aboutsummaryrefslogtreecommitdiffstats
path: root/litmus/sched_cedf.c
diff options
context:
space:
mode:
authorAndrea Bastoni <bastoni@cs.unc.edu>2010-05-21 09:25:41 -0400
committerAndrea Bastoni <bastoni@cs.unc.edu>2010-05-21 09:25:41 -0400
commit6e0c5c609ad02f49d7e3e5edc3d65db1e233d857 (patch)
tree62517b45689b743e9976721df89634267e165011 /litmus/sched_cedf.c
parente40152ee1e1c7a63f4777791863215e3faa37a86 (diff)
parent960145eb829ae7a7b2d029e987f99a6be7a78d6b (diff)
Merge branch 'master' into wip-2.6.34
Merge LitmusRT master and 2.6.34. This commit is just the plain merge with conflicts resolved. It won't compile. Conflicts solved: Makefile arch/x86/include/asm/hw_irq.h arch/x86/include/asm/unistd_32.h arch/x86/kernel/syscall_table_32.S include/linux/hrtimer.h kernel/sched.c kernel/sched_fair.c
Diffstat (limited to 'litmus/sched_cedf.c')
-rw-r--r--litmus/sched_cedf.c772
1 files changed, 772 insertions, 0 deletions
diff --git a/litmus/sched_cedf.c b/litmus/sched_cedf.c
new file mode 100644
index 000000000000..e57a11afda16
--- /dev/null
+++ b/litmus/sched_cedf.c
@@ -0,0 +1,772 @@
1/*
2 * litmus/sched_cedf.c
3 *
4 * Implementation of the C-EDF scheduling algorithm.
5 *
6 * This implementation is based on G-EDF:
7 * - CPUs are clustered around L2 or L3 caches.
8 * - Clusters topology is automatically detected (this is arch dependent
9 * and is working only on x86 at the moment --- and only with modern
10 * cpus that exports cpuid4 information)
11 * - The plugins _does not_ attempt to put tasks in the right cluster i.e.
12 * the programmer needs to be aware of the topology to place tasks
13 * in the desired cluster
14 * - default clustering is around L2 cache (cache index = 2)
15 * supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all
16 * online_cpus are placed in a single cluster).
17 *
18 * For details on functions, take a look at sched_gsn_edf.c
19 *
20 * Currently, we do not support changes in the number of online cpus.
21 * If the num_online_cpus() dynamically changes, the plugin is broken.
22 *
23 * This version uses the simple approach and serializes all scheduling
24 * decisions by the use of a queue lock. This is probably not the
25 * best way to do it, but it should suffice for now.
26 */
27
28#include <linux/spinlock.h>
29#include <linux/percpu.h>
30#include <linux/sched.h>
31
32#include <litmus/litmus.h>
33#include <litmus/jobs.h>
34#include <litmus/sched_plugin.h>
35#include <litmus/edf_common.h>
36#include <litmus/sched_trace.h>
37
38#include <litmus/bheap.h>
39
40#include <linux/module.h>
41
42/* forward declaration... a funny thing with C ;) */
43struct clusterdomain;
44
45/* cpu_entry_t - maintain the linked and scheduled state
46 *
47 * A cpu also contains a pointer to the cedf_domain_t cluster
48 * that owns it (struct clusterdomain*)
49 */
50typedef struct {
51 int cpu;
52 struct clusterdomain* cluster; /* owning cluster */
53 struct task_struct* linked; /* only RT tasks */
54 struct task_struct* scheduled; /* only RT tasks */
55 atomic_t will_schedule; /* prevent unneeded IPIs */
56 struct bheap_node* hn;
57} cpu_entry_t;
58
59/* one cpu_entry_t per CPU */
60DEFINE_PER_CPU(cpu_entry_t, cedf_cpu_entries);
61
62#define set_will_schedule() \
63 (atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 1))
64#define clear_will_schedule() \
