_list);
	}

	/*
	 * Insert any requeued stripes in the proper
	 * order at the beginning of the io (flush) list.
	 */
	list_splice(&flush_list, sc->lists + LIST_FLUSH);
}

/* Flush any stripes on the io list. */
static void do_flush(struct raid_set *rs)
{
	struct stripe *stripe;

	while ((stripe = stripe_io_pop(&rs->sc)))
		stripe_rw(stripe); /* Read/write stripe. */
}

/* Stripe cache resizing. */
static void do_sc_resize(struct raid_set *rs)
{
	unsigned set = atomic_read(&rs->sc.stripes_to_set);

	if (set) {
		unsigned cur = atomic_read(&rs->sc.stripes);
		int r = (set > cur) ? sc_grow(&rs->sc, set - cur, SC_GROW) :
				      sc_shrink(&rs->sc, cur - set);

		/* Flag end of resizeing if ok. */
		if (!r)
			atomic_set(&rs->sc.stripes_to_set, 0);
	}
}

/*
 * Process all ios
 *
 * We do different things with the io depending
 * on the state of the region that it is in:
 *
 * o reads: hang off stripe cache or postpone if full
 *
 * o writes:
 *
 *  CLEAN/DIRTY/NOSYNC:	increment pending and hang io off stripe's stripe set.
 *			In case stripe cache is full or busy, postpone the io.
 *
 *  RECOVERING:		delay the io until recovery of the region completes.
 *
 */
static void do_ios(struct raid_set *rs, struct bio_list *ios)
{
	int r;
	unsigned flush = 0, delay = 0;
	sector_t sector;
	struct dm_rh_client *rh = rs->recover.rh;
	struct bio *bio;
	struct bio_list reject;

	bio_list_init(&reject);

	/*
	 * Classify each io:
	 *    o delay writes to recovering regions (let reads go through)
	 *    o queue io to all other regions
	 */
	while ((bio = bio_list_pop(ios))) {
		/*
		 * In case we get a barrier bio, push it back onto
		 * the input queue unless all work queues are empty
		 * and the stripe cache is inactive.
		 */
		if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_BARRIER);
			if (delay ||
			    !list_empty(rs->sc.lists + LIST_FLUSH) ||
			    !bio_list_empty(&reject) ||
			    sc_active(&rs->sc)) {
				bio_list_push(ios, bio);
				break;
			}
		}

		/* Check for recovering regions. */
		sector = _sector(rs, bio);
		r = region_state(rs, sector, DM_RH_RECOVERING);
		if (unlikely(r && bio_data_dir(bio) == WRITE)) {
			delay++;
			/* Wait writing to recovering regions. */
			dm_rh_delay_by_region(rh, bio,
					      dm_rh_sector_to_region(rh,
								     sector));
			/* REMOVEME: statistics.*/
			atomic_inc(rs->stats + S_DELAYED_BIOS);
			atomic_inc(rs->stats + S_SUM_DELAYED_BIOS);

			/* Force bandwidth tests in recovery. */
			SetRSBandwidth(rs);
		} else {
			/*
			 * Process ios to non-recovering regions by queueing
			 * them to stripes (does dm_rh_inc()) for writes).
			 */
			flush += stripe_queue_bio(rs, bio, &reject);
		}
	}

	if (flush) {
		/* FIXME: better error handling. */
		r = dm_rh_flush(rh); /* Writes got queued -> flush dirty log. */
		if (r)
			DMERR_LIMIT("dirty log flush");
	}

	/* Merge any rejected bios back to the head of the input list. */
	bio_list_merge_head(ios, &reject);
}

/* Unplug: let any queued io role on the sets devices. */
static void do_unplug(struct raid_set *rs)
{
	struct raid_dev *dev = rs->dev + rs->set.raid_devs;

	while (dev-- > rs->dev) {
		/* Only call any device unplug function, if io got queued. */
		if (TestClearDevIoQueued(dev))
			blk_unplug(bdev_get_queue(dev->dev->bdev));
	}
}

/* Send an event in case we're getting too busy. */
static void do_busy_event(struct raid_set *rs)
{
	if (sc_busy(rs)) {
		if (!TestSetRSScBusy(rs))
			schedule_work(&rs->io.ws_do_table_event);
	}

	ClearRSScBusy(rs);
}

/* Throw an event. */
static void do_table_event(struct work_struct *ws)
{
	struct raid_set *rs = container_of(ws, struct raid_set,
					   io.ws_do_table_event);
	dm_table_event(rs->ti->table);
}


/*-----------------------------------------------------------------
 * RAID daemon
 *---------------------------------------------------------------*/
/*
 * o belabour all end ios
 * o update the region hash states
 * o optionally shrink the stripe cache
 * o optionally do recovery
 * o unplug any component raid devices with queued bios
 * o grab the input queue
 * o work an all requeued or new ios and perform stripe cache flushs
 * o unplug any component raid devices with queued bios
 * o check, if the stripe cache gets too busy and throw an event if so
 */
static void do_raid(struct work_struct *ws)
{
	struct raid_set *rs = container_of(ws, struct raid_set,
					   io.dws_do_raid.work);
	struct bio_list *ios = &rs->io.work, *ios_in = &rs->io.in;

	/*
	 * We always need to end io, so that ios can get errored in
	 * case the set failed and the region counters get decremented
	 * before we update region hash states and go any further.
	 */
	do_endios(rs);
	dm_rh_update_states(rs->recover.rh, 1);

	/*
	 * Now that we've end io'd, which may have put stripes on the LRU list
	 * to allow for shrinking, we resize the stripe cache if requested.
	 */
	do_sc_resize(rs);

	/* Try to recover regions. */
	do_recovery(rs);
	do_unplug(rs);		/* Unplug the sets device queues. */

