aboutsummaryrefslogtreecommitdiffstats
path: root/sound/soc/soc-core.c
diff options
context:
space:
mode:
authorMark Brown <broonie@kernel.org>2014-10-28 18:15:31 -0400
committerMark Brown <broonie@kernel.org>2014-10-29 07:15:10 -0400
commit7077148fb50a120d20a50516a332ed6eb9233c16 (patch)
treec057c8f5ef91ed7191e92bebe65d691b022fb405 /sound/soc/soc-core.c
parentc1b4d1c7774189002bc08766ec10e339dfbc98d6 (diff)
ASoC: core: Split ops out of soc-core.c
The main ASoC source file is getting quite large and the standard ops don't really have anything to do with the rest of the file so split them out into a separate file. Signed-off-by: Mark Brown <broonie@kernel.org>
Diffstat (limited to 'sound/soc/soc-core.c')
-rw-r--r--sound/soc/soc-core.c919
1 files changed, 0 insertions, 919 deletions
diff --git a/sound/soc/soc-core.c b/sound/soc/soc-core.c
index 47c378abb9a2..a2b51edf6d83 100644
--- a/sound/soc/soc-core.c
+++ b/sound/soc/soc-core.c
@@ -2334,925 +2334,6 @@ int snd_soc_add_dai_controls(struct snd_soc_dai *dai,
2334EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls); 2334EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls);
2335 2335
2336/** 2336/**
2337 * snd_soc_info_enum_double - enumerated double mixer info callback
2338 * @kcontrol: mixer control
2339 * @uinfo: control element information
2340 *
2341 * Callback to provide information about a double enumerated
2342 * mixer control.
2343 *
2344 * Returns 0 for success.
2345 */
2346int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2347 struct snd_ctl_elem_info *uinfo)
2348{
2349 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2350
2351 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
2352 e->items, e->texts);
2353}
2354EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2355
2356/**
2357 * snd_soc_get_enum_double - enumerated double mixer get callback
2358 * @kcontrol: mixer control
2359 * @ucontrol: control element information
2360 *
2361 * Callback to get the value of a double enumerated mixer.
2362 *
2363 * Returns 0 for success.
2364 */
2365int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2366 struct snd_ctl_elem_value *ucontrol)
2367{
2368 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2369 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2370 unsigned int val, item;
2371 unsigned int reg_val;
2372 int ret;
2373
2374 ret = snd_soc_component_read(component, e->reg, &reg_val);
2375 if (ret)
2376 return ret;
2377 val = (reg_val >> e->shift_l) & e->mask;
2378 item = snd_soc_enum_val_to_item(e, val);
2379 ucontrol->value.enumerated.item[0] = item;
2380 if (e->shift_l != e->shift_r) {
2381 val = (reg_val >> e->shift_l) & e->mask;
2382 item = snd_soc_enum_val_to_item(e, val);
2383 ucontrol->value.enumerated.item[1] = item;
2384 }
2385
2386 return 0;
2387}
2388EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2389
2390/**
2391 * snd_soc_put_enum_double - enumerated double mixer put callback
2392 * @kcontrol: mixer control
2393 * @ucontrol: control element information
2394 *
2395 * Callback to set the value of a double enumerated mixer.
2396 *
2397 * Returns 0 for success.
2398 */
2399int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2400 struct snd_ctl_elem_value *ucontrol)
2401{
2402 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2403 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2404 unsigned int *item = ucontrol->value.enumerated.item;
2405 unsigned int val;
2406 unsigned int mask;
2407
2408 if (item[0] >= e->items)
2409 return -EINVAL;
2410 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
2411 mask = e->mask << e->shift_l;
2412 if (e->shift_l != e->shift_r) {
2413 if (item[1] >= e->items)
2414 return -EINVAL;
2415 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
2416 mask |= e->mask << e->shift_r;
2417 }
2418
2419 return snd_soc_component_update_bits(component, e->reg, mask, val);
2420}
2421EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2422
2423/**
2424 * snd_soc_read_signed - Read a codec register and interprete as signed value
2425 * @component: component
2426 * @reg: Register to read
2427 * @mask: Mask to use after shifting the register value
2428 * @shift: Right shift of register value
2429 * @sign_bit: Bit that describes if a number is negative or not.
