aboutsummaryrefslogtreecommitdiffstats
path: root/mm/hugetlb.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-08-14 06:19:59 -0400
committerIngo Molnar <mingo@elte.hu>2008-08-14 06:19:59 -0400
commit8d7ccaa545490cdffdfaff0842436a8dd85cf47b (patch)
tree8129b5907161bc6ae26deb3645ce1e280c5e1f51 /mm/hugetlb.c
parentb2139aa0eec330c711c5a279db361e5ef1178e78 (diff)
parent30a2f3c60a84092c8084dfe788b710f8d0768cd4 (diff)
Merge commit 'v2.6.27-rc3' into x86/prototypes
Conflicts: include/asm-x86/dma-mapping.h Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r--mm/hugetlb.c1681
1 files changed, 1289 insertions, 392 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index ab171274ef21..67a71191136e 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -9,43 +9,357 @@
9#include <linux/mm.h> 9#include <linux/mm.h>
10#include <linux/sysctl.h> 10#include <linux/sysctl.h>
11#include <linux/highmem.h> 11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
12#include <linux/nodemask.h> 13#include <linux/nodemask.h>
13#include <linux/pagemap.h> 14#include <linux/pagemap.h>
14#include <linux/mempolicy.h> 15#include <linux/mempolicy.h>
15#include <linux/cpuset.h> 16#include <linux/cpuset.h>
16#include <linux/mutex.h> 17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
17 20
18#include <asm/page.h> 21#include <asm/page.h>
19#include <asm/pgtable.h> 22#include <asm/pgtable.h>
23#include <asm/io.h>
20 24
21#include <linux/hugetlb.h> 25#include <linux/hugetlb.h>
22#include "internal.h" 26#include "internal.h"
23 27
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 28const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26static unsigned long surplus_huge_pages;
27static unsigned long nr_overcommit_huge_pages;
28unsigned long max_huge_pages;
29unsigned long sysctl_overcommit_huge_pages;
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 29static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable; 30unsigned long hugepages_treat_as_movable;
36static int hugetlb_next_nid; 31
32static int max_hstate;
33unsigned int default_hstate_idx;
34struct hstate hstates[HUGE_MAX_HSTATE];
35
36__initdata LIST_HEAD(huge_boot_pages);
37
38/* for command line parsing */
39static struct hstate * __initdata parsed_hstate;
40static unsigned long __initdata default_hstate_max_huge_pages;
41static unsigned long __initdata default_hstate_size;
42
43#define for_each_hstate(h) \
44 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
37 45
38/* 46/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 47 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */ 48 */
41static DEFINE_SPINLOCK(hugetlb_lock); 49static DEFINE_SPINLOCK(hugetlb_lock);
42 50
43static void clear_huge_page(struct page *page, unsigned long addr) 51/*
52 * Region tracking -- allows tracking of reservations and instantiated pages
53 * across the pages in a mapping.
54 *
55 * The region data structures are protected by a combination of the mmap_sem
56 * and the hugetlb_instantion_mutex. To access or modify a region the caller
57 * must either hold the mmap_sem for write, or the mmap_sem for read and
58 * the hugetlb_instantiation mutex:
59 *
60 * down_write(&mm->mmap_sem);
61 * or
62 * down_read(&mm->mmap_sem);
63 * mutex_lock(&hugetlb_instantiation_mutex);
64 */
65struct file_region {
66 struct list_head link;
67 long from;
68 long to;
69};
70
71static long region_add(struct list_head *head, long f, long t)
72{
73 struct file_region *rg, *nrg, *trg;
74
75 /* Locate the region we are either in or before. */
76 list_for_each_entry(rg, head, link)
77 if (f <= rg->to)
78 break;
79
80 /* Round our left edge to the current segment if it encloses us. */
81 if (f > rg->from)
82 f = rg->from;
83
84 /* Check for and consume any regions we now overlap with. */
85 nrg = rg;
86 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
87 if (&rg->link == head)
88 break;
89 if (rg->from > t)
90 break;
91
92 /* If this area reaches higher then extend our area to
93 * include it completely. If this is not the first area
94 * which we intend to reuse, free it. */
95 if (rg->to > t)
96 t = rg->to;
97 if (rg != nrg) {
98 list_del(&rg->link);
99 kfree(rg);
100 }
101 }
102 nrg->from = f;
103 nrg->to = t;
104 return 0;
105}
106
107static long region_chg(struct list_head *head, long f, long t)
108{
109 struct file_region *rg, *nrg;
110 long chg = 0;
111
112 /* Locate the region we are before or in. */
113 list_for_each_entry(rg, head, link)
114 if (f <= rg->to)
115 break;
116
117 /* If we are below the current region then a new region is required.
118 * Subtle, allocate a new region at the position but make it zero
119 * size such that we can guarantee to record the reservation. */
120 if (&rg->link == head || t < rg->from) {
121 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
122 if (!nrg)
123 return -ENOMEM;
124 nrg->from = f;
125 nrg->to = f;
126 INIT_LIST_HEAD(&nrg->link);
127 list_add(&nrg->link, rg->link.prev);
128
129 return t - f;
130 }
131
132 /* Round our left edge to the current segment if it encloses us. */
133 if (f > rg->from)
134 f = rg->from;
135 chg = t - f;
136
137 /* Check for and consume any regions we now overlap with. */
138 list_for_each_entry(rg, rg->link.prev, link) {
139 if (&rg->link == head)
140 break;
141 if (rg->from > t)
142 return chg;
143
144 /* We overlap with this area, if it extends futher than
145 * us then we must extend ourselves. Account for its
146 * existing reservation. */
147 if (rg->to > t) {
148 chg += rg->to - t;
149 t = rg->to;
150 }
151 chg -= rg->to - rg->from;
152 }
153 return chg;
154}
155
156static long region_truncate(struct list_head *head, long end)
157{
158 struct file_region *rg, *trg;
159 long chg = 0;
160
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (end <= rg->to)
164 break;
165 if (&rg->link == head)
166 return 0;
167
168 /* If we are in the middle of a region then adjust it. */
169 if (end > rg->from) {
170 chg = rg->to - end;
171 rg->to = end;
172 rg = list_entry(rg->link.next, typeof(*rg), link);
173 }
174
175 /* Drop any remaining regions. */
176 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
177 if (&rg->link == head)
178 break;
179 chg += rg->to - rg->from;
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 return chg;
184}
185
186static long region_count(struct list_head *head, long f, long t)
187{
188 struct file_region *rg;
189 long chg = 0;
190
191 /* Locate each segment we overlap with, and count that overlap. */
192 list_for_each_entry(rg, head, link) {
193 int seg_from;
194 int seg_to;
195
196 if (rg->to <= f)
197 continue;
198 if (rg->from >= t)
199 break;
200
201 seg_from = max(rg->from, f);
202 seg_to = min(rg->to, t);
203
204 chg += seg_to - seg_from;
205 }
206
207 return chg;
208}
209
210/*
211 * Convert the address within this vma to the page offset within
212 * the mapping, in pagecache page units; huge pages here.
213 */
214static pgoff_t vma_hugecache_offset(struct hstate *h,
215 struct vm_area_struct *vma, unsigned long address)
216{
217 return ((address - vma->vm_start) >> huge_page_shift(h)) +
218 (vma->vm_pgoff >> huge_page_order(h));
219}
220
221/*
222 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
223 * bits of the reservation map pointer, which are always clear due to
224 * alignment.
225 */
226#define HPAGE_RESV_OWNER (1UL << 0)
227#define HPAGE_RESV_UNMAPPED (1UL << 1)
228#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
229
230/*
231 * These helpers are used to track how many pages are reserved for
232 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
233 * is guaranteed to have their future faults succeed.
234 *
235 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
236 * the reserve counters are updated with the hugetlb_lock held. It is safe
237 * to reset the VMA at fork() time as it is not in use yet and there is no
238 * chance of the global counters getting corrupted as a result of the values.
239 *
240 * The private mapping reservation is represented in a subtly different
241 * manner to a shared mapping. A shared mapping has a region map associated
242 * with the underlying file, this region map represents the backing file
243 * pages which have ever had a reservation assigned which this persists even
244 * after the page is instantiated. A private mapping has a region map
245 * associated with the original mmap which is attached to all VMAs which
246 * reference it, this region map represents those offsets which have consumed
247 * reservation ie. where pages have been instantiated.
248 */
249static unsigned long get_vma_private_data(struct vm_area_struct *vma)
250{
251 return (unsigned long)vma->vm_private_data;
252}
253
254static void set_vma_private_data(struct vm_area_struct *vma,
255 unsigned long value)
256{
257 vma->vm_private_data = (void *)value;
258}
259
260struct resv_map {
261 struct kref refs;
262 struct list_head regions;
263};
264
265struct resv_map *resv_map_alloc(void)
266{
267 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
268 if (!resv_map)
269 return NULL;
270
271 kref_init(&resv_map->refs);
272 INIT_LIST_HEAD(&resv_map->regions);
273
274 return resv_map;
275}
276
277void resv_map_release(struct kref *ref)
278{
279 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
280
281 /* Clear out any active regions before we release the map. */
282 region_truncate(&resv_map->regions, 0);
283 kfree(resv_map);
284}
285
286static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
287{
288 VM_BUG_ON(!is_vm_hugetlb_page(vma));
289 if (!(vma->vm_flags & VM_SHARED))
290 return (struct resv_map *)(get_vma_private_data(vma) &
291 ~HPAGE_RESV_MASK);
292 return 0;
293}
294
295static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
296{
297 VM_BUG_ON(!is_vm_hugetlb_page(vma));
298 VM_BUG_ON(vma->vm_flags & VM_SHARED);
299
300 set_vma_private_data(vma, (get_vma_private_data(vma) &
301 HPAGE_RESV_MASK) | (unsigned long)map);
302}
303
304static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
305{
306 VM_BUG_ON(!is_vm_hugetlb_page(vma));
307 VM_BUG_ON(vma->vm_flags & VM_SHARED);
308
309 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
310}
311
312static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
313{
314 VM_BUG_ON(!is_vm_hugetlb_page(vma));
315
316 return (get_vma_private_data(vma) & flag) != 0;
317}
318
319/* Decrement the reserved pages in the hugepage pool by one */
320static void decrement_hugepage_resv_vma(struct hstate *h,
321 struct vm_area_struct *vma)
322{
323 if (vma->vm_flags & VM_NORESERVE)
324 return;
325
326 if (vma->vm_flags & VM_SHARED) {
327 /* Shared mappings always use reserves */
328 h->resv_huge_pages--;
329 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
330 /*
331 * Only the process that called mmap() has reserves for
332 * private mappings.