	/* Quickly grab all new ios queued and add them to the work list. */
	mutex_lock(&rs->io.in_lock);
	bio_list_merge(ios, ios_in);
	bio_list_init(ios_in);
	mutex_unlock(&rs->io.in_lock);

	if (!bio_list_empty(ios))
		do_ios(rs, ios); /* Got ios to work into the cache. */

	do_flush(rs);		/* Flush any stripes on io list. */
	do_unplug(rs);		/* Unplug the sets device queues. */
	do_busy_event(rs);	/* Check if we got too busy. */
}

/*
 * Callback for region hash to dispatch
 * delayed bios queued to recovered regions
 * (gets called via dm_rh_update_states()).
 */
static void dispatch_delayed_bios(void *context, struct bio_list *bl)
{
	struct raid_set *rs = context;
	struct bio *bio;

	/* REMOVEME: statistics; decrement pending delayed bios counter. */
	bio_list_for_each(bio, bl)
		atomic_dec(rs->stats + S_DELAYED_BIOS);

	/* Merge region hash private list to work list. */
	bio_list_merge_head(&rs->io.work, bl);
	bio_list_init(bl);
	ClearRSBandwidth(rs);
}

/*************************************************************
 * Constructor helpers
 *************************************************************/
/* Calculate MB/sec. */
static unsigned mbpers(struct raid_set *rs, unsigned speed)
{
	return to_bytes(speed * rs->set.data_devs *
			rs->recover.io_size * HZ >> 10) >> 10;
}

/*
 * Discover fastest xor algorithm and # of chunks combination.
 */
/* Calculate speed for algorithm and # of chunks. */
static unsigned xor_speed(struct stripe *stripe)
{
	unsigned r = 0;
	unsigned long j;

	/* Wait for next tick. */
	for (j = jiffies; j == jiffies; )
		;

	/* Do xors for a full tick. */
	for (j = jiffies; j == jiffies; ) {
		mb();
		common_xor(stripe, stripe->io.size, 0, 0);
		mb();
		r++;
	}

	return r;
}

/* Optimize xor algorithm for this RAID set. */
static unsigned xor_optimize(struct raid_set *rs)
{
	unsigned chunks_max = 2, p = rs->set.raid_devs, speed_max = 0;
	struct xor_func *f = ARRAY_END(xor_funcs), *f_max = NULL;
	struct stripe *stripe;

	BUG_ON(list_empty(&rs->recover.stripes));
	stripe = list_first_entry(&rs->recover.stripes, struct stripe,
				  lists[LIST_RECOVER]);

	/* Must set uptodate so that xor() will belabour chunks. */
	while (p--)
		SetChunkUptodate(CHUNK(stripe, p));

	/* Try all xor functions. */
	while (f-- > xor_funcs) {
		unsigned speed;

		/* Set actual xor function for common_xor(). */
		rs->xor.f = f;
		rs->xor.chunks = (f->f == xor_blocks_wrapper ?
				  (MAX_XOR_BLOCKS + 1) : XOR_CHUNKS_MAX) + 1;

		while (rs->xor.chunks-- > 2) {
			speed = xor_speed(stripe);
			if (speed > speed_max) {
				speed_max = speed;
				chunks_max = rs->xor.chunks;
				f_max = f;
			}
		}
	}

	/* Memorize optimum parameters. */
	rs->xor.f = f_max;
	rs->xor.chunks = chunks_max;
	return speed_max;
}

/*
 * Allocate a RAID context (a RAID set)
 */
/* Structure for variable RAID parameters. */
struct variable_parms {
	int bandwidth;
	int bandwidth_parm;
	int chunk_size;
	int chunk_size_parm;
	int io_size;
	int io_size_parm;
	int stripes;
	int stripes_parm;
	int recover_io_size;
	int recover_io_size_parm;
	int raid_parms;
	int recovery;
	int recovery_stripes;
	int recovery_stripes_parm;
};

static struct raid_set *
context_alloc(struct raid_type *raid_type, struct variable_parms *p,
	      unsigned raid_devs, sector_t sectors_per_dev,
	      struct dm_target *ti, unsigned dl_parms, char **argv)
{
	int r;
	size_t len;
	sector_t region_size, ti_len;
	struct raid_set *rs = NULL;
	struct dm_dirty_log *dl;
	struct recover *rec;

	/*
	 * Create the dirty log
	 *
	 * We need to change length for the dirty log constructor,
	 * because we want an amount of regions for all stripes derived
	 * from the single device size, so that we can keep region
	 * size = 2^^n independant of the number of devices
	 */
	ti_len = ti->len;
	ti->len = sectors_per_dev;
	dl = dm_dirty_log_create(argv[0], ti, NULL, dl_parms, argv + 2);
	ti->len = ti_len;
	if (!dl)
		goto bad_dirty_log;

	/* Chunk size *must* be smaller than region size. */
	region_size = dl->type->get_region_size(dl);
	if (p->chunk_size > region_size)
		goto bad_chunk_size;

	/* Recover io size *must* be smaller than region size as well. */
	if (p->recover_io_size > region_size)
		goto bad_recover_io_size;

	/* Size and allocate the RAID set structure. */
	len = sizeof(*rs->data) + sizeof(*rs->dev);
	if (dm_array_too_big(sizeof(*rs), len, raid_devs))
		goto bad_array;

	len = sizeof(*rs) + raid_devs * len;
	rs = kzalloc(len, GFP_KERNEL);
	if (!rs)
		goto bad_alloc;

	rec = &rs->recover;
	atomic_set(&rs->io.in_process, 0);
	atomic_set(&rs->io.in_process_max, 0);
	rec->io_size = p->recover_io_size;

	/* Pointer to data array. */
	rs->data = (unsigned long **)
		   ((void *) rs->dev + raid_devs * sizeof(*rs->dev));
	rec->dl = dl;
	rs->set.raid_devs = raid_devs;
	rs->set.data_devs = raid_devs - raid_type->parity_devs;
	rs->set.raid_type = raid_type;

	rs->set.raid_parms = p->raid_parms;
	rs->set.chunk_size_parm = p->chunk_size_parm;
	rs->set.io_size_parm = p->io_size_parm;
	rs->sc.stripes_parm = p->stripes_parm;
	rec->io_size_parm = p->recover_io_size_parm;
	rec->bandwidth_parm = p->bandwidth_parm;
	rec->recovery = p->recovery;
	rec->recovery_stripes = p->recovery_stripes;

