diff options
author | Bjoern Brandenburg <bbb@mpi-sws.org> | 2015-08-09 07:18:55 -0400 |
---|---|---|
committer | Bjoern Brandenburg <bbb@mpi-sws.org> | 2015-08-09 07:20:35 -0400 |
commit | 2a45e01a8827379c709d228a5c9b5f21011d4277 (patch) | |
tree | 8bfd7342ecd5ec6cb7063e95847ef7efa36d7a0b /litmus | |
parent | 02da1bac9739050917862c82bdc75c3a0eb43179 (diff) |
Add P-FP scheduler plugin
Diffstat (limited to 'litmus')
-rw-r--r-- | litmus/Makefile | 4 | ||||
-rw-r--r-- | litmus/fp_common.c | 17 | ||||
-rw-r--r-- | litmus/sched_pfp.c | 2036 |
3 files changed, 2051 insertions, 6 deletions
diff --git a/litmus/Makefile b/litmus/Makefile index 895cf3a2d599..fb12398c4b92 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -20,7 +20,9 @@ obj-y = sched_plugin.o litmus.o \ | |||
20 | ctrldev.o \ | 20 | ctrldev.o \ |
21 | uncachedev.o \ | 21 | uncachedev.o \ |
22 | sched_gsn_edf.o \ | 22 | sched_gsn_edf.o \ |
23 | sched_psn_edf.o | 23 | sched_psn_edf.o \ |
24 | sched_pfp.o | ||
25 | |||
24 | 26 | ||
25 | 27 | ||
26 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o | 28 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o |
diff --git a/litmus/fp_common.c b/litmus/fp_common.c index 964a4729deff..ff0f30a9f536 100644 --- a/litmus/fp_common.c +++ b/litmus/fp_common.c | |||
@@ -32,7 +32,6 @@ int fp_higher_prio(struct task_struct* first, | |||
32 | return 0; | 32 | return 0; |
33 | } | 33 | } |
34 | 34 | ||
35 | |||
36 | /* check for NULL tasks */ | 35 | /* check for NULL tasks */ |
37 | if (!first || !second) | 36 | if (!first || !second) |
38 | return first && !second; | 37 | return first && !second; |
@@ -50,6 +49,15 @@ int fp_higher_prio(struct task_struct* first, | |||
50 | if (unlikely(second->rt_param.inh_task)) | 49 | if (unlikely(second->rt_param.inh_task)) |
51 | second_task = second->rt_param.inh_task; | 50 | second_task = second->rt_param.inh_task; |
52 | 51 | ||
52 | /* Comparisons to itself are only possible with | ||
53 | * priority inheritance when svc_preempt interrupt just | ||
54 | * before scheduling (and everything that could follow in the | ||
55 | * ready queue). Always favour the original job, as that one will just | ||
56 | * suspend itself to resolve this. | ||
57 | */ | ||
58 | if(first_task == second_task) | ||
59 | return first_task == first; | ||
60 | |||
53 | /* Check for priority boosting. Tie-break by start of boosting. | 61 | /* Check for priority boosting. Tie-break by start of boosting. |
54 | */ | 62 | */ |
55 | if (unlikely(is_priority_boosted(first_task))) { | 63 | if (unlikely(is_priority_boosted(first_task))) { |
@@ -65,11 +73,10 @@ int fp_higher_prio(struct task_struct* first, | |||
65 | /* second_task is boosted, first is not*/ | 73 | /* second_task is boosted, first is not*/ |
66 | return 0; | 74 | return 0; |
67 | 75 | ||
68 | #endif | 76 | #else |
69 | 77 | /* No locks, no priority inheritance, no comparisons to itself */ | |
70 | /* Comparisons to itself are not expected; priority inheritance | ||
71 | * should also not cause this to happen. */ | ||
72 | BUG_ON(first_task == second_task); | 78 | BUG_ON(first_task == second_task); |
79 | #endif | ||
73 | 80 | ||
74 | if (get_priority(first_task) < get_priority(second_task)) | 81 | if (get_priority(first_task) < get_priority(second_task)) |
75 | return 1; | 82 | return 1; |
diff --git a/litmus/sched_pfp.c b/litmus/sched_pfp.c new file mode 100644 index 000000000000..f38e9bc175b5 --- /dev/null +++ b/litmus/sched_pfp.c | |||
@@ -0,0 +1,2036 @@ | |||
1 | /* | ||
2 | * litmus/sched_pfp.c | ||
3 | * | ||
4 | * Implementation of partitioned fixed-priority scheduling. | ||
5 | * Based on PSN-EDF. | ||
6 | */ | ||
7 | |||
8 | #include <linux/percpu.h> | ||
9 | #include <linux/sched.h> | ||
10 | #include <linux/list.h> | ||
11 | #include <linux/spinlock.h> | ||
12 | #include <linux/module.h> | ||
13 | |||
14 | #include <litmus/litmus.h> | ||
15 | #include <litmus/wait.h> | ||
16 | #include <litmus/jobs.h> | ||
17 | #include <litmus/preempt.h> | ||
18 | #include <litmus/fp_common.h> | ||
19 | #include <litmus/sched_plugin.h> | ||
20 | #include <litmus/sched_trace.h> | ||
21 | #include <litmus/trace.h> | ||
22 | #include <litmus/budget.h> | ||
23 | |||
24 | /* to set up domain/cpu mappings */ | ||
25 | #include <litmus/litmus_proc.h> | ||
26 | #include <linux/uaccess.h> | ||
27 | |||
28 | |||
29 | typedef struct { | ||
30 | rt_domain_t domain; | ||
31 | struct fp_prio_queue ready_queue; | ||
32 | int cpu; | ||
33 | struct task_struct* scheduled; /* only RT tasks */ | ||
34 | /* | ||
35 | * scheduling lock slock | ||
36 | * protects the domain and serializes scheduling decisions | ||
37 | */ | ||
38 | #define slock domain.ready_lock | ||
39 | |||
40 | } pfp_domain_t; | ||
41 | |||
42 | DEFINE_PER_CPU(pfp_domain_t, pfp_domains); | ||
43 | |||
44 | pfp_domain_t* pfp_doms[NR_CPUS]; | ||
45 | |||
46 | #define local_pfp (this_cpu_ptr(&pfp_domains)) | ||
47 | #define remote_dom(cpu) (&per_cpu(pfp_domains, cpu).domain) | ||
48 | #define remote_pfp(cpu) (&per_cpu(pfp_domains, cpu)) | ||
49 | #define task_dom(task) remote_dom(get_partition(task)) | ||
50 | #define task_pfp(task) remote_pfp(get_partition(task)) | ||
51 | |||
52 | |||
53 | #ifdef CONFIG_LITMUS_LOCKING | ||
54 | DEFINE_PER_CPU(uint64_t,fmlp_timestamp); | ||
55 | #endif | ||
56 | |||
57 | /* we assume the lock is being held */ | ||
58 | static void preempt(pfp_domain_t *pfp) | ||
59 | { | ||
60 | preempt_if_preemptable(pfp->scheduled, pfp->cpu); | ||
61 | } | ||
62 | |||
63 | static unsigned int priority_index(struct task_struct* t) | ||
64 | { | ||
65 | #ifdef CONFIG_LITMUS_LOCKING | ||
66 | if (unlikely(t->rt_param.inh_task)) | ||
67 | /* use effective priority */ | ||
68 | t = t->rt_param.inh_task; | ||
69 | |||
70 | if (is_priority_boosted(t)) { | ||
71 | /* zero is reserved for priority-boosted tasks */ | ||
72 | return 0; | ||
73 | } else | ||
74 | #endif | ||
75 | return get_priority(t); | ||
76 | } | ||
77 | |||
78 | static void pfp_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
79 | { | ||
80 | pfp_domain_t *pfp = container_of(rt, pfp_domain_t, domain); | ||
81 | unsigned long flags; | ||
82 | struct task_struct* t; | ||
83 | struct bheap_node* hn; | ||
84 | |||
85 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
86 | |||
87 | while (!bheap_empty(tasks)) { | ||
88 | hn = bheap_take(fp_ready_order, tasks); | ||
89 | t = bheap2task(hn); | ||
90 | TRACE_TASK(t, "released (part:%d prio:%d)\n", | ||
91 | get_partition(t), get_priority(t)); | ||
92 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
93 | } | ||
94 | |||
95 | /* do we need to preempt? */ | ||
96 | if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) { | ||
97 | TRACE_CUR("preempted by new release\n"); | ||
98 | preempt(pfp); | ||
99 | } | ||
100 | |||
101 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
102 | } | ||
103 | |||
104 | static void pfp_preempt_check(pfp_domain_t *pfp) | ||
105 | { | ||
106 | if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) | ||
107 | preempt(pfp); | ||
108 | } | ||
109 | |||
110 | static void pfp_domain_init(pfp_domain_t* pfp, | ||
111 | int cpu) | ||
112 | { | ||
113 | fp_domain_init(&pfp->domain, NULL, pfp_release_jobs); | ||
114 | pfp->cpu = cpu; | ||
115 | pfp->scheduled = NULL; | ||
116 | fp_prio_queue_init(&pfp->ready_queue); | ||
117 | } | ||
118 | |||
119 | static void requeue(struct task_struct* t, pfp_domain_t *pfp) | ||
120 | { | ||
121 | tsk_rt(t)->completed = 0; | ||
122 | if (is_released(t, litmus_clock())) | ||
123 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
124 | else | ||
125 | add_release(&pfp->domain, t); /* it has got to wait */ | ||
126 | } | ||
127 | |||
128 | static void job_completion(struct task_struct* t, int forced) | ||
129 | { | ||
130 | sched_trace_task_completion(t, forced); | ||
131 | TRACE_TASK(t, "job_completion(forced=%d).\n", forced); | ||
132 | |||
133 | tsk_rt(t)->completed = 0; | ||
134 | prepare_for_next_period(t); | ||
135 | if (is_released(t, litmus_clock())) | ||
136 | sched_trace_task_release(t); | ||
137 | } | ||
138 | |||
139 | static struct task_struct* pfp_schedule(struct task_struct * prev) | ||
140 | { | ||
141 | pfp_domain_t* pfp = local_pfp; | ||
142 | struct task_struct* next; | ||
143 | |||
144 | int out_of_time, sleep, preempt, np, exists, blocks, resched, migrate; | ||
145 | |||
146 | raw_spin_lock(&pfp->slock); | ||
147 | |||
148 | /* sanity checking | ||
149 | * differently from gedf, when a task exits (dead) | ||
150 | * pfp->schedule may be null and prev _is_ realtime | ||
151 | */ | ||
152 | BUG_ON(pfp->scheduled && pfp->scheduled != prev); | ||
153 | BUG_ON(pfp->scheduled && !is_realtime(prev)); | ||
154 | |||
155 | /* (0) Determine state */ | ||
156 | exists = pfp->scheduled != NULL; | ||
157 | blocks = exists && !is_current_running(); | ||
158 | out_of_time = exists && budget_enforced(pfp->scheduled) | ||