333 */
334 h->resv_huge_pages--;
335 }
336}
337
338/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
339void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
340{
341 VM_BUG_ON(!is_vm_hugetlb_page(vma));
342 if (!(vma->vm_flags & VM_SHARED))
343 vma->vm_private_data = (void *)0;
344}
345
346/* Returns true if the VMA has associated reserve pages */
347static int vma_has_reserves(struct vm_area_struct *vma)
348{
349 if (vma->vm_flags & VM_SHARED)
350 return 1;
351 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
352 return 1;
353 return 0;
354}
355
356static void clear_huge_page(struct page *page,
357 unsigned long addr, unsigned long sz)
44{ 358{
45 int i; 359 int i;
46 360
47 might_sleep(); 361 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { 362 for (i = 0; i < sz/PAGE_SIZE; i++) {
49 cond_resched(); 363 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 364 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51 } 365 }
@@ -55,42 +369,44 @@ static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma) 369 unsigned long addr, struct vm_area_struct *vma)
56{ 370{
57 int i; 371 int i;
372 struct hstate *h = hstate_vma(vma);
58 373
59 might_sleep(); 374 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { 375 for (i = 0; i < pages_per_huge_page(h); i++) {
61 cond_resched(); 376 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 377 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63 } 378 }
64} 379}
65 380
66static void enqueue_huge_page(struct page *page) 381static void enqueue_huge_page(struct hstate *h, struct page *page)
67{ 382{
68 int nid = page_to_nid(page); 383 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]); 384 list_add(&page->lru, &h->hugepage_freelists[nid]);
70 free_huge_pages++; 385 h->free_huge_pages++;
71 free_huge_pages_node[nid]++; 386 h->free_huge_pages_node[nid]++;
72} 387}
73 388
74static struct page *dequeue_huge_page(void) 389static struct page *dequeue_huge_page(struct hstate *h)
75{ 390{
76 int nid; 391 int nid;
77 struct page *page = NULL; 392 struct page *page = NULL;
78 393
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) { 394 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) { 395 if (!list_empty(&h->hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next, 396 page = list_entry(h->hugepage_freelists[nid].next,
82 struct page, lru); 397 struct page, lru);
83 list_del(&page->lru); 398 list_del(&page->lru);
84 free_huge_pages--; 399 h->free_huge_pages--;
85 free_huge_pages_node[nid]--; 400 h->free_huge_pages_node[nid]--;
86 break; 401 break;
87 } 402 }
88 } 403 }
89 return page; 404 return page;
90} 405}
91 406
92static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, 407static struct page *dequeue_huge_page_vma(struct hstate *h,
93 unsigned long address) 408 struct vm_area_struct *vma,
409 unsigned long address, int avoid_reserve)
94{ 410{
95 int nid; 411 int nid;
96 struct page *page = NULL; 412 struct page *page = NULL;
@@ -101,18 +417,33 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
101 struct zone *zone; 417 struct zone *zone;
102 struct zoneref *z; 418 struct zoneref *z;
103 419
420 /*
421 * A child process with MAP_PRIVATE mappings created by their parent
422 * have no page reserves. This check ensures that reservations are
423 * not "stolen". The child may still get SIGKILLed
424 */
425 if (!vma_has_reserves(vma) &&
426 h->free_huge_pages - h->resv_huge_pages == 0)
427 return NULL;
428
429 /* If reserves cannot be used, ensure enough pages are in the pool */
430 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
431 return NULL;
432
104 for_each_zone_zonelist_nodemask(zone, z, zonelist, 433 for_each_zone_zonelist_nodemask(zone, z, zonelist,
105 MAX_NR_ZONES - 1, nodemask) { 434 MAX_NR_ZONES - 1, nodemask) {
106 nid = zone_to_nid(zone); 435 nid = zone_to_nid(zone);
107 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && 436 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108 !list_empty(&hugepage_freelists[nid])) { 437 !list_empty(&h->hugepage_freelists[nid])) {
109 page = list_entry(hugepage_freelists[nid].next, 438 page = list_entry(h->hugepage_freelists[nid].next,
110 struct page, lru); 439 struct page, lru);
111 list_del(&page->lru); 440 list_del(&page->lru);
112 free_huge_pages--; 441 h->free_huge_pages--;
113 free_huge_pages_node[nid]--; 442 h->free_huge_pages_node[nid]--;
114 if (vma && vma->vm_flags & VM_MAYSHARE) 443
115 resv_huge_pages--; 444 if (!avoid_reserve)
445 decrement_hugepage_resv_vma(h, vma);
446
116 break; 447 break;
117 } 448 }
118 } 449 }
@@ -120,12 +451,13 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
120 return page; 451 return page;
121} 452}
122 453
123static void update_and_free_page(struct page *page) 454static void update_and_free_page(struct hstate *h, struct page *page)
124{ 455{
125 int i; 456 int i;
126 nr_huge_pages--; 457
127 nr_huge_pages_node[page_to_nid(page)]--; 458 h->nr_huge_pages--;
128 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { 459 h->nr_huge_pages_node[page_to_nid(page)]--;
460 for (i = 0; i < pages_per_huge_page(h); i++) {
129 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 461 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 462 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131 1 << PG_private | 1<< PG_writeback); 463 1 << PG_private | 1<< PG_writeback);
@@ -133,11 +465,27 @@ static void update_and_free_page(struct page *page)
133 set_compound_page_dtor(page, NULL); 465 set_compound_page_dtor(page, NULL);
134 set_page_refcounted(page); 466 set_page_refcounted(page);
135 arch_release_hugepage(page); 467 arch_release_hugepage(page);
136 __free_pages(page, HUGETLB_PAGE_ORDER); 468 __free_pages(page, huge_page_order(h));
469}
470
471struct hstate *size_to_hstate(unsigned long size)
472{
473 struct hstate *h;
474
475 for_each_hstate(h) {
476 if (huge_page_size(h) == size)
477 return h;
478 }
479 return NULL;
137} 480}
138 481
139static void free_huge_page(struct page *page) 482static void free_huge_page(struct page *page)
140{ 483{
484 /*
485 * Can't pass hstate in here because it is called from the
486 * compound page destructor.
487 */
488 struct hstate *h = page_hstate(page);
141 int nid = page_to_nid(page); 489 int nid = page_to_nid(page);
142 struct address_space *mapping; 490 struct address_space *mapping;
143 491
@@ -147,12 +495,12 @@ static void free_huge_page(struct page *page)
147 INIT_LIST_HEAD(&page->lru); 495 INIT_LIST_HEAD(&page->lru);
148 496
149 spin_lock(&hugetlb_lock); 497 spin_lock(&hugetlb_lock);
150 if (surplus_huge_pages_node[nid]) { 498 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
151 update_and_free_page(page); 499 update_and_free_page(h, page);
152 surplus_huge_pages--; 500 h->surplus_huge_pages--;
153 surplus_huge_pages_node[nid]--; 501 h->surplus_huge_pages_node[nid]--;
154 } else { 502 } else {
155 enqueue_huge_page(page); 503 enqueue_huge_page(h, page);
156 } 504 }
157 spin_unlock(&hugetlb_lock); 505 spin_unlock(&hugetlb_lock);
158 if (mapping) 506 if (mapping)
@@ -164,7 +512,7 @@ static void free_huge_page(struct page *page)
164 * balanced by operating on them in a round-robin fashion. 512 * balanced by operating on them in a round-robin fashion.
165 * Returns 1 if an adjustment was made. 513 * Returns 1 if an adjustment was made.
166 */ 514 */
167static int adjust_pool_surplus(int delta) 515static int adjust_pool_surplus(struct hstate *h, int delta)
168{ 516{
169 static int prev_nid; 517 static int prev_nid;
170 int nid = prev_nid; 518 int nid = prev_nid;
@@ -177,15 +525,15 @@ static int adjust_pool_surplus(int delta)
177 nid = first_node(node_online_map); 525 nid = first_node(node_online_map);
178 526
179 /* To shrink on this node, there must be a surplus page */ 527 /* To shrink on this node, there must be a surplus page */
180 if (delta < 0 && !surplus_huge_pages_node[nid]) 528 if (delta < 0 && !h->surplus_huge_pages_node[nid])
181 continue; 529 continue;
182 /* Surplus cannot exceed the total number of pages */ 530 /* Surplus cannot exceed the total number of pages */
183 if (delta > 0 && surplus_huge_pages_node[nid] >= 531 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
184 nr_huge_pages_node[nid]) 532 h->nr_huge_pages_node[nid])
185 continue; 533 continue;
186 534
187 surplus_huge_pages += delta; 535 h->surplus_huge_pages += delta;
188 surplus_huge_pages_node[nid] += delta; 536 h->surplus_huge_pages_node[nid] += delta;
189 ret = 1; 537 ret = 1;
190 break; 538 break;
191 } while (nid != prev_nid); 539 } while (nid != prev_nid);
@@ -194,59 +542,74 @@ static int adjust_pool_surplus(int delta)
194 return ret; 542 return ret;
195} 543}
196 544
197static struct page *alloc_fresh_huge_page_node(int nid) 545static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
546{
547 set_compound_page_dtor(page, free_huge_page);
548 spin_lock(&hugetlb_lock);
549 h->nr_huge_pages++;
550 h->nr_huge_pages_node[nid]++;
551 spin_unlock(&hugetlb_lock);
552 put_page(page); /* free it into the hugepage allocator */
553}
554
555static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
198{ 556{
199 struct page *page; 557 struct page *page;
200 558
559 if (h->order >= MAX_ORDER)
560 return NULL;
561
201 page = alloc_pages_node(nid, 562 page = alloc_pages_node(nid,
202 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 563 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
203 __GFP_REPEAT|__GFP_NOWARN, 564 __GFP_REPEAT|__GFP_NOWARN,
204 HUGETLB_PAGE_ORDER); 565 huge_page_order(h));
205 if (page) { 566 if (page) {
206 if (arch_prepare_hugepage(page)) { 567 if (arch_prepare_hugepage(page)) {
207 __free_pages(page, HUGETLB_PAGE_ORDER); 568 __free_pages(page, huge_page_order(h));
208 return NULL; 569 return NULL;
209 } 570 }
210 set_compound_page_dtor(page, free_huge_page); 571 prep_new_huge_page(h, page, nid);
211 spin_lock(&hugetlb_lock);
212 nr_huge_pages++;
213 nr_huge_pages_node[nid]++;
214 spin_unlock(&hugetlb_lock);
215 put_page(page); /* free it into the hugepage allocator */
216 } 572 }
217 573
218 return page; 574 return page;
219} 575}
220 576
221static int alloc_fresh_huge_page(void) 577/*
578 * Use a helper variable to find the next node and then
579 * copy it back to hugetlb_next_nid afterwards:
580 * otherwise there's a window in which a racer might
581 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
582 * But we don't need to use a spin_lock here: it really
583 * doesn't matter if occasionally a racer chooses the
584 * same nid as we do. Move nid forward in the mask even
585 * if we just successfully allocated a hugepage so that
586 * the next caller gets hugepages on the next node.
587 */
588static int hstate_next_node(struct hstate *h)
589{
590 int next_nid;
591 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
592 if (next_nid == MAX_NUMNODES)
593 next_nid = first_node(node_online_map);
594 h->hugetlb_next_nid = next_nid;
595 return next_nid;
596}
597
598static int alloc_fresh_huge_page(struct hstate *h)
222{ 599{
223 struct page *page; 600 struct page *page;
224 int start_nid; 601 int start_nid;
225 int next_nid; 602 int next_nid;
226 int ret = 0; 603 int ret = 0;
227 604
228 start_nid = hugetlb_next_nid; 605 start_nid = h->hugetlb_next_nid;
229 606
230 do { 607 do {
231 page = alloc_fresh_huge_page_node(hugetlb_next_nid); 608 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
232 if (page) 609 if (page)
233 ret = 1; 610 ret = 1;
234 /* 611 next_nid = hstate_next_node(h);
235 * Use a helper variable to find the next node and then 612 } while (!page && h->hugetlb_next_nid != start_nid);
236 * copy it back to hugetlb_next_nid afterwards:
237 * otherwise there's a window in which a racer might
238 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
239 * But we don't need to use a spin_lock here: it really
240 * doesn't matter if occasionally a racer chooses the
241 * same nid as we do. Move nid forward in the mask even
242 * if we just successfully allocated a hugepage so that
243 * the next caller gets hugepages on the next node.