	/*
	 * Set chunk and io size and respective shifts
	 * (used to avoid divisions)
	 */
	rs->set.chunk_size = p->chunk_size;
	rs->set.chunk_shift = ffs(p->chunk_size) - 1;

	rs->set.io_size = p->io_size;
	rs->set.io_mask = p->io_size - 1;
	/* Mask to adjust address key in case io_size != chunk_size. */
	rs->set.io_inv_mask = (p->chunk_size - 1) & ~rs->set.io_mask;

	rs->set.sectors_per_dev = sectors_per_dev;

	rs->set.ei = -1;	/* Indicate no failed device. */
	atomic_set(&rs->set.failed_devs, 0);

	rs->ti = ti;

	atomic_set(rec->io_count + IO_WORK, 0);
	atomic_set(rec->io_count + IO_RECOVER, 0);

	/* Initialize io lock and queues. */
	mutex_init(&rs->io.in_lock);
	bio_list_init(&rs->io.in);
	bio_list_init(&rs->io.work);

	init_waitqueue_head(&rs->io.suspendq);	/* Suspend waiters (dm-io). */

	rec->nr_regions = dm_sector_div_up(sectors_per_dev, region_size);
	rec->rh = dm_region_hash_create(rs, dispatch_delayed_bios,
			wake_dummy, wake_do_raid, 0, p->recovery_stripes,
			dl, region_size, rec->nr_regions);
	if (IS_ERR(rec->rh))
		goto bad_rh;

	/* Initialize stripe cache. */
	r = sc_init(rs, p->stripes);
	if (r)
		goto bad_sc;

	/* REMOVEME: statistics. */
	stats_reset(rs);
	ClearRSDevelStats(rs);	/* Disnable development status. */
	return rs;

bad_dirty_log:
	TI_ERR_RET("Error creating dirty log", ERR_PTR(-ENOMEM));

bad_chunk_size:
	dm_dirty_log_destroy(dl);
	TI_ERR_RET("Chunk size larger than region size", ERR_PTR(-EINVAL));

bad_recover_io_size:
	dm_dirty_log_destroy(dl);
	TI_ERR_RET("Recover stripe io size larger than region size",
			ERR_PTR(-EINVAL));

bad_array:
	dm_dirty_log_destroy(dl);
	TI_ERR_RET("Arry too big", ERR_PTR(-EINVAL));

bad_alloc:
	dm_dirty_log_destroy(dl);
	TI_ERR_RET("Cannot allocate raid context", ERR_PTR(-ENOMEM));

bad_rh:
	dm_dirty_log_destroy(dl);
	ti->error = DM_MSG_PREFIX "Error creating dirty region hash";
	goto free_rs;

bad_sc:
	dm_region_hash_destroy(rec->rh); /* Destroys dirty log too. */
	sc_exit(&rs->sc);
	ti->error = DM_MSG_PREFIX "Error creating stripe cache";
free_rs:
	kfree(rs);
	return ERR_PTR(-ENOMEM);
}

/* Free a RAID context (a RAID set). */
static void context_free(struct raid_set *rs, unsigned p)
{
	while (p--)
		dm_put_device(rs->ti, rs->dev[p].dev);

	sc_exit(&rs->sc);
	dm_region_hash_destroy(rs->recover.rh); /* Destroys dirty log too. */
	kfree(rs);
}

/* Create work queue and initialize delayed work. */
static int rs_workqueue_init(struct raid_set *rs)
{
	struct dm_target *ti = rs->ti;

	rs->io.wq = create_singlethread_workqueue(DAEMON);
	if (!rs->io.wq)
		TI_ERR_RET("failed to create " DAEMON, -ENOMEM);

	INIT_DELAYED_WORK(&rs->io.dws_do_raid, do_raid);
	INIT_WORK(&rs->io.ws_do_table_event, do_table_event);
	return 0;
}

/* Return pointer to raid_type structure for raid name. */
static struct raid_type *get_raid_type(char *name)
{
	struct raid_type *r = ARRAY_END(raid_types);

	while (r-- > raid_types) {
		if (!strcmp(r->name, name))
			return r;
	}

	return NULL;
}

/* FIXME: factor out to dm core. */
static int multiple(sector_t a, sector_t b, sector_t *n)
{
	sector_t r = a;

	sector_div(r, b);
	*n = r;
	return a == r * b;
}

/* Log RAID set information to kernel log. */
static void rs_log(struct raid_set *rs, unsigned speed)
{
	unsigned p;
	char buf[BDEVNAME_SIZE];

	for (p = 0; p < rs->set.raid_devs; p++)
		DMINFO("/dev/%s is raid disk %u%s",
				bdevname(rs->dev[p].dev->bdev, buf), p,
				(p == rs->set.pi) ? " (parity)" : "");

	DMINFO("%d/%d/%d sectors chunk/io/recovery size, %u stripes\n"
	       "algorithm \"%s\", %u chunks with %uMB/s\n"
	       "%s set with net %u/%u devices",
	       rs->set.chunk_size, rs->set.io_size, rs->recover.io_size,
	       atomic_read(&rs->sc.stripes),
	       rs->xor.f->name, rs->xor.chunks, mbpers(rs, speed),
	       rs->set.raid_type->descr, rs->set.data_devs, rs->set.raid_devs);
}

/* Get all devices and offsets. */
static int dev_parms(struct raid_set *rs, char **argv, int *p)
{
	struct dm_target *ti = rs->ti;

	for (*p = 0; *p < rs->set.raid_devs; (*p)++, argv += 2) {
		int r;
		unsigned long long tmp;
		struct raid_dev *dev = rs->dev + *p;

