diff options
author | Ingo Molnar <mingo@elte.hu> | 2008-08-14 06:19:59 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2008-08-14 06:19:59 -0400 |
commit | 8d7ccaa545490cdffdfaff0842436a8dd85cf47b (patch) | |
tree | 8129b5907161bc6ae26deb3645ce1e280c5e1f51 /mm/hugetlb.c | |
parent | b2139aa0eec330c711c5a279db361e5ef1178e78 (diff) | |
parent | 30a2f3c60a84092c8084dfe788b710f8d0768cd4 (diff) |
Merge commit 'v2.6.27-rc3' into x86/prototypes
Conflicts:
include/asm-x86/dma-mapping.h
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r-- | mm/hugetlb.c | 1681 |
1 files changed, 1289 insertions, 392 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index ab171274ef21..67a71191136e 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -9,43 +9,357 @@ | |||
9 | #include <linux/mm.h> | 9 | #include <linux/mm.h> |
10 | #include <linux/sysctl.h> | 10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> | 11 | #include <linux/highmem.h> |
12 | #include <linux/mmu_notifier.h> | ||
12 | #include <linux/nodemask.h> | 13 | #include <linux/nodemask.h> |
13 | #include <linux/pagemap.h> | 14 | #include <linux/pagemap.h> |
14 | #include <linux/mempolicy.h> | 15 | #include <linux/mempolicy.h> |
15 | #include <linux/cpuset.h> | 16 | #include <linux/cpuset.h> |
16 | #include <linux/mutex.h> | 17 | #include <linux/mutex.h> |
18 | #include <linux/bootmem.h> | ||
19 | #include <linux/sysfs.h> | ||
17 | 20 | ||
18 | #include <asm/page.h> | 21 | #include <asm/page.h> |
19 | #include <asm/pgtable.h> | 22 | #include <asm/pgtable.h> |
23 | #include <asm/io.h> | ||
20 | 24 | ||
21 | #include <linux/hugetlb.h> | 25 | #include <linux/hugetlb.h> |
22 | #include "internal.h" | 26 | #include "internal.h" |
23 | 27 | ||
24 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | 28 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; |
25 | static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; | ||
26 | static unsigned long surplus_huge_pages; | ||
27 | static unsigned long nr_overcommit_huge_pages; | ||
28 | unsigned long max_huge_pages; | ||
29 | unsigned long sysctl_overcommit_huge_pages; | ||
30 | static struct list_head hugepage_freelists[MAX_NUMNODES]; | ||
31 | static unsigned int nr_huge_pages_node[MAX_NUMNODES]; | ||
32 | static unsigned int free_huge_pages_node[MAX_NUMNODES]; | ||
33 | static unsigned int surplus_huge_pages_node[MAX_NUMNODES]; | ||
34 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; | 29 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; |
35 | unsigned long hugepages_treat_as_movable; | 30 | unsigned long hugepages_treat_as_movable; |
36 | static int hugetlb_next_nid; | 31 | |
32 | static int max_hstate; | ||
33 | unsigned int default_hstate_idx; | ||
34 | struct hstate hstates[HUGE_MAX_HSTATE]; | ||
35 | |||
36 | __initdata LIST_HEAD(huge_boot_pages); | ||
37 | |||
38 | /* for command line parsing */ | ||
39 | static struct hstate * __initdata parsed_hstate; | ||
40 | static unsigned long __initdata default_hstate_max_huge_pages; | ||
41 | static unsigned long __initdata default_hstate_size; | ||
42 | |||
43 | #define for_each_hstate(h) \ | ||
44 | for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | ||
37 | 45 | ||
38 | /* | 46 | /* |
39 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | 47 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages |
40 | */ | 48 | */ |
41 | static DEFINE_SPINLOCK(hugetlb_lock); | 49 | static DEFINE_SPINLOCK(hugetlb_lock); |
42 | 50 | ||
43 | static void clear_huge_page(struct page *page, unsigned long addr) | 51 | /* |
52 | * Region tracking -- allows tracking of reservations and instantiated pages | ||
53 | * across the pages in a mapping. | ||
54 | * | ||
55 | * The region data structures are protected by a combination of the mmap_sem | ||
56 | * and the hugetlb_instantion_mutex. To access or modify a region the caller | ||
57 | * must either hold the mmap_sem for write, or the mmap_sem for read and | ||
58 | * the hugetlb_instantiation mutex: | ||
59 | * | ||
60 | * down_write(&mm->mmap_sem); | ||
61 | * or | ||
62 | * down_read(&mm->mmap_sem); | ||
63 | * mutex_lock(&hugetlb_instantiation_mutex); | ||
64 | */ | ||
65 | struct file_region { | ||
66 | struct list_head link; | ||
67 | long from; | ||
68 | long to; | ||
69 | }; | ||
70 | |||
71 | static long region_add(struct list_head *head, long f, long t) | ||
72 | { | ||
73 | struct file_region *rg, *nrg, *trg; | ||
74 | |||
75 | /* Locate the region we are either in or before. */ | ||
76 | list_for_each_entry(rg, head, link) | ||
77 | if (f <= rg->to) | ||
78 | break; | ||
79 | |||
80 | /* Round our left edge to the current segment if it encloses us. */ | ||
81 | if (f > rg->from) | ||
82 | f = rg->from; | ||
83 | |||
84 | /* Check for and consume any regions we now overlap with. */ | ||
85 | nrg = rg; | ||
86 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
87 | if (&rg->link == head) | ||
88 | break; | ||
89 | if (rg->from > t) | ||
90 | break; | ||
91 | |||
92 | /* If this area reaches higher then extend our area to | ||
93 | * include it completely. If this is not the first area | ||
94 | * which we intend to reuse, free it. */ | ||
95 | if (rg->to > t) | ||
96 | t = rg->to; | ||
97 | if (rg != nrg) { | ||
98 | list_del(&rg->link); | ||
99 | kfree(rg); | ||
100 | } | ||
101 | } | ||
102 | nrg->from = f; | ||
103 | nrg->to = t; | ||
104 | return 0; | ||
105 | } | ||
106 | |||
107 | static long region_chg(struct list_head *head, long f, long t) | ||
108 | { | ||
109 | struct file_region *rg, *nrg; | ||
110 | long chg = 0; | ||
111 | |||
112 | /* Locate the region we are before or in. */ | ||
113 | list_for_each_entry(rg, head, link) | ||
114 | if (f <= rg->to) | ||
115 | break; | ||
116 | |||
117 | /* If we are below the current region then a new region is required. | ||
118 | * Subtle, allocate a new region at the position but make it zero | ||
119 | * size such that we can guarantee to record the reservation. */ | ||
120 | if (&rg->link == head || t < rg->from) { | ||
121 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | ||
122 | if (!nrg) | ||
123 | return -ENOMEM; | ||
124 | nrg->from = f; | ||
125 | nrg->to = f; | ||
126 | INIT_LIST_HEAD(&nrg->link); | ||
127 | list_add(&nrg->link, rg->link.prev); | ||
128 | |||
129 | return t - f; | ||
130 | } | ||
131 | |||
132 | /* Round our left edge to the current segment if it encloses us. */ | ||
133 | if (f > rg->from) | ||
134 | f = rg->from; | ||
135 | chg = t - f; | ||
136 | |||
137 | /* Check for and consume any regions we now overlap with. */ | ||
138 | list_for_each_entry(rg, rg->link.prev, link) { | ||
139 | if (&rg->link == head) | ||
140 | break; | ||
141 | if (rg->from > t) | ||
142 | return chg; | ||
143 | |||
144 | /* We overlap with this area, if it extends futher than | ||
145 | * us then we must extend ourselves. Account for its | ||
146 | * existing reservation. */ | ||
147 | if (rg->to > t) { | ||
148 | chg += rg->to - t; | ||
149 | t = rg->to; | ||
150 | } | ||
151 | chg -= rg->to - rg->from; | ||
152 | } | ||
153 | return chg; | ||
154 | } | ||
155 | |||
156 | static long region_truncate(struct list_head *head, long end) | ||
157 | { | ||
158 | struct file_region *rg, *trg; | ||
159 | long chg = 0; | ||
160 | |||
161 | /* Locate the region we are either in or before. */ | ||
162 | list_for_each_entry(rg, head, link) | ||
163 | if (end <= rg->to) | ||
164 | break; | ||
165 | if (&rg->link == head) | ||
166 | return 0; | ||
167 | |||
168 | /* If we are in the middle of a region then adjust it. */ | ||
169 | if (end > rg->from) { | ||
170 | chg = rg->to - end; | ||
171 | rg->to = end; | ||
172 | rg = list_entry(rg->link.next, typeof(*rg), link); | ||
173 | } | ||
174 | |||
175 | /* Drop any remaining regions. */ | ||
176 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
177 | if (&rg->link == head) | ||
178 | break; | ||
179 | chg += rg->to - rg->from; | ||
180 | list_del(&rg->link); | ||
181 | kfree(rg); | ||
182 | } | ||
183 | return chg; | ||
184 | } | ||
185 | |||
186 | static long region_count(struct list_head *head, long f, long t) | ||
187 | { | ||
188 | struct file_region *rg; | ||
189 | long chg = 0; | ||
190 | |||
191 | /* Locate each segment we overlap with, and count that overlap. */ | ||
192 | list_for_each_entry(rg, head, link) { | ||
193 | int seg_from; | ||
194 | int seg_to; | ||
195 | |||
196 | if (rg->to <= f) | ||
197 | continue; | ||
198 | if (rg->from >= t) | ||
199 | break; | ||
200 | |||
201 | seg_from = max(rg->from, f); | ||
202 | seg_to = min(rg->to, t); | ||
203 | |||
204 | chg += seg_to - seg_from; | ||
205 | } | ||
206 | |||
207 | return chg; | ||
208 | } | ||
209 | |||
210 | /* | ||
211 | * Convert the address within this vma to the page offset within | ||
212 | * the mapping, in pagecache page units; huge pages here. | ||
213 | */ | ||
214 | static pgoff_t vma_hugecache_offset(struct hstate *h, | ||
215 | struct vm_area_struct *vma, unsigned long address) | ||
216 | { | ||
217 | return ((address - vma->vm_start) >> huge_page_shift(h)) + | ||
218 | (vma->vm_pgoff >> huge_page_order(h)); | ||
219 | } | ||
220 | |||
221 | /* | ||
222 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | ||
223 | * bits of the reservation map pointer, which are always clear due to | ||
224 | * alignment. | ||
225 | */ | ||
226 | #define HPAGE_RESV_OWNER (1UL << 0) | ||
227 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | ||
228 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | ||
229 | |||
230 | /* | ||
231 | * These helpers are used to track how many pages are reserved for | ||
232 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | ||
233 | * is guaranteed to have their future faults succeed. | ||
234 | * | ||
235 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | ||
236 | * the reserve counters are updated with the hugetlb_lock held. It is safe | ||
237 | * to reset the VMA at fork() time as it is not in use yet and there is no | ||
238 | * chance of the global counters getting corrupted as a result of the values. | ||
239 | * | ||
240 | * The private mapping reservation is represented in a subtly different | ||
241 | * manner to a shared mapping. A shared mapping has a region map associated | ||
242 | * with the underlying file, this region map represents the backing file | ||
243 | * pages which have ever had a reservation assigned which this persists even | ||
244 | * after the page is instantiated. A private mapping has a region map | ||
245 | * associated with the original mmap which is attached to all VMAs which | ||
246 | * reference it, this region map represents those offsets which have consumed | ||
247 | * reservation ie. where pages have been instantiated. | ||
248 | */ | ||
249 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | ||
250 | { | ||
251 | return (unsigned long)vma->vm_private_data; | ||
252 | } | ||
253 | |||
254 | static void set_vma_private_data(struct vm_area_struct *vma, | ||
255 | unsigned long value) | ||
256 | { | ||
257 | vma->vm_private_data = (void *)value; | ||
258 | } | ||
259 | |||
260 | struct resv_map { | ||
261 | struct kref refs; | ||
262 | struct list_head regions; | ||
263 | }; | ||
264 | |||
265 | struct resv_map *resv_map_alloc(void) | ||
266 | { | ||
267 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | ||
268 | if (!resv_map) | ||
269 | return NULL; | ||
270 | |||
271 | kref_init(&resv_map->refs); | ||
272 | INIT_LIST_HEAD(&resv_map->regions); | ||
273 | |||
274 | return resv_map; | ||
275 | } | ||
276 | |||
277 | void resv_map_release(struct kref *ref) | ||
278 | { | ||
279 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | ||
280 | |||
281 | /* Clear out any active regions before we release the map. */ | ||
282 | region_truncate(&resv_map->regions, 0); | ||
283 | kfree(resv_map); | ||
284 | } | ||
285 | |||
286 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | ||
287 | { | ||
288 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
289 | if (!(vma->vm_flags & VM_SHARED)) | ||
290 | return (struct resv_map *)(get_vma_private_data(vma) & | ||
291 | ~HPAGE_RESV_MASK); | ||
292 | return 0; | ||
293 | } | ||
294 | |||
295 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | ||
296 | { | ||
297 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
298 | VM_BUG_ON(vma->vm_flags & VM_SHARED); | ||
299 | |||
300 | set_vma_private_data(vma, (get_vma_private_data(vma) & | ||
301 | HPAGE_RESV_MASK) | (unsigned long)map); | ||
302 | } | ||
303 | |||
304 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | ||
305 | { | ||
306 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
