diff options
author | Ingo Molnar <mingo@elte.hu> | 2009-03-28 18:24:12 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2009-03-28 18:24:12 -0400 |
commit | d00ab2fdd4dc4361c97777bc1fef7234329d4659 (patch) | |
tree | b8d8f98c1af633bbc1570b4270b39727737beebf /mm | |
parent | 88f502fedba82eff252b6420e8b8328e4ae25c67 (diff) | |
parent | 7c730ccdc1188b97f5c8cb690906242c7ed75c22 (diff) |
Merge branch 'linus' into core/futexes
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Makefile | 4 | ||||
-rw-r--r-- | mm/allocpercpu.c | 32 | ||||
-rw-r--r-- | mm/backing-dev.c | 26 | ||||
-rw-r--r-- | mm/bootmem.c | 35 | ||||
-rw-r--r-- | mm/filemap.c | 7 | ||||
-rw-r--r-- | mm/mmap.c | 4 | ||||
-rw-r--r-- | mm/page-writeback.c | 4 | ||||
-rw-r--r-- | mm/percpu.c | 1326 | ||||
-rw-r--r-- | mm/readahead.c | 25 | ||||
-rw-r--r-- | mm/shmem.c | 2 | ||||
-rw-r--r-- | mm/slob.c | 43 | ||||
-rw-r--r-- | mm/slub.c | 82 | ||||
-rw-r--r-- | mm/vmalloc.c | 97 | ||||
-rw-r--r-- | mm/vmscan.c | 4 |
14 files changed, 1589 insertions, 102 deletions
diff --git a/mm/Makefile b/mm/Makefile index 72255be57f89..818569b68f46 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -30,6 +30,10 @@ obj-$(CONFIG_FAILSLAB) += failslab.o | |||
30 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o | 30 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o |
31 | obj-$(CONFIG_FS_XIP) += filemap_xip.o | 31 | obj-$(CONFIG_FS_XIP) += filemap_xip.o |
32 | obj-$(CONFIG_MIGRATION) += migrate.o | 32 | obj-$(CONFIG_MIGRATION) += migrate.o |
33 | ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
34 | obj-$(CONFIG_SMP) += percpu.o | ||
35 | else | ||
33 | obj-$(CONFIG_SMP) += allocpercpu.o | 36 | obj-$(CONFIG_SMP) += allocpercpu.o |
37 | endif | ||
34 | obj-$(CONFIG_QUICKLIST) += quicklist.o | 38 | obj-$(CONFIG_QUICKLIST) += quicklist.o |
35 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o | 39 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o |
diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c index 4297bc41bfd2..1882923bc706 100644 --- a/mm/allocpercpu.c +++ b/mm/allocpercpu.c | |||
@@ -99,45 +99,51 @@ static int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp, | |||
99 | __percpu_populate_mask((__pdata), (size), (gfp), &(mask)) | 99 | __percpu_populate_mask((__pdata), (size), (gfp), &(mask)) |
100 | 100 | ||
101 | /** | 101 | /** |
102 | * percpu_alloc_mask - initial setup of per-cpu data | 102 | * alloc_percpu - initial setup of per-cpu data |
103 | * @size: size of per-cpu object | 103 | * @size: size of per-cpu object |
104 | * @gfp: may sleep or not etc. | 104 | * @align: alignment |
105 | * @mask: populate per-data for cpu's selected through mask bits | ||
106 | * | 105 | * |
107 | * Populating per-cpu data for all online cpu's would be a typical use case, | 106 | * Allocate dynamic percpu area. Percpu objects are populated with |
108 | * which is simplified by the percpu_alloc() wrapper. | 107 | * zeroed buffers. |
109 | * Per-cpu objects are populated with zeroed buffers. | ||
110 | */ | 108 | */ |
111 | void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask) | 109 | void *__alloc_percpu(size_t size, size_t align) |
112 | { | 110 | { |
113 | /* | 111 | /* |
114 | * We allocate whole cache lines to avoid false sharing | 112 | * We allocate whole cache lines to avoid false sharing |
115 | */ | 113 | */ |
116 | size_t sz = roundup(nr_cpu_ids * sizeof(void *), cache_line_size()); | 114 | size_t sz = roundup(nr_cpu_ids * sizeof(void *), cache_line_size()); |
117 | void *pdata = kzalloc(sz, gfp); | 115 | void *pdata = kzalloc(sz, GFP_KERNEL); |
118 | void *__pdata = __percpu_disguise(pdata); | 116 | void *__pdata = __percpu_disguise(pdata); |
119 | 117 | ||
118 | /* | ||
119 | * Can't easily make larger alignment work with kmalloc. WARN | ||
120 | * on it. Larger alignment should only be used for module | ||
121 | * percpu sections on SMP for which this path isn't used. | ||
122 | */ | ||
123 | WARN_ON_ONCE(align > SMP_CACHE_BYTES); | ||
124 | |||
120 | if (unlikely(!pdata)) | 125 | if (unlikely(!pdata)) |
121 | return NULL; | 126 | return NULL; |
122 | if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask))) | 127 | if (likely(!__percpu_populate_mask(__pdata, size, GFP_KERNEL, |
128 | &cpu_possible_map))) | ||
123 | return __pdata; | 129 | return __pdata; |
124 | kfree(pdata); | 130 | kfree(pdata); |
125 | return NULL; | 131 | return NULL; |
126 | } | 132 | } |
127 | EXPORT_SYMBOL_GPL(__percpu_alloc_mask); | 133 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
128 | 134 | ||
129 | /** | 135 | /** |
130 | * percpu_free - final cleanup of per-cpu data | 136 | * free_percpu - final cleanup of per-cpu data |
131 | * @__pdata: object to clean up | 137 | * @__pdata: object to clean up |
132 | * | 138 | * |
133 | * We simply clean up any per-cpu object left. No need for the client to | 139 | * We simply clean up any per-cpu object left. No need for the client to |
134 | * track and specify through a bis mask which per-cpu objects are to free. | 140 | * track and specify through a bis mask which per-cpu objects are to free. |
135 | */ | 141 | */ |
136 | void percpu_free(void *__pdata) | 142 | void free_percpu(void *__pdata) |
137 | { | 143 | { |
138 | if (unlikely(!__pdata)) | 144 | if (unlikely(!__pdata)) |
139 | return; | 145 | return; |
140 | __percpu_depopulate_mask(__pdata, &cpu_possible_map); | 146 | __percpu_depopulate_mask(__pdata, &cpu_possible_map); |
141 | kfree(__percpu_disguise(__pdata)); | 147 | kfree(__percpu_disguise(__pdata)); |
142 | } | 148 | } |
143 | EXPORT_SYMBOL_GPL(percpu_free); | 149 | EXPORT_SYMBOL_GPL(free_percpu); |
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 8e8587444132..be68c956a660 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
@@ -2,11 +2,24 @@ | |||
2 | #include <linux/wait.h> | 2 | #include <linux/wait.h> |
3 | #include <linux/backing-dev.h> | 3 | #include <linux/backing-dev.h> |
4 | #include <linux/fs.h> | 4 | #include <linux/fs.h> |
5 | #include <linux/pagemap.h> | ||
5 | #include <linux/sched.h> | 6 | #include <linux/sched.h> |
6 | #include <linux/module.h> | 7 | #include <linux/module.h> |
7 | #include <linux/writeback.h> | 8 | #include <linux/writeback.h> |
8 | #include <linux/device.h> | 9 | #include <linux/device.h> |
9 | 10 | ||
11 | void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) | ||
12 | { | ||
13 | } | ||
14 | EXPORT_SYMBOL(default_unplug_io_fn); | ||
15 | |||
16 | struct backing_dev_info default_backing_dev_info = { | ||
17 | .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE, | ||
18 | .state = 0, | ||
19 | .capabilities = BDI_CAP_MAP_COPY, | ||
20 | .unplug_io_fn = default_unplug_io_fn, | ||
21 | }; | ||
22 | EXPORT_SYMBOL_GPL(default_backing_dev_info); | ||
10 | 23 | ||
11 | static struct class *bdi_class; | 24 | static struct class *bdi_class; |
12 | 25 | ||
@@ -166,9 +179,20 @@ static __init int bdi_class_init(void) | |||
166 | bdi_debug_init(); | 179 | bdi_debug_init(); |
167 | return 0; | 180 | return 0; |
168 | } | 181 | } |
169 | |||
170 | postcore_initcall(bdi_class_init); | 182 | postcore_initcall(bdi_class_init); |
171 | 183 | ||
184 | static int __init default_bdi_init(void) | ||
185 | { | ||
186 | int err; | ||
187 | |||
188 | err = bdi_init(&default_backing_dev_info); | ||
189 | if (!err) | ||
190 | bdi_register(&default_backing_dev_info, NULL, "default"); | ||
191 | |||
192 | return err; | ||
193 | } | ||
194 | subsys_initcall(default_bdi_init); | ||
195 | |||
172 | int bdi_register(struct backing_dev_info *bdi, struct device *parent, | 196 | int bdi_register(struct backing_dev_info *bdi, struct device *parent, |
173 | const char *fmt, ...) | 197 | const char *fmt, ...) |
174 | { | 198 | { |
diff --git a/mm/bootmem.c b/mm/bootmem.c index 51a0ccf61e0e..daf92713f7de 100644 --- a/mm/bootmem.c +++ b/mm/bootmem.c | |||
@@ -382,7 +382,6 @@ int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | |||
382 | return mark_bootmem_node(pgdat->bdata, start, end, 1, flags); | 382 | return mark_bootmem_node(pgdat->bdata, start, end, 1, flags); |
383 | } | 383 | } |
384 | 384 | ||
385 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE | ||
386 | /** | 385 | /** |
387 | * reserve_bootmem - mark a page range as usable | 386 | * reserve_bootmem - mark a page range as usable |
388 | * @addr: starting address of the range | 387 | * @addr: starting address of the range |
@@ -403,7 +402,6 @@ int __init reserve_bootmem(unsigned long addr, unsigned long size, | |||
403 | 402 | ||
404 | return mark_bootmem(start, end, 1, flags); | 403 | return mark_bootmem(start, end, 1, flags); |
405 | } | 404 | } |
406 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | ||
407 | 405 | ||
408 | static unsigned long align_idx(struct bootmem_data *bdata, unsigned long idx, | 406 | static unsigned long align_idx(struct bootmem_data *bdata, unsigned long idx, |
409 | unsigned long step) | 407 | unsigned long step) |
@@ -429,8 +427,8 @@ static unsigned long align_off(struct bootmem_data *bdata, unsigned long off, | |||
429 | } | 427 | } |
430 | 428 | ||
431 | static void * __init alloc_bootmem_core(struct bootmem_data *bdata, | 429 | static void * __init alloc_bootmem_core(struct bootmem_data *bdata, |
432 | unsigned long size, unsigned long align, | 430 | unsigned long size, unsigned long align, |
433 | unsigned long goal, unsigned long limit) | 431 | unsigned long goal, unsigned long limit) |
434 | { | 432 | { |
435 | unsigned long fallback = 0; | 433 | unsigned long fallback = 0; |
436 | unsigned long min, max, start, sidx, midx, step; | 434 | unsigned long min, max, start, sidx, midx, step; |
@@ -530,17 +528,34 @@ find_block: | |||
530 | return NULL; | 528 | return NULL; |
531 | } | 529 | } |
532 | 530 | ||
531 | static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata, | ||
532 | unsigned long size, unsigned long align, | ||
533 | unsigned long goal, unsigned long limit) | ||
534 | { | ||
535 | #ifdef CONFIG_HAVE_ARCH_BOOTMEM | ||
536 | bootmem_data_t *p_bdata; | ||
537 | |||
538 | p_bdata = bootmem_arch_preferred_node(bdata, size, align, goal, limit); | ||
539 | if (p_bdata) | ||
540 | return alloc_bootmem_core(p_bdata, size, align, goal, limit); | ||
541 | #endif | ||
542 | return NULL; | ||
543 | } | ||
544 | |||
533 | static void * __init ___alloc_bootmem_nopanic(unsigned long size, | 545 | static void * __init ___alloc_bootmem_nopanic(unsigned long size, |
534 | unsigned long align, | 546 | unsigned long align, |
535 | unsigned long goal, | 547 | unsigned long goal, |
536 | unsigned long limit) | 548 | unsigned long limit) |
537 | { | 549 | { |
538 | bootmem_data_t *bdata; | 550 | bootmem_data_t *bdata; |
551 | void *region; | ||
539 | 552 | ||
540 | restart: | 553 | restart: |
541 | list_for_each_entry(bdata, &bdata_list, list) { | 554 | region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit); |
542 | void *region; | 555 | if (region) |
556 | return region; | ||
543 | 557 | ||
558 | list_for_each_entry(bdata, &bdata_list, list) { | ||
544 | if (goal && bdata->node_low_pfn <= PFN_DOWN(goal)) | 559 | if (goal && bdata->node_low_pfn <= PFN_DOWN(goal)) |
545 | continue; | 560 | continue; |
546 | if (limit && bdata->node_min_pfn >= PFN_DOWN(limit)) | 561 | if (limit && bdata->node_min_pfn >= PFN_DOWN(limit)) |
@@ -618,6 +633,10 @@ static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata, | |||
618 | { | 633 | { |
619 | void *ptr; | 634 | void *ptr; |
620 | 635 | ||
636 | ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit); | ||
637 | if (ptr) | ||
638 | return ptr; | ||
639 | |||
621 | ptr = alloc_bootmem_core(bdata, size, align, goal, limit); | 640 | ptr = alloc_bootmem_core(bdata, size, align, goal, limit); |
622 | if (ptr) | 641 | if (ptr) |
623 | return ptr; | 642 | return ptr; |
@@ -674,6 +693,10 @@ void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size, | |||
674 | { | 693 | { |
675 | void *ptr; | 694 | void *ptr; |
676 | 695 | ||
696 | ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0); | ||