244 */
245 next_nid = next_node(hugetlb_next_nid, node_online_map);
246 if (next_nid == MAX_NUMNODES)
247 next_nid = first_node(node_online_map);
248 hugetlb_next_nid = next_nid;
249 } while (!page && hugetlb_next_nid != start_nid);
250 613
251 if (ret) 614 if (ret)
252 count_vm_event(HTLB_BUDDY_PGALLOC); 615 count_vm_event(HTLB_BUDDY_PGALLOC);
@@ -256,12 +619,15 @@ static int alloc_fresh_huge_page(void)
256 return ret; 619 return ret;
257} 620}
258 621
259static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, 622static struct page *alloc_buddy_huge_page(struct hstate *h,
260 unsigned long address) 623 struct vm_area_struct *vma, unsigned long address)
261{ 624{
262 struct page *page; 625 struct page *page;
263 unsigned int nid; 626 unsigned int nid;
264 627
628 if (h->order >= MAX_ORDER)
629 return NULL;
630
265 /* 631 /*
266 * Assume we will successfully allocate the surplus page to 632 * Assume we will successfully allocate the surplus page to
267 * prevent racing processes from causing the surplus to exceed 633 * prevent racing processes from causing the surplus to exceed
@@ -286,18 +652,23 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
286 * per-node value is checked there. 652 * per-node value is checked there.
287 */ 653 */
288 spin_lock(&hugetlb_lock); 654 spin_lock(&hugetlb_lock);
289 if (surplus_huge_pages >= nr_overcommit_huge_pages) { 655 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
290 spin_unlock(&hugetlb_lock); 656 spin_unlock(&hugetlb_lock);
291 return NULL; 657 return NULL;
292 } else { 658 } else {
293 nr_huge_pages++; 659 h->nr_huge_pages++;
294 surplus_huge_pages++; 660 h->surplus_huge_pages++;
295 } 661 }
296 spin_unlock(&hugetlb_lock); 662 spin_unlock(&hugetlb_lock);
297 663
298 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 664 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
299 __GFP_REPEAT|__GFP_NOWARN, 665 __GFP_REPEAT|__GFP_NOWARN,
300 HUGETLB_PAGE_ORDER); 666 huge_page_order(h));
667
668 if (page && arch_prepare_hugepage(page)) {
669 __free_pages(page, huge_page_order(h));
670 return NULL;
671 }
301 672
302 spin_lock(&hugetlb_lock); 673 spin_lock(&hugetlb_lock);
303 if (page) { 674 if (page) {
@@ -312,12 +683,12 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
312 /* 683 /*
313 * We incremented the global counters already 684 * We incremented the global counters already
314 */ 685 */
315 nr_huge_pages_node[nid]++; 686 h->nr_huge_pages_node[nid]++;
316 surplus_huge_pages_node[nid]++; 687 h->surplus_huge_pages_node[nid]++;
317 __count_vm_event(HTLB_BUDDY_PGALLOC); 688 __count_vm_event(HTLB_BUDDY_PGALLOC);
318 } else { 689 } else {
319 nr_huge_pages--; 690 h->nr_huge_pages--;
320 surplus_huge_pages--; 691 h->surplus_huge_pages--;
321 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 692 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
322 } 693 }
323 spin_unlock(&hugetlb_lock); 694 spin_unlock(&hugetlb_lock);
@@ -329,16 +700,16 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
329 * Increase the hugetlb pool such that it can accomodate a reservation 700 * Increase the hugetlb pool such that it can accomodate a reservation
330 * of size 'delta'. 701 * of size 'delta'.
331 */ 702 */
332static int gather_surplus_pages(int delta) 703static int gather_surplus_pages(struct hstate *h, int delta)
333{ 704{
334 struct list_head surplus_list; 705 struct list_head surplus_list;
335 struct page *page, *tmp; 706 struct page *page, *tmp;
336 int ret, i; 707 int ret, i;
337 int needed, allocated; 708 int needed, allocated;
338 709
339 needed = (resv_huge_pages + delta) - free_huge_pages; 710 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
340 if (needed <= 0) { 711 if (needed <= 0) {
341 resv_huge_pages += delta; 712 h->resv_huge_pages += delta;
342 return 0; 713 return 0;
343 } 714 }
344 715
@@ -349,7 +720,7 @@ static int gather_surplus_pages(int delta)
349retry: 720retry:
350 spin_unlock(&hugetlb_lock); 721 spin_unlock(&hugetlb_lock);
351 for (i = 0; i < needed; i++) { 722 for (i = 0; i < needed; i++) {
352 page = alloc_buddy_huge_page(NULL, 0); 723 page = alloc_buddy_huge_page(h, NULL, 0);
353 if (!page) { 724 if (!page) {
354 /* 725 /*
355 * We were not able to allocate enough pages to 726 * We were not able to allocate enough pages to
@@ -370,7 +741,8 @@ retry:
370 * because either resv_huge_pages or free_huge_pages may have changed. 741 * because either resv_huge_pages or free_huge_pages may have changed.
371 */ 742 */
372 spin_lock(&hugetlb_lock); 743 spin_lock(&hugetlb_lock);
373 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated); 744 needed = (h->resv_huge_pages + delta) -
745 (h->free_huge_pages + allocated);
374 if (needed > 0) 746 if (needed > 0)
375 goto retry; 747 goto retry;
376 748
@@ -383,7 +755,7 @@ retry:
383 * before they are reserved. 755 * before they are reserved.
384 */ 756 */
385 needed += allocated; 757 needed += allocated;
386 resv_huge_pages += delta; 758 h->resv_huge_pages += delta;
387 ret = 0; 759 ret = 0;
388free: 760free:
389 /* Free the needed pages to the hugetlb pool */ 761 /* Free the needed pages to the hugetlb pool */
@@ -391,7 +763,7 @@ free:
391 if ((--needed) < 0) 763 if ((--needed) < 0)
392 break; 764 break;
393 list_del(&page->lru); 765 list_del(&page->lru);
394 enqueue_huge_page(page); 766 enqueue_huge_page(h, page);
395 } 767 }
396 768
397 /* Free unnecessary surplus pages to the buddy allocator */ 769 /* Free unnecessary surplus pages to the buddy allocator */
@@ -419,7 +791,8 @@ free:
419 * allocated to satisfy the reservation must be explicitly freed if they were 791 * allocated to satisfy the reservation must be explicitly freed if they were
420 * never used. 792 * never used.
421 */ 793 */
422static void return_unused_surplus_pages(unsigned long unused_resv_pages) 794static void return_unused_surplus_pages(struct hstate *h,
795 unsigned long unused_resv_pages)
423{ 796{
424 static int nid = -1; 797 static int nid = -1;
425 struct page *page; 798 struct page *page;
@@ -434,157 +807,269 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages)
434 unsigned long remaining_iterations = num_online_nodes(); 807 unsigned long remaining_iterations = num_online_nodes();
435 808
436 /* Uncommit the reservation */ 809 /* Uncommit the reservation */
437 resv_huge_pages -= unused_resv_pages; 810 h->resv_huge_pages -= unused_resv_pages;
438 811
439 nr_pages = min(unused_resv_pages, surplus_huge_pages); 812 /* Cannot return gigantic pages currently */
813 if (h->order >= MAX_ORDER)
814 return;
815
816 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
440 817
441 while (remaining_iterations-- && nr_pages) { 818 while (remaining_iterations-- && nr_pages) {
442 nid = next_node(nid, node_online_map); 819 nid = next_node(nid, node_online_map);
443 if (nid == MAX_NUMNODES) 820 if (nid == MAX_NUMNODES)
444 nid = first_node(node_online_map); 821 nid = first_node(node_online_map);
445 822
446 if (!surplus_huge_pages_node[nid]) 823 if (!h->surplus_huge_pages_node[nid])
447 continue; 824 continue;
448 825
449 if (!list_empty(&hugepage_freelists[nid])) { 826 if (!list_empty(&h->hugepage_freelists[nid])) {
450 page = list_entry(hugepage_freelists[nid].next, 827 page = list_entry(h->hugepage_freelists[nid].next,
451 struct page, lru); 828 struct page, lru);
452 list_del(&page->lru); 829 list_del(&page->lru);
453 update_and_free_page(page); 830 update_and_free_page(h, page);
454 free_huge_pages--; 831 h->free_huge_pages--;
455 free_huge_pages_node[nid]--; 832 h->free_huge_pages_node[nid]--;
456 surplus_huge_pages--; 833 h->surplus_huge_pages--;
457 surplus_huge_pages_node[nid]--; 834 h->surplus_huge_pages_node[nid]--;
458 nr_pages--; 835 nr_pages--;
459 remaining_iterations = num_online_nodes(); 836 remaining_iterations = num_online_nodes();
460 } 837 }
461 } 838 }
462} 839}
463 840
841/*
842 * Determine if the huge page at addr within the vma has an associated
843 * reservation. Where it does not we will need to logically increase
844 * reservation and actually increase quota before an allocation can occur.
845 * Where any new reservation would be required the reservation change is
846 * prepared, but not committed. Once the page has been quota'd allocated
847 * an instantiated the change should be committed via vma_commit_reservation.
848 * No action is required on failure.
849 */
850static int vma_needs_reservation(struct hstate *h,
851 struct vm_area_struct *vma, unsigned long addr)
852{
853 struct address_space *mapping = vma->vm_file->f_mapping;
854 struct inode *inode = mapping->host;
855
856 if (vma->vm_flags & VM_SHARED) {
857 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
858 return region_chg(&inode->i_mapping->private_list,
859 idx, idx + 1);
860
861 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
862 return 1;
863
864 } else {
865 int err;
866 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
867 struct resv_map *reservations = vma_resv_map(vma);
464 868
465static struct page *alloc_huge_page_shared(struct vm_area_struct *vma, 869 err = region_chg(&reservations->regions, idx, idx + 1);
466 unsigned long addr) 870 if (err < 0)
871 return err;
872 return 0;
873 }
874}
875static void vma_commit_reservation(struct hstate *h,
876 struct vm_area_struct *vma, unsigned long addr)
467{ 877{
468 struct page *page; 878 struct address_space *mapping = vma->vm_file->f_mapping;
879 struct inode *inode = mapping->host;
469 880
470 spin_lock(&hugetlb_lock); 881 if (vma->vm_flags & VM_SHARED) {
471 page = dequeue_huge_page_vma(vma, addr); 882 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
472 spin_unlock(&hugetlb_lock); 883 region_add(&inode->i_mapping->private_list, idx, idx + 1);
473 return page ? page : ERR_PTR(-VM_FAULT_OOM); 884
885 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
886 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
887 struct resv_map *reservations = vma_resv_map(vma);
888
889 /* Mark this page used in the map. */
890 region_add(&reservations->regions, idx, idx + 1);
891 }
474} 892}
475 893
476static struct page *alloc_huge_page_private(struct vm_area_struct *vma, 894static struct page *alloc_huge_page(struct vm_area_struct *vma,
477 unsigned long addr) 895 unsigned long addr, int avoid_reserve)
478{ 896{
479 struct page *page = NULL; 897 struct hstate *h = hstate_vma(vma);
898 struct page *page;
899 struct address_space *mapping = vma->vm_file->f_mapping;
900 struct inode *inode = mapping->host;
901 unsigned int chg;
480 902
481 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1)) 903 /*
482 return ERR_PTR(-VM_FAULT_SIGBUS); 904 * Processes that did not create the mapping will have no reserves and
905 * will not have accounted against quota. Check that the quota can be
906 * made before satisfying the allocation
907 * MAP_NORESERVE mappings may also need pages and quota allocated
908 * if no reserve mapping overlaps.