		/* Get offset and device. */
		if (sscanf(argv[1], "%llu", &tmp) != 1 ||
		    tmp > rs->set.sectors_per_dev)
			TI_ERR("Invalid RAID device offset parameter");

		dev->start = tmp;
		r = dm_get_device(ti, *argv, dev->start,
				  rs->set.sectors_per_dev,
				  dm_table_get_mode(ti->table), &dev->dev);
		if (r)
			TI_ERR_RET("RAID device lookup failure", r);

		r = raid_dev_lookup(rs, dev);
		if (r != -ENODEV && r < *p) {
			(*p)++;	/* Ensure dm_put_device() on actual device. */
			TI_ERR_RET("Duplicate RAID device", -ENXIO);
		}
	}

	return 0;
}

/* Set recovery bandwidth. */
static void
recover_set_bandwidth(struct raid_set *rs, unsigned bandwidth)
{
	rs->recover.bandwidth = bandwidth;
	rs->recover.bandwidth_work = 100 / bandwidth;
}

/* Handle variable number of RAID parameters. */
static int get_raid_variable_parms(struct dm_target *ti, char **argv, 
				   struct variable_parms *vp)
{
	int p, value;
	struct {
		int action; /* -1: skip, 0: no pwer2 check, 1: power2 check */
		char *errmsg;
		int min, max;
		int *var, *var2, *var3;
	} argctr[] = {
		{ 1,
		  "Invalid chunk size; must be -1 or 2^^n and <= 16384",
 		  IO_SIZE_MIN, CHUNK_SIZE_MAX,
		  &vp->chunk_size_parm, &vp->chunk_size, &vp->io_size },
		{ 0,
		  "Invalid number of stripes: must be -1 or >= 8 and <= 16384",
		  STRIPES_MIN, STRIPES_MAX,
		  &vp->stripes_parm, &vp->stripes, NULL },
		{ 1,
		  "Invalid io size; must -1 or >= 8, 2^^n and less equal "
		  "min(BIO_MAX_SECTORS/2, chunk size)",
		  IO_SIZE_MIN, 0, /* Needs to be updated in loop below. */
		  &vp->io_size_parm, &vp->io_size, NULL },
		{ 1,
		  "Invalid recovery io size; must be -1 or "
		  "2^^n and less equal BIO_MAX_SECTORS/2",
		  RECOVER_IO_SIZE_MIN, BIO_MAX_SECTORS / 2,
		  &vp->recover_io_size_parm, &vp->recover_io_size, NULL },
		{ 0,
		  "Invalid recovery bandwidth percentage; "
		  "must be -1 or > 0 and <= 100",
		  BANDWIDTH_MIN, BANDWIDTH_MAX,
		  &vp->bandwidth_parm, &vp->bandwidth, NULL },
		/* Handle sync argument seperately in loop. */
		{ -1,
		  "Invalid recovery switch; must be \"sync\" or \"nosync\"" },
		{ 0,
		  "Invalid number of recovery stripes;"
		  "must be -1, > 0 and <= 16384",
		  RECOVERY_STRIPES_MIN, RECOVERY_STRIPES_MAX,
		  &vp->recovery_stripes_parm, &vp->recovery_stripes, NULL },
	}, *varp;

	/* Fetch # of variable raid parameters. */
	if (sscanf(*(argv++), "%d", &vp->raid_parms) != 1 ||
	    !range_ok(vp->raid_parms, 0, 7))
		TI_ERR("Bad variable raid parameters number");

	/* Preset variable RAID parameters. */
	vp->chunk_size = CHUNK_SIZE_DEFAULT;
	vp->io_size = IO_SIZE_DEFAULT;
	vp->stripes = STRIPES_DEFAULT;
	vp->recover_io_size = RECOVER_IO_SIZE_DEFAULT;
	vp->bandwidth = BANDWIDTH_DEFAULT;
	vp->recovery = 1;
	vp->recovery_stripes = RECOVERY_STRIPES_DEFAULT;

	/* Walk the array of argument constraints for all given ones. */
	for (p = 0, varp = argctr; p < vp->raid_parms; p++, varp++) {
	     	BUG_ON(varp >= ARRAY_END(argctr));

		/* Special case for "[no]sync" string argument. */
		if (varp->action < 0) {
			if (!strcmp(*argv, "sync"))
				;
			else if (!strcmp(*argv, "nosync"))
				vp->recovery = 0;
			else
				TI_ERR(varp->errmsg);

			argv++;
			continue;
		}

		/*
		 * Special case for io_size depending
		 * on previously set chunk size.
		 */
		if (p == 2)
			varp->max = min(BIO_MAX_SECTORS / 2, vp->chunk_size);

		if (sscanf(*(argv++), "%d", &value) != 1 ||
		    (value != -1 &&
		     ((varp->action && !POWER_OF_2(value)) ||
		      !range_ok(value, varp->min, varp->max))))
			TI_ERR(varp->errmsg);

		*varp->var = value;
		if (value != -1) {
			if (varp->var2)
				*varp->var2 = value;
			if (varp->var3)
				*varp->var3 = value;
		}
	}

	return 0;
}

/* Parse optional locking parameters. */
static int get_raid_locking_parms(struct dm_target *ti, char **argv,
				  int *locking_parms,
				  struct dm_raid45_locking_type **locking_type)
{
	if (!strnicmp(argv[0], "locking", strlen(argv[0]))) {
		char *lckstr = argv[1];
		size_t lcksz = strlen(lckstr);

		if (!strnicmp(lckstr, "none", lcksz)) {
			*locking_type = &locking_none;
			*locking_parms = 2;
		} else if (!strnicmp(lckstr, "cluster", lcksz)) {
			DMERR("locking type \"%s\" not yet implemented",
			      lckstr);
			return -EINVAL;
		} else {
			DMERR("unknown locking type \"%s\"", lckstr);
			return -EINVAL;
		}
	}