697 | if (ptr) | ||
698 | return ptr; | ||
699 | |||
677 | ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); | 700 | ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); |
678 | if (ptr) | 701 | if (ptr) |
679 | return ptr; | 702 | return ptr; |
diff --git a/mm/filemap.c b/mm/filemap.c index 23acefe51808..126d3973b3d1 100644 --- a/mm/filemap.c +++ b/mm/filemap.c | |||
@@ -1823,7 +1823,7 @@ static size_t __iovec_copy_from_user_inatomic(char *vaddr, | |||
1823 | int copy = min(bytes, iov->iov_len - base); | 1823 | int copy = min(bytes, iov->iov_len - base); |
1824 | 1824 | ||
1825 | base = 0; | 1825 | base = 0; |
1826 | left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); | 1826 | left = __copy_from_user_inatomic(vaddr, buf, copy); |
1827 | copied += copy; | 1827 | copied += copy; |
1828 | bytes -= copy; | 1828 | bytes -= copy; |
1829 | vaddr += copy; | 1829 | vaddr += copy; |
@@ -1851,8 +1851,7 @@ size_t iov_iter_copy_from_user_atomic(struct page *page, | |||
1851 | if (likely(i->nr_segs == 1)) { | 1851 | if (likely(i->nr_segs == 1)) { |
1852 | int left; | 1852 | int left; |
1853 | char __user *buf = i->iov->iov_base + i->iov_offset; | 1853 | char __user *buf = i->iov->iov_base + i->iov_offset; |
1854 | left = __copy_from_user_inatomic_nocache(kaddr + offset, | 1854 | left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); |
1855 | buf, bytes); | ||
1856 | copied = bytes - left; | 1855 | copied = bytes - left; |
1857 | } else { | 1856 | } else { |
1858 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | 1857 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
@@ -1880,7 +1879,7 @@ size_t iov_iter_copy_from_user(struct page *page, | |||
1880 | if (likely(i->nr_segs == 1)) { | 1879 | if (likely(i->nr_segs == 1)) { |
1881 | int left; | 1880 | int left; |
1882 | char __user *buf = i->iov->iov_base + i->iov_offset; | 1881 | char __user *buf = i->iov->iov_base + i->iov_offset; |
1883 | left = __copy_from_user_nocache(kaddr + offset, buf, bytes); | 1882 | left = __copy_from_user(kaddr + offset, buf, bytes); |
1884 | copied = bytes - left; | 1883 | copied = bytes - left; |
1885 | } else { | 1884 | } else { |
1886 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | 1885 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
@@ -20,6 +20,7 @@ | |||
20 | #include <linux/fs.h> | 20 | #include <linux/fs.h> |
21 | #include <linux/personality.h> | 21 | #include <linux/personality.h> |
22 | #include <linux/security.h> | 22 | #include <linux/security.h> |
23 | #include <linux/ima.h> | ||
23 | #include <linux/hugetlb.h> | 24 | #include <linux/hugetlb.h> |
24 | #include <linux/profile.h> | 25 | #include <linux/profile.h> |
25 | #include <linux/module.h> | 26 | #include <linux/module.h> |
@@ -1049,6 +1050,9 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, | |||
1049 | error = security_file_mmap(file, reqprot, prot, flags, addr, 0); | 1050 | error = security_file_mmap(file, reqprot, prot, flags, addr, 0); |
1050 | if (error) | 1051 | if (error) |
1051 | return error; | 1052 | return error; |
1053 | error = ima_file_mmap(file, prot); | ||
1054 | if (error) | ||
1055 | return error; | ||
1052 | 1056 | ||
1053 | return mmap_region(file, addr, len, flags, vm_flags, pgoff); | 1057 | return mmap_region(file, addr, len, flags, vm_flags, pgoff); |
1054 | } | 1058 | } |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 74dc57c74349..40ca7cdb653e 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -66,7 +66,7 @@ static inline long sync_writeback_pages(void) | |||
66 | /* | 66 | /* |
67 | * Start background writeback (via pdflush) at this percentage | 67 | * Start background writeback (via pdflush) at this percentage |
68 | */ | 68 | */ |
69 | int dirty_background_ratio = 5; | 69 | int dirty_background_ratio = 10; |
70 | 70 | ||
71 | /* | 71 | /* |
72 | * dirty_background_bytes starts at 0 (disabled) so that it is a function of | 72 | * dirty_background_bytes starts at 0 (disabled) so that it is a function of |
@@ -83,7 +83,7 @@ int vm_highmem_is_dirtyable; | |||
83 | /* | 83 | /* |
84 | * The generator of dirty data starts writeback at this percentage | 84 | * The generator of dirty data starts writeback at this percentage |
85 | */ | 85 | */ |
86 | int vm_dirty_ratio = 10; | 86 | int vm_dirty_ratio = 20; |
87 | 87 | ||
88 | /* | 88 | /* |
89 | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of | 89 | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of |
diff --git a/mm/percpu.c b/mm/percpu.c new file mode 100644 index 000000000000..1aa5d8fbca12 --- /dev/null +++ b/mm/percpu.c | |||
@@ -0,0 +1,1326 @@ | |||
1 | /* | ||
2 | * linux/mm/percpu.c - percpu memory allocator | ||
3 | * | ||
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | ||
5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | ||
6 | * | ||
7 | * This file is released under the GPLv2. | ||
8 | * | ||
9 | * This is percpu allocator which can handle both static and dynamic | ||
10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | ||
11 | * chunk is consisted of num_possible_cpus() units and the first chunk | ||
12 | * is used for static percpu variables in the kernel image (special | ||
13 | * boot time alloc/init handling necessary as these areas need to be | ||
14 | * brought up before allocation services are running). Unit grows as | ||
15 | * necessary and all units grow or shrink in unison. When a chunk is | ||
16 | * filled up, another chunk is allocated. ie. in vmalloc area | ||
17 | * | ||
18 | * c0 c1 c2 | ||
19 | * ------------------- ------------------- ------------ | ||
20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | ||
21 | * ------------------- ...... ------------------- .... ------------ | ||
22 | * | ||
23 | * Allocation is done in offset-size areas of single unit space. Ie, | ||
24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | ||
25 | * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring | ||
26 | * percpu base registers UNIT_SIZE apart. | ||
27 | * | ||
28 | * There are usually many small percpu allocations many of them as | ||
29 | * small as 4 bytes. The allocator organizes chunks into lists | ||
30 | * according to free size and tries to allocate from the fullest one. | ||
31 | * Each chunk keeps the maximum contiguous area size hint which is | ||
32 | * guaranteed to be eqaul to or larger than the maximum contiguous | ||
33 | * area in the chunk. This helps the allocator not to iterate the | ||
34 | * chunk maps unnecessarily. | ||
35 | * | ||
36 | * Allocation state in each chunk is kept using an array of integers | ||
37 | * on chunk->map. A positive value in the map represents a free | ||
38 | * region and negative allocated. Allocation inside a chunk is done | ||
39 | * by scanning this map sequentially and serving the first matching | ||
40 | * entry. This is mostly copied from the percpu_modalloc() allocator. | ||
41 | * Chunks are also linked into a rb tree to ease address to chunk | ||
42 | * mapping during free. | ||
43 | * | ||
44 | * To use this allocator, arch code should do the followings. | ||
45 | * | ||
46 | * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
47 | * | ||
48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | ||
49 | * regular address to percpu pointer and back if they need to be | ||
50 | * different from the default | ||
51 | * | ||
52 | * - use pcpu_setup_first_chunk() during percpu area initialization to | ||
53 | * setup the first chunk containing the kernel static percpu area | ||
54 | */ | ||
55 | |||
56 | #include <linux/bitmap.h> | ||
57 | #include <linux/bootmem.h> | ||
58 | #include <linux/list.h> | ||
59 | #include <linux/mm.h> | ||
60 | #include <linux/module.h> | ||
61 | #include <linux/mutex.h> | ||
62 | #include <linux/percpu.h> | ||
63 | #include <linux/pfn.h> | ||
64 | #include <linux/rbtree.h> | ||
65 | #include <linux/slab.h> | ||
66 | #include <linux/spinlock.h> | ||
67 | #include <linux/vmalloc.h> | ||
68 | #include <linux/workqueue.h> | ||
69 | |||
70 | #include <asm/cacheflush.h> | ||
71 | #include <asm/sections.h> | ||
72 | #include <asm/tlbflush.h> | ||
73 | |||
74 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ | ||
75 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | ||
76 | |||
77 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ | ||
78 | #ifndef __addr_to_pcpu_ptr | ||
79 | #define __addr_to_pcpu_ptr(addr) \ | ||
80 | (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \ | ||
81 | + (unsigned long)__per_cpu_start) | ||
82 | #endif | ||
83 | #ifndef __pcpu_ptr_to_addr | ||
84 | #define __pcpu_ptr_to_addr(ptr) \ | ||
85 | (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \ | ||
86 | - (unsigned long)__per_cpu_start) | ||
87 | #endif | ||
88 | |||
89 | struct pcpu_chunk { | ||
90 | struct list_head list; /* linked to pcpu_slot lists */ | ||
91 | struct rb_node rb_node; /* key is chunk->vm->addr */ | ||
92 | int free_size; /* free bytes in the chunk */ | ||
93 | int contig_hint; /* max contiguous size hint */ | ||
94 | struct vm_struct *vm; /* mapped vmalloc region */ | ||
95 | int map_used; /* # of map entries used */ | ||
96 | int map_alloc; /* # of map entries allocated */ | ||
97 | int *map; /* allocation map */ | ||
98 | bool immutable; /* no [de]population allowed */ | ||
99 | struct page **page; /* points to page array */ | ||
100 | struct page *page_ar[]; /* #cpus * UNIT_PAGES */ | ||
101 | }; | ||
102 | |||
103 | static int pcpu_unit_pages __read_mostly; | ||
104 | static int pcpu_unit_size __read_mostly; | ||
105 | static int pcpu_chunk_size __read_mostly; | ||
106 | static int pcpu_nr_slots __read_mostly; | ||
107 | static size_t pcpu_chunk_struct_size __read_mostly; | ||
108 | |||
109 | /* the address of the first chunk which starts with the kernel static area */ | ||
110 | void *pcpu_base_addr __read_mostly; | ||
111 | EXPORT_SYMBOL_GPL(pcpu_base_addr); | ||
112 | |||
113 | /* optional reserved chunk, only accessible for reserved allocations */ | ||
114 | static struct pcpu_chunk *pcpu_reserved_chunk; | ||
115 | /* offset limit of the reserved chunk */ | ||
116 | static int pcpu_reserved_chunk_limit; | ||
117 | |||
118 | /* | ||
119 | * Synchronization rules. | ||
120 | * | ||
121 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former | ||
122 | * protects allocation/reclaim paths, chunks and chunk->page arrays. | ||
123 | * The latter is a spinlock and protects the index data structures - | ||
124 | * chunk slots, rbtree, chunks and area maps in chunks. | ||
125 | * | ||
126 | * During allocation, pcpu_alloc_mutex is kept locked all the time and | ||
127 | * pcpu_lock is grabbed and released as necessary. All actual memory | ||
128 | * allocations are done using GFP_KERNEL with pcpu_lock released. | ||
129 | * | ||
130 | * Free path accesses and alters only the index data structures, so it | ||
131 | * can be safely called from atomic context. When memory needs to be | ||
132 | * returned to the system, free path schedules reclaim_work which | ||
133 | * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be | ||
134 | * reclaimed, release both locks and frees the chunks. Note that it's | ||
135 | * necessary to grab both locks to remove a chunk from circulation as | ||
136 | * allocation path might be referencing the chunk with only | ||
137 | * pcpu_alloc_mutex locked. | ||
138 | */ | ||
139 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ | ||
140 | static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ | ||
141 | |||
142 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | ||
143 | static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */ | ||
144 | |||
145 | /* reclaim work to release fully free chunks, scheduled from free path */ | ||
146 | static void pcpu_reclaim(struct work_struct *work); | ||
147 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | ||
148 | |||
149 | static int __pcpu_size_to_slot(int size) | ||
150 | { | ||
151 | int highbit = fls(size); /* size is in bytes */ | ||
152 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); | ||