65 (atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 0))
66#define test_will_schedule(cpu) \
67 (atomic_read(&per_cpu(cedf_cpu_entries, cpu).will_schedule))
68
69/*
70 * In C-EDF there is a cedf domain _per_ cluster
71 * The number of clusters is dynamically determined accordingly to the
72 * total cpu number and the cluster size
73 */
74typedef struct clusterdomain {
75 /* rt_domain for this cluster */
76 rt_domain_t domain;
77 /* cpus in this cluster */
78 cpu_entry_t* *cpus;
79 /* map of this cluster cpus */
80 cpumask_var_t cpu_map;
81 /* the cpus queue themselves according to priority in here */
82 struct bheap_node *heap_node;
83 struct bheap cpu_heap;
84 /* lock for this cluster */
85#define lock domain.ready_lock
86} cedf_domain_t;
87
88/* a cedf_domain per cluster; allocation is done at init/activation time */
89cedf_domain_t *cedf;
90
91#define remote_cluster(cpu) ((cedf_domain_t *) per_cpu(cedf_cpu_entries, cpu).cluster)
92#define task_cpu_cluster(task) remote_cluster(get_partition(task))
93
94/* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling
95 * decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose
96 * information during the initialization of the plugin (e.g., topology)
97#define WANT_ALL_SCHED_EVENTS
98 */
99#define VERBOSE_INIT
100
101static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
102{
103 cpu_entry_t *a, *b;
104 a = _a->value;
105 b = _b->value;
106 /* Note that a and b are inverted: we want the lowest-priority CPU at
107 * the top of the heap.
108 */
109 return edf_higher_prio(b->linked, a->linked);
110}
111
112/* update_cpu_position - Move the cpu entry to the correct place to maintain
113 * order in the cpu queue. Caller must hold cedf lock.
114 */
115static void update_cpu_position(cpu_entry_t *entry)
116{
117 cedf_domain_t *cluster = entry->cluster;
118
119 if (likely(bheap_node_in_heap(entry->hn)))
120 bheap_delete(cpu_lower_prio,
121 &cluster->cpu_heap,
122 entry->hn);
123
124 bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn);
125}
126
127/* caller must hold cedf lock */
128static cpu_entry_t* lowest_prio_cpu(cedf_domain_t *cluster)
129{
130 struct bheap_node* hn;
131 hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap);
132 return hn->value;
133}
134
135
136/* link_task_to_cpu - Update the link of a CPU.
137 * Handles the case where the to-be-linked task is already
138 * scheduled on a different CPU.
139 */
140static noinline void link_task_to_cpu(struct task_struct* linked,
141 cpu_entry_t *entry)
142{
143 cpu_entry_t *sched;
144 struct task_struct* tmp;
145 int on_cpu;
146
147 BUG_ON(linked && !is_realtime(linked));
148
149 /* Currently linked task is set to be unlinked. */
150 if (entry->linked) {
151 entry->linked->rt_param.linked_on = NO_CPU;
152 }
153
154 /* Link new task to CPU. */
155 if (linked) {
156 set_rt_flags(linked, RT_F_RUNNING);
157 /* handle task is already scheduled somewhere! */
158 on_cpu = linked->rt_param.scheduled_on;
159 if (on_cpu != NO_CPU) {
160 sched = &per_cpu(cedf_cpu_entries, on_cpu);
161 /* this should only happen if not linked already */
162 BUG_ON(sched->linked == linked);
163
164 /* If we are already scheduled on the CPU to which we
165 * wanted to link, we don't need to do the swap --
166 * we just link ourselves to the CPU and depend on
167 * the caller to get things right.