159 | && budget_exhausted(pfp->scheduled); | ||
160 | np = exists && is_np(pfp->scheduled); | ||
161 | sleep = exists && is_completed(pfp->scheduled); | ||
162 | migrate = exists && get_partition(pfp->scheduled) != pfp->cpu; | ||
163 | preempt = !blocks && (migrate || fp_preemption_needed(&pfp->ready_queue, prev)); | ||
164 | |||
165 | /* If we need to preempt do so. | ||
166 | * The following checks set resched to 1 in case of special | ||
167 | * circumstances. | ||
168 | */ | ||
169 | resched = preempt; | ||
170 | |||
171 | /* If a task blocks we have no choice but to reschedule. | ||
172 | */ | ||
173 | if (blocks) | ||
174 | resched = 1; | ||
175 | |||
176 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
177 | * Multiple calls to request_exit_np() don't hurt. | ||
178 | */ | ||
179 | if (np && (out_of_time || preempt || sleep)) | ||
180 | request_exit_np(pfp->scheduled); | ||
181 | |||
182 | /* Any task that is preemptable and either exhausts its execution | ||
183 | * budget or wants to sleep completes. We may have to reschedule after | ||
184 | * this. | ||
185 | */ | ||
186 | if (!np && (out_of_time || sleep)) { | ||
187 | job_completion(pfp->scheduled, !sleep); | ||
188 | resched = 1; | ||
189 | } | ||
190 | |||
191 | /* The final scheduling decision. Do we need to switch for some reason? | ||
192 | * Switch if we are in RT mode and have no task or if we need to | ||
193 | * resched. | ||
194 | */ | ||
195 | next = NULL; | ||
196 | if ((!np || blocks) && (resched || !exists)) { | ||
197 | /* When preempting a task that does not block, then | ||
198 | * re-insert it into either the ready queue or the | ||
199 | * release queue (if it completed). requeue() picks | ||
200 | * the appropriate queue. | ||
201 | */ | ||
202 | if (pfp->scheduled && !blocks && !migrate) | ||
203 | requeue(pfp->scheduled, pfp); | ||
204 | next = fp_prio_take(&pfp->ready_queue); | ||
205 | if (next == prev) { | ||
206 | struct task_struct *t = fp_prio_peek(&pfp->ready_queue); | ||
207 | TRACE_TASK(next, "next==prev sleep=%d oot=%d np=%d preempt=%d migrate=%d " | ||
208 | "boost=%d empty=%d prio-idx=%u prio=%u\n", | ||
209 | sleep, out_of_time, np, preempt, migrate, | ||
210 | is_priority_boosted(next), | ||
211 | t == NULL, | ||
212 | priority_index(next), | ||
213 | get_priority(next)); | ||
214 | if (t) | ||
215 | TRACE_TASK(t, "waiter boost=%d prio-idx=%u prio=%u\n", | ||
216 | is_priority_boosted(t), | ||
217 | priority_index(t), | ||
218 | get_priority(t)); | ||
219 | } | ||
220 | /* If preempt is set, we should not see the same task again. */ | ||
221 | BUG_ON(preempt && next == prev); | ||
222 | /* Similarly, if preempt is set, then next may not be NULL, | ||
223 | * unless it's a migration. */ | ||
224 | BUG_ON(preempt && !migrate && next == NULL); | ||
225 | } else | ||
226 | /* Only override Linux scheduler if we have a real-time task | ||
227 | * scheduled that needs to continue. | ||
228 | */ | ||
229 | if (exists) | ||
230 | next = prev; | ||
231 | |||
232 | if (next) { | ||
233 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
234 | } else if (exists) { | ||
235 | TRACE("becoming idle at %llu\n", litmus_clock()); | ||
236 | } | ||
237 | |||
238 | pfp->scheduled = next; | ||
239 | sched_state_task_picked(); | ||
240 | raw_spin_unlock(&pfp->slock); | ||
241 | |||
242 | return next; | ||
243 | } | ||
244 | |||
245 | #ifdef CONFIG_LITMUS_LOCKING | ||
246 | |||
247 | /* prev is no longer scheduled --- see if it needs to migrate */ | ||
248 | static void pfp_finish_switch(struct task_struct *prev) | ||
249 | { | ||
250 | pfp_domain_t *to; | ||
251 | |||
252 | if (is_realtime(prev) && | ||
253 | prev->state == TASK_RUNNING && | ||
254 | get_partition(prev) != smp_processor_id()) { | ||
255 | TRACE_TASK(prev, "needs to migrate from P%d to P%d\n", | ||
256 | smp_processor_id(), get_partition(prev)); | ||
257 | |||
258 | to = task_pfp(prev); | ||
259 | |||
260 | raw_spin_lock(&to->slock); | ||
261 | |||
262 | TRACE_TASK(prev, "adding to queue on P%d\n", to->cpu); | ||
263 | requeue(prev, to); | ||
264 | if (fp_preemption_needed(&to->ready_queue, to->scheduled)) | ||
265 | preempt(to); | ||
266 | |||
267 | raw_spin_unlock(&to->slock); | ||
268 | |||
269 | } | ||
270 | } | ||
271 | |||
272 | #endif | ||
273 | |||
274 | /* Prepare a task for running in RT mode | ||
275 | */ | ||
276 | static void pfp_task_new(struct task_struct * t, int on_rq, int is_scheduled) | ||
277 | { | ||
278 | pfp_domain_t* pfp = task_pfp(t); | ||
279 | unsigned long flags; | ||
280 | |||
281 | TRACE_TASK(t, "P-FP: task new, cpu = %d\n", | ||
282 | t->rt_param.task_params.cpu); | ||
283 | |||
284 | /* setup job parameters */ | ||
285 | release_at(t, litmus_clock()); | ||
286 | |||
287 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
288 | if (is_scheduled) { | ||
289 | /* there shouldn't be anything else running at the time */ | ||
290 | BUG_ON(pfp->scheduled); | ||
291 | pfp->scheduled = t; | ||
292 | } else if (on_rq) { | ||
293 | requeue(t, pfp); | ||
294 | /* maybe we have to reschedule */ | ||
295 | pfp_preempt_check(pfp); | ||
296 | } | ||
297 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
298 | } | ||
299 | |||
300 | static void pfp_task_wake_up(struct task_struct *task) | ||
301 | { | ||
302 | unsigned long flags; | ||
303 | pfp_domain_t* pfp = task_pfp(task); | ||
304 | lt_t now; | ||
305 | |||
306 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
307 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
308 | |||
309 | #ifdef CONFIG_LITMUS_LOCKING | ||
310 | /* Should only be queued when processing a fake-wake up due to a | ||
311 | * migration-related state change. */ | ||
312 | if (unlikely(is_queued(task))) { | ||
313 | TRACE_TASK(task, "WARNING: waking task still queued. Is this right?\n"); | ||
314 | goto out_unlock; | ||
315 | } | ||
316 | #else | ||
317 | BUG_ON(is_queued(task)); | ||
318 | #endif | ||
319 | now = litmus_clock(); | ||
320 | if (is_sporadic(task) && is_tardy(task, now) | ||
321 | #ifdef CONFIG_LITMUS_LOCKING | ||
322 | /* We need to take suspensions because of semaphores into | ||
323 | * account! If a job resumes after being suspended due to acquiring | ||
324 | * a semaphore, it should never be treated as a new job release. | ||
325 | */ | ||
326 | && !is_priority_boosted(task) | ||
327 | #endif | ||
328 | ) { | ||
329 | /* new sporadic release */ | ||
330 | release_at(task, now); | ||
331 | sched_trace_task_release(task); | ||
332 | } | ||
333 | |||
334 | /* Only add to ready queue if it is not the currently-scheduled | ||
335 | * task. This could be the case if a task was woken up concurrently | ||
336 | * on a remote CPU before the executing CPU got around to actually | ||
337 | * de-scheduling the task, i.e., wake_up() raced with schedule() | ||
338 | * and won. Also, don't requeue if it is still queued, which can | ||
339 | * happen under the DPCP due wake-ups racing with migrations. | ||
340 | */ | ||
341 | if (pfp->scheduled != task) { | ||
342 | requeue(task, pfp); | ||
343 | pfp_preempt_check(pfp); | ||
344 | } | ||
345 | |||
346 | #ifdef CONFIG_LITMUS_LOCKING | ||
347 | out_unlock: | ||
348 | #endif | ||
349 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
350 | TRACE_TASK(task, "wake up done\n"); | ||
351 | } | ||
352 | |||
353 | static void pfp_task_block(struct task_struct *t) | ||
354 | { | ||
355 | /* only running tasks can block, thus t is in no queue */ | ||
356 | TRACE_TASK(t, "block at %llu, state=%d\n", litmus_clock(), t->state); | ||
357 | |||
358 | BUG_ON(!is_realtime(t)); | ||
359 | |||
360 | /* If this task blocked normally, it shouldn't be queued. The exception is | ||
361 | * if this is a simulated block()/wakeup() pair from the pull-migration code path. | ||
362 | * This should only happen if the DPCP is being used. | ||
363 | */ | ||
364 | #ifdef CONFIG_LITMUS_LOCKING | ||
365 | if (unlikely(is_queued(t))) | ||
366 | TRACE_TASK(t, "WARNING: blocking task still queued. Is this right?\n"); | ||
367 | #else | ||
368 | BUG_ON(is_queued(t)); | ||
369 | #endif | ||
370 | } | ||
371 | |||
372 | static void pfp_task_exit(struct task_struct * t) | ||
373 | { | ||
374 | unsigned long flags; | ||
375 | pfp_domain_t* pfp = task_pfp(t); | ||
376 | rt_domain_t* dom; | ||
377 | |||
378 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
379 | if (is_queued(t)) { | ||
380 | BUG(); /* This currently doesn't work. */ | ||
381 | /* dequeue */ | ||
382 | dom = task_dom(t); | ||
383 | remove(dom, t); | ||
384 | } | ||
385 | if (pfp->scheduled == t) { | ||
386 | pfp->scheduled = NULL; | ||
387 | preempt(pfp); | ||
388 | } | ||
389 | TRACE_TASK(t, "RIP, now reschedule\n"); | ||
390 | |||
391 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
392 | } | ||
393 | |||
394 | #ifdef CONFIG_LITMUS_LOCKING | ||
395 | |||
396 | #include <litmus/fdso.h> | ||
397 | #include <litmus/srp.h> | ||
398 | |||