2430 * @signed_val: Pointer to where the read value should be stored
2431 *
2432 * This functions reads a codec register. The register value is shifted right
2433 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
2434 * the given registervalue into a signed integer if sign_bit is non-zero.
2435 *
2436 * Returns 0 on sucess, otherwise an error value
2437 */
2438static int snd_soc_read_signed(struct snd_soc_component *component,
2439 unsigned int reg, unsigned int mask, unsigned int shift,
2440 unsigned int sign_bit, int *signed_val)
2441{
2442 int ret;
2443 unsigned int val;
2444
2445 ret = snd_soc_component_read(component, reg, &val);
2446 if (ret < 0)
2447 return ret;
2448
2449 val = (val >> shift) & mask;
2450
2451 if (!sign_bit) {
2452 *signed_val = val;
2453 return 0;
2454 }
2455
2456 /* non-negative number */
2457 if (!(val & BIT(sign_bit))) {
2458 *signed_val = val;
2459 return 0;
2460 }
2461
2462 ret = val;
2463
2464 /*
2465 * The register most probably does not contain a full-sized int.
2466 * Instead we have an arbitrary number of bits in a signed
2467 * representation which has to be translated into a full-sized int.
2468 * This is done by filling up all bits above the sign-bit.
2469 */
2470 ret |= ~((int)(BIT(sign_bit) - 1));
2471
2472 *signed_val = ret;
2473
2474 return 0;
2475}
2476
2477/**
2478 * snd_soc_info_volsw - single mixer info callback
2479 * @kcontrol: mixer control
2480 * @uinfo: control element information
2481 *
2482 * Callback to provide information about a single mixer control, or a double
2483 * mixer control that spans 2 registers.
2484 *
2485 * Returns 0 for success.
2486 */
2487int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2488 struct snd_ctl_elem_info *uinfo)
2489{
2490 struct soc_mixer_control *mc =
2491 (struct soc_mixer_control *)kcontrol->private_value;
2492 int platform_max;
2493
2494 if (!mc->platform_max)
2495 mc->platform_max = mc->max;
2496 platform_max = mc->platform_max;
2497
2498 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2499 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2500 else
2501 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2502
2503 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2504 uinfo->value.integer.min = 0;
2505 uinfo->value.integer.max = platform_max - mc->min;
2506 return 0;
2507}
2508EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2509
2510/**
2511 * snd_soc_get_volsw - single mixer get callback
2512 * @kcontrol: mixer control
2513 * @ucontrol: control element information
2514 *
2515 * Callback to get the value of a single mixer control, or a double mixer
2516 * control that spans 2 registers.
2517 *
2518 * Returns 0 for success.
2519 */
2520int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2521 struct snd_ctl_elem_value *ucontrol)
2522{
2523 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2524 struct soc_mixer_control *mc =
2525 (struct soc_mixer_control *)kcontrol->private_value;
2526 unsigned int reg = mc->reg;
2527 unsigned int reg2 = mc->rreg;
2528 unsigned int shift = mc->shift;
2529 unsigned int rshift = mc->rshift;
2530 int max = mc->max;
2531 int min = mc->min;
2532 int sign_bit = mc->sign_bit;
2533 unsigned int mask = (1 << fls(max)) - 1;
2534 unsigned int invert = mc->invert;
2535 int val;
2536 int ret;
2537
2538 if (sign_bit)
2539 mask = BIT(sign_bit + 1) - 1;
2540
2541 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
2542 if (ret)
2543 return ret;
2544
2545 ucontrol->value.integer.value[0] = val - min;
2546 if (invert)
2547 ucontrol->value.integer.value[0] =
2548 max - ucontrol->value.integer.value[0];
2549
2550 if (snd_soc_volsw_is_stereo(mc)) {
2551 if (reg == reg2)
2552 ret = snd_soc_read_signed(component, reg, mask, rshift,
2553 sign_bit, &val);
2554 else
2555 ret = snd_soc_read_signed(component, reg2, mask, shift,
2556 sign_bit, &val);
2557 if (ret)
2558 return ret;
2559
2560 ucontrol->value.integer.value[1] = val - min;
2561 if (invert)
2562 ucontrol->value.integer.value[1] =
2563 max - ucontrol->value.integer.value[1];
2564 }
2565
2566 return 0;
2567}
2568EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2569
2570/**
2571 * snd_soc_put_volsw - single mixer put callback
2572 * @kcontrol: mixer control
2573 * @ucontrol: control element information
2574 *
2575 * Callback to set the value of a single mixer control, or a double mixer
2576 * control that spans 2 registers.