168 */
169 if (entry != sched) {
170 TRACE_TASK(linked,
171 "already scheduled on %d, updating link.\n",
172 sched->cpu);
173 tmp = sched->linked;
174 linked->rt_param.linked_on = sched->cpu;
175 sched->linked = linked;
176 update_cpu_position(sched);
177 linked = tmp;
178 }
179 }
180 if (linked) /* might be NULL due to swap */
181 linked->rt_param.linked_on = entry->cpu;
182 }
183 entry->linked = linked;
184#ifdef WANT_ALL_SCHED_EVENTS
185 if (linked)
186 TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
187 else
188 TRACE("NULL linked to %d.\n", entry->cpu);
189#endif
190 update_cpu_position(entry);
191}
192
193/* unlink - Make sure a task is not linked any longer to an entry
194 * where it was linked before. Must hold cedf_lock.
195 */
196static noinline void unlink(struct task_struct* t)
197{
198 cpu_entry_t *entry;
199
200 if (unlikely(!t)) {
201 TRACE_BUG_ON(!t);
202 return;
203 }
204
205
206 if (t->rt_param.linked_on != NO_CPU) {
207 /* unlink */
208 entry = &per_cpu(cedf_cpu_entries, t->rt_param.linked_on);
209 t->rt_param.linked_on = NO_CPU;
210 link_task_to_cpu(NULL, entry);
211 } else if (is_queued(t)) {
212 /* This is an interesting situation: t is scheduled,
213 * but was just recently unlinked. It cannot be
214 * linked anywhere else (because then it would have
215 * been relinked to this CPU), thus it must be in some
216 * queue. We must remove it from the list in this
217 * case.
218 *
219 * in C-EDF case is should be somewhere in the queue for
220 * its domain, therefore and we can get the domain using
221 * task_cpu_cluster
222 */
223 remove(&(task_cpu_cluster(t))->domain, t);
224 }
225}
226
227
228/* preempt - force a CPU to reschedule
229 */
230static void preempt(cpu_entry_t *entry)
231{
232 preempt_if_preemptable(entry->scheduled, entry->cpu);
233}
234
235/* requeue - Put an unlinked task into gsn-edf domain.
236 * Caller must hold cedf_lock.
237 */
238static noinline void requeue(struct task_struct* task)
239{
240 cedf_domain_t *cluster = task_cpu_cluster(task);
241 BUG_ON(!task);
242 /* sanity check before insertion */
243 BUG_ON(is_queued(task));
244
245 if (is_released(task, litmus_clock()))
246 __add_ready(&cluster->domain, task);
247 else {
248 /* it has got to wait */
249 add_release(&cluster->domain, task);
250 }
251}
252
253/* check for any necessary preemptions */
254static void check_for_preemptions(cedf_domain_t *cluster)
255{
256 struct task_struct *task;
257 cpu_entry_t* last;
258
259 for(last = lowest_prio_cpu(cluster);
260 edf_preemption_needed(&cluster->domain, last->linked);
261 last = lowest_prio_cpu(cluster)) {
262 /* preemption necessary */
263 task = __take_ready(&cluster->domain);
264 TRACE("check_for_preemptions: attempting to link task %d to %d\n",
265 task->pid, last->cpu);
266 if (last->linked)
267 requeue(last->linked);
268 link_task_to_cpu(task, last);
269 preempt(last);
270 }
271}
272
273/* cedf_job_arrival: task is either resumed or released */
274static noinline void cedf_job_arrival(struct task_struct* task)
275{
276 cedf_domain_t *cluster = task_cpu_cluster(task);
277 BUG_ON(!task);
278
279 requeue(task);
280 check_for_preemptions(cluster);
281}
282
283static void cedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
284{
285 cedf_domain_t* cluster = container_of(rt, cedf_domain_t, domain);
286 unsigned long flags;
287
288 spin_lock_irqsave(&cluster->lock, flags);
289
290 __merge_ready(&cluster->domain, tasks);
291 check_for_preemptions(cluster);
292
293 spin_unlock_irqrestore(&cluster->lock, flags);
294}
295
296/* caller holds cedf_lock */
297static noinline void job_completion(struct task_struct *t, int forced)
298{
299 BUG_ON(!t);
300
301 sched_trace_task_completion(t, forced);
302
303 TRACE_TASK(t, "job_completion().\n");
304
305 /* set flags */
306 set_rt_flags(t, RT_F_SLEEP);
307 /* prepare for next period */
308 prepare_for_next_period(t);
309 if (is_released(t, litmus_clock()))
310 sched_trace_task_release(t);
311 /* unlink */
312 unlink(t);
313 /* requeue
314 * But don't requeue a blocking task. */
315 if (is_running(t))
316 cedf_job_arrival(t);
317}
318
319/* cedf_tick - this function is called for every local timer
320 * interrupt.