307 | VM_BUG_ON(vma->vm_flags & VM_SHARED); | ||
308 | |||
309 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | ||
310 | } | ||
311 | |||
312 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | ||
313 | { | ||
314 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
315 | |||
316 | return (get_vma_private_data(vma) & flag) != 0; | ||
317 | } | ||
318 | |||
319 | /* Decrement the reserved pages in the hugepage pool by one */ | ||
320 | static void decrement_hugepage_resv_vma(struct hstate *h, | ||
321 | struct vm_area_struct *vma) | ||
322 | { | ||
323 | if (vma->vm_flags & VM_NORESERVE) | ||
324 | return; | ||
325 | |||
326 | if (vma->vm_flags & VM_SHARED) { | ||
327 | /* Shared mappings always use reserves */ | ||
328 | h->resv_huge_pages--; | ||
329 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
330 | /* | ||
331 | * Only the process that called mmap() has reserves for | ||
332 | * private mappings. | ||
333 | */ | ||
334 | h->resv_huge_pages--; | ||
335 | } | ||
336 | } | ||
337 | |||
338 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | ||
339 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | ||
340 | { | ||
341 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
342 | if (!(vma->vm_flags & VM_SHARED)) | ||
343 | vma->vm_private_data = (void *)0; | ||
344 | } | ||
345 | |||
346 | /* Returns true if the VMA has associated reserve pages */ | ||
347 | static int vma_has_reserves(struct vm_area_struct *vma) | ||
348 | { | ||
349 | if (vma->vm_flags & VM_SHARED) | ||
350 | return 1; | ||
351 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | ||
352 | return 1; | ||
353 | return 0; | ||
354 | } | ||
355 | |||
356 | static void clear_huge_page(struct page *page, | ||
357 | unsigned long addr, unsigned long sz) | ||
44 | { | 358 | { |
45 | int i; | 359 | int i; |
46 | 360 | ||
47 | might_sleep(); | 361 | might_sleep(); |
48 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { | 362 | for (i = 0; i < sz/PAGE_SIZE; i++) { |
49 | cond_resched(); | 363 | cond_resched(); |
50 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); | 364 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); |
51 | } | 365 | } |
@@ -55,42 +369,44 @@ static void copy_huge_page(struct page *dst, struct page *src, | |||
55 | unsigned long addr, struct vm_area_struct *vma) | 369 | unsigned long addr, struct vm_area_struct *vma) |
56 | { | 370 | { |
57 | int i; | 371 | int i; |
372 | struct hstate *h = hstate_vma(vma); | ||
58 | 373 | ||
59 | might_sleep(); | 374 | might_sleep(); |
60 | for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { | 375 | for (i = 0; i < pages_per_huge_page(h); i++) { |
61 | cond_resched(); | 376 | cond_resched(); |
62 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | 377 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); |
63 | } | 378 | } |
64 | } | 379 | } |
65 | 380 | ||
66 | static void enqueue_huge_page(struct page *page) | 381 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
67 | { | 382 | { |
68 | int nid = page_to_nid(page); | 383 | int nid = page_to_nid(page); |
69 | list_add(&page->lru, &hugepage_freelists[nid]); | 384 | list_add(&page->lru, &h->hugepage_freelists[nid]); |
70 | free_huge_pages++; | 385 | h->free_huge_pages++; |
71 | free_huge_pages_node[nid]++; | 386 | h->free_huge_pages_node[nid]++; |
72 | } | 387 | } |
73 | 388 | ||
74 | static struct page *dequeue_huge_page(void) | 389 | static struct page *dequeue_huge_page(struct hstate *h) |
75 | { | 390 | { |
76 | int nid; | 391 | int nid; |
77 | struct page *page = NULL; | 392 | struct page *page = NULL; |
78 | 393 | ||
79 | for (nid = 0; nid < MAX_NUMNODES; ++nid) { | 394 | for (nid = 0; nid < MAX_NUMNODES; ++nid) { |
80 | if (!list_empty(&hugepage_freelists[nid])) { | 395 | if (!list_empty(&h->hugepage_freelists[nid])) { |
81 | page = list_entry(hugepage_freelists[nid].next, | 396 | page = list_entry(h->hugepage_freelists[nid].next, |
82 | struct page, lru); | 397 | struct page, lru); |
83 | list_del(&page->lru); | 398 | list_del(&page->lru); |
84 | free_huge_pages--; | 399 | h->free_huge_pages--; |
85 | free_huge_pages_node[nid]--; | 400 | h->free_huge_pages_node[nid]--; |
86 | break; | 401 | break; |
87 | } | 402 | } |
88 | } | 403 | } |
89 | return page; | 404 | return page; |
90 | } | 405 | } |
91 | 406 | ||
92 | static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | 407 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
93 | unsigned long address) | 408 | struct vm_area_struct *vma, |
409 | unsigned long address, int avoid_reserve) | ||
94 | { | 410 | { |
95 | int nid; | 411 | int nid; |
96 | struct page *page = NULL; | 412 | struct page *page = NULL; |
@@ -101,18 +417,33 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | |||
101 | struct zone *zone; | 417 | struct zone *zone; |
102 | struct zoneref *z; | 418 | struct zoneref *z; |
103 | 419 | ||
420 | /* | ||
421 | * A child process with MAP_PRIVATE mappings created by their parent | ||
422 | * have no page reserves. This check ensures that reservations are | ||
423 | * not "stolen". The child may still get SIGKILLed | ||
424 | */ | ||
425 | if (!vma_has_reserves(vma) && | ||
426 | h->free_huge_pages - h->resv_huge_pages == 0) | ||
427 | return NULL; | ||
428 | |||
429 | /* If reserves cannot be used, ensure enough pages are in the pool */ | ||
430 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | ||
431 | return NULL; | ||
432 | |||
104 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 433 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
105 | MAX_NR_ZONES - 1, nodemask) { | 434 | MAX_NR_ZONES - 1, nodemask) { |
106 | nid = zone_to_nid(zone); | 435 | nid = zone_to_nid(zone); |
107 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && | 436 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && |
108 | !list_empty(&hugepage_freelists[nid])) { | 437 | !list_empty(&h->hugepage_freelists[nid])) { |
109 | page = list_entry(hugepage_freelists[nid].next, | 438 | page = list_entry(h->hugepage_freelists[nid].next, |
110 | struct page, lru); | 439 | struct page, lru); |
111 | list_del(&page->lru); | 440 | list_del(&page->lru); |
112 | free_huge_pages--; | 441 | h->free_huge_pages--; |
113 | free_huge_pages_node[nid]--; | 442 | h->free_huge_pages_node[nid]--; |
114 | if (vma && vma->vm_flags & VM_MAYSHARE) | 443 | |
115 | resv_huge_pages--; | 444 | if (!avoid_reserve) |
445 | decrement_hugepage_resv_vma(h, vma); | ||
446 | |||
116 | break; | 447 | break; |
117 | } | 448 | } |
118 | } | 449 | } |
@@ -120,12 +451,13 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | |||
120 | return page; | 451 | return page; |
121 | } | 452 | } |
122 | 453 | ||
123 | static void update_and_free_page(struct page *page) | 454 | static void update_and_free_page(struct hstate *h, struct page *page) |
124 | { | 455 | { |
125 | int i; | 456 | int i; |
126 | nr_huge_pages--; | 457 | |
127 | nr_huge_pages_node[page_to_nid(page)]--; | 458 | h->nr_huge_pages--; |
128 | for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { | 459 | h->nr_huge_pages_node[page_to_nid(page)]--; |
460 | for (i = 0; i < pages_per_huge_page(h); i++) { | ||
129 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | 461 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | |
130 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | 462 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | |
131 | 1 << PG_private | 1<< PG_writeback); | 463 | 1 << PG_private | 1<< PG_writeback); |
@@ -133,11 +465,27 @@ static void update_and_free_page(struct page *page) | |||
133 | set_compound_page_dtor(page, NULL); | 465 | set_compound_page_dtor(page, NULL); |
134 | set_page_refcounted(page); | 466 | set_page_refcounted(page); |
135 | arch_release_hugepage(page); | 467 | arch_release_hugepage(page); |
136 | __free_pages(page, HUGETLB_PAGE_ORDER); | 468 | __free_pages(page, huge_page_order(h)); |
469 | } | ||
470 | |||
471 | struct hstate *size_to_hstate(unsigned long size) | ||
472 | { | ||
473 | struct hstate *h; | ||
474 | |||
475 | for_each_hstate(h) { | ||
476 | if (huge_page_size(h) == size) | ||
477 | return h; | ||
478 | } | ||
479 | return NULL; | ||
137 | } | 480 | } |
138 | 481 | ||
139 | static void free_huge_page(struct page *page) | 482 | static void free_huge_page(struct page *page) |
140 | { | 483 | { |
484 | /* | ||
485 | * Can't pass hstate in here because it is called from the | ||
486 | * compound page destructor. | ||
487 | */ | ||
488 | struct hstate *h = page_hstate(page); | ||
141 | int nid = page_to_nid(page); | 489 | int nid = page_to_nid(page); |
142 | struct address_space *mapping; | 490 | struct address_space *mapping; |
143 | 491 | ||
@@ -147,12 +495,12 @@ static void free_huge_page(struct page *page) | |||
147 | INIT_LIST_HEAD(&page->lru); | 495 | INIT_LIST_HEAD(&page->lru); |
148 | 496 | ||
149 | spin_lock(&hugetlb_lock); | 497 | spin_lock(&hugetlb_lock); |
150 | if (surplus_huge_pages_node[nid]) { | 498 | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { |
151 | update_and_free_page(page); | 499 | update_and_free_page(h, page); |
152 | surplus_huge_pages--; | 500 | h->surplus_huge_pages--; |
153 | surplus_huge_pages_node[nid]--; | 501 | h->surplus_huge_pages_node[nid]--; |
154 | } else { | 502 | } else { |
155 | enqueue_huge_page(page); | 503 | enqueue_huge_page(h, page); |
156 | } | 504 | } |
157 | spin_unlock(&hugetlb_lock); | 505 | spin_unlock(&hugetlb_lock); |
158 | if (mapping) | 506 | if (mapping) |
@@ -164,7 +512,7 @@ static void free_huge_page(struct page *page) | |||
164 | * balanced by operating on them in a round-robin fashion. | 512 | * balanced by operating on them in a round-robin fashion. |
165 | * Returns 1 if an adjustment was made. | 513 | * Returns 1 if an adjustment was made. |
166 | */ | 514 | */ |
167 | static int adjust_pool_surplus(int delta) | 515 | static int adjust_pool_surplus(struct hstate *h, int delta) |
168 | { | 516 | { |
169 | static int prev_nid; | 517 | static int prev_nid; |
170 | int nid = prev_nid; | 518 | int nid = prev_nid; |
@@ -177,15 +525,15 @@ static int adjust_pool_surplus(int delta) | |||
177 | nid = first_node(node_online_map); | 525 | nid = first_node(node_online_map); |
178 | 526 | ||
179 | /* To shrink on this node, there must be a surplus page */ | 527 | /* To shrink on this node, there must be a surplus page */ |
180 | if (delta < 0 && !surplus_huge_pages_node[nid]) | 528 | if (delta < 0 && !h->surplus_huge_pages_node[nid]) |
181 | continue; | 529 | continue; |
182 | /* Surplus cannot exceed the total number of pages */ | 530 | /* Surplus cannot exceed the total number of pages */ |
183 | if (delta > 0 && surplus_huge_pages_node[nid] >= | 531 | if (delta > 0 && h->surplus_huge_pages_node[nid] >= |
184 | nr_huge_pages_node[nid]) | 532 | h->nr_huge_pages_node[nid]) |
185 | continue; | 533 | continue; |
186 | 534 | ||
187 | surplus_huge_pages += delta; | 535 | h->surplus_huge_pages += delta; |
188 | surplus_huge_pages_node[nid] += delta; | 536 | h->surplus_huge_pages_node[nid] += delta; |
189 | ret = 1; | 537 | ret = 1; |
190 | break; | 538 | break; |
191 | } while (nid != prev_nid); | 539 | } while (nid != prev_nid); |
@@ -194,59 +542,74 @@ static int adjust_pool_surplus(int delta) | |||
194 | return ret; | 542 | return ret; |
195 | } | 543 | } |
196 | 544 | ||
197 | static struct page *alloc_fresh_huge_page_node(int nid) | 545 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
546 | { | ||
547 | set_compound_page_dtor(page, free_huge_page); | ||
548 | spin_lock(&hugetlb_lock); | ||
549 | h->nr_huge_pages++; | ||
550 | h->nr_huge_pages_node[nid]++; | ||
551 | spin_unlock(&hugetlb_lock); | ||
552 | put_page(page); /* free it into the hugepage allocator */ | ||
553 | } | ||
554 | |||
555 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) | ||
198 | { | 556 | { |
199 | struct page *page; | 557 | struct page *page; |
200 | 558 | ||
559 | if (h->order >= MAX_ORDER) | ||
560 | return NULL; | ||
561 | |||
201 | page = alloc_pages_node(nid, | 562 | page = alloc_pages_node(nid, |
202 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | 563 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| |
203 | __GFP_REPEAT|__GFP_NOWARN, | 564 | __GFP_REPEAT|__GFP_NOWARN, |
204 | HUGETLB_PAGE_ORDER); | 565 | huge_page_order(h)); |
205 | if (page) { | 566 | if (page) { |
206 | if (arch_prepare_hugepage(page)) { | 567 | if (arch_prepare_hugepage(page)) { |
207 | __free_pages(page, HUGETLB_PAGE_ORDER); | 568 | __free_pages(page, huge_page_order(h)); |
208 | return NULL; | 569 | return NULL; |
209 | } | 570 | } |
210 | set_compound_page_dtor(page, free_huge_page); | 571 | prep_new_huge_page(h, page, nid); |