399 | static void fp_dequeue(pfp_domain_t* pfp, struct task_struct* t) | ||
400 | { | ||
401 | BUG_ON(pfp->scheduled == t && is_queued(t)); | ||
402 | if (is_queued(t)) | ||
403 | fp_prio_remove(&pfp->ready_queue, t, priority_index(t)); | ||
404 | } | ||
405 | |||
406 | static void fp_set_prio_inh(pfp_domain_t* pfp, struct task_struct* t, | ||
407 | struct task_struct* prio_inh) | ||
408 | { | ||
409 | int requeue; | ||
410 | |||
411 | if (!t || t->rt_param.inh_task == prio_inh) { | ||
412 | /* no update required */ | ||
413 | if (t) | ||
414 | TRACE_TASK(t, "no prio-inh update required\n"); | ||
415 | return; | ||
416 | } | ||
417 | |||
418 | requeue = is_queued(t); | ||
419 | TRACE_TASK(t, "prio-inh: is_queued:%d\n", requeue); | ||
420 | |||
421 | if (requeue) | ||
422 | /* first remove */ | ||
423 | fp_dequeue(pfp, t); | ||
424 | |||
425 | t->rt_param.inh_task = prio_inh; | ||
426 | |||
427 | if (requeue) | ||
428 | /* add again to the right queue */ | ||
429 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
430 | } | ||
431 | |||
432 | static int effective_agent_priority(int prio) | ||
433 | { | ||
434 | /* make sure agents have higher priority */ | ||
435 | return prio - LITMUS_MAX_PRIORITY; | ||
436 | } | ||
437 | |||
438 | static lt_t prio_point(int eprio) | ||
439 | { | ||
440 | /* make sure we have non-negative prio points */ | ||
441 | return eprio + LITMUS_MAX_PRIORITY; | ||
442 | } | ||
443 | |||
444 | static void boost_priority(struct task_struct* t, lt_t priority_point) | ||
445 | { | ||
446 | unsigned long flags; | ||
447 | pfp_domain_t* pfp = task_pfp(t); | ||
448 | |||
449 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
450 | |||
451 | |||
452 | TRACE_TASK(t, "priority boosted at %llu\n", litmus_clock()); | ||
453 | |||
454 | tsk_rt(t)->priority_boosted = 1; | ||
455 | /* tie-break by protocol-specific priority point */ | ||
456 | tsk_rt(t)->boost_start_time = priority_point; | ||
457 | |||
458 | /* Priority boosting currently only takes effect for already-scheduled | ||
459 | * tasks. This is sufficient since priority boosting only kicks in as | ||
460 | * part of lock acquisitions. */ | ||
461 | BUG_ON(pfp->scheduled != t); | ||
462 | |||
463 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
464 | } | ||
465 | |||
466 | static void unboost_priority(struct task_struct* t) | ||
467 | { | ||
468 | unsigned long flags; | ||
469 | pfp_domain_t* pfp = task_pfp(t); | ||
470 | |||
471 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
472 | |||
473 | /* Assumption: this only happens when the job is scheduled. | ||
474 | * Exception: If t transitioned to non-real-time mode, we no longer | ||
475 | * care abou tit. */ | ||
476 | BUG_ON(pfp->scheduled != t && is_realtime(t)); | ||
477 | |||
478 | TRACE_TASK(t, "priority restored at %llu\n", litmus_clock()); | ||
479 | |||
480 | tsk_rt(t)->priority_boosted = 0; | ||
481 | tsk_rt(t)->boost_start_time = 0; | ||
482 | |||
483 | /* check if this changes anything */ | ||
484 | if (fp_preemption_needed(&pfp->ready_queue, pfp->scheduled)) | ||
485 | preempt(pfp); | ||
486 | |||
487 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
488 | } | ||
489 | |||
490 | /* ******************** SRP support ************************ */ | ||
491 | |||
492 | static unsigned int pfp_get_srp_prio(struct task_struct* t) | ||
493 | { | ||
494 | return get_priority(t); | ||
495 | } | ||
496 | |||
497 | /* ******************** FMLP support ********************** */ | ||
498 | |||
499 | struct fmlp_semaphore { | ||
500 | struct litmus_lock litmus_lock; | ||
501 | |||
502 | /* current resource holder */ | ||
503 | struct task_struct *owner; | ||
504 | |||
505 | /* FIFO queue of waiting tasks */ | ||
506 | wait_queue_head_t wait; | ||
507 | }; | ||
508 | |||
509 | static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) | ||
510 | { | ||
511 | return container_of(lock, struct fmlp_semaphore, litmus_lock); | ||
512 | } | ||
513 | |||
514 | static inline lt_t | ||
515 | fmlp_clock(void) | ||
516 | { | ||
517 | return (lt_t) this_cpu_inc_return(fmlp_timestamp); | ||
518 | } | ||
519 | |||
520 | int pfp_fmlp_lock(struct litmus_lock* l) | ||
521 | { | ||
522 | struct task_struct* t = current; | ||
523 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
524 | wait_queue_t wait; | ||
525 | unsigned long flags; | ||
526 | lt_t time_of_request; | ||
527 | |||
528 | if (!is_realtime(t)) | ||
529 | return -EPERM; | ||
530 | |||
531 | /* prevent nested lock acquisition --- not supported by FMLP */ | ||
532 | if (tsk_rt(t)->num_locks_held || | ||
533 | tsk_rt(t)->num_local_locks_held) | ||
534 | return -EBUSY; | ||
535 | |||
536 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
537 | |||
538 | /* tie-break by this point in time */ | ||
539 | time_of_request = fmlp_clock(); | ||
540 | |||
541 | /* Priority-boost ourself *before* we suspend so that | ||
542 | * our priority is boosted when we resume. */ | ||
543 | boost_priority(t, time_of_request); | ||
544 | |||
545 | if (sem->owner) { | ||
546 | /* resource is not free => must suspend and wait */ | ||
547 | |||
548 | init_waitqueue_entry(&wait, t); | ||
549 | |||
550 | /* FIXME: interruptible would be nice some day */ | ||
551 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
552 | |||
553 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
554 | |||
555 | TS_LOCK_SUSPEND; | ||
556 | |||
557 | /* release lock before sleeping */ | ||
558 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
559 | |||
560 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
561 | * when we wake up; we are guaranteed to have the lock since | ||
562 | * there is only one wake up per release. | ||
563 | */ | ||
564 | |||
565 | schedule(); | ||
566 | |||
567 | TS_LOCK_RESUME; | ||
568 | |||
569 | /* Since we hold the lock, no other task will change | ||
570 | * ->owner. We can thus check it without acquiring the spin | ||
571 | * lock. */ | ||
572 | BUG_ON(sem->owner != t); | ||
573 | } else { | ||
574 | /* it's ours now */ | ||
575 | sem->owner = t; | ||
576 | |||
577 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
578 | } | ||
579 | |||
580 | tsk_rt(t)->num_locks_held++; | ||
581 | |||
582 | return 0; | ||
583 | } | ||
584 | |||
585 | int pfp_fmlp_unlock(struct litmus_lock* l) | ||
586 | { | ||
587 | struct task_struct *t = current, *next = NULL; | ||
588 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
589 | unsigned long flags; | ||
590 | int err = 0; | ||
591 | |||
592 | preempt_disable(); | ||
593 | |||
594 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
595 | |||
596 | if (sem->owner != t) { | ||
597 | err = -EINVAL; | ||
598 | goto out; | ||
599 | } | ||
600 | |||
601 | tsk_rt(t)->num_locks_held--; | ||
602 | |||
603 | /* we lose the benefit of priority boosting */ | ||
604 | |||
605 | unboost_priority(t); | ||
606 | |||
607 | /* check if there are jobs waiting for this resource */ | ||
608 | next = __waitqueue_remove_first(&sem->wait); | ||
609 | sem->owner = next; | ||
610 | |||
611 | out: | ||
612 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
613 | |||
614 | /* Wake up next. The waiting job is already priority-boosted. */ | ||
615 | if(next) { | ||
616 | wake_up_process(next); | ||
617 | } | ||
618 | |||
619 | preempt_enable(); | ||
620 | |||
621 | return err; | ||
622 | } | ||
623 | |||
624 | int pfp_fmlp_close(struct litmus_lock* l) | ||
625 | { | ||
626 | struct task_struct *t = current; | ||
627 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
628 | unsigned long flags; | ||
629 | |||
630 | int owner; | ||
631 | |||
632 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
633 | |||
634 | owner = sem->owner == t; | ||
635 | |||
636 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
637 | |||
638 | if (owner) | ||
639 | pfp_fmlp_unlock(l); | ||
640 | |||
641 | return 0; | ||
642 | } | ||
643 | |||
644 | void pfp_fmlp_free(struct litmus_lock* lock) | ||
645 | { | ||
646 | kfree(fmlp_from_lock(lock)); | ||
647 | } | ||
648 | |||
649 | static struct litmus_lock_ops pfp_fmlp_lock_ops = { | ||
650 | .close = pfp_fmlp_close, | ||
651 | .lock = pfp_fmlp_lock, | ||
652 | .unlock = pfp_fmlp_unlock, | ||
653 | .deallocate = pfp_fmlp_free, | ||
654 | }; | ||
655 | |||
656 | static struct litmus_lock* pfp_new_fmlp(void) | ||
657 | { | ||
658 | struct fmlp_semaphore* sem; | ||
659 | |||
660 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
661 | if (!sem) | ||
662 | return NULL; | ||
663 | |||
664 | sem->owner = NULL; | ||
665 | init_waitqueue_head(&sem->wait); | ||
666 | sem->litmus_lock.ops = &pfp_fmlp_lock_ops; | ||
667 | |||
668 | return &sem->litmus_lock; | ||
669 | } | ||
670 | |||
671 | /* ******************** MPCP support ********************** */ | ||
672 | |||
673 | struct mpcp_semaphore { | ||
674 | struct litmus_lock litmus_lock; | ||
675 | |||
676 | /* current resource holder */ | ||
677 | struct task_struct *owner; | ||