321 *
322 * checks whether the current task has expired and checks
323 * whether we need to preempt it if it has not expired
324 */
325static void cedf_tick(struct task_struct* t)
326{
327 if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
328 if (!is_np(t)) {
329 /* np tasks will be preempted when they become
330 * preemptable again
331 */
332 set_tsk_need_resched(t);
333 set_will_schedule();
334 TRACE("cedf_scheduler_tick: "
335 "%d is preemptable "
336 " => FORCE_RESCHED\n", t->pid);
337 } else if (is_user_np(t)) {
338 TRACE("cedf_scheduler_tick: "
339 "%d is non-preemptable, "
340 "preemption delayed.\n", t->pid);
341 request_exit_np(t);
342 }
343 }
344}
345
346/* Getting schedule() right is a bit tricky. schedule() may not make any
347 * assumptions on the state of the current task since it may be called for a
348 * number of reasons. The reasons include a scheduler_tick() determined that it
349 * was necessary, because sys_exit_np() was called, because some Linux
350 * subsystem determined so, or even (in the worst case) because there is a bug
351 * hidden somewhere. Thus, we must take extreme care to determine what the
352 * current state is.
353 *
354 * The CPU could currently be scheduling a task (or not), be linked (or not).
355 *
356 * The following assertions for the scheduled task could hold:
357 *
358 * - !is_running(scheduled) // the job blocks
359 * - scheduled->timeslice == 0 // the job completed (forcefully)
360 * - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
361 * - linked != scheduled // we need to reschedule (for any reason)
362 * - is_np(scheduled) // rescheduling must be delayed,
363 * sys_exit_np must be requested
364 *
365 * Any of these can occur together.
366 */
367static struct task_struct* cedf_schedule(struct task_struct * prev)
368{
369 cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries);
370 cedf_domain_t *cluster = entry->cluster;
371 int out_of_time, sleep, preempt, np, exists, blocks;
372 struct task_struct* next = NULL;
373
374 spin_lock(&cluster->lock);
375 clear_will_schedule();
376
377 /* sanity checking */
378 BUG_ON(entry->scheduled && entry->scheduled != prev);
379 BUG_ON(entry->scheduled && !is_realtime(prev));
380 BUG_ON(is_realtime(prev) && !entry->scheduled);
381
382 /* (0) Determine state */
383 exists = entry->scheduled != NULL;
384 blocks = exists && !is_running(entry->scheduled);
385 out_of_time = exists &&
386 budget_enforced(entry->scheduled) &&
387 budget_exhausted(entry->scheduled);
388 np = exists && is_np(entry->scheduled);
389 sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
390 preempt = entry->scheduled != entry->linked;
391
392#ifdef WANT_ALL_SCHED_EVENTS
393 TRACE_TASK(prev, "invoked cedf_schedule.\n");
394#endif
395
396 if (exists)
397 TRACE_TASK(prev,
398 "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
399 "state:%d sig:%d\n",
400 blocks, out_of_time, np, sleep, preempt,
401 prev->state, signal_pending(prev));
402 if (entry->linked && preempt)
403 TRACE_TASK(prev, "will be preempted by %s/%d\n",
404 entry->linked->comm, entry->linked->pid);
405
406
407 /* If a task blocks we have no choice but to reschedule.
408 */
409 if (blocks)
410 unlink(entry->scheduled);
411
412 /* Request a sys_exit_np() call if we would like to preempt but cannot.