211 | spin_lock(&hugetlb_lock); | ||
212 | nr_huge_pages++; | ||
213 | nr_huge_pages_node[nid]++; | ||
214 | spin_unlock(&hugetlb_lock); | ||
215 | put_page(page); /* free it into the hugepage allocator */ | ||
216 | } | 572 | } |
217 | 573 | ||
218 | return page; | 574 | return page; |
219 | } | 575 | } |
220 | 576 | ||
221 | static int alloc_fresh_huge_page(void) | 577 | /* |
578 | * Use a helper variable to find the next node and then | ||
579 | * copy it back to hugetlb_next_nid afterwards: | ||
580 | * otherwise there's a window in which a racer might | ||
581 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | ||
582 | * But we don't need to use a spin_lock here: it really | ||
583 | * doesn't matter if occasionally a racer chooses the | ||
584 | * same nid as we do. Move nid forward in the mask even | ||
585 | * if we just successfully allocated a hugepage so that | ||
586 | * the next caller gets hugepages on the next node. | ||
587 | */ | ||
588 | static int hstate_next_node(struct hstate *h) | ||
589 | { | ||
590 | int next_nid; | ||
591 | next_nid = next_node(h->hugetlb_next_nid, node_online_map); | ||
592 | if (next_nid == MAX_NUMNODES) | ||
593 | next_nid = first_node(node_online_map); | ||
594 | h->hugetlb_next_nid = next_nid; | ||
595 | return next_nid; | ||
596 | } | ||
597 | |||
598 | static int alloc_fresh_huge_page(struct hstate *h) | ||
222 | { | 599 | { |
223 | struct page *page; | 600 | struct page *page; |
224 | int start_nid; | 601 | int start_nid; |
225 | int next_nid; | 602 | int next_nid; |
226 | int ret = 0; | 603 | int ret = 0; |
227 | 604 | ||
228 | start_nid = hugetlb_next_nid; | 605 | start_nid = h->hugetlb_next_nid; |
229 | 606 | ||
230 | do { | 607 | do { |
231 | page = alloc_fresh_huge_page_node(hugetlb_next_nid); | 608 | page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); |
232 | if (page) | 609 | if (page) |
233 | ret = 1; | 610 | ret = 1; |
234 | /* | 611 | next_nid = hstate_next_node(h); |
235 | * Use a helper variable to find the next node and then | 612 | } while (!page && h->hugetlb_next_nid != start_nid); |
236 | * copy it back to hugetlb_next_nid afterwards: | ||
237 | * otherwise there's a window in which a racer might | ||
238 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | ||
239 | * But we don't need to use a spin_lock here: it really | ||
240 | * doesn't matter if occasionally a racer chooses the | ||
241 | * same nid as we do. Move nid forward in the mask even | ||
242 | * if we just successfully allocated a hugepage so that | ||
243 | * the next caller gets hugepages on the next node. | ||
244 | */ | ||
245 | next_nid = next_node(hugetlb_next_nid, node_online_map); | ||
246 | if (next_nid == MAX_NUMNODES) | ||
247 | next_nid = first_node(node_online_map); | ||
248 | hugetlb_next_nid = next_nid; | ||
249 | } while (!page && hugetlb_next_nid != start_nid); | ||
250 | 613 | ||
251 | if (ret) | 614 | if (ret) |
252 | count_vm_event(HTLB_BUDDY_PGALLOC); | 615 | count_vm_event(HTLB_BUDDY_PGALLOC); |
@@ -256,12 +619,15 @@ static int alloc_fresh_huge_page(void) | |||
256 | return ret; | 619 | return ret; |
257 | } | 620 | } |
258 | 621 | ||
259 | static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | 622 | static struct page *alloc_buddy_huge_page(struct hstate *h, |
260 | unsigned long address) | 623 | struct vm_area_struct *vma, unsigned long address) |
261 | { | 624 | { |
262 | struct page *page; | 625 | struct page *page; |
263 | unsigned int nid; | 626 | unsigned int nid; |
264 | 627 | ||
628 | if (h->order >= MAX_ORDER) | ||
629 | return NULL; | ||
630 | |||
265 | /* | 631 | /* |
266 | * Assume we will successfully allocate the surplus page to | 632 | * Assume we will successfully allocate the surplus page to |
267 | * prevent racing processes from causing the surplus to exceed | 633 | * prevent racing processes from causing the surplus to exceed |
@@ -286,18 +652,23 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
286 | * per-node value is checked there. | 652 | * per-node value is checked there. |
287 | */ | 653 | */ |
288 | spin_lock(&hugetlb_lock); | 654 | spin_lock(&hugetlb_lock); |
289 | if (surplus_huge_pages >= nr_overcommit_huge_pages) { | 655 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
290 | spin_unlock(&hugetlb_lock); | 656 | spin_unlock(&hugetlb_lock); |
291 | return NULL; | 657 | return NULL; |
292 | } else { | 658 | } else { |
293 | nr_huge_pages++; | 659 | h->nr_huge_pages++; |
294 | surplus_huge_pages++; | 660 | h->surplus_huge_pages++; |
295 | } | 661 | } |
296 | spin_unlock(&hugetlb_lock); | 662 | spin_unlock(&hugetlb_lock); |
297 | 663 | ||
298 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 664 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| |
299 | __GFP_REPEAT|__GFP_NOWARN, | 665 | __GFP_REPEAT|__GFP_NOWARN, |
300 | HUGETLB_PAGE_ORDER); | 666 | huge_page_order(h)); |
667 | |||
668 | if (page && arch_prepare_hugepage(page)) { | ||
669 | __free_pages(page, huge_page_order(h)); | ||
670 | return NULL; | ||
671 | } | ||
301 | 672 | ||
302 | spin_lock(&hugetlb_lock); | 673 | spin_lock(&hugetlb_lock); |
303 | if (page) { | 674 | if (page) { |
@@ -312,12 +683,12 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
312 | /* | 683 | /* |
313 | * We incremented the global counters already | 684 | * We incremented the global counters already |
314 | */ | 685 | */ |
315 | nr_huge_pages_node[nid]++; | 686 | h->nr_huge_pages_node[nid]++; |
316 | surplus_huge_pages_node[nid]++; | 687 | h->surplus_huge_pages_node[nid]++; |
317 | __count_vm_event(HTLB_BUDDY_PGALLOC); | 688 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
318 | } else { | 689 | } else { |
319 | nr_huge_pages--; | 690 | h->nr_huge_pages--; |
320 | surplus_huge_pages--; | 691 | h->surplus_huge_pages--; |
321 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 692 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
322 | } | 693 | } |
323 | spin_unlock(&hugetlb_lock); | 694 | spin_unlock(&hugetlb_lock); |
@@ -329,16 +700,16 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
329 | * Increase the hugetlb pool such that it can accomodate a reservation | 700 | * Increase the hugetlb pool such that it can accomodate a reservation |
330 | * of size 'delta'. | 701 | * of size 'delta'. |
331 | */ | 702 | */ |
332 | static int gather_surplus_pages(int delta) | 703 | static int gather_surplus_pages(struct hstate *h, int delta) |
333 | { | 704 | { |
334 | struct list_head surplus_list; | 705 | struct list_head surplus_list; |
335 | struct page *page, *tmp; | 706 | struct page *page, *tmp; |
336 | int ret, i; | 707 | int ret, i; |
337 | int needed, allocated; | 708 | int needed, allocated; |
338 | 709 | ||
339 | needed = (resv_huge_pages + delta) - free_huge_pages; | 710 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
340 | if (needed <= 0) { | 711 | if (needed <= 0) { |
341 | resv_huge_pages += delta; | 712 | h->resv_huge_pages += delta; |
342 | return 0; | 713 | return 0; |
343 | } | 714 | } |
344 | 715 | ||
@@ -349,7 +720,7 @@ static int gather_surplus_pages(int delta) | |||
349 | retry: | 720 | retry: |
350 | spin_unlock(&hugetlb_lock); | 721 | spin_unlock(&hugetlb_lock); |
351 | for (i = 0; i < needed; i++) { | 722 | for (i = 0; i < needed; i++) { |
352 | page = alloc_buddy_huge_page(NULL, 0); | 723 | page = alloc_buddy_huge_page(h, NULL, 0); |
353 | if (!page) { | 724 | if (!page) { |
354 | /* | 725 | /* |
355 | * We were not able to allocate enough pages to | 726 | * We were not able to allocate enough pages to |
@@ -370,7 +741,8 @@ retry: | |||
370 | * because either resv_huge_pages or free_huge_pages may have changed. | 741 | * because either resv_huge_pages or free_huge_pages may have changed. |
371 | */ | 742 | */ |
372 | spin_lock(&hugetlb_lock); | 743 | spin_lock(&hugetlb_lock); |
373 | needed = (resv_huge_pages + delta) - (free_huge_pages + allocated); | 744 | needed = (h->resv_huge_pages + delta) - |
745 | (h->free_huge_pages + allocated); | ||
374 | if (needed > 0) | 746 | if (needed > 0) |
375 | goto retry; | 747 | goto retry; |
376 | 748 | ||
@@ -383,7 +755,7 @@ retry: | |||
383 | * before they are reserved. | 755 | * before they are reserved. |
384 | */ | 756 | */ |
385 | needed += allocated; | 757 | needed += allocated; |
386 | resv_huge_pages += delta; | 758 | h->resv_huge_pages += delta; |
387 | ret = 0; | 759 | ret = 0; |
388 | free: | 760 | free: |
389 | /* Free the needed pages to the hugetlb pool */ | 761 | /* Free the needed pages to the hugetlb pool */ |
@@ -391,7 +763,7 @@ free: | |||
391 | if ((--needed) < 0) | 763 | if ((--needed) < 0) |
392 | break; | 764 | break; |
393 | list_del(&page->lru); | 765 | list_del(&page->lru); |
394 | enqueue_huge_page(page); | 766 | enqueue_huge_page(h, page); |
395 | } | 767 | } |
396 | 768 | ||
397 | /* Free unnecessary surplus pages to the buddy allocator */ | 769 | /* Free unnecessary surplus pages to the buddy allocator */ |
@@ -419,7 +791,8 @@ free: | |||
419 | * allocated to satisfy the reservation must be explicitly freed if they were | 791 | * allocated to satisfy the reservation must be explicitly freed if they were |
420 | * never used. | 792 | * never used. |
421 | */ | 793 | */ |
422 | static void return_unused_surplus_pages(unsigned long unused_resv_pages) | 794 | static void return_unused_surplus_pages(struct hstate *h, |
795 | unsigned long unused_resv_pages) | ||
423 | { | 796 | { |
424 | static int nid = -1; | 797 | static int nid = -1; |
425 | struct page *page; | 798 | struct page *page; |
@@ -434,157 +807,269 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages) | |||
434 | unsigned long remaining_iterations = num_online_nodes(); | 807 | unsigned long remaining_iterations = num_online_nodes(); |
435 | 808 | ||
436 | /* Uncommit the reservation */ | 809 | /* Uncommit the reservation */ |
437 | resv_huge_pages -= unused_resv_pages; | 810 | h->resv_huge_pages -= unused_resv_pages; |
438 | 811 | ||
439 | nr_pages = min(unused_resv_pages, surplus_huge_pages); | 812 | /* Cannot return gigantic pages currently */ |
813 | if (h->order >= MAX_ORDER) | ||
814 | return; | ||
815 | |||
816 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); | ||
440 | 817 | ||
441 | while (remaining_iterations-- && nr_pages) { | 818 | while (remaining_iterations-- && nr_pages) { |
442 | nid = next_node(nid, node_online_map); | 819 | nid = next_node(nid, node_online_map); |
443 | if (nid == MAX_NUMNODES) | 820 | if (nid == MAX_NUMNODES) |
444 | nid = first_node(node_online_map); | 821 | nid = first_node(node_online_map); |
445 | 822 | ||
446 | if (!surplus_huge_pages_node[nid]) | 823 | if (!h->surplus_huge_pages_node[nid]) |
447 | continue; | 824 | continue; |
448 | 825 | ||
449 | if (!list_empty(&hugepage_freelists[nid])) { | 826 | if (!list_empty(&h->hugepage_freelists[nid])) { |
450 | page = list_entry(hugepage_freelists[nid].next, | 827 | page = list_entry(h->hugepage_freelists[nid].next, |
451 | struct page, lru); | 828 | struct page, lru); |
452 | list_del(&page->lru); | 829 | list_del(&page->lru); |
453 | update_and_free_page(page); | 830 | update_and_free_page(h, page); |
454 | free_huge_pages--; | 831 | h->free_huge_pages--; |
455 | free_huge_pages_node[nid]--; | 832 | h->free_huge_pages_node[nid]--; |
456 | surplus_huge_pages--; | 833 | h->surplus_huge_pages--; |
457 | surplus_huge_pages_node[nid]--; | 834 | h->surplus_huge_pages_node[nid]--; |
458 | nr_pages--; | 835 | nr_pages--; |
459 | remaining_iterations = num_online_nodes(); | 836 | remaining_iterations = num_online_nodes(); |
460 | } | 837 | } |
461 | } | 838 | } |
462 | } | 839 | } |
463 | 840 | ||
841 | /* | ||
842 | * Determine if the huge page at addr within the vma has an associated | ||
843 | * reservation. Where it does not we will need to logically increase | ||
844 | * reservation and actually increase quota before an allocation can occur. | ||
845 | * Where any new reservation would be required the reservation change is | ||
846 | * prepared, but not committed. Once the page has been quota'd allocated | ||
847 | * an instantiated the change should be committed via vma_commit_reservation. | ||
848 | * No action is required on failure. | ||
849 | */ | ||
850 | static int vma_needs_reservation(struct hstate *h, | ||
851 | struct vm_area_struct *vma, unsigned long addr) | ||
852 | { | ||
853 | struct address_space *mapping = vma->vm_file->f_mapping; | ||
854 | struct inode *inode = mapping->host; | ||
855 | |||
856 | if (vma->vm_flags & VM_SHARED) { | ||
857 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