2577 *
2578 * Returns 0 for success.
2579 */
2580int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2581 struct snd_ctl_elem_value *ucontrol)
2582{
2583 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2584 struct soc_mixer_control *mc =
2585 (struct soc_mixer_control *)kcontrol->private_value;
2586 unsigned int reg = mc->reg;
2587 unsigned int reg2 = mc->rreg;
2588 unsigned int shift = mc->shift;
2589 unsigned int rshift = mc->rshift;
2590 int max = mc->max;
2591 int min = mc->min;
2592 unsigned int sign_bit = mc->sign_bit;
2593 unsigned int mask = (1 << fls(max)) - 1;
2594 unsigned int invert = mc->invert;
2595 int err;
2596 bool type_2r = false;
2597 unsigned int val2 = 0;
2598 unsigned int val, val_mask;
2599
2600 if (sign_bit)
2601 mask = BIT(sign_bit + 1) - 1;
2602
2603 val = ((ucontrol->value.integer.value[0] + min) & mask);
2604 if (invert)
2605 val = max - val;
2606 val_mask = mask << shift;
2607 val = val << shift;
2608 if (snd_soc_volsw_is_stereo(mc)) {
2609 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
2610 if (invert)
2611 val2 = max - val2;
2612 if (reg == reg2) {
2613 val_mask |= mask << rshift;
2614 val |= val2 << rshift;
2615 } else {
2616 val2 = val2 << shift;
2617 type_2r = true;
2618 }
2619 }
2620 err = snd_soc_component_update_bits(component, reg, val_mask, val);
2621 if (err < 0)
2622 return err;
2623
2624 if (type_2r)
2625 err = snd_soc_component_update_bits(component, reg2, val_mask,
2626 val2);
2627
2628 return err;
2629}
2630EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2631
2632/**
2633 * snd_soc_get_volsw_sx - single mixer get callback
2634 * @kcontrol: mixer control
2635 * @ucontrol: control element information
2636 *
2637 * Callback to get the value of a single mixer control, or a double mixer
2638 * control that spans 2 registers.
2639 *
2640 * Returns 0 for success.
2641 */
2642int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
2643 struct snd_ctl_elem_value *ucontrol)
2644{
2645 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2646 struct soc_mixer_control *mc =
2647 (struct soc_mixer_control *)kcontrol->private_value;
2648 unsigned int reg = mc->reg;
2649 unsigned int reg2 = mc->rreg;
2650 unsigned int shift = mc->shift;
2651 unsigned int rshift = mc->rshift;
2652 int max = mc->max;
2653 int min = mc->min;
2654 int mask = (1 << (fls(min + max) - 1)) - 1;
2655 unsigned int val;
2656 int ret;
2657
2658 ret = snd_soc_component_read(component, reg, &val);
2659 if (ret < 0)
2660 return ret;
2661
2662 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
2663
2664 if (snd_soc_volsw_is_stereo(mc)) {
2665 ret = snd_soc_component_read(component, reg2, &val);
2666 if (ret < 0)
2667 return ret;
2668
2669 val = ((val >> rshift) - min) & mask;
2670 ucontrol->value.integer.value[1] = val;
2671 }
2672
2673 return 0;
2674}
2675EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
2676
2677/**
2678 * snd_soc_put_volsw_sx - double mixer set callback
2679 * @kcontrol: mixer control
2680 * @uinfo: control element information
2681 *
2682 * Callback to set the value of a double mixer control that spans 2 registers.
2683 *
2684 * Returns 0 for success.
