aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
authorMel Gorman <mgorman@suse.de>2013-07-03 18:01:57 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2013-07-03 19:07:28 -0400
commite2be15f6c3eecedfbe1550cca8d72c5057abbbd2 (patch)
tree12ff45ac67b69ddfbb66fe28056f8a80c25572e5 /mm
parent7c954f6de6b630de30f265a079aad359f159ebe9 (diff)
mm: vmscan: stall page reclaim and writeback pages based on dirty/writepage pages encountered
Further testing of the "Reduce system disruption due to kswapd" discovered a few problems. First and foremost, it's possible for pages under writeback to be freed which will lead to badness. Second, as pages were not being swapped the file LRU was being scanned faster and clean file pages were being reclaimed. In some cases this results in increased read IO to re-read data from disk. Third, more pages were being written from kswapd context which can adversly affect IO performance. Lastly, it was observed that PageDirty pages are not necessarily dirty on all filesystems (buffers can be clean while PageDirty is set and ->writepage generates no IO) and not all filesystems set PageWriteback when the page is being written (e.g. ext3). This disconnect confuses the reclaim stalling logic. This follow-up series is aimed at these problems. The tests were based on three kernels vanilla: kernel 3.9 as that is what the current mmotm uses as a baseline mmotm-20130522 is mmotm as of 22nd May with "Reduce system disruption due to kswapd" applied on top as per what should be in Andrew's tree right now lessdisrupt-v7r10 is this follow-up series on top of the mmotm kernel The first test used memcached+memcachetest while some background IO was in progress as implemented by the parallel IO tests implement in MM Tests. memcachetest benchmarks how many operations/second memcached can service. It starts with no background IO on a freshly created ext4 filesystem and then re-runs the test with larger amounts of IO in the background to roughly simulate a large copy in progress. The expectation is that the IO should have little or no impact on memcachetest which is running entirely in memory. parallelio 3.9.0 3.9.0 3.9.0 vanilla mm1-mmotm-20130522 mm1-lessdisrupt-v7r10 Ops memcachetest-0M 23117.00 ( 0.00%) 22780.00 ( -1.46%) 22763.00 ( -1.53%) Ops memcachetest-715M 23774.00 ( 0.00%) 23299.00 ( -2.00%) 22934.00 ( -3.53%) Ops memcachetest-2385M 4208.00 ( 0.00%) 24154.00 (474.00%) 23765.00 (464.76%) Ops memcachetest-4055M 4104.00 ( 0.00%) 25130.00 (512.33%) 24614.00 (499.76%) Ops io-duration-0M 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops io-duration-715M 12.00 ( 0.00%) 7.00 ( 41.67%) 6.00 ( 50.00%) Ops io-duration-2385M 116.00 ( 0.00%) 21.00 ( 81.90%) 21.00 ( 81.90%) Ops io-duration-4055M 160.00 ( 0.00%) 36.00 ( 77.50%) 35.00 ( 78.12%) Ops swaptotal-0M 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops swaptotal-715M 140138.00 ( 0.00%) 18.00 ( 99.99%) 18.00 ( 99.99%) Ops swaptotal-2385M 385682.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops swaptotal-4055M 418029.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops swapin-0M 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops swapin-715M 144.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops swapin-2385M 134227.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops swapin-4055M 125618.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops minorfaults-0M 1536429.00 ( 0.00%) 1531632.00 ( 0.31%) 1533541.00 ( 0.19%) Ops minorfaults-715M 1786996.00 ( 0.00%) 1612148.00 ( 9.78%) 1608832.00 ( 9.97%) Ops minorfaults-2385M 1757952.00 ( 0.00%) 1614874.00 ( 8.14%) 1613541.00 ( 8.21%) Ops minorfaults-4055M 1774460.00 ( 0.00%) 1633400.00 ( 7.95%) 1630881.00 ( 8.09%) Ops majorfaults-0M 1.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops majorfaults-715M 184.00 ( 0.00%) 167.00 ( 9.24%) 166.00 ( 9.78%) Ops majorfaults-2385M 24444.00 ( 0.00%) 155.00 ( 99.37%) 93.00 ( 99.62%) Ops majorfaults-4055M 21357.00 ( 0.00%) 147.00 ( 99.31%) 134.00 ( 99.37%) memcachetest is the transactions/second reported by memcachetest. In the vanilla kernel note that performance drops from around 23K/sec to just over 4K/second when there is 2385M of IO going on in the background. With current mmotm, there is no collapse in performance and with this follow-up series there is little change. swaptotal is the total amount of swap traffic. With mmotm and the follow-up series, the total amount of swapping is much reduced. 