aboutsummaryrefslogtreecommitdiffstats
path: root/tools/perf/scripts/python/event_analyzing_sample.py
diff options
context:
space:
mode:
authorJ. Bruce Fields <bfields@redhat.com>2012-10-09 18:35:22 -0400
committerJ. Bruce Fields <bfields@redhat.com>2012-10-09 18:35:22 -0400
commitf474af7051212b4efc8267583fad9c4ebf33ccff (patch)
tree1aa46ebc8065a341f247c2a2d9af2f624ad1d4f8 /tools/perf/scripts/python/event_analyzing_sample.py
parent0d22f68f02c10d5d10ec5712917e5828b001a822 (diff)
parente3dd9a52cb5552c46c2a4ca7ccdfb4dab5c72457 (diff)
nfs: disintegrate UAPI for nfs
This is to complete part of the Userspace API (UAPI) disintegration for which the preparatory patches were pulled recently. After these patches, userspace headers will be segregated into: include/uapi/linux/.../foo.h for the userspace interface stuff, and: include/linux/.../foo.h for the strictly kernel internal stuff. Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Diffstat (limited to 'tools/perf/scripts/python/event_analyzing_sample.py')
-rw-r--r--tools/perf/scripts/python/event_analyzing_sample.py189
1 files changed, 189 insertions, 0 deletions
diff --git a/tools/perf/scripts/python/event_analyzing_sample.py b/tools/perf/scripts/python/event_analyzing_sample.py
new file mode 100644
index 000000000000..163c39fa12d9
--- /dev/null
+++ b/tools/perf/scripts/python/event_analyzing_sample.py
@@ -0,0 +1,189 @@
1# event_analyzing_sample.py: general event handler in python
2#
3# Current perf report is already very powerful with the annotation integrated,
4# and this script is not trying to be as powerful as perf report, but
5# providing end user/developer a flexible way to analyze the events other
6# than trace points.
7#
8# The 2 database related functions in this script just show how to gather
9# the basic information, and users can modify and write their own functions
10# according to their specific requirement.
11#
12# The first function "show_general_events" just does a basic grouping for all
13# generic events with the help of sqlite, and the 2nd one "show_pebs_ll" is
14# for a x86 HW PMU event: PEBS with load latency data.
15#
16
17import os
18import sys
19import math
20import struct
21import sqlite3
22
23sys.path.append(os.environ['PERF_EXEC_PATH'] + \
24 '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
25
26from perf_trace_context import *
27from EventClass import *
28
29#
30# If the perf.data has a big number of samples, then the insert operation
31# will be very time consuming (about 10+ minutes for 10000 samples) if the
32# .db database is on disk. Move the .db file to RAM based FS to speedup
33# the handling, which will cut the time down to several seconds.
34#
35con = sqlite3.connect("/dev/shm/perf.db")
36con.isolation_level = None
37
38def trace_begin():
39 print "In trace_begin:\n"
40
41 #
42 # Will create several tables at the start, pebs_ll is for PEBS data with
43 # load latency info, while gen_events is for general event.
44 #
45 con.execute("""
46 create table if not exists gen_events (
47 name text,
48 symbol text,
49 comm text,
50 dso text
51 );""")
52 con.execute("""
53 create table if not exists pebs_ll (
54 name text,
55 symbol text,
56 comm text,
57 dso text,
58 flags integer,
59 ip integer,
60 status integer,
61 dse integer,
62 dla integer,
63 lat integer
64 );""")
65
66#
67# Create and insert event object to a database so that user could
68# do more analysis with simple database commands.