678 | |||
679 | /* priority queue of waiting tasks */ | ||
680 | wait_queue_head_t wait; | ||
681 | |||
682 | /* priority ceiling per cpu */ | ||
683 | unsigned int prio_ceiling[NR_CPUS]; | ||
684 | |||
685 | /* should jobs spin "virtually" for this resource? */ | ||
686 | int vspin; | ||
687 | }; | ||
688 | |||
689 | #define OMEGA_CEILING UINT_MAX | ||
690 | |||
691 | /* Since jobs spin "virtually" while waiting to acquire a lock, | ||
692 | * they first must aquire a local per-cpu resource. | ||
693 | */ | ||
694 | static DEFINE_PER_CPU(wait_queue_head_t, mpcpvs_vspin_wait); | ||
695 | static DEFINE_PER_CPU(struct task_struct*, mpcpvs_vspin); | ||
696 | |||
697 | /* called with preemptions off <=> no local modifications */ | ||
698 | static void mpcp_vspin_enter(void) | ||
699 | { | ||
700 | struct task_struct* t = current; | ||
701 | |||
702 | while (1) { | ||
703 | if (this_cpu_read(mpcpvs_vspin) == NULL) { | ||
704 | /* good, we get to issue our request */ | ||
705 | this_cpu_write(mpcpvs_vspin, t); | ||
706 | break; | ||
707 | } else { | ||
708 | /* some job is spinning => enqueue in request queue */ | ||
709 | prio_wait_queue_t wait; | ||
710 | wait_queue_head_t* vspin = this_cpu_ptr(&mpcpvs_vspin_wait); | ||
711 | unsigned long flags; | ||
712 | |||
713 | /* ordered by regular priority */ | ||
714 | init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t))); | ||
715 | |||
716 | spin_lock_irqsave(&vspin->lock, flags); | ||
717 | |||
718 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
719 | |||
720 | __add_wait_queue_prio_exclusive(vspin, &wait); | ||
721 | |||
722 | spin_unlock_irqrestore(&vspin->lock, flags); | ||
723 | |||
724 | TS_LOCK_SUSPEND; | ||
725 | |||
726 | preempt_enable_no_resched(); | ||
727 | |||
728 | schedule(); | ||
729 | |||
730 | preempt_disable(); | ||
731 | |||
732 | TS_LOCK_RESUME; | ||
733 | /* Recheck if we got it --- some higher-priority process might | ||
734 | * have swooped in. */ | ||
735 | } | ||
736 | } | ||
737 | /* ok, now it is ours */ | ||
738 | } | ||
739 | |||
740 | /* called with preemptions off */ | ||
741 | static void mpcp_vspin_exit(void) | ||
742 | { | ||
743 | struct task_struct* t = current, *next; | ||
744 | unsigned long flags; | ||
745 | wait_queue_head_t* vspin = this_cpu_ptr(&mpcpvs_vspin_wait); | ||
746 | |||
747 | BUG_ON(this_cpu_read(mpcpvs_vspin) != t); | ||
748 | |||
749 | /* no spinning job */ | ||
750 | this_cpu_write(mpcpvs_vspin, NULL); | ||
751 | |||
752 | /* see if anyone is waiting for us to stop "spinning" */ | ||
753 | spin_lock_irqsave(&vspin->lock, flags); | ||
754 | next = __waitqueue_remove_first(vspin); | ||
755 | |||
756 | if (next) | ||
757 | wake_up_process(next); | ||
758 | |||
759 | spin_unlock_irqrestore(&vspin->lock, flags); | ||
760 | } | ||
761 | |||
762 | static inline struct mpcp_semaphore* mpcp_from_lock(struct litmus_lock* lock) | ||
763 | { | ||
764 | return container_of(lock, struct mpcp_semaphore, litmus_lock); | ||
765 | } | ||
766 | |||
767 | int pfp_mpcp_lock(struct litmus_lock* l) | ||
768 | { | ||
769 | struct task_struct* t = current; | ||
770 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
771 | prio_wait_queue_t wait; | ||
772 | unsigned long flags; | ||
773 | |||
774 | if (!is_realtime(t)) | ||
775 | return -EPERM; | ||
776 | |||
777 | /* prevent nested lock acquisition */ | ||
778 | if (tsk_rt(t)->num_locks_held || | ||
779 | tsk_rt(t)->num_local_locks_held) | ||
780 | return -EBUSY; | ||
781 | |||
782 | preempt_disable(); | ||
783 | |||
784 | if (sem->vspin) | ||
785 | mpcp_vspin_enter(); | ||
786 | |||
787 | /* Priority-boost ourself *before* we suspend so that | ||
788 | * our priority is boosted when we resume. Use the priority | ||
789 | * ceiling for the local partition. */ | ||
790 | boost_priority(t, sem->prio_ceiling[get_partition(t)]); | ||
791 | |||
792 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
793 | |||
794 | preempt_enable_no_resched(); | ||
795 | |||
796 | if (sem->owner) { | ||
797 | /* resource is not free => must suspend and wait */ | ||
798 | |||
799 | /* ordered by regular priority */ | ||
800 | init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t))); | ||
801 | |||
802 | /* FIXME: interruptible would be nice some day */ | ||
803 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
804 | |||
805 | __add_wait_queue_prio_exclusive(&sem->wait, &wait); | ||
806 | |||
807 | TS_LOCK_SUSPEND; | ||
808 | |||
809 | /* release lock before sleeping */ | ||
810 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
811 | |||
812 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
813 | * when we wake up; we are guaranteed to have the lock since | ||
814 | * there is only one wake up per release. | ||
815 | */ | ||
816 | |||
817 | schedule(); | ||
818 | |||
819 | TS_LOCK_RESUME; | ||
820 | |||
821 | /* Since we hold the lock, no other task will change | ||
822 | * ->owner. We can thus check it without acquiring the spin | ||
823 | * lock. */ | ||
824 | BUG_ON(sem->owner != t); | ||
825 | } else { | ||
826 | /* it's ours now */ | ||
827 | sem->owner = t; | ||
828 | |||
829 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
830 | } | ||
831 | |||
832 | tsk_rt(t)->num_locks_held++; | ||
833 | |||
834 | return 0; | ||
835 | } | ||
836 | |||
837 | int pfp_mpcp_unlock(struct litmus_lock* l) | ||
838 | { | ||
839 | struct task_struct *t = current, *next = NULL; | ||
840 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
841 | unsigned long flags; | ||
842 | int err = 0; | ||
843 | |||
844 | preempt_disable(); | ||
845 | |||
846 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
847 | |||
848 | if (sem->owner != t) { | ||
849 | err = -EINVAL; | ||
850 | goto out; | ||
851 | } | ||
852 | |||
853 | tsk_rt(t)->num_locks_held--; | ||
854 | |||
855 | /* we lose the benefit of priority boosting */ | ||
856 | unboost_priority(t); | ||
857 | |||
858 | /* check if there are jobs waiting for this resource */ | ||
859 | next = __waitqueue_remove_first(&sem->wait); | ||
860 | sem->owner = next; | ||
861 | |||
862 | out: | ||
863 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
864 | |||
865 | /* Wake up next. The waiting job is already priority-boosted. */ | ||
866 | if(next) { | ||
867 | wake_up_process(next); | ||
868 | } | ||
869 | |||
870 | if (sem->vspin && err == 0) { | ||
871 | mpcp_vspin_exit(); | ||
872 | } | ||
873 | |||
874 | preempt_enable(); | ||
875 | |||
876 | return err; | ||
877 | } | ||
878 | |||
879 | int pfp_mpcp_open(struct litmus_lock* l, void* config) | ||
880 | { | ||
881 | struct task_struct *t = current; | ||
882 | int cpu, local_cpu; | ||
883 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
884 | unsigned long flags; | ||
885 | |||
886 | if (!is_realtime(t)) | ||
887 | /* we need to know the real-time priority */ | ||
888 | return -EPERM; | ||
889 | |||
890 | local_cpu = get_partition(t); | ||
891 | |||
892 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
893 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
894 | if (cpu != local_cpu) { | ||
895 | sem->prio_ceiling[cpu] = min(sem->prio_ceiling[cpu], | ||
896 | get_priority(t)); | ||
897 | TRACE_CUR("priority ceiling for sem %p is now %d on cpu %d\n", | ||
898 | sem, sem->prio_ceiling[cpu], cpu); | ||
899 | } | ||
900 | } | ||
901 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
902 | |||
903 | return 0; | ||
904 | } | ||
905 | |||
906 | int pfp_mpcp_close(struct litmus_lock* l) | ||
907 | { | ||
908 | struct task_struct *t = current; | ||
909 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
910 | unsigned long flags; | ||
911 | |||
912 | int owner; | ||
913 | |||
914 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
915 | |||
916 | owner = sem->owner == t; | ||
917 | |||
918 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
919 | |||
920 | if (owner) | ||
921 | pfp_mpcp_unlock(l); | ||
922 | |||
923 | return 0; | ||
924 | } | ||
925 | |||
926 | void pfp_mpcp_free(struct litmus_lock* lock) | ||
927 | { | ||
928 | kfree(mpcp_from_lock(lock)); | ||
929 | } | ||
930 | |||
931 | static struct litmus_lock_ops pfp_mpcp_lock_ops = { | ||
932 | .close = pfp_mpcp_close, | ||
933 | .lock = pfp_mpcp_lock, | ||
934 | .open = pfp_mpcp_open, | ||
935 | .unlock = pfp_mpcp_unlock, | ||
936 | .deallocate = pfp_mpcp_free, | ||
937 | }; | ||
938 | |||
939 | static struct litmus_lock* pfp_new_mpcp(int vspin) | ||
940 | { | ||
941 | struct mpcp_semaphore* sem; | ||
942 | int cpu; | ||
943 | |||
944 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
945 | if (!sem) | ||
946 | return NULL; | ||
947 | |||
948 | sem->owner = NULL; | ||
949 | init_waitqueue_head(&sem->wait); | ||
950 | sem->litmus_lock.ops = &pfp_mpcp_lock_ops; | ||
951 | |||
952 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
953 | sem->prio_ceiling[cpu] = OMEGA_CEILING; | ||
954 | |||
955 | /* mark as virtual spinning */ | ||