413 * We need to make sure to update the link structure anyway in case
414 * that we are still linked. Multiple calls to request_exit_np() don't
415 * hurt.
416 */
417 if (np && (out_of_time || preempt || sleep)) {
418 unlink(entry->scheduled);
419 request_exit_np(entry->scheduled);
420 }
421
422 /* Any task that is preemptable and either exhausts its execution
423 * budget or wants to sleep completes. We may have to reschedule after
424 * this. Don't do a job completion if we block (can't have timers running
425 * for blocked jobs). Preemption go first for the same reason.
426 */
427 if (!np && (out_of_time || sleep) && !blocks && !preempt)
428 job_completion(entry->scheduled, !sleep);
429
430 /* Link pending task if we became unlinked.
431 */
432 if (!entry->linked)
433 link_task_to_cpu(__take_ready(&cluster->domain), entry);
434
435 /* The final scheduling decision. Do we need to switch for some reason?
436 * If linked is different from scheduled, then select linked as next.
437 */
438 if ((!np || blocks) &&
439 entry->linked != entry->scheduled) {
440 /* Schedule a linked job? */
441 if (entry->linked) {
442 entry->linked->rt_param.scheduled_on = entry->cpu;
443 next = entry->linked;
444 }
445 if (entry->scheduled) {
446 /* not gonna be scheduled soon */
447 entry->scheduled->rt_param.scheduled_on = NO_CPU;
448 TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
449 }
450 } else
451 /* Only override Linux scheduler if we have a real-time task
452 * scheduled that needs to continue.
453 */
454 if (exists)
455 next = prev;
456
457 spin_unlock(&cluster->lock);
458
459#ifdef WANT_ALL_SCHED_EVENTS
460 TRACE("cedf_lock released, next=0x%p\n", next);
461
462 if (next)
463 TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
464 else if (exists && !next)
465 TRACE("becomes idle at %llu.\n", litmus_clock());
466#endif
467
468
469 return next;
470}
471
472
473/* _finish_switch - we just finished the switch away from prev
474 */
475static void cedf_finish_switch(struct task_struct *prev)
476{
477 cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries);
478
479 entry->scheduled = is_realtime(current) ? current : NULL;
480#ifdef WANT_ALL_SCHED_EVENTS
481 TRACE_TASK(prev, "switched away from\n");
482#endif
483}
484
485
486/* Prepare a task for running in RT mode
487 */
488static void cedf_task_new(struct task_struct * t, int on_rq, int running)
489{
490 unsigned long flags;
491 cpu_entry_t* entry;
492 cedf_domain_t* cluster;
493
494 TRACE("gsn edf: task new %d\n", t->pid);
495
496 /* the cluster doesn't change even if t is running */
497 cluster = task_cpu_cluster(t);
498
499 spin_lock_irqsave(&cluster->domain.ready_lock, flags);
500
501 /* setup job params */
502 release_at(t, litmus_clock());
503
504 if (running) {
505 entry = &per_cpu(cedf_cpu_entries, task_cpu(t));
506 BUG_ON(entry->scheduled);
507
508 entry->scheduled = t;
509 tsk_rt(t)->scheduled_on = task_cpu(t);
510 } else {
511 t->rt_param.scheduled_on = NO_CPU;
512 }
513 t->rt_param.linked_on = NO_CPU;
514
515 cedf_job_arrival(t);
516 spin_unlock_irqrestore(&(cluster->domain.ready_lock), flags);
517}
518
519static void cedf_task_wake_up(struct task_struct *task)
520{
521 unsigned long flags;
522 lt_t now;
523 cedf_domain_t *cluster;
524
525 TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
526
527 cluster = task_cpu_cluster(task);
528
529 spin_lock_irqsave(&cluster->lock, flags);
530 /* We need to take suspensions because of semaphores into
531 * account! If a job resumes after being suspended due to acquiring
532 * a semaphore, it should never be treated as a new job release.