153 | } | ||
154 | |||
155 | static int pcpu_size_to_slot(int size) | ||
156 | { | ||
157 | if (size == pcpu_unit_size) | ||
158 | return pcpu_nr_slots - 1; | ||
159 | return __pcpu_size_to_slot(size); | ||
160 | } | ||
161 | |||
162 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | ||
163 | { | ||
164 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | ||
165 | return 0; | ||
166 | |||
167 | return pcpu_size_to_slot(chunk->free_size); | ||
168 | } | ||
169 | |||
170 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | ||
171 | { | ||
172 | return cpu * pcpu_unit_pages + page_idx; | ||
173 | } | ||
174 | |||
175 | static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, | ||
176 | unsigned int cpu, int page_idx) | ||
177 | { | ||
178 | return &chunk->page[pcpu_page_idx(cpu, page_idx)]; | ||
179 | } | ||
180 | |||
181 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
182 | unsigned int cpu, int page_idx) | ||
183 | { | ||
184 | return (unsigned long)chunk->vm->addr + | ||
185 | (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); | ||
186 | } | ||
187 | |||
188 | static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, | ||
189 | int page_idx) | ||
190 | { | ||
191 | return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL; | ||
192 | } | ||
193 | |||
194 | /** | ||
195 | * pcpu_mem_alloc - allocate memory | ||
196 | * @size: bytes to allocate | ||
197 | * | ||
198 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, | ||
199 | * kzalloc() is used; otherwise, vmalloc() is used. The returned | ||
200 | * memory is always zeroed. | ||
201 | * | ||
202 | * CONTEXT: | ||
203 | * Does GFP_KERNEL allocation. | ||
204 | * | ||
205 | * RETURNS: | ||
206 | * Pointer to the allocated area on success, NULL on failure. | ||
207 | */ | ||
208 | static void *pcpu_mem_alloc(size_t size) | ||
209 | { | ||
210 | if (size <= PAGE_SIZE) | ||
211 | return kzalloc(size, GFP_KERNEL); | ||
212 | else { | ||
213 | void *ptr = vmalloc(size); | ||
214 | if (ptr) | ||
215 | memset(ptr, 0, size); | ||
216 | return ptr; | ||
217 | } | ||
218 | } | ||
219 | |||
220 | /** | ||
221 | * pcpu_mem_free - free memory | ||
222 | * @ptr: memory to free | ||
223 | * @size: size of the area | ||
224 | * | ||
225 | * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). | ||
226 | */ | ||
227 | static void pcpu_mem_free(void *ptr, size_t size) | ||
228 | { | ||
229 | if (size <= PAGE_SIZE) | ||
230 | kfree(ptr); | ||
231 | else | ||
232 | vfree(ptr); | ||
233 | } | ||
234 | |||
235 | /** | ||
236 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | ||
237 | * @chunk: chunk of interest | ||
238 | * @oslot: the previous slot it was on | ||
239 | * | ||
240 | * This function is called after an allocation or free changed @chunk. | ||
241 | * New slot according to the changed state is determined and @chunk is | ||
242 | * moved to the slot. Note that the reserved chunk is never put on | ||
243 | * chunk slots. | ||
244 | * | ||
245 | * CONTEXT: | ||
246 | * pcpu_lock. | ||
247 | */ | ||
248 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | ||
249 | { | ||
250 | int nslot = pcpu_chunk_slot(chunk); | ||
251 | |||
252 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { | ||
253 | if (oslot < nslot) | ||
254 | list_move(&chunk->list, &pcpu_slot[nslot]); | ||
255 | else | ||
256 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | ||
257 | } | ||
258 | } | ||
259 | |||
260 | static struct rb_node **pcpu_chunk_rb_search(void *addr, | ||
261 | struct rb_node **parentp) | ||
262 | { | ||
263 | struct rb_node **p = &pcpu_addr_root.rb_node; | ||
264 | struct rb_node *parent = NULL; | ||
265 | struct pcpu_chunk *chunk; | ||
266 | |||
267 | while (*p) { | ||
268 | parent = *p; | ||
269 | chunk = rb_entry(parent, struct pcpu_chunk, rb_node); | ||
270 | |||
271 | if (addr < chunk->vm->addr) | ||
272 | p = &(*p)->rb_left; | ||
273 | else if (addr > chunk->vm->addr) | ||
274 | p = &(*p)->rb_right; | ||
275 | else | ||
276 | break; | ||
277 | } | ||
278 | |||
279 | if (parentp) | ||
280 | *parentp = parent; | ||
281 | return p; | ||
282 | } | ||
283 | |||
284 | /** | ||
285 | * pcpu_chunk_addr_search - search for chunk containing specified address | ||
286 | * @addr: address to search for | ||
287 | * | ||
288 | * Look for chunk which might contain @addr. More specifically, it | ||
289 | * searchs for the chunk with the highest start address which isn't | ||
290 | * beyond @addr. | ||
291 | * | ||
292 | * CONTEXT: | ||
293 | * pcpu_lock. | ||
294 | * | ||
295 | * RETURNS: | ||
296 | * The address of the found chunk. | ||
297 | */ | ||
298 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | ||
299 | { | ||
300 | struct rb_node *n, *parent; | ||
301 | struct pcpu_chunk *chunk; | ||
302 | |||
303 | /* is it in the reserved chunk? */ | ||
304 | if (pcpu_reserved_chunk) { | ||
305 | void *start = pcpu_reserved_chunk->vm->addr; | ||
306 | |||
307 | if (addr >= start && addr < start + pcpu_reserved_chunk_limit) | ||
308 | return pcpu_reserved_chunk; | ||
309 | } | ||
310 | |||
311 | /* nah... search the regular ones */ | ||
312 | n = *pcpu_chunk_rb_search(addr, &parent); | ||
313 | if (!n) { | ||
314 | /* no exactly matching chunk, the parent is the closest */ | ||
315 | n = parent; | ||
316 | BUG_ON(!n); | ||
317 | } | ||
318 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
319 | |||
320 | if (addr < chunk->vm->addr) { | ||
321 | /* the parent was the next one, look for the previous one */ | ||
322 | n = rb_prev(n); | ||
323 | BUG_ON(!n); | ||
324 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
325 | } | ||
326 | |||
327 | return chunk; | ||
328 | } | ||
329 | |||
330 | /** | ||
331 | * pcpu_chunk_addr_insert - insert chunk into address rb tree | ||
332 | * @new: chunk to insert | ||
333 | * | ||
334 | * Insert @new into address rb tree. | ||
335 | * | ||
336 | * CONTEXT: | ||
337 | * pcpu_lock. | ||
338 | */ | ||
339 | static void pcpu_chunk_addr_insert(struct pcpu_chunk *new) | ||
340 | { | ||
341 | struct rb_node **p, *parent; | ||
342 | |||
343 | p = pcpu_chunk_rb_search(new->vm->addr, &parent); | ||
344 | BUG_ON(*p); | ||
345 | rb_link_node(&new->rb_node, parent, p); | ||
346 | rb_insert_color(&new->rb_node, &pcpu_addr_root); | ||
347 | } | ||
348 | |||
349 | /** | ||
350 | * pcpu_extend_area_map - extend area map for allocation | ||
351 | * @chunk: target chunk | ||
352 | * | ||
353 | * Extend area map of @chunk so that it can accomodate an allocation. | ||
354 | * A single allocation can split an area into three areas, so this | ||
355 | * function makes sure that @chunk->map has at least two extra slots. | ||
356 | * | ||
357 | * CONTEXT: | ||
358 | * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired | ||
359 | * if area map is extended. | ||
360 | * | ||
361 | * RETURNS: | ||
362 | * 0 if noop, 1 if successfully extended, -errno on failure. | ||
363 | */ | ||
364 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk) | ||
365 | { | ||
366 | int new_alloc; | ||
367 | int *new; | ||
368 | size_t size; | ||
369 | |||
370 | /* has enough? */ | ||
371 | if (chunk->map_alloc >= chunk->map_used + 2) | ||
372 | return 0; | ||
373 | |||
374 | spin_unlock_irq(&pcpu_lock); | ||
375 | |||
376 | new_alloc = PCPU_DFL_MAP_ALLOC; | ||
377 | while (new_alloc < chunk->map_used + 2) | ||
378 | new_alloc *= 2; | ||
379 | |||
380 | new = pcpu_mem_alloc(new_alloc * sizeof(new[0])); | ||
381 | if (!new) { | ||
382 | spin_lock_irq(&pcpu_lock); | ||
383 | return -ENOMEM; | ||
384 | } | ||
385 | |||
386 | /* | ||
387 | * Acquire pcpu_lock and switch to new area map. Only free | ||
388 | * could have happened inbetween, so map_used couldn't have | ||
389 | * grown. | ||
390 | */ | ||
391 | spin_lock_irq(&pcpu_lock); | ||
392 | BUG_ON(new_alloc < chunk->map_used + 2); | ||
393 | |||
394 | size = chunk->map_alloc * sizeof(chunk->map[0]); | ||
395 | memcpy(new, chunk->map, size); | ||
396 | |||
397 | /* | ||
398 | * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is | ||
399 | * one of the first chunks and still using static map. | ||
400 | */ | ||
401 | if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) | ||
402 | pcpu_mem_free(chunk->map, size); | ||
403 | |||
404 | chunk->map_alloc = new_alloc; | ||
405 | chunk->map = new; | ||
406 | return 0; | ||
407 | } | ||
408 | |||
409 | /** | ||
410 | * pcpu_split_block - split a map block | ||
411 | * @chunk: chunk of interest | ||
412 | * @i: index of map block to split | ||
413 | * @head: head size in bytes (can be 0) | ||
414 | * @tail: tail size in bytes (can be 0) | ||
415 | * | ||
416 | * Split the @i'th map block into two or three blocks. If @head is | ||
417 | * non-zero, @head bytes block is inserted before block @i moving it | ||
418 | * to @i+1 and reducing its size by @head bytes. | ||
419 | * | ||
420 | * If @tail is non-zero, the target block, which can be @i or @i+1 | ||
421 | * depending on @head, is reduced by @tail bytes and @tail byte block | ||
422 | * is inserted after the target block. | ||
423 | * | ||
424 | * @chunk->map must have enough free slots to accomodate the split. | ||
425 | * | ||
426 | * CONTEXT: | ||
427 | * pcpu_lock. | ||
428 | */ | ||
429 | static void pcpu_split_block(struct pcpu_chunk *chunk, int i, | ||
430 | int head, int tail) | ||
431 | { | ||
432 | int nr_extra = !!head + !!tail; | ||
433 | |||
434 | BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); | ||
435 | |||
436 | /* insert new subblocks */ | ||
437 | memmove(&chunk->map[i + nr_extra], &chunk->map[i], | ||
438 | sizeof(chunk->map[0]) * (chunk->map_used - i)); | ||
439 | chunk->map_used += nr_extra; | ||
440 | |||
441 | if (head) { | ||
442 | chunk->map[i + 1] = chunk->map[i] - head; | ||
443 | chunk->map[i++] = head; | ||
444 | } | ||
445 | if (tail) { | ||
446 | chunk->map[i++] -= tail; | ||
447 | chunk->map[i] = tail; | ||
448 | } | ||
449 | } | ||
450 | |||
451 | /** | ||
452 | * pcpu_alloc_area - allocate area from a pcpu_chunk | ||
453 | * @chunk: chunk of interest | ||
454 | * @size: wanted size in bytes | ||
455 | * @align: wanted align | ||
456 | * | ||
457 | * Try to allocate @size bytes area aligned at @align from @chunk. | ||
458 | * Note that this function only allocates the offset. It doesn't | ||
459 | * populate or map the area. | ||
460 | * | ||
461 | * @chunk->map must have at least two free slots. | ||
462 | * | ||
463 | * CONTEXT: | ||
464 | * pcpu_lock. | ||
465 | * | ||
466 | * RETURNS: | ||
467 | * Allocated offset in @chunk on success, -1 if no matching area is | ||
468 | * found. | ||
469 | */ | ||
470 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) | ||
471 | { | ||
472 | int oslot = pcpu_chunk_slot(chunk); | ||
473 | int max_contig = 0; | ||
474 | int i, off; | ||
475 | |||
476 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { | ||
477 | bool is_last = i + 1 == chunk->map_used; | ||
478 | int head, tail; | ||
479 | |||
480 | /* extra for alignment requirement */ | ||
481 | head = ALIGN(off, align) - off; | ||
482 | BUG_ON(i == 0 && head != 0); | ||
483 | |||
484 | if (chunk->map[i] < 0) | ||
485 | continue; | ||
486 | if (chunk->map[i] < head + size) { | ||
487 | max_contig = max(chunk->map[i], max_contig); | ||
488 | continue; | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * If head is small or the previous block is free, | ||
493 | * merge'em. Note that 'small' is defined as smaller | ||
494 | * than sizeof(int), which is very small but isn't too | ||
495 | * uncommon for percpu allocations. | ||
496 | */ | ||
497 | if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { | ||
498 | if (chunk->map[i - 1] > 0) | ||
499 | chunk->map[i - 1] += head; | ||
500 | else { | ||
501 | chunk->map[i - 1] -= head; | ||
502 | chunk->free_size -= head; | ||
503 | } | ||
504 | chunk->map[i] -= head; | ||
505 | off += head; | ||
506 | head = 0; | ||
507 | } | ||
508 | |||
509 | /* if tail is small, just keep it around */ | ||
510 | tail = chunk->map[i] - head - size; | ||
511 | if (tail < sizeof(int)) | ||
512 | tail = 0; | ||