956 | sem->vspin = vspin; | ||
957 | |||
958 | return &sem->litmus_lock; | ||
959 | } | ||
960 | |||
961 | |||
962 | /* ******************** PCP support ********************** */ | ||
963 | |||
964 | |||
965 | struct pcp_semaphore { | ||
966 | struct litmus_lock litmus_lock; | ||
967 | |||
968 | struct list_head ceiling; | ||
969 | |||
970 | /* current resource holder */ | ||
971 | struct task_struct *owner; | ||
972 | |||
973 | /* priority ceiling --- can be negative due to DPCP support */ | ||
974 | int prio_ceiling; | ||
975 | |||
976 | /* on which processor is this PCP semaphore allocated? */ | ||
977 | int on_cpu; | ||
978 | }; | ||
979 | |||
980 | static inline struct pcp_semaphore* pcp_from_lock(struct litmus_lock* lock) | ||
981 | { | ||
982 | return container_of(lock, struct pcp_semaphore, litmus_lock); | ||
983 | } | ||
984 | |||
985 | |||
986 | struct pcp_state { | ||
987 | struct list_head system_ceiling; | ||
988 | |||
989 | /* highest-priority waiting task */ | ||
990 | struct task_struct* hp_waiter; | ||
991 | |||
992 | /* list of jobs waiting to get past the system ceiling */ | ||
993 | wait_queue_head_t ceiling_blocked; | ||
994 | }; | ||
995 | |||
996 | static void pcp_init_state(struct pcp_state* s) | ||
997 | { | ||
998 | INIT_LIST_HEAD(&s->system_ceiling); | ||
999 | s->hp_waiter = NULL; | ||
1000 | init_waitqueue_head(&s->ceiling_blocked); | ||
1001 | } | ||
1002 | |||
1003 | static DEFINE_PER_CPU(struct pcp_state, pcp_state); | ||
1004 | |||
1005 | /* assumes preemptions are off */ | ||
1006 | static struct pcp_semaphore* pcp_get_ceiling(void) | ||
1007 | { | ||
1008 | struct list_head* top = &(this_cpu_ptr(&pcp_state)->system_ceiling); | ||
1009 | return list_first_entry_or_null(top, struct pcp_semaphore, ceiling); | ||
1010 | } | ||
1011 | |||
1012 | /* assumes preempt off */ | ||
1013 | static void pcp_add_ceiling(struct pcp_semaphore* sem) | ||
1014 | { | ||
1015 | struct list_head *pos; | ||
1016 | struct list_head *in_use = &(this_cpu_ptr(&pcp_state)->system_ceiling); | ||
1017 | struct pcp_semaphore* held; | ||
1018 | |||
1019 | BUG_ON(sem->on_cpu != smp_processor_id()); | ||
1020 | BUG_ON(in_list(&sem->ceiling)); | ||
1021 | |||
1022 | list_for_each(pos, in_use) { | ||
1023 | held = list_entry(pos, struct pcp_semaphore, ceiling); | ||
1024 | if (held->prio_ceiling >= sem->prio_ceiling) { | ||
1025 | __list_add(&sem->ceiling, pos->prev, pos); | ||
1026 | return; | ||
1027 | } | ||
1028 | } | ||
1029 | |||
1030 | /* we hit the end of the list */ | ||
1031 | |||
1032 | list_add_tail(&sem->ceiling, in_use); | ||
1033 | } | ||
1034 | |||
1035 | /* assumes preempt off */ | ||
1036 | static int pcp_exceeds_ceiling(struct pcp_semaphore* ceiling, | ||
1037 | struct task_struct* task, | ||
1038 | int effective_prio) | ||
1039 | { | ||
1040 | return ceiling == NULL || | ||
1041 | ceiling->prio_ceiling > effective_prio || | ||
1042 | ceiling->owner == task; | ||
1043 | } | ||
1044 | |||
1045 | /* assumes preempt off */ | ||
1046 | static void pcp_priority_inheritance(void) | ||
1047 | { | ||
1048 | unsigned long flags; | ||
1049 | pfp_domain_t* pfp = local_pfp; | ||
1050 | |||
1051 | struct pcp_semaphore* ceiling = pcp_get_ceiling(); | ||
1052 | struct task_struct *blocker, *blocked; | ||
1053 | |||
1054 | blocker = ceiling ? ceiling->owner : NULL; | ||
1055 | blocked = this_cpu_ptr(&pcp_state)->hp_waiter; | ||
1056 | |||
1057 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
1058 | |||
1059 | /* Current is no longer inheriting anything by default. This should be | ||
1060 | * the currently scheduled job, and hence not currently queued. | ||
1061 | * Special case: if current stopped being a real-time task, it will no longer | ||
1062 | * be registered as pfp->scheduled. */ | ||
1063 | BUG_ON(current != pfp->scheduled && is_realtime(current)); | ||
1064 | |||
1065 | fp_set_prio_inh(pfp, current, NULL); | ||
1066 | fp_set_prio_inh(pfp, blocked, NULL); | ||
1067 | fp_set_prio_inh(pfp, blocker, NULL); | ||
1068 | |||
1069 | /* Let blocking job inherit priority of blocked job, if required. */ | ||
1070 | if (blocker && blocked && | ||
1071 | fp_higher_prio(blocked, blocker)) { | ||
1072 | TRACE_TASK(blocker, "PCP inherits from %s/%d (prio %u -> %u) \n", | ||
1073 | blocked->comm, blocked->pid, | ||
1074 | get_priority(blocker), get_priority(blocked)); | ||
1075 | fp_set_prio_inh(pfp, blocker, blocked); | ||
1076 | } | ||
1077 | |||
1078 | /* Check if anything changed. If the blocked job is current, then it is | ||
1079 | * just blocking and hence is going to call the scheduler anyway. */ | ||
1080 | if (blocked != current && | ||
1081 | fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) | ||
1082 | preempt(pfp); | ||
1083 | |||
1084 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
1085 | } | ||
1086 | |||
1087 | /* called with preemptions off */ | ||
1088 | static void pcp_raise_ceiling(struct pcp_semaphore* sem, | ||
1089 | int effective_prio) | ||
1090 | { | ||
1091 | struct task_struct* t = current; | ||
1092 | struct pcp_semaphore* ceiling; | ||
1093 | prio_wait_queue_t wait; | ||
1094 | unsigned int waiting_higher_prio; | ||
1095 | |||
1096 | while(1) { | ||
1097 | ceiling = pcp_get_ceiling(); | ||
1098 | if (pcp_exceeds_ceiling(ceiling, t, effective_prio)) | ||
1099 | break; | ||
1100 | |||
1101 | TRACE_CUR("PCP ceiling-blocked, wanted sem %p, but %s/%d has the ceiling \n", | ||
1102 | sem, ceiling->owner->comm, ceiling->owner->pid); | ||
1103 | |||
1104 | /* we need to wait until the ceiling is lowered */ | ||
1105 | |||
1106 | /* enqueue in priority order */ | ||
1107 | init_prio_waitqueue_entry(&wait, t, effective_prio); | ||
1108 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
1109 | waiting_higher_prio = add_wait_queue_prio_exclusive( | ||
1110 | &(this_cpu_ptr(&pcp_state)->ceiling_blocked), &wait); | ||
1111 | |||
1112 | if (waiting_higher_prio == 0) { | ||
1113 | TRACE_CUR("PCP new highest-prio waiter => prio inheritance\n"); | ||
1114 | |||
1115 | /* we are the new highest-priority waiting job | ||
1116 | * => update inheritance */ | ||
1117 | this_cpu_ptr(&pcp_state)->hp_waiter = t; | ||
1118 | pcp_priority_inheritance(); | ||
1119 | } | ||
1120 | |||
1121 | TS_LOCK_SUSPEND; | ||
1122 | |||
1123 | preempt_enable_no_resched(); | ||
1124 | schedule(); | ||
1125 | preempt_disable(); | ||
1126 | |||
1127 | /* pcp_resume_unblocked() removed us from wait queue */ | ||
1128 | |||
1129 | TS_LOCK_RESUME; | ||
1130 | } | ||
1131 | |||
1132 | TRACE_CUR("PCP got the ceiling and sem %p\n", sem); | ||
1133 | |||
1134 | /* We are good to go. The semaphore should be available. */ | ||
1135 | BUG_ON(sem->owner != NULL); | ||
1136 | |||
1137 | sem->owner = t; | ||
1138 | |||
1139 | pcp_add_ceiling(sem); | ||
1140 | } | ||
1141 | |||
1142 | static void pcp_resume_unblocked(void) | ||
1143 | { | ||
1144 | wait_queue_head_t *blocked = &(this_cpu_ptr(&pcp_state)->ceiling_blocked); | ||
1145 | unsigned long flags; | ||
1146 | prio_wait_queue_t* q; | ||
1147 | struct task_struct* t = NULL; | ||
1148 | |||
1149 | struct pcp_semaphore* ceiling = pcp_get_ceiling(); | ||
1150 | |||
1151 | spin_lock_irqsave(&blocked->lock, flags); | ||
1152 | |||
1153 | while (waitqueue_active(blocked)) { | ||
1154 | /* check first == highest-priority waiting job */ | ||
1155 | q = list_entry(blocked->task_list.next, | ||
1156 | prio_wait_queue_t, wq.task_list); | ||
1157 | t = (struct task_struct*) q->wq.private; | ||
1158 | |||
1159 | /* can it proceed now? => let it go */ | ||
1160 | if (pcp_exceeds_ceiling(ceiling, t, q->priority)) { | ||
1161 | __remove_wait_queue(blocked, &q->wq); | ||
1162 | wake_up_process(t); | ||
1163 | } else { | ||
1164 | /* We are done. Update highest-priority waiter. */ | ||
1165 | this_cpu_ptr(&pcp_state)->hp_waiter = t; | ||
1166 | goto out; | ||
1167 | } | ||
1168 | } | ||
1169 | /* If we get here, then there are no more waiting | ||
1170 | * jobs. */ | ||
1171 | this_cpu_ptr(&pcp_state)->hp_waiter = NULL; | ||
1172 | out: | ||
1173 | spin_unlock_irqrestore(&blocked->lock, flags); | ||
1174 | } | ||
1175 | |||
1176 | /* assumes preempt off */ | ||
1177 | static void pcp_lower_ceiling(struct pcp_semaphore* sem) | ||
1178 | { | ||
1179 | BUG_ON(!in_list(&sem->ceiling)); | ||
1180 | BUG_ON(sem->owner != current); | ||
1181 | BUG_ON(sem->on_cpu != smp_processor_id()); | ||
1182 | |||
1183 | /* remove from ceiling list */ | ||
1184 | list_del(&sem->ceiling); | ||
1185 | |||
1186 | /* release */ | ||
1187 | sem->owner = NULL; | ||
1188 | |||
1189 | TRACE_CUR("PCP released sem %p\n", sem); | ||
1190 | |||
1191 | /* Wake up all ceiling-blocked jobs that now pass the ceiling. */ | ||
1192 | pcp_resume_unblocked(); | ||
1193 | |||
1194 | pcp_priority_inheritance(); | ||
1195 | } | ||
1196 | |||
1197 | static void pcp_update_prio_ceiling(struct pcp_semaphore* sem, | ||
1198 | int effective_prio) | ||