3.9.0 3.9.0 3.9.0 vanillamm1-mmotm-20130522mm1-lessdisrupt-v7r10 Minor Faults 11160152 10706748 10622316 Major Faults 46305 755 678 Swap Ins 260249 0 0 Swap Outs 683860 18 18 Direct pages scanned 0 678 2520 Kswapd pages scanned 6046108 8814900 1639279 Kswapd pages reclaimed 1081954 1172267 1094635 Direct pages reclaimed 0 566 2304 Kswapd efficiency 17% 13% 66% Kswapd velocity 5217.560 7618.953 1414.879 Direct efficiency 100% 83% 91% Direct velocity 0.000 0.586 2.175 Percentage direct scans 0% 0% 0% Zone normal velocity 5105.086 6824.681 671.158 Zone dma32 velocity 112.473 794.858 745.896 Zone dma velocity 0.000 0.000 0.000 Page writes by reclaim 1929612.000 6861768.000 32821.000 Page writes file 1245752 6861750 32803 Page writes anon 683860 18 18 Page reclaim immediate 7484 40 239 Sector Reads 1130320 93996 86900 Sector Writes 13508052 10823500 11804436 Page rescued immediate 0 0 0 Slabs scanned 33536 27136 18560 Direct inode steals 0 0 0 Kswapd inode steals 8641 1035 0 Kswapd skipped wait 0 0 0 THP fault alloc 8 37 33 THP collapse alloc 508 552 515 THP splits 24 1 1 THP fault fallback 0 0 0 THP collapse fail 0 0 0 There are a number of observations to make here 1. Swap outs are almost eliminated. Swap ins are 0 indicating that the pages swapped were really unused anonymous pages. Related to that, major faults are much reduced. 2. kswapd efficiency was impacted by the initial series but with these follow-up patches, the efficiency is now at 66% indicating that far fewer pages were skipped during scanning due to dirty or writeback pages. 3. kswapd velocity is reduced indicating that fewer pages are being scanned with the follow-up series as kswapd now stalls when the tail of the LRU queue is full of unqueued dirty pages. The stall gives flushers a chance to catch-up so kswapd can reclaim clean pages when it wakes 4. In light of Zlatko's recent reports about zone scanning imbalances, mmtests now reports scanning velocity on a per-zone basis. With mainline, you can see that the scanning activity is dominated by the Normal zone with over 45 times more scanning in Normal than the DMA32 zone. With the series currently in mmotm, the ratio is slightly better but it is still the case that the bulk of scanning is in the highest zone. With this follow-up series, the ratio of scanning between the Normal and DMA32 zone is roughly equal. 5. As Dave Chinner observed, the current patches in mmotm increased the number of pages written from kswapd context which is expected to adversly impact IO performance. With the follow-up patches, far fewer pages are written from kswapd context than the mainline kernel 6. With the series in mmotm, fewer inodes were reclaimed by kswapd. With the follow-up series, there is less slab shrinking activity and no inodes were reclaimed. 7. Note that "Sectors Read" is drastically reduced implying that the source data being used for the IO is not being aggressively discarded due to page reclaim skipping over dirty pages and reclaiming clean pages. Note that the reducion in reads could also be due to inode data not being re-read from disk after a slab shrink. 3.9.0 3.9.0 3.9.0 vanillamm1-mmotm-20130522mm1-lessdisrupt-v7r10 Mean sda-avgqz 166.99 32.09 33.44 Mean sda-await 853.64 192.76 185.43 Mean sda-r_await 6.31 9.24 5.97 Mean sda-w_await 2992.81 202.65 192.43 Max sda-avgqz 1409.91 718.75 698.98 Max sda-await 6665.74 3538.00 3124.23 Max sda-r_await 58.96 111.95 58.00 Max sda-w_await 28458.94 3977.29 3148.61 In light of the changes in writes from reclaim context, the number of reads and Dave Chinner's concerns about IO performance I took a closer look at the IO stats for the test disk. Few observations 1. The average queue size is reduced by the initial series and roughly the same with this follow up. 2. Average wait times for writes are reduced and as the IO is completing faster it at least implies that the gain is because flushers are writing the files efficiently instead of page reclaim getting in the way. 3. The reduction in maximum write latency is staggering. 