513 | |||
514 | /* split if warranted */ | ||
515 | if (head || tail) { | ||
516 | pcpu_split_block(chunk, i, head, tail); | ||
517 | if (head) { | ||
518 | i++; | ||
519 | off += head; | ||
520 | max_contig = max(chunk->map[i - 1], max_contig); | ||
521 | } | ||
522 | if (tail) | ||
523 | max_contig = max(chunk->map[i + 1], max_contig); | ||
524 | } | ||
525 | |||
526 | /* update hint and mark allocated */ | ||
527 | if (is_last) | ||
528 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
529 | else | ||
530 | chunk->contig_hint = max(chunk->contig_hint, | ||
531 | max_contig); | ||
532 | |||
533 | chunk->free_size -= chunk->map[i]; | ||
534 | chunk->map[i] = -chunk->map[i]; | ||
535 | |||
536 | pcpu_chunk_relocate(chunk, oslot); | ||
537 | return off; | ||
538 | } | ||
539 | |||
540 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
541 | pcpu_chunk_relocate(chunk, oslot); | ||
542 | |||
543 | /* tell the upper layer that this chunk has no matching area */ | ||
544 | return -1; | ||
545 | } | ||
546 | |||
547 | /** | ||
548 | * pcpu_free_area - free area to a pcpu_chunk | ||
549 | * @chunk: chunk of interest | ||
550 | * @freeme: offset of area to free | ||
551 | * | ||
552 | * Free area starting from @freeme to @chunk. Note that this function | ||
553 | * only modifies the allocation map. It doesn't depopulate or unmap | ||
554 | * the area. | ||
555 | * | ||
556 | * CONTEXT: | ||
557 | * pcpu_lock. | ||
558 | */ | ||
559 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | ||
560 | { | ||
561 | int oslot = pcpu_chunk_slot(chunk); | ||
562 | int i, off; | ||
563 | |||
564 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) | ||
565 | if (off == freeme) | ||
566 | break; | ||
567 | BUG_ON(off != freeme); | ||
568 | BUG_ON(chunk->map[i] > 0); | ||
569 | |||
570 | chunk->map[i] = -chunk->map[i]; | ||
571 | chunk->free_size += chunk->map[i]; | ||
572 | |||
573 | /* merge with previous? */ | ||
574 | if (i > 0 && chunk->map[i - 1] >= 0) { | ||
575 | chunk->map[i - 1] += chunk->map[i]; | ||
576 | chunk->map_used--; | ||
577 | memmove(&chunk->map[i], &chunk->map[i + 1], | ||
578 | (chunk->map_used - i) * sizeof(chunk->map[0])); | ||
579 | i--; | ||
580 | } | ||
581 | /* merge with next? */ | ||
582 | if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { | ||
583 | chunk->map[i] += chunk->map[i + 1]; | ||
584 | chunk->map_used--; | ||
585 | memmove(&chunk->map[i + 1], &chunk->map[i + 2], | ||
586 | (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); | ||
587 | } | ||
588 | |||
589 | chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); | ||
590 | pcpu_chunk_relocate(chunk, oslot); | ||
591 | } | ||
592 | |||
593 | /** | ||
594 | * pcpu_unmap - unmap pages out of a pcpu_chunk | ||
595 | * @chunk: chunk of interest | ||
596 | * @page_start: page index of the first page to unmap | ||
597 | * @page_end: page index of the last page to unmap + 1 | ||
598 | * @flush: whether to flush cache and tlb or not | ||
599 | * | ||
600 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
601 | * If @flush is true, vcache is flushed before unmapping and tlb | ||
602 | * after. | ||
603 | */ | ||
604 | static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, | ||
605 | bool flush) | ||
606 | { | ||
607 | unsigned int last = num_possible_cpus() - 1; | ||
608 | unsigned int cpu; | ||
609 | |||
610 | /* unmap must not be done on immutable chunk */ | ||
611 | WARN_ON(chunk->immutable); | ||
612 | |||
613 | /* | ||
614 | * Each flushing trial can be very expensive, issue flush on | ||
615 | * the whole region at once rather than doing it for each cpu. | ||
616 | * This could be an overkill but is more scalable. | ||
617 | */ | ||
618 | if (flush) | ||
619 | flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
620 | pcpu_chunk_addr(chunk, last, page_end)); | ||
621 | |||
622 | for_each_possible_cpu(cpu) | ||
623 | unmap_kernel_range_noflush( | ||
624 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
625 | (page_end - page_start) << PAGE_SHIFT); | ||
626 | |||
627 | /* ditto as flush_cache_vunmap() */ | ||
628 | if (flush) | ||
629 | flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), | ||
630 | pcpu_chunk_addr(chunk, last, page_end)); | ||
631 | } | ||
632 | |||
633 | /** | ||
634 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
635 | * @chunk: chunk to depopulate | ||
636 | * @off: offset to the area to depopulate | ||
637 | * @size: size of the area to depopulate in bytes | ||
638 | * @flush: whether to flush cache and tlb or not | ||
639 | * | ||
640 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
641 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
642 | * and tlb after. | ||
643 | * | ||
644 | * CONTEXT: | ||
645 | * pcpu_alloc_mutex. | ||
646 | */ | ||
647 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, | ||
648 | bool flush) | ||
649 | { | ||
650 | int page_start = PFN_DOWN(off); | ||
651 | int page_end = PFN_UP(off + size); | ||
652 | int unmap_start = -1; | ||
653 | int uninitialized_var(unmap_end); | ||
654 | unsigned int cpu; | ||
655 | int i; | ||
656 | |||
657 | for (i = page_start; i < page_end; i++) { | ||
658 | for_each_possible_cpu(cpu) { | ||
659 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
660 | |||
661 | if (!*pagep) | ||
662 | continue; | ||
663 | |||
664 | __free_page(*pagep); | ||
665 | |||
666 | /* | ||
667 | * If it's partial depopulation, it might get | ||
668 | * populated or depopulated again. Mark the | ||
669 | * page gone. | ||
670 | */ | ||
671 | *pagep = NULL; | ||
672 | |||
673 | unmap_start = unmap_start < 0 ? i : unmap_start; | ||
674 | unmap_end = i + 1; | ||
675 | } | ||
676 | } | ||
677 | |||
678 | if (unmap_start >= 0) | ||
679 | pcpu_unmap(chunk, unmap_start, unmap_end, flush); | ||
680 | } | ||
681 | |||
682 | /** | ||
683 | * pcpu_map - map pages into a pcpu_chunk | ||
684 | * @chunk: chunk of interest | ||
685 | * @page_start: page index of the first page to map | ||
686 | * @page_end: page index of the last page to map + 1 | ||
687 | * | ||
688 | * For each cpu, map pages [@page_start,@page_end) into @chunk. | ||
689 | * vcache is flushed afterwards. | ||
690 | */ | ||
691 | static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | ||
692 | { | ||
693 | unsigned int last = num_possible_cpus() - 1; | ||
694 | unsigned int cpu; | ||
695 | int err; | ||
696 | |||
697 | /* map must not be done on immutable chunk */ | ||
698 | WARN_ON(chunk->immutable); | ||
699 | |||
700 | for_each_possible_cpu(cpu) { | ||
701 | err = map_kernel_range_noflush( | ||
702 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
703 | (page_end - page_start) << PAGE_SHIFT, | ||
704 | PAGE_KERNEL, | ||
705 | pcpu_chunk_pagep(chunk, cpu, page_start)); | ||
706 | if (err < 0) | ||
707 | return err; | ||
708 | } | ||
709 | |||
710 | /* flush at once, please read comments in pcpu_unmap() */ | ||
711 | flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
712 | pcpu_chunk_addr(chunk, last, page_end)); | ||
713 | return 0; | ||
714 | } | ||
715 | |||
716 | /** | ||
717 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
718 | * @chunk: chunk of interest | ||
719 | * @off: offset to the area to populate | ||
720 | * @size: size of the area to populate in bytes | ||
721 | * | ||
722 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
723 | * @chunk. The area is cleared on return. | ||
724 | * | ||
725 | * CONTEXT: | ||
726 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
727 | */ | ||
728 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
729 | { | ||
730 | const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
731 | int page_start = PFN_DOWN(off); | ||
732 | int page_end = PFN_UP(off + size); | ||
733 | int map_start = -1; | ||
734 | int uninitialized_var(map_end); | ||
735 | unsigned int cpu; | ||
736 | int i; | ||
737 | |||
738 | for (i = page_start; i < page_end; i++) { | ||
739 | if (pcpu_chunk_page_occupied(chunk, i)) { | ||
740 | if (map_start >= 0) { | ||
741 | if (pcpu_map(chunk, map_start, map_end)) | ||
742 | goto err; | ||
743 | map_start = -1; | ||
744 | } | ||
745 | continue; | ||
746 | } | ||
747 | |||
748 | map_start = map_start < 0 ? i : map_start; | ||
749 | map_end = i + 1; | ||
750 | |||
751 | for_each_possible_cpu(cpu) { | ||
752 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
753 | |||
754 | *pagep = alloc_pages_node(cpu_to_node(cpu), | ||
755 | alloc_mask, 0); | ||
756 | if (!*pagep) | ||
757 | goto err; | ||
758 | } | ||
759 | } | ||
760 | |||
761 | if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) | ||
762 | goto err; | ||
763 | |||
764 | for_each_possible_cpu(cpu) | ||
765 | memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, | ||
766 | size); | ||
767 | |||
768 | return 0; | ||
769 | err: | ||
770 | /* likely under heavy memory pressure, give memory back */ | ||
771 | pcpu_depopulate_chunk(chunk, off, size, true); | ||
772 | return -ENOMEM; | ||
773 | } | ||
774 | |||
775 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | ||
776 | { | ||
777 | if (!chunk) | ||
778 | return; | ||
779 | if (chunk->vm) | ||
780 | free_vm_area(chunk->vm); | ||
781 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
782 | kfree(chunk); | ||
783 | } | ||
784 | |||
785 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | ||
786 | { | ||
787 | struct pcpu_chunk *chunk; | ||
788 | |||
789 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | ||
790 | if (!chunk) | ||
791 | return NULL; | ||
792 | |||
793 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
794 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
795 | chunk->map[chunk->map_used++] = pcpu_unit_size; | ||
796 | chunk->page = chunk->page_ar; | ||
797 | |||
798 | chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL); | ||
799 | if (!chunk->vm) { | ||
800 | free_pcpu_chunk(chunk); | ||
801 | return NULL; | ||
802 | } | ||
803 | |||
804 | INIT_LIST_HEAD(&chunk->list); | ||
805 | chunk->free_size = pcpu_unit_size; | ||
806 | chunk->contig_hint = pcpu_unit_size; | ||
807 | |||
808 | return chunk; | ||
809 | } | ||
810 | |||
811 | /** | ||
812 | * pcpu_alloc - the percpu allocator | ||
813 | * @size: size of area to allocate in bytes | ||
814 | * @align: alignment of area (max PAGE_SIZE) | ||
815 | * @reserved: allocate from the reserved chunk if available | ||
816 | * | ||
817 | * Allocate percpu area of @size bytes aligned at @align. | ||
818 | * | ||
819 | * CONTEXT: | ||
820 | * Does GFP_KERNEL allocation. | ||
821 | * | ||
822 | * RETURNS: | ||
823 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
824 | */ | ||
825 | static void *pcpu_alloc(size_t size, size_t align, bool reserved) | ||
826 | { | ||
827 | struct pcpu_chunk *chunk; | ||
828 | int slot, off; | ||
829 | |||
830 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { | ||
831 | WARN(true, "illegal size (%zu) or align (%zu) for " | ||
832 | "percpu allocation\n", size, align); | ||
833 | return NULL; | ||
834 | } | ||
835 | |||
836 | mutex_lock(&pcpu_alloc_mutex); | ||
837 | spin_lock_irq(&pcpu_lock); | ||
838 | |||
839 | /* serve reserved allocations from the reserved chunk if available */ | ||
840 | if (reserved && pcpu_reserved_chunk) { | ||
841 | chunk = pcpu_reserved_chunk; | ||
842 | if (size > chunk->contig_hint || | ||
843 | pcpu_extend_area_map(chunk) < 0) | ||
844 | goto fail_unlock; | ||
845 | off = pcpu_alloc_area(chunk, size, align); | ||
846 | if (off >= 0) | ||
847 | goto area_found; | ||
848 | goto fail_unlock; | ||
849 | } | ||
850 | |||
851 | restart: | ||
852 | /* search through normal chunks */ | ||
853 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { | ||
854 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | ||
855 | if (size > chunk->contig_hint) | ||
856 | continue; | ||
857 | |||
858 | switch (pcpu_extend_area_map(chunk)) { | ||
859 | case 0: | ||
860 | break; | ||
861 | case 1: | ||
862 | goto restart; /* pcpu_lock dropped, restart */ | ||
863 | default: | ||
864 | goto fail_unlock; | ||
865 | } | ||
866 | |||