2685 */
2686int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
2687 struct snd_ctl_elem_value *ucontrol)
2688{
2689 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2690 struct soc_mixer_control *mc =
2691 (struct soc_mixer_control *)kcontrol->private_value;
2692
2693 unsigned int reg = mc->reg;
2694 unsigned int reg2 = mc->rreg;
2695 unsigned int shift = mc->shift;
2696 unsigned int rshift = mc->rshift;
2697 int max = mc->max;
2698 int min = mc->min;
2699 int mask = (1 << (fls(min + max) - 1)) - 1;
2700 int err = 0;
2701 unsigned int val, val_mask, val2 = 0;
2702
2703 val_mask = mask << shift;
2704 val = (ucontrol->value.integer.value[0] + min) & mask;
2705 val = val << shift;
2706
2707 err = snd_soc_component_update_bits(component, reg, val_mask, val);
2708 if (err < 0)
2709 return err;
2710
2711 if (snd_soc_volsw_is_stereo(mc)) {
2712 val_mask = mask << rshift;
2713 val2 = (ucontrol->value.integer.value[1] + min) & mask;
2714 val2 = val2 << rshift;
2715
2716 err = snd_soc_component_update_bits(component, reg2, val_mask,
2717 val2);
2718 }
2719 return err;
2720}
2721EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
2722
2723/**
2724 * snd_soc_info_volsw_range - single mixer info callback with range.
2725 * @kcontrol: mixer control
2726 * @uinfo: control element information
2727 *
2728 * Callback to provide information, within a range, about a single
2729 * mixer control.
2730 *
2731 * returns 0 for success.
2732 */
2733int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
2734 struct snd_ctl_elem_info *uinfo)
2735{
2736 struct soc_mixer_control *mc =
2737 (struct soc_mixer_control *)kcontrol->private_value;
2738 int platform_max;
2739 int min = mc->min;
2740
2741 if (!mc->platform_max)
2742 mc->platform_max = mc->max;
2743 platform_max = mc->platform_max;
2744
2745 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2746 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2747 uinfo->value.integer.min = 0;
2748 uinfo->value.integer.max = platform_max - min;
2749
2750 return 0;
2751}
2752EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
2753
2754/**
2755 * snd_soc_put_volsw_range - single mixer put value callback with range.
2756 * @kcontrol: mixer control
2757 * @ucontrol: control element information
2758 *
2759 * Callback to set the value, within a range, for a single mixer control.
2760 *
2761 * Returns 0 for success.
2762 */
2763int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
2764 struct snd_ctl_elem_value *ucontrol)
2765{
2766 struct soc_mixer_control *mc =
2767 (struct soc_mixer_control *)kcontrol->private_value;
2768 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2769 unsigned int reg = mc->reg;
2770 unsigned int rreg = mc->rreg;
2771 unsigned int shift = mc->shift;
2772 int min = mc->min;
2773 int max = mc->max;
2774 unsigned int mask = (1 << fls(max)) - 1;
2775 unsigned int invert = mc->invert;
2776 unsigned int val, val_mask;
2777 int ret;
2778
2779 if (invert)
2780 val = (max - ucontrol->value.integer.value[0]) & mask;
2781 else
2782 val = ((ucontrol->value.integer.value[0] + min) & mask);
2783 val_mask = mask << shift;
2784 val = val << shift;
2785
2786 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
2787 if (ret < 0)
2788 return ret;
2789
2790 if (snd_soc_volsw_is_stereo(mc)) {
2791 if (invert)
2792 val = (max - ucontrol->value.integer.value[1]) & mask;
2793 else
2794 val = ((ucontrol->value.integer.value[1] + min) & mask);
2795 val_mask = mask << shift;
2796 val = val << shift;
2797
2798 ret = snd_soc_component_update_bits(component, rreg, val_mask,
2799 val);
2800 }
2801
2802 return ret;
2803}
2804EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
2805
2806/**
2807 * snd_soc_get_volsw_range - single mixer get callback with range
2808 * @kcontrol: mixer control
2809 * @ucontrol: control element information
2810 *
2811 * Callback to get the value, within a range, of a single mixer control.
2812 *
2813 * Returns 0 for success.