533 */
534 if (get_rt_flags(task) == RT_F_EXIT_SEM) {
535 set_rt_flags(task, RT_F_RUNNING);
536 } else {
537 now = litmus_clock();
538 if (is_tardy(task, now)) {
539 /* new sporadic release */
540 release_at(task, now);
541 sched_trace_task_release(task);
542 }
543 else {
544 if (task->rt.time_slice) {
545 /* came back in time before deadline
546 */
547 set_rt_flags(task, RT_F_RUNNING);
548 }
549 }
550 }
551 cedf_job_arrival(task);
552 spin_unlock_irqrestore(&cluster->lock, flags);
553}
554
555static void cedf_task_block(struct task_struct *t)
556{
557 unsigned long flags;
558 cedf_domain_t *cluster;
559
560 TRACE_TASK(t, "block at %llu\n", litmus_clock());
561
562 cluster = task_cpu_cluster(t);
563
564 /* unlink if necessary */
565 spin_lock_irqsave(&cluster->lock, flags);
566 unlink(t);
567 spin_unlock_irqrestore(&cluster->lock, flags);
568
569 BUG_ON(!is_realtime(t));
570}
571
572
573static void cedf_task_exit(struct task_struct * t)
574{
575 unsigned long flags;
576 cedf_domain_t *cluster = task_cpu_cluster(t);
577
578 /* unlink if necessary */
579 spin_lock_irqsave(&cluster->lock, flags);
580 unlink(t);
581 if (tsk_rt(t)->scheduled_on != NO_CPU) {
582 cluster->cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
583 tsk_rt(t)->scheduled_on = NO_CPU;
584 }
585 spin_unlock_irqrestore(&cluster->lock, flags);
586
587 BUG_ON(!is_realtime(t));
588 TRACE_TASK(t, "RIP\n");
589}
590
591static long cedf_admit_task(struct task_struct* tsk)
592{
593 return task_cpu(tsk) == tsk->rt_param.task_params.cpu ? 0 : -EINVAL;
594}
595
596/* total number of cluster */
597static int num_clusters;
598/* we do not support cluster of different sizes */
599static unsigned int cluster_size;
600
601#ifdef VERBOSE_INIT
602static void print_cluster_topology(cpumask_var_t mask, int cpu)
603{
604 int chk;
605 char buf[255];
606
607 chk = cpulist_scnprintf(buf, 254, mask);
608 buf[chk] = '\0';
609 printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf);
610
611}
612#endif
613
614static int clusters_allocated = 0;
615
616static void cleanup_cedf(void)
617{
618 int i;
619
620 if (clusters_allocated) {
621 for (i = 0; i < num_clusters; i++) {
622 kfree(cedf[i].cpus);
623 kfree(cedf[i].heap_node);
624 free_cpumask_var(cedf[i].cpu_map);
625 }
626
627 kfree(cedf);
628 }
629}
630
631static long cedf_activate_plugin(void)
632{
633 int i, j, cpu, ccpu, cpu_count;
634 cpu_entry_t *entry;
635
636 cpumask_var_t mask;
637 int chk = 0;
638
639 /* de-allocate old clusters, if any */
640 cleanup_cedf();
641
642 printk(KERN_INFO "C-EDF: Activate Plugin, cache index = %d\n",
643 cluster_cache_index);
644
645 /* need to get cluster_size first */
646 if(!zalloc_cpumask_var(&mask, GFP_ATOMIC))
647 return -ENOMEM;
648
649 if (unlikely(cluster_cache_index == num_online_cpus())) {
650
651 cluster_size = num_online_cpus();
652 } else {
653
654 chk = get_shared_cpu_map(mask, 0, cluster_cache_index);
655 if (chk) {
656 /* if chk != 0 then it is the max allowed index */
657 printk(KERN_INFO "C-EDF: Cannot support cache index = %d\n",
658 cluster_cache_index);
659 printk(KERN_INFO "C-EDF: Using cache index = %d\n",