867 | off = pcpu_alloc_area(chunk, size, align); | ||
868 | if (off >= 0) | ||
869 | goto area_found; | ||
870 | } | ||
871 | } | ||
872 | |||
873 | /* hmmm... no space left, create a new chunk */ | ||
874 | spin_unlock_irq(&pcpu_lock); | ||
875 | |||
876 | chunk = alloc_pcpu_chunk(); | ||
877 | if (!chunk) | ||
878 | goto fail_unlock_mutex; | ||
879 | |||
880 | spin_lock_irq(&pcpu_lock); | ||
881 | pcpu_chunk_relocate(chunk, -1); | ||
882 | pcpu_chunk_addr_insert(chunk); | ||
883 | goto restart; | ||
884 | |||
885 | area_found: | ||
886 | spin_unlock_irq(&pcpu_lock); | ||
887 | |||
888 | /* populate, map and clear the area */ | ||
889 | if (pcpu_populate_chunk(chunk, off, size)) { | ||
890 | spin_lock_irq(&pcpu_lock); | ||
891 | pcpu_free_area(chunk, off); | ||
892 | goto fail_unlock; | ||
893 | } | ||
894 | |||
895 | mutex_unlock(&pcpu_alloc_mutex); | ||
896 | |||
897 | return __addr_to_pcpu_ptr(chunk->vm->addr + off); | ||
898 | |||
899 | fail_unlock: | ||
900 | spin_unlock_irq(&pcpu_lock); | ||
901 | fail_unlock_mutex: | ||
902 | mutex_unlock(&pcpu_alloc_mutex); | ||
903 | return NULL; | ||
904 | } | ||
905 | |||
906 | /** | ||
907 | * __alloc_percpu - allocate dynamic percpu area | ||
908 | * @size: size of area to allocate in bytes | ||
909 | * @align: alignment of area (max PAGE_SIZE) | ||
910 | * | ||
911 | * Allocate percpu area of @size bytes aligned at @align. Might | ||
912 | * sleep. Might trigger writeouts. | ||
913 | * | ||
914 | * CONTEXT: | ||
915 | * Does GFP_KERNEL allocation. | ||
916 | * | ||
917 | * RETURNS: | ||
918 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
919 | */ | ||
920 | void *__alloc_percpu(size_t size, size_t align) | ||
921 | { | ||
922 | return pcpu_alloc(size, align, false); | ||
923 | } | ||
924 | EXPORT_SYMBOL_GPL(__alloc_percpu); | ||
925 | |||
926 | /** | ||
927 | * __alloc_reserved_percpu - allocate reserved percpu area | ||
928 | * @size: size of area to allocate in bytes | ||
929 | * @align: alignment of area (max PAGE_SIZE) | ||
930 | * | ||
931 | * Allocate percpu area of @size bytes aligned at @align from reserved | ||
932 | * percpu area if arch has set it up; otherwise, allocation is served | ||
933 | * from the same dynamic area. Might sleep. Might trigger writeouts. | ||
934 | * | ||
935 | * CONTEXT: | ||
936 | * Does GFP_KERNEL allocation. | ||
937 | * | ||
938 | * RETURNS: | ||
939 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
940 | */ | ||
941 | void *__alloc_reserved_percpu(size_t size, size_t align) | ||
942 | { | ||
943 | return pcpu_alloc(size, align, true); | ||
944 | } | ||
945 | |||
946 | /** | ||
947 | * pcpu_reclaim - reclaim fully free chunks, workqueue function | ||
948 | * @work: unused | ||
949 | * | ||
950 | * Reclaim all fully free chunks except for the first one. | ||
951 | * | ||
952 | * CONTEXT: | ||
953 | * workqueue context. | ||
954 | */ | ||
955 | static void pcpu_reclaim(struct work_struct *work) | ||
956 | { | ||
957 | LIST_HEAD(todo); | ||
958 | struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; | ||
959 | struct pcpu_chunk *chunk, *next; | ||
960 | |||
961 | mutex_lock(&pcpu_alloc_mutex); | ||
962 | spin_lock_irq(&pcpu_lock); | ||
963 | |||
964 | list_for_each_entry_safe(chunk, next, head, list) { | ||
965 | WARN_ON(chunk->immutable); | ||
966 | |||
967 | /* spare the first one */ | ||
968 | if (chunk == list_first_entry(head, struct pcpu_chunk, list)) | ||
969 | continue; | ||
970 | |||
971 | rb_erase(&chunk->rb_node, &pcpu_addr_root); | ||
972 | list_move(&chunk->list, &todo); | ||
973 | } | ||
974 | |||
975 | spin_unlock_irq(&pcpu_lock); | ||
976 | mutex_unlock(&pcpu_alloc_mutex); | ||
977 | |||
978 | list_for_each_entry_safe(chunk, next, &todo, list) { | ||
979 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); | ||
980 | free_pcpu_chunk(chunk); | ||
981 | } | ||
982 | } | ||
983 | |||
984 | /** | ||
985 | * free_percpu - free percpu area | ||
986 | * @ptr: pointer to area to free | ||
987 | * | ||
988 | * Free percpu area @ptr. | ||
989 | * | ||
990 | * CONTEXT: | ||
991 | * Can be called from atomic context. | ||
992 | */ | ||
993 | void free_percpu(void *ptr) | ||
994 | { | ||
995 | void *addr = __pcpu_ptr_to_addr(ptr); | ||
996 | struct pcpu_chunk *chunk; | ||
997 | unsigned long flags; | ||
998 | int off; | ||
999 | |||
1000 | if (!ptr) | ||
1001 | return; | ||
1002 | |||
1003 | spin_lock_irqsave(&pcpu_lock, flags); | ||
1004 | |||
1005 | chunk = pcpu_chunk_addr_search(addr); | ||
1006 | off = addr - chunk->vm->addr; | ||
1007 | |||
1008 | pcpu_free_area(chunk, off); | ||
1009 | |||
1010 | /* if there are more than one fully free chunks, wake up grim reaper */ | ||
1011 | if (chunk->free_size == pcpu_unit_size) { | ||
1012 | struct pcpu_chunk *pos; | ||
1013 | |||
1014 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) | ||
1015 | if (pos != chunk) { | ||
1016 | schedule_work(&pcpu_reclaim_work); | ||
1017 | break; | ||
1018 | } | ||
1019 | } | ||
1020 | |||
1021 | spin_unlock_irqrestore(&pcpu_lock, flags); | ||
1022 | } | ||
1023 | EXPORT_SYMBOL_GPL(free_percpu); | ||
1024 | |||
1025 | /** | ||
1026 | * pcpu_setup_first_chunk - initialize the first percpu chunk | ||
1027 | * @get_page_fn: callback to fetch page pointer | ||
1028 | * @static_size: the size of static percpu area in bytes | ||
1029 | * @reserved_size: the size of reserved percpu area in bytes | ||
1030 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | ||
1031 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | ||
1032 | * @base_addr: mapped address, NULL for auto | ||
1033 | * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary | ||
1034 | * | ||
1035 | * Initialize the first percpu chunk which contains the kernel static | ||
1036 | * perpcu area. This function is to be called from arch percpu area | ||
1037 | * setup path. The first two parameters are mandatory. The rest are | ||
1038 | * optional. | ||
1039 | * | ||
1040 | * @get_page_fn() should return pointer to percpu page given cpu | ||
1041 | * number and page number. It should at least return enough pages to | ||
1042 | * cover the static area. The returned pages for static area should | ||
1043 | * have been initialized with valid data. If @unit_size is specified, | ||
1044 | * it can also return pages after the static area. NULL return | ||
1045 | * indicates end of pages for the cpu. Note that @get_page_fn() must | ||
1046 | * return the same number of pages for all cpus. | ||
1047 | * | ||
1048 | * @reserved_size, if non-zero, specifies the amount of bytes to | ||
1049 | * reserve after the static area in the first chunk. This reserves | ||
1050 | * the first chunk such that it's available only through reserved | ||
1051 | * percpu allocation. This is primarily used to serve module percpu | ||
1052 | * static areas on architectures where the addressing model has | ||
1053 | * limited offset range for symbol relocations to guarantee module | ||
1054 | * percpu symbols fall inside the relocatable range. | ||
1055 | * | ||
1056 | * @dyn_size, if non-negative, determines the number of bytes | ||
1057 | * available for dynamic allocation in the first chunk. Specifying | ||
1058 | * non-negative value makes percpu leave alone the area beyond | ||
1059 | * @static_size + @reserved_size + @dyn_size. | ||
1060 | * | ||
1061 | * @unit_size, if non-negative, specifies unit size and must be | ||
1062 | * aligned to PAGE_SIZE and equal to or larger than @static_size + | ||
1063 | * @reserved_size + if non-negative, @dyn_size. | ||
1064 | * | ||
1065 | * Non-null @base_addr means that the caller already allocated virtual | ||
1066 | * region for the first chunk and mapped it. percpu must not mess | ||
1067 | * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL | ||
1068 | * @populate_pte_fn doesn't make any sense. | ||
1069 | * | ||
1070 | * @populate_pte_fn is used to populate the pagetable. NULL means the | ||
1071 | * caller already populated the pagetable. | ||
1072 | * | ||
1073 | * If the first chunk ends up with both reserved and dynamic areas, it | ||
1074 | * is served by two chunks - one to serve the core static and reserved | ||
1075 | * areas and the other for the dynamic area. They share the same vm | ||
1076 | * and page map but uses different area allocation map to stay away | ||
1077 | * from each other. The latter chunk is circulated in the chunk slots | ||
1078 | * and available for dynamic allocation like any other chunks. | ||
1079 | * | ||
1080 | * RETURNS: | ||
1081 | * The determined pcpu_unit_size which can be used to initialize | ||
1082 | * percpu access. | ||
1083 | */ | ||
1084 | size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | ||
1085 | size_t static_size, size_t reserved_size, | ||
1086 | ssize_t dyn_size, ssize_t unit_size, | ||
1087 | void *base_addr, | ||
1088 | pcpu_populate_pte_fn_t populate_pte_fn) | ||
1089 | { | ||
1090 | static struct vm_struct first_vm; | ||
1091 | static int smap[2], dmap[2]; | ||
1092 | size_t size_sum = static_size + reserved_size + | ||
1093 | (dyn_size >= 0 ? dyn_size : 0); | ||
1094 | struct pcpu_chunk *schunk, *dchunk = NULL; | ||
1095 | unsigned int cpu; | ||
1096 | int nr_pages; | ||
1097 | int err, i; | ||
1098 | |||
1099 | /* santiy checks */ | ||
1100 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || | ||
1101 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); | ||
1102 | BUG_ON(!static_size); | ||
1103 | if (unit_size >= 0) { | ||
1104 | BUG_ON(unit_size < size_sum); | ||
1105 | BUG_ON(unit_size & ~PAGE_MASK); | ||
1106 | BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE); | ||
1107 | } else | ||
1108 | BUG_ON(base_addr); | ||
1109 | BUG_ON(base_addr && populate_pte_fn); | ||
1110 | |||
1111 | if (unit_size >= 0) | ||
1112 | pcpu_unit_pages = unit_size >> PAGE_SHIFT; | ||
1113 | else | ||
1114 | pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, | ||
1115 | PFN_UP(size_sum)); | ||
1116 | |||
1117 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | ||
1118 | pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size; | ||
1119 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) | ||
1120 | + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *); | ||
1121 | |||
1122 | if (dyn_size < 0) | ||
1123 | dyn_size = pcpu_unit_size - static_size - reserved_size; | ||
1124 | |||
1125 | /* | ||
1126 | * Allocate chunk slots. The additional last slot is for | ||
1127 | * empty chunks. | ||
1128 | */ | ||
1129 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | ||
1130 | pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); | ||
1131 | for (i = 0; i < pcpu_nr_slots; i++) | ||
1132 | INIT_LIST_HEAD(&pcpu_slot[i]); | ||
1133 | |||
1134 | /* | ||
1135 | * Initialize static chunk. If reserved_size is zero, the | ||
1136 | * static chunk covers static area + dynamic allocation area | ||
1137 | * in the first chunk. If reserved_size is not zero, it | ||
1138 | * covers static area + reserved area (mostly used for module | ||
1139 | * static percpu allocation). | ||
1140 | */ | ||
1141 | schunk = alloc_bootmem(pcpu_chunk_struct_size); | ||
1142 | INIT_LIST_HEAD(&schunk->list); | ||
1143 | schunk->vm = &first_vm; | ||
1144 | schunk->map = smap; | ||
1145 | schunk->map_alloc = ARRAY_SIZE(smap); | ||
1146 | schunk->page = schunk->page_ar; | ||
1147 | |||
1148 | if (reserved_size) { | ||
1149 | schunk->free_size = reserved_size; | ||
1150 | pcpu_reserved_chunk = schunk; /* not for dynamic alloc */ | ||
1151 | } else { | ||
1152 | schunk->free_size = dyn_size; | ||
1153 | dyn_size = 0; /* dynamic area covered */ | ||
1154 | } | ||
1155 | schunk->contig_hint = schunk->free_size; | ||
1156 | |||
1157 | schunk->map[schunk->map_used++] = -static_size; | ||
1158 | if (schunk->free_size) | ||
1159 | schunk->map[schunk->map_used++] = schunk->free_size; | ||
1160 | |||
1161 | pcpu_reserved_chunk_limit = static_size + schunk->free_size; | ||
1162 | |||
1163 | /* init dynamic chunk if necessary */ | ||
1164 | if (dyn_size) { | ||
1165 | dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); | ||