909 */
910 chg = vma_needs_reservation(h, vma, addr);
911 if (chg < 0)
912 return ERR_PTR(chg);
913 if (chg)
914 if (hugetlb_get_quota(inode->i_mapping, chg))
915 return ERR_PTR(-ENOSPC);
483 916
484 spin_lock(&hugetlb_lock); 917 spin_lock(&hugetlb_lock);
485 if (free_huge_pages > resv_huge_pages) 918 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
486 page = dequeue_huge_page_vma(vma, addr);
487 spin_unlock(&hugetlb_lock); 919 spin_unlock(&hugetlb_lock);
920
488 if (!page) { 921 if (!page) {
489 page = alloc_buddy_huge_page(vma, addr); 922 page = alloc_buddy_huge_page(h, vma, addr);
490 if (!page) { 923 if (!page) {
491 hugetlb_put_quota(vma->vm_file->f_mapping, 1); 924 hugetlb_put_quota(inode->i_mapping, chg);
492 return ERR_PTR(-VM_FAULT_OOM); 925 return ERR_PTR(-VM_FAULT_OOM);
493 } 926 }
494 } 927 }
928
929 set_page_refcounted(page);
930 set_page_private(page, (unsigned long) mapping);
931
932 vma_commit_reservation(h, vma, addr);
933
495 return page; 934 return page;
496} 935}
497 936
498static struct page *alloc_huge_page(struct vm_area_struct *vma, 937__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
499 unsigned long addr)
500{ 938{
501 struct page *page; 939 struct huge_bootmem_page *m;
502 struct address_space *mapping = vma->vm_file->f_mapping; 940 int nr_nodes = nodes_weight(node_online_map);
503 941
504 if (vma->vm_flags & VM_MAYSHARE) 942 while (nr_nodes) {
505 page = alloc_huge_page_shared(vma, addr); 943 void *addr;
506 else 944
507 page = alloc_huge_page_private(vma, addr); 945 addr = __alloc_bootmem_node_nopanic(
946 NODE_DATA(h->hugetlb_next_nid),
947 huge_page_size(h), huge_page_size(h), 0);
508 948
509 if (!IS_ERR(page)) { 949 if (addr) {
510 set_page_refcounted(page); 950 /*
511 set_page_private(page, (unsigned long) mapping); 951 * Use the beginning of the huge page to store the
952 * huge_bootmem_page struct (until gather_bootmem
953 * puts them into the mem_map).
954 */
955 m = addr;
956 if (m)
957 goto found;
958 }
959 hstate_next_node(h);
960 nr_nodes--;
512 } 961 }
513 return page; 962 return 0;
963
964found:
965 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
966 /* Put them into a private list first because mem_map is not up yet */
967 list_add(&m->list, &huge_boot_pages);
968 m->hstate = h;
969 return 1;
514} 970}
515 971
516static int __init hugetlb_init(void) 972/* Put bootmem huge pages into the standard lists after mem_map is up */
973static void __init gather_bootmem_prealloc(void)
517{ 974{
518 unsigned long i; 975 struct huge_bootmem_page *m;
519 976
520 if (HPAGE_SHIFT == 0) 977 list_for_each_entry(m, &huge_boot_pages, list) {
521 return 0; 978 struct page *page = virt_to_page(m);
522 979 struct hstate *h = m->hstate;
523 for (i = 0; i < MAX_NUMNODES; ++i) 980 __ClearPageReserved(page);
524 INIT_LIST_HEAD(&hugepage_freelists[i]); 981 WARN_ON(page_count(page) != 1);
982 prep_compound_page(page, h->order);
983 prep_new_huge_page(h, page, page_to_nid(page));
984 }
985}
525 986
526 hugetlb_next_nid = first_node(node_online_map); 987static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
988{
989 unsigned long i;
527 990
528 for (i = 0; i < max_huge_pages; ++i) { 991 for (i = 0; i < h->max_huge_pages; ++i) {
529 if (!alloc_fresh_huge_page()) 992 if (h->order >= MAX_ORDER) {
993 if (!alloc_bootmem_huge_page(h))
994 break;
995 } else if (!alloc_fresh_huge_page(h))
530 break; 996 break;
531 } 997 }
532 max_huge_pages = free_huge_pages = nr_huge_pages = i; 998 h->max_huge_pages = i;
533 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
534 return 0;
535} 999}
536module_init(hugetlb_init);
537 1000
538static int __init hugetlb_setup(char *s) 1001static void __init hugetlb_init_hstates(void)
539{ 1002{
540 if (sscanf(s, "%lu", &max_huge_pages) <= 0) 1003 struct hstate *h;
541 max_huge_pages = 0; 1004
542 return 1; 1005 for_each_hstate(h) {
1006 /* oversize hugepages were init'ed in early boot */
1007 if (h->order < MAX_ORDER)
1008 hugetlb_hstate_alloc_pages(h);
1009 }
543} 1010}
544__setup("hugepages=", hugetlb_setup);
545 1011
546static unsigned int cpuset_mems_nr(unsigned int *array) 1012static char * __init memfmt(char *buf, unsigned long n)
547{ 1013{
548 int node; 1014 if (n >= (1UL << 30))
549 unsigned int nr = 0; 1015 sprintf(buf, "%lu GB", n >> 30);
550 1016 else if (n >= (1UL << 20))
551 for_each_node_mask(node, cpuset_current_mems_allowed) 1017 sprintf(buf, "%lu MB", n >> 20);
552 nr += array[node]; 1018 else
1019 sprintf(buf, "%lu KB", n >> 10);
1020 return buf;
1021}
553 1022
554 return nr; 1023static void __init report_hugepages(void)
1024{
1025 struct hstate *h;
1026
1027 for_each_hstate(h) {
1028 char buf[32];
1029 printk(KERN_INFO "HugeTLB registered %s page size, "
1030 "pre-allocated %ld pages\n",
1031 memfmt(buf, huge_page_size(h)),
1032 h->free_huge_pages);
1033 }
555} 1034}
556 1035
557#ifdef CONFIG_SYSCTL
558#ifdef CONFIG_HIGHMEM 1036#ifdef CONFIG_HIGHMEM
559static void try_to_free_low(unsigned long count) 1037static void try_to_free_low(struct hstate *h, unsigned long count)
560{ 1038{
561 int i; 1039 int i;
562 1040
1041 if (h->order >= MAX_ORDER)
1042 return;
1043
563 for (i = 0; i < MAX_NUMNODES; ++i) { 1044 for (i = 0; i < MAX_NUMNODES; ++i) {
564 struct page *page, *next; 1045 struct page *page, *next;
565 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { 1046 struct list_head *freel = &h->hugepage_freelists[i];
566 if (count >= nr_huge_pages) 1047 list_for_each_entry_safe(page, next, freel, lru) {
1048 if (count >= h->nr_huge_pages)
567 return; 1049 return;
568 if (PageHighMem(page)) 1050 if (PageHighMem(page))
569 continue; 1051 continue;
570 list_del(&page->lru); 1052 list_del(&page->lru);
571 update_and_free_page(page); 1053 update_and_free_page(h, page);
572 free_huge_pages--; 1054 h->free_huge_pages--;
573 free_huge_pages_node[page_to_nid(page)]--; 1055 h->free_huge_pages_node[page_to_nid(page)]--;
574 } 1056 }
575 } 1057 }
576} 1058}
577#else 1059#else
578static inline void try_to_free_low(unsigned long count) 1060static inline void try_to_free_low(struct hstate *h, unsigned long count)
579{ 1061{
580} 1062}
581#endif 1063#endif
582 1064
583#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages) 1065#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
584static unsigned long set_max_huge_pages(unsigned long count) 1066static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
585{ 1067{
586 unsigned long min_count, ret; 1068 unsigned long min_count, ret;
587 1069
1070 if (h->order >= MAX_ORDER)
1071 return h->max_huge_pages;
1072
588 /* 1073 /*
589 * Increase the pool size 1074 * Increase the pool size
590 * First take pages out of surplus state. Then make up the 1075 * First take pages out of surplus state. Then make up the
@@ -597,20 +1082,19 @@ static unsigned long set_max_huge_pages(unsigned long count)
597 * within all the constraints specified by the sysctls. 1082 * within all the constraints specified by the sysctls.
598 */ 1083 */
599 spin_lock(&hugetlb_lock); 1084 spin_lock(&hugetlb_lock);
600 while (surplus_huge_pages && count > persistent_huge_pages) { 1085 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
601 if (!adjust_pool_surplus(-1)) 1086 if (!adjust_pool_surplus(h, -1))
602 break; 1087 break;
603 } 1088 }
604 1089
605 while (count > persistent_huge_pages) { 1090 while (count > persistent_huge_pages(h)) {
606 int ret;
607 /* 1091 /*
608 * If this allocation races such that we no longer need the 1092 * If this allocation races such that we no longer need the
609 * page, free_huge_page will handle it by freeing the page 1093 * page, free_huge_page will handle it by freeing the page
610 * and reducing the surplus. 1094 * and reducing the surplus.
611 */ 1095 */
612 spin_unlock(&hugetlb_lock); 1096 spin_unlock(&hugetlb_lock);
613 ret = alloc_fresh_huge_page(); 1097 ret = alloc_fresh_huge_page(h);
614 spin_lock(&hugetlb_lock); 1098 spin_lock(&hugetlb_lock);
615 if (!ret) 1099 if (!ret)
616 goto out; 1100 goto out;
@@ -632,31 +1116,305 @@ static unsigned long set_max_huge_pages(unsigned long count)
632 * and won't grow the pool anywhere else. Not until one of the 1116 * and won't grow the pool anywhere else. Not until one of the
633 * sysctls are changed, or the surplus pages go out of use. 1117 * sysctls are changed, or the surplus pages go out of use.