858 | return region_chg(&inode->i_mapping->private_list, | ||
859 | idx, idx + 1); | ||
860 | |||
861 | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
862 | return 1; | ||
863 | |||
864 | } else { | ||
865 | int err; | ||
866 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
867 | struct resv_map *reservations = vma_resv_map(vma); | ||
464 | 868 | ||
465 | static struct page *alloc_huge_page_shared(struct vm_area_struct *vma, | 869 | err = region_chg(&reservations->regions, idx, idx + 1); |
466 | unsigned long addr) | 870 | if (err < 0) |
871 | return err; | ||
872 | return 0; | ||
873 | } | ||
874 | } | ||
875 | static void vma_commit_reservation(struct hstate *h, | ||
876 | struct vm_area_struct *vma, unsigned long addr) | ||
467 | { | 877 | { |
468 | struct page *page; | 878 | struct address_space *mapping = vma->vm_file->f_mapping; |
879 | struct inode *inode = mapping->host; | ||
469 | 880 | ||
470 | spin_lock(&hugetlb_lock); | 881 | if (vma->vm_flags & VM_SHARED) { |
471 | page = dequeue_huge_page_vma(vma, addr); | 882 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
472 | spin_unlock(&hugetlb_lock); | 883 | region_add(&inode->i_mapping->private_list, idx, idx + 1); |
473 | return page ? page : ERR_PTR(-VM_FAULT_OOM); | 884 | |
885 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
886 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
887 | struct resv_map *reservations = vma_resv_map(vma); | ||
888 | |||
889 | /* Mark this page used in the map. */ | ||
890 | region_add(&reservations->regions, idx, idx + 1); | ||
891 | } | ||
474 | } | 892 | } |
475 | 893 | ||
476 | static struct page *alloc_huge_page_private(struct vm_area_struct *vma, | 894 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
477 | unsigned long addr) | 895 | unsigned long addr, int avoid_reserve) |
478 | { | 896 | { |
479 | struct page *page = NULL; | 897 | struct hstate *h = hstate_vma(vma); |
898 | struct page *page; | ||
899 | struct address_space *mapping = vma->vm_file->f_mapping; | ||
900 | struct inode *inode = mapping->host; | ||
901 | unsigned int chg; | ||
480 | 902 | ||
481 | if (hugetlb_get_quota(vma->vm_file->f_mapping, 1)) | 903 | /* |
482 | return ERR_PTR(-VM_FAULT_SIGBUS); | 904 | * Processes that did not create the mapping will have no reserves and |
905 | * will not have accounted against quota. Check that the quota can be | ||
906 | * made before satisfying the allocation | ||
907 | * MAP_NORESERVE mappings may also need pages and quota allocated | ||
908 | * if no reserve mapping overlaps. | ||
909 | */ | ||
910 | chg = vma_needs_reservation(h, vma, addr); | ||
911 | if (chg < 0) | ||
912 | return ERR_PTR(chg); | ||
913 | if (chg) | ||
914 | if (hugetlb_get_quota(inode->i_mapping, chg)) | ||
915 | return ERR_PTR(-ENOSPC); | ||
483 | 916 | ||
484 | spin_lock(&hugetlb_lock); | 917 | spin_lock(&hugetlb_lock); |
485 | if (free_huge_pages > resv_huge_pages) | 918 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); |
486 | page = dequeue_huge_page_vma(vma, addr); | ||
487 | spin_unlock(&hugetlb_lock); | 919 | spin_unlock(&hugetlb_lock); |
920 | |||
488 | if (!page) { | 921 | if (!page) { |
489 | page = alloc_buddy_huge_page(vma, addr); | 922 | page = alloc_buddy_huge_page(h, vma, addr); |
490 | if (!page) { | 923 | if (!page) { |
491 | hugetlb_put_quota(vma->vm_file->f_mapping, 1); | 924 | hugetlb_put_quota(inode->i_mapping, chg); |
492 | return ERR_PTR(-VM_FAULT_OOM); | 925 | return ERR_PTR(-VM_FAULT_OOM); |
493 | } | 926 | } |
494 | } | 927 | } |
928 | |||
929 | set_page_refcounted(page); | ||
930 | set_page_private(page, (unsigned long) mapping); | ||
931 | |||
932 | vma_commit_reservation(h, vma, addr); | ||
933 | |||
495 | return page; | 934 | return page; |
496 | } | 935 | } |
497 | 936 | ||
498 | static struct page *alloc_huge_page(struct vm_area_struct *vma, | 937 | __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h) |
499 | unsigned long addr) | ||
500 | { | 938 | { |
501 | struct page *page; | 939 | struct huge_bootmem_page *m; |
502 | struct address_space *mapping = vma->vm_file->f_mapping; | 940 | int nr_nodes = nodes_weight(node_online_map); |
503 | 941 | ||
504 | if (vma->vm_flags & VM_MAYSHARE) | 942 | while (nr_nodes) { |
505 | page = alloc_huge_page_shared(vma, addr); | 943 | void *addr; |
506 | else | 944 | |
507 | page = alloc_huge_page_private(vma, addr); | 945 | addr = __alloc_bootmem_node_nopanic( |
946 | NODE_DATA(h->hugetlb_next_nid), | ||
947 | huge_page_size(h), huge_page_size(h), 0); | ||
508 | 948 | ||
509 | if (!IS_ERR(page)) { | 949 | if (addr) { |
510 | set_page_refcounted(page); | 950 | /* |
511 | set_page_private(page, (unsigned long) mapping); | 951 | * Use the beginning of the huge page to store the |
952 | * huge_bootmem_page struct (until gather_bootmem | ||
953 | * puts them into the mem_map). | ||
954 | */ | ||
955 | m = addr; | ||
956 | if (m) | ||
957 | goto found; | ||
958 | } | ||
959 | hstate_next_node(h); | ||
960 | nr_nodes--; | ||
512 | } | 961 | } |
513 | return page; | 962 | return 0; |
963 | |||
964 | found: | ||
965 | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | ||
966 | /* Put them into a private list first because mem_map is not up yet */ | ||
967 | list_add(&m->list, &huge_boot_pages); | ||
968 | m->hstate = h; | ||
969 | return 1; | ||
514 | } | 970 | } |
515 | 971 | ||
516 | static int __init hugetlb_init(void) | 972 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
973 | static void __init gather_bootmem_prealloc(void) | ||
517 | { | 974 | { |
518 | unsigned long i; | 975 | struct huge_bootmem_page *m; |
519 | 976 | ||
520 | if (HPAGE_SHIFT == 0) | 977 | list_for_each_entry(m, &huge_boot_pages, list) { |
521 | return 0; | 978 | struct page *page = virt_to_page(m); |
522 | 979 | struct hstate *h = m->hstate; | |
523 | for (i = 0; i < MAX_NUMNODES; ++i) | 980 | __ClearPageReserved(page); |
524 | INIT_LIST_HEAD(&hugepage_freelists[i]); | 981 | WARN_ON(page_count(page) != 1); |
982 | prep_compound_page(page, h->order); | ||
983 | prep_new_huge_page(h, page, page_to_nid(page)); | ||
984 | } | ||
985 | } | ||
525 | 986 | ||
526 | hugetlb_next_nid = first_node(node_online_map); | 987 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
988 | { | ||
989 | unsigned long i; | ||
527 | 990 | ||
528 | for (i = 0; i < max_huge_pages; ++i) { | 991 | for (i = 0; i < h->max_huge_pages; ++i) { |
529 | if (!alloc_fresh_huge_page()) | 992 | if (h->order >= MAX_ORDER) { |
993 | if (!alloc_bootmem_huge_page(h)) | ||
994 | break; | ||
995 | } else if (!alloc_fresh_huge_page(h)) | ||
530 | break; | 996 | break; |
531 | } | 997 | } |
532 | max_huge_pages = free_huge_pages = nr_huge_pages = i; | 998 | h->max_huge_pages = i; |
533 | printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); | ||
534 | return 0; | ||
535 | } | 999 | } |
536 | module_init(hugetlb_init); | ||
537 | 1000 | ||
538 | static int __init hugetlb_setup(char *s) | 1001 | static void __init hugetlb_init_hstates(void) |
539 | { | 1002 | { |
540 | if (sscanf(s, "%lu", &max_huge_pages) <= 0) | 1003 | struct hstate *h; |
541 | max_huge_pages = 0; | 1004 | |
542 | return 1; | 1005 | for_each_hstate(h) { |
1006 | /* oversize hugepages were init'ed in early boot */ | ||
1007 | if (h->order < MAX_ORDER) | ||
1008 | hugetlb_hstate_alloc_pages(h); | ||
1009 | } | ||
543 | } | 1010 | } |
544 | __setup("hugepages=", hugetlb_setup); | ||
545 | 1011 | ||
546 | static unsigned int cpuset_mems_nr(unsigned int *array) | 1012 | static char * __init memfmt(char *buf, unsigned long n) |
547 | { | 1013 | { |
548 | int node; | 1014 | if (n >= (1UL << 30)) |
549 | unsigned int nr = 0; | 1015 | sprintf(buf, "%lu GB", n >> 30); |
550 | 1016 | else if (n >= (1UL << 20)) | |
551 | for_each_node_mask(node, cpuset_current_mems_allowed) | 1017 | sprintf(buf, "%lu MB", n >> 20); |
552 | nr += array[node]; | 1018 | else |
1019 | sprintf(buf, "%lu KB", n >> 10); | ||
1020 | return buf; | ||
1021 | } | ||
553 | 1022 | ||
554 | return nr; | 1023 | static void __init report_hugepages(void) |
1024 | { | ||
1025 | struct hstate *h; | ||
1026 | |||
1027 | for_each_hstate(h) { | ||
1028 | char buf[32]; | ||
1029 | printk(KERN_INFO "HugeTLB registered %s page size, " | ||
1030 | "pre-allocated %ld pages\n", | ||
1031 | memfmt(buf, huge_page_size(h)), | ||
1032 | h->free_huge_pages); | ||
1033 | } | ||
555 | } | 1034 | } |
556 | 1035 | ||
557 | #ifdef CONFIG_SYSCTL | ||
558 | #ifdef CONFIG_HIGHMEM | 1036 | #ifdef CONFIG_HIGHMEM |
559 | static void try_to_free_low(unsigned long count) | 1037 | static void try_to_free_low(struct hstate *h, unsigned long count) |
560 | { | 1038 | { |
561 | int i; | 1039 | int i; |
562 | 1040 | ||
1041 | if (h->order >= MAX_ORDER) | ||
1042 | return; | ||
1043 | |||
563 | for (i = 0; i < MAX_NUMNODES; ++i) { | 1044 | for (i = 0; i < MAX_NUMNODES; ++i) { |
564 | struct page *page, *next; | 1045 | struct page *page, *next; |
565 | list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { | 1046 | struct list_head *freel = &h->hugepage_freelists[i]; |
566 | if (count >= nr_huge_pages) | 1047 | list_for_each_entry_safe(page, next, freel, lru) { |
1048 | if (count >= h->nr_huge_pages) | ||
567 | return; | 1049 | return; |
568 | if (PageHighMem(page)) | 1050 | if (PageHighMem(page)) |
569 | continue; | 1051 | continue; |
570 | list_del(&page->lru); | 1052 | list_del(&page->lru); |
571 | update_and_free_page(page); | 1053 | update_and_free_page(h, page); |
572 | free_huge_pages--; | 1054 | h->free_huge_pages--; |
573 | free_huge_pages_node[page_to_nid(page)]--; | 1055 | h->free_huge_pages_node[page_to_nid(page)]--; |
574 | } | 1056 | } |
575 | } | 1057 | } |
576 | } | 1058 | } |
577 | #else | 1059 | #else |
578 | static inline void try_to_free_low(unsigned long count) | 1060 | static inline void try_to_free_low(struct hstate *h, unsigned long count) |
579 | { | 1061 | { |
580 | } | 1062 | } |
581 | #endif | 1063 | #endif |
582 | 1064 | ||
583 | #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages) | 1065 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
584 | static unsigned long set_max_huge_pages(unsigned long count) | 1066 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) |
585 | { | 1067 | { |
586 | unsigned long min_count, ret; | 1068 | unsigned long min_count, ret; |
587 | 1069 | ||
1070 | if (h->order >= MAX_ORDER) | ||
1071 | return h->max_huge_pages; | ||
1072 | |||
588 | /* | 1073 | /* |
589 | * Increase the pool size | 1074 | * Increase the pool size |
590 | * First take pages out of surplus state. Then make up the | 1075 | * First take pages out of surplus state. Then make up the |
@@ -597,20 +1082,19 @@ static unsigned long set_max_huge_pages(unsigned long count) | |||
597 | * within all the constraints specified by the sysctls. | 1082 | * within all the constraints specified by the sysctls. |
598 | */ | 1083 | */ |
599 | spin_lock(&hugetlb_lock); | 1084 | spin_lock(&hugetlb_lock); |
600 | while (surplus_huge_pages && count > persistent_huge_pages) { | 1085 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
601 | if (!adjust_pool_surplus(-1)) | 1086 | if (!adjust_pool_surplus(h, -1)) |
602 | break; | 1087 | break; |
603 | } | 1088 | } |
604 | 1089 | ||
605 | while (count > persistent_huge_pages) { | 1090 | while (count > persistent_huge_pages(h)) { |
606 | int ret; | ||
607 | /* | 1091 | /* |
608 | * If this allocation races such that we no longer need the | 1092 | * If this allocation races such that we no longer need the |
609 | * page, free_huge_page will handle it by freeing the page | 1093 | * page, free_huge_page will handle it by freeing the page |
610 | * and reducing the surplus. | 1094 | * and reducing the surplus. |
611 | */ | 1095 | */ |
612 | spin_unlock(&hugetlb_lock); | 1096 | spin_unlock(&hugetlb_lock); |
613 | ret = alloc_fresh_huge_page(); | 1097 | ret = alloc_fresh_huge_page(h); |
614 | spin_lock(&hugetlb_lock); | 1098 | spin_lock(&hugetlb_lock); |
615 | if (!ret) | 1099 | if (!ret) |
616 | goto out; | 1100 | goto out; |
@@ -632,31 +1116,305 @@ static unsigned long set_max_huge_pages(unsigned long count) | |||
632 | * and won't grow the pool anywhere else. Not until one of the | 1116 | * and won't grow the pool anywhere else. Not until one of the |
633 | * sysctls are changed, or the surplus pages go out of use. | 1117 | * sysctls are changed, or the surplus pages go out of use. |
634 | */ | 1118 | */ |
635 | min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; | 1119 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
636 | min_count = max(count, min_count); | 1120 | min_count = max(count, min_count); |