2814 */
2815int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
2816 struct snd_ctl_elem_value *ucontrol)
2817{
2818 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2819 struct soc_mixer_control *mc =
2820 (struct soc_mixer_control *)kcontrol->private_value;
2821 unsigned int reg = mc->reg;
2822 unsigned int rreg = mc->rreg;
2823 unsigned int shift = mc->shift;
2824 int min = mc->min;
2825 int max = mc->max;
2826 unsigned int mask = (1 << fls(max)) - 1;
2827 unsigned int invert = mc->invert;
2828 unsigned int val;
2829 int ret;
2830
2831 ret = snd_soc_component_read(component, reg, &val);
2832 if (ret)
2833 return ret;
2834
2835 ucontrol->value.integer.value[0] = (val >> shift) & mask;
2836 if (invert)
2837 ucontrol->value.integer.value[0] =
2838 max - ucontrol->value.integer.value[0];
2839 else
2840 ucontrol->value.integer.value[0] =
2841 ucontrol->value.integer.value[0] - min;
2842
2843 if (snd_soc_volsw_is_stereo(mc)) {
2844 ret = snd_soc_component_read(component, rreg, &val);
2845 if (ret)
2846 return ret;
2847
2848 ucontrol->value.integer.value[1] = (val >> shift) & mask;
2849 if (invert)
2850 ucontrol->value.integer.value[1] =
2851 max - ucontrol->value.integer.value[1];
2852 else
2853 ucontrol->value.integer.value[1] =
2854 ucontrol->value.integer.value[1] - min;
2855 }
2856
2857 return 0;
2858}
2859EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
2860
2861/**
2862 * snd_soc_limit_volume - Set new limit to an existing volume control.
2863 *
2864 * @codec: where to look for the control
2865 * @name: Name of the control
2866 * @max: new maximum limit
2867 *
2868 * Return 0 for success, else error.
2869 */
2870int snd_soc_limit_volume(struct snd_soc_codec *codec,
2871 const char *name, int max)
2872{
2873 struct snd_card *card = codec->component.card->snd_card;
2874 struct snd_kcontrol *kctl;
2875 struct soc_mixer_control *mc;
2876 int found = 0;
2877 int ret = -EINVAL;
2878
2879 /* Sanity check for name and max */
2880 if (unlikely(!name || max <= 0))
2881 return -EINVAL;
2882
2883 list_for_each_entry(kctl, &card->controls, list) {
2884 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2885 found = 1;
2886 break;
2887 }
2888 }
2889 if (found) {
2890 mc = (struct soc_mixer_control *)kctl->private_value;
2891 if (max <= mc->max) {
2892 mc->platform_max = max;
2893 ret = 0;
2894 }
2895 }
2896 return ret;
2897}
2898EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2899
2900int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
2901 struct snd_ctl_elem_info *uinfo)
2902{
2903 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2904 struct soc_bytes *params = (void *)kcontrol->private_value;
2905
2906 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
2907 uinfo->count = params->num_regs * component->val_bytes;
2908
2909 return 0;
2910}
2911EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
2912
2913int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
2914 struct snd_ctl_elem_value *ucontrol)
2915{
2916 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2917 struct soc_bytes *params = (void *)kcontrol->private_value;
2918 int ret;
2919
2920 if (component->regmap)
2921 ret = regmap_raw_read(component->regmap, params->base,
2922 ucontrol->value.bytes.data,
2923 params->num_regs * component->val_bytes);
2924 else
2925 ret = -EINVAL;
2926
2927 /* Hide any masked bytes to ensure consistent data reporting */
2928 if (ret == 0 && params->mask) {
2929 switch (component->val_bytes) {
2930 case 1:
2931 ucontrol->value.bytes.data[0] &= ~params->mask;
2932 break;
2933 case 2:
2934 ((u16 *)(&ucontrol->value.bytes.data))[0]
2935 &= cpu_to_be16(~params->mask);
2936 break;
2937 case 4:
2938 ((u32 *)(&ucontrol->value.bytes.data))[0]
2939 &= cpu_to_be32(~params->mask);
2940 break;
2941 default:
2942 return -EINVAL;
2943 }
2944 }
2945
2946 return ret;
2947}
2948EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
2949
2950int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
2951 struct snd_ctl_elem_value *ucontrol)
2952{
2953 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2954 struct soc_bytes *params = (void *)kcontrol->private_value;
2955 int ret, len;
2956 unsigned int val, mask;
2957 void *data;
2958
2959 if (!component->regmap || !params->num_regs)
2960 return -EINVAL;
2961
2962 len = params->num_regs * component->val_bytes;
2963
2964 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
2965 if (!data)
2966 return -ENOMEM;
2967
2968 /*
2969 * If we've got a mask then we need to preserve the register
2970 * bits. We shouldn't modify the incoming data so take a
2971 * copy.