660 chk);
661 cluster_cache_index = chk;
662 }
663
664 cluster_size = cpumask_weight(mask);
665 }
666
667 if ((num_online_cpus() % cluster_size) != 0) {
668 /* this can't be right, some cpus are left out */
669 printk(KERN_ERR "C-EDF: Trying to group %d cpus in %d!\n",
670 num_online_cpus(), cluster_size);
671 return -1;
672 }
673
674 num_clusters = num_online_cpus() / cluster_size;
675 printk(KERN_INFO "C-EDF: %d cluster(s) of size = %d\n",
676 num_clusters, cluster_size);
677
678 /* initialize clusters */
679 cedf = kmalloc(num_clusters * sizeof(cedf_domain_t), GFP_ATOMIC);
680 for (i = 0; i < num_clusters; i++) {
681
682 cedf[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t),
683 GFP_ATOMIC);
684 cedf[i].heap_node = kmalloc(
685 cluster_size * sizeof(struct bheap_node),
686 GFP_ATOMIC);
687 bheap_init(&(cedf[i].cpu_heap));
688 edf_domain_init(&(cedf[i].domain), NULL, cedf_release_jobs);
689
690 if(!zalloc_cpumask_var(&cedf[i].cpu_map, GFP_ATOMIC))
691 return -ENOMEM;
692 }
693
694 /* cycle through cluster and add cpus to them */
695 for (i = 0; i < num_clusters; i++) {
696
697 for_each_online_cpu(cpu) {
698 /* check if the cpu is already in a cluster */
699 for (j = 0; j < num_clusters; j++)
700 if (cpumask_test_cpu(cpu, cedf[j].cpu_map))
701 break;
702 /* if it is in a cluster go to next cpu */
703 if (cpumask_test_cpu(cpu, cedf[j].cpu_map))
704 continue;
705
706 /* this cpu isn't in any cluster */
707 /* get the shared cpus */
708 if (unlikely(cluster_cache_index == num_online_cpus()))
709 cpumask_copy(mask, cpu_online_mask);
710 else
711 get_shared_cpu_map(mask, cpu, cluster_cache_index);
712
713 cpumask_copy(cedf[i].cpu_map, mask);
714#ifdef VERBOSE_INIT
715 print_cluster_topology(mask, cpu);
716#endif
717 /* add cpus to current cluster and init cpu_entry_t */
718 cpu_count = 0;
719 for_each_cpu(ccpu, cedf[i].cpu_map) {
720
721 entry = &per_cpu(cedf_cpu_entries, ccpu);
722 cedf[i].cpus[cpu_count] = entry;
723 atomic_set(&entry->will_schedule, 0);
724 entry->cpu = ccpu;
725 entry->cluster = &cedf[i];
726 entry->hn = &(cedf[i].heap_node[cpu_count]);
727 bheap_node_init(&entry->hn, entry);
728
729 cpu_count++;
730
731 entry->linked = NULL;
732 entry->scheduled = NULL;
733 update_cpu_position(entry);
734 }
735 /* done with this cluster */
736 break;
737 }
738 }
739
740 free_cpumask_var(mask);
741 clusters_allocated = 1;
742 return 0;
743}
744
745/* Plugin object */
746static struct sched_plugin cedf_plugin __cacheline_aligned_in_smp = {
747 .plugin_name = "C-EDF",
748 .finish_switch = cedf_finish_switch,
749 .tick = cedf_tick,
750 .task_new = cedf_task_new,
751 .complete_job = complete_job,
752 .task_exit = cedf_task_exit,
753 .schedule = cedf_schedule,
754 .task_wake_up = cedf_task_wake_up,
755 .task_block = cedf_task_block,
756 .admit_task = cedf_admit_task,
757 .activate_plugin = cedf_activate_plugin,
758};
759
760
761static int __init init_cedf(void)
762{
763 return register_sched_plugin(&cedf_plugin);
764}
765
766static void clean_cedf(void)
767{
768 cleanup_cedf();
769}
770
771module_init(init_cedf);
772module_exit(clean_cedf);