637 | try_to_free_low(min_count); | 1121 | try_to_free_low(h, min_count); |
638 | while (min_count < persistent_huge_pages) { | 1122 | while (min_count < persistent_huge_pages(h)) { |
639 | struct page *page = dequeue_huge_page(); | 1123 | struct page *page = dequeue_huge_page(h); |
640 | if (!page) | 1124 | if (!page) |
641 | break; | 1125 | break; |
642 | update_and_free_page(page); | 1126 | update_and_free_page(h, page); |
643 | } | 1127 | } |
644 | while (count < persistent_huge_pages) { | 1128 | while (count < persistent_huge_pages(h)) { |
645 | if (!adjust_pool_surplus(1)) | 1129 | if (!adjust_pool_surplus(h, 1)) |
646 | break; | 1130 | break; |
647 | } | 1131 | } |
648 | out: | 1132 | out: |
649 | ret = persistent_huge_pages; | 1133 | ret = persistent_huge_pages(h); |
650 | spin_unlock(&hugetlb_lock); | 1134 | spin_unlock(&hugetlb_lock); |
651 | return ret; | 1135 | return ret; |
652 | } | 1136 | } |
653 | 1137 | ||
1138 | #define HSTATE_ATTR_RO(_name) \ | ||
1139 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | ||
1140 | |||
1141 | #define HSTATE_ATTR(_name) \ | ||
1142 | static struct kobj_attribute _name##_attr = \ | ||
1143 | __ATTR(_name, 0644, _name##_show, _name##_store) | ||
1144 | |||
1145 | static struct kobject *hugepages_kobj; | ||
1146 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | ||
1147 | |||
1148 | static struct hstate *kobj_to_hstate(struct kobject *kobj) | ||
1149 | { | ||
1150 | int i; | ||
1151 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | ||
1152 | if (hstate_kobjs[i] == kobj) | ||
1153 | return &hstates[i]; | ||
1154 | BUG(); | ||
1155 | return NULL; | ||
1156 | } | ||
1157 | |||
1158 | static ssize_t nr_hugepages_show(struct kobject *kobj, | ||
1159 | struct kobj_attribute *attr, char *buf) | ||
1160 | { | ||
1161 | struct hstate *h = kobj_to_hstate(kobj); | ||
1162 | return sprintf(buf, "%lu\n", h->nr_huge_pages); | ||
1163 | } | ||
1164 | static ssize_t nr_hugepages_store(struct kobject *kobj, | ||
1165 | struct kobj_attribute *attr, const char *buf, size_t count) | ||
1166 | { | ||
1167 | int err; | ||
1168 | unsigned long input; | ||
1169 | struct hstate *h = kobj_to_hstate(kobj); | ||
1170 | |||
1171 | err = strict_strtoul(buf, 10, &input); | ||
1172 | if (err) | ||
1173 | return 0; | ||
1174 | |||
1175 | h->max_huge_pages = set_max_huge_pages(h, input); | ||
1176 | |||
1177 | return count; | ||
1178 | } | ||
1179 | HSTATE_ATTR(nr_hugepages); | ||
1180 | |||
1181 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | ||
1182 | struct kobj_attribute *attr, char *buf) | ||
1183 | { | ||
1184 | struct hstate *h = kobj_to_hstate(kobj); | ||
1185 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | ||
1186 | } | ||
1187 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | ||
1188 | struct kobj_attribute *attr, const char *buf, size_t count) | ||
1189 | { | ||
1190 | int err; | ||
1191 | unsigned long input; | ||
1192 | struct hstate *h = kobj_to_hstate(kobj); | ||
1193 | |||
1194 | err = strict_strtoul(buf, 10, &input); | ||
1195 | if (err) | ||
1196 | return 0; | ||
1197 | |||
1198 | spin_lock(&hugetlb_lock); | ||
1199 | h->nr_overcommit_huge_pages = input; | ||
1200 | spin_unlock(&hugetlb_lock); | ||
1201 | |||
1202 | return count; | ||
1203 | } | ||
1204 | HSTATE_ATTR(nr_overcommit_hugepages); | ||
1205 | |||
1206 | static ssize_t free_hugepages_show(struct kobject *kobj, | ||
1207 | struct kobj_attribute *attr, char *buf) | ||
1208 | { | ||
1209 | struct hstate *h = kobj_to_hstate(kobj); | ||
1210 | return sprintf(buf, "%lu\n", h->free_huge_pages); | ||
1211 | } | ||
1212 | HSTATE_ATTR_RO(free_hugepages); | ||
1213 | |||
1214 | static ssize_t resv_hugepages_show(struct kobject *kobj, | ||
1215 | struct kobj_attribute *attr, char *buf) | ||
1216 | { | ||
1217 | struct hstate *h = kobj_to_hstate(kobj); | ||
1218 | return sprintf(buf, "%lu\n", h->resv_huge_pages); | ||
1219 | } | ||
1220 | HSTATE_ATTR_RO(resv_hugepages); | ||
1221 | |||
1222 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | ||
1223 | struct kobj_attribute *attr, char *buf) | ||
1224 | { | ||
1225 | struct hstate *h = kobj_to_hstate(kobj); | ||
1226 | return sprintf(buf, "%lu\n", h->surplus_huge_pages); | ||
1227 | } | ||
1228 | HSTATE_ATTR_RO(surplus_hugepages); | ||
1229 | |||
1230 | static struct attribute *hstate_attrs[] = { | ||
1231 | &nr_hugepages_attr.attr, | ||
1232 | &nr_overcommit_hugepages_attr.attr, | ||
1233 | &free_hugepages_attr.attr, | ||
1234 | &resv_hugepages_attr.attr, | ||
1235 | &surplus_hugepages_attr.attr, | ||
1236 | NULL, | ||
1237 | }; | ||
1238 | |||
1239 | static struct attribute_group hstate_attr_group = { | ||
1240 | .attrs = hstate_attrs, | ||
1241 | }; | ||
1242 | |||
1243 | static int __init hugetlb_sysfs_add_hstate(struct hstate *h) | ||
1244 | { | ||
1245 | int retval; | ||
1246 | |||
1247 | hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, | ||
1248 | hugepages_kobj); | ||
1249 | if (!hstate_kobjs[h - hstates]) | ||
1250 | return -ENOMEM; | ||
1251 | |||
1252 | retval = sysfs_create_group(hstate_kobjs[h - hstates], | ||
1253 | &hstate_attr_group); | ||
1254 | if (retval) | ||
1255 | kobject_put(hstate_kobjs[h - hstates]); | ||
1256 | |||
1257 | return retval; | ||
1258 | } | ||
1259 | |||
1260 | static void __init hugetlb_sysfs_init(void) | ||
1261 | { | ||
1262 | struct hstate *h; | ||
1263 | int err; | ||
1264 | |||
1265 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | ||
1266 | if (!hugepages_kobj) | ||
1267 | return; | ||
1268 | |||
1269 | for_each_hstate(h) { | ||
1270 | err = hugetlb_sysfs_add_hstate(h); | ||
1271 | if (err) | ||
1272 | printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | ||
1273 | h->name); | ||
1274 | } | ||
1275 | } | ||
1276 | |||
1277 | static void __exit hugetlb_exit(void) | ||
1278 | { | ||
1279 | struct hstate *h; | ||
1280 | |||
1281 | for_each_hstate(h) { | ||
1282 | kobject_put(hstate_kobjs[h - hstates]); | ||
1283 | } | ||
1284 | |||
1285 | kobject_put(hugepages_kobj); | ||
1286 | } | ||
1287 | module_exit(hugetlb_exit); | ||
1288 | |||
1289 | static int __init hugetlb_init(void) | ||
1290 | { | ||
1291 | /* Some platform decide whether they support huge pages at boot | ||
1292 | * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when | ||
1293 | * there is no such support | ||
1294 | */ | ||
1295 | if (HPAGE_SHIFT == 0) | ||
1296 | return 0; | ||
1297 | |||
1298 | if (!size_to_hstate(default_hstate_size)) { | ||
1299 | default_hstate_size = HPAGE_SIZE; | ||
1300 | if (!size_to_hstate(default_hstate_size)) | ||
1301 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | ||
1302 | } | ||
1303 | default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; | ||
1304 | if (default_hstate_max_huge_pages) | ||
1305 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | ||
1306 | |||
1307 | hugetlb_init_hstates(); | ||
1308 | |||
1309 | gather_bootmem_prealloc(); | ||
1310 | |||
1311 | report_hugepages(); | ||
1312 | |||
1313 | hugetlb_sysfs_init(); | ||
1314 | |||
1315 | return 0; | ||
1316 | } | ||
1317 | module_init(hugetlb_init); | ||
1318 | |||
1319 | /* Should be called on processing a hugepagesz=... option */ | ||
1320 | void __init hugetlb_add_hstate(unsigned order) | ||
1321 | { | ||
1322 | struct hstate *h; | ||
1323 | unsigned long i; | ||
1324 | |||
1325 | if (size_to_hstate(PAGE_SIZE << order)) { | ||
1326 | printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | ||
1327 | return; | ||
1328 | } | ||
1329 | BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | ||
1330 | BUG_ON(order == 0); | ||
1331 | h = &hstates[max_hstate++]; | ||
1332 | h->order = order; | ||
1333 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | ||
1334 | h->nr_huge_pages = 0; | ||
1335 | h->free_huge_pages = 0; | ||
1336 | for (i = 0; i < MAX_NUMNODES; ++i) | ||
1337 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | ||
1338 | h->hugetlb_next_nid = first_node(node_online_map); | ||
1339 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | ||
1340 | huge_page_size(h)/1024); | ||
1341 | |||
1342 | parsed_hstate = h; | ||
1343 | } | ||
1344 | |||
1345 | static int __init hugetlb_nrpages_setup(char *s) | ||
1346 | { | ||
1347 | unsigned long *mhp; | ||
1348 | static unsigned long *last_mhp; | ||
1349 | |||
1350 | /* | ||
1351 | * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | ||
1352 | * so this hugepages= parameter goes to the "default hstate". | ||
1353 | */ | ||
1354 | if (!max_hstate) | ||
1355 | mhp = &default_hstate_max_huge_pages; | ||
1356 | else | ||
1357 | mhp = &parsed_hstate->max_huge_pages; | ||
1358 | |||
1359 | if (mhp == last_mhp) { | ||
1360 | printk(KERN_WARNING "hugepages= specified twice without " | ||
1361 | "interleaving hugepagesz=, ignoring\n"); | ||
1362 | return 1; | ||
1363 | } | ||
1364 | |||
1365 | if (sscanf(s, "%lu", mhp) <= 0) | ||
1366 | *mhp = 0; | ||
1367 | |||
1368 | /* | ||
1369 | * Global state is always initialized later in hugetlb_init. | ||
1370 | * But we need to allocate >= MAX_ORDER hstates here early to still | ||
1371 | * use the bootmem allocator. | ||
1372 | */ | ||
1373 | if (max_hstate && parsed_hstate->order >= MAX_ORDER) | ||
1374 | hugetlb_hstate_alloc_pages(parsed_hstate); | ||
1375 | |||
1376 | last_mhp = mhp; | ||
1377 | |||
1378 | return 1; | ||
1379 | } | ||
1380 | __setup("hugepages=", hugetlb_nrpages_setup); | ||
1381 | |||
1382 | static int __init hugetlb_default_setup(char *s) | ||
1383 | { | ||
1384 | default_hstate_size = memparse(s, &s); | ||
1385 | return 1; | ||
1386 | } | ||
1387 | __setup("default_hugepagesz=", hugetlb_default_setup); | ||
1388 | |||
1389 | static unsigned int cpuset_mems_nr(unsigned int *array) | ||
1390 | { | ||
1391 | int node; | ||
1392 | unsigned int nr = 0; | ||
1393 | |||
1394 | for_each_node_mask(node, cpuset_current_mems_allowed) | ||
1395 | nr += array[node]; | ||
1396 | |||
1397 | return nr; | ||
1398 | } | ||
1399 | |||
1400 | #ifdef CONFIG_SYSCTL | ||
654 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 1401 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
655 | struct file *file, void __user *buffer, | 1402 | struct file *file, void __user *buffer, |
656 | size_t *length, loff_t *ppos) | 1403 | size_t *length, loff_t *ppos) |
657 | { | 1404 | { |
1405 | struct hstate *h = &default_hstate; | ||
1406 | unsigned long tmp; | ||
1407 | |||
1408 | if (!write) | ||
1409 | tmp = h->max_huge_pages; | ||
1410 | |||
1411 | table->data = &tmp; | ||
1412 | table->maxlen = sizeof(unsigned long); | ||
658 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 1413 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
659 | max_huge_pages = set_max_huge_pages(max_huge_pages); | 1414 | |
1415 | if (write) | ||
1416 | h->max_huge_pages = set_max_huge_pages(h, tmp); | ||
1417 | |||
660 | return 0; | 1418 | return 0; |
661 | } | 1419 | } |
662 | 1420 | ||
@@ -676,10 +1434,22 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, | |||
676 | struct file *file, void __user *buffer, | 1434 | struct file *file, void __user *buffer, |
677 | size_t *length, loff_t *ppos) | 1435 | size_t *length, loff_t *ppos) |
678 | { | 1436 | { |
1437 | struct hstate *h = &default_hstate; | ||
1438 | unsigned long tmp; | ||
1439 | |||
1440 | if (!write) | ||
1441 | tmp = h->nr_overcommit_huge_pages; | ||
1442 | |||
1443 | table->data = &tmp; | ||
1444 | table->maxlen = sizeof(unsigned long); | ||
679 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 1445 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
680 | spin_lock(&hugetlb_lock); | 1446 | |
681 | nr_overcommit_huge_pages = sysctl_overcommit_huge_pages; | 1447 | if (write) { |
682 | spin_unlock(&hugetlb_lock); | 1448 | spin_lock(&hugetlb_lock); |
1449 | h->nr_overcommit_huge_pages = tmp; | ||
1450 | spin_unlock(&hugetlb_lock); | ||
1451 | } | ||
1452 | |||
683 | return 0; | 1453 | return 0; |
684 | } | 1454 | } |
685 | 1455 | ||
@@ -687,34 +1457,118 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, | |||
687 | 1457 | ||
688 | int hugetlb_report_meminfo(char *buf) | 1458 | int hugetlb_report_meminfo(char *buf) |
689 | { | 1459 | { |
1460 | struct hstate *h = &default_hstate; | ||
690 | return sprintf(buf, | 1461 | return sprintf(buf, |
691 | "HugePages_Total: %5lu\n" | 1462 | "HugePages_Total: %5lu\n" |
692 | "HugePages_Free: %5lu\n" | 1463 | "HugePages_Free: %5lu\n" |
693 | "HugePages_Rsvd: %5lu\n" | 1464 | "HugePages_Rsvd: %5lu\n" |
694 | "HugePages_Surp: %5lu\n" | 1465 | "HugePages_Surp: %5lu\n" |
695 | "Hugepagesize: %5lu kB\n", | 1466 | "Hugepagesize: %5lu kB\n", |
696 | nr_huge_pages, | 1467 | h->nr_huge_pages, |