28 seconds down to 3 seconds. Jan Kara asked how NFS is affected by all of this. Unstable pages can be taken into account as one of the patches in the series shows but it is still the case that filesystems with unusual handling of dirty or writeback could still be treated better. Tests like postmark, fsmark and largedd showed up nothing useful. On my test setup, pages are simply not being written back from reclaim context with or without the patches and there are no changes in performance. My test setup probably is just not strong enough network-wise to be really interesting. I ran a longer-lived memcached test with IO going to NFS instead of a local disk parallelio 3.9.0 3.9.0 3.9.0 vanilla mm1-mmotm-20130522 mm1-lessdisrupt-v7r10 Ops memcachetest-0M 23323.00 ( 0.00%) 23241.00 ( -0.35%) 23321.00 ( -0.01%) Ops memcachetest-715M 25526.00 ( 0.00%) 24763.00 ( -2.99%) 23242.00 ( -8.95%) Ops memcachetest-2385M 8814.00 ( 0.00%) 26924.00 (205.47%) 23521.00 (166.86%) Ops memcachetest-4055M 5835.00 ( 0.00%) 26827.00 (359.76%) 25560.00 (338.05%) Ops io-duration-0M 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops io-duration-715M 65.00 ( 0.00%) 71.00 ( -9.23%) 11.00 ( 83.08%) Ops io-duration-2385M 129.00 ( 0.00%) 94.00 ( 27.13%) 53.00 ( 58.91%) Ops io-duration-4055M 301.00 ( 0.00%) 100.00 ( 66.78%) 108.00 ( 64.12%) Ops swaptotal-0M 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops swaptotal-715M 14394.00 ( 0.00%) 949.00 ( 93.41%) 63.00 ( 99.56%) Ops swaptotal-2385M 401483.00 ( 0.00%) 24437.00 ( 93.91%) 30118.00 ( 92.50%) Ops swaptotal-4055M 554123.00 ( 0.00%) 35688.00 ( 93.56%) 63082.00 ( 88.62%) Ops swapin-0M 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Ops swapin-715M 4522.00 ( 0.00%) 560.00 ( 87.62%) 63.00 ( 98.61%) Ops swapin-2385M 169861.00 ( 0.00%) 5026.00 ( 97.04%) 13917.00 ( 91.81%) Ops swapin-4055M 192374.00 ( 0.00%) 10056.00 ( 94.77%) 25729.00 ( 86.63%) Ops minorfaults-0M 1445969.00 ( 0.00%) 1520878.00 ( -5.18%) 1454024.00 ( -0.56%) Ops minorfaults-715M 1557288.00 ( 0.00%) 1528482.00 ( 1.85%) 1535776.00 ( 1.38%) Ops minorfaults-2385M 1692896.00 ( 0.00%) 1570523.00 ( 7.23%) 1559622.00 ( 7.87%) Ops minorfaults-4055M 1654985.00 ( 0.00%) 1581456.00 ( 4.44%) 1596713.00 ( 3.52%) Ops majorfaults-0M 0.00 ( 0.00%) 1.00 (-99.00%) 0.00 ( 0.00%) Ops majorfaults-715M 763.00 ( 0.00%) 265.00 ( 65.27%) 75.00 ( 90.17%) Ops majorfaults-2385M 23861.00 ( 0.00%) 894.00 ( 96.25%) 2189.00 ( 90.83%) Ops majorfaults-4055M 27210.00 ( 0.00%) 1569.00 ( 94.23%) 4088.00 ( 84.98%) 1. Performance does not collapse due to IO which is good. IO is also completing faster. Note with mmotm, IO completes in a third of the time and faster again with this series applied 2. Swapping is reduced, although not eliminated. The figures for the follow-up look bad but it does vary a bit as the stalling is not perfect for nfs or filesystems like ext3 with unusual handling of dirty and writeback pages 3. There are swapins, particularly with larger amounts of IO indicating that active pages are being reclaimed. However, the number of much reduced. 3.9.0 3.9.0 3.9.0 vanillamm1-mmotm-20130522mm1-lessdisrupt-v7r10 Minor Faults 36339175 35025445 35219699 Major Faults 310964 27108 51887 Swap Ins 2176399 173069 333316 Swap Outs 3344050 357228 504824 Direct pages scanned 8972 77283 43242 Kswapd pages scanned 20899983 8939566 14772851 Kswapd pages reclaimed 6193156 5172605 5231026 Direct pages reclaimed 8450 73802 39514 Kswapd efficiency 29% 57% 35% Kswapd velocity 3929.743 1847.499 3058.840 Direct efficiency 94% 95% 91% Direct velocity 1.687 15.972 8.954 Percentage direct scans 0% 0% 0% Zone normal velocity 3721.907 939.103 2185.142 Zone dma32 velocity 209.522 924.368 882.651 Zone dma velocity 0.000 0.000 0.000 Page writes by reclaim 4082185.000 526319.000 537114.000 Page writes file 738135 169091 32290 Page writes anon 3344050 357228 504824 Page reclaim immediate 9524 170 5595843 Sector Reads 8909900 861192 1483680 Sector Writes 13428980 1488744 2076800 Page rescued immediate 0 0 0 Slabs scanned 38016 31744 28672 Direct inode steals 0 0 0 Kswapd inode steals 424 0 0 Kswapd skipped wait 0 0 0 THP fault alloc 14 15 119 THP collapse alloc 1767 1569 1618 THP splits 30 29 25 THP fault fallback 0 0 0 THP collapse fail 8 5 0 Compaction stalls 17 41 100 Compaction success 7 31 95 Compaction failures 10 10 5 Page migrate success 7083 22157 62217 Page migrate failure 0 0 0 Compaction pages isolated 14847 48758 135830 Compaction migrate scanned 18328 48398 138929 Compaction free scanned 2000255 355827 1720269 Compaction cost 7 24 68 I guess the main takeaway again is the much reduced page writes from reclaim context and reduced reads. 