	*locking_parms = 0;
	*locking_type = &locking_none;
	return 0;
}

/* Set backing device read ahead properties of RAID set. */
static void rs_set_read_ahead(struct raid_set *rs,
			      unsigned sectors, unsigned stripes)
{
	unsigned ra_pages = dm_div_up(sectors, SECTORS_PER_PAGE);
	struct mapped_device *md = dm_table_get_md(rs->ti->table);
	struct backing_dev_info *bdi = &dm_disk(md)->queue->backing_dev_info;

	/* Set read-ahead for the RAID set and the component devices. */
	if (ra_pages) {
		unsigned p = rs->set.raid_devs;

		bdi->ra_pages = stripes * ra_pages * rs->set.data_devs;

		while (p--) {
			struct request_queue *q =
				bdev_get_queue(rs->dev[p].dev->bdev);

			q->backing_dev_info.ra_pages = ra_pages;
		}
	}

	dm_put(md);
}

/* Set congested function. */
static void rs_set_congested_fn(struct raid_set *rs)
{
	struct mapped_device *md = dm_table_get_md(rs->ti->table);
	struct backing_dev_info *bdi = &dm_disk(md)->queue->backing_dev_info;

	/* Set congested function and data. */
	bdi->congested_fn = rs_congested;
	bdi->congested_data = rs;
	dm_put(md);
}

/*
 * Construct a RAID4/5 mapping:
 *
 * log_type #log_params <log_params> \
 * raid_type [#parity_dev] #raid_variable_params <raid_params> \
 * [locking "none"/"cluster"]
 * #raid_devs #dev_to_initialize [<dev_path> <offset>]{3,}
 *
 * log_type = "core"/"disk",
 * #log_params = 1-3 (1-2 for core dirty log type, 3 for disk dirty log only)
 * log_params = [dirty_log_path] region_size [[no]sync])
 *
 * raid_type = "raid4", "raid5_la", "raid5_ra", "raid5_ls", "raid5_rs"
 *
 * #parity_dev = N if raid_type = "raid4"
 * o N = -1: pick default = last device
 * o N >= 0 and < #raid_devs: parity device index
 *
 * #raid_variable_params = 0-7; raid_params (-1 = default):
 *   [chunk_size [#stripes [io_size [recover_io_size \
 *    [%recovery_bandwidth [recovery_switch [#recovery_stripes]]]]]]]
 *   o chunk_size (unit to calculate drive addresses; must be 2^^n, > 8
 *     and <= CHUNK_SIZE_MAX)
 *   o #stripes is number of stripes allocated to stripe cache
 *     (must be > 1 and < STRIPES_MAX)
 *   o io_size (io unit size per device in sectors; must be 2^^n and > 8)
 *   o recover_io_size (io unit size per device for recovery in sectors;
 must be 2^^n, > SECTORS_PER_PAGE and <= region_size)
 *   o %recovery_bandwith is the maximum amount spend for recovery during
 *     application io (1-100%)
 *   o recovery switch = [sync|nosync]
 *   o #recovery_stripes is the number of recovery stripes used for
 *     parallel recovery of the RAID set
 * If raid_variable_params = 0, defaults will be used.
 * Any raid_variable_param can be set to -1 to apply a default
 *
 * #raid_devs = N (N >= 3)
 *
 * #dev_to_initialize = N
 * -1: initialize parity on all devices
 * >= 0 and < #raid_devs: initialize raid_path; used to force reconstruction
 * of a failed devices content after replacement
 *
 * <dev_path> = device_path (eg, /dev/sdd1)
 * <offset>   = begin at offset on <dev_path>
 *
 */
#define	MIN_PARMS	13
static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
{
	int dev_to_init, dl_parms, i, locking_parms,
	    parity_parm, pi = -1, r, raid_devs;
	unsigned speed;
	sector_t tmp, sectors_per_dev;
	struct dm_raid45_locking_type *locking;
	struct raid_set *rs;
	struct raid_type *raid_type;
	struct variable_parms parms;

	/* Ensure minimum number of parameters. */
	if (argc < MIN_PARMS)
		TI_ERR("Not enough parameters");

	/* Fetch # of dirty log parameters. */
	if (sscanf(argv[1], "%d", &dl_parms) != 1 ||
	    !range_ok(dl_parms, 1, 4711)) /* ;-) */
		TI_ERR("Bad dirty log parameters number");

	/* Check raid_type. */
	raid_type = get_raid_type(argv[dl_parms + 2]);
	if (!raid_type)
		TI_ERR("Bad raid type");

	/* In case of RAID4, parity drive is selectable. */
	parity_parm = !!(raid_type->level == raid4);

	/* Handle variable number of RAID parameters. */
	r = get_raid_variable_parms(ti, argv + dl_parms + parity_parm + 3,
				    &parms);
	if (r)
		return r;

	/* Handle any locking parameters. */
	r = get_raid_locking_parms(ti,
				   argv + dl_parms + parity_parm +
				   parms.raid_parms + 4,
				   &locking_parms, &locking);
	if (r)
		return r;

	/* # of raid devices. */
	i = dl_parms + parity_parm + parms.raid_parms + locking_parms + 4;
	if (sscanf(argv[i], "%d", &raid_devs) != 1 ||
	    raid_devs < raid_type->minimal_devs)
		TI_ERR("Invalid number of raid devices");

	/* In case of RAID4, check parity drive index is in limits. */
	if (raid_type->level == raid4) {
		/* Fetch index of parity device. */
		if (sscanf(argv[dl_parms + 3], "%d", &pi) != 1 ||
		    (pi != -1 && !range_ok(pi, 0, raid_devs - 1)))
			TI_ERR("Invalid RAID4 parity device index");
	}

	/*
	 * Index of device to initialize starts at 0
	 *
	 * o -1 -> don't initialize a selected device;
	 *         initialize parity conforming to algorithm
	 * o 0..raid_devs-1 -> initialize respective device
	 *   (used for reconstruction of a replaced device)
	 */
	if (sscanf(argv[dl_parms + parity_parm + parms.raid_parms +
		   locking_parms + 5], "%d", &dev_to_init) != 1 ||
	    !range_ok(dev_to_init, -1, raid_devs - 1))
		TI_ERR("Invalid number for raid device to initialize");