697 | free_huge_pages, | 1468 | h->free_huge_pages, |
698 | resv_huge_pages, | 1469 | h->resv_huge_pages, |
699 | surplus_huge_pages, | 1470 | h->surplus_huge_pages, |
700 | HPAGE_SIZE/1024); | 1471 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); |
701 | } | 1472 | } |
702 | 1473 | ||
703 | int hugetlb_report_node_meminfo(int nid, char *buf) | 1474 | int hugetlb_report_node_meminfo(int nid, char *buf) |
704 | { | 1475 | { |
1476 | struct hstate *h = &default_hstate; | ||
705 | return sprintf(buf, | 1477 | return sprintf(buf, |
706 | "Node %d HugePages_Total: %5u\n" | 1478 | "Node %d HugePages_Total: %5u\n" |
707 | "Node %d HugePages_Free: %5u\n" | 1479 | "Node %d HugePages_Free: %5u\n" |
708 | "Node %d HugePages_Surp: %5u\n", | 1480 | "Node %d HugePages_Surp: %5u\n", |
709 | nid, nr_huge_pages_node[nid], | 1481 | nid, h->nr_huge_pages_node[nid], |
710 | nid, free_huge_pages_node[nid], | 1482 | nid, h->free_huge_pages_node[nid], |
711 | nid, surplus_huge_pages_node[nid]); | 1483 | nid, h->surplus_huge_pages_node[nid]); |
712 | } | 1484 | } |
713 | 1485 | ||
714 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 1486 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
715 | unsigned long hugetlb_total_pages(void) | 1487 | unsigned long hugetlb_total_pages(void) |
716 | { | 1488 | { |
717 | return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); | 1489 | struct hstate *h = &default_hstate; |
1490 | return h->nr_huge_pages * pages_per_huge_page(h); | ||
1491 | } | ||
1492 | |||
1493 | static int hugetlb_acct_memory(struct hstate *h, long delta) | ||
1494 | { | ||
1495 | int ret = -ENOMEM; | ||
1496 | |||
1497 | spin_lock(&hugetlb_lock); | ||
1498 | /* | ||
1499 | * When cpuset is configured, it breaks the strict hugetlb page | ||
1500 | * reservation as the accounting is done on a global variable. Such | ||
1501 | * reservation is completely rubbish in the presence of cpuset because | ||
1502 | * the reservation is not checked against page availability for the | ||
1503 | * current cpuset. Application can still potentially OOM'ed by kernel | ||
1504 | * with lack of free htlb page in cpuset that the task is in. | ||
1505 | * Attempt to enforce strict accounting with cpuset is almost | ||
1506 | * impossible (or too ugly) because cpuset is too fluid that | ||
1507 | * task or memory node can be dynamically moved between cpusets. | ||
1508 | * | ||
1509 | * The change of semantics for shared hugetlb mapping with cpuset is | ||
1510 | * undesirable. However, in order to preserve some of the semantics, | ||
1511 | * we fall back to check against current free page availability as | ||
1512 | * a best attempt and hopefully to minimize the impact of changing | ||
1513 | * semantics that cpuset has. | ||
1514 | */ | ||
1515 | if (delta > 0) { | ||
1516 | if (gather_surplus_pages(h, delta) < 0) | ||
1517 | goto out; | ||
1518 | |||
1519 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { | ||
1520 | return_unused_surplus_pages(h, delta); | ||
1521 | goto out; | ||
1522 | } | ||
1523 | } | ||
1524 | |||
1525 | ret = 0; | ||
1526 | if (delta < 0) | ||
1527 | return_unused_surplus_pages(h, (unsigned long) -delta); | ||
1528 | |||
1529 | out: | ||
1530 | spin_unlock(&hugetlb_lock); | ||
1531 | return ret; | ||
1532 | } | ||
1533 | |||
1534 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | ||
1535 | { | ||
1536 | struct resv_map *reservations = vma_resv_map(vma); | ||
1537 | |||
1538 | /* | ||
1539 | * This new VMA should share its siblings reservation map if present. | ||
1540 | * The VMA will only ever have a valid reservation map pointer where | ||
1541 | * it is being copied for another still existing VMA. As that VMA | ||
1542 | * has a reference to the reservation map it cannot dissappear until | ||
1543 | * after this open call completes. It is therefore safe to take a | ||
1544 | * new reference here without additional locking. | ||
1545 | */ | ||
1546 | if (reservations) | ||
1547 | kref_get(&reservations->refs); | ||
1548 | } | ||
1549 | |||
1550 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | ||
1551 | { | ||
1552 | struct hstate *h = hstate_vma(vma); | ||
1553 | struct resv_map *reservations = vma_resv_map(vma); | ||
1554 | unsigned long reserve; | ||
1555 | unsigned long start; | ||
1556 | unsigned long end; | ||
1557 | |||
1558 | if (reservations) { | ||
1559 | start = vma_hugecache_offset(h, vma, vma->vm_start); | ||
1560 | end = vma_hugecache_offset(h, vma, vma->vm_end); | ||
1561 | |||
1562 | reserve = (end - start) - | ||
1563 | region_count(&reservations->regions, start, end); | ||
1564 | |||
1565 | kref_put(&reservations->refs, resv_map_release); | ||
1566 | |||
1567 | if (reserve) { | ||
1568 | hugetlb_acct_memory(h, -reserve); | ||
1569 | hugetlb_put_quota(vma->vm_file->f_mapping, reserve); | ||
1570 | } | ||
1571 | } | ||
718 | } | 1572 | } |
719 | 1573 | ||
720 | /* | 1574 | /* |
@@ -731,6 +1585,8 @@ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
731 | 1585 | ||
732 | struct vm_operations_struct hugetlb_vm_ops = { | 1586 | struct vm_operations_struct hugetlb_vm_ops = { |
733 | .fault = hugetlb_vm_op_fault, | 1587 | .fault = hugetlb_vm_op_fault, |
1588 | .open = hugetlb_vm_op_open, | ||
1589 | .close = hugetlb_vm_op_close, | ||
734 | }; | 1590 | }; |
735 | 1591 | ||
736 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 1592 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
@@ -769,14 +1625,16 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | |||
769 | struct page *ptepage; | 1625 | struct page *ptepage; |
770 | unsigned long addr; | 1626 | unsigned long addr; |
771 | int cow; | 1627 | int cow; |
1628 | struct hstate *h = hstate_vma(vma); | ||
1629 | unsigned long sz = huge_page_size(h); | ||
772 | 1630 | ||
773 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 1631 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
774 | 1632 | ||
775 | for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { | 1633 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
776 | src_pte = huge_pte_offset(src, addr); | 1634 | src_pte = huge_pte_offset(src, addr); |
777 | if (!src_pte) | 1635 | if (!src_pte) |
778 | continue; | 1636 | continue; |
779 | dst_pte = huge_pte_alloc(dst, addr); | 1637 | dst_pte = huge_pte_alloc(dst, addr, sz); |
780 | if (!dst_pte) | 1638 | if (!dst_pte) |
781 | goto nomem; | 1639 | goto nomem; |
782 | 1640 | ||
@@ -804,7 +1662,7 @@ nomem: | |||
804 | } | 1662 | } |
805 | 1663 | ||
806 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 1664 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
807 | unsigned long end) | 1665 | unsigned long end, struct page *ref_page) |
808 | { | 1666 | { |
809 | struct mm_struct *mm = vma->vm_mm; | 1667 | struct mm_struct *mm = vma->vm_mm; |
810 | unsigned long address; | 1668 | unsigned long address; |
@@ -812,6 +1670,9 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
812 | pte_t pte; | 1670 | pte_t pte; |
813 | struct page *page; | 1671 | struct page *page; |
814 | struct page *tmp; | 1672 | struct page *tmp; |
1673 | struct hstate *h = hstate_vma(vma); | ||
1674 | unsigned long sz = huge_page_size(h); | ||
1675 | |||
815 | /* | 1676 | /* |
816 | * A page gathering list, protected by per file i_mmap_lock. The | 1677 | * A page gathering list, protected by per file i_mmap_lock. The |
817 | * lock is used to avoid list corruption from multiple unmapping | 1678 | * lock is used to avoid list corruption from multiple unmapping |
@@ -820,11 +1681,12 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
820 | LIST_HEAD(page_list); | 1681 | LIST_HEAD(page_list); |
821 | 1682 | ||
822 | WARN_ON(!is_vm_hugetlb_page(vma)); | 1683 | WARN_ON(!is_vm_hugetlb_page(vma)); |
823 | BUG_ON(start & ~HPAGE_MASK); | 1684 | BUG_ON(start & ~huge_page_mask(h)); |
824 | BUG_ON(end & ~HPAGE_MASK); | 1685 | BUG_ON(end & ~huge_page_mask(h)); |
825 | 1686 | ||
1687 | mmu_notifier_invalidate_range_start(mm, start, end); | ||
826 | spin_lock(&mm->page_table_lock); | 1688 | spin_lock(&mm->page_table_lock); |
827 | for (address = start; address < end; address += HPAGE_SIZE) { | 1689 | for (address = start; address < end; address += sz) { |
828 | ptep = huge_pte_offset(mm, address); | 1690 | ptep = huge_pte_offset(mm, address); |
829 | if (!ptep) | 1691 | if (!ptep) |
830 | continue; | 1692 | continue; |
@@ -832,6 +1694,27 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
832 | if (huge_pmd_unshare(mm, &address, ptep)) | 1694 | if (huge_pmd_unshare(mm, &address, ptep)) |
833 | continue; | 1695 | continue; |
834 | 1696 | ||
1697 | /* | ||
1698 | * If a reference page is supplied, it is because a specific | ||
1699 | * page is being unmapped, not a range. Ensure the page we | ||
1700 | * are about to unmap is the actual page of interest. | ||
1701 | */ | ||
1702 | if (ref_page) { | ||
1703 | pte = huge_ptep_get(ptep); | ||
1704 | if (huge_pte_none(pte)) | ||
1705 | continue; | ||
1706 | page = pte_page(pte); | ||
1707 | if (page != ref_page) | ||
1708 | continue; | ||
1709 | |||
1710 | /* | ||
1711 | * Mark the VMA as having unmapped its page so that | ||
1712 | * future faults in this VMA will fail rather than | ||
1713 | * looking like data was lost | ||
1714 | */ | ||
1715 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | ||
1716 | } | ||
1717 | |||
835 | pte = huge_ptep_get_and_clear(mm, address, ptep); | 1718 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
836 | if (huge_pte_none(pte)) | 1719 | if (huge_pte_none(pte)) |
837 | continue; | 1720 | continue; |
@@ -843,6 +1726,7 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
843 | } | 1726 | } |
844 | spin_unlock(&mm->page_table_lock); | 1727 | spin_unlock(&mm->page_table_lock); |
845 | flush_tlb_range(vma, start, end); | 1728 | flush_tlb_range(vma, start, end); |
1729 | mmu_notifier_invalidate_range_end(mm, start, end); | ||
846 | list_for_each_entry_safe(page, tmp, &page_list, lru) { | 1730 | list_for_each_entry_safe(page, tmp, &page_list, lru) { |
847 | list_del(&page->lru); | 1731 | list_del(&page->lru); |
848 | put_page(page); | 1732 | put_page(page); |
@@ -850,31 +1734,71 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
850 | } | 1734 | } |
851 | 1735 | ||
852 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 1736 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
853 | unsigned long end) | 1737 | unsigned long end, struct page *ref_page) |
854 | { | 1738 | { |
1739 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | ||
1740 | __unmap_hugepage_range(vma, start, end, ref_page); | ||
1741 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | ||
1742 | } | ||
1743 | |||
1744 | /* | ||
1745 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | ||
1746 | * mappping it owns the reserve page for. The intention is to unmap the page | ||
1747 | * from other VMAs and let the children be SIGKILLed if they are faulting the | ||
1748 | * same region. | ||
1749 | */ | ||
1750 | int unmap_ref_private(struct mm_struct *mm, | ||
1751 | struct vm_area_struct *vma, | ||
1752 | struct page *page, | ||
1753 | unsigned long address) | ||
1754 | { | ||
1755 | struct vm_area_struct *iter_vma; | ||
1756 | struct address_space *mapping; | ||
1757 | struct prio_tree_iter iter; | ||
1758 | pgoff_t pgoff; | ||
1759 | |||
855 | /* | 1760 | /* |
856 | * It is undesirable to test vma->vm_file as it should be non-null | 1761 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation |
857 | * for valid hugetlb area. However, vm_file will be NULL in the error | 1762 | * from page cache lookup which is in HPAGE_SIZE units. |
858 | * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, | ||
859 | * do_mmap_pgoff() nullifies vma->vm_file before calling this function | ||
860 | * to clean up. Since no pte has actually been setup, it is safe to | ||
861 | * do nothing in this case. | ||
862 | */ | 1763 | */ |
863 | if (vma->vm_file) { | 1764 | address = address & huge_page_mask(hstate_vma(vma)); |
864 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 1765 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) |
865 | __unmap_hugepage_range(vma, start, end); | 1766 | + (vma->vm_pgoff >> PAGE_SHIFT); |
866 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | 1767 | mapping = (struct address_space *)page_private(page); |
1768 | |||
1769 | vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | ||
1770 | /* Do not unmap the current VMA */ | ||
1771 | if (iter_vma == vma) | ||
1772 | continue; | ||
1773 | |||
1774 | /* | ||
1775 | * Unmap the page from other VMAs without their own reserves. | ||
1776 | * They get marked to be SIGKILLed if they fault in these | ||