634 */ 1118 */
635 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; 1119 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
636 min_count = max(count, min_count); 1120 min_count = max(count, min_count);
637 try_to_free_low(min_count); 1121 try_to_free_low(h, min_count);
638 while (min_count < persistent_huge_pages) { 1122 while (min_count < persistent_huge_pages(h)) {
639 struct page *page = dequeue_huge_page(); 1123 struct page *page = dequeue_huge_page(h);
640 if (!page) 1124 if (!page)
641 break; 1125 break;
642 update_and_free_page(page); 1126 update_and_free_page(h, page);
643 } 1127 }
644 while (count < persistent_huge_pages) { 1128 while (count < persistent_huge_pages(h)) {
645 if (!adjust_pool_surplus(1)) 1129 if (!adjust_pool_surplus(h, 1))
646 break; 1130 break;
647 } 1131 }
648out: 1132out:
649 ret = persistent_huge_pages; 1133 ret = persistent_huge_pages(h);
650 spin_unlock(&hugetlb_lock); 1134 spin_unlock(&hugetlb_lock);
651 return ret; 1135 return ret;
652} 1136}
653 1137
1138#define HSTATE_ATTR_RO(_name) \
1139 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1140
1141#define HSTATE_ATTR(_name) \
1142 static struct kobj_attribute _name##_attr = \
1143 __ATTR(_name, 0644, _name##_show, _name##_store)
1144
1145static struct kobject *hugepages_kobj;
1146static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1147
1148static struct hstate *kobj_to_hstate(struct kobject *kobj)
1149{
1150 int i;
1151 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1152 if (hstate_kobjs[i] == kobj)
1153 return &hstates[i];
1154 BUG();
1155 return NULL;
1156}
1157
1158static ssize_t nr_hugepages_show(struct kobject *kobj,
1159 struct kobj_attribute *attr, char *buf)
1160{
1161 struct hstate *h = kobj_to_hstate(kobj);
1162 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1163}
1164static ssize_t nr_hugepages_store(struct kobject *kobj,
1165 struct kobj_attribute *attr, const char *buf, size_t count)
1166{
1167 int err;
1168 unsigned long input;
1169 struct hstate *h = kobj_to_hstate(kobj);
1170
1171 err = strict_strtoul(buf, 10, &input);
1172 if (err)
1173 return 0;
1174
1175 h->max_huge_pages = set_max_huge_pages(h, input);
1176
1177 return count;
1178}
1179HSTATE_ATTR(nr_hugepages);
1180
1181static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1182 struct kobj_attribute *attr, char *buf)
1183{
1184 struct hstate *h = kobj_to_hstate(kobj);
1185 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1186}
1187static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1188 struct kobj_attribute *attr, const char *buf, size_t count)
1189{
1190 int err;
1191 unsigned long input;
1192 struct hstate *h = kobj_to_hstate(kobj);
1193
1194 err = strict_strtoul(buf, 10, &input);
1195 if (err)
1196 return 0;
1197
1198 spin_lock(&hugetlb_lock);
1199 h->nr_overcommit_huge_pages = input;
1200 spin_unlock(&hugetlb_lock);
1201
1202 return count;
1203}
1204HSTATE_ATTR(nr_overcommit_hugepages);
1205
1206static ssize_t free_hugepages_show(struct kobject *kobj,
1207 struct kobj_attribute *attr, char *buf)
1208{
1209 struct hstate *h = kobj_to_hstate(kobj);
1210 return sprintf(buf, "%lu\n", h->free_huge_pages);
1211}
1212HSTATE_ATTR_RO(free_hugepages);
1213
1214static ssize_t resv_hugepages_show(struct kobject *kobj,
1215 struct kobj_attribute *attr, char *buf)
1216{
1217 struct hstate *h = kobj_to_hstate(kobj);
1218 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1219}
1220HSTATE_ATTR_RO(resv_hugepages);
1221
1222static ssize_t surplus_hugepages_show(struct kobject *kobj,
1223 struct kobj_attribute *attr, char *buf)
1224{
1225 struct hstate *h = kobj_to_hstate(kobj);
1226 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1227}
1228HSTATE_ATTR_RO(surplus_hugepages);
1229
1230static struct attribute *hstate_attrs[] = {
1231 &nr_hugepages_attr.attr,
1232 &nr_overcommit_hugepages_attr.attr,
1233 &free_hugepages_attr.attr,
1234 &resv_hugepages_attr.attr,
1235 &surplus_hugepages_attr.attr,
1236 NULL,
1237};
1238
1239static struct attribute_group hstate_attr_group = {
1240 .attrs = hstate_attrs,
1241};
1242
1243static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1244{
1245 int retval;
1246
1247 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1248 hugepages_kobj);
1249 if (!hstate_kobjs[h - hstates])
1250 return -ENOMEM;
1251
1252 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1253 &hstate_attr_group);
1254 if (retval)
1255 kobject_put(hstate_kobjs[h - hstates]);
1256
1257 return retval;
1258}
1259
1260static void __init hugetlb_sysfs_init(void)
1261{
1262 struct hstate *h;
1263 int err;
1264
1265 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1266 if (!hugepages_kobj)
1267 return;
1268
1269 for_each_hstate(h) {
1270 err = hugetlb_sysfs_add_hstate(h);
1271 if (err)
1272 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1273 h->name);
1274 }
1275}
1276
1277static void __exit hugetlb_exit(void)
1278{
1279 struct hstate *h;
1280
1281 for_each_hstate(h) {
1282 kobject_put(hstate_kobjs[h - hstates]);
1283 }
1284
1285 kobject_put(hugepages_kobj);
1286}
1287module_exit(hugetlb_exit);
1288
1289static int __init hugetlb_init(void)
1290{
1291 /* Some platform decide whether they support huge pages at boot
1292 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1293 * there is no such support
1294 */
1295 if (HPAGE_SHIFT == 0)
1296 return 0;
1297
1298 if (!size_to_hstate(default_hstate_size)) {
1299 default_hstate_size = HPAGE_SIZE;
1300 if (!size_to_hstate(default_hstate_size))
1301 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1302 }
1303 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1304 if (default_hstate_max_huge_pages)
1305 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1306
1307 hugetlb_init_hstates();
1308
1309 gather_bootmem_prealloc();
1310
1311 report_hugepages();
1312
1313 hugetlb_sysfs_init();
1314
1315 return 0;
1316}
1317module_init(hugetlb_init);
1318
1319/* Should be called on processing a hugepagesz=... option */
1320void __init hugetlb_add_hstate(unsigned order)
1321{
1322 struct hstate *h;
1323 unsigned long i;
1324
1325 if (size_to_hstate(PAGE_SIZE << order)) {
1326 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1327 return;
1328 }
1329 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1330 BUG_ON(order == 0);
1331 h = &hstates[max_hstate++];
1332 h->order = order;
1333 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1334 h->nr_huge_pages = 0;
1335 h->free_huge_pages = 0;
1336 for (i = 0; i < MAX_NUMNODES; ++i)
1337 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1338 h->hugetlb_next_nid = first_node(node_online_map);
1339 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1340 huge_page_size(h)/1024);
1341
1342 parsed_hstate = h;
1343}
1344
1345static int __init hugetlb_nrpages_setup(char *s)
1346{
1347 unsigned long *mhp;
1348 static unsigned long *last_mhp;
1349
1350 /*
1351 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1352 * so this hugepages= parameter goes to the "default hstate".
1353 */
1354 if (!max_hstate)
1355 mhp = &default_hstate_max_huge_pages;
1356 else
1357 mhp = &parsed_hstate->max_huge_pages;
1358
1359 if (mhp == last_mhp) {
1360 printk(KERN_WARNING "hugepages= specified twice without "
1361 "interleaving hugepagesz=, ignoring\n");
1362 return 1;
1363 }
1364
1365 if (sscanf(s, "%lu", mhp) <= 0)
1366 *mhp = 0;
1367
1368 /*
1369 * Global state is always initialized later in hugetlb_init.
1370 * But we need to allocate >= MAX_ORDER hstates here early to still
1371 * use the bootmem allocator.
1372 */
1373 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1374 hugetlb_hstate_alloc_pages(parsed_hstate);
1375
1376 last_mhp = mhp;
1377
1378 return 1;
1379}
1380__setup("hugepages=", hugetlb_nrpages_setup);
1381
1382static int __init hugetlb_default_setup(char *s)
1383{
1384 default_hstate_size = memparse(s, &s);
1385 return 1;
1386}
1387__setup("default_hugepagesz=", hugetlb_default_setup);
1388
1389static unsigned int cpuset_mems_nr(unsigned int *array)
1390{
1391 int node;
1392 unsigned int nr = 0;
1393
1394 for_each_node_mask(node, cpuset_current_mems_allowed)
1395 nr += array[node];
1396
1397 return nr;
1398}
1399
1400#ifdef CONFIG_SYSCTL
654int hugetlb_sysctl_handler(struct ctl_table *table, int write, 1401int hugetlb_sysctl_handler(struct ctl_table *table, int write,
655 struct file *file, void __user *buffer, 1402 struct file *file, void __user *buffer,
656 size_t *length, loff_t *ppos) 1403 size_t *length, loff_t *ppos)
657{ 1404{
1405 struct hstate *h = &default_hstate;
1406 unsigned long tmp;
1407
1408 if (!write)
1409 tmp = h->max_huge_pages;
1410
1411 table->data = &tmp;
1412 table->maxlen = sizeof(unsigned long);
658 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1413 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
659 max_huge_pages = set_max_huge_pages(max_huge_pages); 1414
1415 if (write)
1416 h->max_huge_pages = set_max_huge_pages(h, tmp);
1417
660 return 0; 1418 return 0;
661} 1419}
662 1420
@@ -676,10 +1434,22 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write,
676 struct file *file, void __user *buffer, 1434 struct file *file, void __user *buffer,
677 size_t *length, loff_t *ppos) 1435 size_t *length, loff_t *ppos)
678{ 1436{
1437 struct hstate *h = &default_hstate;
1438 unsigned long tmp;
1439
1440 if (!write)
1441 tmp = h->nr_overcommit_huge_pages;
1442
1443 table->data = &tmp;
1444 table->maxlen = sizeof(unsigned long);
679 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1445 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
680 spin_lock(&hugetlb_lock); 1446
681 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages; 1447 if (write) {
682 spin_unlock(&hugetlb_lock); 1448 spin_lock(&hugetlb_lock);
1449 h->nr_overcommit_huge_pages = tmp;
1450 spin_unlock(&hugetlb_lock);
1451 }
1452
683 return 0; 1453 return 0;
684} 1454}
685 1455
@@ -687,34 +1457,118 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write,
687 1457
688int hugetlb_report_meminfo(char *buf) 1458int hugetlb_report_meminfo(char *buf)
689{ 1459{
1460 struct hstate *h = &default_hstate;
690 return sprintf(buf, 1461 return sprintf(buf,
691 "HugePages_Total: %5lu\n" 1462 "HugePages_Total: %5lu\n"
692 "HugePages_Free: %5lu\n" 1463 "HugePages_Free: %5lu\n"
693 "HugePages_Rsvd: %5lu\n" 1464 "HugePages_Rsvd: %5lu\n"
694 "HugePages_Surp: %5lu\n" 1465 "HugePages_Surp: %5lu\n"
695 "Hugepagesize: %5lu kB\n", 1466 "Hugepagesize: %5lu kB\n",
696 nr_huge_pages, 1467 h->nr_huge_pages,
697 free_huge_pages, 1468 h->free_huge_pages,
698 resv_huge_pages, 1469 h->resv_huge_pages,
699 surplus_huge_pages, 1470 h->surplus_huge_pages,
700 HPAGE_SIZE/1024); 1471 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
701} 1472}
702 1473
703int hugetlb_report_node_meminfo(int nid, char *buf) 1474int hugetlb_report_node_meminfo(int nid, char *buf)
704{ 1475{
1476 struct hstate *h = &default_hstate;
705 return sprintf(buf, 1477 return sprintf(buf,
706 "Node %d HugePages_Total: %5u\n" 1478 "Node %d HugePages_Total: %5u\n"
707 "Node %d HugePages_Free: %5u\n" 1479 "Node %d HugePages_Free: %5u\n"
708 "Node %d HugePages_Surp: %5u\n", 1480 "Node %d HugePages_Surp: %5u\n",
709 nid, nr_huge_pages_node[nid], 1481 nid, h->nr_huge_pages_node[nid],
710 nid, free_huge_pages_node[nid], 1482 nid, h->free_huge_pages_node[nid],
711 nid, surplus_huge_pages_node[nid]); 1483 nid, h->surplus_huge_pages_node[nid]);
712} 1484}
713 1485
714/* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 1486/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
715unsigned long hugetlb_total_pages(void) 1487unsigned long hugetlb_total_pages(void)
716{ 1488{
717 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); 1489 struct hstate *h = &default_hstate;
1490 return h->nr_huge_pages * pages_per_huge_page(h);
1491}
1492
1493static int hugetlb_acct_memory(struct hstate *h, long delta)
1494{
1495 int ret = -ENOMEM;
1496
1497 spin_lock(&hugetlb_lock);
1498 /*
1499 * When cpuset is configured, it breaks the strict hugetlb page
1500 * reservation as the accounting is done on a global variable. Such
1501 * reservation is completely rubbish in the presence of cpuset because
1502 * the reservation is not checked against page availability for the
1503 * current cpuset. Application can still potentially OOM'ed by kernel
1504 * with lack of free htlb page in cpuset that the task is in.