2972 */
2973 if (params->mask) {
2974 ret = regmap_read(component->regmap, params->base, &val);
2975 if (ret != 0)
2976 goto out;
2977
2978 val &= params->mask;
2979
2980 switch (component->val_bytes) {
2981 case 1:
2982 ((u8 *)data)[0] &= ~params->mask;
2983 ((u8 *)data)[0] |= val;
2984 break;
2985 case 2:
2986 mask = ~params->mask;
2987 ret = regmap_parse_val(component->regmap,
2988 &mask, &mask);
2989 if (ret != 0)
2990 goto out;
2991
2992 ((u16 *)data)[0] &= mask;
2993
2994 ret = regmap_parse_val(component->regmap,
2995 &val, &val);
2996 if (ret != 0)
2997 goto out;
2998
2999 ((u16 *)data)[0] |= val;
3000 break;
3001 case 4:
3002 mask = ~params->mask;
3003 ret = regmap_parse_val(component->regmap,
3004 &mask, &mask);
3005 if (ret != 0)
3006 goto out;
3007
3008 ((u32 *)data)[0] &= mask;
3009
3010 ret = regmap_parse_val(component->regmap,
3011 &val, &val);
3012 if (ret != 0)
3013 goto out;
3014
3015 ((u32 *)data)[0] |= val;
3016 break;
3017 default:
3018 ret = -EINVAL;
3019 goto out;
3020 }
3021 }
3022
3023 ret = regmap_raw_write(component->regmap, params->base,
3024 data, len);
3025
3026out:
3027 kfree(data);
3028
3029 return ret;
3030}
3031EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
3032
3033int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
3034 struct snd_ctl_elem_info *ucontrol)
3035{
3036 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3037
3038 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3039 ucontrol->count = params->max;
3040
3041 return 0;
3042}
3043EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
3044
3045int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
3046 unsigned int size, unsigned int __user *tlv)
3047{
3048 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3049 unsigned int count = size < params->max ? size : params->max;
3050 int ret = -ENXIO;
3051
3052 switch (op_flag) {
3053 case SNDRV_CTL_TLV_OP_READ:
3054 if (params->get)
3055 ret = params->get(tlv, count);
3056 break;
3057 case SNDRV_CTL_TLV_OP_WRITE:
3058 if (params->put)
3059 ret = params->put(tlv, count);
3060 break;
3061 }
3062 return ret;
3063}
3064EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
3065
3066/**
3067 * snd_soc_info_xr_sx - signed multi register info callback
3068 * @kcontrol: mreg control
3069 * @uinfo: control element information
3070 *
3071 * Callback to provide information of a control that can
3072 * span multiple codec registers which together
3073 * forms a single signed value in a MSB/LSB manner.
3074 *
3075 * Returns 0 for success.
3076 */
3077int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
3078 struct snd_ctl_elem_info *uinfo)
3079{
3080 struct soc_mreg_control *mc =
3081 (struct soc_mreg_control *)kcontrol->private_value;
3082 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3083 uinfo->count = 1;
3084 uinfo->value.integer.min = mc->min;
3085 uinfo->value.integer.max = mc->max;
3086
3087 return 0;
3088}
3089EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
3090
3091/**
3092 * snd_soc_get_xr_sx - signed multi register get callback
3093 * @kcontrol: mreg control
3094 * @ucontrol: control element information
3095 *
3096 * Callback to get the value of a control that can span
3097 * multiple codec registers which together forms a single
3098 * signed value in a MSB/LSB manner. The control supports
3099 * specifying total no of bits used to allow for bitfields
3100 * across the multiple codec registers.
3101 *
3102 * Returns 0 for success.