1777 | * areas. This is because a future no-page fault on this VMA | ||
1778 | * could insert a zeroed page instead of the data existing | ||
1779 | * from the time of fork. This would look like data corruption | ||
1780 | */ | ||
1781 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | ||
1782 | unmap_hugepage_range(iter_vma, | ||
1783 | address, address + HPAGE_SIZE, | ||
1784 | page); | ||
867 | } | 1785 | } |
1786 | |||
1787 | return 1; | ||
868 | } | 1788 | } |
869 | 1789 | ||
870 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 1790 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
871 | unsigned long address, pte_t *ptep, pte_t pte) | 1791 | unsigned long address, pte_t *ptep, pte_t pte, |
1792 | struct page *pagecache_page) | ||
872 | { | 1793 | { |
1794 | struct hstate *h = hstate_vma(vma); | ||
873 | struct page *old_page, *new_page; | 1795 | struct page *old_page, *new_page; |
874 | int avoidcopy; | 1796 | int avoidcopy; |
1797 | int outside_reserve = 0; | ||
875 | 1798 | ||
876 | old_page = pte_page(pte); | 1799 | old_page = pte_page(pte); |
877 | 1800 | ||
1801 | retry_avoidcopy: | ||
878 | /* If no-one else is actually using this page, avoid the copy | 1802 | /* If no-one else is actually using this page, avoid the copy |
879 | * and just make the page writable */ | 1803 | * and just make the page writable */ |
880 | avoidcopy = (page_count(old_page) == 1); | 1804 | avoidcopy = (page_count(old_page) == 1); |
@@ -883,11 +1807,43 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
883 | return 0; | 1807 | return 0; |
884 | } | 1808 | } |
885 | 1809 | ||
1810 | /* | ||
1811 | * If the process that created a MAP_PRIVATE mapping is about to | ||
1812 | * perform a COW due to a shared page count, attempt to satisfy | ||
1813 | * the allocation without using the existing reserves. The pagecache | ||
1814 | * page is used to determine if the reserve at this address was | ||
1815 | * consumed or not. If reserves were used, a partial faulted mapping | ||
1816 | * at the time of fork() could consume its reserves on COW instead | ||
1817 | * of the full address range. | ||
1818 | */ | ||
1819 | if (!(vma->vm_flags & VM_SHARED) && | ||
1820 | is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | ||
1821 | old_page != pagecache_page) | ||
1822 | outside_reserve = 1; | ||
1823 | |||
886 | page_cache_get(old_page); | 1824 | page_cache_get(old_page); |
887 | new_page = alloc_huge_page(vma, address); | 1825 | new_page = alloc_huge_page(vma, address, outside_reserve); |
888 | 1826 | ||
889 | if (IS_ERR(new_page)) { | 1827 | if (IS_ERR(new_page)) { |
890 | page_cache_release(old_page); | 1828 | page_cache_release(old_page); |
1829 | |||
1830 | /* | ||
1831 | * If a process owning a MAP_PRIVATE mapping fails to COW, | ||
1832 | * it is due to references held by a child and an insufficient | ||
1833 | * huge page pool. To guarantee the original mappers | ||
1834 | * reliability, unmap the page from child processes. The child | ||
1835 | * may get SIGKILLed if it later faults. | ||
1836 | */ | ||
1837 | if (outside_reserve) { | ||
1838 | BUG_ON(huge_pte_none(pte)); | ||
1839 | if (unmap_ref_private(mm, vma, old_page, address)) { | ||
1840 | BUG_ON(page_count(old_page) != 1); | ||
1841 | BUG_ON(huge_pte_none(pte)); | ||
1842 | goto retry_avoidcopy; | ||
1843 | } | ||
1844 | WARN_ON_ONCE(1); | ||
1845 | } | ||
1846 | |||
891 | return -PTR_ERR(new_page); | 1847 | return -PTR_ERR(new_page); |
892 | } | 1848 | } |
893 | 1849 | ||
@@ -896,7 +1852,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
896 | __SetPageUptodate(new_page); | 1852 | __SetPageUptodate(new_page); |
897 | spin_lock(&mm->page_table_lock); | 1853 | spin_lock(&mm->page_table_lock); |
898 | 1854 | ||
899 | ptep = huge_pte_offset(mm, address & HPAGE_MASK); | 1855 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
900 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { | 1856 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
901 | /* Break COW */ | 1857 | /* Break COW */ |
902 | huge_ptep_clear_flush(vma, address, ptep); | 1858 | huge_ptep_clear_flush(vma, address, ptep); |
@@ -910,19 +1866,44 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
910 | return 0; | 1866 | return 0; |
911 | } | 1867 | } |
912 | 1868 | ||
1869 | /* Return the pagecache page at a given address within a VMA */ | ||
1870 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | ||
1871 | struct vm_area_struct *vma, unsigned long address) | ||
1872 | { | ||
1873 | struct address_space *mapping; | ||
1874 | pgoff_t idx; | ||
1875 | |||
1876 | mapping = vma->vm_file->f_mapping; | ||
1877 | idx = vma_hugecache_offset(h, vma, address); | ||
1878 | |||
1879 | return find_lock_page(mapping, idx); | ||
1880 | } | ||
1881 | |||
913 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 1882 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
914 | unsigned long address, pte_t *ptep, int write_access) | 1883 | unsigned long address, pte_t *ptep, int write_access) |
915 | { | 1884 | { |
1885 | struct hstate *h = hstate_vma(vma); | ||
916 | int ret = VM_FAULT_SIGBUS; | 1886 | int ret = VM_FAULT_SIGBUS; |
917 | unsigned long idx; | 1887 | pgoff_t idx; |
918 | unsigned long size; | 1888 | unsigned long size; |
919 | struct page *page; | 1889 | struct page *page; |
920 | struct address_space *mapping; | 1890 | struct address_space *mapping; |
921 | pte_t new_pte; | 1891 | pte_t new_pte; |
922 | 1892 | ||
1893 | /* | ||
1894 | * Currently, we are forced to kill the process in the event the | ||
1895 | * original mapper has unmapped pages from the child due to a failed | ||
1896 | * COW. Warn that such a situation has occured as it may not be obvious | ||
1897 | */ | ||
1898 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | ||
1899 | printk(KERN_WARNING | ||
1900 | "PID %d killed due to inadequate hugepage pool\n", | ||
1901 | current->pid); | ||
1902 | return ret; | ||
1903 | } | ||
1904 | |||
923 | mapping = vma->vm_file->f_mapping; | 1905 | mapping = vma->vm_file->f_mapping; |
924 | idx = ((address - vma->vm_start) >> HPAGE_SHIFT) | 1906 | idx = vma_hugecache_offset(h, vma, address); |
925 | + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); | ||
926 | 1907 | ||
927 | /* | 1908 | /* |
928 | * Use page lock to guard against racing truncation | 1909 | * Use page lock to guard against racing truncation |
@@ -931,15 +1912,15 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
931 | retry: | 1912 | retry: |
932 | page = find_lock_page(mapping, idx); | 1913 | page = find_lock_page(mapping, idx); |
933 | if (!page) { | 1914 | if (!page) { |
934 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 1915 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
935 | if (idx >= size) | 1916 | if (idx >= size) |
936 | goto out; | 1917 | goto out; |
937 | page = alloc_huge_page(vma, address); | 1918 | page = alloc_huge_page(vma, address, 0); |
938 | if (IS_ERR(page)) { | 1919 | if (IS_ERR(page)) { |
939 | ret = -PTR_ERR(page); | 1920 | ret = -PTR_ERR(page); |
940 | goto out; | 1921 | goto out; |
941 | } | 1922 | } |
942 | clear_huge_page(page, address); | 1923 | clear_huge_page(page, address, huge_page_size(h)); |
943 | __SetPageUptodate(page); | 1924 | __SetPageUptodate(page); |
944 | 1925 | ||
945 | if (vma->vm_flags & VM_SHARED) { | 1926 | if (vma->vm_flags & VM_SHARED) { |
@@ -955,14 +1936,26 @@ retry: | |||
955 | } | 1936 | } |
956 | 1937 | ||
957 | spin_lock(&inode->i_lock); | 1938 | spin_lock(&inode->i_lock); |
958 | inode->i_blocks += BLOCKS_PER_HUGEPAGE; | 1939 | inode->i_blocks += blocks_per_huge_page(h); |
959 | spin_unlock(&inode->i_lock); | 1940 | spin_unlock(&inode->i_lock); |
960 | } else | 1941 | } else |
961 | lock_page(page); | 1942 | lock_page(page); |
962 | } | 1943 | } |
963 | 1944 | ||
1945 | /* | ||
1946 | * If we are going to COW a private mapping later, we examine the | ||
1947 | * pending reservations for this page now. This will ensure that | ||
1948 | * any allocations necessary to record that reservation occur outside | ||
1949 | * the spinlock. | ||
1950 | */ | ||
1951 | if (write_access && !(vma->vm_flags & VM_SHARED)) | ||
1952 | if (vma_needs_reservation(h, vma, address) < 0) { | ||
1953 | ret = VM_FAULT_OOM; | ||
1954 | goto backout_unlocked; | ||
1955 | } | ||
1956 | |||
964 | spin_lock(&mm->page_table_lock); | 1957 | spin_lock(&mm->page_table_lock); |
965 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 1958 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
966 | if (idx >= size) | 1959 | if (idx >= size) |
967 | goto backout; | 1960 | goto backout; |
968 | 1961 | ||
@@ -976,7 +1969,7 @@ retry: | |||
976 | 1969 | ||
977 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | 1970 | if (write_access && !(vma->vm_flags & VM_SHARED)) { |
978 | /* Optimization, do the COW without a second fault */ | 1971 | /* Optimization, do the COW without a second fault */ |
979 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte); | 1972 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); |
980 | } | 1973 | } |
981 | 1974 | ||
982 | spin_unlock(&mm->page_table_lock); | 1975 | spin_unlock(&mm->page_table_lock); |
@@ -986,6 +1979,7 @@ out: | |||
986 | 1979 | ||
987 | backout: | 1980 | backout: |
988 | spin_unlock(&mm->page_table_lock); | 1981 | spin_unlock(&mm->page_table_lock); |
1982 | backout_unlocked: | ||
989 | unlock_page(page); | 1983 | unlock_page(page); |
990 | put_page(page); | 1984 | put_page(page); |
991 | goto out; | 1985 | goto out; |
@@ -997,9 +1991,11 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
997 | pte_t *ptep; | 1991 | pte_t *ptep; |
998 | pte_t entry; | 1992 | pte_t entry; |
999 | int ret; | 1993 | int ret; |
1994 | struct page *pagecache_page = NULL; | ||
1000 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 1995 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
1996 | struct hstate *h = hstate_vma(vma); | ||
1001 | 1997 | ||
1002 | ptep = huge_pte_alloc(mm, address); | 1998 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
1003 | if (!ptep) | 1999 | if (!ptep) |
1004 | return VM_FAULT_OOM; | 2000 | return VM_FAULT_OOM; |
1005 | 2001 | ||
@@ -1012,23 +2008,58 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1012 | entry = huge_ptep_get(ptep); | 2008 | entry = huge_ptep_get(ptep); |
1013 | if (huge_pte_none(entry)) { | 2009 | if (huge_pte_none(entry)) { |
1014 | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); | 2010 | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); |
1015 | mutex_unlock(&hugetlb_instantiation_mutex); | 2011 | goto out_unlock; |
1016 | return ret; | ||
1017 | } | 2012 | } |
1018 | 2013 | ||
1019 | ret = 0; | 2014 | ret = 0; |
1020 | 2015 | ||
2016 | /* | ||
2017 | * If we are going to COW the mapping later, we examine the pending | ||
2018 | * reservations for this page now. This will ensure that any | ||
2019 | * allocations necessary to record that reservation occur outside the | ||
2020 | * spinlock. For private mappings, we also lookup the pagecache | ||
2021 | * page now as it is used to determine if a reservation has been | ||
2022 | * consumed. | ||
2023 | */ | ||
2024 | if (write_access && !pte_write(entry)) { | ||
2025 | if (vma_needs_reservation(h, vma, address) < 0) { | ||
2026 | ret = VM_FAULT_OOM; | ||
2027 | goto out_unlock; | ||
2028 | } | ||
2029 | |||
2030 | if (!(vma->vm_flags & VM_SHARED)) | ||
2031 | pagecache_page = hugetlbfs_pagecache_page(h, | ||
2032 | vma, address); | ||
2033 | } | ||
2034 | |||
1021 | spin_lock(&mm->page_table_lock); | 2035 | spin_lock(&mm->page_table_lock); |
1022 | /* Check for a racing update before calling hugetlb_cow */ | 2036 | /* Check for a racing update before calling hugetlb_cow */ |
1023 | if (likely(pte_same(entry, huge_ptep_get(ptep)))) | 2037 | if (likely(pte_same(entry, huge_ptep_get(ptep)))) |
1024 | if (write_access && !pte_write(entry)) | 2038 | if (write_access && !pte_write(entry)) |
1025 | ret = hugetlb_cow(mm, vma, address, ptep, entry); | 2039 | ret = hugetlb_cow(mm, vma, address, ptep, entry, |
2040 | pagecache_page); | ||
1026 | spin_unlock(&mm->page_table_lock); | 2041 | spin_unlock(&mm->page_table_lock); |
2042 | |||
2043 | if (pagecache_page) { | ||
2044 | unlock_page(pagecache_page); | ||
2045 | put_page(pagecache_page); | ||
2046 | } | ||
2047 | |||
2048 | out_unlock: | ||
1027 | mutex_unlock(&hugetlb_instantiation_mutex); | 2049 | mutex_unlock(&hugetlb_instantiation_mutex); |
1028 | 2050 | ||
1029 | return ret; | 2051 | return ret; |
1030 | } | 2052 | } |
1031 | 2053 | ||
2054 | /* Can be overriden by architectures */ | ||