1199 | { | ||
1200 | /* This needs to be synchronized on something. | ||
1201 | * Might as well use waitqueue lock for the processor. | ||
1202 | * We assume this happens only before the task set starts execution, | ||
1203 | * (i.e., during initialization), but it may happen on multiple processors | ||
1204 | * at the same time. | ||
1205 | */ | ||
1206 | unsigned long flags; | ||
1207 | |||
1208 | struct pcp_state* s = &per_cpu(pcp_state, sem->on_cpu); | ||
1209 | |||
1210 | spin_lock_irqsave(&s->ceiling_blocked.lock, flags); | ||
1211 | |||
1212 | sem->prio_ceiling = min(sem->prio_ceiling, effective_prio); | ||
1213 | |||
1214 | spin_unlock_irqrestore(&s->ceiling_blocked.lock, flags); | ||
1215 | } | ||
1216 | |||
1217 | static void pcp_init_semaphore(struct pcp_semaphore* sem, int cpu) | ||
1218 | { | ||
1219 | sem->owner = NULL; | ||
1220 | INIT_LIST_HEAD(&sem->ceiling); | ||
1221 | sem->prio_ceiling = INT_MAX; | ||
1222 | sem->on_cpu = cpu; | ||
1223 | } | ||
1224 | |||
1225 | int pfp_pcp_lock(struct litmus_lock* l) | ||
1226 | { | ||
1227 | struct task_struct* t = current; | ||
1228 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1229 | |||
1230 | /* The regular PCP uses the regular task priorities, not agent | ||
1231 | * priorities. */ | ||
1232 | int eprio = get_priority(t); | ||
1233 | int from = get_partition(t); | ||
1234 | int to = sem->on_cpu; | ||
1235 | |||
1236 | if (!is_realtime(t) || from != to) | ||
1237 | return -EPERM; | ||
1238 | |||
1239 | /* prevent nested lock acquisition in global critical section */ | ||
1240 | if (tsk_rt(t)->num_locks_held) | ||
1241 | return -EBUSY; | ||
1242 | |||
1243 | preempt_disable(); | ||
1244 | |||
1245 | pcp_raise_ceiling(sem, eprio); | ||
1246 | |||
1247 | preempt_enable(); | ||
1248 | |||
1249 | tsk_rt(t)->num_local_locks_held++; | ||
1250 | |||
1251 | return 0; | ||
1252 | } | ||
1253 | |||
1254 | int pfp_pcp_unlock(struct litmus_lock* l) | ||
1255 | { | ||
1256 | struct task_struct *t = current; | ||
1257 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1258 | |||
1259 | int err = 0; | ||
1260 | |||
1261 | preempt_disable(); | ||
1262 | |||
1263 | if (sem->owner != t) { | ||
1264 | err = -EINVAL; | ||
1265 | goto out; | ||
1266 | } | ||
1267 | |||
1268 | /* The current owner should be executing on the correct CPU. | ||
1269 | * | ||
1270 | * If the owner transitioned out of RT mode or is exiting, then | ||
1271 | * we it might have already been migrated away by the best-effort | ||
1272 | * scheduler and we just have to deal with it. */ | ||
1273 | if (unlikely(!is_realtime(t) && sem->on_cpu != smp_processor_id())) { | ||
1274 | TRACE_TASK(t, "PCP unlock cpu=%d, sem->on_cpu=%d\n", | ||
1275 | smp_processor_id(), sem->on_cpu); | ||
1276 | preempt_enable(); | ||
1277 | err = litmus_be_migrate_to(sem->on_cpu); | ||
1278 | preempt_disable(); | ||
1279 | TRACE_TASK(t, "post-migrate: cpu=%d, sem->on_cpu=%d err=%d\n", | ||
1280 | smp_processor_id(), sem->on_cpu, err); | ||
1281 | } | ||
1282 | BUG_ON(sem->on_cpu != smp_processor_id()); | ||
1283 | err = 0; | ||
1284 | |||
1285 | tsk_rt(t)->num_local_locks_held--; | ||
1286 | |||
1287 | /* give it back */ | ||
1288 | pcp_lower_ceiling(sem); | ||
1289 | |||
1290 | out: | ||
1291 | preempt_enable(); | ||
1292 | |||
1293 | return err; | ||
1294 | } | ||
1295 | |||
1296 | int pfp_pcp_open(struct litmus_lock* l, void* __user config) | ||
1297 | { | ||
1298 | struct task_struct *t = current; | ||
1299 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1300 | |||
1301 | int cpu, eprio; | ||
1302 | |||
1303 | if (!is_realtime(t)) | ||
1304 | /* we need to know the real-time priority */ | ||
1305 | return -EPERM; | ||
1306 | |||
1307 | if (!config) | ||
1308 | cpu = get_partition(t); | ||
1309 | else if (get_user(cpu, (int*) config)) | ||
1310 | return -EFAULT; | ||
1311 | |||
1312 | /* make sure the resource location matches */ | ||
1313 | if (cpu != sem->on_cpu) | ||
1314 | return -EINVAL; | ||
1315 | |||
1316 | /* The regular PCP uses regular task priorites, not agent | ||
1317 | * priorities. */ | ||
1318 | eprio = get_priority(t); | ||
1319 | |||
1320 | pcp_update_prio_ceiling(sem, eprio); | ||
1321 | |||
1322 | return 0; | ||
1323 | } | ||
1324 | |||
1325 | int pfp_pcp_close(struct litmus_lock* l) | ||
1326 | { | ||
1327 | struct task_struct *t = current; | ||
1328 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1329 | |||
1330 | int owner = 0; | ||
1331 | |||
1332 | preempt_disable(); | ||
1333 | |||
1334 | if (sem->on_cpu == smp_processor_id()) | ||
1335 | owner = sem->owner == t; | ||
1336 | |||
1337 | preempt_enable(); | ||
1338 | |||
1339 | if (owner) | ||
1340 | pfp_pcp_unlock(l); | ||
1341 | |||
1342 | return 0; | ||
1343 | } | ||
1344 | |||
1345 | void pfp_pcp_free(struct litmus_lock* lock) | ||
1346 | { | ||
1347 | kfree(pcp_from_lock(lock)); | ||
1348 | } | ||
1349 | |||
1350 | |||
1351 | static struct litmus_lock_ops pfp_pcp_lock_ops = { | ||
1352 | .close = pfp_pcp_close, | ||
1353 | .lock = pfp_pcp_lock, | ||
1354 | .open = pfp_pcp_open, | ||
1355 | .unlock = pfp_pcp_unlock, | ||
1356 | .deallocate = pfp_pcp_free, | ||
1357 | }; | ||
1358 | |||
1359 | |||
1360 | static struct litmus_lock* pfp_new_pcp(int on_cpu) | ||
1361 | { | ||
1362 | struct pcp_semaphore* sem; | ||
1363 | |||
1364 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
1365 | if (!sem) | ||
1366 | return NULL; | ||
1367 | |||
1368 | sem->litmus_lock.ops = &pfp_pcp_lock_ops; | ||
1369 | pcp_init_semaphore(sem, on_cpu); | ||
1370 | |||
1371 | return &sem->litmus_lock; | ||
1372 | } | ||
1373 | |||
1374 | /* ******************** DPCP support ********************** */ | ||
1375 | |||
1376 | struct dpcp_semaphore { | ||
1377 | struct litmus_lock litmus_lock; | ||
1378 | struct pcp_semaphore pcp; | ||
1379 | int owner_cpu; | ||
1380 | }; | ||
1381 | |||
1382 | static inline struct dpcp_semaphore* dpcp_from_lock(struct litmus_lock* lock) | ||
1383 | { | ||
1384 | return container_of(lock, struct dpcp_semaphore, litmus_lock); | ||
1385 | } | ||
1386 | |||
1387 | /* called with preemptions disabled */ | ||
1388 | static void pfp_migrate_to(int target_cpu) | ||
1389 | { | ||
1390 | struct task_struct* t = current; | ||
1391 | pfp_domain_t *from; | ||
1392 | |||
1393 | if (get_partition(t) == target_cpu) | ||
1394 | return; | ||
1395 | |||
1396 | if (!is_realtime(t)) | ||
1397 | { | ||
1398 | TRACE_TASK(t, "not migrating, not a RT task (anymore?)\n"); | ||
1399 | return; | ||
1400 | } | ||
1401 | |||
1402 | /* make sure target_cpu makes sense */ | ||
1403 | BUG_ON(target_cpu >= NR_CPUS || !cpu_online(target_cpu)); | ||
1404 | |||
1405 | local_irq_disable(); | ||
1406 | |||
1407 | from = task_pfp(t); | ||
1408 | raw_spin_lock(&from->slock); | ||
1409 | |||
1410 | /* Scheduled task should not be in any ready or release queue. Check | ||
1411 | * this while holding the lock to avoid RT mode transitions.*/ | ||
1412 | BUG_ON(is_realtime(t) && is_queued(t)); | ||
1413 | |||
1414 | /* switch partitions */ | ||
1415 | tsk_rt(t)->task_params.cpu = target_cpu; | ||
1416 | |||
1417 | raw_spin_unlock(&from->slock); | ||
1418 | |||
1419 | /* Don't trace scheduler costs as part of | ||
1420 | * locking overhead. Scheduling costs are accounted for | ||
1421 | * explicitly. */ | ||
1422 | TS_LOCK_SUSPEND; | ||
1423 | |||
1424 | local_irq_enable(); | ||
1425 | preempt_enable_no_resched(); | ||
1426 | |||
1427 | /* deschedule to be migrated */ | ||
1428 | schedule(); | ||
1429 | |||
1430 | /* we are now on the target processor */ | ||
1431 | preempt_disable(); | ||
1432 | |||
1433 | /* start recording costs again */ | ||
1434 | TS_LOCK_RESUME; | ||
1435 | |||
1436 | BUG_ON(smp_processor_id() != target_cpu && is_realtime(t)); | ||
1437 | } | ||
1438 | |||
1439 | int pfp_dpcp_lock(struct litmus_lock* l) | ||
1440 | { | ||
1441 | struct task_struct* t = current; | ||
1442 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1443 | int eprio = effective_agent_priority(get_priority(t)); | ||
1444 | int from = get_partition(t); | ||
1445 | int to = sem->pcp.on_cpu; | ||
1446 | |||
1447 | if (!is_realtime(t)) | ||
1448 | return -EPERM; | ||
1449 | |||
1450 | /* prevent nested lock accquisition */ | ||
1451 | if (tsk_rt(t)->num_locks_held || | ||
1452 | tsk_rt(t)->num_local_locks_held) | ||
1453 | return -EBUSY; | ||
1454 | |||
1455 | preempt_disable(); | ||
1456 | |||
1457 | /* Priority-boost ourself *before* we suspend so that | ||
1458 | * our priority is boosted when we resume. */ | ||
1459 | |||
1460 | boost_priority(t, get_priority(t)); | ||
1461 | |||
1462 | pfp_migrate_to(to); | ||
1463 | |||
1464 | pcp_raise_ceiling(&sem->pcp, eprio); | ||
1465 | |||
1466 | /* yep, we got it => execute request */ | ||
1467 | sem->owner_cpu = from; | ||
1468 | |||
1469 | preempt_enable(); | ||
1470 | |||
1471 | tsk_rt(t)->num_locks_held++; | ||
1472 | |||
1473 | return 0; | ||
1474 | } | ||