3.9.0 3.9.0 3.9.0 vanillamm1-mmotm-20130522mm1-lessdisrupt-v7r10 Mean sda-avgqz 23.58 0.35 0.44 Mean sda-await 133.47 15.72 15.46 Mean sda-r_await 4.72 4.69 3.95 Mean sda-w_await 507.69 28.40 33.68 Max sda-avgqz 680.60 12.25 23.14 Max sda-await 3958.89 221.83 286.22 Max sda-r_await 63.86 61.23 67.29 Max sda-w_await 11710.38 883.57 1767.28 And as before, write wait times are much reduced. This patch: The patch "mm: vmscan: Have kswapd writeback pages based on dirty pages encountered, not priority" decides whether to writeback pages from reclaim context based on the number of dirty pages encountered. This situation is flagged too easily and flushers are not given the chance to catch up resulting in more pages being written from reclaim context and potentially impacting IO performance. The check for PageWriteback is also misplaced as it happens within a PageDirty check which is nonsense as the dirty may have been cleared for IO. The accounting is updated very late and pages that are already under writeback, were reactivated, could not unmapped or could not be released are all missed. Similarly, a page is considered congested for reasons other than being congested and pages that cannot be written out in the correct context are skipped. Finally, it considers stalling and writing back filesystem pages due to encountering dirty anonymous pages at the tail of the LRU which is dumb. This patch causes kswapd to begin writing filesystem pages from reclaim context only if page reclaim found that all filesystem pages at the tail of the LRU were unqueued dirty pages. Before it starts writing filesystem pages, it will stall to give flushers a chance to catch up. The decision on whether wait_iff_congested is also now determined by dirty filesystem pages only. Congested pages are based on whether the underlying BDI is congested regardless of the context of the reclaiming process. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Zlatko Calusic <zcalusic@bitsync.net> Cc: dormando <dormando@rydia.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm')
-rw-r--r--mm/vmscan.c61
1 files changed, 48 insertions, 13 deletions
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 4a43c289b23a..999ef0b9399a 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -669,6 +669,25 @@ static enum page_references page_check_references(struct page *page,
669 return PAGEREF_RECLAIM; 669 return PAGEREF_RECLAIM;
670} 670}
671 671
672/* Check if a page is dirty or under writeback */
673static void page_check_dirty_writeback(struct page *page,
674 bool *dirty, bool *writeback)
675{
676 /*
677 * Anonymous pages are not handled by flushers and must be written
678 * from reclaim context. Do not stall reclaim based on them
679 */
680 if (!page_is_file_cache(page)) {
681 *dirty = false;
682 *writeback = false;
683 return;
684 }
685
686 /* By default assume that the page flags are accurate */
687 *dirty = PageDirty(page);
688 *writeback = PageWriteback(page);
689}
690
672/* 691/*
673 * shrink_page_list() returns the number of reclaimed pages 692 * shrink_page_list() returns the number of reclaimed pages
674 */ 693 */
@@ -697,6 +716,7 @@ static unsigned long shrink_page_list(struct list_head *page_list,
697 struct page *page; 716 struct page *page;
698 int may_enter_fs; 717 int may_enter_fs;
699 enum page_references references = PAGEREF_RECLAIM_CLEAN; 718 enum page_references references = PAGEREF_RECLAIM_CLEAN;
719 bool dirty, writeback;
700 720
701 cond_resched(); 721 cond_resched();
702 722
@@ -725,6 +745,24 @@ static unsigned long shrink_page_list(struct list_head *page_list,
725 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 745 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726 746
727 /* 747 /*
748 * The number of dirty pages determines if a zone is marked
749 * reclaim_congested which affects wait_iff_congested. kswapd
750 * will stall and start writing pages if the tail of the LRU
751 * is all dirty unqueued pages.