1166 | INIT_LIST_HEAD(&dchunk->list); | ||
1167 | dchunk->vm = &first_vm; | ||
1168 | dchunk->map = dmap; | ||
1169 | dchunk->map_alloc = ARRAY_SIZE(dmap); | ||
1170 | dchunk->page = schunk->page_ar; /* share page map with schunk */ | ||
1171 | |||
1172 | dchunk->contig_hint = dchunk->free_size = dyn_size; | ||
1173 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | ||
1174 | dchunk->map[dchunk->map_used++] = dchunk->free_size; | ||
1175 | } | ||
1176 | |||
1177 | /* allocate vm address */ | ||
1178 | first_vm.flags = VM_ALLOC; | ||
1179 | first_vm.size = pcpu_chunk_size; | ||
1180 | |||
1181 | if (!base_addr) | ||
1182 | vm_area_register_early(&first_vm, PAGE_SIZE); | ||
1183 | else { | ||
1184 | /* | ||
1185 | * Pages already mapped. No need to remap into | ||
1186 | * vmalloc area. In this case the first chunks can't | ||
1187 | * be mapped or unmapped by percpu and are marked | ||
1188 | * immutable. | ||
1189 | */ | ||
1190 | first_vm.addr = base_addr; | ||
1191 | schunk->immutable = true; | ||
1192 | if (dchunk) | ||
1193 | dchunk->immutable = true; | ||
1194 | } | ||
1195 | |||
1196 | /* assign pages */ | ||
1197 | nr_pages = -1; | ||
1198 | for_each_possible_cpu(cpu) { | ||
1199 | for (i = 0; i < pcpu_unit_pages; i++) { | ||
1200 | struct page *page = get_page_fn(cpu, i); | ||
1201 | |||
1202 | if (!page) | ||
1203 | break; | ||
1204 | *pcpu_chunk_pagep(schunk, cpu, i) = page; | ||
1205 | } | ||
1206 | |||
1207 | BUG_ON(i < PFN_UP(static_size)); | ||
1208 | |||
1209 | if (nr_pages < 0) | ||
1210 | nr_pages = i; | ||
1211 | else | ||
1212 | BUG_ON(nr_pages != i); | ||
1213 | } | ||
1214 | |||
1215 | /* map them */ | ||
1216 | if (populate_pte_fn) { | ||
1217 | for_each_possible_cpu(cpu) | ||
1218 | for (i = 0; i < nr_pages; i++) | ||
1219 | populate_pte_fn(pcpu_chunk_addr(schunk, | ||
1220 | cpu, i)); | ||
1221 | |||
1222 | err = pcpu_map(schunk, 0, nr_pages); | ||
1223 | if (err) | ||
1224 | panic("failed to setup static percpu area, err=%d\n", | ||
1225 | err); | ||
1226 | } | ||
1227 | |||
1228 | /* link the first chunk in */ | ||
1229 | if (!dchunk) { | ||
1230 | pcpu_chunk_relocate(schunk, -1); | ||
1231 | pcpu_chunk_addr_insert(schunk); | ||
1232 | } else { | ||
1233 | pcpu_chunk_relocate(dchunk, -1); | ||
1234 | pcpu_chunk_addr_insert(dchunk); | ||
1235 | } | ||
1236 | |||
1237 | /* we're done */ | ||
1238 | pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); | ||
1239 | return pcpu_unit_size; | ||
1240 | } | ||
1241 | |||
1242 | /* | ||
1243 | * Embedding first chunk setup helper. | ||
1244 | */ | ||
1245 | static void *pcpue_ptr __initdata; | ||
1246 | static size_t pcpue_size __initdata; | ||
1247 | static size_t pcpue_unit_size __initdata; | ||
1248 | |||
1249 | static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) | ||
1250 | { | ||
1251 | size_t off = (size_t)pageno << PAGE_SHIFT; | ||
1252 | |||
1253 | if (off >= pcpue_size) | ||
1254 | return NULL; | ||
1255 | |||
1256 | return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off); | ||
1257 | } | ||
1258 | |||
1259 | /** | ||
1260 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | ||
1261 | * @static_size: the size of static percpu area in bytes | ||
1262 | * @reserved_size: the size of reserved percpu area in bytes | ||
1263 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | ||
1264 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | ||
1265 | * | ||
1266 | * This is a helper to ease setting up embedded first percpu chunk and | ||
1267 | * can be called where pcpu_setup_first_chunk() is expected. | ||
1268 | * | ||
1269 | * If this function is used to setup the first chunk, it is allocated | ||
1270 | * as a contiguous area using bootmem allocator and used as-is without | ||
1271 | * being mapped into vmalloc area. This enables the first chunk to | ||
1272 | * piggy back on the linear physical mapping which often uses larger | ||
1273 | * page size. | ||
1274 | * | ||
1275 | * When @dyn_size is positive, dynamic area might be larger than | ||
1276 | * specified to fill page alignment. Also, when @dyn_size is auto, | ||
1277 | * @dyn_size does not fill the whole first chunk but only what's | ||
1278 | * necessary for page alignment after static and reserved areas. | ||
1279 | * | ||
1280 | * If the needed size is smaller than the minimum or specified unit | ||
1281 | * size, the leftover is returned to the bootmem allocator. | ||
1282 | * | ||
1283 | * RETURNS: | ||
1284 | * The determined pcpu_unit_size which can be used to initialize | ||
1285 | * percpu access on success, -errno on failure. | ||
1286 | */ | ||
1287 | ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size, | ||
1288 | ssize_t dyn_size, ssize_t unit_size) | ||
1289 | { | ||
1290 | unsigned int cpu; | ||
1291 | |||
1292 | /* determine parameters and allocate */ | ||
1293 | pcpue_size = PFN_ALIGN(static_size + reserved_size + | ||
1294 | (dyn_size >= 0 ? dyn_size : 0)); | ||
1295 | if (dyn_size != 0) | ||
1296 | dyn_size = pcpue_size - static_size - reserved_size; | ||
1297 | |||
1298 | if (unit_size >= 0) { | ||
1299 | BUG_ON(unit_size < pcpue_size); | ||
1300 | pcpue_unit_size = unit_size; | ||
1301 | } else | ||
1302 | pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE); | ||
1303 | |||
1304 | pcpue_ptr = __alloc_bootmem_nopanic( | ||
1305 | num_possible_cpus() * pcpue_unit_size, | ||
1306 | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | ||
1307 | if (!pcpue_ptr) | ||
1308 | return -ENOMEM; | ||
1309 | |||
1310 | /* return the leftover and copy */ | ||
1311 | for_each_possible_cpu(cpu) { | ||
1312 | void *ptr = pcpue_ptr + cpu * pcpue_unit_size; | ||
1313 | |||
1314 | free_bootmem(__pa(ptr + pcpue_size), | ||
1315 | pcpue_unit_size - pcpue_size); | ||
1316 | memcpy(ptr, __per_cpu_load, static_size); | ||
1317 | } | ||
1318 | |||
1319 | /* we're ready, commit */ | ||
1320 | pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", | ||
1321 | pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size); | ||
1322 | |||
1323 | return pcpu_setup_first_chunk(pcpue_get_page, static_size, | ||
1324 | reserved_size, dyn_size, | ||
1325 | pcpue_unit_size, pcpue_ptr, NULL); | ||
1326 | } | ||
diff --git a/mm/readahead.c b/mm/readahead.c index bec83c15a78f..9ce303d4b810 100644 --- a/mm/readahead.c +++ b/mm/readahead.c | |||
@@ -17,19 +17,6 @@ | |||
17 | #include <linux/pagevec.h> | 17 | #include <linux/pagevec.h> |
18 | #include <linux/pagemap.h> | 18 | #include <linux/pagemap.h> |
19 | 19 | ||
20 | void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) | ||
21 | { | ||
22 | } | ||
23 | EXPORT_SYMBOL(default_unplug_io_fn); | ||
24 | |||
25 | struct backing_dev_info default_backing_dev_info = { | ||
26 | .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE, | ||
27 | .state = 0, | ||
28 | .capabilities = BDI_CAP_MAP_COPY, | ||
29 | .unplug_io_fn = default_unplug_io_fn, | ||
30 | }; | ||
31 | EXPORT_SYMBOL_GPL(default_backing_dev_info); | ||
32 | |||
33 | /* | 20 | /* |
34 | * Initialise a struct file's readahead state. Assumes that the caller has | 21 | * Initialise a struct file's readahead state. Assumes that the caller has |
35 | * memset *ra to zero. | 22 | * memset *ra to zero. |
@@ -233,18 +220,6 @@ unsigned long max_sane_readahead(unsigned long nr) | |||
233 | + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); | 220 | + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); |
234 | } | 221 | } |
235 | 222 | ||
236 | static int __init readahead_init(void) | ||
237 | { | ||
238 | int err; | ||
239 | |||
240 | err = bdi_init(&default_backing_dev_info); | ||
241 | if (!err) | ||
242 | bdi_register(&default_backing_dev_info, NULL, "default"); | ||
243 | |||
244 | return err; | ||
245 | } | ||
246 | subsys_initcall(readahead_init); | ||
247 | |||
248 | /* | 223 | /* |
249 | * Submit IO for the read-ahead request in file_ra_state. | 224 | * Submit IO for the read-ahead request in file_ra_state. |
250 | */ | 225 | */ |
diff --git a/mm/shmem.c b/mm/shmem.c index 4103a239ce84..7ec78e24a30d 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -28,6 +28,7 @@ | |||
28 | #include <linux/mm.h> | 28 | #include <linux/mm.h> |
29 | #include <linux/module.h> | 29 | #include <linux/module.h> |
30 | #include <linux/swap.h> | 30 | #include <linux/swap.h> |
31 | #include <linux/ima.h> | ||
31 | 32 | ||
32 | static struct vfsmount *shm_mnt; | 33 | static struct vfsmount *shm_mnt; |
33 | 34 | ||
@@ -2665,6 +2666,7 @@ int shmem_zero_setup(struct vm_area_struct *vma) | |||
2665 | if (IS_ERR(file)) | 2666 | if (IS_ERR(file)) |
2666 | return PTR_ERR(file); | 2667 | return PTR_ERR(file); |
2667 | 2668 | ||
2669 | ima_shm_check(file); | ||
2668 | if (vma->vm_file) | 2670 | if (vma->vm_file) |
2669 | fput(vma->vm_file); | 2671 | fput(vma->vm_file); |
2670 | vma->vm_file = file; | 2672 | vma->vm_file = file; |
@@ -126,9 +126,9 @@ static LIST_HEAD(free_slob_medium); | |||
126 | static LIST_HEAD(free_slob_large); | 126 | static LIST_HEAD(free_slob_large); |
127 | 127 | ||
128 | /* | 128 | /* |
129 | * slob_page: True for all slob pages (false for bigblock pages) | 129 | * is_slob_page: True for all slob pages (false for bigblock pages) |
130 | */ | 130 | */ |
131 | static inline int slob_page(struct slob_page *sp) | 131 | static inline int is_slob_page(struct slob_page *sp) |
132 | { | 132 | { |
133 | return PageSlobPage((struct page *)sp); | 133 | return PageSlobPage((struct page *)sp); |
134 | } | 134 | } |
@@ -143,6 +143,11 @@ static inline void clear_slob_page(struct slob_page *sp) | |||
143 | __ClearPageSlobPage((struct page *)sp); | 143 | __ClearPageSlobPage((struct page *)sp); |
144 | } | 144 | } |
145 | 145 | ||
146 | static inline struct slob_page *slob_page(const void *addr) | ||
147 | { | ||
148 | return (struct slob_page *)virt_to_page(addr); | ||
149 | } | ||
150 | |||
146 | /* | 151 | /* |
147 | * slob_page_free: true for pages on free_slob_pages list. | 152 | * slob_page_free: true for pages on free_slob_pages list. |
148 | */ | 153 | */ |
@@ -230,7 +235,7 @@ static int slob_last(slob_t *s) | |||
230 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); | 235 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); |
231 | } | 236 | } |
232 | 237 | ||
233 | static void *slob_new_page(gfp_t gfp, int order, int node) | 238 | static void *slob_new_pages(gfp_t gfp, int order, int node) |
234 | { | 239 | { |
235 | void *page; | 240 | void *page; |
236 | 241 | ||
@@ -247,12 +252,17 @@ static void *slob_new_page(gfp_t gfp, int order, int node) | |||
247 | return page_address(page); | 252 | return page_address(page); |
248 | } | 253 | } |
249 | 254 | ||
255 | static void slob_free_pages(void *b, int order) | ||
256 | { | ||
257 | free_pages((unsigned long)b, order); | ||
258 | } | ||
259 | |||
250 | /* | 260 | /* |
251 | * Allocate a slob block within a given slob_page sp. | 261 | * Allocate a slob block within a given slob_page sp. |
252 | */ | 262 | */ |
253 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) | 263 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) |
254 | { | 264 | { |
255 | slob_t *prev, *cur, *aligned = 0; | 265 | slob_t *prev, *cur, *aligned = NULL; |
256 | int delta = 0, units = SLOB_UNITS(size); | 266 | int delta = 0, units = SLOB_UNITS(size); |
257 | 267 | ||
258 | for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { | 268 | for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { |
@@ -349,10 +359,10 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) | |||
349 | 359 | ||
350 | /* Not enough space: must allocate a new page */ | 360 | /* Not enough space: must allocate a new page */ |
351 | if (!b) { | 361 | if (!b) { |
352 | b = slob_new_page(gfp & ~__GFP_ZERO, 0, node); | 362 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
353 | if (!b) | 363 | if (!b) |
354 | return 0; | 364 | return NULL; |
355 | sp = (struct slob_page *)virt_to_page(b); | 365 | sp = slob_page(b); |
356 | set_slob_page(sp); | 366 | set_slob_page(sp); |
357 | 367 | ||