3103 */
3104int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
3105 struct snd_ctl_elem_value *ucontrol)
3106{
3107 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3108 struct soc_mreg_control *mc =
3109 (struct soc_mreg_control *)kcontrol->private_value;
3110 unsigned int regbase = mc->regbase;
3111 unsigned int regcount = mc->regcount;
3112 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3113 unsigned int regwmask = (1<<regwshift)-1;
3114 unsigned int invert = mc->invert;
3115 unsigned long mask = (1UL<<mc->nbits)-1;
3116 long min = mc->min;
3117 long max = mc->max;
3118 long val = 0;
3119 unsigned int regval;
3120 unsigned int i;
3121 int ret;
3122
3123 for (i = 0; i < regcount; i++) {
3124 ret = snd_soc_component_read(component, regbase+i, &regval);
3125 if (ret)
3126 return ret;
3127 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
3128 }
3129 val &= mask;
3130 if (min < 0 && val > max)
3131 val |= ~mask;
3132 if (invert)
3133 val = max - val;
3134 ucontrol->value.integer.value[0] = val;
3135
3136 return 0;
3137}
3138EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
3139
3140/**
3141 * snd_soc_put_xr_sx - signed multi register get callback
3142 * @kcontrol: mreg control
3143 * @ucontrol: control element information
3144 *
3145 * Callback to set the value of a control that can span
3146 * multiple codec registers which together forms a single
3147 * signed value in a MSB/LSB manner. The control supports
3148 * specifying total no of bits used to allow for bitfields
3149 * across the multiple codec registers.
3150 *
3151 * Returns 0 for success.
3152 */
3153int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
3154 struct snd_ctl_elem_value *ucontrol)
3155{
3156 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3157 struct soc_mreg_control *mc =
3158 (struct soc_mreg_control *)kcontrol->private_value;
3159 unsigned int regbase = mc->regbase;
3160 unsigned int regcount = mc->regcount;
3161 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3162 unsigned int regwmask = (1<<regwshift)-1;
3163 unsigned int invert = mc->invert;
3164 unsigned long mask = (1UL<<mc->nbits)-1;
3165 long max = mc->max;
3166 long val = ucontrol->value.integer.value[0];
3167 unsigned int i, regval, regmask;
3168 int err;
3169
3170 if (invert)
3171 val = max - val;
3172 val &= mask;
3173 for (i = 0; i < regcount; i++) {
3174 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
3175 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
3176 err = snd_soc_component_update_bits(component, regbase+i,
3177 regmask, regval);
3178 if (err < 0)
3179 return err;
3180 }
3181
3182 return 0;
3183}
3184EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
3185
3186/**
3187 * snd_soc_get_strobe - strobe get callback
3188 * @kcontrol: mixer control
3189 * @ucontrol: control element information
3190 *
3191 * Callback get the value of a strobe mixer control.
3192 *
3193 * Returns 0 for success.
3194 */
3195int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
3196 struct snd_ctl_elem_value *ucontrol)
3197{
3198 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3199 struct soc_mixer_control *mc =
3200 (struct soc_mixer_control *)kcontrol->private_value;
3201 unsigned int reg = mc->reg;
3202 unsigned int shift = mc->shift;
3203 unsigned int mask = 1 << shift;
3204 unsigned int invert = mc->invert != 0;
3205 unsigned int val;
3206 int ret;
3207
3208 ret = snd_soc_component_read(component, reg, &val);
3209 if (ret)
3210 return ret;
3211
3212 val &= mask;
3213
3214 if (shift != 0 && val != 0)
3215 val = val >> shift;
3216 ucontrol->value.enumerated.item[0] = val ^ invert;
3217
3218 return 0;
3219}
3220EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
3221
3222/**
3223 * snd_soc_put_strobe - strobe put callback
3224 * @kcontrol: mixer control
3225 * @ucontrol: control element information
3226 *
3227 * Callback strobe a register bit to high then low (or the inverse)
3228 * in one pass of a single mixer enum control.
3229 *
3230 * Returns 1 for success.
3231 */
3232int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
3233 struct snd_ctl_elem_value *ucontrol)
3234{
3235 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3236 struct soc_mixer_control *mc =
3237 (struct soc_mixer_control *)kcontrol->private_value;
3238 unsigned int reg = mc->reg;
3239 unsigned int shift = mc->shift;
3240 unsigned int mask = 1 << shift;
3241 unsigned int invert = mc->invert != 0;
3242 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
3243 unsigned int val1 = (strobe ^ invert) ? mask : 0;
3244 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
3245 int err;
3246
3247 err = snd_soc_component_update_bits(component, reg, mask, val1);
3248 if (err < 0)
3249 return err;
3250
3251 return snd_soc_component_update_bits(component, reg, mask, val2);
3252}
3253EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
3254
3255/**
3256 * snd_soc_dai_set_sysclk - configure DAI system or master clock. 2337 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3257 * @dai: DAI 2338 * @dai: DAI
3258 * @clk_id: DAI specific clock ID 2339 * @clk_id: DAI specific clock ID