	/* Check # of raid device arguments. */
	if (argc - dl_parms - parity_parm - parms.raid_parms - 6 !=
	    2 * raid_devs)
		TI_ERR("Wrong number of raid device/offset arguments");

	/*
	 * Check that the table length is devisable
	 * w/o rest by (raid_devs - parity_devs)
	 */
	if (!multiple(ti->len, raid_devs - raid_type->parity_devs,
		      &sectors_per_dev))
		TI_ERR("Target length not divisible by number of data devices");

	/*
	 * Check that the device size is
	 * devisable w/o rest by chunk size
	 */
	if (!multiple(sectors_per_dev, parms.chunk_size, &tmp))
		TI_ERR("Device length not divisible by chunk_size");

	/****************************************************************
	 * Now that we checked the constructor arguments ->
	 * let's allocate the RAID set
	 ****************************************************************/
	rs = context_alloc(raid_type, &parms, raid_devs, sectors_per_dev,
			   ti, dl_parms, argv);
	if (IS_ERR(rs))
		return PTR_ERR(rs);


	rs->set.dev_to_init = rs->set.dev_to_init_parm = dev_to_init;
	rs->set.pi = rs->set.pi_parm = pi;

	/* Set RAID4 parity drive index. */
	if (raid_type->level == raid4)
		rs->set.pi = (pi == -1) ? rs->set.data_devs : pi;

	recover_set_bandwidth(rs, parms.bandwidth);

	/* Use locking type to lock stripe access. */
	rs->locking = locking;

	/* Get the device/offset tupels. */
	argv += dl_parms + 6 + parity_parm + parms.raid_parms;
	r = dev_parms(rs, argv, &i);
	if (r)
		goto err;

	/* Set backing device information (eg. read ahead). */
	rs_set_read_ahead(rs, 2 * rs->set.chunk_size, 4 /* stripes */);
	rs_set_congested_fn(rs); /* Set congested function. */
	SetRSCheckOverwrite(rs); /* Allow chunk overwrite checks. */
	speed = xor_optimize(rs); /* Select best xor algorithm. */

	/* Set for recovery of any nosync regions. */
	if (parms.recovery)
		SetRSRecover(rs);
	else {
		/*
		 * Need to free recovery stripe(s) here in case
		 * of nosync, because xor_optimize uses one.
		 */
		set_start_recovery(rs);
		set_end_recovery(rs);
		stripe_recover_free(rs);
	}

	/*
	 * Make sure that dm core only hands maximum io size
	 * length down and pays attention to io boundaries.
	 */
	ti->split_io = rs->set.io_size;
	ti->private = rs;

	/* Initialize work queue to handle this RAID set's io. */
	r = rs_workqueue_init(rs);
	if (r)
		goto err;

	rs_log(rs, speed); /* Log information about RAID set. */
	return 0;

err:
	context_free(rs, i);
	return r;
}

/*
 * Destruct a raid mapping
 */
static void raid_dtr(struct dm_target *ti)
{
	struct raid_set *rs = ti->private;

	destroy_workqueue(rs->io.wq);
	context_free(rs, rs->set.raid_devs);
}

/* Raid mapping function. */
static int raid_map(struct dm_target *ti, struct bio *bio,
		    union map_info *map_context)
{
	/* I don't want to waste stripe cache capacity. */
	if (bio_rw(bio) == READA)
		return -EIO;
	else {
		struct raid_set *rs = ti->private;

		/*
		 * Get io reference to be waiting for to drop
		 * to zero on device suspension/destruction.
		 */
		io_get(rs);
		bio->bi_sector -= ti->begin;	/* Remap sector. */

		/* Queue io to RAID set. */
		mutex_lock(&rs->io.in_lock);
		bio_list_add(&rs->io.in, bio);
		mutex_unlock(&rs->io.in_lock);

		/* Wake daemon to process input list. */
		wake_do_raid(rs);

		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + (bio_data_dir(bio) == READ ?
				        S_BIOS_READ : S_BIOS_WRITE));
		return DM_MAPIO_SUBMITTED;	/* Handle later. */
	}
}

/* Device suspend. */
static void raid_presuspend(struct dm_target *ti)
{
	struct raid_set *rs = ti->private;
	struct dm_dirty_log *dl = rs->recover.dl;

	SetRSSuspend(rs);

	if (RSRecover(rs))
		dm_rh_stop_recovery(rs->recover.rh);

	cancel_delayed_work(&rs->io.dws_do_raid);
	flush_workqueue(rs->io.wq);
	wait_ios(rs);	/* Wait for completion of all ios being processed. */

	if (dl->type->presuspend && dl->type->presuspend(dl))
		/* FIXME: need better error handling. */
		DMWARN("log presuspend failed");
}

static void raid_postsuspend(struct dm_target *ti)
{
	struct raid_set *rs = ti->private;
	struct dm_dirty_log *dl = rs->recover.dl;

	if (dl->type->postsuspend && dl->type->postsuspend(dl))
		/* FIXME: need better error handling. */
		DMWARN("log postsuspend failed");

}

/* Device resume. */
static void raid_resume(struct dm_target *ti)
{
	struct raid_set *rs = ti->private;
	struct recover *rec = &rs->recover;
	struct dm_dirty_log *dl = rec->dl;

	if (dl->type->resume && dl->type->resume(dl))
		/* Resume dirty log. */
		/* FIXME: need better error handling. */
		DMWARN("log resume failed");

	rec->nr_regions_to_recover =
		rec->nr_regions - dl->type->get_sync_count(dl);

	/* Restart any unfinished recovery. */
	if (RSRecover(rs)) {
		set_start_recovery(rs);
		dm_rh_start_recovery(rec->rh);
	}