358 | spin_lock_irqsave(&slob_lock, flags); | 368 | spin_lock_irqsave(&slob_lock, flags); |
@@ -384,7 +394,7 @@ static void slob_free(void *block, int size) | |||
384 | return; | 394 | return; |
385 | BUG_ON(!size); | 395 | BUG_ON(!size); |
386 | 396 | ||
387 | sp = (struct slob_page *)virt_to_page(block); | 397 | sp = slob_page(block); |
388 | units = SLOB_UNITS(size); | 398 | units = SLOB_UNITS(size); |
389 | 399 | ||
390 | spin_lock_irqsave(&slob_lock, flags); | 400 | spin_lock_irqsave(&slob_lock, flags); |
@@ -393,10 +403,11 @@ static void slob_free(void *block, int size) | |||
393 | /* Go directly to page allocator. Do not pass slob allocator */ | 403 | /* Go directly to page allocator. Do not pass slob allocator */ |
394 | if (slob_page_free(sp)) | 404 | if (slob_page_free(sp)) |
395 | clear_slob_page_free(sp); | 405 | clear_slob_page_free(sp); |
406 | spin_unlock_irqrestore(&slob_lock, flags); | ||
396 | clear_slob_page(sp); | 407 | clear_slob_page(sp); |
397 | free_slob_page(sp); | 408 | free_slob_page(sp); |
398 | free_page((unsigned long)b); | 409 | free_page((unsigned long)b); |
399 | goto out; | 410 | return; |
400 | } | 411 | } |
401 | 412 | ||
402 | if (!slob_page_free(sp)) { | 413 | if (!slob_page_free(sp)) { |
@@ -476,7 +487,7 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node) | |||
476 | } else { | 487 | } else { |
477 | void *ret; | 488 | void *ret; |
478 | 489 | ||
479 | ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node); | 490 | ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node); |
480 | if (ret) { | 491 | if (ret) { |
481 | struct page *page; | 492 | struct page *page; |
482 | page = virt_to_page(ret); | 493 | page = virt_to_page(ret); |
@@ -494,8 +505,8 @@ void kfree(const void *block) | |||
494 | if (unlikely(ZERO_OR_NULL_PTR(block))) | 505 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
495 | return; | 506 | return; |
496 | 507 | ||
497 | sp = (struct slob_page *)virt_to_page(block); | 508 | sp = slob_page(block); |
498 | if (slob_page(sp)) { | 509 | if (is_slob_page(sp)) { |
499 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 510 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
500 | unsigned int *m = (unsigned int *)(block - align); | 511 | unsigned int *m = (unsigned int *)(block - align); |
501 | slob_free(m, *m + align); | 512 | slob_free(m, *m + align); |
@@ -513,8 +524,8 @@ size_t ksize(const void *block) | |||
513 | if (unlikely(block == ZERO_SIZE_PTR)) | 524 | if (unlikely(block == ZERO_SIZE_PTR)) |
514 | return 0; | 525 | return 0; |
515 | 526 | ||
516 | sp = (struct slob_page *)virt_to_page(block); | 527 | sp = slob_page(block); |
517 | if (slob_page(sp)) { | 528 | if (is_slob_page(sp)) { |
518 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 529 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
519 | unsigned int *m = (unsigned int *)(block - align); | 530 | unsigned int *m = (unsigned int *)(block - align); |
520 | return SLOB_UNITS(*m) * SLOB_UNIT; | 531 | return SLOB_UNITS(*m) * SLOB_UNIT; |
@@ -573,7 +584,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) | |||
573 | if (c->size < PAGE_SIZE) | 584 | if (c->size < PAGE_SIZE) |
574 | b = slob_alloc(c->size, flags, c->align, node); | 585 | b = slob_alloc(c->size, flags, c->align, node); |
575 | else | 586 | else |
576 | b = slob_new_page(flags, get_order(c->size), node); | 587 | b = slob_new_pages(flags, get_order(c->size), node); |
577 | 588 | ||
578 | if (c->ctor) | 589 | if (c->ctor) |
579 | c->ctor(b); | 590 | c->ctor(b); |
@@ -587,7 +598,7 @@ static void __kmem_cache_free(void *b, int size) | |||
587 | if (size < PAGE_SIZE) | 598 | if (size < PAGE_SIZE) |
588 | slob_free(b, size); | 599 | slob_free(b, size); |
589 | else | 600 | else |
590 | free_pages((unsigned long)b, get_order(size)); | 601 | slob_free_pages(b, get_order(size)); |
591 | } | 602 | } |
592 | 603 | ||
593 | static void kmem_rcu_free(struct rcu_head *head) | 604 | static void kmem_rcu_free(struct rcu_head *head) |
@@ -374,14 +374,8 @@ static struct track *get_track(struct kmem_cache *s, void *object, | |||
374 | static void set_track(struct kmem_cache *s, void *object, | 374 | static void set_track(struct kmem_cache *s, void *object, |
375 | enum track_item alloc, unsigned long addr) | 375 | enum track_item alloc, unsigned long addr) |
376 | { | 376 | { |
377 | struct track *p; | 377 | struct track *p = get_track(s, object, alloc); |
378 | |||
379 | if (s->offset) | ||
380 | p = object + s->offset + sizeof(void *); | ||
381 | else | ||
382 | p = object + s->inuse; | ||
383 | 378 | ||
384 | p += alloc; | ||
385 | if (addr) { | 379 | if (addr) { |
386 | p->addr = addr; | 380 | p->addr = addr; |
387 | p->cpu = smp_processor_id(); | 381 | p->cpu = smp_processor_id(); |
@@ -1335,7 +1329,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |||
1335 | n = get_node(s, zone_to_nid(zone)); | 1329 | n = get_node(s, zone_to_nid(zone)); |
1336 | 1330 | ||
1337 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && | 1331 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && |
1338 | n->nr_partial > n->min_partial) { | 1332 | n->nr_partial > s->min_partial) { |
1339 | page = get_partial_node(n); | 1333 | page = get_partial_node(n); |
1340 | if (page) | 1334 | if (page) |
1341 | return page; | 1335 | return page; |
@@ -1387,7 +1381,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | |||
1387 | slab_unlock(page); | 1381 | slab_unlock(page); |
1388 | } else { | 1382 | } else { |
1389 | stat(c, DEACTIVATE_EMPTY); | 1383 | stat(c, DEACTIVATE_EMPTY); |
1390 | if (n->nr_partial < n->min_partial) { | 1384 | if (n->nr_partial < s->min_partial) { |
1391 | /* | 1385 | /* |
1392 | * Adding an empty slab to the partial slabs in order | 1386 | * Adding an empty slab to the partial slabs in order |
1393 | * to avoid page allocator overhead. This slab needs | 1387 | * to avoid page allocator overhead. This slab needs |
@@ -1724,7 +1718,7 @@ static __always_inline void slab_free(struct kmem_cache *s, | |||
1724 | c = get_cpu_slab(s, smp_processor_id()); | 1718 | c = get_cpu_slab(s, smp_processor_id()); |
1725 | debug_check_no_locks_freed(object, c->objsize); | 1719 | debug_check_no_locks_freed(object, c->objsize); |
1726 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 1720 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
1727 | debug_check_no_obj_freed(object, s->objsize); | 1721 | debug_check_no_obj_freed(object, c->objsize); |
1728 | if (likely(page == c->page && c->node >= 0)) { | 1722 | if (likely(page == c->page && c->node >= 0)) { |
1729 | object[c->offset] = c->freelist; | 1723 | object[c->offset] = c->freelist; |
1730 | c->freelist = object; | 1724 | c->freelist = object; |
@@ -1844,6 +1838,7 @@ static inline int calculate_order(int size) | |||
1844 | int order; | 1838 | int order; |
1845 | int min_objects; | 1839 | int min_objects; |
1846 | int fraction; | 1840 | int fraction; |
1841 | int max_objects; | ||
1847 | 1842 | ||
1848 | /* | 1843 | /* |
1849 | * Attempt to find best configuration for a slab. This | 1844 | * Attempt to find best configuration for a slab. This |
@@ -1856,6 +1851,9 @@ static inline int calculate_order(int size) | |||
1856 | min_objects = slub_min_objects; | 1851 | min_objects = slub_min_objects; |
1857 | if (!min_objects) | 1852 | if (!min_objects) |
1858 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | 1853 | min_objects = 4 * (fls(nr_cpu_ids) + 1); |
1854 | max_objects = (PAGE_SIZE << slub_max_order)/size; | ||
1855 | min_objects = min(min_objects, max_objects); | ||
1856 | |||
1859 | while (min_objects > 1) { | 1857 | while (min_objects > 1) { |
1860 | fraction = 16; | 1858 | fraction = 16; |
1861 | while (fraction >= 4) { | 1859 | while (fraction >= 4) { |
@@ -1865,7 +1863,7 @@ static inline int calculate_order(int size) | |||
1865 | return order; | 1863 | return order; |
1866 | fraction /= 2; | 1864 | fraction /= 2; |
1867 | } | 1865 | } |
1868 | min_objects /= 2; | 1866 | min_objects --; |
1869 | } | 1867 | } |
1870 | 1868 | ||
1871 | /* | 1869 | /* |
@@ -1928,17 +1926,6 @@ static void | |||
1928 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | 1926 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) |
1929 | { | 1927 | { |
1930 | n->nr_partial = 0; | 1928 | n->nr_partial = 0; |
1931 | |||
1932 | /* | ||
1933 | * The larger the object size is, the more pages we want on the partial | ||
1934 | * list to avoid pounding the page allocator excessively. | ||
1935 | */ | ||
1936 | n->min_partial = ilog2(s->size); | ||
1937 | if (n->min_partial < MIN_PARTIAL) | ||
1938 | n->min_partial = MIN_PARTIAL; | ||
1939 | else if (n->min_partial > MAX_PARTIAL) | ||
1940 | n->min_partial = MAX_PARTIAL; | ||
1941 | |||
1942 | spin_lock_init(&n->list_lock); | 1929 | spin_lock_init(&n->list_lock); |
1943 | INIT_LIST_HEAD(&n->partial); | 1930 | INIT_LIST_HEAD(&n->partial); |
1944 | #ifdef CONFIG_SLUB_DEBUG | 1931 | #ifdef CONFIG_SLUB_DEBUG |
@@ -2181,6 +2168,15 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |||
2181 | } | 2168 | } |
2182 | #endif | 2169 | #endif |
2183 | 2170 | ||
2171 | static void set_min_partial(struct kmem_cache *s, unsigned long min) | ||
2172 | { | ||
2173 | if (min < MIN_PARTIAL) | ||
2174 | min = MIN_PARTIAL; | ||
2175 | else if (min > MAX_PARTIAL) | ||
2176 | min = MAX_PARTIAL; | ||
2177 | s->min_partial = min; | ||
2178 | } | ||
2179 | |||
2184 | /* | 2180 | /* |
2185 | * calculate_sizes() determines the order and the distribution of data within | 2181 | * calculate_sizes() determines the order and the distribution of data within |
2186 | * a slab object. | 2182 | * a slab object. |
@@ -2319,6 +2315,11 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | |||
2319 | if (!calculate_sizes(s, -1)) | 2315 | if (!calculate_sizes(s, -1)) |
2320 | goto error; | 2316 | goto error; |
2321 | 2317 | ||
2318 | /* | ||
2319 | * The larger the object size is, the more pages we want on the partial | ||
2320 | * list to avoid pounding the page allocator excessively. | ||
2321 | */ | ||
2322 | set_min_partial(s, ilog2(s->size)); | ||
2322 | s->refcount = 1; | 2323 | s->refcount = 1; |
2323 | #ifdef CONFIG_NUMA | 2324 | #ifdef CONFIG_NUMA |
2324 | s->remote_node_defrag_ratio = 1000; | 2325 | s->remote_node_defrag_ratio = 1000; |
@@ -2475,7 +2476,7 @@ EXPORT_SYMBOL(kmem_cache_destroy); | |||
2475 | * Kmalloc subsystem | 2476 | * Kmalloc subsystem |
2476 | *******************************************************************/ | 2477 | *******************************************************************/ |
2477 | 2478 | ||
2478 | struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; | 2479 | struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; |
2479 | EXPORT_SYMBOL(kmalloc_caches); | 2480 | EXPORT_SYMBOL(kmalloc_caches); |
2480 | 2481 | ||
2481 | static int __init setup_slub_min_order(char *str) | 2482 | static int __init setup_slub_min_order(char *str) |
@@ -2537,7 +2538,7 @@ panic: | |||
2537 | } | 2538 | } |
2538 | 2539 | ||
2539 | #ifdef CONFIG_ZONE_DMA | 2540 | #ifdef CONFIG_ZONE_DMA |
2540 | static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; | 2541 | static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; |
2541 | 2542 | ||
2542 | static void sysfs_add_func(struct work_struct *w) | 2543 | static void sysfs_add_func(struct work_struct *w) |
2543 | { | 2544 | { |
@@ -2658,7 +2659,7 @@ void *__kmalloc(size_t size, gfp_t flags) | |||
2658 | { | 2659 | { |
2659 | struct kmem_cache *s; | 2660 | struct kmem_cache *s; |
2660 | 2661 | ||
2661 | if (unlikely(size > PAGE_SIZE)) | 2662 | if (unlikely(size > SLUB_MAX_SIZE)) |
2662 | return kmalloc_large(size, flags); | 2663 | return kmalloc_large(size, flags); |
2663 | 2664 | ||
2664 | s = get_slab(size, flags); | 2665 | s = get_slab(size, flags); |
@@ -2686,7 +2687,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node) | |||
2686 | { | 2687 | { |
2687 | struct kmem_cache *s; | 2688 | struct kmem_cache *s; |
2688 | 2689 | ||
2689 | if (unlikely(size > PAGE_SIZE)) | 2690 | if (unlikely(size > SLUB_MAX_SIZE)) |