1505 * Attempt to enforce strict accounting with cpuset is almost
1506 * impossible (or too ugly) because cpuset is too fluid that
1507 * task or memory node can be dynamically moved between cpusets.
1508 *
1509 * The change of semantics for shared hugetlb mapping with cpuset is
1510 * undesirable. However, in order to preserve some of the semantics,
1511 * we fall back to check against current free page availability as
1512 * a best attempt and hopefully to minimize the impact of changing
1513 * semantics that cpuset has.
1514 */
1515 if (delta > 0) {
1516 if (gather_surplus_pages(h, delta) < 0)
1517 goto out;
1518
1519 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1520 return_unused_surplus_pages(h, delta);
1521 goto out;
1522 }
1523 }
1524
1525 ret = 0;
1526 if (delta < 0)
1527 return_unused_surplus_pages(h, (unsigned long) -delta);
1528
1529out:
1530 spin_unlock(&hugetlb_lock);
1531 return ret;
1532}
1533
1534static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1535{
1536 struct resv_map *reservations = vma_resv_map(vma);
1537
1538 /*
1539 * This new VMA should share its siblings reservation map if present.
1540 * The VMA will only ever have a valid reservation map pointer where
1541 * it is being copied for another still existing VMA. As that VMA
1542 * has a reference to the reservation map it cannot dissappear until
1543 * after this open call completes. It is therefore safe to take a
1544 * new reference here without additional locking.
1545 */
1546 if (reservations)
1547 kref_get(&reservations->refs);
1548}
1549
1550static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1551{
1552 struct hstate *h = hstate_vma(vma);
1553 struct resv_map *reservations = vma_resv_map(vma);
1554 unsigned long reserve;
1555 unsigned long start;
1556 unsigned long end;
1557
1558 if (reservations) {
1559 start = vma_hugecache_offset(h, vma, vma->vm_start);
1560 end = vma_hugecache_offset(h, vma, vma->vm_end);
1561
1562 reserve = (end - start) -
1563 region_count(&reservations->regions, start, end);
1564
1565 kref_put(&reservations->refs, resv_map_release);
1566
1567 if (reserve) {
1568 hugetlb_acct_memory(h, -reserve);
1569 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1570 }
1571 }
718} 1572}
719 1573
720/* 1574/*
@@ -731,6 +1585,8 @@ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
731 1585
732struct vm_operations_struct hugetlb_vm_ops = { 1586struct vm_operations_struct hugetlb_vm_ops = {
733 .fault = hugetlb_vm_op_fault, 1587 .fault = hugetlb_vm_op_fault,
1588 .open = hugetlb_vm_op_open,
1589 .close = hugetlb_vm_op_close,
734}; 1590};
735 1591
736static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 1592static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
@@ -769,14 +1625,16 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
769 struct page *ptepage; 1625 struct page *ptepage;
770 unsigned long addr; 1626 unsigned long addr;
771 int cow; 1627 int cow;
1628 struct hstate *h = hstate_vma(vma);
1629 unsigned long sz = huge_page_size(h);
772 1630
773 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1631 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
774 1632
775 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { 1633 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
776 src_pte = huge_pte_offset(src, addr); 1634 src_pte = huge_pte_offset(src, addr);
777 if (!src_pte) 1635 if (!src_pte)
778 continue; 1636 continue;
779 dst_pte = huge_pte_alloc(dst, addr); 1637 dst_pte = huge_pte_alloc(dst, addr, sz);
780 if (!dst_pte) 1638 if (!dst_pte)
781 goto nomem; 1639 goto nomem;
782 1640
@@ -804,7 +1662,7 @@ nomem:
804} 1662}
805 1663
806void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1664void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
807 unsigned long end) 1665 unsigned long end, struct page *ref_page)
808{ 1666{
809 struct mm_struct *mm = vma->vm_mm; 1667 struct mm_struct *mm = vma->vm_mm;
810 unsigned long address; 1668 unsigned long address;
@@ -812,6 +1670,9 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
812 pte_t pte; 1670 pte_t pte;
813 struct page *page; 1671 struct page *page;
814 struct page *tmp; 1672 struct page *tmp;
1673 struct hstate *h = hstate_vma(vma);
1674 unsigned long sz = huge_page_size(h);
1675
815 /* 1676 /*
816 * A page gathering list, protected by per file i_mmap_lock. The 1677 * A page gathering list, protected by per file i_mmap_lock. The
817 * lock is used to avoid list corruption from multiple unmapping 1678 * lock is used to avoid list corruption from multiple unmapping
@@ -820,11 +1681,12 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
820 LIST_HEAD(page_list); 1681 LIST_HEAD(page_list);
821 1682
822 WARN_ON(!is_vm_hugetlb_page(vma)); 1683 WARN_ON(!is_vm_hugetlb_page(vma));
823 BUG_ON(start & ~HPAGE_MASK); 1684 BUG_ON(start & ~huge_page_mask(h));
824 BUG_ON(end & ~HPAGE_MASK); 1685 BUG_ON(end & ~huge_page_mask(h));
825 1686
1687 mmu_notifier_invalidate_range_start(mm, start, end);
826 spin_lock(&mm->page_table_lock); 1688 spin_lock(&mm->page_table_lock);
827 for (address = start; address < end; address += HPAGE_SIZE) { 1689 for (address = start; address < end; address += sz) {
828 ptep = huge_pte_offset(mm, address); 1690 ptep = huge_pte_offset(mm, address);
829 if (!ptep) 1691 if (!ptep)
830 continue; 1692 continue;
@@ -832,6 +1694,27 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
832 if (huge_pmd_unshare(mm, &address, ptep)) 1694 if (huge_pmd_unshare(mm, &address, ptep))
833 continue; 1695 continue;
834 1696
1697 /*
1698 * If a reference page is supplied, it is because a specific
1699 * page is being unmapped, not a range. Ensure the page we
1700 * are about to unmap is the actual page of interest.
1701 */
1702 if (ref_page) {
1703 pte = huge_ptep_get(ptep);
1704 if (huge_pte_none(pte))
1705 continue;
1706 page = pte_page(pte);
1707 if (page != ref_page)
1708 continue;
1709
1710 /*
1711 * Mark the VMA as having unmapped its page so that
1712 * future faults in this VMA will fail rather than
1713 * looking like data was lost
1714 */
1715 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1716 }
1717
835 pte = huge_ptep_get_and_clear(mm, address, ptep); 1718 pte = huge_ptep_get_and_clear(mm, address, ptep);
836 if (huge_pte_none(pte)) 1719 if (huge_pte_none(pte))
837 continue; 1720 continue;
@@ -843,6 +1726,7 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
843 } 1726 }
844 spin_unlock(&mm->page_table_lock); 1727 spin_unlock(&mm->page_table_lock);
845 flush_tlb_range(vma, start, end); 1728 flush_tlb_range(vma, start, end);
1729 mmu_notifier_invalidate_range_end(mm, start, end);
846 list_for_each_entry_safe(page, tmp, &page_list, lru) { 1730 list_for_each_entry_safe(page, tmp, &page_list, lru) {
847 list_del(&page->lru); 1731 list_del(&page->lru);
848 put_page(page); 1732 put_page(page);
@@ -850,31 +1734,71 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
850} 1734}
851 1735
852void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1736void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
853 unsigned long end) 1737 unsigned long end, struct page *ref_page)
854{ 1738{
1739 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1740 __unmap_hugepage_range(vma, start, end, ref_page);
1741 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1742}
1743
1744/*
1745 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1746 * mappping it owns the reserve page for. The intention is to unmap the page
1747 * from other VMAs and let the children be SIGKILLed if they are faulting the
1748 * same region.
1749 */
1750int unmap_ref_private(struct mm_struct *mm,
1751 struct vm_area_struct *vma,
1752 struct page *page,
1753 unsigned long address)
1754{
1755 struct vm_area_struct *iter_vma;
1756 struct address_space *mapping;
1757 struct prio_tree_iter iter;
1758 pgoff_t pgoff;
1759
855 /* 1760 /*
856 * It is undesirable to test vma->vm_file as it should be non-null 1761 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
857 * for valid hugetlb area. However, vm_file will be NULL in the error 1762 * from page cache lookup which is in HPAGE_SIZE units.
858 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
859 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
860 * to clean up. Since no pte has actually been setup, it is safe to
861 * do nothing in this case.
862 */ 1763 */
863 if (vma->vm_file) { 1764 address = address & huge_page_mask(hstate_vma(vma));
864 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 1765 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
865 __unmap_hugepage_range(vma, start, end); 1766 + (vma->vm_pgoff >> PAGE_SHIFT);
866 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 1767 mapping = (struct address_space *)page_private(page);
1768
1769 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1770 /* Do not unmap the current VMA */
1771 if (iter_vma == vma)
1772 continue;
1773
1774 /*
1775 * Unmap the page from other VMAs without their own reserves.