2055 | __attribute__((weak)) struct page * | ||
2056 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | ||
2057 | pud_t *pud, int write) | ||
2058 | { | ||
2059 | BUG(); | ||
2060 | return NULL; | ||
2061 | } | ||
2062 | |||
1032 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2063 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1033 | struct page **pages, struct vm_area_struct **vmas, | 2064 | struct page **pages, struct vm_area_struct **vmas, |
1034 | unsigned long *position, int *length, int i, | 2065 | unsigned long *position, int *length, int i, |
@@ -1037,6 +2068,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1037 | unsigned long pfn_offset; | 2068 | unsigned long pfn_offset; |
1038 | unsigned long vaddr = *position; | 2069 | unsigned long vaddr = *position; |
1039 | int remainder = *length; | 2070 | int remainder = *length; |
2071 | struct hstate *h = hstate_vma(vma); | ||
1040 | 2072 | ||
1041 | spin_lock(&mm->page_table_lock); | 2073 | spin_lock(&mm->page_table_lock); |
1042 | while (vaddr < vma->vm_end && remainder) { | 2074 | while (vaddr < vma->vm_end && remainder) { |
@@ -1048,7 +2080,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1048 | * each hugepage. We have to make * sure we get the | 2080 | * each hugepage. We have to make * sure we get the |
1049 | * first, for the page indexing below to work. | 2081 | * first, for the page indexing below to work. |
1050 | */ | 2082 | */ |
1051 | pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); | 2083 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
1052 | 2084 | ||
1053 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || | 2085 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || |
1054 | (write && !pte_write(huge_ptep_get(pte)))) { | 2086 | (write && !pte_write(huge_ptep_get(pte)))) { |
@@ -1066,7 +2098,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1066 | break; | 2098 | break; |
1067 | } | 2099 | } |
1068 | 2100 | ||
1069 | pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; | 2101 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
1070 | page = pte_page(huge_ptep_get(pte)); | 2102 | page = pte_page(huge_ptep_get(pte)); |
1071 | same_page: | 2103 | same_page: |
1072 | if (pages) { | 2104 | if (pages) { |
@@ -1082,7 +2114,7 @@ same_page: | |||
1082 | --remainder; | 2114 | --remainder; |
1083 | ++i; | 2115 | ++i; |
1084 | if (vaddr < vma->vm_end && remainder && | 2116 | if (vaddr < vma->vm_end && remainder && |
1085 | pfn_offset < HPAGE_SIZE/PAGE_SIZE) { | 2117 | pfn_offset < pages_per_huge_page(h)) { |
1086 | /* | 2118 | /* |
1087 | * We use pfn_offset to avoid touching the pageframes | 2119 | * We use pfn_offset to avoid touching the pageframes |
1088 | * of this compound page. | 2120 | * of this compound page. |
@@ -1104,13 +2136,14 @@ void hugetlb_change_protection(struct vm_area_struct *vma, | |||
1104 | unsigned long start = address; | 2136 | unsigned long start = address; |
1105 | pte_t *ptep; | 2137 | pte_t *ptep; |
1106 | pte_t pte; | 2138 | pte_t pte; |
2139 | struct hstate *h = hstate_vma(vma); | ||
1107 | 2140 | ||
1108 | BUG_ON(address >= end); | 2141 | BUG_ON(address >= end); |
1109 | flush_cache_range(vma, address, end); | 2142 | flush_cache_range(vma, address, end); |
1110 | 2143 | ||
1111 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 2144 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
1112 | spin_lock(&mm->page_table_lock); | 2145 | spin_lock(&mm->page_table_lock); |
1113 | for (; address < end; address += HPAGE_SIZE) { | 2146 | for (; address < end; address += huge_page_size(h)) { |
1114 | ptep = huge_pte_offset(mm, address); | 2147 | ptep = huge_pte_offset(mm, address); |
1115 | if (!ptep) | 2148 | if (!ptep) |
1116 | continue; | 2149 | continue; |
@@ -1128,195 +2161,59 @@ void hugetlb_change_protection(struct vm_area_struct *vma, | |||
1128 | flush_tlb_range(vma, start, end); | 2161 | flush_tlb_range(vma, start, end); |
1129 | } | 2162 | } |
1130 | 2163 | ||
1131 | struct file_region { | 2164 | int hugetlb_reserve_pages(struct inode *inode, |
1132 | struct list_head link; | 2165 | long from, long to, |
1133 | long from; | 2166 | struct vm_area_struct *vma) |
1134 | long to; | ||
1135 | }; | ||
1136 | |||
1137 | static long region_add(struct list_head *head, long f, long t) | ||
1138 | { | ||
1139 | struct file_region *rg, *nrg, *trg; | ||
1140 | |||
1141 | /* Locate the region we are either in or before. */ | ||
1142 | list_for_each_entry(rg, head, link) | ||
1143 | if (f <= rg->to) | ||
1144 | break; | ||
1145 | |||
1146 | /* Round our left edge to the current segment if it encloses us. */ | ||
1147 | if (f > rg->from) | ||
1148 | f = rg->from; | ||
1149 | |||
1150 | /* Check for and consume any regions we now overlap with. */ | ||
1151 | nrg = rg; | ||
1152 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
1153 | if (&rg->link == head) | ||
1154 | break; | ||
1155 | if (rg->from > t) | ||
1156 | break; | ||
1157 | |||
1158 | /* If this area reaches higher then extend our area to | ||
1159 | * include it completely. If this is not the first area | ||
1160 | * which we intend to reuse, free it. */ | ||
1161 | if (rg->to > t) | ||
1162 | t = rg->to; | ||
1163 | if (rg != nrg) { | ||
1164 | list_del(&rg->link); | ||
1165 | kfree(rg); | ||
1166 | } | ||
1167 | } | ||
1168 | nrg->from = f; | ||
1169 | nrg->to = t; | ||
1170 | return 0; | ||
1171 | } | ||
1172 | |||
1173 | static long region_chg(struct list_head *head, long f, long t) | ||
1174 | { | 2167 | { |
1175 | struct file_region *rg, *nrg; | 2168 | long ret, chg; |
1176 | long chg = 0; | 2169 | struct hstate *h = hstate_inode(inode); |
1177 | |||
1178 | /* Locate the region we are before or in. */ | ||
1179 | list_for_each_entry(rg, head, link) | ||
1180 | if (f <= rg->to) | ||
1181 | break; | ||
1182 | |||
1183 | /* If we are below the current region then a new region is required. | ||
1184 | * Subtle, allocate a new region at the position but make it zero | ||
1185 | * size such that we can guarantee to record the reservation. */ | ||
1186 | if (&rg->link == head || t < rg->from) { | ||
1187 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | ||
1188 | if (!nrg) | ||
1189 | return -ENOMEM; | ||
1190 | nrg->from = f; | ||
1191 | nrg->to = f; | ||
1192 | INIT_LIST_HEAD(&nrg->link); | ||
1193 | list_add(&nrg->link, rg->link.prev); | ||
1194 | |||
1195 | return t - f; | ||
1196 | } | ||
1197 | |||
1198 | /* Round our left edge to the current segment if it encloses us. */ | ||
1199 | if (f > rg->from) | ||
1200 | f = rg->from; | ||
1201 | chg = t - f; | ||
1202 | |||
1203 | /* Check for and consume any regions we now overlap with. */ | ||
1204 | list_for_each_entry(rg, rg->link.prev, link) { | ||
1205 | if (&rg->link == head) | ||
1206 | break; | ||
1207 | if (rg->from > t) | ||
1208 | return chg; | ||
1209 | |||
1210 | /* We overlap with this area, if it extends futher than | ||
1211 | * us then we must extend ourselves. Account for its | ||
1212 | * existing reservation. */ | ||
1213 | if (rg->to > t) { | ||
1214 | chg += rg->to - t; | ||
1215 | t = rg->to; | ||
1216 | } | ||
1217 | chg -= rg->to - rg->from; | ||
1218 | } | ||
1219 | return chg; | ||
1220 | } | ||
1221 | |||
1222 | static long region_truncate(struct list_head *head, long end) | ||
1223 | { | ||
1224 | struct file_region *rg, *trg; | ||
1225 | long chg = 0; | ||
1226 | 2170 | ||
1227 | /* Locate the region we are either in or before. */ | 2171 | if (vma && vma->vm_flags & VM_NORESERVE) |
1228 | list_for_each_entry(rg, head, link) | ||
1229 | if (end <= rg->to) | ||
1230 | break; | ||
1231 | if (&rg->link == head) | ||
1232 | return 0; | 2172 | return 0; |
1233 | 2173 | ||
1234 | /* If we are in the middle of a region then adjust it. */ | ||
1235 | if (end > rg->from) { | ||
1236 | chg = rg->to - end; | ||
1237 | rg->to = end; | ||
1238 | rg = list_entry(rg->link.next, typeof(*rg), link); | ||
1239 | } | ||
1240 | |||
1241 | /* Drop any remaining regions. */ | ||
1242 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
1243 | if (&rg->link == head) | ||
1244 | break; | ||
1245 | chg += rg->to - rg->from; | ||
1246 | list_del(&rg->link); | ||
1247 | kfree(rg); | ||
1248 | } | ||
1249 | return chg; | ||
1250 | } | ||
1251 | |||
1252 | static int hugetlb_acct_memory(long delta) | ||
1253 | { | ||
1254 | int ret = -ENOMEM; | ||
1255 | |||
1256 | spin_lock(&hugetlb_lock); | ||
1257 | /* | 2174 | /* |
1258 | * When cpuset is configured, it breaks the strict hugetlb page | 2175 | * Shared mappings base their reservation on the number of pages that |
1259 | * reservation as the accounting is done on a global variable. Such | 2176 | * are already allocated on behalf of the file. Private mappings need |
1260 | * reservation is completely rubbish in the presence of cpuset because | 2177 | * to reserve the full area even if read-only as mprotect() may be |
1261 | * the reservation is not checked against page availability for the | 2178 | * called to make the mapping read-write. Assume !vma is a shm mapping |
1262 | * current cpuset. Application can still potentially OOM'ed by kernel | ||
1263 | * with lack of free htlb page in cpuset that the task is in. | ||
1264 | * Attempt to enforce strict accounting with cpuset is almost | ||
1265 | * impossible (or too ugly) because cpuset is too fluid that | ||
1266 | * task or memory node can be dynamically moved between cpusets. | ||
1267 | * | ||
1268 | * The change of semantics for shared hugetlb mapping with cpuset is | ||
1269 | * undesirable. However, in order to preserve some of the semantics, | ||
1270 | * we fall back to check against current free page availability as | ||
1271 | * a best attempt and hopefully to minimize the impact of changing | ||
1272 | * semantics that cpuset has. | ||
1273 | */ | 2179 | */ |
1274 | if (delta > 0) { | 2180 | if (!vma || vma->vm_flags & VM_SHARED) |
1275 | if (gather_surplus_pages(delta) < 0) | 2181 | chg = region_chg(&inode->i_mapping->private_list, from, to); |
1276 | goto out; | 2182 | else { |
1277 | 2183 | struct resv_map *resv_map = resv_map_alloc(); | |
1278 | if (delta > cpuset_mems_nr(free_huge_pages_node)) { | 2184 | if (!resv_map) |
1279 | return_unused_surplus_pages(delta); | 2185 | return -ENOMEM; |
1280 | goto out; | ||
1281 | } | ||
1282 | } | ||
1283 | |||
1284 | ret = 0; | ||
1285 | if (delta < 0) | ||
1286 | return_unused_surplus_pages((unsigned long) -delta); | ||
1287 | 2186 | ||
1288 | out: | 2187 | chg = to - from; |
1289 | spin_unlock(&hugetlb_lock); | ||
1290 | return ret; | ||
1291 | } | ||
1292 | 2188 | ||
1293 | int hugetlb_reserve_pages(struct inode *inode, long from, long to) | 2189 | set_vma_resv_map(vma, resv_map); |
1294 | { | 2190 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); |
1295 | long ret, chg; | 2191 | } |
1296 | 2192 | ||
1297 | chg = region_chg(&inode->i_mapping->private_list, from, to); | ||
1298 | if (chg < 0) | 2193 | if (chg < 0) |
1299 | return chg; | 2194 | return chg; |
1300 | 2195 | ||
1301 | if (hugetlb_get_quota(inode->i_mapping, chg)) | 2196 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
1302 | return -ENOSPC; | 2197 | return -ENOSPC; |
1303 | ret = hugetlb_acct_memory(chg); | 2198 | ret = hugetlb_acct_memory(h, chg); |
1304 | if (ret < 0) { | 2199 | if (ret < 0) { |
1305 | hugetlb_put_quota(inode->i_mapping, chg); | 2200 | hugetlb_put_quota(inode->i_mapping, chg); |
1306 | return ret; | 2201 | return ret; |
1307 | } | 2202 | } |
1308 | region_add(&inode->i_mapping->private_list, from, to); | 2203 | if (!vma || vma->vm_flags & VM_SHARED) |
2204 | region_add(&inode->i_mapping->private_list, from, to); | ||
1309 | return 0; | 2205 | return 0; |
1310 | } | 2206 | } |
1311 | 2207 | ||
1312 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | 2208 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) |
1313 | { | 2209 | { |
2210 | struct hstate *h = hstate_inode(inode); | ||
1314 | long chg = region_truncate(&inode->i_mapping->private_list, offset); | 2211 | long chg = region_truncate(&inode->i_mapping->private_list, offset); |
1315 | 2212 | ||
1316 | spin_lock(&inode->i_lock); | 2213 | spin_lock(&inode->i_lock); |
1317 | inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; | 2214 | inode->i_blocks -= blocks_per_huge_page(h); |
1318 | spin_unlock(&inode->i_lock); | 2215 | spin_unlock(&inode->i_lock); |
1319 | 2216 | ||
1320 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); | 2217 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
1321 | hugetlb_acct_memory(-(chg - freed)); | 2218 | hugetlb_acct_memory(h, -(chg - freed)); |
1322 | } | 2219 | } |