752 */
753 page_check_dirty_writeback(page, &dirty, &writeback);
754 if (dirty || writeback)
755 nr_dirty++;
756
757 if (dirty && !writeback)
758 nr_unqueued_dirty++;
759
760 /* Treat this page as congested if underlying BDI is */
761 mapping = page_mapping(page);
762 if (mapping && bdi_write_congested(mapping->backing_dev_info))
763 nr_congested++;
764
765 /*
728 * If a page at the tail of the LRU is under writeback, there 766 * If a page at the tail of the LRU is under writeback, there
729 * are three cases to consider. 767 * are three cases to consider.
730 * 768 *
@@ -819,9 +857,10 @@ static unsigned long shrink_page_list(struct list_head *page_list,
819 if (!add_to_swap(page, page_list)) 857 if (!add_to_swap(page, page_list))
820 goto activate_locked; 858 goto activate_locked;
821 may_enter_fs = 1; 859 may_enter_fs = 1;
822 }
823 860
824 mapping = page_mapping(page); 861 /* Adding to swap updated mapping */
862 mapping = page_mapping(page);
863 }
825 864
826 /* 865 /*
827 * The page is mapped into the page tables of one or more 866 * The page is mapped into the page tables of one or more
@@ -841,11 +880,6 @@ static unsigned long shrink_page_list(struct list_head *page_list,
841 } 880 }
842 881
843 if (PageDirty(page)) { 882 if (PageDirty(page)) {
844 nr_dirty++;
845
846 if (!PageWriteback(page))
847 nr_unqueued_dirty++;
848
849 /* 883 /*
850 * Only kswapd can writeback filesystem pages to 884 * Only kswapd can writeback filesystem pages to
851 * avoid risk of stack overflow but only writeback 885 * avoid risk of stack overflow but only writeback
@@ -876,7 +910,6 @@ static unsigned long shrink_page_list(struct list_head *page_list,
876 /* Page is dirty, try to write it out here */ 910 /* Page is dirty, try to write it out here */
877 switch (pageout(page, mapping, sc)) { 911 switch (pageout(page, mapping, sc)) {
878 case PAGE_KEEP: 912 case PAGE_KEEP:
879 nr_congested++;
880 goto keep_locked; 913 goto keep_locked;
881 case PAGE_ACTIVATE: 914 case PAGE_ACTIVATE:
882 goto activate_locked; 915 goto activate_locked;
@@ -1318,7 +1351,7 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1318 unsigned long nr_scanned; 1351 unsigned long nr_scanned;
1319 unsigned long nr_reclaimed = 0; 1352 unsigned long nr_reclaimed = 0;
1320 unsigned long nr_taken; 1353 unsigned long nr_taken;
1321 unsigned long nr_dirty = 0; 1354 unsigned long nr_unqueued_dirty = 0;
1322 unsigned long nr_writeback = 0; 1355 unsigned long nr_writeback = 0;
1323 isolate_mode_t isolate_mode = 0; 1356 isolate_mode_t isolate_mode = 0;
1324 int file = is_file_lru(lru); 1357 int file = is_file_lru(lru);
@@ -1361,7 +1394,7 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1361 return 0; 1394 return 0;
1362 1395
1363 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1396 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1364 &nr_dirty, &nr_writeback, false); 1397 &nr_unqueued_dirty, &nr_writeback, false);
1365 1398
1366 spin_lock_irq(&zone->lru_lock); 1399 spin_lock_irq(&zone->lru_lock);
1367 1400
@@ -1416,11 +1449,13 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1416 /* 1449 /*
1417 * Similarly, if many dirty pages are encountered that are not 1450 * Similarly, if many dirty pages are encountered that are not
1418 * currently being written then flag that kswapd should start 1451 * currently being written then flag that kswapd should start
1419 * writing back pages. 1452 * writing back pages and stall to give a chance for flushers
1453 * to catch up.
1420 */ 1454 */
1421 if (global_reclaim(sc) && nr_dirty && 1455 if (global_reclaim(sc) && nr_unqueued_dirty == nr_taken) {
1422 nr_dirty >= (nr_taken >> (DEF_PRIORITY - sc->priority))) 1456 congestion_wait(BLK_RW_ASYNC, HZ/10);
1423 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1457 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1458 }
1424 1459
1425 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1460 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1426 zone_idx(zone), 1461 zone_idx(zone),