1776 * They get marked to be SIGKILLed if they fault in these
1777 * areas. This is because a future no-page fault on this VMA
1778 * could insert a zeroed page instead of the data existing
1779 * from the time of fork. This would look like data corruption
1780 */
1781 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1782 unmap_hugepage_range(iter_vma,
1783 address, address + HPAGE_SIZE,
1784 page);
867 } 1785 }
1786
1787 return 1;
868} 1788}
869 1789
870static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 1790static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
871 unsigned long address, pte_t *ptep, pte_t pte) 1791 unsigned long address, pte_t *ptep, pte_t pte,
1792 struct page *pagecache_page)
872{ 1793{
1794 struct hstate *h = hstate_vma(vma);
873 struct page *old_page, *new_page; 1795 struct page *old_page, *new_page;
874 int avoidcopy; 1796 int avoidcopy;
1797 int outside_reserve = 0;
875 1798
876 old_page = pte_page(pte); 1799 old_page = pte_page(pte);
877 1800
1801retry_avoidcopy:
878 /* If no-one else is actually using this page, avoid the copy 1802 /* If no-one else is actually using this page, avoid the copy
879 * and just make the page writable */ 1803 * and just make the page writable */
880 avoidcopy = (page_count(old_page) == 1); 1804 avoidcopy = (page_count(old_page) == 1);
@@ -883,11 +1807,43 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
883 return 0; 1807 return 0;
884 } 1808 }
885 1809
1810 /*
1811 * If the process that created a MAP_PRIVATE mapping is about to
1812 * perform a COW due to a shared page count, attempt to satisfy
1813 * the allocation without using the existing reserves. The pagecache
1814 * page is used to determine if the reserve at this address was
1815 * consumed or not. If reserves were used, a partial faulted mapping
1816 * at the time of fork() could consume its reserves on COW instead
1817 * of the full address range.
1818 */
1819 if (!(vma->vm_flags & VM_SHARED) &&
1820 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1821 old_page != pagecache_page)
1822 outside_reserve = 1;
1823
886 page_cache_get(old_page); 1824 page_cache_get(old_page);
887 new_page = alloc_huge_page(vma, address); 1825 new_page = alloc_huge_page(vma, address, outside_reserve);
888 1826
889 if (IS_ERR(new_page)) { 1827 if (IS_ERR(new_page)) {
890 page_cache_release(old_page); 1828 page_cache_release(old_page);
1829
1830 /*
1831 * If a process owning a MAP_PRIVATE mapping fails to COW,
1832 * it is due to references held by a child and an insufficient
1833 * huge page pool. To guarantee the original mappers
1834 * reliability, unmap the page from child processes. The child
1835 * may get SIGKILLed if it later faults.
1836 */
1837 if (outside_reserve) {
1838 BUG_ON(huge_pte_none(pte));
1839 if (unmap_ref_private(mm, vma, old_page, address)) {
1840 BUG_ON(page_count(old_page) != 1);
1841 BUG_ON(huge_pte_none(pte));
1842 goto retry_avoidcopy;
1843 }
1844 WARN_ON_ONCE(1);
1845 }
1846
891 return -PTR_ERR(new_page); 1847 return -PTR_ERR(new_page);
892 } 1848 }
893 1849
@@ -896,7 +1852,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
896 __SetPageUptodate(new_page); 1852 __SetPageUptodate(new_page);
897 spin_lock(&mm->page_table_lock); 1853 spin_lock(&mm->page_table_lock);
898 1854
899 ptep = huge_pte_offset(mm, address & HPAGE_MASK); 1855 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
900 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 1856 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
901 /* Break COW */ 1857 /* Break COW */
902 huge_ptep_clear_flush(vma, address, ptep); 1858 huge_ptep_clear_flush(vma, address, ptep);
@@ -910,19 +1866,44 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
910 return 0; 1866 return 0;
911} 1867}
912 1868
1869/* Return the pagecache page at a given address within a VMA */
1870static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1871 struct vm_area_struct *vma, unsigned long address)
1872{
1873 struct address_space *mapping;
1874 pgoff_t idx;
1875
1876 mapping = vma->vm_file->f_mapping;
1877 idx = vma_hugecache_offset(h, vma, address);
1878
1879 return find_lock_page(mapping, idx);
1880}
1881
913static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1882static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
914 unsigned long address, pte_t *ptep, int write_access) 1883 unsigned long address, pte_t *ptep, int write_access)
915{ 1884{
1885 struct hstate *h = hstate_vma(vma);
916 int ret = VM_FAULT_SIGBUS; 1886 int ret = VM_FAULT_SIGBUS;
917 unsigned long idx; 1887 pgoff_t idx;
918 unsigned long size; 1888 unsigned long size;
919 struct page *page; 1889 struct page *page;
920 struct address_space *mapping; 1890 struct address_space *mapping;
921 pte_t new_pte; 1891 pte_t new_pte;
922 1892
1893 /*
1894 * Currently, we are forced to kill the process in the event the
1895 * original mapper has unmapped pages from the child due to a failed
1896 * COW. Warn that such a situation has occured as it may not be obvious
1897 */
1898 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1899 printk(KERN_WARNING
1900 "PID %d killed due to inadequate hugepage pool\n",
1901 current->pid);
1902 return ret;
1903 }
1904
923 mapping = vma->vm_file->f_mapping; 1905 mapping = vma->vm_file->f_mapping;
924 idx = ((address - vma->vm_start) >> HPAGE_SHIFT) 1906 idx = vma_hugecache_offset(h, vma, address);
925 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
926 1907
927 /* 1908 /*
928 * Use page lock to guard against racing truncation 1909 * Use page lock to guard against racing truncation
@@ -931,15 +1912,15 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
931retry: 1912retry:
932 page = find_lock_page(mapping, idx); 1913 page = find_lock_page(mapping, idx);
933 if (!page) { 1914 if (!page) {
934 size = i_size_read(mapping->host) >> HPAGE_SHIFT; 1915 size = i_size_read(mapping->host) >> huge_page_shift(h);
935 if (idx >= size) 1916 if (idx >= size)
936 goto out; 1917 goto out;
937 page = alloc_huge_page(vma, address); 1918 page = alloc_huge_page(vma, address, 0);
938 if (IS_ERR(page)) { 1919 if (IS_ERR(page)) {
939 ret = -PTR_ERR(page); 1920 ret = -PTR_ERR(page);
940 goto out; 1921 goto out;
941 } 1922 }
942 clear_huge_page(page, address); 1923 clear_huge_page(page, address, huge_page_size(h));
943 __SetPageUptodate(page); 1924 __SetPageUptodate(page);
944 1925
945 if (vma->vm_flags & VM_SHARED) { 1926 if (vma->vm_flags & VM_SHARED) {
@@ -955,14 +1936,26 @@ retry:
955 } 1936 }
956 1937
957 spin_lock(&inode->i_lock); 1938 spin_lock(&inode->i_lock);
958 inode->i_blocks += BLOCKS_PER_HUGEPAGE; 1939 inode->i_blocks += blocks_per_huge_page(h);
959 spin_unlock(&inode->i_lock); 1940 spin_unlock(&inode->i_lock);
960 } else 1941 } else
961 lock_page(page); 1942 lock_page(page);
962 } 1943 }
963 1944
1945 /*
1946 * If we are going to COW a private mapping later, we examine the
1947 * pending reservations for this page now. This will ensure that
1948 * any allocations necessary to record that reservation occur outside
1949 * the spinlock.
1950 */
1951 if (write_access && !(vma->vm_flags & VM_SHARED))
1952 if (vma_needs_reservation(h, vma, address) < 0) {
1953 ret = VM_FAULT_OOM;
1954 goto backout_unlocked;
1955 }
1956
964 spin_lock(&mm->page_table_lock); 1957 spin_lock(&mm->page_table_lock);
965 size = i_size_read(mapping->host) >> HPAGE_SHIFT; 1958 size = i_size_read(mapping->host) >> huge_page_shift(h);
966 if (idx >= size) 1959 if (idx >= size)
967 goto backout; 1960 goto backout;
968 1961
@@ -976,7 +1969,7 @@ retry:
976 1969
977 if (write_access && !(vma->vm_flags & VM_SHARED)) { 1970 if (write_access && !(vma->vm_flags & VM_SHARED)) {
978 /* Optimization, do the COW without a second fault */ 1971 /* Optimization, do the COW without a second fault */
979 ret = hugetlb_cow(mm, vma, address, ptep, new_pte); 1972 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
980 } 1973 }
981 1974
982 spin_unlock(&mm->page_table_lock); 1975 spin_unlock(&mm->page_table_lock);
@@ -986,6 +1979,7 @@ out:
986 1979
987backout: 1980backout:
988 spin_unlock(&mm->page_table_lock); 1981 spin_unlock(&mm->page_table_lock);
1982backout_unlocked:
989 unlock_page(page); 1983 unlock_page(page);
990 put_page(page); 1984 put_page(page);
991 goto out; 1985 goto out;
@@ -997,9 +1991,11 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
997 pte_t *ptep; 1991 pte_t *ptep;
998 pte_t entry; 1992 pte_t entry;
999 int ret; 1993 int ret;
1994 struct page *pagecache_page = NULL;
1000 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 1995 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1996 struct hstate *h = hstate_vma(vma);
1001 1997
1002 ptep = huge_pte_alloc(mm, address); 1998 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1003 if (!ptep) 1999 if (!ptep)
1004 return VM_FAULT_OOM; 2000 return VM_FAULT_OOM;
1005 2001
@@ -1012,23 +2008,58 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1012 entry = huge_ptep_get(ptep); 2008 entry = huge_ptep_get(ptep);
1013 if (huge_pte_none(entry)) { 2009 if (huge_pte_none(entry)) {
1014 ret = hugetlb_no_page(mm, vma, address, ptep, write_access); 2010 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1015 mutex_unlock(&hugetlb_instantiation_mutex); 2011 goto out_unlock;
1016 return ret;
1017 } 2012 }
1018 2013
1019 ret = 0; 2014 ret = 0;
1020 2015
2016 /*
2017 * If we are going to COW the mapping later, we examine the pending
2018 * reservations for this page now. This will ensure that any
2019 * allocations necessary to record that reservation occur outside the
2020 * spinlock. For private mappings, we also lookup the pagecache
2021 * page now as it is used to determine if a reservation has been
2022 * consumed.
2023 */
2024 if (write_access && !pte_write(entry)) {
2025 if (vma_needs_reservation(h, vma, address) < 0) {
2026 ret = VM_FAULT_OOM;
2027 goto out_unlock;
2028 }
2029
2030 if (!(vma->vm_flags & VM_SHARED))
2031 pagecache_page = hugetlbfs_pagecache_page(h,
2032 vma, address);
2033 }
2034
1021 spin_lock(&mm->page_table_lock); 2035 spin_lock(&mm->page_table_lock);
1022 /* Check for a racing update before calling hugetlb_cow */ 2036 /* Check for a racing update before calling hugetlb_cow */
1023 if (likely(pte_same(entry, huge_ptep_get(ptep)))) 2037 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1024 if (write_access && !pte_write(entry)) 2038 if (write_access && !pte_write(entry))
1025 ret = hugetlb_cow(mm, vma, address, ptep, entry); 2039 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2040 pagecache_page);
1026 spin_unlock(&mm->page_table_lock); 2041 spin_unlock(&mm->page_table_lock);
2042
2043 if (pagecache_page) {
2044 unlock_page(pagecache_page);
2045 put_page(pagecache_page);
2046 }
2047
2048out_unlock:
1027 mutex_unlock(&hugetlb_instantiation_mutex); 2049 mutex_unlock(&hugetlb_instantiation_mutex);
1028 2050
1029 return ret; 2051 return ret;
1030} 2052}
1031 2053
2054/* Can be overriden by architectures */
2055__attribute__((weak)) struct page *
2056follow_huge_pud(struct mm_struct *mm, unsigned long address,
2057 pud_t *pud, int write)
2058{
2059 BUG();
2060 return NULL;
2061}
2062
1032int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2063int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1033 struct page **pages, struct vm_area_struct **vmas, 2064 struct page **pages, struct vm_area_struct **vmas,
1034 unsigned long *position, int *length, int i, 2065 unsigned long *position, int *length, int i,
@@ -1037,6 +2068,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1037 unsigned long pfn_offset; 2068 unsigned long pfn_offset;
1038 unsigned long vaddr = *position; 2069 unsigned long vaddr = *position;
1039 int remainder = *length; 2070 int remainder = *length;
2071 struct hstate *h = hstate_vma(vma);
1040 2072
1041 spin_lock(&mm->page_table_lock); 2073 spin_lock(&mm->page_table_lock);
1042 while (vaddr < vma->vm_end && remainder) { 2074 while (vaddr < vma->vm_end && remainder) {
@@ -1048,7 +2080,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048 * each hugepage. We have to make * sure we get the 2080 * each hugepage. We have to make * sure we get the
1049 * first, for the page indexing below to work. 2081 * first, for the page indexing below to work.