	ClearRSSuspend(rs);
	wake_do_raid(rs);
}

/* Return stripe cache size. */
static unsigned sc_size(struct raid_set *rs)
{
	return to_sector(atomic_read(&rs->sc.stripes) *
			 (sizeof(struct stripe) +
			  (sizeof(struct stripe_chunk) +
			   (sizeof(struct page_list) +
			    to_bytes(rs->set.io_size) *
			    rs->set.raid_devs)) +
			  (rs->recover.end_jiffies ?
			   0 : rs->recover.recovery_stripes *
			   to_bytes(rs->set.raid_devs * rs->recover.io_size))));
}

/* REMOVEME: status output for development. */
static void raid_devel_stats(struct dm_target *ti, char *result,
			     unsigned *size, unsigned maxlen)
{
	unsigned sz = *size;
	unsigned long j;
	char buf[BDEVNAME_SIZE], *p;
	struct stats_map *sm;
	struct raid_set *rs = ti->private;
	struct recover *rec = &rs->recover;
	struct timespec ts;

	DMEMIT("%s %s %u\n", version, rs->xor.f->name, rs->xor.chunks);
	DMEMIT("act_ios=%d ", io_ref(rs));
	DMEMIT("act_ios_max=%d\n", atomic_read(&rs->io.in_process_max));
	DMEMIT("act_stripes=%d ", sc_active(&rs->sc));
	DMEMIT("act_stripes_max=%d\n",
	       atomic_read(&rs->sc.active_stripes_max));

	for (sm = stats_map; sm < ARRAY_END(stats_map); sm++)
		DMEMIT("%s%d", sm->str, atomic_read(rs->stats + sm->type));

	DMEMIT(" checkovr=%s\n", RSCheckOverwrite(rs) ? "on" : "off");
	DMEMIT("sc=%u/%u/%u/%u/%u/%u/%u\n", rs->set.chunk_size,
	       atomic_read(&rs->sc.stripes), rs->set.io_size,
	       rec->recovery_stripes, rec->io_size, rs->sc.hash.buckets,
	       sc_size(rs));

	j = (rec->end_jiffies ? rec->end_jiffies : jiffies) -
	    rec->start_jiffies;
	jiffies_to_timespec(j, &ts);
	sprintf(buf, "%ld.%ld", ts.tv_sec, ts.tv_nsec);
	p = strchr(buf, '.');
	p[3] = 0;

	DMEMIT("rg=%llu/%llu/%llu/%u %s\n",
	       (unsigned long long) rec->nr_regions_recovered,
	       (unsigned long long) rec->nr_regions_to_recover,
	       (unsigned long long) rec->nr_regions, rec->bandwidth, buf);

	*size = sz;
}

static int raid_status(struct dm_target *ti, status_type_t type,
		       char *result, unsigned maxlen)
{
	unsigned p, sz = 0;
	char buf[BDEVNAME_SIZE];
	struct raid_set *rs = ti->private;
	int raid_parms[] = {
		rs->set.chunk_size_parm,
		rs->sc.stripes_parm,
		rs->set.io_size_parm,
		rs->recover.io_size_parm,
		rs->recover.bandwidth_parm,
		-2,
		rs->recover.recovery_stripes,
	};

	switch (type) {
	case STATUSTYPE_INFO:
		/* REMOVEME: statistics. */
		if (RSDevelStats(rs))
			raid_devel_stats(ti, result, &sz, maxlen);

		DMEMIT("%u ", rs->set.raid_devs);

		for (p = 0; p < rs->set.raid_devs; p++)
			DMEMIT("%s ",
			       format_dev_t(buf, rs->dev[p].dev->bdev->bd_dev));

		DMEMIT("1 ");
		for (p = 0; p < rs->set.raid_devs; p++) {
			DMEMIT("%c", !DevFailed(rs->dev + p) ? 'A' : 'D');

			if (p == rs->set.pi)
				DMEMIT("p");

			if (rs->set.dev_to_init == p)
				DMEMIT("i");
		}

		break;
	case STATUSTYPE_TABLE:
		sz = rs->recover.dl->type->status(rs->recover.dl, type,
						  result, maxlen);
		DMEMIT("%s %u ", rs->set.raid_type->name,
		       rs->set.raid_parms);

		for (p = 0; p < rs->set.raid_parms; p++) {
			if (raid_parms[p] > -2)
				DMEMIT("%d ", raid_parms[p]);
			else
				DMEMIT("%s ", rs->recover.recovery ?
					      "sync" : "nosync");
		}

		DMEMIT("%u %d ", rs->set.raid_devs, rs->set.dev_to_init);

		for (p = 0; p < rs->set.raid_devs; p++)
			DMEMIT("%s %llu ",
			       format_dev_t(buf, rs->dev[p].dev->bdev->bd_dev),
			       (unsigned long long) rs->dev[p].start);
	}

	return 0;
}

/*
 * Message interface
 */
enum raid_msg_actions {
	act_bw,			/* Recovery bandwidth switch. */
	act_dev,		/* Device failure switch. */
	act_overwrite,		/* Stripe overwrite check. */
	act_stats,		/* Development statistics switch. */
	act_sc,			/* Stripe cache switch. */

	act_on,			/* Set entity on. */
	act_off,		/* Set entity off. */
	act_reset,		/* Reset entity. */

	act_set = act_on,	/* Set # absolute. */
	act_grow = act_off,	/* Grow # by an amount. */
	act_shrink = act_reset,	/* Shrink # by an amount. */
};

/* Turn a delta into an absolute value. */
static int _absolute(unsigned long action, int act, int r)
{
	/* Make delta absolute. */
	if (test_bit(act_set, &action))
		;
	else if (test_bit(act_grow, &action))
		r += act;
	else if (test_bit(act_shrink, &action))
		r = act - r;
	else
		r = -EINVAL;

	return r;
}

 /* Change recovery io bandwidth. */
static int bandwidth_change(struct dm_msg *msg, void *context)
{
	struct raid_set *rs = context;
	int act = rs->recover.bandwidth;
	int bandwidth = DM_MSG_INT_ARG(msg);

	if (range_ok(bandwidth, BANDWIDTH_MIN, BANDWIDTH_MAX)) {
		/* Make delta bandwidth absolute. */
		bandwidth = _absolute(msg->action, act, bandwidth);