1475 | |||
1476 | int pfp_dpcp_unlock(struct litmus_lock* l) | ||
1477 | { | ||
1478 | struct task_struct *t = current; | ||
1479 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1480 | int err = 0; | ||
1481 | int home; | ||
1482 | |||
1483 | preempt_disable(); | ||
1484 | |||
1485 | if (sem->pcp.owner != t) { | ||
1486 | err = -EINVAL; | ||
1487 | goto out; | ||
1488 | } | ||
1489 | |||
1490 | /* The current owner should be executing on the correct CPU. | ||
1491 | * | ||
1492 | * If the owner transitioned out of RT mode or is exiting, then | ||
1493 | * we it might have already been migrated away by the best-effort | ||
1494 | * scheduler and we just have to deal with it. */ | ||
1495 | if (unlikely(!is_realtime(t) && sem->pcp.on_cpu != smp_processor_id())) { | ||
1496 | TRACE_TASK(t, "DPCP unlock cpu=%d, sem->pcp.on_cpu=%d\n", smp_processor_id(), sem->pcp.on_cpu); | ||
1497 | preempt_enable(); | ||
1498 | err = litmus_be_migrate_to(sem->pcp.on_cpu); | ||
1499 | preempt_disable(); | ||
1500 | TRACE_TASK(t, "post-migrate: cpu=%d, sem->pcp.on_cpu=%d err=%d\n", smp_processor_id(), sem->pcp.on_cpu, err); | ||
1501 | } | ||
1502 | BUG_ON(sem->pcp.on_cpu != smp_processor_id()); | ||
1503 | err = 0; | ||
1504 | |||
1505 | tsk_rt(t)->num_locks_held--; | ||
1506 | |||
1507 | home = sem->owner_cpu; | ||
1508 | |||
1509 | /* give it back */ | ||
1510 | pcp_lower_ceiling(&sem->pcp); | ||
1511 | |||
1512 | /* we lose the benefit of priority boosting */ | ||
1513 | unboost_priority(t); | ||
1514 | |||
1515 | pfp_migrate_to(home); | ||
1516 | |||
1517 | out: | ||
1518 | preempt_enable(); | ||
1519 | |||
1520 | return err; | ||
1521 | } | ||
1522 | |||
1523 | int pfp_dpcp_open(struct litmus_lock* l, void* __user config) | ||
1524 | { | ||
1525 | struct task_struct *t = current; | ||
1526 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1527 | int cpu, eprio; | ||
1528 | |||
1529 | if (!is_realtime(t)) | ||
1530 | /* we need to know the real-time priority */ | ||
1531 | return -EPERM; | ||
1532 | |||
1533 | if (get_user(cpu, (int*) config)) | ||
1534 | return -EFAULT; | ||
1535 | |||
1536 | /* make sure the resource location matches */ | ||
1537 | if (cpu != sem->pcp.on_cpu) | ||
1538 | return -EINVAL; | ||
1539 | |||
1540 | eprio = effective_agent_priority(get_priority(t)); | ||
1541 | |||
1542 | pcp_update_prio_ceiling(&sem->pcp, eprio); | ||
1543 | |||
1544 | return 0; | ||
1545 | } | ||
1546 | |||
1547 | int pfp_dpcp_close(struct litmus_lock* l) | ||
1548 | { | ||
1549 | struct task_struct *t = current; | ||
1550 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1551 | int owner = 0; | ||
1552 | |||
1553 | preempt_disable(); | ||
1554 | |||
1555 | if (sem->pcp.on_cpu == smp_processor_id()) | ||
1556 | owner = sem->pcp.owner == t; | ||
1557 | |||
1558 | preempt_enable(); | ||
1559 | |||
1560 | if (owner) | ||
1561 | pfp_dpcp_unlock(l); | ||
1562 | |||
1563 | return 0; | ||
1564 | } | ||
1565 | |||
1566 | void pfp_dpcp_free(struct litmus_lock* lock) | ||
1567 | { | ||
1568 | kfree(dpcp_from_lock(lock)); | ||
1569 | } | ||
1570 | |||
1571 | static struct litmus_lock_ops pfp_dpcp_lock_ops = { | ||
1572 | .close = pfp_dpcp_close, | ||
1573 | .lock = pfp_dpcp_lock, | ||
1574 | .open = pfp_dpcp_open, | ||
1575 | .unlock = pfp_dpcp_unlock, | ||
1576 | .deallocate = pfp_dpcp_free, | ||
1577 | }; | ||
1578 | |||
1579 | static struct litmus_lock* pfp_new_dpcp(int on_cpu) | ||
1580 | { | ||
1581 | struct dpcp_semaphore* sem; | ||
1582 | |||
1583 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
1584 | if (!sem) | ||
1585 | return NULL; | ||
1586 | |||
1587 | sem->litmus_lock.ops = &pfp_dpcp_lock_ops; | ||
1588 | sem->owner_cpu = NO_CPU; | ||
1589 | pcp_init_semaphore(&sem->pcp, on_cpu); | ||
1590 | |||
1591 | return &sem->litmus_lock; | ||
1592 | } | ||
1593 | |||
1594 | |||
1595 | /* ******************** DFLP support ********************** */ | ||
1596 | |||
1597 | struct dflp_semaphore { | ||
1598 | struct litmus_lock litmus_lock; | ||
1599 | |||
1600 | /* current resource holder */ | ||
1601 | struct task_struct *owner; | ||
1602 | int owner_cpu; | ||
1603 | |||
1604 | /* FIFO queue of waiting tasks */ | ||
1605 | wait_queue_head_t wait; | ||
1606 | |||
1607 | /* where is the resource assigned to */ | ||
1608 | int on_cpu; | ||
1609 | }; | ||
1610 | |||
1611 | static inline struct dflp_semaphore* dflp_from_lock(struct litmus_lock* lock) | ||
1612 | { | ||
1613 | return container_of(lock, struct dflp_semaphore, litmus_lock); | ||
1614 | } | ||
1615 | |||
1616 | int pfp_dflp_lock(struct litmus_lock* l) | ||
1617 | { | ||
1618 | struct task_struct* t = current; | ||
1619 | struct dflp_semaphore *sem = dflp_from_lock(l); | ||
1620 | int from = get_partition(t); | ||
1621 | int to = sem->on_cpu; | ||
1622 | unsigned long flags; | ||
1623 | wait_queue_t wait; | ||
1624 | lt_t time_of_request; | ||
1625 | |||
1626 | if (!is_realtime(t)) | ||
1627 | return -EPERM; | ||
1628 | |||
1629 | /* prevent nested lock accquisition */ | ||
1630 | if (tsk_rt(t)->num_locks_held || | ||
1631 | tsk_rt(t)->num_local_locks_held) | ||
1632 | return -EBUSY; | ||
1633 | |||
1634 | preempt_disable(); | ||
1635 | |||
1636 | /* tie-break by this point in time */ | ||
1637 | time_of_request = litmus_clock(); | ||
1638 | |||
1639 | /* Priority-boost ourself *before* we suspend so that | ||
1640 | * our priority is boosted when we resume. */ | ||
1641 | boost_priority(t, time_of_request); | ||
1642 | |||
1643 | pfp_migrate_to(to); | ||
1644 | |||
1645 | /* Now on the right CPU, preemptions still disabled. */ | ||
1646 | |||
1647 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
1648 | |||
1649 | if (sem->owner) { | ||
1650 | /* resource is not free => must suspend and wait */ | ||
1651 | |||
1652 | init_waitqueue_entry(&wait, t); | ||
1653 | |||
1654 | /* FIXME: interruptible would be nice some day */ | ||
1655 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
1656 | |||
1657 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
1658 | |||
1659 | TS_LOCK_SUSPEND; | ||
1660 | |||
1661 | /* release lock before sleeping */ | ||
1662 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
1663 | |||
1664 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
1665 | * when we wake up; we are guaranteed to have the lock since | ||
1666 | * there is only one wake up per release. | ||
1667 | */ | ||
1668 | |||
1669 | preempt_enable_no_resched(); | ||
1670 | |||
1671 | schedule(); | ||
1672 | |||
1673 | preempt_disable(); | ||
1674 | |||
1675 | TS_LOCK_RESUME; | ||
1676 | |||
1677 | /* Since we hold the lock, no other task will change | ||
1678 | * ->owner. We can thus check it without acquiring the spin | ||
1679 | * lock. */ | ||
1680 | BUG_ON(sem->owner != t); | ||
1681 | } else { | ||
1682 | /* it's ours now */ | ||
1683 | sem->owner = t; | ||
1684 | |||
1685 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
1686 | } | ||
1687 | |||
1688 | sem->owner_cpu = from; | ||
1689 | |||
1690 | preempt_enable(); | ||
1691 | |||
1692 | tsk_rt(t)->num_locks_held++; | ||
1693 | |||
1694 | return 0; | ||
1695 | } | ||
1696 | |||
1697 | int pfp_dflp_unlock(struct litmus_lock* l) | ||
1698 | { | ||
1699 | struct task_struct *t = current, *next; | ||
1700 | struct dflp_semaphore *sem = dflp_from_lock(l); | ||
1701 | int err = 0; | ||
1702 | int home; | ||
1703 | unsigned long flags; | ||
1704 | |||
1705 | preempt_disable(); | ||
1706 | |||
1707 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
1708 | |||
1709 | if (sem->owner != t) { | ||
1710 | err = -EINVAL; | ||
1711 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
1712 | goto out; | ||
1713 | } | ||
1714 | |||
1715 | /* check if there are jobs waiting for this resource */ | ||
1716 | next = __waitqueue_remove_first(&sem->wait); | ||
1717 | if (next) { | ||
1718 | /* next becomes the resouce holder */ | ||
1719 | sem->owner = next; | ||
1720 | |||
1721 | /* Wake up next. The waiting job is already priority-boosted. */ | ||
1722 | wake_up_process(next); | ||
1723 | } else | ||
1724 | /* resource becomes available */ | ||
1725 | sem->owner = NULL; | ||
1726 | |||
1727 | tsk_rt(t)->num_locks_held--; | ||
1728 | |||
1729 | home = sem->owner_cpu; | ||
1730 | |||
1731 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
1732 | |||
1733 | /* we lose the benefit of priority boosting */ | ||
1734 | unboost_priority(t); | ||
1735 | |||
1736 | pfp_migrate_to(home); | ||
1737 | |||
1738 | out: | ||
1739 | preempt_enable(); | ||
1740 | |||
1741 | return err; | ||
1742 | } | ||
1743 | |||
1744 | int pfp_dflp_open(struct litmus_lock* l, void* __user config) | ||
1745 | { | ||
1746 | struct dflp_semaphore *sem = dflp_from_lock(l); | ||
1747 | int cpu; | ||
1748 | |||
1749 | if (get_user(cpu, (int*) config)) | ||
1750 | return -EFAULT; | ||
1751 | |||
1752 | /* make sure the resource location matches */ | ||
1753 | if (cpu != sem->on_cpu) | ||