69#
70def process_event(param_dict):
71 event_attr = param_dict["attr"]
72 sample = param_dict["sample"]
73 raw_buf = param_dict["raw_buf"]
74 comm = param_dict["comm"]
75 name = param_dict["ev_name"]
76
77 # Symbol and dso info are not always resolved
78 if (param_dict.has_key("dso")):
79 dso = param_dict["dso"]
80 else:
81 dso = "Unknown_dso"
82
83 if (param_dict.has_key("symbol")):
84 symbol = param_dict["symbol"]
85 else:
86 symbol = "Unknown_symbol"
87
88 # Create the event object and insert it to the right table in database
89 event = create_event(name, comm, dso, symbol, raw_buf)
90 insert_db(event)
91
92def insert_db(event):
93 if event.ev_type == EVTYPE_GENERIC:
94 con.execute("insert into gen_events values(?, ?, ?, ?)",
95 (event.name, event.symbol, event.comm, event.dso))
96 elif event.ev_type == EVTYPE_PEBS_LL:
97 event.ip &= 0x7fffffffffffffff
98 event.dla &= 0x7fffffffffffffff
99 con.execute("insert into pebs_ll values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
100 (event.name, event.symbol, event.comm, event.dso, event.flags,
101 event.ip, event.status, event.dse, event.dla, event.lat))
102
103def trace_end():
104 print "In trace_end:\n"
105 # We show the basic info for the 2 type of event classes
106 show_general_events()
107 show_pebs_ll()
108 con.close()
109
110#
111# As the event number may be very big, so we can't use linear way
112# to show the histogram in real number, but use a log2 algorithm.
113#
114
115def num2sym(num):
116 # Each number will have at least one '#'
117 snum = '#' * (int)(math.log(num, 2) + 1)
118 return snum
119
120def show_general_events():
121
122 # Check the total record number in the table
123 count = con.execute("select count(*) from gen_events")
124 for t in count:
125 print "There is %d records in gen_events table" % t[0]
126 if t[0] == 0:
127 return
128
129 print "Statistics about the general events grouped by thread/symbol/dso: \n"
130
131 # Group by thread
132 commq = con.execute("select comm, count(comm) from gen_events group by comm order by -count(comm)")
133 print "\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42)
134 for row in commq:
135 print "%16s %8d %s" % (row[0], row[1], num2sym(row[1]))
136
137 # Group by symbol
138 print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58)
139 symbolq = con.execute("select symbol, count(symbol) from gen_events group by symbol order by -count(symbol)")
140 for row in symbolq:
141 print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
142
143 # Group by dso
144 print "\n%40s %8s %16s\n%s" % ("dso", "number", "histogram", "="*74)
145 dsoq = con.execute("select dso, count(dso) from gen_events group by dso order by -count(dso)")
146 for row in dsoq:
147 print "%40s %8d %s" % (row[0], row[1], num2sym(row[1]))
148
149#
150# This function just shows the basic info, and we could do more with the
151# data in the tables, like checking the function parameters when some
152# big latency events happen.
153#
154def show_pebs_ll():
155
156 count = con.execute("select count(*) from pebs_ll")
157 for t in count:
158 print "There is %d records in pebs_ll table" % t[0]
159 if t[0] == 0:
160 return
161
162 print "Statistics about the PEBS Load Latency events grouped by thread/symbol/dse/latency: \n"
163
164 # Group by thread
165 commq = con.execute("select comm, count(comm) from pebs_ll group by comm order by -count(comm)")
166 print "\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42)
167 for row in commq:
168 print "%16s %8d %s" % (row[0], row[1], num2sym(row[1]))
169
170 # Group by symbol
171 print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58)
172 symbolq = con.execute("select symbol, count(symbol) from pebs_ll group by symbol order by -count(symbol)")
173 for row in symbolq:
174 print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
175
176 # Group by dse
177 dseq = con.execute("select dse, count(dse) from pebs_ll group by dse order by -count(dse)")
178 print "\n%32s %8s %16s\n%s" % ("dse", "number", "histogram", "="*58)
179 for row in dseq:
180 print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
181
182 # Group by latency
183 latq = con.execute("select lat, count(lat) from pebs_ll group by lat order by lat")
184 print "\n%32s %8s %16s\n%s" % ("latency", "number", "histogram", "="*58)
185 for row in latq:
186 print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
187
188def trace_unhandled(event_name, context, event_fields_dict):
189 print ' '.join(['%s=%s'%(k,str(v))for k,v in sorted(event_fields_dict.items())])