		/* Check range. */
		if (range_ok(bandwidth, BANDWIDTH_MIN, BANDWIDTH_MAX)) {
			recover_set_bandwidth(rs, bandwidth);
			return 0;
		}
	}

	set_bit(dm_msg_ret_arg, &msg->ret);
	set_bit(dm_msg_ret_inval, &msg->ret);
	return -EINVAL;
}

/* Set/reset development feature flags. */
static int devel_flags(struct dm_msg *msg, void *context)
{
	struct raid_set *rs = context;

	if (test_bit(act_on, &msg->action))
		return test_and_set_bit(msg->spec->parm,
					&rs->io.flags) ? -EPERM : 0;
	else if (test_bit(act_off, &msg->action))
		return test_and_clear_bit(msg->spec->parm,
					  &rs->io.flags) ? 0 : -EPERM;
	else if (test_bit(act_reset, &msg->action)) {
		if (test_bit(act_stats, &msg->action)) {
			stats_reset(rs);
			goto on;
		} else if (test_bit(act_overwrite, &msg->action)) {
on:
			set_bit(msg->spec->parm, &rs->io.flags);
			return 0;
		}
	}

	return -EINVAL;
}

/* Resize the stripe cache. */
static int sc_resize(struct dm_msg *msg, void *context)
{
	int act, stripes;
	struct raid_set *rs = context;

	/* Deny permission in case the daemon is still resizing!. */
	if (atomic_read(&rs->sc.stripes_to_set))
		return -EPERM;

	stripes = DM_MSG_INT_ARG(msg);
	if (stripes > 0) {
		act = atomic_read(&rs->sc.stripes);

		/* Make delta stripes absolute. */
		stripes = _absolute(msg->action, act, stripes);

		/*
		 * Check range and that the # of stripes changes.
		 * We leave the resizing to the wroker.
		 */
		if (range_ok(stripes, STRIPES_MIN, STRIPES_MAX) &&
		    stripes != atomic_read(&rs->sc.stripes)) {
			atomic_set(&rs->sc.stripes_to_set, stripes);
			wake_do_raid(rs);
			return 0;
		}
	}

	set_bit(dm_msg_ret_arg, &msg->ret);
	set_bit(dm_msg_ret_inval, &msg->ret);
	return -EINVAL;
}

/* Parse the RAID message action. */
/*
 * 'ba[ndwidth] {se[t],g[row],sh[rink]} #'	# e.g 'ba se 50'
 * "o[verwrite]  {on,of[f],r[eset]}'		# e.g. 'o of'
 * 'sta[tistics] {on,of[f],r[eset]}'		# e.g. 'stat of'
 * 'str[ipecache] {se[t],g[row],sh[rink]} #'	# e.g. 'stripe set 1024'
 *
 */
static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
{
	/* Variables to store the parsed parameters im. */
	static int i[2];
	static unsigned long *i_arg[] = {
		(unsigned long *) i + 0,
		(unsigned long *) i + 1,
	};

	/* Declare all message option strings. */
	static char *str_sgs[] = { "set", "grow", "shrink" };
	static char *str_oor[] = { "on", "off", "reset" };

	/* Declare all actions. */
	static unsigned long act_sgs[] = { act_set, act_grow, act_shrink };
	static unsigned long act_oor[] = { act_on, act_off, act_reset };

	/* Bandwidth option. */
	static struct dm_message_option bw_opt = { 3, str_sgs, act_sgs };
	static struct dm_message_argument bw_args = {
		1, i_arg, { dm_msg_int_t }
	};

	static struct dm_message_argument null_args = {
		0, NULL, { dm_msg_int_t }
	};

	/* Overwrite and statistics option. */
	static struct dm_message_option ovr_stats_opt = { 3, str_oor, act_oor };

	/* Sripecache option. */
	static struct dm_message_option stripe_opt = { 3, str_sgs, act_sgs };

	/* Declare messages. */
	static struct dm_msg_spec specs[] = {
		{ "bandwidth", act_bw, &bw_opt, &bw_args,
		  0, bandwidth_change },
		{ "overwrite", act_overwrite, &ovr_stats_opt, &null_args,
		  RS_CHECK_OVERWRITE, devel_flags },
		{ "statistics", act_stats, &ovr_stats_opt, &null_args,
		  RS_DEVEL_STATS, devel_flags },
		{ "stripecache", act_sc, &stripe_opt, &bw_args,
		  0, sc_resize },
	};

	/* The message for the parser. */
	struct dm_msg msg = {
		.num_specs = ARRAY_SIZE(specs),
		.specs = specs,
	};

	return dm_message_parse(TARGET, &msg, ti->private, argc, argv);
}
/*
 * END message interface
 */

static struct target_type raid_target = {
	.name = "raid45",
	.version = {1, 0, 0},
	.module = THIS_MODULE,
	.ctr = raid_ctr,
	.dtr = raid_dtr,
	.map = raid_map,
	.presuspend = raid_presuspend,
	.postsuspend = raid_postsuspend,
	.resume = raid_resume,
	.status = raid_status,
	.message = raid_message,
};

static void init_exit(const char *bad_msg, const char *good_msg, int r)
{
	if (r)
		DMERR("Failed to %sregister target [%d]", bad_msg, r);
	else
		DMINFO("%s %s", good_msg, version);
}

static int __init dm_raid_init(void)
{
	int r = dm_register_target(&raid_target);

	init_exit("", "initialized", r);
	return r;
}

static void __exit dm_raid_exit(void)
{
	dm_unregister_target(&raid_target);
	init_exit("un", "exit", 0);
}

/* Module hooks. */
module_init(dm_raid_init);
module_exit(dm_raid_exit);

MODULE_DESCRIPTION(DM_NAME " raid4/5 target");
MODULE_AUTHOR("Heinz Mauelshagen <hjm@redhat.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("dm-raid4");
MODULE_ALIAS("dm-raid5");