1754 | return -EINVAL; | ||
1755 | |||
1756 | return 0; | ||
1757 | } | ||
1758 | |||
1759 | int pfp_dflp_close(struct litmus_lock* l) | ||
1760 | { | ||
1761 | struct task_struct *t = current; | ||
1762 | struct dflp_semaphore *sem = dflp_from_lock(l); | ||
1763 | int owner = 0; | ||
1764 | |||
1765 | preempt_disable(); | ||
1766 | |||
1767 | if (sem->on_cpu == smp_processor_id()) | ||
1768 | owner = sem->owner == t; | ||
1769 | |||
1770 | preempt_enable(); | ||
1771 | |||
1772 | if (owner) | ||
1773 | pfp_dflp_unlock(l); | ||
1774 | |||
1775 | return 0; | ||
1776 | } | ||
1777 | |||
1778 | void pfp_dflp_free(struct litmus_lock* lock) | ||
1779 | { | ||
1780 | kfree(dflp_from_lock(lock)); | ||
1781 | } | ||
1782 | |||
1783 | static struct litmus_lock_ops pfp_dflp_lock_ops = { | ||
1784 | .close = pfp_dflp_close, | ||
1785 | .lock = pfp_dflp_lock, | ||
1786 | .open = pfp_dflp_open, | ||
1787 | .unlock = pfp_dflp_unlock, | ||
1788 | .deallocate = pfp_dflp_free, | ||
1789 | }; | ||
1790 | |||
1791 | static struct litmus_lock* pfp_new_dflp(int on_cpu) | ||
1792 | { | ||
1793 | struct dflp_semaphore* sem; | ||
1794 | |||
1795 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
1796 | if (!sem) | ||
1797 | return NULL; | ||
1798 | |||
1799 | sem->litmus_lock.ops = &pfp_dflp_lock_ops; | ||
1800 | sem->owner_cpu = NO_CPU; | ||
1801 | sem->owner = NULL; | ||
1802 | sem->on_cpu = on_cpu; | ||
1803 | init_waitqueue_head(&sem->wait); | ||
1804 | |||
1805 | return &sem->litmus_lock; | ||
1806 | } | ||
1807 | |||
1808 | |||
1809 | /* **** lock constructor **** */ | ||
1810 | |||
1811 | |||
1812 | static long pfp_allocate_lock(struct litmus_lock **lock, int type, | ||
1813 | void* __user config) | ||
1814 | { | ||
1815 | int err = -ENXIO, cpu; | ||
1816 | struct srp_semaphore* srp; | ||
1817 | |||
1818 | /* P-FP currently supports the SRP for local resources and the FMLP | ||
1819 | * for global resources. */ | ||
1820 | switch (type) { | ||
1821 | case FMLP_SEM: | ||
1822 | /* FIFO Mutex Locking Protocol */ | ||
1823 | *lock = pfp_new_fmlp(); | ||
1824 | if (*lock) | ||
1825 | err = 0; | ||
1826 | else | ||
1827 | err = -ENOMEM; | ||
1828 | break; | ||
1829 | |||
1830 | case MPCP_SEM: | ||
1831 | /* Multiprocesor Priority Ceiling Protocol */ | ||
1832 | *lock = pfp_new_mpcp(0); | ||
1833 | if (*lock) | ||
1834 | err = 0; | ||
1835 | else | ||
1836 | err = -ENOMEM; | ||
1837 | break; | ||
1838 | |||
1839 | case MPCP_VS_SEM: | ||
1840 | /* Multiprocesor Priority Ceiling Protocol with virtual spinning */ | ||
1841 | *lock = pfp_new_mpcp(1); | ||
1842 | if (*lock) | ||
1843 | err = 0; | ||
1844 | else | ||
1845 | err = -ENOMEM; | ||
1846 | break; | ||
1847 | |||
1848 | case DPCP_SEM: | ||
1849 | /* Distributed Priority Ceiling Protocol */ | ||
1850 | if (get_user(cpu, (int*) config)) | ||
1851 | return -EFAULT; | ||
1852 | |||
1853 | TRACE("DPCP_SEM: provided cpu=%d\n", cpu); | ||
1854 | |||
1855 | if (cpu >= NR_CPUS || !cpu_online(cpu)) | ||
1856 | return -EINVAL; | ||
1857 | |||
1858 | *lock = pfp_new_dpcp(cpu); | ||
1859 | if (*lock) | ||
1860 | err = 0; | ||
1861 | else | ||
1862 | err = -ENOMEM; | ||
1863 | break; | ||
1864 | |||
1865 | case DFLP_SEM: | ||
1866 | /* Distributed FIFO Locking Protocol */ | ||
1867 | if (get_user(cpu, (int*) config)) | ||
1868 | return -EFAULT; | ||
1869 | |||
1870 | TRACE("DPCP_SEM: provided cpu=%d\n", cpu); | ||
1871 | |||
1872 | if (cpu >= NR_CPUS || !cpu_online(cpu)) | ||
1873 | return -EINVAL; | ||
1874 | |||
1875 | *lock = pfp_new_dflp(cpu); | ||
1876 | if (*lock) | ||
1877 | err = 0; | ||
1878 | else | ||
1879 | err = -ENOMEM; | ||
1880 | break; | ||
1881 | |||
1882 | case SRP_SEM: | ||
1883 | /* Baker's Stack Resource Policy */ | ||
1884 | srp = allocate_srp_semaphore(); | ||
1885 | if (srp) { | ||
1886 | *lock = &srp->litmus_lock; | ||
1887 | err = 0; | ||
1888 | } else | ||
1889 | err = -ENOMEM; | ||
1890 | break; | ||
1891 | |||
1892 | case PCP_SEM: | ||
1893 | /* Priority Ceiling Protocol */ | ||
1894 | if (!config) | ||
1895 | cpu = get_partition(current); | ||
1896 | else if (get_user(cpu, (int*) config)) | ||
1897 | return -EFAULT; | ||
1898 | |||
1899 | if (cpu >= NR_CPUS || !cpu_online(cpu)) | ||
1900 | return -EINVAL; | ||
1901 | |||
1902 | *lock = pfp_new_pcp(cpu); | ||
1903 | if (*lock) | ||
1904 | err = 0; | ||
1905 | else | ||
1906 | err = -ENOMEM; | ||
1907 | break; | ||
1908 | }; | ||
1909 | |||
1910 | return err; | ||
1911 | } | ||
1912 | |||
1913 | #endif | ||
1914 | |||
1915 | static long pfp_admit_task(struct task_struct* tsk) | ||
1916 | { | ||
1917 | if (task_cpu(tsk) == tsk->rt_param.task_params.cpu && | ||
1918 | #ifdef CONFIG_RELEASE_MASTER | ||
1919 | /* don't allow tasks on release master CPU */ | ||
1920 | task_cpu(tsk) != remote_dom(task_cpu(tsk))->release_master && | ||
1921 | #endif | ||
1922 | litmus_is_valid_fixed_prio(get_priority(tsk))) | ||
1923 | return 0; | ||
1924 | else | ||
1925 | return -EINVAL; | ||
1926 | } | ||
1927 | |||
1928 | static struct domain_proc_info pfp_domain_proc_info; | ||
1929 | static long pfp_get_domain_proc_info(struct domain_proc_info **ret) | ||
1930 | { | ||
1931 | *ret = &pfp_domain_proc_info; | ||
1932 | return 0; | ||
1933 | } | ||
1934 | |||
1935 | static void pfp_setup_domain_proc(void) | ||
1936 | { | ||
1937 | int i, cpu; | ||
1938 | int release_master = | ||
1939 | #ifdef CONFIG_RELEASE_MASTER | ||
1940 | atomic_read(&release_master_cpu); | ||
1941 | #else | ||
1942 | NO_CPU; | ||
1943 | #endif | ||
1944 | int num_rt_cpus = num_online_cpus() - (release_master != NO_CPU); | ||
1945 | struct cd_mapping *cpu_map, *domain_map; | ||
1946 | |||
1947 | memset(&pfp_domain_proc_info, sizeof(pfp_domain_proc_info), 0); | ||
1948 | init_domain_proc_info(&pfp_domain_proc_info, num_rt_cpus, num_rt_cpus); | ||
1949 | pfp_domain_proc_info.num_cpus = num_rt_cpus; | ||
1950 | pfp_domain_proc_info.num_domains = num_rt_cpus; | ||
1951 | for (cpu = 0, i = 0; cpu < num_online_cpus(); ++cpu) { | ||
1952 | if (cpu == release_master) | ||
1953 | continue; | ||
1954 | cpu_map = &pfp_domain_proc_info.cpu_to_domains[i]; | ||
1955 | domain_map = &pfp_domain_proc_info.domain_to_cpus[i]; | ||
1956 | |||
1957 | cpu_map->id = cpu; | ||
1958 | domain_map->id = i; /* enumerate w/o counting the release master */ | ||
1959 | cpumask_set_cpu(i, cpu_map->mask); | ||
1960 | cpumask_set_cpu(cpu, domain_map->mask); | ||
1961 | ++i; | ||
1962 | } | ||
1963 | } | ||
1964 | |||
1965 | static long pfp_activate_plugin(void) | ||
1966 | { | ||
1967 | #if defined(CONFIG_RELEASE_MASTER) || defined(CONFIG_LITMUS_LOCKING) | ||
1968 | int cpu; | ||
1969 | #endif | ||
1970 | |||
1971 | #ifdef CONFIG_RELEASE_MASTER | ||
1972 | for_each_online_cpu(cpu) { | ||
1973 | remote_dom(cpu)->release_master = atomic_read(&release_master_cpu); | ||
1974 | } | ||
1975 | #endif | ||
1976 | |||
1977 | #ifdef CONFIG_LITMUS_LOCKING | ||
1978 | get_srp_prio = pfp_get_srp_prio; | ||
1979 | |||
1980 | for_each_online_cpu(cpu) { | ||
1981 | init_waitqueue_head(&per_cpu(mpcpvs_vspin_wait, cpu)); | ||
1982 | per_cpu(mpcpvs_vspin, cpu) = NULL; | ||
1983 | |||
1984 | pcp_init_state(&per_cpu(pcp_state, cpu)); | ||
1985 | pfp_doms[cpu] = remote_pfp(cpu); | ||
1986 | per_cpu(fmlp_timestamp,cpu) = 0; | ||
1987 | } | ||
1988 | |||
1989 | #endif | ||
1990 | |||
1991 | pfp_setup_domain_proc(); | ||
1992 | |||
1993 | return 0; | ||
1994 | } | ||
1995 | |||
1996 | static long pfp_deactivate_plugin(void) | ||
1997 | { | ||
1998 | destroy_domain_proc_info(&pfp_domain_proc_info); | ||
1999 | return 0; | ||
2000 | } | ||
2001 | |||
2002 | /* Plugin object */ | ||
2003 | static struct sched_plugin pfp_plugin __cacheline_aligned_in_smp = { | ||
2004 | .plugin_name = "P-FP", | ||
2005 | .task_new = pfp_task_new, | ||
2006 | .complete_job = complete_job, | ||
2007 | .task_exit = pfp_task_exit, | ||
2008 | .schedule = pfp_schedule, | ||
2009 | .task_wake_up = pfp_task_wake_up, | ||
2010 | .task_block = pfp_task_block, | ||
2011 | .admit_task = pfp_admit_task, | ||
2012 | .activate_plugin = pfp_activate_plugin, | ||
2013 | .deactivate_plugin = pfp_deactivate_plugin, | ||
2014 | .get_domain_proc_info = pfp_get_domain_proc_info, | ||
2015 | #ifdef CONFIG_LITMUS_LOCKING | ||
2016 | .allocate_lock = pfp_allocate_lock, | ||
2017 | .finish_switch = pfp_finish_switch, | ||
2018 | #endif | ||
2019 | }; | ||
2020 | |||
2021 | |||
2022 | static int __init init_pfp(void) | ||
2023 | { | ||
2024 | int i; | ||
2025 | |||
2026 | /* We do not really want to support cpu hotplug, do we? ;) | ||
2027 | * However, if we are so crazy to do so, | ||
2028 | * we cannot use num_online_cpu() | ||
2029 | */ | ||
2030 | for (i = 0; i < num_online_cpus(); i++) { | ||
2031 | pfp_domain_init(remote_pfp(i), i); | ||
2032 | } | ||
2033 | return register_sched_plugin(&pfp_plugin); | ||
2034 | } | ||
2035 | |||
2036 | module_init(init_pfp); | ||