2690 | return kmalloc_large_node(size, flags, node); | 2691 | return kmalloc_large_node(size, flags, node); |
2691 | 2692 | ||
2692 | s = get_slab(size, flags); | 2693 | s = get_slab(size, flags); |
@@ -2986,7 +2987,7 @@ void __init kmem_cache_init(void) | |||
2986 | caches++; | 2987 | caches++; |
2987 | } | 2988 | } |
2988 | 2989 | ||
2989 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { | 2990 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
2990 | create_kmalloc_cache(&kmalloc_caches[i], | 2991 | create_kmalloc_cache(&kmalloc_caches[i], |
2991 | "kmalloc", 1 << i, GFP_KERNEL); | 2992 | "kmalloc", 1 << i, GFP_KERNEL); |
2992 | caches++; | 2993 | caches++; |
@@ -3023,7 +3024,7 @@ void __init kmem_cache_init(void) | |||
3023 | slab_state = UP; | 3024 | slab_state = UP; |
3024 | 3025 | ||
3025 | /* Provide the correct kmalloc names now that the caches are up */ | 3026 | /* Provide the correct kmalloc names now that the caches are up */ |
3026 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) | 3027 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) |
3027 | kmalloc_caches[i]. name = | 3028 | kmalloc_caches[i]. name = |
3028 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | 3029 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); |
3029 | 3030 | ||
@@ -3223,7 +3224,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | |||
3223 | { | 3224 | { |
3224 | struct kmem_cache *s; | 3225 | struct kmem_cache *s; |
3225 | 3226 | ||
3226 | if (unlikely(size > PAGE_SIZE)) | 3227 | if (unlikely(size > SLUB_MAX_SIZE)) |
3227 | return kmalloc_large(size, gfpflags); | 3228 | return kmalloc_large(size, gfpflags); |
3228 | 3229 | ||
3229 | s = get_slab(size, gfpflags); | 3230 | s = get_slab(size, gfpflags); |
@@ -3239,7 +3240,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |||
3239 | { | 3240 | { |
3240 | struct kmem_cache *s; | 3241 | struct kmem_cache *s; |
3241 | 3242 | ||
3242 | if (unlikely(size > PAGE_SIZE)) | 3243 | if (unlikely(size > SLUB_MAX_SIZE)) |
3243 | return kmalloc_large_node(size, gfpflags, node); | 3244 | return kmalloc_large_node(size, gfpflags, node); |
3244 | 3245 | ||
3245 | s = get_slab(size, gfpflags); | 3246 | s = get_slab(size, gfpflags); |
@@ -3836,6 +3837,26 @@ static ssize_t order_show(struct kmem_cache *s, char *buf) | |||
3836 | } | 3837 | } |
3837 | SLAB_ATTR(order); | 3838 | SLAB_ATTR(order); |
3838 | 3839 | ||
3840 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | ||
3841 | { | ||
3842 | return sprintf(buf, "%lu\n", s->min_partial); | ||
3843 | } | ||
3844 | |||
3845 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | ||
3846 | size_t length) | ||
3847 | { | ||
3848 | unsigned long min; | ||
3849 | int err; | ||
3850 | |||
3851 | err = strict_strtoul(buf, 10, &min); | ||
3852 | if (err) | ||
3853 | return err; | ||
3854 | |||
3855 | set_min_partial(s, min); | ||
3856 | return length; | ||
3857 | } | ||
3858 | SLAB_ATTR(min_partial); | ||
3859 | |||
3839 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 3860 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
3840 | { | 3861 | { |
3841 | if (s->ctor) { | 3862 | if (s->ctor) { |
@@ -4151,6 +4172,7 @@ static struct attribute *slab_attrs[] = { | |||
4151 | &object_size_attr.attr, | 4172 | &object_size_attr.attr, |
4152 | &objs_per_slab_attr.attr, | 4173 | &objs_per_slab_attr.attr, |
4153 | &order_attr.attr, | 4174 | &order_attr.attr, |
4175 | &min_partial_attr.attr, | ||
4154 | &objects_attr.attr, | 4176 | &objects_attr.attr, |
4155 | &objects_partial_attr.attr, | 4177 | &objects_partial_attr.attr, |
4156 | &total_objects_attr.attr, | 4178 | &total_objects_attr.attr, |
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 520a75980269..af58324c361a 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -24,6 +24,7 @@ | |||
24 | #include <linux/radix-tree.h> | 24 | #include <linux/radix-tree.h> |
25 | #include <linux/rcupdate.h> | 25 | #include <linux/rcupdate.h> |
26 | #include <linux/bootmem.h> | 26 | #include <linux/bootmem.h> |
27 | #include <linux/pfn.h> | ||
27 | 28 | ||
28 | #include <asm/atomic.h> | 29 | #include <asm/atomic.h> |
29 | #include <asm/uaccess.h> | 30 | #include <asm/uaccess.h> |
@@ -152,8 +153,8 @@ static int vmap_pud_range(pgd_t *pgd, unsigned long addr, | |||
152 | * | 153 | * |
153 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | 154 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] |
154 | */ | 155 | */ |
155 | static int vmap_page_range(unsigned long start, unsigned long end, | 156 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
156 | pgprot_t prot, struct page **pages) | 157 | pgprot_t prot, struct page **pages) |
157 | { | 158 | { |
158 | pgd_t *pgd; | 159 | pgd_t *pgd; |
159 | unsigned long next; | 160 | unsigned long next; |
@@ -169,13 +170,22 @@ static int vmap_page_range(unsigned long start, unsigned long end, | |||
169 | if (err) | 170 | if (err) |
170 | break; | 171 | break; |
171 | } while (pgd++, addr = next, addr != end); | 172 | } while (pgd++, addr = next, addr != end); |
172 | flush_cache_vmap(start, end); | ||
173 | 173 | ||
174 | if (unlikely(err)) | 174 | if (unlikely(err)) |
175 | return err; | 175 | return err; |
176 | return nr; | 176 | return nr; |
177 | } | 177 | } |
178 | 178 | ||
179 | static int vmap_page_range(unsigned long start, unsigned long end, | ||
180 | pgprot_t prot, struct page **pages) | ||
181 | { | ||
182 | int ret; | ||
183 | |||
184 | ret = vmap_page_range_noflush(start, end, prot, pages); | ||
185 | flush_cache_vmap(start, end); | ||
186 | return ret; | ||
187 | } | ||
188 | |||
179 | static inline int is_vmalloc_or_module_addr(const void *x) | 189 | static inline int is_vmalloc_or_module_addr(const void *x) |
180 | { | 190 | { |
181 | /* | 191 | /* |
@@ -990,6 +1000,32 @@ void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t pro | |||
990 | } | 1000 | } |
991 | EXPORT_SYMBOL(vm_map_ram); | 1001 | EXPORT_SYMBOL(vm_map_ram); |
992 | 1002 | ||
1003 | /** | ||
1004 | * vm_area_register_early - register vmap area early during boot | ||
1005 | * @vm: vm_struct to register | ||
1006 | * @align: requested alignment | ||
1007 | * | ||
1008 | * This function is used to register kernel vm area before | ||
1009 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | ||
1010 | * proper values on entry and other fields should be zero. On return, | ||
1011 | * vm->addr contains the allocated address. | ||
1012 | * | ||
1013 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | ||
1014 | */ | ||
1015 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) | ||
1016 | { | ||
1017 | static size_t vm_init_off __initdata; | ||
1018 | unsigned long addr; | ||
1019 | |||
1020 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | ||
1021 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | ||
1022 | |||
1023 | vm->addr = (void *)addr; | ||
1024 | |||
1025 | vm->next = vmlist; | ||
1026 | vmlist = vm; | ||
1027 | } | ||
1028 | |||
993 | void __init vmalloc_init(void) | 1029 | void __init vmalloc_init(void) |
994 | { | 1030 | { |
995 | struct vmap_area *va; | 1031 | struct vmap_area *va; |
@@ -1017,6 +1053,58 @@ void __init vmalloc_init(void) | |||
1017 | vmap_initialized = true; | 1053 | vmap_initialized = true; |
1018 | } | 1054 | } |
1019 | 1055 | ||
1056 | /** | ||
1057 | * map_kernel_range_noflush - map kernel VM area with the specified pages | ||
1058 | * @addr: start of the VM area to map | ||
1059 | * @size: size of the VM area to map | ||
1060 | * @prot: page protection flags to use | ||
1061 | * @pages: pages to map | ||
1062 | * | ||
1063 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | ||
1064 | * specify should have been allocated using get_vm_area() and its | ||
1065 | * friends. | ||
1066 | * | ||
1067 | * NOTE: | ||
1068 | * This function does NOT do any cache flushing. The caller is | ||
1069 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | ||
1070 | * before calling this function. | ||
1071 | * | ||
1072 | * RETURNS: | ||
1073 | * The number of pages mapped on success, -errno on failure. | ||
1074 | */ | ||
1075 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | ||
1076 | pgprot_t prot, struct page **pages) | ||
1077 | { | ||
1078 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | ||
1079 | } | ||
1080 | |||
1081 | /** | ||
1082 | * unmap_kernel_range_noflush - unmap kernel VM area | ||
1083 | * @addr: start of the VM area to unmap | ||
1084 | * @size: size of the VM area to unmap | ||
1085 | * | ||
1086 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | ||
1087 | * specify should have been allocated using get_vm_area() and its | ||
1088 | * friends. | ||
1089 | * | ||
1090 | * NOTE: | ||
1091 | * This function does NOT do any cache flushing. The caller is | ||
1092 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | ||
1093 | * before calling this function and flush_tlb_kernel_range() after. | ||
1094 | */ | ||
1095 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | ||
1096 | { | ||
1097 | vunmap_page_range(addr, addr + size); | ||
1098 | } | ||
1099 | |||
1100 | /** | ||
1101 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | ||
1102 | * @addr: start of the VM area to unmap | ||
1103 | * @size: size of the VM area to unmap | ||
1104 | * | ||
1105 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | ||
1106 | * the unmapping and tlb after. | ||
1107 | */ | ||
1020 | void unmap_kernel_range(unsigned long addr, unsigned long size) | 1108 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1021 | { | 1109 | { |
1022 | unsigned long end = addr + size; | 1110 | unsigned long end = addr + size; |
@@ -1267,6 +1355,7 @@ EXPORT_SYMBOL(vfree); | |||
1267 | void vunmap(const void *addr) | 1355 | void vunmap(const void *addr) |
1268 | { | 1356 | { |
1269 | BUG_ON(in_interrupt()); | 1357 | BUG_ON(in_interrupt()); |
1358 | might_sleep(); | ||
1270 | __vunmap(addr, 0); | 1359 | __vunmap(addr, 0); |
1271 | } | 1360 | } |
1272 | EXPORT_SYMBOL(vunmap); | 1361 | EXPORT_SYMBOL(vunmap); |
@@ -1286,6 +1375,8 @@ void *vmap(struct page **pages, unsigned int count, | |||
1286 | { | 1375 | { |
1287 | struct vm_struct *area; | 1376 | struct vm_struct *area; |
1288 | 1377 | ||
1378 | might_sleep(); | ||
1379 | |||
1289 | if (count > num_physpages) | 1380 | if (count > num_physpages) |
1290 | return NULL; | 1381 | return NULL; |
1291 | 1382 | ||
diff --git a/mm/vmscan.c b/mm/vmscan.c index 6177e3bcd66b..56ddf41149eb 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -1262,7 +1262,6 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone, | |||
1262 | * Move the pages to the [file or anon] inactive list. | 1262 | * Move the pages to the [file or anon] inactive list. |
1263 | */ | 1263 | */ |
1264 | pagevec_init(&pvec, 1); | 1264 | pagevec_init(&pvec, 1); |
1265 | pgmoved = 0; | ||
1266 | lru = LRU_BASE + file * LRU_FILE; | 1265 | lru = LRU_BASE + file * LRU_FILE; |
1267 | 1266 | ||
1268 | spin_lock_irq(&zone->lru_lock); | 1267 | spin_lock_irq(&zone->lru_lock); |
@@ -1274,6 +1273,7 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone, | |||
1274 | */ | 1273 | */ |
1275 | reclaim_stat->recent_rotated[!!file] += pgmoved; | 1274 | reclaim_stat->recent_rotated[!!file] += pgmoved; |
1276 | 1275 | ||
1276 | pgmoved = 0; | ||
1277 | while (!list_empty(&l_inactive)) { | 1277 | while (!list_empty(&l_inactive)) { |
1278 | page = lru_to_page(&l_inactive); | 1278 | page = lru_to_page(&l_inactive); |
1279 | prefetchw_prev_lru_page(page, &l_inactive, flags); | 1279 | prefetchw_prev_lru_page(page, &l_inactive, flags); |
@@ -1469,7 +1469,7 @@ static void shrink_zone(int priority, struct zone *zone, | |||
1469 | int file = is_file_lru(l); | 1469 | int file = is_file_lru(l); |
1470 | int scan; | 1470 | int scan; |
1471 | 1471 | ||
1472 | scan = zone_page_state(zone, NR_LRU_BASE + l); | 1472 | scan = zone_nr_pages(zone, sc, l); |
1473 | if (priority) { | 1473 | if (priority) { |
1474 | scan >>= priority; | 1474 | scan >>= priority; |
1475 | scan = (scan * percent[file]) / 100; | 1475 | scan = (scan * percent[file]) / 100; |