1050 */ 2082 */
1051 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); 2083 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
1052 2084
1053 if (!pte || huge_pte_none(huge_ptep_get(pte)) || 2085 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1054 (write && !pte_write(huge_ptep_get(pte)))) { 2086 (write && !pte_write(huge_ptep_get(pte)))) {
@@ -1066,7 +2098,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1066 break; 2098 break;
1067 } 2099 }
1068 2100
1069 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; 2101 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
1070 page = pte_page(huge_ptep_get(pte)); 2102 page = pte_page(huge_ptep_get(pte));
1071same_page: 2103same_page:
1072 if (pages) { 2104 if (pages) {
@@ -1082,7 +2114,7 @@ same_page:
1082 --remainder; 2114 --remainder;
1083 ++i; 2115 ++i;
1084 if (vaddr < vma->vm_end && remainder && 2116 if (vaddr < vma->vm_end && remainder &&
1085 pfn_offset < HPAGE_SIZE/PAGE_SIZE) { 2117 pfn_offset < pages_per_huge_page(h)) {
1086 /* 2118 /*
1087 * We use pfn_offset to avoid touching the pageframes 2119 * We use pfn_offset to avoid touching the pageframes
1088 * of this compound page. 2120 * of this compound page.
@@ -1104,13 +2136,14 @@ void hugetlb_change_protection(struct vm_area_struct *vma,
1104 unsigned long start = address; 2136 unsigned long start = address;
1105 pte_t *ptep; 2137 pte_t *ptep;
1106 pte_t pte; 2138 pte_t pte;
2139 struct hstate *h = hstate_vma(vma);
1107 2140
1108 BUG_ON(address >= end); 2141 BUG_ON(address >= end);
1109 flush_cache_range(vma, address, end); 2142 flush_cache_range(vma, address, end);
1110 2143
1111 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2144 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1112 spin_lock(&mm->page_table_lock); 2145 spin_lock(&mm->page_table_lock);
1113 for (; address < end; address += HPAGE_SIZE) { 2146 for (; address < end; address += huge_page_size(h)) {
1114 ptep = huge_pte_offset(mm, address); 2147 ptep = huge_pte_offset(mm, address);
1115 if (!ptep) 2148 if (!ptep)
1116 continue; 2149 continue;
@@ -1128,195 +2161,59 @@ void hugetlb_change_protection(struct vm_area_struct *vma,
1128 flush_tlb_range(vma, start, end); 2161 flush_tlb_range(vma, start, end);
1129} 2162}
1130 2163
1131struct file_region { 2164int hugetlb_reserve_pages(struct inode *inode,
1132 struct list_head link; 2165 long from, long to,
1133 long from; 2166 struct vm_area_struct *vma)
1134 long to;
1135};
1136
1137static long region_add(struct list_head *head, long f, long t)
1138{
1139 struct file_region *rg, *nrg, *trg;
1140
1141 /* Locate the region we are either in or before. */
1142 list_for_each_entry(rg, head, link)
1143 if (f <= rg->to)
1144 break;
1145
1146 /* Round our left edge to the current segment if it encloses us. */
1147 if (f > rg->from)
1148 f = rg->from;
1149
1150 /* Check for and consume any regions we now overlap with. */
1151 nrg = rg;
1152 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1153 if (&rg->link == head)
1154 break;
1155 if (rg->from > t)
1156 break;
1157
1158 /* If this area reaches higher then extend our area to
1159 * include it completely. If this is not the first area
1160 * which we intend to reuse, free it. */
1161 if (rg->to > t)
1162 t = rg->to;
1163 if (rg != nrg) {
1164 list_del(&rg->link);
1165 kfree(rg);
1166 }
1167 }
1168 nrg->from = f;
1169 nrg->to = t;
1170 return 0;
1171}
1172
1173static long region_chg(struct list_head *head, long f, long t)
1174{ 2167{
1175 struct file_region *rg, *nrg; 2168 long ret, chg;
1176 long chg = 0; 2169 struct hstate *h = hstate_inode(inode);
1177
1178 /* Locate the region we are before or in. */
1179 list_for_each_entry(rg, head, link)
1180 if (f <= rg->to)
1181 break;
1182
1183 /* If we are below the current region then a new region is required.
1184 * Subtle, allocate a new region at the position but make it zero
1185 * size such that we can guarantee to record the reservation. */
1186 if (&rg->link == head || t < rg->from) {
1187 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1188 if (!nrg)
1189 return -ENOMEM;
1190 nrg->from = f;
1191 nrg->to = f;
1192 INIT_LIST_HEAD(&nrg->link);
1193 list_add(&nrg->link, rg->link.prev);
1194
1195 return t - f;
1196 }
1197
1198 /* Round our left edge to the current segment if it encloses us. */
1199 if (f > rg->from)
1200 f = rg->from;
1201 chg = t - f;
1202
1203 /* Check for and consume any regions we now overlap with. */
1204 list_for_each_entry(rg, rg->link.prev, link) {
1205 if (&rg->link == head)
1206 break;
1207 if (rg->from > t)
1208 return chg;
1209
1210 /* We overlap with this area, if it extends futher than
1211 * us then we must extend ourselves. Account for its
1212 * existing reservation. */
1213 if (rg->to > t) {
1214 chg += rg->to - t;
1215 t = rg->to;
1216 }
1217 chg -= rg->to - rg->from;
1218 }
1219 return chg;
1220}
1221
1222static long region_truncate(struct list_head *head, long end)
1223{
1224 struct file_region *rg, *trg;
1225 long chg = 0;
1226 2170
1227 /* Locate the region we are either in or before. */ 2171 if (vma && vma->vm_flags & VM_NORESERVE)
1228 list_for_each_entry(rg, head, link)
1229 if (end <= rg->to)
1230 break;
1231 if (&rg->link == head)
1232 return 0; 2172 return 0;
1233 2173
1234 /* If we are in the middle of a region then adjust it. */
1235 if (end > rg->from) {
1236 chg = rg->to - end;
1237 rg->to = end;
1238 rg = list_entry(rg->link.next, typeof(*rg), link);
1239 }
1240
1241 /* Drop any remaining regions. */
1242 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1243 if (&rg->link == head)
1244 break;
1245 chg += rg->to - rg->from;
1246 list_del(&rg->link);
1247 kfree(rg);
1248 }
1249 return chg;
1250}
1251
1252static int hugetlb_acct_memory(long delta)
1253{
1254 int ret = -ENOMEM;
1255
1256 spin_lock(&hugetlb_lock);
1257 /* 2174 /*
1258 * When cpuset is configured, it breaks the strict hugetlb page 2175 * Shared mappings base their reservation on the number of pages that
1259 * reservation as the accounting is done on a global variable. Such 2176 * are already allocated on behalf of the file. Private mappings need
1260 * reservation is completely rubbish in the presence of cpuset because 2177 * to reserve the full area even if read-only as mprotect() may be
1261 * the reservation is not checked against page availability for the 2178 * called to make the mapping read-write. Assume !vma is a shm mapping
1262 * current cpuset. Application can still potentially OOM'ed by kernel
1263 * with lack of free htlb page in cpuset that the task is in.
1264 * Attempt to enforce strict accounting with cpuset is almost
1265 * impossible (or too ugly) because cpuset is too fluid that
1266 * task or memory node can be dynamically moved between cpusets.
1267 *
1268 * The change of semantics for shared hugetlb mapping with cpuset is
1269 * undesirable. However, in order to preserve some of the semantics,
1270 * we fall back to check against current free page availability as
1271 * a best attempt and hopefully to minimize the impact of changing
1272 * semantics that cpuset has.
1273 */ 2179 */
1274 if (delta > 0) { 2180 if (!vma || vma->vm_flags & VM_SHARED)
1275 if (gather_surplus_pages(delta) < 0) 2181 chg = region_chg(&inode->i_mapping->private_list, from, to);
1276 goto out; 2182 else {
1277 2183 struct resv_map *resv_map = resv_map_alloc();
1278 if (delta > cpuset_mems_nr(free_huge_pages_node)) { 2184 if (!resv_map)
1279 return_unused_surplus_pages(delta); 2185 return -ENOMEM;
1280 goto out;
1281 }
1282 }
1283
1284 ret = 0;
1285 if (delta < 0)
1286 return_unused_surplus_pages((unsigned long) -delta);
1287 2186
1288out: 2187 chg = to - from;
1289 spin_unlock(&hugetlb_lock);
1290 return ret;
1291}
1292 2188
1293int hugetlb_reserve_pages(struct inode *inode, long from, long to) 2189 set_vma_resv_map(vma, resv_map);
1294{ 2190 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1295 long ret, chg; 2191 }
1296 2192
1297 chg = region_chg(&inode->i_mapping->private_list, from, to);
1298 if (chg < 0) 2193 if (chg < 0)
1299 return chg; 2194 return chg;
1300 2195
1301 if (hugetlb_get_quota(inode->i_mapping, chg)) 2196 if (hugetlb_get_quota(inode->i_mapping, chg))
1302 return -ENOSPC; 2197 return -ENOSPC;
1303 ret = hugetlb_acct_memory(chg); 2198 ret = hugetlb_acct_memory(h, chg);
1304 if (ret < 0) { 2199 if (ret < 0) {
1305 hugetlb_put_quota(inode->i_mapping, chg); 2200 hugetlb_put_quota(inode->i_mapping, chg);
1306 return ret; 2201 return ret;
1307 } 2202 }
1308 region_add(&inode->i_mapping->private_list, from, to); 2203 if (!vma || vma->vm_flags & VM_SHARED)
2204 region_add(&inode->i_mapping->private_list, from, to);
1309 return 0; 2205 return 0;
1310} 2206}
1311 2207
1312void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 2208void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1313{ 2209{
2210 struct hstate *h = hstate_inode(inode);
1314 long chg = region_truncate(&inode->i_mapping->private_list, offset); 2211 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1315 2212
1316 spin_lock(&inode->i_lock); 2213 spin_lock(&inode->i_lock);
1317 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; 2214 inode->i_blocks -= blocks_per_huge_page(h);
1318 spin_unlock(&inode->i_lock); 2215 spin_unlock(&inode->i_lock);
1319 2216
1320 hugetlb_put_quota(inode->i_mapping, (chg - freed)); 2217 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1321 hugetlb_acct_memory(-(chg - freed)); 2218 hugetlb_acct_memory(h, -(chg - freed));
1322} 2219}